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ABSTRACT 

Soft hierarchical materials often present unique functional properties that are sensitive to 

the geometry and organization of their micro- and nano-structural features across different 

lengthscales. Carbon Nanotube (CNT) foams are hierarchical materials with fibrous 

morphology that are known for their remarkable physical, chemical and electrical 

properties. Their complex microstructure has led them to exhibit intriguing mechanical 

responses at different length-scales and in different loading regimes. Even though these 

materials have been studied for mechanical behavior over the past few years, their response 

at high-rate finite deformations and the influence of their microstructure on bulk 

mechanical behavior and energy dissipative characteristics remain elusive. 

In this dissertation, we study the response of aligned CNT foams at the high strain-rate 

regime of 102 - 104 s-1. We investigate their bulk dynamic response and the fundamental 

deformation mechanisms at different lengthscales, and correlate them to the microstructural 

characteristics of the foams. We develop an experimental platform, with which to study the 

mechanics of CNT foams in high-rate deformations, that includes direct measurements of 

the strain and transmitted forces, and allows for a full field visualization of the sample’s 

deformation through high-speed microscopy. 

We synthesize various CNT foams (e.g., vertically aligned CNT (VACNT) foams, helical 

CNT foams, micro-architectured VACNT foams and VACNT foams with microscale 

heterogeneities) and show that the bulk functional properties of these materials are highly 

tunable either by tailoring their microstructure during synthesis or by designing micro-

architectures that exploit the principles of structural mechanics. We also develop numerical 

models to describe the bulk dynamic response using multiscale mass-spring models and 

identify the mechanical properties at length scales that are smaller than the sample height. 

The ability to control the geometry of microstructural features, and their local interactions, 

allows the creation of novel hierarchical materials with desired functional properties. The 

fundamental understanding provided by this work on the key structure-function relations 

that govern the bulk response of CNT foams can be extended to other fibrous, soft and 

hierarchical materials. The findings can be used to design materials with tailored properties 
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for different engineering applications, like vibration damping, impact mitigation and 

packaging. 
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Chapter 1  

Introduction 

1.1 Goals and contributions 

The main goals of this dissertation are (i) the characterization of the dynamic response of 

macroscale, aligned carbon nanotube foams, (ii) the study of the effects of microstructural 

features on the bulk functional properties and on the fundamental deformation mechanisms 

of these materials. 

Aligned carbon nanotube (CNT) foams derive their unique mechanical properties from the 

hierarchical organization of structural features across different lengthscales, ranging from 

nanometers (e.g., the structure of single tubes) to millimeters (e.g., the ensemble of many 

intertwined tubes). Due to their complex morphology and their high deformability, they 

exhibit intriguing deformation responses at different loading regimes.  Understanding these 

fundamental deformation mechanisms and the material responses at high rate deformations 

are crucial to the identification of critical design parameters for new, lightweight materials 

for energy absorption and impact protection applications. Furthermore, aligned CNT foams 

can serve as a model material for the study of the mechanical response and the structure-

function relations of other hierarchical materials with fibrous morphologies. 

Over the last few years, the macroscale aligned carbon nanotube foams have been studied 

extensively in the quasistatic strain rate regime. It has been shown that they exhibit a stress-

strain response that is similar to other foam materials, have the ability to dissipate energy 

through hysteresis, and present strain localization and characteristic sequential buckling 

during compression. However, their response in high strain rate regime that is relevant to 

the protective applications for which the CNT foams are proposed, is not fully 

characterized. Further, the effects of their nano- and micro-structures on the bulk dynamic 

response of CNT foams also remain elusive. This dissertation presents the fabrication, 
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characterization and numerical modeling of such aligned CNT foams with different 

controlled nano- and micro-structures to provide understanding of the key structure-

function relations of these fibrous, hierarchical materials and their rate-sensitive mechanical 

properties. 

The key contributions of the work described in this dissertation are: 

1. The development of a new experimental testing platform to measure and observe 

the dynamic responses of complex, soft materials in-situ. 

2. The fabrication of macroscale carbon nanotube materials with varying, controlled 

microstructures, through chemical vapor deposition synthesis techniques and 

photolithographic approaches. 

3. The characterization of the morphology and structure of the carbon nanotube foams 

using experimental techniques such as scanning electron microscopy, transmission 

electron microscopy, and synchrotron x-ray scattering and mass attenuation 

measurements. 

4. The characterization of the mechanical response of the carbon nanotube foams in 

the medium- to high-strain-rate regime. 

5. The identification of the key structure-property relations linking relevant 

constituent features at different lengthscales with bulk functional properties of the 

materials. 

6. The development of numerical models to describe the dynamic response of aligned 

carbon nanotube foams. 

At a fundamental level, this study contributes to improve our current understanding of the 

contribution of nano- and micro-structures to the bulk dynamic behavior of hierarchical 

materials with fibrous morphology. This study also characterizes the mechanical 

performance and energy dissipative characteristics of CNT foams using different figures of 

merit, such as elastic modulus, transmitted peak stress, compressibility (maximum strain), 

hysteretic energy dissipation, cushion factor and specific energy absorption (energy 

absorption per unit mass). It should be noted that the mechanical properties reported in this 

dissertation are effective properties of the macroscale CNT foams. They were obtained by 
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treating CNT foams as bulk materials, even though there are structural features present 

across several lengthscales along the hierarchy. Therefore, the bulk response can be 

perceived as material response of the CNT foams, although the bulk response is strongly 

influenced by the structural response of different features present across the different 

lengthscales from nano- to micro-scales. Fully understanding the mechanical response of 

hierarchical CNT foams will guide the design of novel lightweight materials with superior 

mechanical properties and energy absorption capabilities. 

1.2 Organization and a brief overview of the dissertation 

The remainder of Chapter 1 describes the broader context in which this research is set, and 

provides an introduction to carbon nanotubes (CNTs) and CNT-based materials and their 

relevant applications. 

Chapter 2 provides detailed information on the experimental techniques used. It describes 

floating-catalyst and fixed-catalyst thermal chemical vapor deposition (tCVD) synthesis 

techniques for the fabrication of the vertically aligned carbon nanotube (VACNT) arrays, 

and the characterization techniques used to analyze the microstructure of CNT foams (e.g., 

synchrotron x-ray scattering, and mass attenuation measurements and electron 

microscopy). It also details the quasi-static mechanical testing setup and the dynamic 

characterization techniques developed as part of this thesis to characterize soft, complex 

materials. 

Chapter 3 describes the VACNT foams’ microstructures, morphologies, and their intrinsic 

density gradient. It then presents and discusses the experimental results obtained testing 

VACNT foams under impact. The discussion correlates VACNT microstructure and 

material density to bulk dynamic properties. The effect of deformation rates on the 

VACNT bulk mechanical response is also presented. Finally, the chapter describes the 

contribution of the fundamental structural features found at different length scales to the 

deformation mechanisms and energy dissipative characteristics of bulk foams. 

Chapter 4 presents the characterization and mechanical response of helically coiled carbon 

nanotube (HCNT) foams—hierarchical foams made of CNTs with helical geometry. The 
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morphology of the HCNT foams characterized by scanning electron microscopy and 

transmission electron microscopy are presented first, and then the HCNT fiber alignment 

characteristics and the intrinsic density gradients characterized by the synchrotron x-ray 

scattering and mass attenuation are presented. Subsequently, the mechanical response of 

HCNT foams in quasistatic and dynamic loading regimes are discussed and their responses 

are correlated to the measured morphology and intrinsic functional property gradients. 

Their mechanical response is also compared to the VACNT foams’ response, to clarify the 

effect of their microstructural differences. 

Chapter 5 discusses the design, synthesis, and dynamic response of VACNT foams with 

patterned micro-structural features. The chapter presents in detail the fabrication process 

used, which combines photolithographic techniques with the CVD synthesis process. The 

effects of different geometrical micro-patterns on the bulk mechanical responses and the 

fundamental deformation mechanisms of the foams are examined.  

Chapter 6 presents the synthesis and the dynamic response of the VACNT foams with 

microscale heterogeneities. The microscale heterogeneities were engineered through 

synthesizing alternating ‘soft’ and ‘stiff’ intermediate CNT bands. The dynamic response 

of these VACNT foams is compared to their quasistatic response. The influence of the 

heterogeneous bands on the deformation mechanisms and its application to impact 

protection are discussed.  

Chapter 7 presents a numerical model based on bi-stable springs and point masses that 

describes the dynamic compression of the VACNT foams. The application of this model to 

two VACNT samples impacted at two different velocities and the mechanical parameter 

identification in length scales that are smaller than the height of those samples are 

discussed. 

Chapter 8 concludes the dissertation and provides an outlook on the future works. 

Two appendixes follow Chapter 8. Appendix A presents the quasistatic mechanical 

response of VACNT foams synthesized using the fixed-catalyst CVD process. A unique 

buckle characteristic—buckles with much smaller wavelengths inside the sample compared 
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to the buckles observed on the external surface of the VACNT foams—is discussed in 

detail and the findings are supported by a simplified Euler buckling analysis.  

Appendix B presents the wave propagation characteristics in a periodic array of VACNT 

foams alternated with rigid interlayers. Here, we demonstrate a unique wave propagation 

characteristic, where the effective wave velocity decreases with the increasing impact force 

exhibiting a softening response. We develop an analytical model with rate-independent 

hysteresis for the VACNT foams. We use this dissipative spring element in a numerical 

model of a chain of masses and springs to support and explain the underlying physics of the 

wave slow-down response observed in experiments. 

1.3 Introduction 

In much the same way that our mastery of silicon processing has led to the modern era of 

information technology, developments in advanced materials are expected to fuel emerging 

technologies that address some of the most pressing challenges of our time; from issues of 

clean energy to problems in national security and human welfare [1]. Materials that 

optimally combine stiffness, strength and toughness are critical for many engineering 

applications—protecting humans and engineering systems from impact and vibrations, 

building durable electronics, and creating efficient energy storage materials, bio-compatible 

prostheses and artificial organs, to name only a few. Recently, advanced materials with 

engineered microstructures have been developed, which realize several functional 

properties in unprecedented ways.  For example, micro- and nano-structured metamaterials 

with deliberate internal structuring have been shown to exhibit extraordinary properties 

such as the presence of tunable phononic band gaps, superior thermoelectric properties, 

high specific energy absorption, and other properties that do not commonly exists in 

conventional materials like negative Poison’s ratio, negative dynamic modulus and 

negative effective density [2]. Similarly, synthetic hierarchical materials synthesized by 

taking inspiration from the design principles found in nature, can achieve property 

amplification in a non-additive manner, surpassing the simple composite rule of mixture 

formulations [3]. These recent developments have led to an increasing interest in 

understanding material behaviors at multiple length and time scales. 
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Over the last two decades, carbon nanotube (CNT) structures have been created in a variety 

of length scales, from individual nanoscale CNTs to foam-like materials and structures at 

the macroscale. The CNTs and the CNT-based materials have been shown to exhibit novel 

electrical, thermal and mechanical properties, leading to a rapidly advancing development 

of a next generation of materials and material systems. In addition to the many potential 

applications proposed, the hierarchical microstructure of macro-scale CNT-based materials 

and the ability to considerably control their microstructure by varying synthesis techniques 

make them an excellent model candidate for carrying out fundamental studies on the 

mechanical behavior of other complex materials.  

1.4 Carbon nanotubes 

Carbon nanotubes (CNTs) are an allotrope of carbon that belongs to the fullerene structural 

family. ‘Fullerene’ identifies the family of molecules that are entirely composed of carbon 

and have a hollow structure in spherical, ellipsoidal and cylindrical shapes (e.g.: 

buckminsterfullerenes or bucky balls (C60), carbon nanotubes, fullerene rings). CNTs are 

often thought of as a rolled-up graphene sheets that are entirely made of sp2-bonded carbon 

atoms [4], though they are synthesized differently, as discussed in the following sections. 

Though CNTs got broad attention after their discovery, reported by Iijima et.al. in 1991 [5], 

their origin dates back to the 1950s (see [6,7]). Their properties significantly depend on the 

direction in which the graphene sheets are rolled into cylinders, referred to as the chirality 

or the helicity of the CNT. The chiral vector and the chiral angle define the chirality of the 

CNT, describing various types of nanotubes including zig-zag, armchair and chiral versions 

(see the articles by Dresselhaus et.al. [4,8], for extensive details). Depending on their 

chirality, CNTs can be electrically conductive or semiconductive [9] and exhibit very 

different mechanical properties in their Young’s modulus, Poisson’s ratio and critical 

buckling strength [10,11]. These effects of chirality are strongly pronounced for smaller 

diameter tubes, and become unimportant as the diameter gets larger [10,11]. 

Depending on the number of walls present, CNTs are classified into single-walled CNTs 

(SWCNTs), double-walled CNTs (DWCNTs), and multi-walled CNTs (MWCNTs). 

MWCNTs form concentric cylinders with an inter-wall spacing, typically of around 0.34 
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nm [4,12]. Even though 0.34 nm is the interlayer spacing between two graphene layers, the 

wall spacing can be up to 10% higher depending on the number of walls present in the 

MWCNT and the diameter of the MWCNT, with the later having a more pronounced effect 

[12]. The increase in inter-wall spacing with decreasing diameter is attributed to the 

increased repulsive forces that arises from large curvature [13]. The strain energy of a CNT 

is proportional to 1/R2, where R is the radius of the CNT [14]. The CNTs with larger inter-

wall spacing resulting from higher strain energy are more reactive because of their reduced 

stability [13]. The weak interaction strength between the outermost wall and the 

neighboring inner wall of highly pure MWCNTs has been measured through inter-wall 

shearing and found to be between 0.08-0.3 MPa [15]. However, MWCNTs often have 

defect-related bridging from wall to wall, for example through an sp3 covalent bond, and 

therefore exhibit higher inter-wall shear strength. 

Several properties of individual CNTs have been measured experimentally and they have 

been shown to exhibit extraordinary electrical, thermal and mechanical properties [8]. They 

can be electrically superconductive [16], exhibit thermal conductivity over 3000 Wm-1K-1 

(10 times higher than copper) [17], withstand current densities of up to 1010 A/cm2 (1000 

times higher than copper) [18], and have Young’s moduli of  0.4-4.15 TPa [19]. Due to 

their low density, they exhibit excellent specific properties: for example, CNTs can be 

~100 times stronger than steel while having weighing only a sixth as much [20]. They also 

have been shown to be stable at up to 3400 K in vacuum [21] and 2073 K in argon [22]. 

Even though CNTs exhibit exceptional properties as individual fibers that can directly 

benefit applications in nano-electronics and nano- and micro-electromechanical systems 

(NEMS and MEMS), tapping into their exceptional properties for macroscale engineering 

systems remains challenging [23], although there has been some recent progress in this 

regard [24].  

The remainder of this dissertation focuses on these bulk properties of the CNT structures 

and their relationship to the organization of the CNT fibers across different length scales. 

Further, the discussions hereafter are limited primarily to the mechanical properties of CNT 

structures and their fundamental deformation mechanisms at different length scales. 
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1.5 Synthesis of carbon nanotubes 

There are numerous synthesis techniques for fabricating CNTs, such as arc discharge, laser 

ablation and thermal chemical vapor deposition (tCVD), and liquid plasma enhanced 

chemical vapor deposition (PECVD). Among these, tCVD is the most popular method due 

to its ability to synthesize large quantities of CNTs with relative ease and its feasibility of 

transitioning to industrial-scale mass production [24,25]. Metal catalysts, such as Fe, Co 

and Ni, that are known to catalyze graphitic carbon in tCVD systems [26] are either 

deposited as a thin film on the substrate prior to synthesis or deposited during synthesis in 

vapor phase. The former technique is called the ‘fixed-catalyst’ or ‘pre-deposited catalyst’ 

method, and the latter is referred to as the ‘floating-catalyst’ or ‘continuous-catalyst’ 

method. In the fixed-catalyst method, the deposited thin film catalyst is broken down into 

nanoparticles, first using pre-treatment with gas (e.g. hydrogen annealing) and/or 

temperature [27,28]. In contrast, the floating-catalyst method uses metallocenes as metal 

precursors, which then decompose at temperatures of less than 500 oC to free the metal 

atoms [29]. In the presence of a catalyst, a hydrocarbon source is broken down into simpler 

carbon compounds, metastable carbides are formed, and finally, the rapid diffusion of 

carbon into the catalyst’s interior leads to precipitation of graphitic carbon in tubular form 

[26]. The fixed-catalyst system results in reasonably purer CNTs with controlled 

morphologies, whereas the floating catalyst system results in reduced purity [23]. However, 

the floating-catalyst process is advantageous for scaling towards large-scale production. 

When synthesizing macroscale arrays of CNTs using these two CVD techniques, fixed-

catalyst synthesis results in small diameter CNTs (5-15 nm) with few walls (including 

synthesis of SWCNTs) whereas the floating-catalyst synthesis results in large diameter 

CNTs (20-80 nm) with several walls [23]. This also affects the porosity, where the fixed-

catalyst samples have a porosity of 95 - 99% with ~0.05 g cm-3 density while the floating-

catalyst samples have a 80 – 90% porosity with densities ~ 0.3 g cm-3 [23]. 

In both methods, several synthesis parameters such as substrate, catalyst size distribution, 

gas composition, gas flow-rate, feedstock input rate, temperature, and pressure influence 

the resultant CNT morphology and properties, presenting a number of tuning-parameters 

which can be used to change the structure of the CNTs and resultant properties. For a 
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comprehensive review of synthesis methods and the effects of the synthesis parameters on 

resultant CNT structures, see the doctoral dissertation of Jordan R. Raney (Caltech) [23]. 

Floating-catalyst and fixed-catalyst CVD synthesis techniques specific to this research are 

discussed in Chapter 2. 

1.6 Bulk carbon nanotube structures and their mechanical properties 

Recently, several 1-D, 2-D and 3-D macroscale structures have been fabricated from 

CNTs. This section discusses some of the significant advancements made regarding these 

CNT macrostructures and their mechanical properties. 

One-dimensional fibers spun from individual CNTs to lengths up to 20 mm have shown a 

superior tensile strength of up to 8.8 GPa and a tensile modulus of 357 GPa [30]. Their 

specific strength and specific stiffness are much higher than current commercially available 

carbon and polymer fibers [30]. However, variations have been observed in different 

studies due to differences in the primary CNT structure and the geometry of the fabricated 

fiber, yielding a broad range of tensile strengths (30-357 GPa) and tensile moduli (0.2-8.8 

GPa) reported in the literature [31]. 

