
Structural and clumped-isotope constraints on the 
mechanisms of displacement along low-angle 

detachments 

 

 

 

Thesis by 

Erika Swanson 

 

In Partial Fulfillment of the Requirements for the Degree 

of 

Doctor of Philosophy 

 

 

 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2015 

(Defended August 4, 2014)



 ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2015 

Erika Swanson 

All Rights Reserved



 iii 
ACKNOWLEDGEMENTS 

The thesis has been made possible by a large number of people, who have helped in a 

variety of ways. I am very grateful for the help and advice provided by my advisers, Brian 

Wernicke and John Eiler, for providing the opportunity to work on cutting-edge new 

techniques, and their applications to the field of structural geology. Brian Wernicke has 

been enormously helpful in providing geologic context for the studies here, has provided 

great insights in the field, and helped promote my work in the broader geologic 

community. I am very grateful for John Eiler and his work on clumped isotope 

thermometry, without which half this thesis would not be possible.   

I would also like to thank Jean-Philippe Avouac, in particular for teaching about the 

relative contributions of seismic and aseismic slip on faults. Readings and discussions for 

that class impressed on me that slip along faults occurs in a wide variety of ways, not just 

from brittle failure during earthquakes. Jason Saleeby showed me what ductile deformation 

looks like in the field, and discussions with him in Hawaii drastically improved my 

understanding of volcanic processes. 

I would also like to thank Tom Hauge, who was an incredible resource for finding the best 

outcrops within the Heart Mountain area for both clumped-isotope thermometry sampling 

and structural observations. In addition, he was a great person to discuss ideas with, and 

helped me understand the historical context of the Heart Mountain problem. 

Field work is often logistically difficult, and a number of field assistants took time out of 

their own work to help me in the field. Tom Hauge, Hamik Mukelyan, Adam Subhas, 

Jason Price, Luca Malatesta, Frank Sousa, and Steven Losh all helped trips run well. For 

the times that didn’t run so smoothly, I am grateful for the assistance of Terry Gennaro, 

Mark Garcia, and the Clark County search and rescue for getting all people and trucks 

home safely. Work within the Meadow Valley Mountains would not have been possible 

without help from Union Pacific for use of their roads, and their employees for unlocking 

gates, and jump starting our truck. 



 iv 
Nami Kitchen provided amazing analytical support for obtaining isotopic data. Her ability 

to figure out what’s broken and fix it quickly is incredible. Chi Ma provided a great deal of 

support for use of the SEM. Steve Skinner, Kristel Chanard, Jason Price, and Daven Quinn 

have all been fantastic officemates, providing support for tough days, and celebrating 

successes with me. In addition, an enormous number of other faculty, staff, and colleagues 

provided support and insightful conversations that have contributed to my development as 

a geologist, numbering too many to list here. 

Last but certainly not least, I would like to thank my friends and family for their support in 

everything I do. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 
ABSTRACT 

Despite years of research on low-angle detachments, much about them remains enigmatic. This 

thesis addresses some of the uncertainty regarding two particular detachments, the Mormon Peak 

detachment in Nevada and the Heart Mountain detachment in Wyoming and Montana.  

Constraints on the geometry and kinematics of emplacement of the Mormon Peak detachment are 

provided by detailed geologic mapping of the Meadow Valley Mountains, along with an analysis of 

structural data within the allochthon in the Mormon Mountains. Identifiable structures well suited to 

constrain the kinematics of the detachment include a newly mapped, Sevier-age monoclinal flexure 

in the hanging wall of the detachment.  This flexure, including the syncline at its base and the 

anticline at its top, can be readily matched to the base and top of the frontal Sevier thrust ramp, 

which is exposed in the footwall of the detachment to the east in the Mormon Mountains and Tule 

Springs Hills. The ~12 km of offset of these structural markers precludes the radial sliding 

hypothesis for emplacement of the allochthon. 

