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CHAPTER 6: 

GENERAL DISCUSSION 

 

Introduction 

The broad themes of this thesis have ranged from crossmodal plasticity to 

automaticity (behavioral and neural), and rehabilitation of the blind population.  

Crossmodal plasticity is critical to the learning of any sensory substitution encoding, as 

sensory substitution inherently bridges across two modalities: the sense that receives the 

information, and that which interprets it.  The automaticity of sensory substitution was 

studied both behaviorally (Chapter 3) and with neural imaging (Chapter 4).  Automaticity 

of SS is critical to improving blind rehabilitation with sensory substitution, and the 

studies in this thesis will aid in the development of better training techniques and device 

encodings.  Finally, blind rehabilitation has recurred as a theme throughout all of the 

thesis chapters, and is an important end application of this research. 

Discussion 

Crossmodal Plasticity  

Crossmodal plasticity is the foundation of all sensory substitution learning.  

Through crossmodal interactions and then plastic changes of those interactions, sensory 

substitution stimuli are interpreted visually, and action is generated.  The type of 

plasticity, whether strengthening or weakening of existing neural connections or the 

generation of new neural connections, likely depends on the task, duration of training, 

and visual deprivation of the participant (i.e., blind or sighted).   
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The experiments in this thesis all rely on plastic changes across the senses to 

generate improved performance at sensory substitution tasks.  The results of these plastic 

changes are measured behaviorally in Chapters 2 and 3, and with neural imaging (fMRI) 

in Chapters 4 and 5.  In Chapter 2, the constancy processing of SS stimuli (after training) 

is likely mediated by visual neural regions that are activated by crossmodal plastic 

changes.  Chapter 3 studied the underlying crossmodal mappings that are used in the 

interpretation of SS by naïve and trained users.  Some intrinsic correspondence/mapping 

seemed to exist, mediating A-V matching performance in the trained as well as in the 

naïve participants.  These crossmodal neural connections generating the crossmodal 

mappings are potentially strengthened via SS training to generate relevant improvements 

in performance.  In Chapter 4 and 5, crossmodal plasticity is measured explicitly with 

fMRI scans before and after vOICe training.  Chapter 4 determines whether the 

crossmodal plasticity can be activated automatically (i.e., without attention) after training 

on an SS device.  This was confirmed via a mental counting task that distracted attention 

while a vOICe encoding of white noise was played.  In Chapter 5, the mapping from 

visual space through SS to visual activation is measured to determine whether the 

crossmodal plasticity is topographically mapped.  Both Chapter 4 and 5 serve to better 

understand crossmodal plasticity with sensory substitution by testing its automaticity and 

spatial mapping. 

Intrinsic Crossmodal Mappings 

Intrinsic mappings across the senses (such as vision and audition) were shown to 

be important to sensory substitution interpretation in Chapter 3.  Chapter 3 studied 

whether any vOICe sounds could be intuitive without any knowledge of vOICe by using 



236 
the crossmodal mappings (such as matching a high pitch with a high spatial location) that 

participants already had.  Surprisingly, the naïve could interpret vOICe sounds, and could 

do so automatically (independent of attentional load).  Given this result in Chapter 3, it is 

likely that crossmodal mappings play a key role in the sensory substitution learning in 

each of the other chapters, and may even underlie a part of the visual activation in 

response to vOICe sounds. 

Automaticity  

Automaticity was the key concept in Chapters 3 and 4 to study the assumed 

cognitive (top-down) nature of sensory substitution interpretation.  In general, SS is 

limited in its commercial prospects due to the long training time and the heavy cognitive 

burden of interpretation.  Therefore, we have studied in this thesis ways to make SS more 

automatic.  In Chapter 3, we investigated crossmodal mappings (such as matching a high 

pitch to high spatial position) to determine whether images and encodings with 

crossmodal mappings can be easy or automatic to interpret.  We found that these intuitive 

and existing mappings made vOICe interpretation attention-load insensitive (i.e., 

independent of attention) even in entirely naïve users.  In Chapter 4, we investigated if 

the crossmodal plasticity generated by using SS can also be automatic.  This fMRI 

experiment used a distraction task to test for attention-load sensitivity.  The results 

showed that visual activation generated by crossmodal plasticity was not dependent on 

attention. 

The study of automaticity and sensory substitution is quite novel.  Because SS is 

assumed to be top-down and cognitively intensive (or rather, no researchers had paid 

attention to this dimension of top-down attentive vs. automatic), no studies have 
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investigated whether there is an element of SS that might be intuitive or processed 

automatically.  The study of intrinsic crossmodal mappings and their role in making SS 

interpretation automatic (in Chapter 3) is the first step in highlighting the automatic 

elements of SS and expanding their role in SS.  The study of the automaticity of 

crossmodal plasticity following training with SS (Chapter 4) is a novel indication that 

plasticity engendered by SS usage can be automatic (i.e., not require attention).  These 

investigations may allow for improvements in training to tap into this automatic 

crossmodal plasticity and make SS easier to use. 

This thesis provided two critical results on the automaticity of SS that should be 

emphasized.  The first result, from Chapter 3, is that if existing crossmodal connections 

and mappings are optimally used in stimuli and encodings, then SS can be automatically 

interpreted.  The second finding, in Chapter 4, indicated that crossmodal plastic changes 

engendered by training can be automatically activated independent of attentional 

demands.  Combined, these results show that sensory substitution may have hope of 

becoming a more easily interpreted device, and consequently aid a wider blind 

population. 