Similarly two-dimensional thin sheets drawn from MWCNTs and densified into 

identically-oriented or orthogonally-oriented layers have been shown to exhibit specific 

strengths of 465 GPa (g cm-3)-1 and 175 GPa (g cm-3)-1, respectively [32]. These specific 

strengths are significantly higher than or comparable to ultra-high strength steel (125 GPa 

(g cm-3)-1), aluminum alloy sheets (250 GPa (g cm-3)-1) and the Mylar and Kapton films 

(160 GPa (g cm-3)-1) used in ultra-light air vehicles [32]. Thin film bucky-papers made of 

randomly oriented CNTs have also been fabricated, but they haven’t shown desirable 

mechanical properties due to their random orientation and the poor van der Waals 

interactions between nanotubes [33]. Nonetheless, their tensile modulus and strength has 

been improved to 15.4 GPa and 400 MPa respectively when they are formed into layered 

bucky-paper/epoxy composites [34,35]. 

In three dimensions, several foam-like structures have been synthesized which take 

advantage of the remarkable flexibility [36] of individual CNTs to bend without exhibiting 
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structural damage. Super compressible VACNTs have been synthesized and shown to 

exhibit a foam-like response characterized by three distinct regimes: an initial linear 

regime, a plateau regime associated with buckling, and finally a densification regime [37]. 

They possess better compressive strength (~15 MPa) and greater recovery rates (2000 µm 

s-1) compared to other flexible foams [37]. They have been shown to survive fatigue up to a 

million compressive cycles at moderate strains of up to 60% [38]. Their mechanical 

properties, however, are strongly dependent on the synthesis techniques and conditions 

used, position of the substrate in the furnace, the resultant sample’s morphology and 

density, and any post-treatment applied. For example, fixed- and floating-catalyst CVD 

synthesis can result in significantly different mechanical properties (a two-orders-of-

magnitude difference in effective modulus and yield strength) [39]. The reaction time in the 

floating catalyst synthesis has been shown to result in different recoveries of the 

compressed samples (30% recovery for 7 min reaction time vs. 80% recovery for 10 min 

reaction time) [40]. The position of the substrate along the flow direction has also been 

shown to play an important role in the bulk density and mechanical properties of the 

samples synthesized using floating-catalyst synthesis [41]. Similarly, the composition of 

the gas during synthesis also has been used to tailor the mechanical properties; for example, 

by changing the concentration of hydrogen in the feedstock for a floating-catalyst system 

from 0 to 50 percent the compressive strength and hysteretic energy dissipation could be 

changed by a factor of five [42]. Likewise, post-growth CVD treatment at 750 oC for 

varying durations has been shown to result in radial growth of additional walls and, as a 

result, significantly improved compressive strengths [43]. 

Very recently, there has been a growing interest in improving the mechanical properties of 

the VACNT foams by coating them with nanoparticles or thin layer coatings. A post-

synthesis coating of MnO2 nanoparticles has been shown to improve the energy dissipation 

by over 100% and the loading and unloading moduli by over two times when compared to 

a control sample [44]. Ceramic coatings (Al2O3) between 8.5 and 50 nm thick applied using 

atomic layer deposition on aligned CNT forests have shown ~1000-fold tunability in 

Young’s modulus, between 14 MPa and 20 GPa [45]. Similarly, amorphous silicon carbide 

(SiC) coatings of up to 21.4 nm on the CNTs have been shown to improve the compressive 
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strength by three orders of magnitude, from 1 MPa to 1.8 GPa, and can give a modulus of 

up to 125 GPa [46]. 

In addition to the continuous foam-like microstructures, several controlled geometries of 

VACNTs have also been synthesized for different purposes. Diverse 3-D micro-

architectures with spatially varying geometries have been fabricated using capillary 

forming to make master molds for microscale polymer assemblies [47,48] or by controlling 

growth rates and inducing strain to create curved micro-architectures [49]. These 

advancements in synthesis have laid further pathways for tuning the stiffness and 

geometries of VACNT structures and for incorporating biological and chemical 

functionalities [47]. Similarly, corrugated micro-architectures of VACNTs have been 

fabricated as out-of-plane micro springs with geometrically tunable compliances [50].  

Taking advantage of 1- and 2-D periodicities and geometries, the micro-architectures 

created using photolithographic techniques and CVD synthesis have shown highly tunable 

mechanical response and improved properties when compared to continuous VACNT 

foams, but with densities lower by an order-of-magnitude [51]. Dynamic properties of such 

micro-architectures of VACNTs are discussed in detail in Chapter 5. These studies suggest 

that engineering the microstructures by utilizing structural mechanics principles can 

significantly enhance the already impressive properties of VACNT structures. 

Besides the straight CNT structures, helically coiled CNT (HCNT) structures have also 

been synthesized [52] and shown to exhibit unique mechanical behaviors. For example, the 

contact interaction of a spherical indenter with HCNT arrays is even more strongly 

nonlinear than what one would expect from Hertzian-like interactions, and is significantly 

different from the contact interaction of a spherical indenter with VACNT foams [53]. This 

highly nonlinear collective response is primarily attributed to the unusual entanglement 

between neighboring coils and to the collective bending behavior of the coil tips when they 

are impacted by a spherical indenter [54]. The HCNT foams have been shown to mitigate 

low velocity (0.2 ms-1) impact forces efficiently and fully recover from deformation of the 

order ~5 µm (5% strain) [53]. However, the deformation mechanisms and the mechanical 

response of HCNT foams at high rate large deformation are not yet well understood. A 
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detailed study on the mechanical response of aligned HCNT foams is presented in Chapter 

4 of this dissertation. 

Apart from aligned CNT structures, sponge-like structures with controlled porosities and 

low densities have also been fabricated using randomly oriented CNTs. Even though their 

primary purpose is for environmental applications such as sorption, filtration and separation 

[55], they also have been shown to present high compressibility of up to 95% of their 

volume at low stress levels of less than 0.25 MPa, fatigue resistance to repeated 

compressive cycles (~100 cycles) and high recovery of more than 90% of their deformation 

upon unloading [55]. Hierarchical agglomerates of CNTs with controlled porosities have 

also been synthesized for high pressure cushioning [56]. Recently, uniform conformal 

coatings of amorphous carbon applied on these randomly oriented CNTs with coating 

thicknesses of between 10 and 30 nm has been shown to improve elasticity by reducing the 

energy loss during quasistatic cyclic loadings and can sustain ~1000 compression cycles 

without severe damage [57]. Coating single-walled CNT sponges with graphene has also 

been shown to improve fatigue resistance, enabling the systems to survive ~2000 cycles at 

60% strain and ~1 million cycles at 2% strain without significant permanent damage [58]. 

The introduction of graphene also improved the Young’s modulus and storage modulus of 

the CNT sponges by a factor of six and the loss modulus by a factor of three [58]. 

Similarly, CNT aerogels have been synthesized by crosslinking randomly oriented 

SWCNT bundles using nanoparticles. These have been shown to exhibit high Young’s 

modulus and electrical conductivity compared to other silica and alumina aerogels [59]. 

1.7 Rate effects on the mechanical response of CNT structures 

In this section, a brief summary of rate-effects observed on the CNT structures is presented. 

The discussion is limited to the CNT structures with foam-like microstructure composed of 

aligned CNTs or randomly oriented CNTs. So far, studies of rate-effects on the mechanical 

response of bulk CNT foams have focused on the static (prolonged loadings), quasistatic, 

or on the linear dynamic regimes.  

Long duration (~8 hrs) stress relaxation and creep experiments performed on VACNT 

arrays have shown nonlinear viscoelasticity [60]. A power law function of time was used to 
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describe the response and it was found that the stress relaxation exponent is nonlinearly 

dependent on the applied strain level and the creep exponent is nonlinearly dependent on 

the applied stress level [60]. Creep experiments performed using nano-indentation have 

also shown viscoelastic response in which the viscoelasticity is dependent on the VACNT 

density; the strain-rate sensitivity was reduced by a factor of two by doubling the density of 

the VACNT array [61]. Reduced freedom of movement of the CNTs due to geometry in 

dense VACNT arrays has been suggested as the cause for the reduced creep deformation 

[61].  

Uniaxial compression cycles performed at up to 80% strain in the quasistatic regime (10-4-

10-1 s-1) have shown a rate-independent mechanical response [62]. Conversely, a few other 

studies at faster, but still quasi-static, strain rates (up to 0.04 s-1 [63] and up to 1 s-1 [64]) 

have suggested rate-effects on recovery [63] and unloading modulus [63,64]. In both 

reports the recovery and elastic unloading modulus were shown to increase with increasing 

deformation rates.  

In the linear dynamic regime, uniaxial nano-dynamic mechanical analysis (nano-DMA) at 

small amplitudes (3-50 nm; 0.7% strain) showed no dependence on the CNT foam’s 

response to the driving frequency [65]. However, they reported the dependence of the 

storage and loss moduli on the driving amplitude and on the variation of the foam’s 

microstructure. Large amplitude DMA performed in torsion-mode (shear) also exhibited 

temperature and frequency invariant viscoelasticity between 0.1 to 100 Hz and -196 oC to 

1000 oC [66]. Coarse-grained molecular dynamics simulations and triboelastic constitutive 

models have supported these experimental observations [67]. Drop-ball tests performed on 

VACNT forests demonstrated their ability to mitigate impacts at high-rate deformations 

[68,69]. However, the deformation behavior and the fundamental dissipative mechanisms 

at high rates and for finite deformations are not thoroughly understood due to the 

difficulties in obtaining dynamic displacement measurements with microscale resolution. A 

comprehensive study of the VACNT foams at high-rate deformations (102-104 s-1) and the 

complex rate-effects found in this regime are presented in Chapter 3. 
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1.8 Carbon nanotube composites 

In addition to benefiting from these intriguing mechanical responses and attractive 

properties of standalone CNT structures, CNTs have also been used as reinforcements in 

composites to improve the composite properties [70] or combined with other materials to 

create hybrid structures [71,72]. Since the CNT-based composite literature is as broad as 

the literature of standalone CNT structures, only a brief introduction is given to show some 

of the important advancements in CNT-based composites (see the review articles 

[20,24,70,73–77] and the references therein for further details).  

When CNTs are used in a matrix of fiber-reinforced composites to form hierarchical 

composites, the fiber direction properties haven’t shown much improvement, but the matrix 

dominant properties have improved significantly. For example, the inter-laminar shear 

strength of woven glass fiber-epoxy composite has been improved by 8-30% by 

introducing up to 2% (by weight) MWCNTs [78]. Importantly, fracture toughness (mode I 

& mode II) has been significantly improved by up to 100% by introduction of CNTs in 

glass fiber-polyester [79] or carbon fiber/epoxy composites [80,81]. As an alternative to 

modifying the matrix with CNTs, reinforcement fibers grafted with MWCNTs before 

having been reinforced into the polymer matrix have shown even more improvement in the 

inter-laminar shear strength (up to 150% in carbon fiber/epoxy [82] or silica 

fiber/polymethylmethacrylate (PMMA) composites [83]). Likewise, CNTs grown on 

woven fabric and then used for forming reinforced composites have also shown 

outstanding enhancement in fracture toughness (348% enhancement), flexural modulus 

(105%), flexural strength (240%), flexural toughness (524%) and dynamic damping 

(514%) compared to the control composite samples with no CNTs [84]. 

The performance of CNT foams has also been improved by introducing polymers into their 

porous microstructures. Particularly, composites made with aligned CNTs infiltrated with 

epoxy have been shown to present improved viscoelastic damping properties [85]. The 

interfacial sliding at polymer-CNT interfaces and the stick-slip sliding at the CNT-CNT 

interfaces have been suggested as the principle mechanisms for energy dissipation. 

Similarly, VACNT arrays have been anchored into a thin layer (~50 µm) of 
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polydimethylsiloxane (PDMS) to create single-layer polymer-anchored or multi-layer 

polymer-anchored assemblies for energy absorbing and impact mitigation purposes 

[69,72]. These structures have been shown to dissipate energy over 200 times more 

effectively than commercial polymeric foams of comparable densities [72]. Vertically 

aligned carbon nanotube (VACNT) reinforced polymer sandwich composites have been 

shown to display high rigidity and enhanced damping in linear dynamic regimes [86]. 

Hybrid layered nanocomposites made by intercalating VACNTs into natural inorganic 

materials and tested in quasistatic compression cycles have shown compressibility of up to 

90% of their original heights and ~10 times higher energy absorption than their original 

components [71]. 

1.9 Applications of carbon nanotube structures and their composites 

Due to the excellent electrical, thermal and mechanical properties [8] of CNTs, macroscale 

CNT structures and composites have been proposed, or are already in use, for several 

commercial applications [24,87]. For example, composites made of CNTs find application 

in load bearing structures, electromagnetic interference shielding packages, wafer carriers 

for the microelectronics industry, and damping components. As discussed in the section 

above, the addition of CNT as reinforcement in a matrix improves the fracture toughness, 

strength, and stiffness of the base material, making composites suitable for load bearing 

applications. Commercially available premix resins with CNTs (0.1-20% by weight) are 

used to improve material damping and provide strength at light weights in sporting goods 

such as tennis racquets, badminton racquets, baseball bats, and bicycle frames; and as 

structural materials in wind turbine blades, maritime security boat hulls, and aircraft 

airframes [24]. Similarly CNTs have been used to enhance metals [88]; for example, 

commercial Al-MWCNT composites are comparable to steel in strength (0.7 – 1 GPa) 

while having densities (2.6 g cm-3) of one third of that of steel [24]. The energy dissipative 

characteristics of the CNT sponges and foams can benefit several impact and vibration 

damping applications [37,53,55].  

The multifunctional properties of hierarchical CNT composites are also under investigation 

for protection against lightning, improving deicing, and allowing structural health 
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monitoring in aircrafts [84,89]. CNTs have also been used in coatings to enhance the 

coating strength in anti-corrosion coatings and to reduce biofouling of ship hulls, super 

hydrophobic coatings [90], and thin film heaters for defrosting windows and sidewalks 

[24]. The porosity of the chemically and mechanically robust networks of CNTs is 

advantageous for water purification as well, where CNTs are used to electrochemically 

oxidize organic contaminants, bacteria, and viruses [91,92]. Other proposed applications of 

CNT structures include thermoacoustic projectors for underwater sound generation [93], 

optoacoustic lenses for focused ultrasound generation and high-precision targeted therapy 

[94], highly elastomeric electrodes [32], bulletproof tough textiles, and conductive 

electronic fabrics [95,96]. 
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Chapter 2  

Experimental Techniques 

This chapter presents the experimental techniques used in our studies. To understand the 

structure-function relations in carbon nanotube (CNT) foams, we fabricated various 

aligned CNT foams with different microstructures, such as vertically aligned CNT 

(VACNT) foams with varying bulk densities, helically coiled CNT (HCNT) foams, and 

micro-architectured VACNT foams. Section 2.1 provides detailed methodologies used 

for the synthesis of VACNT foams, HCNT foams, and micro-architectured VACNT 

foams. The Figure 2.1 provides an overview of the various VACNT foams we 

synthesized. The figure also shows the different geometries and microstructures studied, 

ranging from nano- to millimeter- scales. Figure 2.1 can be referred to as a summary 

figure of the materials presented in this dissertation.  

We characterized the structure of the CNT foams (e.g. alignment of the CNTs, intrinsic 

mass density gradients) using synchrotron x-ray scattering and mass attenuation. Section 

2.2 presents the experimental and data reduction methodologies used for obtaining the 

structural characteristics of CNT foams.  

We characterized the mechanical response of the CNT foams using quasistatic and 

dynamic compression experiments. Section 2.3 provides a brief introduction to the 

instrument and methods used for quasistatic compression testing. Section 2.4 presents a 

detailed description of the new experimental testing setup we developed for the 

characterization of complex soft materials at high-rate finite deformations. It includes an 

introduction and the motivation for developing such an experimental platform, a 

complete description of the instrumentation, the data reduction methods, and the 

validation of the technique using VACNT foams as the test samples. 
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Figure 2.1. Overview of the CNT-foams and of the different features analyzed at 

different scales. All the CNT foams studied are composed of multi-walled CNTs 

(MWCNTs). 
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2.1 Synthesis of vertically aligned carbon nanotube foams 

As mentioned in the introductory chapter, floating-catalyst and fixed-catalyst thermal 

chemical vapor deposition (tCVD) processes are commonly used to synthesize long 

VACNT foams with high yield. We also adopted these two synthesis techniques to grow 

our aligned CNT foams and the technical details specific to the synthesis of samples 

presented in this dissertation are provided in this section. Section 2.1 is divided into five 

subsections where the first four subsections provide methods for the floating-catalyst 

synthesis of VACNT foams, the fixed-catalyst synthesis of VACNT foams, the floating-

catalyst synthesis of HCNT foams and the synthesis of micro-architectured VACNT foams, 

respectively; and the fifth subsection provides a brief description concerning toxicity and 

safe sample handling practices used for our experiments. 

2.1.1 Floating-catalyst synthesis of carbon nanotube foams 

 

Figure 2.2. (a) A schematic illustration and (b) a photograph showing the floating catalyst 

thermal chemical vapor deposition (tCVD) system used for synthesis of VACNT foams 

(currently located at the Binnig and Rohrer Nanotechnology Center, IBM Zurich, 

Switzerland). 
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Most of the VACNT foams and VACNT structures used in this study were synthesized 

using a floating-catalyst thermal chemical vapor deposition (tCVD) process. A schematic 

illustration and a photograph of the floating-catalyst tCVD system are shown in Figure 2.2. 

As shown in the figure, the tCVD system used for floating catalyst synthesis of VACNTs 

consists of a CVD furnace with its control system, a horizontal furnace tube, carrier gas 

supply with mass flow controllers, and a syringe-pump system for feedstock injection. 

The feedstock solution of the synthesis consists of the carbon source, toluene (C6H5CH3) 

and the catalyst pre-cursor, ferrocene (Fe(C5H5)2), mixed at 0.2 g ml-1. A quartz furnace 

tube (inner diameter, 50 mm; outer diameter, 55 mm; length 650 mm) is first cleaned well 

to remove any impurities and then placed horizontally in the tube furnace with a 200 mm 

heating zone (Carbolite product no. HST12/-/200/E201; maximum temperature 1200 oC). 

