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CHAPTER 3: 

CROSSMODAL INTRINSIC MAPPINGS MAKE 

AUDITORY SENSORY SUBSTITUTION EFFORTLESS 

  

Introduction   
Sensory substitution studies have shown that sighted and blind participants can 

recognize and localize natural and artificial objects with sensory substitution given that 

participants have extensive training (one week to three months) and use top-down 

attention (Amedi, et al., 2007; Auvray, et al., 2007; Bach-y-Rita, et al., 1969; Bach-y-

Rita, et al., 1998; Chebat, et al., 2011; Poirier, De Volder, & Scheiber, 2007; Proulx, et 

al., 2008).  Whereas visual perception in the sighted is effortless and automatic, the usage 

of SS has so far been laborious, and this prevents devices from being successful 

commercially.  No studies have investigated whether the processing of sensory 

substitution can be intuitive, or interpreted by entirely naïve participants with no device 

experience, training, or instruction.  The only study that uses entirely naïve users is 

Auvray et al., where they test whether distal perception (object perceived externally in 

perceptual space) can be learned without encoding knowledge of an auditory sensory 

substitution device, as detailed in Chapter 1 (p. 26) (Auvray, et al., 2005).  It should also 

be noted that a SS visual acuity study used participants not trained with an SS device, but 

provided with a description of the device’s vision-to-auditory encoding algorithm (Haigh, 

Brown, Meijer, & Proulx, 2013). 

The current literature, reviewed in Chapter 1, seems to indicate that sensory 

substitution interpretation by trained users is a top-down cognitive process with attentive 
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concentration.  Meanwhile, neural imaging studies on SS have so far shown the presence 

of plasticity, but uncertainty remains as to whether the plasticity is due to a top-down and 

attention-intensive process, or a bottom-up perceptual process (Amedi, et al., 2007; 

Poirier, De Volder, & Scheiber, 2007).  Further, TMS studies have shown the visual 

activation from sensory substitution to be causally linked to task performance on the 

device in blind users (Collignon, et al., 2007; Merabet, et al., 2009).  The current study 

(detailed in this chapter) is the first indication (among behavior or imaging studies) that 

sensory substitution interpretation (and potentially sensory substitution plasticity) does 

not always require top-down attention; rather it can rely on an automatic, bottom-up 

process. 

Sensory substitution studies implicitly assume that blind or sighted participants 

cannot successfully interpret information provided by sensory substitution devices 

without both knowledge on the device encoding and sensorimotor training with it.  

However, the crossmodal correspondence literature (also called crossmodal associations, 

synaesthetic correspondences or associations, or intrinsic mappings) has shown that an 

intrinsic mapping exists between modalities (Spence, 2011).  This intrinsic mapping may 

allow participants to perform tasks without any training, effort, or knowledge of the 

device encoding.  For example, Figure 3.01 shows the intuitive matching of images to 

vOICe sounds by just using the amplitude modulation rate of the sound.  The crossmodal 

mapping used in this example (amplitude modulation rate of sound to visual spatial 

frequency) is well-known, and has been studied in detail by Guzman-Martinez et al. 

(2012). 
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The crossmodal correspondences could further be used to enhance sensory 

substitution training by building on intuitive crossmodal features rather than ambiguous 

and unimodal visual features.  Vision and audition correspondences can be generated by a 

common crossmodal feature, such as amplitude (brightness for vision, intensity for 

sound).  On the other hand, seemingly unrelated modality-specific features have also 

been found to be matched, and matching can occur even at an abstract level (such as 

emotional response elicited) (Spence, 2011).  It has been argued that these crossmodal 

mappings are learned priors within a Bayesian framework of crossmodal integration 

(Ernst, 2007).  The encoding of vOICe is based on long-evidenced correspondences 

across vision and audition, such as the matching of brightness and loudness intensity 

(Stevens & Marks, 1965), spatial height and pitch height (Pratt, 1930), and scanning from 

left to right similar to reading written English.  Therefore, participants with no knowledge 

about the vOICe device may in principle be able to use crossmodal correspondences to 

naïvely match images with their correct vOICe sounds.  The device had been designed 