Blind Rehabilitation  

Improving the capabilities of the blind is a major goal of sensory substitution as 

well as the research in this thesis.  The blind are a large disabled population within the 

United States and around the world.  An inexpensive and useful aid for the blind could 

help not only individuals in advanced countries, but also those throughout impoverished 

nations.  Sensory substitution has the potential to be this device. 
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The research in this thesis aims to improve SS devices with psychophysical as 

well as neural imaging studies.  In Chapter 2, the functional use of SS to externalize 

vOICe stimuli via shape and rotation constancy is an important step toward the 

processing of objects in space and in the correct proportion and orientation.  Chapter 3 

focuses on making SS easier to interpret by using intrinsic crossmodal mappings that 

users already have.  More ease of use could make sensory substitution a better aid to the 

blind and therefore more widely utilized.  Moreover, the results indicate that vision-like 

perception (in the sense of being effortless) can be accomplished via training potentially 

more easily than previously believed.  In addition, Chapter 4 and 5 investigate the neural 

processing of SS, the results of which could be used not only to understand the neural 

mechanisms of multisensory plasticity, but also to optimize device training to generate 

more crossmodal plasticity from SS use.  Greater crossmodal plasticity would improve 

device performance, and thereby enhance rehabilitation.  Overall, the behavioral studies 

in Chapter 2 and 3 directly test methods to improve blind rehabilitation with SS devices 

with promising results, and the neural imaging in Chapters 4 and 5 use enhanced 

understanding of neural processing as tools to improve SS device usage.  Not only that, a 

part of the results further confirmed the attentionless, automatic nature of the perceptual 

interpretation after SS training.  Therefore, the results in this thesis are important steps 

toward making SS devices more intuitive and utilizing the potential of crossmodal 

plasticity to improve device interpretation. 

Interaction of Thesis Themes 

The roles of the thesis themes (detailed above) as tools, experiments, and end 

goals are spatially laid out in Figure 6.1.  The major neural processing capabilities have 
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been used as tools in this thesis, and include:  Crossmodal plasticity and sensory motor 

learning, which were both used to train blind and sighted individuals to use the vOICe 

and to engender improvement during that training.  The two major end goals from the 

experiments in this thesis are the rehabilitation of the blind and the advancement of 

neuroscientific understanding of multisensory mapping and plasticity, both of which were 

furthered in the execution of the thesis experiments.  The vertical y-axis of Figure 6.1 

shows that several chapters of this thesis are more basic-science-themed (the end aims are 

to advance the scientific understanding, rather than a material or physical goal).  In 

contrast, other experiments are of a more applied-science nature, and strive to develop a 

device to aid the blind.  Of course, the end goals have a moderate overlap across chapters, 

thereby generating the cross arrows. 

An alternative method of visualizing the themes in this thesis is as a pyramid 

(Figure 6.2).  The pyramids base blocks consist of the crossmodal plasticity and sensory 

motor learning, which then support two additional blocks:  The automaticity of learning 

block, and then the blind rehabilitation block.  With pyramid height corresponding to 

vOICe learning, each of the building blocks increases in vOICe learning, and is supported 

by the blocks beneath them.  This visual analogy makes it clear why greater training 

techniques to enhance sensory motor learning and crossmodal plasticity are critical to the 

success of sensory substitution as an aid for the blind.  If either of the foundation stones 

crumples, blind rehabilitation with sensory substitution will not succeed.  
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Figure 6.1.  Concept web for thesis.  This diagram spatially lays out the concepts 

developed in the thesis, and maps out several interesting inter-connections among 

concepts.  In particular, it maps out the progress from tools to experiments to scientific 

goals for the thesis.  It also shows the range from basic science to more applied science, 

and various cross-connections among the two.  
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Figure 6.2.  Layout of thesis themes.  An alternative layout of thesis themes shows the 

crossmodal plasticity and sensory motor learning at the base of the pyramid, supporting 

the automaticity of perceptual processing and the rehabilitation of the blind.  Each of the 

pyramid blocks has references to the chapters that relate strongly to those themes.   
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Research Next Steps 

Research is a continuous process of discovery, and the studies in this thesis are 

just one step in a march toward understanding the brain.  Therefore, there are several 

experiments and studies following on the work in this thesis that will continue to add to 

neuroscience.  A few of these potential experiments are highlighted below.  

Perceptual Constancy 

Chapter 2 focused on the learning of constancies with the vOICe device; in 

particular, length constancy and shape constancy were learned by sighted and blind 

participants.  Additional perceptual constancies would also be interesting to test with the 

vOICe device, such as size constancy (objects appear the same size independent of 

distance), which is valuable to monocular depth perception, or brightness constancy 

(objects appear the same brightness independent of lighting conditions), which is 

valuable to recognition and localization capabilities.  Further, we tested constancies in a 

simplified lab setting; training and testing the use of constancies in daily-life tasks would 

be an important step toward full visual perception and capabilities.  Such daily-life tasks 

may include recognizing and picking up an object on a table independent of object 

orientation (shape constancy) or lighting conditions (brightness constancy). 