Three standard thermally oxidized silicon wafers (each of size ~ 25 mm x 35 mm) with ~1 

µm oxide layer are placed inside the heating zone of the furnace tube to facilitate VACNT 

synthesis as growth substrate. The furnace tube is maintained at 827 oC and atmospheric 

pressure throughout the synthesis. The carrier gas, argon (Ar) balanced with 5% hydrogen 

(H2), is flown into the furnace tube at steady flow rate of 800 sccm, controlled by the mass 

flow controllers. The presence of a small amount of hydrogen results in better yield and 

higher purity of VACNTs (fewer amorphous carbon particles) [42]. The feedstock solution 

(carbon source and catalyst) is then injected into the carrier gas Ar, at 1 ml min-1 using a 

syringe-pump system (PumpSystemsInc. product no. NE-1000). Typically 50-60 ml of 

feedstock solution is used to synthesize VACNT arrays to heights in the order of a 

millimeter, and the amount is varied if longer/shorter VACNTs are desired. Given such 

controlled synthesis conditions the VACNTs grow on the silicon substrate in a bottom-up 

fashion [97,98] and the resultant samples have an average bulk density, 0.27±0.02 gcm-3. 

Once the synthesis is completed, the furnace is cooled down to below 400 oC with the Ar 

gas still flowing and then the samples are taken out of the furnace tube. The standalone 

VACNT foam samples with 5 mm diameter are cut and extracted from the substrate using a 

custom-made core drill for mechanical characterizations. 
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Figure 2.3. Hierarchical fibrous morphology of VACNT foams synthesized using the 

floating-catalyst tCVD process: (a) SEM image of a macroscale VACNT foam, (b) SEM 

image of aligned bundles in mesoscale, (c) SEM image of entangled MWCNTs in 

microscale (d) TEM image of a MWCNT with multiple walls forming a concentric 

cylindrical structure in nanoscale (TEM image is a courtesy of Jordan R. Raney (Caltech)). 

VACNT foams synthesized using this tCVD process present a hierarchical fibrous 

morphology in which bundles of multi-walled carbon nanotubes (MWCNT) are vertically 

aligned at the mesoscale and form a forest-like system in the micro- and nano-scales. The 

individual MWCNTs have diameters of 15-70 nm (with an average of ~46 nm) and the 

number of walls is, on average, ~56 [42]. The number of walls and the morphology of the 

synthesized forest of VACNTs are tunable by introducing different concentrations of 

hydrogen during synthesis [42]. Raney et al. have shown that introducing up to 50% 
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hydrogen into the carrier gas argon can decrease the bulk density by up to ~0.1 g cm-3 on 

average [42]. This decrease in bulk density is related to the reduced diameter of the CNTs, 

with an average diameter of ~19 nm, and the lower number of walls in the MWCNTs, with 

an average of ~18. A detailed discussion of the effect of hydrogen on the morphology and 

the mechanical properties measured in quasistatic compression can be seen in [42]. 

2.1.2 Fixed-catalyst synthesis of carbon nanotube foams 

We used a tCVD system manufactured by Axitron for the fixed-catalyst VACNT synthesis. 

This system consists of a vertical quartz furnace tube with gases flowing from top to 

bottom while two heater coils at the top and bottom maintain the desired temperature inside 

the furnace tube. The two heater coils can be controlled independently to produce a 

temperature gradient, if desired. We have not used any temperature gradients for our 

VACNT synthesis; however, the effect of temperature gradient on the VACNT growth has 

been studied previously [28]. It has been reported that the CNT diameter and number of 

walls can be tailored by utilizing temperature gradients and efficient growth can be 

achieved above 700 oC [28]. In our synthesis, the reaction gases pass through the top coil 

while getting heated up to the temperature of the reaction chamber and then reach the 

growth substrate. The growth substrates are placed on a horizontal graphite base, right 

above the bottom heater coil, to facilitate the synthesis. 

Compared to floating-catalyst synthesis, the pre-deposited catalyst synthesis requires an 

additional step of depositing the catalyst on the substrate. We used an electron beam 

evaporation (Evatec 501 e-beam evaporator) technique to deposit a thin film of catalyst on 

the substrate. First, a 20 nm thick aluminum base layer is applied on a 4-inch silicon 

substrate at a rate of 0.2 nm/s, and then a 2 nm thick Fe-catalyst is deposited at a rate of 0.1 

nm/s. The VACNT foams synthesized using this technique were very soft samples that 

were susceptible to damage during post-synthesis handling. Extracting the VACNTs from 

substrate as standalone VACNT foams was also not possible. Hence, we diced the 4-inch 

silicon wafer to 80% of its thickness and into 5 mm x 5 mm grids before depositing the 

catalyst. This allowed the extraction of samples of controlled size (on substrate) for 
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mechanical testing, and all the mechanical tests were performed on the samples whilst still 

attached to their substrates. 

 

Figure 2.4. (a) A schematic illustration and (b) a photograph of the thermal chemical vapor 

deposition (tCVD) system (BlackMagic Pro 4” Axitron, located at the Binnig and Rohrer 

Nanotechnology Center, IBM Zurich, Switzerland). 
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100, 160 and 240 sccm, respectively, and the pressure is raised to 400 mbar. Following 30 

minutes of hydrogen annealing at 200 oC, the temperature is raised to 800 oC and 

maintained steady. Then the carbon source, ethylene (C2H4), is flown at 120 sccm for the 

synthesis of VACNTs. Once the synthesis is completed, flows of all the gases are 

terminated except N2, and the chamber is cooled down below to 400 oC in N2 at 13,000 

sccm flow-rate. Once the temperature is decreased to below 400 oC, N2 flow is terminated 

Exhaust

Gas flow controllers

Silicon substrate
+ Catalyst

VACNTs

Furnace tube
CVD Furnace CVD Furnace 

control panels

Gas flow 
controllers

Exhaust
Gas 

inlets 

(a)

C2H4N2H2Ar

(b)

Graphite base
Base heater coil

Top heater coil

CVD Furnace



	  
	  

24	  

and the chamber is vacuumed to 0.5 mbar to remove any remains of the reaction gases. 

Then the chamber is vented to reach atmospheric pressure (1 bar) and the samples are 

removed from the CVD chamber. The VACNT foams grown in this process are highly 

sensitive to the chamber conditions and their yield and uniformity are significantly affected 

by any contaminants present in the chamber. To ensure uniform growth and high yield of 

VACNTs, the whole chamber is always pre-treated at high temperature, and oxygen plasma 

assisted cleaning is performed as required. 

 

Figure 2.5. Hierarchical fibrous morphology of VACNT foams synthesized using fixed-

catalyst tCVD process: (a) SEM image of a macroscale VACNT foam on substrate, (b) 

SEM image of aligned bundles in mesoscale, (c) SEM image of entangled MWCNTs in 

microscale (d) TEM image of a MWCNT with three walls forming a concentric 

cylindrical structure in the nanoscale. 
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The resultant VACNT foams have a hierarchical morphology similar to the VACNT 

foams synthesized using floating-catalyst tCVD. However, the individual MWCNTs have 

much smaller diameters of 8.6±1.8 nm on average, and have three to seven walls, as seen 

in the transmission electron microscope (TEM) images. The bulk samples are grown to a 

height in the order of a millimeter and have an average bulk density, 0.011±0.0031 g cm-3. 

After the synthesis, the 5 mm x 5 mm samples with the substrates are extracted along the 

pre-defined grid lines (defined through substrate dicing) for mechanical characterization. 

2.1.3 Synthesis of helical carbon nanotube (HCNT) foams 

A floating-catalyst synthesis process similar to the one discussed above in Section 2.1.1, 

but on a two-stage tCVD reactor, was used to synthesize HCNT foams. The research 

group of Professor Apparro M. Rao at Clemson University (South Carolina) performed 

the synthesis, and a brief account on the synthesis is given below. More details on the 

HCNT morphology and the mechanics of HCNTs are presented in Chapter 4. 

HCNT foams are synthesized using a two-stage thermal chemical vapor deposition 

(CVD) process. The two stages in the CVD reactor—the preheater and the furnace—are 

maintained at 200 and 700 °C, respectively. The silicon wafers (3cm x 3cm) are then 

placed in a CVD chamber and heated from room temperature to reaction temperature in 

the presence of argon (Ar) and hydrogen (H2) flown at 500 sccm and 100 sccm, 

respectively. The rate of temperature increase during heating is 15 °C /min.  Ferrocene 

(Fe(C5H5)2) and xylene (C6H4(CH3)2) are used as the catalyst precursor and carbon 

source, respectively.  The indium (In) and tin (Sn) sources (indium isopropoxide and tin 

isopropoxide) are dissolved in a xylene–ferrocene mixture where the ratio of C:Fe:In:Sn 

is maintained at 99.16:0.36:0.1:0.38. This feedstock solution is then continuously injected 

into the quartz tube CVD reactor using syringe pump at an injection rate of 1.5 ml/h after 

reaching the reaction temperature. Simultaneously, acetylene (C2H2) along with Ar 

carrier gas is passed into the CVD reactor at atmospheric pressure with flow rates 50 

sccm and 500 sccm, respectively.  Subsequently, after ~ 1 hour of reaction time, the 

syringe pump and acetylene injection are shut off and the CVD reactor is allowed to cool 

to room temperature in continued Ar flow. The HCNTs are grown on silicon wafers that 
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are placed inside the furnace tube prior to the synthesis. The resultant HCNT foams have 

a height of ~ 1 mm. 

 

Figure 2.6. Hierarchical morphology of HCNT foams synthesized using the floating-

catalyst tCVD process: (a) SEM image of a macroscale HCNT foam on substrate, (b) 

SEM image of aligned bundles of entangled HCNT fibers in mesoscale, (c) TEM image 

of a helical nanocoil in nanoscale (d) TEM image of a HCNT fiber showing the multiwall 

structure in the nanoscale. 

HCNT foams have a hierarchical microstructure in which spring-like nanocoils formed 

by MWCNTs intertwine to form vertically aligned bundles of tubes in the mesoscale. The 

indium catalyst is known to promote helical coil structure and the non-wetting 

characteristic of the In catalyst is suggested as the underlying mechanism that leads to 

HCNT growth [99]. Further details on the vertically aligned HCNT array synthesis can be 

found in [52]. 
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2.1.4 Synthesis of micro-architectured VACNT foams 

 

Figure 2.7. Schematic top view of the patterns and the SEM images of the micro-

architectured VACNT foams. 

The micro-architectured VACNT foams were synthesized by Ludovica Lattanzi, a 

visiting student in our research group from Politecnico di Milano, Italy. They were 

synthesized on photolithographically patterned silicon wafers by the floating catalyst 

thermal chemical vapor deposition (tCVD) process described in Section 2.1.1. The 

method of photolithographic patterning used to pattern the substrates is described below. 

The micro-patterns on the substrates are created using photolithographic techniques. The 

silicon wafer is first dehydrated at 130 °C on a hot plate for 60 s. The 

Hexamethyldisilazane (HDMS) primer is then deposited by evaporation for 300 s on the 

dehydrated silicon wafer. After that, the AZ positive photoresist is spin-coated on the 

substrate, which is then exposed to UV light under a mask with the desired geometry for 

3 seconds at 330 W. Then the substrate is immersed into a developer bath and 

subsequently chromium thin film is evaporated onto its surface using an electron beam 

evaporator. Finally, the wafer is washed in acetone to remove the undeveloped 
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photoresist, leaving the chromium thin film where CNT growth was not desired. We used 

masks with different geometries in 1-D and 2-D arrays to pattern the substrate. The 

patterns include 1-D arrays of lines with varying gaps, 2-D arrays of lines (orthogonal 

lines), circles with varying gaps and diameters, and 2-D arrays of concentric rings. The 

VACNTs are then grown on the defined pattern area forming three dimensional micro-

architectured VACNT structures. 

2.1.5 Toxicity of CNTs and safety precautions 

CNTs are considered toxic and are generally handled with care according to nanoparticle 

safety guidelines. Particularly, due to their high aspect ratio, CNTs are often compared to 

asbestos fibers and their harmful effects on health [100]. CNTs injected into mice’s 

stomach cavities have been shown to cause inflammation suggesting that they may pose 

long term health effects [101]. In contrast, another study found that the CNTs, unlike 

asbestos fibers, did not cause immediate cell death when injected in human lung and 

immune cells [102]. Long-term health effects, however, may take several decades to 

unfold and in most cases of synthesis and handling, general nanoparticle toxicity is 

assumed. 

We synthesized the VACNT samples in closed environments inside a laboratory fume 

hood. Currently both the home-built floating-catalyst synthesis system and the Axitron 

BlackMagic fixed-catalyst synthesis system are located in the clean room of Binnig and 

Rohrer Nanotechnology Center, IBM Zurich, Switzerland. The whole synthesis and post-

synthesis cleaning procedure is established with care to avoid any exposure to 

nanoparticles either through inhalation or skin contact. Post-synthesis sample preparation 

for mechanical testing is performed inside a glove box with no direct exposure to 

nanoparticles. When performing impact experiments, an exhaust hood is placed directly 

above the experimental setup to safely collect any fragmented particles that may become 

airborne. All samples are stored in closed containers reducing any risk of nanoparticles 

becoming airborne. 
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2.2 Morphological characterizations using synchrotron x-ray scattering and mass 

attenuation 

The morphology of the VACNT foam and HCNT foam samples were characterized using 

synchrotron x-ray scattering and mass attenuation measurements at the Advanced Light 

Source of the Lawrence Berkeley National Laboratory. Dr. Eric R. Meshot, a post-

doctoral scholar at the Lawrence Livermore National Laboratory, performed the 

synchrotron x-ray measurements and provided the morphology details for our samples. 

The measurements were performed to nondestructively characterize the morphology 

along the height of the samples, and provided information on intrinsic mass density 

gradients, alignment of CNT fibers, and diameter distributions. A brief, general overview 

of these experiments and data reduction methods is given below. More details on 

experiments and the data specific to different samples are provided in Chapter 3 and 

Chapter 4 of the dissertation. 

 

Figure 2.8.  Schematic side view of the experimental setup for X-ray characterization 

with a representative wide-angle x-ray scattering (WAXS) image collected from our 

VACNT foams.  The x-z-α stage enables spatial mapping and alignment of the CNT to 

the X-ray beam, and the scattered X-rays are collected on a Pilatus 1M pixel detector. 

A beam energy of 10 keV was selected with a Mo/B4C double multilayer monochromator, 

and the height of the beam-spot was less than 300 µm at the sample with a measured flux 

of 1012 photons sec-1.  The CNT foam sample was mounted on a motorized stage that 
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enabled 1) tilt alignment to make the sample’s Si substrate parallel to the X-ray beam as 

well as 2) spatial mapping of the structural characteristics of the sample along its height. 

We monitored the X-ray intensity upstream (I0) and downstream (I1) of the sample by 

measuring ion current at the locations denoted in the schematic.  These values were used 

to calculate the mass density of the sample based on the Beer-Lambert law [103], 

    !!"# =
!" !!

!!
! ! !

,     (2.1) 

where !!"# is the CNT foam’s volumetric mass density, t is the path-length through the 

CNT foam, and (µ/ρ) is the mass attenuation coefficient.  Values for (µ/ρ) are tabulated 

by the National Institute of Standards and Technology (NIST) as a function of element 

and X-ray energy. 

In the case of VACNT foams, we used a weighted average between C and Fe (equation 

2.2), because our floating-catalyst synthesis of VACNT foams deposits small quantities 

of Fe, which we measured to be approximately 5% by energy-dispersive X-ray 

spectroscopy (EDX) in scanning electron microscope (SEM). 

   !
! = 1− ! !

! !
+ ! !

! !"
,   (2.2) 

where w is the weight fraction of Fe. 

In addition to measuring the X-ray attenuation, we also quantified the average CNT 

alignment from the anisotropy of wide-angle X-ray scattering (WAXS) or small-angle X-

ray (SAXS) patterns.  Using the distribution of scattered intensity about the azimuthal 

angle φ, we calculated the Herman’s orientation factor [104,105], 

    ! = !
!
3 cos!! − 1 .    (2.3) 

Here, ! equals 1 for perfectly aligned CNTs and 0 for random order (no alignment), and 

   cos!! =
!"  ! ! !"#!!"#!!!/!

!

!"  ! ! !"#!!/!
!

.    (2.4) 
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Figure 2.9.  Schematic illustration demonstrates the azimuthal integration we perform on 

WAXS images to extract the Herman’s orientation factor.  The annulus of integration is 

defined by ±5 pixels from the diffraction peak located at q = 1.8 Å-1, which corresponds 

to scattering from the concentric shells of multiwall CNTs. 

2.3 Quasistatic mechanical characterization 

We used a commercial testing system, Instron Electro Pulse E3000, for mechanical 

characterization in quasistatic compression. It has been used for performing strain-

controlled quasistatic compression experiments with multiple loading-unloading cycles and 

has a displacement resolution of 1 µm. Compression tests are performed typically in the 

low strain-rate regime between 10-4 and 10-1 s-1. Two load cells with maximum load ranges 

of up to 250 N and 3000 N are used for the compression tests, depending on the load 

sensitivity of the samples tested. For example, most of the experiments on the VACNT 

foams synthesized by the floating-catalyst tCVD process required a 3000 N load cell for 

compression tests up to 80% strain, whereas the VACNT foams synthesized using the 

fixed-catalyst tCVD process required a 250 N load cell to capture the stress-strain response 

with less noise at low-stress levels. From direct measurements of forces and displacements 

during cyclic compression, the quasistatic stress-strain response is obtained by normalizing 

the force by sample cross-sectional area, and the displacement by sample thickness. Once 

the stress-strain response is known, several mechanical properties such as loading modulus, 

unloading modulus, compressive strength, strain recovery and hysteretic energy dissipation 
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can be calculated. To understand the microscale deformation mechanisms in quasistatic 

compression, in-situ microscopy is often used simultaneously with the mechanical testing. 