(either by chance or on purpose) for effortless usage, but somehow this advantage has not 

been explored.  In addition to basic stimuli such as comparing lines of different angles 

encoded into sound with vOICe, our pilot observations suggest that other stimuli such as 

textures may have strong intrinsic crossmodal associations, and thus may also be 

correctly interpreted by naïve participants.  This points to a possibility of a radical shift in 

SS training strategy.  The vOICe device is particularly useful at encoding textures, as left-

to-right scanning generates a dynamic beat that temporally plays out coarse-to-fine-

grained spatial frequencies. 
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The naïve interpretation of vOICe would indicate that explicit instructions on the 

audiovisual vOICe encoding are not needed for vOICe interpretation.  However, if the 

users can interpret vOICe without encoding instructions, this indicates that an intrinsic 

crossmodal mapping is utilized for interpretation, albeit implicitly.  Therefore, the 

automaticity of the interpretation of vOICe naïvely depends on the automaticity of the 

crossmodal correspondences underlying that interpretation.  Crossmodal correspondences 

can be automatic or require additional attention resources to interpret, depending on the 

type of mapping and task (Spence & Deroy, 2013).  Chapter 1 discussed automaticity in 

vision, with an emphasis on visual distraction automaticity tests.  Distraction tasks 

evaluate whether the stimuli in question is attention-load insensitive; this is one 

automaticity criterion.  However, there are other criterion of automaticity, such as the 

“goal independence criterion,” “the non-conscious criterion,” and the “speed criterion” 

(Spence & Deroy, 2013).  Spence and Deroy’s review of crossmodal mappings 

automaticity indicate that auditory visual correspondences have some evidence of being 

goal-directed (i.e., not automatic), but in contrast are speeded in the Implicit Associations 

Test (i.e., automatic) (Parise & Spence, 2012; Spence & Deroy, 2013).  The experiments 

discussed in this chapter will use load-insensitivity criteria for automaticity of vOICe and 

the crossmodal correspondences therein.  The load-insensitivity measure for automaticity 

will be tested with a distraction task in audition as well as in vision during the vOICe 

sound interpretation (detailed below).  While there are no papers on load-insensitivity of 

crossmodal mappings, there are studies of load-insensitivity of crossmodal interactions. 

Distraction dual task designs have been used in studying the impact of high 

attention load on crossmodal integration.  Alsius and colleagues studied the processing of 
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auditory and visual speech integration in the McGurk Effect while participants performed 

a distraction task (Alsius, Navarra, Campbell, & Soto-Faraco, 2005).  Results indicated 

that reduced attention resources limited the McGurk effect.  A study performed by 

Eramudugolla et al. indicated that ventriloquist aftereffect can occur under attention load, 

but that it is modulated by attention load (Eramudugolla, Kamke, Soto-Faraco, & 

Mattingley, 2011).  Helbig and Ernst demonstrated that the weighting of visual and haptic 

stimuli is independent of attention load (Helbig & Ernst, 2008).  These mixed multimodal 

results on attention load indicate that crossmodal mappings may or may not be 

independent of attention load.  We will study this further in this chapter in application to 

the crossmodal mappings used in the vOICe device. 

We address two crossmodal mapping problems in this Chapter: the engineering 

issue of optimally encoding vision into audition (V=>A), and the psychological/neural 

decoding of SS via crossmodal correspondences (A=>V).  We began by studying the 

psychological/neural decoding of SS with the existing vOICe device encoding, to 

determine if vOICe can be intuitive.  The results then suggested optimal methods for the 

encoding of vision into audition.  In other words, once we know what works in vOICe, 

we can then accentuate those characteristics to make even more intuitive device 

encodings and training procedures 
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Figure 3.01.  Example of intuitive image and vOICe matching.  Figure 3.01 shows the 

example output from the vOICe (row 2) for a given set of images (row 1) used in bimodal 

matching experiments.  Each row in the graphic is a different representation of the set of 

images: the first row is the visual representation, the second row uses just amplitude of 

the vOICe sound as a function of time to represent the image.  Each column represents 

the same image or information.  It is clear with this particular set of images and vOICe 

sounds that they have similar structure, and therefore are intuitive to match.  In fact, it is 

clear that it is easy to match the images and sounds even if the positions of images and 

sounds were jumbled. 
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We hypothesize that textures will be intuitive with vOICe.  Textures have been 

studied in detail in vision, and are an important element of monocular depth perception, 

visual segmentation, and automatic visual search (Palmer, 1999).  Cues in monocular 

depth perception such as texture gradient (texture elements become smaller with 

distance) and texture accretion and deletion (texture elements disappear and reappear 

with lateral movement) are important elements of monocular depth.  In visual search, 

unique texture elements can be identified in either a parallel or serial manner (Bergen & 