Neural Correlates of Intrinsic Crossmodal Mapping 

In Chapter 3, it was shown that crossmodal correspondences generate the 

intuitiveness of different stimuli encoded by SS.  This chapter used several behavioral 

psychophysical tests to determine the role of crossmodal mappings in sensory 

substitution interpretation, and the automaticity of interpreting crossmodal mapping-rich 

SS sounds.  An interesting follow-up experiment would be to study the neural correlates 
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of the interpretation of SS based on intrinsic crossmodal mapping.  In particular, it would 

be interesting if intuitive sounds that are crossmodal mapping-rich also have more visual 

activation (via crossmodal interactions) than SS sounds that are crossmodal mapping-

deficient.  This correlation between crossmodal mapping intuitiveness and visual 

activation (due to crossmodal interactions/plasticity) would indicate the neural processing 

behind the use of crossmodal mappings to interpret SS effortlessly. 

Correlation with Other Multisensory Effects/Tasks 

Another experiment using the premise of Chapter 3 (i.e., crossmodal interactions 

impacting SS interpretation) would study whether participants that have strong 

crossmodal interactions also find SS more intuitive and easy to learn.  Tests of 

crossmodal interactions could include bouncing vs. streaming effect, the double flash 

illusion, or the McGurk Effect.  There is also a range of SS tests that could be used for 

this experiment including localization, recognition, and depth perception.  The more 

similar the crossmodal interaction and SS task, the more likely that they will use similar 

multimodal pathways and therefore be correlated.  Therefore, the bouncing vs. streaming 

effect and movement evaluations of speed and direction in SS would be more likely to be 

correlated than bouncing vs. streaming and object recognition.  This line of research, if 

further applied to the blind population (V-T mapping), may eventually provide us with a 

simple diagnostic test of suitability of SS to a particular individual. 

Testing Effects of SS Training by Multisensory Illusions  

In the same direction, SS training and the resulting crossmodal plasticity may 

impact the strength of existing crossmodal interactions.  In this experiment, the strength 

of a crossmodal illusion could be tested before and after training on sensory substitution.  
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As with the comparison above, the more similar the SS training and the crossmodal 

interaction, the more likely that SS training will impact the strength of the crossmodal 

interaction.  It is also more likely that crossmodal interaction strengthening will be 

detected if it is tested as soon after training as possible. 

Suppression of Visual Cortical Processing by SS Training 

In Chapter 4, fMRI imaging was used to test whether crossmodal plasticity from 

vOICe training was automatic (or engaged without attention).  As a part of this chapter, it 

was found that visual activation due to a vision white noise pause detection task was 

suppressed following training relative to before training in sighted individuals.  It would 

be interesting to determine whether this suppression effect only occurs with white noise 

images, or if it also occurs with other images and/or visual tasks.  Further, does the visual 

suppression correlate with the amount of crossmodal plasticity in each individual?  

Deeper investigation of this suppression phenomenon may lead to interesting conclusions 

on the competition between visual and crossmodal processing in the brain. 

Conclusion  

This thesis has used psychophysics and neural imaging to study crossmodal 

plasticity and improve blind rehabilitation with sensory substitution.  The results 

contribute to the understanding of neural changes, and add new crossmodal methods to 

improving sensory substitution for blind rehabilitation.  New experiments based on the 

results in this thesis are plentiful, including new studies on crossmodal mappings and SS 

crossmodal plasticity.  New research will hopefully build upon this thesis’s results to 

construct a better understanding of the brain, and through that understanding aid 

populations recover from neural deficits.   
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APPENDIX A 

SUPPLEMENTARY DATA FOR CHAPTER 3 

 

Figure A-C:  This figure contains the task-performance matching images to 

vOICe sounds of naïve and trained participants for all image sets tested in Chapter 3.  It 

also contains the pvalue threshold markers for the comparison to chance of naïve and 

trained data, as well as the naïve to trained comparison.  The blue and red stars indicate 

that a given image set is significantly different from chance (p < 0.05) for the naïve and 

trained individuals, respectively.  The purple stars indicate that the naïve and trained 

performance were significantly different from each other (p < 0.05). 
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Figure A 
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Figure B 
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Figure C 
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APPENDIX B 

vOICE TRAINING PROCEDURES 

 

This appendix includes the detailed training instructions for the fMRI vOICe 

experiment (Chapter 4 and 5) in part 1, and the vOICe behavioral experiments (Chapter 2 

and 3) in part 2.  The instructions were drafted before and during training as a guide to 

the experimenter on the training procedure.  Additional detail was added following the 

experiments to clarify the training procedures. 
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Appendix B Part 1 

vOICe fMRI Localization Experiment Training Instructions 

 

Session 1 (1 hour)  

- Training Assessment (always perform assessment first) 

o 10 trials of reaching for a white circle in one of five locations on a black 

felt covered board while sitting at a black-felt-covered table (positions 

randomized in MATLAB)   

o Record accuracy of reaching before physically correcting the participant’s 

reach to the center of the circle. 

- Training Tasks:   

o Locating, centering in the field of view and reaching for large circle on the 

black felt board (give feedback on the accuracy of centering before the 

participant reaches). 

o Differentiating between configurations of white blocks and shapes on the 

black felt board (L from a backwards L, from a 7 and a backwards 7, and a 

circle from a square, from a rectangle). 