The role of fluids in the slip along faults is a widely investigated topic, but the use of carbonate 

clumped-isotope thermometry to investigate these fluids is new. Faults rocks from within ~1 m of 

the Mormon Peak detachment, including veins, breccias, gouges, and host rocks, were analyzed for 

carbon, oxygen, and clumped-isotope measurements. The data indicate that much of the carbonate 

breccia and gouge material along the detachment is comminuted host rock, as expected. 

Measurements in vein material indicate that the fluid system is dominated by meteoric water, whose 

temperature indicates circulation to substantial depths (c. 4 km) in the upper crust near the fault 

zone.  

Slip along the subhorizontal Heart Mountain detachment is particularly enigmatic, and many 

different mechanisms for failure have been proposed, predominantly involving catastrophic failure. 

Textural evidence of multiple slip events is abundant, and include multiple brecciation events and 

cross-cutting clastic dikes. Footwall deformation is observed in numerous exposures of the 

detachment.  Stylolitic surfaces and alteration textures within and around “banded grains” 

previously interpreted to be an indicator of high-temperature fluidization along the fault suggest 

their formation instead via low-temperature dissolution and alteration processes. There is abundant 

textural evidence of the significant role of fluids along the detachment via pressure solution. The 
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process of pressure solution creep may be responsible for enabling multiple slip events on the 

low-angle detachment, via a local rotation of the stress field. 

Clumped-isotope thermometry of fault rocks associated with the Heart Mountain detachment 

indicates that despite its location on the flanks of a volcano that was active during slip, the majority 

of carbonate along the Heart Mountain detachment does not record significant heating above 

ambient temperatures (c. 40-70°C). Instead, cold meteoric fluids infiltrated the detachment breccia, 

and carbonate precipitated under ambient temperatures controlled by structural depth. Locally, fault 

gouge does preserve hot temperatures (>200°C), as is observed in both the Mormon Peak 

detachment and Heart Mountain detachment areas. Samples with very hot temperatures attributable 

to frictional shear heating are present but rare.  They appear to be best preserved in hanging wall 

structures related to the detachment, rather than along the main detachment.  

Evidence is presented for the prevalence of relatively cold, meteoric fluids along both shallow 

crustal detachments studied, and for protracted histories of slip along both detachments. Frictional 

heating is evident from both areas, but is a minor component of the preserved fault rock record. 

Pressure solution is evident, and might play a role in initiating slip on the Heart Mountain fault, and 

possibly other low-angle detachments. 
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Chapter 1 
 
Introduction 
 

Slip on shallowly dipping detachments is one of the longest-debated puzzles in structural 

geology.   Coulombic failure laws, derived from laboratory experiments, predict failure as a 

function of the ratio of shear stress to normal stress. These laws also describe how the orientations 

of failure planes lie within a narrow range, at an angle of approximately 30° to the maximum 

compressional stress. Classic Andersonian theory applies these failure laws to the earth’s crust, and 

specifies that one of the principal stress orientations be vertical, due to the negligible shear tractions 

along the surface of the earth. Under these conditions, extensional faults within the upper crust 

occur when the maximum compressive stress is vertical, and these faults would be expected to dip 

60°. 

Observed faults do not always obey this relationship, however: extensional detachments 

(nominally, low-angle normal faults with displacements of kilometers to tens of kilometers) are 

widely described in the literature (e.g. Armstrong, 1972; Davis and Coney, 1979; Pierce, 1980; 

Allmendinger et al., 1983; Wernicke et al. 1985; Hauge, 1985, 1990; Lister and Davis, 1989; Scott 

and Lister, 1992; Wernicke, 1995; Morley, 2014).  These planes occur at angles that are some 20-

40° more shallow than predicted by Andersonian mechanics.   