Julesz, 1983).  With parallel search, the unique element pops out and can be identified at 

the same speed independent of the number of distractors.  In the serial search, the unique 

element localization depends on the number distractors (no pop-out).  Textures can also 

be used in vision for segmenting a scene into different objects and/or visual regions, and 

can be used in object shape identification (via distortion of texture elements).  As an 

important and prevalent element of vision it is logical that textures would also be 

valuable to the processing of vOICe stimuli. 

Methods 

The role of crossmodal correspondences was tested with naïve (N = 5-7) and 

trained sighted (N = 4) participants in a bimodal matching task (Figure 3.02).  First, all 

stimuli were presented as a preview (all three to four images and then associated vOICe 

sounds in random order), and then participants heard one sound and were asked to match 

one of three presented images to the sound (3AFC).  Naïve participants were not told the 

vOICe encoding scheme, nor that the sounds were from the vOICe.  Participants were 

asked to match the image and sound that carried the same information; if uncertain, 

participants were told to guess.  Feedback on performance was not provided to 
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participants.  Images were compared in sets of three or four so that particular image 

features and types could be tested separately.  Image types ranged from natural to 

artificial images, and from simple to complex images.  Images sets included vertical bar 

textures of different thickness, circular patterns of different element sizes, and images of 

natural textures (Figure 3.06).  All images were presented in grayscale, as vOICe sounds 

do not convey color information.  A total of 24 image sets were tested (all images are 

included in the supplementary materials).  The naïve sighted participants are different 

participants from the naïve trained participants. 

The crossmodal mappings underlying vOICe’s interpretation were tested on naïve 

sighted participants (N = 8).  Participants performed a bimodal matching task of the same 

design as the original (detailed above), but with different encoding schemes to test the 

value of different crossmodal mappings.  Different encoding paradigms were generated 

by altering the images inputted into the vOICe encoding software (for example:  The 

inverted coding of dark regions louder than bright regions was generated by inverting 

image brightness before inputting the image into the vOICe software).  The encoding 

inversions tested (on top of original; [0]) were:  (1) dark regions louder than bright 

regions, (2) scanning right to left, (3) high frequency on the bottom, and, (4) scanning top 

to bottom and high frequency on the right (Figure 1.4 has the original vOICe encoding).  

The order of testing the different encoding inversions on participants was randomized 

(including the original mapping).  All participants completed all five of the different 

encoding types (four inversions and one original) in one session. 

Automaticity of vOICe interpretation via an attention load experiment was tested 

with a dual task design.  In the first experiment, participants counted backward in 7s from 
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a random number displayed (between 100 and 112), while counting the vOICe sound 

played (vOICe sound started 10 seconds after counting started) (N = 8) (Figure 3.03).  

Participants then matched the vOICe sound to one image of three images displayed 

(3AFC, same design and image specifications as the bimodal matching experiment).  The 

same participants also performed the original bimodal experiment (i.e., with no counting) 

in the same session, which was used for comparison (N = 8)(original encoding, i.e., “0” 

in above list).  A subset of the same participants performed a visual search distraction 

task in a second session (N = 6; randomly chosen from the 8 participants above) (Figure 

3.04).  These participants searched for an F within 50 E’s randomly placed in a 100-by-

100 location grid in a single image.  The E and F locations were jittered vertically and 

horizontally by up to 50 pixels.  The F was present in half of trials, and absent in half.  