 

Session 2 (1 hour)  

- Training Assessment (always perform assessment first) 

o 10 trials of reaching for a white circle in one of five locations on a black-

felt-covered board while sitting at a black-felt-covered table (positions 

randomized in MATLAB)   
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o Record accuracy of reaching before physically correcting the participant’s 

reach to the center of the circle. 

- Tasks:   

o Locating, centering in the field of view and reaching for large circle on the 

black felt board (give feedback on the accuracy of centering before the 

participant reaches). 

o Localize, walk to, and touch a large circle (5.5 inches in diameter) on a 

black felt wall.  The participant must center the object, walk several steps, 

and then re-center the object in iterations until the participant is within 

reaching distance.  The experimenter walks the participant through the 

first trial, and then in future trials, allows the participant to independently 

perform the task, only indicating when the participant is within reaching 

distance of the black felt wall.  The circle can be placed on the center, left 

or right, and high, mid-level or low on the wall. 

 

Session 3 (1 hour)  

- Training Assessment (always perform assessment first) 

o 10 trials of reaching for a white circle in one of five locations on a black-

felt-covered board while sitting at a black-felt-covered table (positions 

randomized in MATLAB)   

o Record accuracy of reaching before physically correcting the participant’s 

reach to the center of the circle. 

- Tasks:   
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o Localize, walk to, and touch a large circle (5.5 inches in diameter) on a 

black felt wall.  The participant must center the object, walk several steps, 

and then re-center the object in iterations until the participant is within 

reaching distance.  The circle can be placed on the center, left or right, and 

high, mid-level or low on the wall. 

o Avoid a white chair obstacle on the way to localizing and reaching for a 

large circle on the black felt wall.  The participant must locate the chair, 

avoid the chair without touching it, and then localize the white circle.  The 

chair can be placed in front of the participant, or to the left or to the right 

of the participant. 

 

Session 4 (1.5 hours) 

- Training Assessment (always perform assessment first) 

o 10 trials of reaching for a white circle in one of five locations on a black-

felt-covered board while sitting at a black-felt-covered table (positions 

randomized in MATLAB)   

o Record accuracy of reaching before physically correcting the participant’s 

reach to the center of the circle. 

- Tasks: 

o Avoid a white chair obstacle on the way to localizing and reaching for a 

large circle on the black felt wall.  The participant must locate the chair, 

avoid the chair without touching it, and then localize the white circle.  The 
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chair can be placed in front of the participant, or to the left or to the right 

of the participant. 

o Differentiate five office objects (scissors, stapler, tape dispenser, tissue 

box, and envelope) at the black felt covered table and board.  Participants 

are shown the objects with the vOICe device and then are asked to identify 

the objects when presented in random order (order generated by 

experimenter, not computer). 

o Train for the fMRI Experiment:  Perform the localization of a white dot on 

the left or right with 1. visual stimuli alone on computer, 2. simultaneous 

vision and auditory stimuli (i.e., vOICe) on computer and then 3. just 

auditory stimuli (i.e., vOICe) alone (this training bridges between the just 

auditory and just visual ends of the experiment). 

 

Session 5 (0.5 hours)  

- Training Assessment  

o 10 trials of reaching for a white circle in one of five locations on a black-

felt-covered board while sitting at a black-felt-covered table (positions 

randomized in MATLAB)   

o Record accuracy of reaching before physically correcting the participant’s 

reach to the center of the circle. 
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Appendix B Part 2 

vOICe Behavioral Experiments Training Instructions 

 

Note:  Several different experiments were attempted in the pre- and post- training 

behavior sessions (session 0 and session 10), including the texture experiments (Chapter 

3).  The experiments listed in session 0 and session 10 are just examples of those tested. 

 

Session 0 (1 hour)  (Performed on iMac computer)  

- Bouncing vs. Streaming Experiment 

o File:  BounceVStream.m 

- Moving Dot Experiment:  Left-to-Right vs. Right-to-Left Rate Estimation Task (use 

headphones on table next to iMac computer) 

o File:  vOICeVisIllExptMovDot2AFCQuarter.m 

 

Session 1 (1 hour)  

- Assessments Tasks:   

o Shape Constancy Test:  20 trials of participants assessing bar length 

(lengths 1-5) independent of angle.  Perform task on vOICe, and then with 

normal vision.  Note:  Allow participants to see the line lengths vertical 

and horizontal with vOICe for each length before beginning the test (allow 

head tilt).   

o Rotation Constancy Test:  15 trials of participants assessing bar angle (0, 

90, 45, −45, 22, or −22 degrees relative to vertical) independent of head 
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tilt.  Note:  Allow participants to see each angle and tilt their head to left 

and right while viewing each angle before beginning the test. 

o Localization Trials:  10 trials of localizing a white dot on a black felt 

board with the vOICe device (5 separate positions).  Record accuracy of 

reaching.  Also record accuracy of random reaching for 10 trials (without 

vision, eyes closed), and with vision 10 trials (eyes open). 