2.4 Dynamic mechanical characterization1 

In this section, we describe an experimental technique for the study of dynamic behavior of 

complex soft materials, based on high-speed microscopic imaging and direct measurements 

of dynamic forces and deformations. The setup includes high sensitivity dynamic 

displacement measurements based on geometric moiré interferometry and high-speed 

imaging for in-situ, full-field visualization of the complex micro-scale dynamic 

deformations. The method allows the extraction of dynamic stress–strain profiles both from 

the moiré interferometry and from the high-speed microscopic imaging. We discuss the 

advantages of using these two complementing components concurrently. We use this 

technique to study the dynamic response of vertically aligned carbon nanotube foams 

subjected to impact loadings at variable deformation rates. The same technique can be used 

to study other micro-structured materials and complex hierarchical structures. 

2.4.1 Background on dynamic characterization of soft, complex materials 

Complex materials have hierarchically organized constituents that are either self-

assembled naturally (e.g. natural and biological materials such as wood, bone, teeth and 

seashells) or engineered to have constituents ranging from nanometers to millimeters in 

size (e.g. micro and nano structured metamaterials, vertically aligned carbon nanotube 

(VACNT) structures, etc.) [106]. Biological complex materials are characterized by 

optimal mechanical properties that can combine strength, stiffness and toughness, and 

can serve as models for the design of synthetic composites [3,107]. Synthetic complex 

materials outperform conventional materials by exhibiting exceptional multi-functional 

properties (for example, superior thermoelectric, piezoelectric and optoacoustic 

properties) and can achieve effective mechanical properties not found in natural materials 

(for example, negative elastic moduli, phononic band gaps, and high specific energy 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1This section is adapted from our paper authored by R. Thevamaran and C. Daraio [169]. RT and CD 
designed the study. RT designed and built the experimental setup, synthesized samples, performed the 
experiments and wrote the manuscript with the support of CD. Both authors contributed to the 
interpretation of the data and writing of the manuscript. 



	  
	  

33	  

absorptions) [2,106–109]. Soft complex materials undergo large finite deformations with 

shape changes when subjected to an external stress field and may exhibit distinct 

deformation characteristics at different length and time scales [110]. Understanding the 

behavior of complex soft materials in a broad range of strain-rates from 10-8 to 108 s-1 is 

of great interest to material scientists and engineers to: (i) understand the fundamental 

mechanisms that govern the mechanics and the resultant material behavior; (ii) synthesize 

novel materials with physical properties that can be tailored for specific applications.  

At very low rates (10-8-10-6 s-1), creep and stress relaxation experiments subjected to 

prolonged loading conditions have been used to study the viscoelastic and long-term 

behavior [60,111]. At quasi-static rates (10-4-100 s-1) tensile, compression, indentation and 

shear experiments have been adapted to understand complex deformation responses of 

hierarchical structured materials [112]. At higher rates, dynamic mechanical analysis 

(DMA) is a commonly used technique to obtain the material parameters such as storage 

and loss modulus [65]. Nonetheless, DMA has been limited to small strain amplitudes and 

has not been successful in characterizing inhomogeneous materials with intrinsic gradients 

in functional properties. At yet higher rates, drop ball impact testing [53], projectile impact 

experiments [113] and shock wave excitation [108] have been used to study the rate-

dependent material behaviors. For each experimental technique used, appropriate force and 

displacement measurement systems have been designed and improved. The most common 

experimental methods and detection systems used to test materials at different rates of 

deformations [114–116] are summarized in Figure 2.10. 
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Figure 2.10. Overview of mechanical testing techniques and of the relevant optical 

measurements. 

Non-contact, optical visualization methods have been the most widely adopted and 

rapidly evolving techniques for in-situ imaging and quantitative displacement 

measurements. Recent advancements in high-speed imaging and digital image correlation 

methods [117–119] enabled the mechanical, damage and fracture characterization of 

macroscopic complex materials, at various rates of deformations [120–122]. At smaller 

scales, quasi-static nano-indentation experiments performed inside a scanning electron 

microscope (SEM) have been used to visualize and characterize the localized microscale 

deformation [123]. Optical interferometry techniques, such as moiré interferometry, 

speckle interferometry, holographic interferometry, and shearing interferometry have 

been widely used for non-contact dynamic displacement measurements [114]. 

Despite all the advances in experimental testing and measurement techniques, the 

characterization of the dynamic behavior of soft complex materials remains challenging. 

This is due to their hierarchical microstructure, which requires the characterization of 

deformation phenomena occurring at both micro- and macro-scales.  In addition, the bulk 

material behaviors of these samples are affected by the presence of large three-

dimensional deformations and local effects arising from defects and intrinsic functional 

property gradients. In this article, we present an experimental technique to characterize 
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the dynamic response of complex soft materials. The technique measures the global 

dynamic constitutive response, using dynamic force sensors and non-contact optical 

interferometry (moiré). This allows for the characterization of the samples’ large 

deformations.  The local dynamic effects, occurring at the micro-scale, are captured by 

in-situ visualization using high-speed microscopic imaging. The ability to acquire 

microscopic images also facilitates the characterization of thin samples. We target 

dynamic characterization at nominal strain rates ranging from 102-104 s-1.  

In the following sections, we provide a detailed account of the experimental setup 

(Section 2.4.2-6), VACNT specimen fabrication (Section 2.4.7), data reduction 

methodologies (Section 2.4.8), comparison of the dynamic behavior of VACNT foams 

obtained independently from the two displacement measurement components of the 

experimental setup: geometric moiré interferometry and high-speed microscopic imaging 

(Section 2.4.9) and a discussion on the observed dynamic behavior of VACNT foams 

(Section 2.4.10).  

2.4.2 Experimental setup 

The dynamic testing apparatus (Figure 2.11 (a), (d)) described here has four main 

components: (i) a striker impact system, (ii) a dynamic force sensor, (iii) a dynamic 

displacement transducer, and (iv) a high-speed camera with a microscopic lens for visual 

observation and characterization of the deformation. The details of each of these 

components are described in the following sections. 
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Figure 2.11. Geometric moiré interferometry-based dynamic testing setup: (a) 

experimental set up, (b) schematic of geometric moiré implementation on striker guide 

assembly, (c) schematic of geometric moiré fringe formation and fringe shift, and (d) 

photographs showing the high-speed microscope mounted on the experimental setup and 

the optical recording system for the moiré interferometry. 
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2.4.3 Striker impact system 

The striker impact system consists of a flat-plunge striker, a frictionless striker guide and 

a pneumatic cylinder to launch the striker on the guide. We use a flat plunge striker made 

of Delrin® acetal homopolymer as the loading apparatus. The striker material was chosen 

to have adequate stiffness to accommodate no or minimal deformation compared to the 

material being tested. The Delrin® acetal homopolymer has two-orders-of-magnitude 

higher modulus than the modulus of VACNT foams. Its material properties are: density, 

1.41 gcm-3, tensile and compressive modulus, 3.10 GPa, compressive strength, 110 MPa, 

and Rockwell hardness, R122 [124]. The main body of the striker is 28.5 mm long and 

has a square cross-section (side length=12.70 mm). It has a cylindrical plunge 

(length=diameter=6.35 mm) with a flat face as the loading front. The flat loading front 

was chosen to provide uniaxial planar impacts to the specimen. It should be noted that 

albeit indentation is being used as an indirect method to obtain material properties 

[125,126], the interaction of sharp indenter tips with structured materials with complex 

microstructure is not well understood [126,127]. However, if a dynamic indentation 

experiment is desired, the loading front of the striker in our system can be modified to 

accommodate spherical indenters or sharp indenter shapes, as in Vickers and Berkovich 

[128]. The square cross-section of the striker body was selected to prevent any rotation 

that might significantly impair the quality of the moiré fringes.  

A stainless steel double-acting pneumatic cylinder (McMaster-Carr, with bore 26.98 mm, 

and stroke 38.10 mm) was used to launch the striker on a frictionless striker guide. An air 

regulator coupled with a pressure gauge varied the pressure in the pneumatic cylinder 

from 10-60 psi (68.9–414 kPa) to control the striker launching speed from 1–6 ms-1. The 

striker guide was designed to propel the striker straight to a travel distance of 200 mm. A 

spacing of ~10 µm was left between the striker and the confining guide walls to reduce 

friction. In addition, a ~5 µm thin layer of air was introduced between the striker and the 

base of the guide using flat rectangular air-bearings to facilitate frictionless traveling of 

striker. The air bearing (Newway®) is made of a micro-porous carbon medium and 

supplied with high-pressure air to form the thin layer of air. This design of the frictionless 
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striker guide dramatically enhanced the repeatability of the striker’s impact velocities 

compared to conventional low-friction material assemblies. 

2.4.4 Force sensor 

We used PCB Piezotronics Quartz ICP® impact force sensors (model 200B02 and 

200B03) for measuring the transient signals during the impacts. Quartz transducers are 

desirable for dynamic applications due to the high natural resonant frequency of quarts (> 

1 MHz). Similar transducers have been used in several other dynamic testing systems 

[72,129,130].  The discharge time constants (t) of the sensors used in our experiments are 

t>500 s for the 200B02 [131] and t>2000 s for the 200B03 [132], which are well above 

the loading-unloading time of our experiments (~1 ms). These sensors have positive 

polarity for compression, they have sensitivities of 11241 mV/kN (200B02) and 2248.2 

mV/kN (200B03) and can operate up to 444.8 N (200B02) and 2224 N (200B03) with 

high linearity [131,132]. The ICP® force sensors incorporate a built-in amplifier to 

convert the high impedance charge output to a low impedance signal that is not affected 

by triboelectric cable noise or contaminants before recording. We conditioned the voltage 

signal from the dynamic force sensors and amplified it (when required) using an ICP® 

sensor signal conditioner (PCB Piezotronics model: 480E09; gain x1, x10, x100) 

connected to the force sensor by a low-noise coaxial cable (PCB Piezotronics model: 

003C05). The Tektronix DPO3034 oscilloscope recorded the output signal from the 

signal conditioner. 

The force sensor was mounted firmly on a rigid stainless steel block with heavy mass 

according to the specifications provided by PCB Piezotronics. We attached the specimen 

to the striker and let it directly impact the force sensor. For the impact velocity ranges 

considered (from 1 to 6 m s-1), the force-response time during impact was much larger 

than the time taken to equilibrate stresses. This implies that the dynamic force measured 

by the force sensor represents equilibrated stresses. Equilibration of axial stress is 

essential to ensure that the measured stress represents the average stress in the specimen. 

Davies and Hunter [133] estimated that the stress equilibration requires three 

reverberations of the loading wave in the specimen. We estimate this to amount to ~30 µs 
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in our experiments. This is a conservative estimate using the quasistatically measured 

modulus of ~10 MPa for a representative VACNT foam with ~0.25 g cm-3 density. The 

longitudinal wave velocity estimated thereby is ~200 m s-1 and it will take ~10 µs for one 

reverberation in a sample of thickness ~1mm. Song and Chen [134] showed that for a soft 

material, the specimen thickness has a profound effect on establishing stress 

equilibrium—higher the thickness, longer the initial non-equilibrium stress duration is.  

In addition, they showed that the high loading rate too has an effect on stress equilibrium, 

but it is less pronounced compared to that of the thickness of the specimen. The stress 

equilibration is a critical design consideration for very high loading-rate experiments, like 

Kolsky split-Hopkinson bar tests, particularly with higher specimen thicknesses; but has 

low significance in relatively long duration (~1 ms) loading-unloading experiments with 

moderate loading-rates and thinner specimens (~1 mm). 

2.4.5 Dynamic displacement transducer 

Accurate dynamic displacement measurement in soft, hierarchical and micro-structured 

samples is a challenging task that requires the development of an ad-hoc measurement 

system. The complex microstructure and the small characteristic size of the samples 

make conventional optical techniques unsuitable, due to the current resolution limits of 

high-speed cameras and the need for powerful illumination sources. The setup we 

developed includes a dynamic displacement measurement system capable of capturing 

micro-scale deformation during impact loadings. The measurement system uses high 

sensitivity geometric moiré fringes to amplify the microscopic dynamic displacements. 

Among all the different types of moiré techniques, geometric moiré is one of the simplest 

to implement. The technique relies on the superposition of two identical line-gratings 

with a small relative angle of rotation to create a geometric amplification of displacement 

that can be used for high sensitivity measurements [135–138]. Geometric moiré 

interferometry was also used in dynamic indentation experiments to study the rate-

sensitivity of oxygen-free high-conductivity (OFHC) copper [129].  Geometric moiré 

fringes are produced by the interference of two identical line gratings (master and 

specimen gratings) superimposed with a very small relative angle of rotation [135] (see 

Figure 2.11 (b) and (c)). In most applications of geometric moiré, the master grating is 
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attached to the experimental fixture and the specimen grating is attached to the sample 

[135]. The moiré fringes produced this way have a pitch, G, that is related to the pitch of 

the gratings, g, through a purely geometric relationship [135]: 

     ! = !
!
 ,      (2.4) 

where θ is the small relative angle of rotation. The pitch of the grating is the center-to-

center spacing between two neighboring dark lines (or white lines), and the half-pitch is 

the center-to-center spacing between two adjacent dark and white lines. When one 

grating is displaced by an amount δ relative to its pair, the resulting moiré fringes move 

to a new position by Δ given by [135]: 

     Δ = ! !
!

 ,     (2.5) 

where !
!
  is the amplification factor. Hence, this technique can be interpreted as a 

displacement amplifier that can be used to sense micro-scale displacements. For example, 

a grating pair at a 20 relative angle of rotation amplifies the displacement by nearly a 

factor of 30.  

We implement this technique as follows: the master grating is mounted stationary on the 

striker guide and the specimen grating is rigidly attached to the striker using a 5 minute 

epoxy. The specimen grating was attached on the striker, and not on the samples directly, 

because of the samples’ small size and their complex, large deformations under impact. 

The rigid-body translation of the striker (and attached specimen grating) relative to the 

stationary master grating produces the shift in the geometric moiré fringes. When the 

striker is in contact with the sample, the shift in the moiré fringes measures the dynamic 

deformation of the specimen. The master grating was mounted on the striker guide with 

back-loaded spring supports as shown in Figure 2.11 (b). This arrangement provides the 

flexibility to tune the moiré fringe amplification factor by varying the relative angle 

between the specimen and master gratings. 
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The gratings used have an identical Ronchi ruling frequency of 40 cycles/mm resulting in 

a pitch g= 25 µm. The nominal sensitivity of the geometric moiré technique is equal to 

the pitch of its grating (which corresponds to peak-to-peak distance of the intensity 

modulation of the moiré fringes). However, we were able to measure displacements at 

6.25 µm (quarter-pitch) resolution through data reduction as explained in Sec. 2.4.8. Both 

the specimen grating (reflective) and the master grating (transparent) were produced by 

Applied Images Inc. The reflective specimen grating was created by first coating a glass 

substrate with a specular-reflective thin layer of aluminum and then printing precise blue-

chrome Ronchi rulings using a semiconductor pattern generator device. Similarly, the 

transparent grating was produced by patterning blue-chrome lines on a transparent glass 

substrate. During measurement, the focused laser light from the optical probe passes 

through the transparent master grating, reflects on the reflective specimen grating and 

passes again through the transparent grating before being recollected back into the optical 

probe. The resulting multiplicative intensity, I, of the emergent light becomes [135]: 

    ! = !! ! !,! !! !,!  ,    (2.6) 

where R is the reflectance at each (x, y) point of the reflective grating and T is the 

transmission at each (x, y) point of the transparent grating. Even though the best 

multiplicative moiré pattern is obtained when the two gratings are in contact, no 

deterioration of the pattern is noticeable when the gap between the two gratings is much 

smaller than g2/λ, where λ is the wavelength of light and g is the pitch of the gratings 

[135]. If a red-laser light source (λ=632.8 nm) is used on a grating pair with 25 µm pitch, 

the gap between the specimen and master gratings should be smaller than 1 mm to 

produce moiré fringes of sufficient quality for measurements. A relatively large gap is 

essential during impact experiments, to ensure no damage to the gratings. This becomes a 

limiting factor in increasing the grating frequency and the related displacement resolution. 

The optical system (Figure 2.11) that is used to produce coherent light and record the 

intensity modulation of the geometric moiré fringe shift has several optical components 

(the essential design parameters are shown within parentheses): a coherent light source 

(He-Ne Laser; with a wavelength of 632.8 nm; power 21 mW); an objective lens to focus 
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the laser light into the inlet fiber; an inlet fiber (with a 50 µm core diameter) that directs 

the light to the optical probe; an optical probe with two internal miniature lenses (5 mm 

field depth; 30 mm probe to specimen distance; and a focused spot size on the specimen 

with a 600 µm diameter; numerical aperture 0.15) to focus the light onto the grating and 

recollect the emergent light from the grating; outlet fiber (core diameter of 300 µm) that 

transports the collected emergent light to photo detector; an achromatic lens to focus the 

light from the outlet fiber onto the photo detector; Si switchable gain photo detector 

(wavelengths between 350-1100 nm; 17 MHz bandwidth; detection area of 13 mm2) to 

detect the light intensity from the optical probe and convert into voltage signal; and an 

oscilloscope (Tektronix DPO3034; analog bandwidth, 300 MHz; sample rate, 2.5 GS s-1; 

record length, 5 million points) to record the signal received by the photo detector. In 

addition, several optomechanics components such as multimode fiber couplers, linear 

stages, lens mounts, laser mount, optical posts, post holders and mounting bases are used 

in the setup. A photo detector with fine rise-time was selected in order to record the light 

intensity modulation. For an impact velocity of 5 m s-1 and a grating pitch, g, of 25 µm, 

the time for the dark-bright intensity transition (corresponding to a half-pitch movement) 

is 2.5 µs. We selected a photo detector with rise time ~60 ns to have enough frequency 

response to record the moiré fringe shifts. It should be noted that a non-coherent, high 

intensity, white light source with narrow beam size can be used in place of a coherent 

laser light source for grating frequencies up to 40 cycles mm-1.  In white light 

illumination conditions, when the grating frequency increases beyond 40 cycles mm-1, the 

contrasts of the recorded intensity modulations decrease below the noise level and the 

sensitivity of the moiré setup is not sufficient for data acquisition. The use of a coherent 

light source improves the fringe contrast and can be used to achieve higher measurement 

resolution [114]. 