The image to be searched was presented on screen until participants responded to the 

visual search question.  The visual search image was 10 inches by 10 inches, and each 

letter was 0.25 inches by 0.5 inches on screen.  Participants sat about 25 inches from the 

27 inch iMac screen where the images were presented.  The vOICe sound played at the 

beginning of the visual search task.  The participant was encouraged to continue 

searching while the sound was played.  Participants then matched the vOICe sound to one 

image of three images displayed (3AFC, same design and image specifications as the 

bimodal matching experiment). 

The tactile auditory mappings were tested via a bimodal matching task (Naïve 

sighted N = 2, Naïve blind N = 2, Trained blind N = 2 (both late blind)) (Figure 3.05). 

The set of the experiment was similar to the visual auditory bimodal matching.  First, 

three to four tactile patterns (4 inches by 3.25 inches) were explored and the associated 
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vOICe sounds were played in random order, as a preview.  Then, participants listened to 

one of the vOICe sounds and matched it to one of three tactile patterns presented on a 

desk surface (3AFC).  Participants were asked to match the image and tactile pattern that 

carried the same information.  The tactile-auditory matching task instructions were read 

aloud to the blind or blindfolded sighted by the experimenter and the participant’s 

responses (conveyed orally) were inputted by experimenter.  Tactile stimuli were placed 

in front of the participants on a desk surface for exploration by the participant.  Tactile 

patterns used were generated from black and white images containing two brightness 

levels, by adhering cardstock to the white regions, thereby raising them relative to the 

black by about 1 millimeter.  Images of all tactile relief patterns are presented in Figure 

3.11.  The trained blind participants are the same participants as the naïve blind 

participants. 

Sighted naïve participants also performed a vOICe memory task (mimicking the 

vOICe training tasks) (N = 4) for a between group comparison.  Initially, the sounds from 

vOICe were played in random order twice, and a label (1-4) was given to each of the 

sounds.  Then, in each trial, one of the sounds would play again and the participant would 

respond with the number that matches that sound.  This memory task was performed on 

the same sets of images that were used for the bimodal matching task. 

Participants performed all tasks at a 27-inch iMac computer station with Sony 

noise-cancelling headphones (MDR-NC7), and inputting responses into a keyboard.  

Psychophysics Toolbox and MATLAB were used to code the presentation of instructions 

and stimuli as well as recording responses.  Images were presented in black and white on 

the iMac screen (image size:  4 inches by 3.25 inches) approximately 25 inches away 
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from the seated participant.  Images were encoded into vOICe sounds using vOICe 

software from seeingwithsound.com using a 1 Hz scan rate.  Screen brightness and audio 

loudness was set to be comfortable to the participant.  Images used were retrieved on the 

internet or generated by experimenter in Adobe Illustrator.  Images retrieved from the 

internet were occasionally modified in Adobe Illustrator or Adobe Photoshop. 

All trained participants were trained for 8 days on the vOICe device on basic 

object localization and recognition as well as two constancy tasks (rotation and shape 

constancy).  For more details, see Appendix B and Chapter 2 Methods, (p. 62-65).  The 

vOICe device used a camera embedded in a pair of sunglasses or a webcam attached 

externally to glasses.  Sighted participants were requested to close eyes during training 

and evaluation, and wore opaque glasses and/or mask.  A camera provided live video 

feed of the environment, and we used a small portable computer to encode the video into 

sound in real time. 

Complexity quantification was performed in MATLAB.  Images were filtered 

with the Laplacian of Gaussian method (edge function) and then averaged to a single 

number per image that was averaged across an image set.  The resulting number was 

correlated with the bimodal audiovisual matching performance. 

ANOCOVA and correlation analyses were performed in MATLAB using the 

aoctool and corr functions. 

Results 

In the original bimodal matching task (matching images to sound with vOICe 

encoding), naïve sighted participants (N = 5 to 7 participants, varied across stimulus sets) 
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performed significantly above chance (i.e., p < 0.05) in 12 of 24 image sets tested, and 

trained sighted participants (N = 4) in 16 of 24 image sets (See Figure 3.06 and Appendix 

1; Appendix 1 includes all images tested).  Even with the strict Bonferroni multiple 

comparisons correction (i.e., p < 0.0021), 5 of 24 image sets were above chance for naïve, 

and 8 out 24 for trained. 