- Training Tasks:   

o Centering a white circle on the black-felt-covered table 

o Recognition of simple objects (such as distinguishing a square, triangle, 

and circle) 

o Distinguishing an “L” from a backward L, an upside-down L, and 

backward and upside-down L (i.e., a 7) 

 

 

Session 2 (1 hour) through Session 7 (1 hour) 

- Assessments Tasks:   

o Shape Constancy Test:  20 trials of participants assessing bar length (1-5) 

independent of angle.  Perform task on vOICe, and then with normal 

vision.  Note:  Allow participants to see the line lengths vertical and 

horizontal for each length before beginning the test (allow head tilt).   

o Rotation Constancy Test:  15 trials of participants assessing bar angle (0, 

90, 45, −45, 22, or −22 degrees relative to vertical) independent of head 
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tilt.  Note:  Allow participants to see each angle and tilt their head to left 

and right while viewing each angle before beginning the test. 

o Localization Trials:  10 trials of localizing a white dot on a black felt 

board with the vOICe device (5 separate positions).  Record accuracy of 

reaching.  Also record accuracy of random reaching for 10 trials (without 

vision, eyes closed), and with vision 10 trials (eyes open). 

- Training Tasks:   

o Work on shape constancy:  Estimate length for just 90-degree lines, and 

then estimate length for just 45-degree lines (do not train on 0 or −45 

degree angles) (Note:  The training angles were limited to two angles for 

each participant, although the angles used across participants may have 

varied). 

o Work on rotation constancy:  Estimate angles with the head only vertical, 

then estimate angles with head tilted to the left only, and estimate angles 

with head tilted to the right only. 

 

 

Session 8 (1 hour) – Session 9 (1 hour) 

- Assessments Tasks:   

o Shape Constancy Test:  20 trials of participants assessing bar length (1-5) 

independent of angle.  Perform task on vOICe, and then with normal 

vision.  Note:  Allow participants to see the line lengths vertical and 
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horizontal for each length before beginning the test (do NOT allow head 

tilt). 

o Rotation Constancy Test:  15 trials of participants assessing bar angle (0, 

90, 45, −45, 22, or −22 degrees relative to vertical) independent of head 

tilt.  Note:  Allow participants to see each angle and tilt their head to left 

and right while viewing each angle before beginning the test. 

o Localization Trials:  10 trials of localizing a white dot on a black felt 

board with the vOICe device (5 separate positions).  Record accuracy of 

reaching.  Also record accuracy of random reaching for 10 trials (without 

vision, eyes closed), and with vision 10 trials (eyes open). 

- Training Tasks:   

o Work on shape constancy:  Estimate length for just 90-degree lines, and 

then estimate length for just 45-degree lines (do not train on 0 or −45 

degree angles) 

o Work on rotation constancy:  Estimate angles with the head only vertical, 

then estimate angles with head tilted to the left only, and estimate angles 

with head tilted to the right only. 

 

 

Session 10 (1.5 hour) (performed on iMac computer) 

- Bouncing vs. Streaming  

o File:  BounceVStream.m 
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- Moving Dot Experiment:  Left-to-Right vs. Right-to-Left Rate Estimation Task (use 

headphones on table next to iMac computer) 

o File:  vOICeVisIllExptMovDot2AFCQuarter.m 

- Texture Experiment:  Texture Interface V3 part II, and Texture V2 part I and part II 

o Files:  TextureR3_partII.m (in Texture Interface V3), TextureR1_part1.m 

(in Texture V2), TextureR1_partII.m (in Texture V2) 
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APPENDIX C 

POST-FMRI SCANNING QUESTIONNAIRE 

 

All fMRI participants filled out a questionnaire following their final fMRI 

scanning session of the vOICe fMRI experiment.  This questionnaire was used to better 

process the fMRI data, and to take into account factors such visualization. 
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vOICe fMRI Subject Questionnaire 

 
Name: ____________________    Date: _______________ 

 
 

Thank you for performing the vOICe fMRI experiment.  Please try to answer the 
following questions to the best of your memory. 
 
 

1.  I responded to questions in fMRI by pressing the button with: 
Pre Scan (circle one):   Left Hand  Right Hand  Both 
hands 
Post Scan (circle one):   Left Hand  Right Hand  Both 
hands 
 
2. When localizing the dot in vOICe and with the images I: 

 Pre-training Scan (check one):    
❏ Fixed my gaze on the center cross in all trials 
❏ Tried to fix my gaze cross but may have wandered occasionally 
❏ Did not try to fixate my gaze on the center cross 

 Post-training Scan (check one):    
❏ Fixed my gaze on the center cross in all trials 
❏ Tried to fix my gaze cross but may have wandered occasionally 
❏ Did not try to fixate my gaze on the center cross 

 
3. When localizing the dot in vOICe and with the images I: 

 Pre-training Scan (check one):    
❏ Imagined pointing to the dot after the sound/image finished or 
disappeared 
❏ Imagined pointing to the dot before the sound/image finished or 
disappeared 
❏ Did not imagine pointing to the dot 

 Post-training Scan (check one):    
❏ Imagined pointing to the dot after the sound/image finished or 
disappeared 
❏ Imagined pointing to the dot before the sound/image finished or 
disappeared 
❏ Did not imagine pointing to the dot 
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4. When listening for a pause in the noise (just following the auditory localization) 
 Pre-training Scan (check all that apply):    