2.4.6 High-speed microscopic imaging 

We use a Vision Research’s Phantom V1610 high-speed camera coupled to a microscopic 

lens (Infinity long-distance microscope system model K2/SC) to observe and characterize 

dynamic deformations (Figure 2.11 (d-1)). The camera has a CMOS (35.8 mm x 22.4 

mm) sensor with 1280 x 800 pixels maximum spatial resolution and operates at an up to 1 



	  
	  

43	  

million frames-per-second (fps) frame-rate (with a temporal resolution of 1 µs). A Karl 

Storz Xenon Nova 300 high-intensity cold light lamp (which includes a 300 Watt Xenon 

lamp) connected to a Karl Storz liquid light guide cable was used to illuminate the 

specimen. The light sensitivity of the camera to low-intensity reflected light from our 

black samples proved to be a limitation in reaching high temporal resolutions (i.e., high 

frame-rates). We operate the camera at a frame rate of ~150,000 fps, at a resolution of 

128 x 256 pixels, focused on a physical window of ~ 1.8 mm x 3.5 mm. Phantom Cine 

View 2.14 software is used to control the camera.  The camera is synchronized with the 

rest of the experimental setup and its acquisition is triggered by the trigger-signal from 

the oscilloscope. Image Systems’s TEMA Motion Analysis software was used to analyze 

the image sequence. This software is capable of analyzing the image sequence using a 

digital image point correlation algorithm with an accuracy of 1 pixel. The high-speed 

image sequence provides information that enables us to understand the complex dynamic 

deformation of the VACNT foams that cannot be observed with the geometric moiré 

interferometry alone. 

2.4.7 Test sample (VACNT foams) fabrication 

We study the dynamic response of VACNT foams using the described testing system. To 

synthesize the CNT foams we use a floating catalyst thermal chemical deposition (tCVD) 

process [42]. The carbon source (toluene), and catalyst pre-cursor (ferrocene) mixed at 

0.2 g ml-1 were injected at 1 ml min-1 into the carrier gas (argon) flowing at 800 sccm. 

Oxidized silicon substrates, placed inside a 15 cm heating zone of a quartz furnace tube, 

were used as growth substrates. The furnace tube was maintained at 827 0C and 

atmospheric pressure throughout the synthesis. VACNT foams synthesized using this 

tCVD process have been shown to present a hierarchical fibrous morphology ([42] and 

Figure 2.12) in which bundles of multi-walled carbon nanotubes (MWCNT) are vertically 

aligned at the meso-scale and form a forest-like system in the micro- and nano–scales. 

The physical properties of the samples synthesized for this work are provided in Table 

2.1. 
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Figure 2.12. Hierarchical morphology of VACNT foams: (a) SEM image of the 

vertically aligned bundles of CNTs, scale bar 20 µm, (b) SEM image of the forest-like 

system in micro and nano scales, scale bar 500 nm, (c) TEM image of an individual 

multi-walled carbon nanotube (MWCNT), scale bar 20 nm. 

In addition, these VACNT foams are characterized by an intrinsic gradient in functional 

properties, such as density and stiffness, which leads to sequential buckling when the 

samples are subjected to compressive loadings [37,42,123]. The typical curves obtained 

by testing the VACNT foams are shown in Figure 2.13. 

2.4.8 Data reduction methodology and analysis 

During impact, the force–time history (Figure 2.13 (a)) and the moiré fringe intensity 

modulation history (Figure 2.13 (b)) are recorded using the oscilloscope.  The recorded 

data is smoothed for noise, using a low-pass filter, before analysis. A striker displacement 

of 25 µm (equivalent to the relative movement of a pitch of the gratings) corresponds to a 

full sinusoidal cycle in the intensity modulation recording (Figure 2.13 (b)). Hence, a 

peak-to-peak (or valley-to-valley) distance on the time axis (Figure 2.13 (b)) corresponds 

to the time taken for the movement of a pitch (25 µm). Similarly, peak-to-valley (or 

valley-to-peak) distance corresponds to a half pitch (12.5 µm). Differentiating the 

intensity data with respect to time and finding the peak and/or valley locations of that 

intensity-gradient profile allow us to find the time taken for a quarter-pitch movement 

(6.25 µm). As a result, a simple fringe counting produces the displacement history data 

(Figure 2.13 (c)) with a resolution of 6.25 µm. 

20 μm

500 nm 20 nm

(a)

(b) (c)



	  
	  

45	  

 

Figure 2.13. Experimental measurements of an impacted VACNT foam and data 

reduction: (a) force history, (b) intensity modulation of moiré fringes, (c) displacement 

and velocity histories, and (d) dynamic constitutive response. 

Errors associated with data analysis are estimated to be much lower than a quarter pitch. 

An additional advantage of using geometric moiré as a displacement transducer is the 

availability of the velocity-time history (Figure 2.13 (c)). Impact, rebound velocities, 

displacement-rate, and nominal strain-rate during deformation are all readily available 

from the data. We use a central differentiation scheme to derive the velocity-time history 

from the displacement-time history. 

To obtain the complete force-displacement profiles, the initial and final points of loading 

have to be found. We assume the noise level of the data recorded from the dynamic force 

sensor to be less than 100th of the force amplitude. We cut the tails of the force-time 

profile below this level at both ends and find the initial loading point from the initial 

gradient of the force-displacement data.  After unloading, we measure the final 

(recovered) displacement from the high-speed image sequence.  The input from the high-

speed camera images is necessary in this case, since the tested samples rapidly unload 
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below one hundredth of the force amplitude, and continue to recover thereafter until 

detaching from the force-sensor. 

Table 2.1. Physical (white background) and mechanical (gray background) properties of 

the VACNT foams tested. 

Property/parameter Specimen (A) Specimen (B) 

Diameter (mm) 5 5 

Height (mm) 1.013 1.106 

Bulk density (g cm-3) 0.258 0.232 

Impact velocity (m s-1) 2.57 4.44 

Rebound velocity (m s-1) 1.42 2.41 

Nominal strain rate (s-1) 2537 4014 

Coefficient of restitution 0.55 0.54 

Peak stress (MPa) 7.59 17.28 

Maximum strain 0.41 0.55 

Energy dissipation (MJ m-3) 0.94 3.20 

Loading modulus (MPa) 9.93 10.96 

Unloading modulus (MPa) 204.93 331.14 

 

The dynamic stress-strain diagram (Figure 2.13 (d)) can be obtained from the force-

displacement profile, normalizing the force by the area of the specimen (nominal axial 

stress) and the displacement by the initial height of the specimen (nominal or engineering 

strain). Dynamic material properties such as the loading and unloading moduli, peak stress 

and maximum strain can be obtained from the dynamic constitutive response. From the 

maximum and recovery strains, the percentage recovery of foam-like energy absorbing 

materials can be calculated. Percentage recovery provides a measure for the resilience of 

the materials. The area included by the hysteresis of the stress-strain diagram provides the 
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energy dissipated by the material. From the ratio of rebound to impact velocities, the 

restitution coefficient which represents the elasticity of the impact can be obtained. These 

dynamic mechanical properties obtained for the two VACNT foams tested are summarized 

in Table 2.1. The dynamic stress-strain profiles corresponding to various loading-rates can 

be used to study the rate-sensitivity of the test material. Hence this experimental setup 

allows us to quantitatively study the impact response of energy absorbing materials as well 

as the fundamental micro-scale deformation characteristics of complex soft materials. 

2.4.9 Comparison of displacement acquisition methods 

In this section, we compare the dynamic constitutive response obtained from the two 

independent displacement measurements: (i) geometric moiré interferometry and (ii) high-

speed microscopic imaging. Figure 2.14 shows the comparison of the dynamic constitutive 

response of two different VACNT foams impacted at 2.57 m s-1 (strain rate: 2537 s-1), 

specimen (A) (Figure 2.14 (a)), and 4.44 m s-1 (strain rate: 4014 s-1), specimen (B) (Figure 

2.14 (b)). Here the nominal strain rates are calculated by dividing the impact velocity by 

the initial specimen height. 

The displacement resolution of the geometric moiré interferometer is fixed by the grating 

pitch selected (and it is equal to 6.25 µm). Conversely, the displacement resolution 

obtained processing the high-speed image sequence depends primarily on three 

parameters: the spatial resolution of the images, the temporal resolution (frame-rate) and 

the rate of displacement (or the velocity) of the striker. The displacement resolution of 

our high-speed camera varied between 10-40 µm, for striker velocities of 1-6 m s-1. In all 

cases tested, the moiré interferometry method reached a better displacement resolution 

and was able to capture stress fluctuations more accurately than the high-speed camera 

(Figure 2.14). The geometric moiré interferometry measured a larger maximum strain 

than the high-speed imaging technique, which can be attributed to tilting of the striker at 

the end of the loading phase. These deviations were calculated to be less than 5% of the 

total deformation. 
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Figure 2.14. Comparison of dynamic constitutive response obtained with geometric moire 

interferometry (GMI) and high-speed imaging (HIS) at impact velocities (a) 2.57 m s-1 (b) 

4.44 m s-1 (c) deformation micrographs of specimen (B) obtained with the high-speed 

camera. 

The main advantage of using microscopic, high-speed image acquisition in the setup is 

the full field visualization of the samples’ deformations. Complex materials often present 

strain localization, instabilities, and sequential deformation phenomena that would not be 

easily recognized or captured by direct global strain measurements. High-speed imaging 

enables the in-situ identification and characterization of the deformation mechanisms. For 

example, the series of frames extracted from the high-speed microscopic image sequence 

(Figure 2.14 (c)) demonstrate the ability to identify the formation of localized sequential 

buckling during loading and recovery of the VACNT sample. The high-speed image 

sequence on Figure 2.14 (c) corresponds to the VACNT foam (specimen (B)) impacted at 

4.43 m s-1 and imaged at 128 x 256 pixel resolution and 150,000 fps frame-rate. 
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2.4.10 Material response 

When the sample is first impacted by the striker, the compressive stress rises linearly 

with the strain. This deformation regime is followed by a nonlinear region primarily 

governed by the progressive buckling. The VACNT foams are characterized by an 

intrinsic density gradient along their height that is induced by the tCVD synthesis process. 

This graded functional property and the fibrous morphology of the foam leads to the 

formation of collective buckles of the VACNT bundles, which nucleate at the soft side of 

the specimen at the end of the initial linear stress-strain region. This localization of the 

deformation occurred independently of the sample’s loading side, suggesting that the 

phenomenon derives from the intrinsic material property gradient. 

As the specimen is compressed further, the stress rises with frequent instabilities until the 

striker reaches a zero velocity. The instabilities characterized by the negative slopes (or 

stress drops) in the stress-strain or stress-time curves correspond to the formation of 

buckles (see e.g., Figure 2.14 (c) images 2-3). This correlation can be seen in our 

experiments; however, limits arise when the size of the instabilities is below the spatial 

resolution of our imaging system and/or when the events progress too rapidly to be 

captured by the camera. A similar one-to-one correlation of instabilities in the force-

history profiles with the formation of buckles has been reported for quasistatic 

compression tests [123]. It should be noted that due to these progressive instabilities, the 

peak stress reached during impact does not necessarily correspond to the maximum strain. 

In addition, the material exhibits a stiffening response, in which the compressive stress 

nonlinearly increases with the strain, as the specimen is compressed. This stiffening 

response arises from the increasing density gradient along the height of the specimen. 

Once the maximum compressive strain is reached, as the striker reaches a zero velocity 

(Figure 2.14 (c) image 3), the VACNT foam starts releasing the stored energy and begins 

pushing the striker back. During this unloading phase, the unloading stress-strain path 

differs from the loading path, exhibiting a hysteresis. This deviation is evident 

particularly in the first 10% of the unloading strain, which corresponds to the progressive 

recovery of the buckles. When the specimen detaches from the force sensor along with 
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the striker, a full recovery of the specimen is observed (Figure 2.14 (c) image 6). This 

demonstrates the high resilience of the VACNT foams to impact. 

The hysteresis included within the loading-unloading stress-strain loop accounts for the 

energy dissipated during the impact. The fundamental energy dissipation mechanisms 

and the reasons behind the presence of the hysteresis are still not well understood. Earlier 

studies suggested that the hysteresis derives from the presence of CNT-buckling [37], 

changes in the orientation or waviness of the individual nanotubes during the loading-

unloading cycle [38], and friction between the individual and bundles of the tubes [37]. 

Using quasistatic compression cycles it was found previously that the energy dissipated 

by the VACNT foams deforming at an up to 80% strain is more than 200 times higher 

than the energy dissipated by commercial foams with similar densities [72]. The global 

dynamic behavior in the impact velocity range considered (1-6 m s-1) is similar to the 

response observed in quasistatic compression cycles [37,42,123]. 
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Chapter 3  

Rate-effects and Shock Formation in the 

Impacted VACNT Foams2 

In this chapter, we investigate the rate-effects on the dynamic response of VACNT foams 

excited by impacts at controlled velocities. They exhibit a complex rate-dependent 

loading-unloading response at low impact velocities and they support shock formation 

beyond a critical velocity. The measured critical velocities are ~10 times lower than in 

other foams of similar densities—a desirable characteristic in impact protective 

applications. In-situ high-speed microscopy reveals strain localization and progressive 

buckling at low velocities and a crush-front propagation during shock compression. We 

correlate these responses to quantitative measurements of the density gradient and fiber 

morphology, obtained with spatially resolved X-ray scattering and attenuation. We also 

show that the dynamic properties can be significantly tailored by affecting the 

nanostructure (number of walls, diameter and alignment of CNTs) of the VACNT foams 

that results in various controlled bulk densities between 0.1-0.3 g cm-3. 

3.1 Introduction 

Carbon nanotube (CNT) arrays can be fabricated to different scales: from microscopic, 

regular patterns of individual tubes for electronic and sound applications [93,139,140], to 

bulk and entangled macrostructures, for mechanical and textile applications [95,96]. For 

example, long fibers and yarns have been produced for bulletproof tough textiles and 

conductive electronic textiles [95,96]. Sheets of CNTs have been fabricated for 

transparent highly elastomeric electrodes [32] and underwater thermoacoustic projectors 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 This chapter is adapted from the paper authored by R. Thevamaran, E. R. Meshot and C. Daraio [166]. RT 
and CD designed the study. RT synthesized samples, performed mechanical characterization and analyzed 
the data. ERM designed and conducted the synchrotron x-ray scattering experiments. RT wrote the 
manuscript with the support of CD and ERM. All authors contributed to the interpretation of the results and 
writing of the manuscript. 
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[93]. Thin film bucky papers made of randomly oriented individual carbon nanotubes 

have also been studied for energy storage and chemical catalysis [141,142]. In bulk, 

vertically aligned carbon nanotube (VACNT) arrays [37,140,143] and non-aligned inter-

connected sponge like structures [55] have been investigated for energy dissipative 

cushioning and packaging, super-capacitor, catalytic electrodes, super hydrophobic 

surfaces and scaffolds for tissue engineering. Freestanding VACNT arrays exhibit an 

intriguing mechanical response that, for example, makes them the most efficient low-

density, energy absorbing material known [37,63,72]. These properties arise from their 

intrinsic complex deformation behavior, which opens up fundamental areas of 

investigation in mechanics, and serves as a controlled model to understand the response 

of hierarchical materials with a fibrous morphology. 

Macroscale VACNT foams have constituents at different length scales, forming a 

hierarchical structure: entangled individual multi-walled carbon nanotubes (MWCNTs) at 

the nanoscale, a seemingly disordered forest at the microscale, and vertically aligned 

bundles at the mesoscale. The properties and morphologies of the constituent structures 

are highly dependent on the synthesis conditions [40] and they play an important role in 

determining the mechanical response of the bulk foams. Subjected to quasistatic 

compressive loading, freestanding VACNT foams exhibit super-compressibility and have 

the ability to recover from large strains of up to 80% upon unloading [37,144]. Their 

deformation response is highly localized and in compression these foams support the 

formation of sequential buckles, originating from anisotropic, graded functional 

properties. They also show high fatigue resistance, surviving tests of up to a million 

compressive cycles at moderate strains [38]. The fundamental characteristics of 

nucleation and propagation of sequential periodic buckling, observed first at the macro-

scale [37], was confirmed in micro-pillars using in-situ indentation experiments inside a 

scanning electron microscope (SEM) [123,145].  

Studies of rate effects on the mechanical response of bulk CNT foams have focused on 

the quasistatic regime or on the linear dynamic regime. Uniaxial compression cycles 

performed at up to 80% strain in the quasistatic regime (10-4-10-1 s-1) have shown a rate-

independent mechanical response [62]. In contrast, faster, but still quasi-static, strain 
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rates (up to 0.04 s-1 [63] and up to 1 s-1 [64]) suggested rate effects on recovery [63] and 

unloading modulus [63,64]. In both reports the recovery and elastic unloading modulus 

were shown to increase with increasing deformation rates. In the linear dynamic regime, 

uniaxial nano-dynamic mechanical analysis (nano-DMA) at small amplitudes (3-50 nm; 

0.7% strain) showed no dependence of the CNT foam’s response on the driving 

frequency [65]. However, they reported the dependence of the storage and loss moduli on 

the driving amplitude and the variation of the foam’s microstructure. Large amplitude 

DMA performed in torsion-mode (shear) also exhibited temperature and frequency 

invariant viscoelasticity between 0.1-100 Hz and -196-1000 0C [66]. Coarse-grained 

molecular dynamics simulations and triboelastic constitutive models supported these 

experimental observations [67]. It should be noted that the fundamental deformation 

mechanisms in uniaxial compression involving bending, buckling and microstructural 

rearrangements [37,65] are significantly different from the zipping, unzipping and 

bundling observed in torsion-mode (shear) DMA [66,67]. 

Drop-ball tests performed on VACNT forests demonstrated their ability to mitigate 

impacts [68,69] at high-rate deformations. However, the deformation behavior and the 

fundamental dissipative mechanisms at high rates and for finite deformations are not 

thoroughly understood due to the difficulties in obtaining dynamic displacement 

measurements with micro-scale resolutions.  

Here, we report a detailed experimental study on the response of CNT foams subjected to 

controlled, high-rate impacts, reaching up to 95% strain, using time-resolved dynamic 

displacement and force measurements. This study provides a thorough understanding of 

fundamental dynamic deformation mechanisms in the micro- and macro-scales and 

identifies different dynamic regimes—localized buckling and shock formation—

supported by VACNT foams. 