The image sets tested can be divided into three groups:  Artificial images 

(generally simple and generated by myself; Appendix A, Table A and B), non-modified 

natural stimuli (such as flowers, forests, natural textures; Appendix A, Table A and B), 

texture interfaces (natural textures artificially combined to generate interfaces; Appendix 

A, Table C).  In the artificial stimuli, 6 out of 9 image sets (67%) are significantly above 

chance (i.e., p < 0.05) for naïve sighted and 7 (78%) for trained sighted.  If just non-

modified natural stimuli are counted, of 7 image sets, 2 image sets (29%) were 

significantly above chance (i.e., p < 0.05) for the naïve sighted, and 5 image sets (71%) 

for the trained sighted.  Finally, for the texture interface group, 4 of 8 image sets (50%) 

are significantly different from chance (i.e., p < 0.05) for the trained and naïve.  

Therefore, the artificial stimuli seem to be the strongest group for matching images and 

sounds in both naïve and trained, likely due in part to their simplicity (for example:  A 

single line or dot on a black background). 

When the naïve and trained are compared directly, only in 1 image set out of 24 

was the naïve performance significantly different from the trained performance (row 1 of 

Table C in Appendix A, p < 0.01).  The image set is a set of texture interfaces for jeans 

and wood floor texture.  It is useful to note that this image set for naïve vs. trained does 

not survive the Bonferroni multiple comparisons correction (i.e., p < 0.0021).  When the 
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results for each image set are averaged across naïve participants and then trained 

participants, these averages were found not to be significantly different for the naïve vs. 

trained participant groups (p < 0.30).  Therefore, surprisingly, the naïve and trained 

groups are quite similar in their bimodal matching performance. 

It was an unexpected result that natural stimuli could be intuitive to interpret with 

sensory substitution.  Natural stimuli (such as a natural texture) have more spatial 

frequencies and brightness variation than the typical simplified lab image (a vertical line, 

for example).  Most participants being trained on sensory substitution as reported in the 

literature begin with a simplified lab environment, such as an white isolated object on 

black felt background, and only experience a natural environment with the device after at 

least several training sessions.  Our study indicates that this approach to training could be 

flawed.  We have found that some natural stimuli (such as natural textures) are rich in 

crossmodal correspondences, and therefore are easy to interpret with vOICe.  It might be 

better to begin training participants with a crossmodal correspondence-rich environment 

that includes both natural texture tasks and the simplified lab tasks. 

Crossmodal mappings underlie the vOICe encoding intuitiveness.  While this is a 

logical conclusion from the results in Figure 3.06, it is not explicitly proven that 

crossmodal mappings are the critical element that makes vOICe understandable to the 

entirely naïve.  Further, it is unclear which mapping within the vOICe encoding is the 

most important for accurate interpretation.  To address these issues, we reversed each of 

the primary vOICe encodings or crossmodal mappings, and then tested the new reversals 

in comparison to the original vOICe encoding.  If the encoding or crossmodal mapping 

reversal significantly reduces the participants’ accuracy at matching images and sounds, 
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then that mapping is important to correctly naïvely interpret vOICe.  

Results from 8 sighted naïve participants (in Figure 3.07) indicate that two 

crossmodal correspondence inversions have a significantly reduced accuracy compared to 

the original encoding.  The correlation of brightness and loudness was significantly less 

accurate when reversed for two most real-world-like image sets:  Interfaces (p < 0.00) 

and Natural Textures (p < 0.04) (second and third image sets in Figure 3.07).  The XY 

orientation of the encoding (scanning left to right, and high pitch at the top of the image) 

was also significantly less accurate when reversed (scanning top to bottom, and high 

pitch on right of image) for one image set:  Bars of different thickness (p < 0.00) (first 

image set in Figure 3.07).  When all the images are summed together, both the mapping 

of brightness and loudness (p < 0.01) and XY orientation (p < 0.00) when inverted had 

significantly less accurate performance than the original encoding (Figure 3.08). 