❏ I recognized that the sound was the vOICe device 
❏ I did not recognize that the sound was the vOICe device 
❏ I did not know what the vOICe device was 
 Post-training Scan (check all that apply):    
❏ I recognized that the sound was the vOICe device 
❏ I did not recognize that the sound was the vOICe device 
❏ I did not know what the vOICe device was 

 
5. When counting backwards in sets of 7: 

 Pre-training Scan (check one):    
❏ The sound played distracted my counting significantly 
❏ The sound played distracted my counting somewhat 
❏ The sound played did not distract my counting at all 

 Post-training Scan (check one):    
❏ The sound played distracted my counting significantly 
❏ The sound played distracted my counting somewhat 
❏ The sound played did not distract my counting at all 

 
6. When counting backwards in sets of 7: 

 Pre-training Scan (check one):    
❏ I started to imagine images of numbers 
❏ I counted in my head without imagining the shape or image of a number 

 Post-training Scan (check one):    
❏ I started to imagine images of numbers 
❏ I counted in my head without imagining the shape or image of a number 

 
 

7. When listening to the natural sounds with a pause in fMRI: 
 Pre-training Scan (check one):    

❏ I started to imagine a visual scene (such as a beach) 
❏ I just listened to the sound for the pause with no “visual” imaginings 

 Post-training Scan (check one):    
❏ I started to imagine a visual scene (such as a beach) 
❏ I just listened to the sound for the pause with no “visual” imaginings 
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APPENDIX D 

COMPLETE FMRI DATA  

 

Chapter 4 and Chapter 5 fMRI data that were truncated to the most significant 15 

peaks of neural activation are presented in full in Appendix D.  The tables in Appendix D 

include data from Tables 4.3 (Table A in Appendix D), Table 4.4B (Table B in Appendix 

D), and Table 5.4A (Table C in Appendix D). 
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Sighted Participants (N = 10) 

Region BA Side x y z puncorr 

Star Trek Sound [Post – Pre] 

Insula 13 R 39 −46 19 0.000 

Middle Temporal Gyrus 39 R 45 −55 7 0.001 

- small volume-corrected peak      0.033* 

Thalamus  R 6 −28 10 0.000 

Caudate  R 21 −40 10 0.000 

Thalamus  L −6 −34 10 0.000 

Middle Frontal Gyrus 6 R 33 −1 64 0.000 

Caudate  R 3 5 4 0.000 

Caudate  R 3 17 7 0.003 

Precuneus 7 R 21 −49 46 0.000 

Inferior Parietal Lobule 40 R 33 −43 46 0.001 

Inferior Parietal Lobule 40 R 39 −55 46 0.004 

Precentral Gyrus 6 L −24 −16 70 0.001 

Precentral Gyrus 6 L −33 −7 67 0.005 

Medial Frontal Gyrus 8 L −12 38 34 0.001 

Postcentral Gyrus 5 L −24 −43 58 0.001 

Paracentral Lobule 6 R 3 −34 70 0.002 

Paracentral Lobule 4 R 9 −40 70 0.006 

Lentiform Nucleus  L −18 14 7 0.002 

Caudate  L −12 26 7 0.002 

Precentral Gyrus 6 R 30 −19 70 0.003 

Precentral Gyrus 4 R 42 −25 67 0.005 

Superior Frontal Gyrus 8 L −39 17 46 0.003 

Middle Frontal Gyrus 8 L −27 20 43 0.004 
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Sighted Participants (N = 10) Continued 

Region BA Side x y z−  puncorr 

Superior Frontal Gyrus 6 L −24 14 49 0.008 

 
Table A:  The Full Version of fMRI data:  post – pre training familiar sounds sighted 

participants (Table 4.3).  Complete imaging results for sighted participants when 

comparing post-vOICe-training scan and the pre-vOICe-training scan (N = 10).  All 

regions were limited to p < 0.009 uncorrected and 10 voxel cluster threshold (puncorr 

refers to the peak level puncorr).  The small volume correction was for a sphere of 10 

millimeter radius around the cluster center, and the pvalue shown (indicated by asterisk, 

i.e., *) is for the peak level FWE-corrected.  Brodmann Area localization was performed 

on the talaraich client for nearest grey matter.  Any clusters without nearest grey matter 

within +/−  5 mm are not included. 
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Late Blind Participants (N = 1) (RD) 

Region BA Side x y z puncorr 

vOICe Noise Pause Detection [Post – Pre] 

Inferior Parietal Lobule 40 R 69 −25 25 0.000 

- small volume-corrected peak      0.000* 

Precentral Gryus 4 R 60 −7 22 0.000 

Supermarginal Gyrus 40 R 51 −52 25 0.000 

Inferior Parietal Lobule 40 L −60 −28 28 0.000 

Supermarginal Gyrus 40 L −48 −49 34 0.000 

Supermarginal Gyrus 40 L −42 −37 34 0.000 

Middle Temporal Gyrus 39 L −45 −67 25 0.000 

- small volume-corrected peak      0.000* 

Caudate  R 21 −1 22 0.000 

Caudate  R 18 8 22 0.000 

Cingulate Gyrus 24 R 24 −10 34 0.000 

Superior Frontal Gyrus 8 R 18 38 52 0.000 

Middle Frontal Gyrus 8 R 24 38 40 0.003 

Lingual Gyrus 19 R 33 −61 1 0.000 

- small volume-corrected peak      0.009* 

Caudate  L −15 8 19 0.000 

Caudate  L −18 −16 22 0.002 

Cingulate Gyrus 24 L −18 −19 34 0.002 

Superior Parietal 

Lobule 

7 R 36 −64 61 0.000 

Postcentral Gyrus 5 R 42 −46 67 0.000 

Postcentral Gyrus 2 R 42 −37 67 0.000 

Superior Frontal Gyrus 6 L −18 −13 67 0.000 

Medial Frontal Gyrus 6 L −9 −10 61 0.002 
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Late Blind Participants (N = 1) (RD) Continued 