3.2 Experimental methods 

The VACNT foams presented in this chapter were synthesized using a floating catalyst 

thermal chemical vapor deposition (tCVD) process as described in Section 2.1.1. The 

resultant VACNT foams had thicknesses in the order of a millimeter. Hydrogen 
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concentration in the carrier gas was varied between 30% and 5% to produce VACNT 

foams with tailored microstructures and different bulk densities, varying from 0.1-0.3 g 

cm-3. These different microstructures were shown to present mechanical properties 

varying over a broad range in the quasistatic regime [42]. The synthesized specimens 

were extracted from the substrate using a custom-made core drill and prepared for 

dynamic testing. 

We performed synchrotron X-ray scattering and mass attenuation measurements to 

nondestructively quantify the density and alignment within the VACNT foams, as 

described in Section 2.2. The dynamic characterization of the VACNT foams was 

performed on the dynamic testing platform described in the Section 2.4. Details of the 

dynamic testing apparatus and the data reduction methods can be found in Section 2.4. 

The calculations of all mechanical parameters discussed in this chapter are described in 

the following section (Section 3.3). 

3.3 Definition of parameters 

Stress: The nominal stress (engineering stress) experienced by the specimen during 

impact, calculated by, 

     ! = !
!
 ,      (3.1) 

where F is the impact force measured by the dynamic force sensor and A is the initial 

area of the VACNT foam specimen. 

Strain: The nominal strain (engineering strain) on the specimen, calculated by, 

     ! = !
!

 ,      (3.2) 

where δ is the dynamic displacement measured using the moiré interferometer and H is 

the initial height of the specimen. 

Strain-rate: The effective strain rate at the moment of impact, given by, 

     ! = !!"#$%&

!
 ,     (3.3) 
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where !!"#$%& is the initial rate of deformation and H is the initial height of the specimen. 

Unloading modulus: The gradient of the unloading curve on the stress-strain diagram at 

the beginning of unloading. It was calculated by, 

    !!"#$%&'"( =
! !!"# !! !.!"  !!"#

!!"#!!.!"  !!"#
  ,   (3.4) 

where εmax is the maximum strain attained during impact and σ(εmax) denotes the stress 

corresponding to the εmax. 

Recovery: Percentage recovery of the specimen during unloading calculated by, 

   !"#$"%&'!"  !"#$%"&' = !!"#!!!
!!"#

×100.   (3.5) 

Energy Dissipated: The hysteretic energy dissipation given by the area included within 

the hysteretic loop on the dynamic stress-strain diagram (Figure 3.1(a)). 

    !!"##"$%&'! = !  !".     (3.6) 

                       

Figure 3.1 (a): Energy dissipated Figure 3.1 (b): Energy absorbed up to peak stress 

 

Figure 3.1 (c). Shock formation of VACNT foams 
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Dynamic cushion factor: The factor representing the damping characteristic of the 

VACNT foam. It was calculated by, 

     !!"# =
!!
!!

 ,     (3.7) 

where σp is the peak stress and Wp is the energy absorbed up to the peak stress (Figure 

3.1(b)) given by, 

     !! = !!!
! !".    (3.8) 

Definition of shock parameters (Figure 3.1(c)): 

Striker velocity: The velocity at which the striker compresses the VACNT foam, defined 

by, 

     !! = !!!
!!

 ,     (3.9) 

where  is the current thickness of the VACNT foam. It is equivalent to the particle 

velocity of the intact VACNT foam in the case of a direct impact. 

Crush front velocity: The velocity at which the sharp crush front progresses towards the 

striker, defined by, 

     !! =
!!!
!!

 ,     (3.10) 

where is the thickness of the crushed section of the VACNT foam. 

Shock velocity: The velocity at which the shock wave propagates in the VACNT foam, 

defined by, 

     !! = − !!!
!!

 ,     (3.11) 

where  is the height of the pristine section of the VACNT foam that is not compressed 

by the shock. 
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xm
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3.4 Results and discussions 

Our results of morphological characterization show a gradient in VACNT mass density 

for the synthesis conditions used in our study, with a monotonic decay towards the 

bottom (corresponding to the end of growth) (Figure 3.2 (a), (b)).  This agrees with 

previous results for growth from substrate bound thin-film catalysts [146], but to our 

knowledge this is the first direct confirmation of density decay in floating catalyst growth 

of VACNTs.  

  

Figure 3.2. Characteristic intrinsic density variation along the height of the VACNT 

foam from the substrate: (a) for the sample that was synthesized using 5% H2 

concentration (measured mean density 0.23 g cm-3), (b) the sample was synthesized using 

15% H2 concentration (measured mean density 0.19 g cm-3). Zero is where the bottom of 

the beam meets the silicon substrate. 
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Figure 3.3.  Direct correlation of alignment (f) with the mass density of VACNTs 

synthesized under the H2 conditions in this study (5%, 15%, 30% concentration).  Results 

from previous studies would suggest that this is a sublinear correlation, with f rapidly 

dropping to zero once a lower threshold of CNT density is reached [103]. 

Our CNTs are highly aligned with f = 0.6 on average, and we determined that alignment 

is directly correlated with density (Figure 3.3), which has a strong influence on the 

mechanical performance.  The following results and discussion draw important 

quantitative relationships between the structural characteristics of the VACNT foams and 

their advanced mechanical properties. 
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Figure 3.4. (a) Dynamic response of a VACNT foam subjected to several impacts at 

increasing controlled velocities (solid lines) compared to a similar VACNT foam 

subjected to quasistatic compressive cyclic loading (dashed lines). (b) Dynamic response 

of different pristine VACNT foams of similar densities, at increasing impact velocities. 

The inset shows the dynamic unloading modulus normalized by the quasistatic unloading 

modulus at given maximum strains reached during impact. 

The effects of increasing loading rates on a VACNT foam are reported in Figure 3.4. We 

show a hysteretic response and the presence of preconditioning effects, similar to what 

was reported in the quasistatic regime [37,62]. The presence of hysteresis accounts for 

the dynamic energy dissipated on impact. The preconditioning effects are evident when 

the same specimen is impacted with increasing loading rates. During the first impact, the 

sample follows a large hysteretic path, characteristic of a pristine (as-grown) sample. As 

the sample is impacted again with a higher impact velocity, the loading path follows 

initially a preconditioned response, and then changes to that of the pristine specimen, 

when the strain exceeds the maximum strain reached in the prior impact (Figure 3.4 (a)). 

This behavior confirms the strain localization found in quasistatic tests [62].  In addition, 
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it demonstrates that the samples’ loading responses are rate-independent, over a broad 

range of impact velocities from 1-6 m s-1 (nominal strain rates: 1000-6,000 s-1). This rate-

independent loading response is further verified by comparing the quasistatic 

compression cycles performed at 0.01 s-1 strain rate to the dynamic stress-strain cycles 

(Figure 3.4 (a)). To verify that the rate-independent loading response is not a function of 

a sample’s loading history, we tested several pristine specimens at different impact 

velocities. A corresponding set of characteristic stress-strain curves is shown on Figure 

3.4 (b).  

The unloading response shows the presence of rate effects. This is verified by plotting the 

dynamic unloading modulus (Edyn), normalized by the quasistatic unloading modulus (Es), 

at maximum strain, against the nominal strain rate measured at the moment of impact 

(inset of Figure 3.4 (b)). This normalized unloading modulus increases with the strain 

rate, suggesting the presence of rate-effects during the recovery phase of the dynamic 

deformation. 

 

Figure 3.5. Characteristic dynamic stress-strain response of VACNT foams of different 

densities, subjected to an impact at a velocity of 3.78±0.18 m s-1. As the VACNT foam’s 

density decreases the response becomes increasingly compliant. 
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Figure 3.6. Dynamic response of VACNT foams with average bulk densities of  

0.13±0.02, 0.17±0.02 and 0.27±0.02 g cm-3 (the horizontal and vertical error bars 

represent the standard deviation of the three samples tested in each case).  (a) Variation 

of peak stress with the striker impact velocity; (b) variation of peak stress with the 

maximum strain reached during impact; (c) variation of the unloading modulus with the 

maximum strain reached during impact; (d) variation of the dynamic cushion factor—

peak stress divided by energy absorbed up to peak stress—with the maximum strain 

reached during impact. 

To explore the effects of a foam’s microstructure on the bulk dynamic response, we 
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cm-3). A summary of the results can be found in Figures 3.5, 3.6 and 3.7. The peak stress 

increases with impact velocity (Figure 3.6 (a)) and maximum strain (Figure 3.6 (b)). It 

should be noted that the increase in the peak stress with impact velocity is not due to rate-

effects, yet it is a natural consequence of the gradient in stiffness along the height of the 

foam as well as the densification that occurs during loading. Similar to peak stress, the 
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3.6 (c)). The relation of the unloading modulus and the energy dissipation with increasing 

impact velocities is shown in Figures 3.7 (a) and (b). For a given impact velocity, 

VACNT foams with higher bulk densities exhibit stiffer responses characterized by 

higher peak stresses and unloading moduli. 

We use the dynamic cushion factor, given by the peak stress divided by the energy 

absorbed up to the peak stress (σp/Wp), to characterize the damping efficiency of the 

VACNT foams. In general, a low cushion factor is beneficial for impact mitigation and 

energy dissipative applications. Both the increase in the energy absorption and the 

decrease in the peak stress contribute to reducing the cushion factor. To characterize the 

quasistatic response of conventional foam materials, the static cushion factor is plotted 

against the plateau stress [147]. This was also reported for the quasistatic response of 

disordered carbon nanotubes [56]. In dynamics, we plot (Figure 3.6 (d)) the cushion 

factor against the maximum strain reached to combine all the critical parameters of the 

impact response: the peak stress, maximum strain and the energy absorption. A 

conventional plot of the dynamic cushion factor with peak stress is given on Figure 3.7 

(c). 

VACNT foams with lower densities perform well in mitigating impact force and 

absorbing energy for a given maximum strain, at low velocity impacts (< 3 m s-1; striker 

mass = 7.1 g), (Figure 3.6 (d)). When subjected to high velocity impacts, however, they 

rapidly reach the densification strain, posing a performance limit. VACNT foams with 

higher densities exhibit higher moduli and deform less and are capable of absorbing high 

velocity impacts. In the quasistatic regime, the energy dissipated by these VACNT foams 

was found to be more than 200 times higher than the energy dissipated by commercial 

foams of similar densities [72]. 
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Figure 3.7 (a) Variation of unloading modulus with impact velocity. (b) Variation of 

hysteretic energy dissipation with impact velocity. (c) Variation of dynamic cushion 

factor with peak stress. 

To compare the performance of the VACNT foams with that of other materials in the 

literature [59,148–151], we plot the elastic modulus as a function of the bulk density. For 

these plots, the unloading modulus of the VACNT foams was chosen over the loading 

modulus as the characteristic stiffness, since it represents the elastic recoiling of the 

VACNT foams after the impact (Figure 3.8). For the CNT foams, we show a range of 

dynamic unloading moduli arising from different maximum deformations reached at 

different impact velocities. For simplicity, they are grouped into three different ranges of 

maximum strains: 0.35-0.49 (with avg. 0.40), 0.50-0.69 (with avg. 0.60) and 0.70-0.88 

(with avg. 0.75). The results follow a linear correlation in the double-logarithmic plot, 

implying a power-law relationship between the modulus and the density similar to the 
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one found in conventional foam materials [147]. VACNT foams always present the 

highest elastic moduli at a given bulk density when compared to other foam materials. 

 

Figure 3.8. Dynamic and quasistatic unloading moduli of VACNT foams as a function of 

the average bulk density, in comparison with the moduli of similar foam-like materials 

found in literature [59,148–151]. 

The in-situ visualization using high-speed microscopic imaging provided insights into the 

fundamental mechanisms of deformations. When the striker impacted the sample, due to 

the density gradient along the thickness of the VACNT foams, buckling instabilities 

nucleated in the low-density region of the samples and propagated sequentially towards 

the high-density region. The initial buckle formation always occurred at the low-density 

region independently of the impacted side of the sample, implying the strong influence of 

the intrinsic density gradient. The characteristic intrinsic density gradient measured by 

synchrotron x-ray scattering and mass attenuation in our samples is shown in the inset of 

Figure 3.9 (a) (see also Figures 3.2 (a) & (b)). Due to the nonlinear density gradient 

observed for VACNT foams, when impacted, we observed an increase in buckle 

wavelength along the height (Supplementary Video 3.1). The samples recovered the 

deformation upon unloading. A few snapshots of the dynamic deformation are provided 

in Figure 3.9 (a), along with the corresponding dynamic stress-strain diagram for an 
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impact velocity of 1.75 m s-1. From Supplementary Video 3.1 it can be seen that the 

VACNT foams exhibit high resilience to impact with 100% instantaneous recovery. On 

average, the samples with different densities recovered 83±10% of their dynamic 

deformation. The characterization of the samples using scanning electron microscopy 

(SEM) after high velocity impacts (~ 6 m s-1), showed traces of permanent collective 

buckling (Figure 3.9 (b)). Transmission electron microscopic (TEM) imaging of these 

specimens revealed individual MWCNTs with wrinkled outer walls (Figure 3.9 (c)). 

Similar permanent defects of wrinkled outer walls on the compression side of the tube 

were also reported in earlier dynamic tests of CNT foams [69] and highly bent individual 

MWCNTs [152]. 

The in-situ visualization using high-speed microscopic imaging provided insights into the 

fundamental mechanisms of deformations. When the striker impacted the sample, due to 

the density gradient along the thickness of the VACNT foams, buckling instabilities 

nucleated in the low-density region of the samples and propagated sequentially towards 

the high-density region. The initial buckle formation always occurred at the low-density 

region independently of the impacted side of the sample, implying the strong influence of 

the intrinsic density gradient. The characteristic intrinsic density gradient measured by 

synchrotron x-ray scattering and mass attenuation in our samples is shown in the inset of 

Figure 3.9 (a) (see also Figures 3.2 (a) & (b)). Due to the nonlinear density gradient 

observed for VACNT foams, when impacted, we observed an increase in buckle 

wavelength along the height (Supplementary Video 3.1). The samples recovered the 

deformation upon unloading. A few snapshots of the dynamic deformation are provided 

in Figure 3.9 (a), along with the corresponding dynamic stress-strain diagram for an 

impact velocity of 1.75 m s-1. From Supplementary Video 3.1 it can be seen that the 

VACNT foams exhibit high resilience to impact with 100% instantaneous recovery. On 

average, the samples with different densities recovered 83±10% of the dynamic 

deformation. The characterization of the samples using scanning electron microscopy 

(SEM) after high velocity impacts (~ 6 m s-1), showed traces of permanent collective 

buckling (Figure 3.9 (b)). Transmission electron microscopic (TEM) imaging of these 

specimens revealed individual MWCNTs with wrinkled outer walls (Figure 3.9 (c)). 
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Similar permanent defects of wrinkled outer walls on the compression side of the tube 

were also reported in earlier dynamic tests of CNT foams [69] and highly bent individual 

MWCNTs [152]. 

 

Figure 3.9. (a) Deformation micrographs obtained from high-speed microscopic 

imaging, for a VACNT foam impacted at 1.75 ms-1 (Supplementary Video 3.1); inset 

shows the intrinsic density variation along the height of a VACNT foam with mean 

density 0.23 gcm-3. (b) SEM image of the collective permanent buckles in a VACNT 

foam impacted at ~5 ms-1 (the scale bar is 20 µm). (c) TEM image of an individual 

multiwalled carbon nanotube exhibiting wrinkles on walls caused by buckling (the scale 

bar is 20 nm). 

The reported rate-independent dynamic loading behavior transitions into shock formation 

at a critical impact velocity, characteristic of specific bulk densities (Figure 3.10 (a-d)). 

We have observed this behavior in VACNT foams with a 0.13±0.02 g cm-3 average bulk 

density, at impact velocities of ~ 5 m s-1, and for denser VACNT foams (~0.2 g cm-3), at 

~6.5 m s-1. These critical velocities are surprisingly low (more than 10 times lower) 

compared to the critical shock formation velocities observed in metallic open-cell foams 

with comparable bulk densities and elastic moduli [153,154] (Aluminum open-cell foams 

compared here have average bulk density ~0.22 g cm-3; average longitudinal modulus 
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~593 MPa and transverse modulus ~338 MPa). When the samples were impacted at 

velocities higher than these critical velocities, we observed a distinct crush front 

propagating from the low-density region (Supplementary Video 3.2). During the loading 

phase, the stress increased almost linearly with strain at moderate stress levels. Beyond 

the densification strain (~0.8), the stress increased rapidly to very high values. During the 

unloading phase, the stress dropped rapidly and the strain presented a significant recovery 

(86±8%). A characteristic stress-strain response and the corresponding loading stress-

time history for a shocked specimen (with density 0.12 g cm-3, impacted at 5.02 m s-1) are 

shown in Figure 3.10 (c). A few snapshots from the high-speed image sequence 

identifying the propagation of the crush front are shown in Figure 3.10 (b). In this case, 

the stress-strain response of the samples changes dramatically, presenting a much 

narrower hysteresis, a sharper transition to the densification regime and no characteristic 

saw-tooth pattern identifying the buckle’s formation in quasistatic compression. The 

crush front in Supplementary Video 3.2 proceeds continuously compressing the samples 

without allowing time for the sequential buckle formation, seen in the low velocity 

Supplementary Video 3.1.  

The parameters used to calculate the crush front speed and the shock front speed are 

shown in the schematic diagram in Figure 3.10 (a) [153]. The evolution of the striker 

velocity (Vm), the crush front velocity (Vc) and the shock velocity (Vs) during the shock 

compression is shown in Figure 3.10 (d). The time t=166 µs corresponds to the instance 

the shock reaches the force sensor-VACNT foam interface. During this time, the striker 

decelerates from 5.02 m s-1 to 4.13 m s-1, beyond which it rapidly decelerates to zero as 

the material is compressed beyond its densification strain. The shock velocity reduces 

from ~9 m s-1 to ~5 m s-1 and remains nearly steady until time t=166 µs. The crush front 

propagates initially at the impact velocity of the striker, and then rapidly reduces to ~0.5 

ms-1 and remains steady as more material piles up behind the shock. All velocities were 

calculated by processing the high-speed image sequence using commercial image 

correlation software (Image systems, TEMA). We attribute the presence of oscillations on 

the shock and the crush front velocities to the discrete time steps of the high-speed image 

sequence. 
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Figure 3.10. (a) Schematic illustration of shock formation in VACNT foams identifying 

the shock parameters. (b) Snapshots from the high-speed camera imaging sequence 

showing the formation and propagation of the shock wave. (c) Stress-strain diagram 

showing the loading-unloading response during impact. Inset shows the loading phase up 

to densification; circles 1-4 indicate instances corresponding to the high-speed camera 

images. (d) Evolution of the shock, crush-front and striker velocities during the loading 

phase. Time t indicates the instance when the shock wave reaches the specimen-striker 

interface, beyond which the crushed VACNT foam is compressed through densification. 