The implications of the crossmodal mapping tests are that two encoding elements 

are particularly important to image interpretation with vOICe:  Brightness correlating 

with loudness, and the XY orientation of the encoding (i.e., the scanning from left to right 

rather than top to bottom, and high pitch with the top of the image rather than the 

right).  It appears that the reversal of the encoding from top to the bottom or from the left 

to the right can be tolerated, but the switching of the Y and X axis encodings is 

problematic to interpretation.  The problem of switching Y and X axis encodings further 

emphasizes the anisotropy of the vOICe encoding (unlike vision) and the importance of 

displaying information on the X axis, where the highest resolution occurs (rather than the 

Y axis).  In particular, the images that test well with vOICe have information displayed 

horizontally, and when the XY encoding is switched, the information in the X direction is 
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less detectable by the lower Y-axis encoding resolution, thereby reducing accuracy.  The 

value of brightness correlating with loudness makes sense, as most bright objects in a 

dark area are the most interesting (rather than vice versa).  However, its value is also 

fortified by the auditory system’s acute ability to recognize the presence of sounds, and 

its inability to recognize the absence of sounds.  Therefore, the combination of these two 

facts makes the brightness translation to loudness highlight the most important image 

elements (i.e., the bright elements), whereas the reverse encoding (darkness translates to 

loudness) obscures the most important elements. 

The interpretation of vOICe does not require explicit knowledge of the sound-to-

image encoding; however, this doesn’t fully prove that vOICe interpretation is effortless.  

The vOICe interpretation relies upon crossmodal correspondences (as highlighted in the 

previous experiments), and crossmodal mapping interpretation can be automatic or 

require attention (discussed in Chapter introduction).  Therefore, the automaticity was 

tested for naïve interpretation of vOICe sounds with an attention distraction experiment.  

The audio distraction task used for vOICe was counting backward in sevens while the 

vOICe sound was played (experiment detailed in methods).  The visual distraction task 

was a visual search task, where participants searched for an F within 50 E’s.  The dual 

task matching accuracy (both audio and visual) was not significantly different from the 

original vOICe bimodal matching task for any of the 4 image sets tested (Figure 3.09) 

(N = 8).  When the data are summed across image sets, the visual and auditory distraction 

task accuracy were both still not significantly different from the original bimodal 

matching task (auditory distractor:  p < 0.08, visual distractor:  p < 0.31).  Therefore, this 

result shows that naïve vOICe interpretation is independent of attention load.  This fulfills 
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one important criterion of automaticity and indicates that naïve vOICe interpretation is 

effortless in at least one measure. 

Does image complexity matter to the untrained participants’ performance? To 

examine this, we defined image complexity by an edge metric that quantifies the number 

of vertical and horizontal edges.  The trained and naïve sighted participant performance 

both weakly anti-correlated with complexity, as measured by the edge metric (Naïve 

participants:  rho = −0.3491 p < 0.09; Trained participants:  rho = −0.3858, p < 0.06) 

(Figure 3.10).  This result indicates that complexity may make images less intuitive to 

interpret.  However, more importantly, a linear fit to the data indicated a performance 

above chance at even large complexity values for the naïve and trained participants.  The 

trained and naïve anti-correlations with complexity had slopes and intercepts that were 

not significantly different from each other (ANOCOVA analysis, pslope < 0.73, 

pintercept < 0.27).  It is likely that “complexity” can partially mask the crossmodal 

correspondences or dilute the crossmodally relevant information with unimodal noise.  

Nonetheless, some of the more “complex” stimuli such as natural textures revealed way-

above chance performance that is likely due to direct selection of a high density of 

crossmodal mappings (such as coarse to fine spatial frequencies) (Figure 3.02 and 

Appendix A). 
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Figure 3.02.  Experiment design for visual-auditory matching.  As detailed in methods, 

participants performed matching the images and vOICe sounds while at a computer.  First 

a vOICe sound would play, and then participants would be required to choose an image 

that seemed to match that sound the best, or contained the same information.  Sighted 

participants responded by inputting a number into the keyboard: 1 for the left image, 2 for 

the middle image and 3 for the right image. 
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Figure 3.03.  Experiment design for auditory distraction during visual-auditory matching.  