Region BA Side x y z−  puncorr 

Superior Frontal Gyrus 6 L −15 17 64 0.000 

Precuneus 7 L −12 −79 55 0.000 

Postcentral Gyrus 5 L −27 −40 67 0.001 

Postcentral Gyrus 3 L −30 −28 67 0.002 

Lingual Gyrus 18 L −30 −70 −8 0.001 

Middle Occipital Gyrus 37 L −36 −67 −2 0.001 

Fusiform Gyrus 37 L −36 −49 −14 0.001 

Precuneus 7 L −3 −46 52 0.002 

Cingulate Gyrus 31 L −6 −37 37 0.002 

Cingulate Gyrus 31 L 0 −43 34 0.002 

Cingulate Gyrus 31 R 3 −25 37 0.003 

Precentral Gyrus 4 L −54 −13 40 0.002 

Superior Frontal Gyrus 9 L −18 59 31 0.003 

vOICe Distract Counting [Post – Pre] 

Middle Temporal Gyrus  R 51 −34 1 0.000 

Superior Temporal 

Gyrus 

 R 63 −16 −2 0.000 

Cuneus 17 R 12 −82 10 0.000 

- small volume-corrected peak      0.000* 

       

Posterior Lobe, 

Cerebellum	
  

 R 30 −64 −8 0.000 

Posterior Lobe, 

Cerebellum 

 R 21 −76 −14 0.000 

Insula 13 R 48 −22 25 0.000 

Inferior Parietal Lobule 40 R 66 −37 28 0.000 
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Late Blind Participants (N = 1) (RD) Continued 

Region BA Side x y z puncorr 

- small volume-corrected peak      0.000* 

Inferior Parietal Lobule 40 R 39 −52 43 0.000 

Middle Frontal Gyrus 8 L −33 35 43 0.000 

Middle Frontal Gyrus 8 L −30 26 40 0.000 

Middle Frontal Gyrus 9 L −39 38 34 0.000 

Inferior Parietal Lobule 40 L −54 −28 25 0.000 

Insula 13 L −45 −19 19 0.000 

Cingulate Gyrus 32 L 0 17 40 0.000 

Medial Frontal Gyrus 6 L −9 −4 58 0.000 

Medial Frontal Gyrus 6 L 0 2 49 0.000 

Superior Temporal 

Gyrus 

22 L −63 −7 4 0.000 

- small volume-corrected peak      0.006* 

Precuneus 7 L −6 −61 43 0.000 

Precuneus 7 L −3 −79 43 0.000 

Middle Frontal Gyrus 8 R 30 38 46 0.000 

Superior Frontal Gyrus 9 R 39 44 34 0.002 

Middle Frontal Gyrus 10 R 30 38 22 0.003 

Middle Frontal Gyrus 46 R 39 26 22 0.000 

Precentral Gyrus 6 R 60 −4 37 0.000 

Precentral Gyrus 6 L −51 −1 19 0.000 

Middle Temporal Gyrus 39 L −48 −58 25 0.000 

Supramarginal Gyrus 40 L −63 −49 25 0.001 

Inferior Parietal Lobule 40 L −45 −58 37 0.001 

Superior Temporal 

Gyrus 

 

22 L −51 −49 7 0.000 
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Late Blind Participants (N = 1) (RD) Continued 

Region BA Side x y z puncorr 

Claustrum  L −27 −7 19 0.001 

Caudate  L −15 −22 19 0.001 

Caudate  L −15 −7 22 0.002 

Superior Occipital 

Gyrus 

19 R 33 −85 31 0.001 

Precuneus 19 R 27 −82 43 0.002 

Inferior Temporal 

Gyrus 

20 L −51 −55 −14 0.001 

Medial Frontal Gyrus 8 L 0 53 46 0.001 

Medial Temporal Gyrus 22 L −57 −34 4 0.001 

Cingulate Gyrus 31 L 0 −43 40 0.001 

Precentral Gyrus 6 L −48 −4 52 0.001 

Anterior Cingulate 32 L −18 32 19 0.001 

Culmen  R 3 −49 −14 0.002 

Culmen  L −9 −43 −17 0.002 

Superior Frontal Gyrus 8 R 15 44 52 0.002 

Middle Frontal Gyrus 6 R 36 −4 46 0.002 

Anterior Cingulate 32 L −6 35 25 0.005 

Medial Frontal Gyrus 9 L −3 44 19 0.006 

Precuneus 7 R 15 −61 37 0.005 

Cuneus 19 R 15 −79 31 0.005 

Precuneus 7 R 21 −67 31 0.006 

Beach Pause Detection [Post – Pre] 