The experimental evidence of shock formation in VACNT foams provides critical 

insights into the influence of graded, fibrous microstructure on the formation and 

propagation of shock waves. For example, the presence of a density gradient in VACNT 

foams confines the shock formation in the low-density region of the sample and the shock 

front progresses towards increasing density. This is reflected also in the stress-time 

history profile: homogeneous foams present a sharp initial stress increase followed by a 

plateau-region and densification, whereas VACNT foams show a gradual increase of 

stress in time, until reaching densification.  The presence of fibrous microstructure in the 
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VACNT foams is responsible for the observed time-scale effects on the micro-scale 

deformation. In quasi-static or low-velocity impacts, the fibers form progressive buckles 

undergoing local stiffening followed by local instability. At higher-velocity impacts, the 

buckle formation does not have sufficient time to progress and it is replaced by 

progressive crushing. 

3.5 Conclusions 

VACNT foams present complex rate-effects subjected to impact loadings where loading 

response is rate-independent and the unloading response is dependent on the strain-rate. 

When impacted at velocities higher than a critical velocity of impact they support 

formation and propagation of shock waves. In all cases, VACNT foams exhibit high 

resilience to impact by recovering more than 80% of the deformation upon unloading. 

The dynamic energy dissipation characteristics and the mechanical properties are highly 

controllable, for example by tailoring the foam’s microstructure during synthesis varying 

hydrogen concentration in the carrier gas. We quantified the intrinsic density gradient of 

the VACNT foams to elucidate the observed fundamental deformation mechanisms. 

VACNT foams show superior mechanical properties, such as high modulus, compressive 

strength (peak stress), and energy dissipation characteristics, compared to similar foam-

like materials. These properties suggest their use in lightweight materials for tunable 

vibration damping and energy absorbing applications. 
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Chapter 4  

Quasistatic and Dynamic Responses of HCNT 

Foams3 

We describe the quasistatic and dynamic response of helical carbon nanotube (HCNT) 

foams in compression, and compare their mechanical properties to those reported earlier 

for vertically aligned carbon nanotube (VACNT) foams. Similar to VACNT foams, 

HCNT foams exhibit preconditioning effects in response to cyclic loading; however, their 

fundamental deformation mechanisms are significantly different from those of VACNT 

foams. HCNT foams exhibit strain localization and collective structural buckling, 

nucleating at different points throughout their thickness, and HCNT micro-bundles often 

undergo brittle fracture. Regardless of this microstructural damage, bulk HCNT foams 

exhibit super-compressibility, on par with VACNTs, and recover more than 90% of large 

compressive strains (up to 80%). When subjected to striker impacts, HCNT foams 

mitigate impact forces more effectively than VACNT foams—a desirable characteristic 

for protective applications. 

4.1 Introduction 

Helical carbon nanotubes (HCNTs) have been synthesized as individual fibers [155], self-

assembled ropes [156], or in macroscopic arrays [52,157]. Small-scale HCNT fibers have 

been fabricated for a variety of applications such as nano-electronics and nano-

mechanical systems [158], self-sensing mechanical resonators [159], reinforcement in 

epoxy based composites [160,161], and energy applications including fuel cells, 

hydrogen storage and super-capacitors [162,163]. Macroscopic arrays of HCNTs have 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 This chapter represents a collaboration work with M. Karakaya, E. R. Meshot, A. Fischer, R. Podila and 
A. M. Rao. MK synthesized samples. RT performed mechanical characterization and analyzed the data. 
ERM conducted the synchrotron x-ray scattering experiments. RT, AF and MK performed electron 
microscope characterizations. RT wrote the manuscript with the support of others. We acknowledge 
ScopeM of ETH Zurich for TEM. 
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been synthesized for flat panel field emission display [164], electromagnetic shielding 

[165], and energy dissipative cushioning and packaging [53]. Unlike straight vertically 

aligned carbon nanotube (VACNT) arrays [37,166], studies on the mechanical response 

of bulk HCNT foams are sparse in literature [53,77,160,161]. 

Bulk HCNT foams, similar to VACNT foams, derive their unique mechanical properties 

from their hierarchically organized microstructures characterized by aligned and 

entangled helical coils of multi-walled CNTs (Figures 4.1 (a), (b)). The carbon nanocoils 

act like elastic springs, with their deformation behavior governed by geometric 

nonlinearity [167]. The spring constant of a helical coil is proportional to the quartic 

power of the diameter of the coiled wire (CNT diameter), and inversely proportional to 

the cubic power of the radius of the coil [167]. Such geometric nonlinearity in the 

deformation of the individual nanocoils leads to an interesting collective mechanical 

response in the HCNT foams. For example, the contact interaction of a spherical indenter 

with HCNT foams is highly nonlinear and non-Hertzian, and different from the contact 

interaction of a spherical indenter with VACNT foams [53]. This highly nonlinear 

collective response is attributed primarily to the unusual entanglement between 

neighboring coils and to the collective bending behavior of the coil tips when impacted 

by a spherical indenter [54]. The HCNT foams have been shown to mitigate low velocity 

(0.2 ms-1) impact forces efficiently and fully recover deformation of the order ~5 µm (5% 

strain) [53]. However, their fundamental deformation mechanisms at large strains and 

different strain-rates have not been studied yet. Below, we present a comprehensive study 

of the mechanical response of HCNT foams in both quasistatic and dynamic loading 

regimes with structural characterizations. We performed morphological characterization 

using synchrotron x-ray scattering and correlated the structural characteristics with the 

observed fundamental deformation mechanisms under compressive loading. We used in-

situ high-speed microscopy, scanning electron microscopy (SEM), and transmission 

electron microscopy (TEM) to elucidate the deformation mechanisms that govern the 

bulk mechanical behavior. 
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Figure 4.1. Hierarchical morphology of HCNT foams: (a) SEM image of vertically 

aligned bundles of entangled HCNTs,  (b) TEM image of an individual HCNT, (c) mass 

density gradient along the height of the HCNT foam sample, and (d) alignment of the 

HCNTs within the HCNT foam along the height of the sample. 

4.2 Experimental methods 

HCNT foams were synthesized using a two-stage thermal chemical vapor deposition 

(CVD) process as described in the Section 2.1.3. The resultant HCNT foams were ~ 1 

mm in heights and had an average density of ~ 0.17 g cm-3. As these samples couldn’t be 

extracted from the substrate as standalone HCNT foams, they were characterized for 

mechanical properties, whilst still attached to the growth substrates. 

We performed synchrotron X-ray scattering and mass attenuation measurements to 

nondestructively quantify the density and alignment within HCNT foams. Full 

descriptions on the experimental methods and the analysis are provided in Section 2.2. 

The quasistatic compression tests were performed on an Instron ElectroPulse E3000 

testing system as described in Section 2.3. All the quasistatic experiments were 
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performed at 0.01 s-1 strain rate. The dynamic experiments were performed on the impact 

testing setup described in Section 2.4. 

4.3 Results and discussions 

4.3.1 Morphological characteristics of HCNT foams 

SEM and TEM studies were performed to explore the structure and morphology of the 

as-grown and deformed HCNT foam samples. SEM images of the HCNT foam 

microstructure reveal the uniformity of the coiling and pitch (Figure 4.1 (a)) of HCNTs 

present in the array.  The thickness of the HCNT foams is ~1 mm and the dominant 

HCNT diameter and pitch are around 25±5 nm and 50nm, respectively.  

 

Figure 4.2.  A representative small angle x-ray scattering (SAXS) image of an HCNT 

foam sample. Schematic illustration demonstrates the azimuthal integration we perform 

on SAXS images to extract the Herman’s orientation factor.  The annulus of the 

azimuthal scan about φ is defined by ±5 pixels from the CNT form factor scattering peak 

located near q = 0.05-0.07 Å-1.  We only use one half of the SAXS image because HCNT 

alignment is isotropic in the plane of the catalyst substrate (Si), so the SAXS pattern is 

vertically symmetric. 
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The mass density characterized by the synchrotron x-ray scattering and mass attenuation 

was found to decrease linearly with the height of the HCNT foam, from the top to the 

bottom (adjacent to substrate), and the average density was 0.15 g cm-3 with 59% 

variation along the height (Figure 4.1(c)).  The CNT alignment was quantified from the 

anisotropy of the SAXS patterns using Herman’s orientation factor, f [104,168]  (Figure 

4.2 shows a representative small angle x-ray scattering (SAXS) image of an HCNT foam 

sample and the intensity variation with the azimuthal angle). We found that the alignment 

decreased from the top to the bottom of the sample with the bulk sample having an 

average alignment of 0.38 (Figure 4.1 (d)). Here, f equals 1 for perfectly aligned CNTs 

and 0 for random order (no alignment).  The low-alignment of the sample is attributed to 

the coiled nature of the fibers within the HCNT foam. 

4.3.2 Quasistatic response of HCNT foams 

HCNT foams, when subjected to quasistatic compressive loading-unloading cycles 

exhibit a nonlinear stress-strain response with a hysteresis loop (Figure 4.3 (a)), similar to 

other foam materials [147] and to VACNT foams [37]. When an HCNT foam is 

compressed, the stress rises nonlinearly with strain up to a peak stress, and then falls 

rapidly along a different path during unloading resulting in a hysteresis. Through 

hysteresis, the foam dissipates energy but has the ability to recover large compressive 

strains up to 80%. When the same HCNT foam is compressed again, the loading path 

differs from the previous loading cycle, exhibiting a preconditioning effect (Figure 4.3 

(a)). This effect is pronounced in the first three cycles but the response stabilizes for 

consecutive cycles beyond the third cycle. A similar preconditioning effect was also 

reported in compressive studies of VACNT foams and was attributed to microstructural 

rearrangements of the CNTs during the loading-unloading cycles [37,38]. In the case of 

HCNT foams, in addition to the microstructural rearrangements, we also observed 

permanent microstructural damage and brittle fracture of HCNT bundles in the deformed 

region (Figure 4.3 (f)). The peak stress (Figure 4.3 (b)), the unloading modulus (Figure 

4.3 (c)) and the hysteretic energy dissipation (Figure 4.3 (d)) also decrease rapidly within 

the first three cycles and remain nearly constant for the later cycles, implying that the 

mechanical properties of HCNT foams are loading-history dependent. The compressive 
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strength (peak stress at 80% strain) of the HCNT foams (22.2±1.4 MPa) and the 

hysteretic energy dissipation (3.38±0.32 MJ m-3) are comparable to that of the VACNT 

foams with similar densities [42]. 

 

Figure 4.3. (a) Stress strain response of a HCNT foam under quasistatic compression 

cycles. Variation of (b) the peak stress, (c) the unloading modulus, and (d) the hysteretic 

energy dissipation with consecutive compression cycles; error bars represent the standard 

deviation of three samples measured. (e) Strain localization and loading history 

dependent response of an HCNT foam. C1-C5, C6-C10 and C11-C15 correspond to 

compression cycles with 0.3, 0.5, and 0.8 maximum strains, respectively. (f-g) SEM 

images showing microstructural deformation mechanisms under compression: (f) 

collective structural buckling of the HCNTs exhibiting brittleness in the response, (g) 

snap region of a bundle showing that the deformation is extending to several pitches of 

the individual HCNTs, which changes their pristine configuration. (h) TEM images taken 

at turning points of pristine individual HCNTs revealing defective/broken walls at the 
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turning points of the coils. 

When an HCNT foam that was subjected to repeated cyclic loading at a moderate strain 

was compressed beyond the previous maximum strain (30 %), the loading path changed 

from the preconditioned path to the pristine sample’s loading path (Figure 4.3 (e)). This 

change from preconditioned to pristine response suggests that the strain in the sample is 

localized and the deformation is not uniform. These regions of strain localization 

(occurring during the first cycle) are also identifiable in the consecutive cycles (second 

and later cycles), as indicated on Figure 4.3 (e). This kind of strain localization was also 

observed for VACNT foams, where the vertically aligned bundles of CNTs undergo a 

well-defined sequential periodic buckling that is governed by the samples’ intrinsic 

density gradient [37,62,123,145]. However, the strain localization in HCNT foams is 

surprising, since previous studies suggested primarily a spring-like bulk compressive 

behavior [53,167]. We correlate this response to the HCNT foam’s microstructure, 

consisting of long entangled HCNTs with length (l ~1 mm), three orders of magnitude 

higher than the coil diameter (dcoil ~450 nm) [165]. Due to (i) the very high aspect ratio 

(l/dcoil ~2000), (ii) entanglement with neighboring coils, and (iii) the vertical alignment of 

HCNT bundles, the deformation is localized rather than the whole HCNT foam 

undergoing a uniform deformation. In-situ microscopy and SEM characterization of a 

HCNT foam under compression revealed that the strain initially localizes in the sample’s 

low-density region, near the substrate. After a critical strain of ~10%, localization begins 

to appear in different regions of the sample’s thickness. Several consecutive structural 

buckles with observable brittleness follow the initial deformation (Figure 4.3 (f)). An 

SEM image sequence showing the deformation mechanisms during a quasistatic 

compression cycle is provided in Figure 4.4. The SEM images also reveal the presence of 

several permanent microstructural deformations and HCNT bundles that underwent 

brittle fracturing during loading. TEM analysis of pristine (as-grown) HCNTs show that 

the as-grown nanocoils have numerous structural defects: the multiwalled HCNTs have 

highly deformed or defective walls at the coils’ turning points (indicated by arrow) in 

Figure 4.3 (h). The presence of a large number of such nanoscale defects present in the 

pristine samples may have led to the fracture of the bundles when compressed. The bulk 
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samples, however, show significant recovery upon unloading, regardless of the 

microstructural damages. This suggests that interactions between HCNT bundles at the 

mesoscale play a dominant role in the bulk response of foams, over the nanoscale 

permanent damage observed in the individual coils. 
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Figure 4.4. (a) SEM image sequence of a pristine HCNT foam sample under a quasistatic 

compression cycle up to 60% compression. Structural buckle formation at the bottom 

low-density region and the bundle fracturing upon further compression are observable in 

the images. (b) SEM image sequence of a pre-compressed HCNT foam sample under a 

(a)

(b)
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quasistatic compression cycle up to 70% compression. Structural buckle formation and 

the buckle induced microstructural changes are observable in the images. The bulk 

sample shows significant recovery upon unloading with traces of the deformation history 

in the micro-scale. These SEM images were obtained as follows: first an HCNT foam 

sample was compressed on the Instron compression testing system up to 80% strain; then 

the externally fractured edges of the recovered sample was removed to view the inside of 

the sample; finally, the sample was subjected to a static loading-unloading cycle in a 

custom-made vice to perform SEM at different compressive strains. 

 

Figure 4.5. SEM image sequence of a pristine VACNT foam subjected to a quasistatic 

compression cycle up to 60% strain. The collective buckle formation and sequential 

progression of the buckles from the bottom soft region towards upper stiffer region can 

be seen on the images. The sample shows a significant recovery upon unloading. The 

SEM at different compressive strains was performed while statically compressing the 

sample in a custom-made vice. 
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The presence of quasistatic compression-induced strain localization at arbitrary regions 

along the height of the sample also implies that the influence of the intrinsic density 

gradient along the thickness of the foam is less significant compared to the influence of 

the nanoscale defects described above. A closer look at the stress-strain response of the 

HCNT foams (Figure 4.3 (e)) shows that the transition regions, from preconditioned to 

pristine loading paths, are smooth—in contrast to the sharp transitions observed in 

VACNT foams [62]. This suggests that the strain localization in HCNT foams is not 

confined to a narrow region of the foam’s thickness (as in the case of the well-defined 

periodic sequential buckles forming in VACNT foams) [37,123], but the deformation 

extends to several adjacent pitches of the individual HCNTs. This is also evident from 

SEM images obtained on a compressed sample where several adjacent pitches of the 

individual helical coils are distorted by bending, buckling and twisting (Figure 4.3 (g)). 

An SEM image sequence for a VACNT foam sample subjected to a quasistatic loading-

unloading cycle is given in Figure 4.5. Due to these drastically different deformation 

mechanisms, the loading path of the stress-strain diagram does not show any saw-tooth 

plateau region with local stress rises and drops, which is a typical characteristic of the 

formation of localized periodic sequential instabilities [37,123]. 

4.3.3 Dynamic response of HCNT foams 

To study the dynamic response of HCNT foams, we performed controlled impact 

experiments using a flat plunge striker [169]. In the dynamic regime, the HCNT foams 

exhibit a nonlinear stress-strain response with hysteresis loop (Figures 4.6 (a) and (b)), 

similar to the response observed in quasistatic regime. Figure 4.6 (a) shows the stress-

strain response of an HCNT foam that was impacted repeatedly at increasing velocities. 

The stress-strain diagrams show the presence of preconditioning effects and strain 

localization. Similar to the quasistatic response, the preconditioned, loading path returns 

to the pristine loading path as soon as the previous maximum strain is exceeded. In 

addition to confirming the strain localization in dynamics, this observation suggests that 

the dynamic loading response is rate-independent. We further verified the rate-

independency of the loading response of HCNT foams by testing different HCNT foams 

at controlled impact velocities, between 1 m s-1 and 6 m s-1 (Figure 4.6 (b)). The stress-
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strain diagrams followed similar loading paths for the samples tested at increasing 

velocities (Figure 4.6 (b)). The dynamic unloading modulus increases with increasing 

impact velocities, due to the fact that the samples reach higher maximum strains (and 

densification) with increasing impact velocities (Figure 4.6 (c)). The dynamic unloading 

moduli measured were nearly half of the quasistatic unloading moduli (at 0.8 strain), 

suggesting that HCNT foams are more compliant in a dynamic than a quasistatic state. 