During the auditory distraction version of the auditory-visual matching of images to 

vOICe, participants were distracted by counting backward in sets of seven.  The 

experiment was designed such that participants count backwards (beginning with the 

number presented on the screen), and during counting a vOICe sound plays.  The final 

task is for the participants to match the sound heard while counting to one of the three 

images presented.  Participants responded by inputting to the keyboard: 1 for the left 

image, 2 for the middle image, and 3 for the right image. 
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Figure 3.04.  Experiment design for visual distraction during visual-auditory matching.  

During the visual distraction version of the auditory-visual matching of images to vOICe 

sounds, participants were distracted by searching for an F within a field of 50 E’s.  While 

searching for the F, a vOICe sound is played.  The participants finished the searching task 

by inputting to the keyboard 1 if an F is present, and 2 if an F is absent.  The second task 

then appears, wherein the participants are required to match the vOICe sound played 

while searching to one of three images presented.  To complete the matching task, 

participants input to the keyboard 1 for the left image, 2 for the middle image, and 3 for 

the right image. 
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Figure 3.05.  Experimental design for tactile-visual matching.  Blind and blindfolded 

sighted participants were read the instructions for the task by the experimenter.  The task 

began with a vOICe sound playing in headphones; then, three tactile patterns would be 

placed in front of the participant for tactile exploration.  The participant indicates the 

chosen pattern, and the experimenter enters the corresponding number in the computer. 
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Figure 3.06.  Select vOICe data and images.  Data and images from a select set of images 

encoded into vOICe sounds and tested on naïve and trained sighted participants.  

Participants were tested at matching a vOICe sound to the corresponding image out of 

three presented.  The error bars are the standard deviation across participants.  All data 

presented in Figure 2B is significantly different from chance (p < 0.05), except the naïve 

percent correct for the last two image sets on the right (i.e., trees and horizon images). 
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Figure 3.07.  Tests of vOICe crossmodal mappings.  Modifications in the vOICe auditory 

to visual mapping were tested with naïve participants to determine each of the 

crossmodal mappings’ importance.  The error bars are the standard deviation.  The 

dashed line is chance. 
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Figure 3.08.  Tests of vOICe crossmodal mappings summed across images.  

Modifications in the vOICe auditory to visual mapping were tested with naïve 

participants to determine each of the crossmodal mappings’ importance.  The images sets 

were averaged together to generate a generalized percent correct for all four image sets 

tested  (Figure 3.07 shows individual image set data).  The error bars are the standard 

deviation.  The dashed line is chance. 
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Figure 3.09.  Auditory and visual attention distraction vOICe data.  Naïve (untrained, and 

no encoding knowledge) participants matched vOICe sounds with images while 

performing a distraction task (either counting backward in sets of 7 from a random 

number [N = 8] or visual search [N = 6]).  Participants then matched the sound heard to 1 

of 3 images displayed.  The attention distraction data is compared to the original 

matching of sounds to images without distraction in the same participants.  Error bars are 

the standard deviation, and the dashed line is chance.
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The naïve sighted participants can perform marvelously well matching visual images to 

sounds, but the real question relevant to sensory substitution should be whether the same 

(multimodal mappings) can be applied to, say, auditory and tactile modalities in naïve 

blind participants.  Thus, we tested blind participants on matching sounds to tactile 

(relief) patterns that corresponded to the visual patterns described above for lines of 

different thicknesses and circle patterns of different sizes, and they also performed above 

chance (Figure 3.11, Bars of different thickness:  Late Blind Naïve (N = 2) 50%, Late 

Blind Trained (N = 2) 71%, Sighted Naïve (N = 2) 67%; Dots of different sizes:  Late 

Blind Naïve (N = 2) 50%, Late Blind Trained (N = 2) 71%, Sighted Naïve (N = 2) 63%; 

Chance 33%).  Although the late-blind data for tactile-auditory matching is weaker than 

the sighted data for auditory-visual matching, the late-blind will also likely have a hidden 

and untestable vision-audition intrinsic mapping from past visual experience that does not 

appear on the tactile-audition matching test performance.  Such a hidden visual-auditory 

mapping may assist or facilitate in the learning of vOICe by the late blind. 
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Figure 3.10.  Correlation between bimodal matching data and edge metric.  Correlation 

data:  Naïve Participants:  rho = −0.3491, p < 0.09; Trained Participants:  rho = −0.3858, 

p < 0.06.  Edge metric calculated in MATLAB by filtering images for edges and then 

averaging all pixels. 
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Figure 3.11.  Data and images from matching of vOICe sound and tactile patterns.  The 

tactile patterns are derived from image textures previously tested.  Participants were 

tested at matching a vOICe sound to the corresponding tactile pattern out of three 

presented.  The error bars are the standard deviation across participants.  The white 

regions of the tactile patterns are raised relative to the black regions. 