Precuneus 19 L −24 −85 43 0.000 

- small volume-corrected peak      0.000* 

Supramarginal Gyrus 40 L −60 −46 37 0.000 
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Late Blind Participants (N = 1) (RD) Continued 

Region BA Side x y z puncorr 

- small volume-corrected peak      0.000* 

Superior Occipital 

Gyrus 

19 L −36 −82 34 0.000 

Middle Temporal Gyrus 39 R 45 −61 28 0.000 

- small volume-corrected peak      0.001* 

Inferior Parietal Lobule 40 R 69 −25 25 0.000 

Precuneus 19 R 33 −79 34 0.000 

Middle Frontal Gyrus 8 L −45 17 49 0.000 

Superior Frontal Gyrus 8 L −27 44 40 0.000 

Superior Frontal Gyrus 9 L −18 59 34 0.005 

Superior Frontal Gyrus 9 L −27 56 34 0.008 

Superior Frontal Gyrus 10 L −42 50 25 0.000 

Lingual Gyrus 19 L −33 −67 −2 0.004 

Star Trek Pause Detection [Post – Pre] 

Cuneus 17 R 9 −82 10 0.000 

- small volume-corrected peak      0.000* 

Lingual Gyrus  18 L −15 −79 −5 0.000 

- small volume-corrected peak      0.003* 

Lingual Gyrus 18 R 18 −70 4 0.000 

Superior Temporal 

Gyrus 

39 R 48 −55 25 0.000 

- small volume-corrected peak      0.000* 

Inferior Parietal Lobule 40 R 69 −31 28 0.000 

- small volume-corrected peak      0.000* 

Postcentral Gyrus 2 R 45 −25 31 0.000 

Middle Temporal Gyrus 39 L −42 −61 25 0.000 
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Late Blind Participants (N = 1) (RD) Continued 

Region BA Side x y z puncorr 

Inferior Parietal Lobule 40 L −57 −28 25 0.000 

Inferior Parietal Lobule 40 L −48 −34 28 0.000 

Precuneus  19 R 33 −79 34 0.001 

- small volume-corrected peak      0.044* 

Precuneus 7 L −21 −79 49 0.002 

 
 
Table B: The Full Version of fMRI data:  post – pre training late blind participant (Table 

4.4 B).  Complete imaging results for a late blind participant (N = 1) when comparing 

post-vOICe-training scan and the pre-vOICe-training scan.  All regions were limited to 

p < 0.009 uncorrected and 10 voxel cluster threshold (puncorr refers to the peak level 

puncorr).  The small volume correction was for a sphere of 10 millimeter radius around the 

cluster center, and the pvalue shown (indicated by asterisk, i.e., *) is for the peak level 

FWE-corrected.  Brodmann Area localization was performed on the talaraich client for 

nearest grey matter.  Any clusters without nearest grey matter within +/−  5 mm are not 

included.  
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Late Blind Participants (N = 1) (RD) 

Region BA Side x y z puncorr 

vOICe Dot Post [Right – Left] 

No Activation       

vOICe Dot Post [Left – Right] 

Fusiform Gyrus 37 R 42 −55 −8 0.000 

Claustrum   36 −22 −2 0.000 

Fusiform Gyrus 19 R 42 −73 −11 0.000 

Temporal Lobe 37 L −42 −46 −8 0.000 

Culmen  L −18 −58 −8 0.000 

Culmen  L −21 −49 −11 0.000 

Cuneus 18 R 15 −67 16 0.000 

Posterior Cingulate 30 R 15 −52 13 0.000 

Cuneus 18 R 12 −76 25 0.000 

Middle Temporal Gyrus 39 R 51 −76 25 0.000 

Middle Temporal Gyrus 39 R 57 −67 25 0.000 

Middle Temporal Gyrus 39 R 60 −64 13 0.003 

Middle Occipital Gyrus 18 L −24 −82 −8 0.000 

Thalamus  L −3 −7 10 0.000 

Lentiform Nucleus  L −18 2 10 0.002 

Inferior Frontal Gyrus 45 R 57 14 22 0.001 

Middle Occipital Gyrus 19 L −36 −70 13 0.001 

Insula 13 R 39 −4 19 0.002 

Middle Temporal Gyrus 21 L −51 −31 −5 0.002 

Claustrum  R 36 2 7 0.002 

Inferior Frontal Gyrus 45 L −57 17 19 0.003 
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Table C. The Full Version of fMRI data:  vOICe dot [Right – Left location] post-scan late 

blind participant (Table 5.4 A).  Complete imaging results for a late blind participant 

when comparing the post-training left dot and the post-training right dot in vOICe 

(N = 1).  All regions were limited to p < 0.009 uncorrected and 10 voxel cluster 

threshold.  The small volume correction was for a sphere of 10 millimeter radius around 

the cluster center, and the pvalue shown (indicated by asterisk, i.e., *) is for the peak 

level FWE-corrected.  Brodmann Area localization was performed on the talaraich client 

for nearest grey matter.  Any clusters without nearest grey matter within +/−  5 mm are 

not included. 

 
  

Late Blind Participants (N = 1) (RD) Continued 

Region BA Side x y z puncorr 

Lentiform Nucleus  R 18 5 10 0.005 

Lentiform Nucleus  R 21 2 1 0.005 
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