Attempts at explaining slip on unfavorably oriented faults often invoke effects in some way 

related to pore fluids, as originally proposed by Hubbert and Rubey (1959) and Rubey and Hubbert 

(1959). They proposed that an impermeable seal above the fault traps pressurized fluid, reducing the 

effective normal stress and making it easier to slip. The requirement of an impermeable hanging 

wall was seen as problematic by, for example Wilson (1970), who observed that faults tend to have 

highly fractured and permeable hanging walls. He preferred an explanation invoking the presence of 



 

 

2 
inherently weak material at the base of a fault, like shale or salt. Most current explanations of 

extensional slip on low-angle faults also invoke some form of fluid pressure and/or weak materials 

along the faults. Although both these mechanisms can make slip easier once a fault is formed, 

neither makes previously unfavorable angles more favorable at the onset of faulting (e.g. Collettini, 

2011). These mechanical difficulties have led some geologists to question the very existence of 

low-angle normal faults, even on geological grounds (e.g. Miller et al, 1999; Anders et al, 2006; 

Wong and Gans 2008). 

This thesis presents structural and stable isotopic data from two low-angle faults where 

debate is currently focused: the Mormon Peak detachment in southeastern Nevada and the Heart 

Mountain detachment in northwestern Wyoming (Figure 1, areas 1 and 2, respectively). 

 

Figure 1. Overview map of the western United States, showing areas discussed in the text. Area 1 

includes the Meadow Valley Mountains and Mormon Mountains, Nevada. Area 2 includes the 

eastern edge of the Absaroka Mountains and the Heart Mountain detachment, Wyoming and 

Montana. 

Area 2

Area 1
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The Miocene Mormon Peak detachment (originally recognized by Tschanz and Pampeyan 

, 1970 and Wernicke et al., 1985) has been variably explained as (1) a rooted detachment fault with 

~20 kilometers of displacement (e.g. Axen et al, 1990; Axen, 1993), (2) a smaller fault where heavy 

dissolution took place (Anderson et al, 2010; Diehl et al, 2010), and (3) a series of surficial 

landslides transported radially away from the topographic crest of the Mormon Mountains (e.g. 

Carpenter et al, 1989; Anders et al. 2006; Walker et al. 2007).  

The Eocene Heart Mountain detachment is also a subject of keen debate, though its rootless 

character is generally accepted. Given its location on the flank of a volcano that active during slip, 

volcanic processes are often invoked to facilitate slip on the detachment.  Much of the current 

debate is focused on the rate of emplacement, with many recent workers preferring a single, 

catastrophic slip event (e.g. Beutner and Gerbi, 2005 ; Aharonov and Anders, 2006 ; Craddock et 

al., 2009, 2012; Anders et al., 2010, 2013), while others prefer emplacement at geologic slip rates, 

over 1-2 Ma (e.g. Hauge 1990,  1993; Templeton et al., 1995; Hiza, 2000; Douglas et al, 2003; 

Beutner and Hauge, 2009). 

Here, we bring a new geochemical technique to address a problem in fault mechanics, 

namely carbonate clumped-isotope thermometry.  Although the technique has thus far proved 

effective in addressing problems in paleoclimate, it is readily adaptable to structural problems, and 

results presented in Chapter 2 is the first to do so. 

Geologic mapping in Chapter 3 provides constraints on the displacement of the Mormon 

Peak detachment (is it part of a crustal extensional fault system, or a landslide?), which is a critical 

first step in explaining its mechanics of slip. The map also exposes complexities in the interaction of 

Sevier-age compressional structures, with implications for slip direction and magnitude. 

A study of the textures of fault rocks along and near the Heart Mountain detachment is 

presented in Chapter 4. Determining whether slip occurred during one catastrophic event or over 
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time is a pre-requisite for discussions on dynamics, and Chapter 4 presents observations with 

implications for both slip rate and dynamics. 

Further use of carbonate clumped-isotope thermometry in made in Chapter 5, where the 

role of volcanic or other proposed high-temperature processes in slip along the Heart Mountain 

detachment is explored.  Volcanic or magmatic processes are commonly invoked for facilitating 

slip, and temperature measurements of the related faults rocks are important for evaluating that 

possibility. In addition, new clumped-isotope thermometry samples from the Mormon Mountains 

are presented, presenting and opportunity to make a detailed comparison between it and the Heart 

Mountain allochthon. 

These observations help shed new light on the origin and evolution of low-angle faults 

within the upper crust, and show the utility of clumped-isotope thermometry for investigating the 

sources and temperatures of fluids on these faults. 
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