 



117 
The matching experiments demonstrated that participants have the ability to 

crossmodally match vOICe sounds and images.  It was yet unclear whether this 

crossmodal ability affects more conventional, unimodal (i.e., just auditory) training with 

the device.  To demonstrate the relationship between vOICe training and crossmodal 

matching ability, naïve sighted participants also performed a memory task with the same 

stimuli as in the bimodal matching task (detailed above).  Participants were told a label 

(1-4) to remember for each sound, and then asked to recall the label when a random one 

of vOICe sounds was played.  The memory task format is similar to most sensory 

substitution training tasks.  There, participants are presented with an object or stimulus 

and allowed to explore or listen to it, and then told a label such as “pencil” or “square.”  

The participant would be asked later whether they could identify the objects when 

presented in random order.  Such a memory-based label task is in the same format as our 

memory task with the intuitive sensory substitution stimuli.  Participant performance on 

this auditory memory task (chance:  25 percent) correlated significantly with the 

performance on the crossmodal matching task (chance:  33 percent) with a rho of 0.7139 

(p < 8.8 × 10−
4) (Figure 3.12).  The result therefore indicates that the participants’ ability 

to remember and interpret sensory substitution stimuli correlates significantly with the 

density of crossmodal mappings (as measured by our crossmodal matching task).  

Therefore, crossmodal intrinsic mappings provide a common basis for sensory 

substitution training as well as adaptive behavior and scene perception in the real world 

with the device.  Crossmodal correspondences are the unrecognized common key to the 

relative intuitiveness/ease of existing vOICe training tasks. 
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Figure 3.12.  Correlation between the bimodal and unimodal tasks.  In the bimodal 

matching task, the participant matches vOICe sounds to images, and in the unimodal 

memory task, the participant indicates the remembered label for each vOICe sound.  The 

memory task is the same as most vOICe training tasks.  Dashed lines are chance for each 

of the tasks. 
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Discussion 

Sensory substitution training has a hidden assumption that the primitives of 

sensory substitution perception will be the same as the primitives of vision, such as dots, 

lines and intersections.  While sensory substitution is vision-like, it may have 

crossmodally intuitive primitives that are different from the classical visual primitives, 

and should not be overlooked.  Training protocols that are specially designed to access 

intrinsic mappings as primitives may enable faster training and more ease of use.  If 

intuitive stimuli such as textures are the starting point of vOICe training, followed by the 

gradual increase of image complexity (but also closer to the real-world), participants may 

be able to learn to use devices more effectively and effortlessly with a shorter training 

period.  Training could also use image-processing filters to heighten textures in the 

natural images (such as a high pass filter), thereby making them more intuitive.  Note that 

this is a grossly different approach from the conventional (more effort-demanding) 

training, where trainees are forced to learn geometric primitives and then more natural 

cluttered scenes constructed from these primitives. 

This study indicates that participants can interpret vOICe stimuli with no 

knowledge of the audiovisual encoding.  The strongest crossmodal correspondences that 

underlie this naïve vOICe interpretation were found to be brightness to loudness mapping 

and the XY mapping orientation.  Finally, the naïve interpretation of vOICe was shown to 

be automatic (attentional load insensitive) with a dual task design. 

Sensory substitution interpretation and functional ability is generated by 

multimodal interaction and crossmodal plasticity.  Crossmodal mappings are the 

foundation of sensory substitution interpretation, and if used intelligently in device 
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training and design, could dramatically improve functional outcomes.  The fundamental 

bottleneck towards a commercial product may be removed by vigorous crossmodal 

plasticity kick-started from such an advantageous start point. 

  