This dynamic effect may have arisen from the faster, spring-like pushback response of 

HCNT foams during striker impacts. 

 

Figure 4.6. Impact response of the HCNT foams. (a) Response of an HCNT foam 

subjected to repeated impacts at increasing velocities. (b) Dynamic stress-strain response 

of different HCNT foams at increasing impact velocities. (c) Dynamic unloading 

modulus with the impact velocity. (d) Dynamic cushion factor (peak stress divided by 

energy absorbed up to peak stress) with maximum strain reached on impacts. (e) 

Characteristic stress-time history of an HCNT foam compared to a VACNT foam with 

similar density; both samples were impacted at similar velocities (~3 m s-1). (f) Dynamic 
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stress-strain response of the HCNT and VACNT foams. 

 

Figure 4.7. Comparison between dynamic responses of HCNT foams and VACNT 

foams. (a) Peak stress with impact velocity; HCCNT foams exhibit lower peak stress 

compared to VACNT foams. (b) Hysteretic energy dissipation with impact velocity; 

VACNT foams dissipate higher energy compared to HCCNT foams. (c) Dynamic 

cushion factor with maximum strain reached on impact; HCNT foams and VACNT 

foams exhibit similar cushioning ability. 

To show the cushioning ability of the HCNT foams, we plot the variation of dynamic 

cushion factor with the maximum strain reached on impact (Figure 4.6 (d)). The dynamic 

cushion factor is calculated by dividing the peak stress by the energy absorbed by the 

sample up to the peak stress. A decrease in peak stress and/or an increase in energy 

absorption reduce the dynamic cushion factor—and are beneficial for impact-protective 

applications. The dynamic cushion factors of HCNT foams are comparable to those of 

VACNT foams of similar densities [166]. Figure 4.7 (c) presents a comparison of the 
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dynamic cushion factor obtained in HCNT foams and VACNT foams with comparable 

densities. Even though the HCNT foams and VACNT foams exhibit similar dynamic 

cushion factors, it should be noted that the VACNT foams exhibit higher hysteretic 

energy dissipation (Figure 4.7 (b)), by reaching higher peak stresses for a given impact 

velocity. HCNT foams, however, perform better in damping the impact force amplitude 

(Figure 4.7 (a)). This improved damping is also evident from the comparison of 

characteristic dynamic stress-time curves (Figure 4.6 (e)), and dynamic stress-strain 

diagrams (Figure 4.6 (f)), for HCNT foams and VACNT foams impacted at similar 

velocities (2.99±0.07 ms-1). At this impact velocity the HCNT foams show ~53% 

improved impact stress damping over the VACNT foams. The HCNT foams deform 

more at moderate stress levels and the stress profiles span over a longer duration 

compared to VACNT foams. This demonstrates that HCNT foams mitigate impacts more 

effectively by reducing the amplitude of the transmitted stress. The specific damping 

capacity—i.e., the hysteretic energy dissipated normalized by the energy absorbed up to 

the peak stress—of all the HCNT foams tested in this study is on average ~0.56±0.07. 

This implies that ~45% of the energy absorbed by the HCNT foams is stored elastically 

and released as the striker gains rebound velocity. VACNT foams with similar densities 

stored only 28% of the absorbed energy as elastic energy and dissipated the rest (72%) 

[166] (Figure 4.7 (b)). This comparison demonstrates the fundamental role of the 

helically coiled microstructure of the HCNT foams as opposed to the aligned straight 

CNTs in the VACNT foams. 

We characterized the fundamental deformation mechanisms during impact using in-situ 

high-speed microscopy [169]. Characteristic deformation micrographs and the 

corresponding dynamic stress-strain diagram of an HCNT foam impacted at 4.43 m s-1 

are shown in Figure 4.8 and in Supplementary Video 4.1. As evident from the image 

sequence 1-4, when the HCNT foam is impacted it undergoes an initial compression 

without an apparent deformation localization. Crushing initiates in the low-density region 

of the sample adjacent to the substrate and progresses as the striker compresses the foam. 

After reaching the peak stress at maximum compression (image 4 of Figure 4.8), the 

sample unloads rapidly by pushing the striker back and eventually detaches from the 
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force sensor. This deformation mechanism in dynamic loading is significantly different 

from the previously described quasistatic deformation mechanisms of HCNT foams: the 

intrinsic density gradient governs the progressive deformation whereas, in the quasistatic 

compression, the presence of nanoscale defects dominates the strain localization at 

arbitrarily weak locations. The HCNT foam shown in Figure 4.8 recovered 90% of its 

compressive strain upon unloading. All HCNT foams tested in impact showed a 

significant recovery, on average 91.5±6.3%. At high impact velocities (>4 m s-1), the 

edges of the samples underwent brittle fracture (image 5 of Figure 4.8) and several pieces 

of fractured debris could be seen flying off the sample on the high-speed video during 

detachment (Supplementary Video 4.1). 

 

Figure 4.8. Deformation micrographs of an HCNT foam impacted by a striker at 4.43 m 

s-1. In the dynamic stress-strain diagram (left figure) the circled numbers identify selected 

snapshots from the high-speed microscopic optical image sequence, which show the 

foam’s deformation. 

4.4 Conclusions 

In conclusion, we studied the mechanical response of HCNT foams subjected to 

quasistatic and dynamic loadings. In the quasistatic regime, HCNT foams are 

characterized by strain localizations and structural buckles occurring at arbitrary weak 

sections through thickness. Micro-scale brittle fracture of HCNT bundles is also common, 
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although the bulk samples significantly recover their deformation. We supported the 

mechanical tests with SEM/TEM analysis and identified the microstructure contribution 

to the observed deformation mechanisms. In the dynamic regime, the HCNT foams 

follow different deformation mechanisms, characterized by the presence of rate-effects 

and progressive crushing. We compare the response of HCNT foams to VACNT foams 

and identify significantly different micro-scale deformation mechanisms in HCNT foams. 

HCNT foams exhibit better impact absorption characteristics compared to VACNT foams. 

These observations suggest that the HCNT foams can serve as excellent candidates in 

developing improved protective materials for energy dissipation and impact absorption. 
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Chapter 5  

Dynamic Response of Micro-architectured 

VACNT Foams4 

In this chapter, we present the design, fabrication, and dynamic characterization of micro-

patterned vertically aligned carbon nanotube (VACNT) foams. The foams’ synthesis 

combines photolithographic techniques with chemical vapor deposition to create 

materials with an effective density up to five times lower than that of bulk VACNT 

foams. We characterize their dynamic response performing impact tests at different strain 

rates. Results show that the dynamic stress-strain behavior of the micro-patterned foams 

is governed by the patterns’ geometry and has negligible dependence on their bulk 

density. The energy absorption of the micro-patterned foams is higher than most other 

energy absorbing materials, such as honeycombs, foams, and composites of comparable 

density. Highly organized CNT microstructures can be employed as lightweight material 

for protective applications.  

5.1 Introduction 

Understanding the structure-property relationship in ordered, multiscale, structured 

materials is essential to design and create new materials with tunable bulk properties 

[170]. Nature offers abundant examples in which the choice of specific hierarchical 

organizations and constituent geometries leads to materials that optimally combine 

strength, toughness and stiffness [3]. These biological materials have been inspiring the 

design and fabrication of synthetic micro- and nano-structured materials with novel 

mechanical behaviors [2]. Synthetic cellular materials, such as honeycombs and 

open/closed cell foams, are widely used in structural applications due to their light 

weights and high strengths [147]. Compared to conventional foams, architected materials 

(also referred to as “mechanical metamaterials”) allow for the reduction of the cell size 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 This work was performed in collaboration with L. Lattanzi, who designed and synthesized the samples, 
and provided support for the dynamic characterization, analysis and writing of the findings. 
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down to the nano-scale and can be engineered in ordered arrays and geometries [2]. The 

control of structural architectures at different length scales allows the fabrication of 

materials with novel properties [2]. For example, introducing order and hierarchy in 

metallic microlattices improved their mechanical properties significantly, while 

maintaining very low densities (~ 9x10-4 g cm-3) [171]. This was achieved by designing 

their microstructure in a periodic array of hollow tubes forming an octahedral unit cell, 

with feature sizes ranging from nanometer to millimeter [171]. Using hierarchical design 

principles, similar three-dimensional hollow ceramic nanostructures have been fabricated 

and shown to combine light weight with high damage-tolerance [172]. The structural 

design at different lengthscales also improves the energy absorption capability that is 

critical for protective materials [173].  

The effect of structural hierarchy on the resultant bulk material properties has also been 

studied for carbon nanotube structures [51]. CNT foams provide a broad design space to 

engineer structures at the nano- and micro-scales that can influence the bulk mechanical 

properties. As such, CNTs can serve as model materials for the study of the fundamental 

rules for the structure-property relations that govern the mechanical responses. The 

compressive behavior of vertically aligned carbon nanotube forests under quasistatic 

conditions has been extensively studied [37,51,144], and reported a foam-like response 

with almost full recovery of large deformations. Because of their high compressive 

strength (peak stress), their high energy-absorption, and their low densities, vertically 

aligned CNT forests have been suggested as vibration damping layers [68] or shock and 

impact absorbers for electronics and space applications [69]. 

In an earlier work, we studied the effects of micro-structural organization on the quasi-

static mechanical response of CNT foams [51]. We designed and fabricated micro-

patterned CNT foams composed of different 2-D lattices: circles, lines, and concentric 

rings. Quasistatic compression tests of those structures showed that the patterning 

geometry played a fundamental role in determining the foam’s bulk energy absorption, 

peak stress and recovery from deformation. Selected micro-pattern geometries lead to the 

fabrication of lighter materials, which preserve the mechanical response of the bulk CNT 

foams [51]. Light weight materials having high-energy absorption are widely studied for 
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space and transport industry applications, in order to improve safety and fuel economy 

[174]. Despite extensive studies on the mechanics of CNT-foams, the dynamic response 

of these materials has not been fully characterized. In particular, understanding their 

deformation modes and energy dissipation mechanisms during impact is important in 

order to build reliable and robust structures usable in applications. Here, we describe the 

impact response of micro-patterned CNT foams in order to characterize their high-rate 

deformation and their energy absorption capability. We show how the micro-structural 

geometries influence the stress-strain response and the impact performance.  

5.2 Materials and methods 

VACNT structures were grown on patterned silicon wafers using a floating catalyst 

thermal chemical vapor deposition (tCVD) process, as described in Section 2.1.1. The 

micro-patterns on the substrate (Figure 5.1.) were realized using photolithographic 

techniques described in Section 2.1.4. The fabricated samples had a cross sectional area 

of 20.63±6 mm2 and a thickness of ~727±300 µm. The pattern’s geometry determines the 

effective bulk density of the microstructures, which was obtained by dividing the 

measured weight by the sample’s volume. 

To characterize their mechanical behavior, both quasi-static and dynamic compression 

tests were carried out on all samples. The quasi-static tests were performed using an 

Instron E3000 electropulse testing system (see Section 2.3), at a constant strain rate of 

0.03 s-1 and up to a maximum compressive strain of 0.25. The energy absorption was 

computed by calculating the area within the hysteresis loop in the stress–strain curve. The 

impact tests were performed on the dynamic testing set up described in Section 2.4. The 

patterned CNT foams, still attached to the silicon substrates, were glued to the flat-plunge 

striker using a double-sided copper tape on the substrate side. The striker was launched 

on a frictionless guide using a pneumatic cylinder, such that the VACNT specimens 

directly impacted the force sensor. A quartz impact force sensor (PCB Piezotronics) 

recorded the transient force-time history during impact. A high-speed camera (Vision 

Research’s Phantom V1610) coupled to a microscopic lens (Infinity) and operated at 

100,000 frames per second was used for in-situ visualization of the microscale dynamic 
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deformation during the impact. The dynamic displacement-time history was obtained by 

post processing the high-speed image sequence using commercial digital image 

correlation software (Image System’s TEMA). The recorded dynamic displacement- and 

force-time histories were then used to obtain the dynamic stress-strain response of the 

CNT foams subjected to impact loading. To study rate effects, we used two different 

impact velocities, 0.95 m s-1 and 2.56 m s-1. 

From the dynamic constitutive (stress-strain) response obtained, we extracted several 

material properties such as loading modulus, peak stress, maximum deformation, energy 

dissipation, cushion factor, and percentage recovery (see Section 3.2.4 for definition of 

these parameters). The loading modulus was obtained by examining the initial slope of 

the stress-strain curve, while the energy dissipated was calculated by integrating the area 

of the hysteresis loop of each loading cycle.  The dynamic cushion factor (Cdyn) was 

obtained from Equation 3.7. High-speed imaging of micro-scale deformation provides 

insights into the fundamental deformation mechanisms involved in different length- and 

time-scales. 

To evaluate the rate sensitivity of the energy dissipation, the specific damping capacity 

(D) was calculated for the patterns made by concentric rings (Equations 5.1-5.3). 

      D = ΔU/U      (5.1) 

     Δ! = !"#     (5.2) 

      ! = !"#!!"#
!     (5.3) 

Here, ΔU is the dissipated energy (Equation 5.2), U is the energy absorbed (Equation 5.3), 

σ is the stress and ε the strain. To compare the energy absorption capabilities and the 

influence of the effective density measured in CNT structures with different pattern 

geometries, the specific energy absorption (SEA) was calculated by dividing the total 

energy absorbed up to the peak stress by the mass (m) of the specimen (Equation 5.4): 

    !"# =
!"#!!"#

!
!

 .   (5.4) 
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5.3 Results and discussion 

To study the role of different pattern geometries on the impact response of CNT 

structures we fabricated seven different micro-patterned VACNT foams, classified as: 1-

D, 2-D periodic, and complex structures (Figure 5.1). Loading modulus, peak stress, 

maximum deformation (strain), and energy dissipation calculated from the dynamic 

stress-strain curves for all the seven VACNT foams tested are summarized in Table 5.1. 

We also used a ‘control’ VACNT foam sample for comparison. All these material 

parameters correspond to an impact velocity of 0.95 m s-1. 

 

Figure 5.1. Schematic diagram and SEM images of the different VACNT 

microstructures, and the respective structural dimensions. 
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Table 5.1. Mechanical properties of the samples tested at an impact velocity of 0.95 m 

s-1. 

Specimen Effective 

Density 

(g cm-3) 

Energy 

Dissipation 

(MJ m-3) 

Peak 

Stress 

(MPa) 

Max 

Strain 

Loading 

Modulus 

(MPa) 

SEA 

(kJ kg-1) 

VACNT forest 0.24 0.137 3.36 0.22 4.4 1.175 

Lines 100; gap 

2 µm 

0.1 ± 0.03 0.085±0.014 0.59±0.08 0.36±0.04 1.1±0.12 1.103±0.36 

Lines 100; gap 

50 µm 

0.045 ± 0.02 0.17±0.05 0.95±0.09 0.52±0.06 1.42±0.03 4.35±1.9 

Orthogonal 

lines 

0.0716 ± 0.03 0.15±0.04 0.95±0.2 0.45±0.02 1.3±0.3 2.4±1.2 

Pillars 100; gap 

2 µm 

0.08 ± 0.02 0.14±0.03 0.84±0.2 0.40±0.11 1.39±0.47 2.58±0.32 

Pillars 100; gap 

50 µm 

0.0324 ± 0.02 0.14±0.05 0.53±0.07 0.48±0.02 1.14±0.6 7.4±4 

Pillars 200; gap 

50 µm 

0.19 ± 0.05 0.18±0.03 1.11±0.05 0.46±0.05 1.36±0.5 1.11±0.24 

Concentric rings 0.032 ± 0.02 0.11±0.01 1.26±0.06 0.26±0.14 5.9±2 4.59±2 

 

Figure 5.2 (a) shows the dynamic mechanical response of both non-patterned (VACNT 

forest) and patterned (lines, pillars and concentric ring columns) structures impacted with 

a striker velocity of 0.95 m s-1. The results clearly demonstrate that density plays a 

marginal role in determining the overall dynamic material response while the 

microstructural organization has a fundamental influence on the constitutive behavior. 

Despite their low effective density (0.032±0.02 g cm-3), the structures composed of 

concentric ring columns exhibit the highest stiffness, with a compressive modulus of ~7 

MPa. Such a modulus is higher than that of non-patterned VACNT structures (~4.4 MPa), 

which have an order-of-magnitude higher density (0.24 g cm-3). As previously reported 

[41,51] the wide range of effective densities measured for both non-patterned and 

patterned structures depends on the synthesis process and on the position of the silicon 

wafer inside the furnace during growth. VACNT samples patterned with structures 
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having density values ranging from 0.08 to 0.19 g cm-3—e.g., pillars with 100 µm 

diameters and 2 µm gaps, 100 µm thick lines separated by 2 µm gaps, and pillars with 

200 µm diameters and 50 µm gaps, and orthogonal lines—undergo larger deformation 

than the samples patterned with concentric rings. 

Results show that by changing the microstructural organization of CNTs it is possible to 

tune the stress-strain response. Despite having the same density (0.0324±0.02 g cm-3), 

structures made of pillars with 100 µm diameters and 50 µm gaps exhibit a different 

mechanical behavior compared to that observed for the concentric ring columns, clearly 

demonstrating the fundamental role of geometry. The stress-strain curve measured for 

“pillars 100 gap 50” is characterized by an initial linear elastic regime, followed by a 

stress ‘plateau’ (Figure 5.2 (a)). Such foam-like behavior is also observed in patterns 

made by lines 100 µm thick separated by 50 µm gaps (0.045±0.02 g cm-3). Interestingly, 

the plateau stress (σpl , defined as the average stress between 15% and 25% strain during 

compression) measured in samples patterned by lines is higher than that observed for 

pillars, measuring 0.31 MPa and 0.2 MPa, respectively.  

As shown in Figure 5.2 (b), increasing the complexity of the structural architecture (from 

1-D to 2-D periodic patterns) affects the stress-strain response. Up to ε = 0.2, the 1-D and 

2-D periodic structures have the same stress-strain behavior. At higher strain values, the 

stress of the orthogonal line pattern increases steeply, while the 1-D structure shows a 

stress ‘plateau’ with positive slope. Importantly, the orthogonal lines exhibit a full 

recovery of the deformation. Figures 5.2 (a) and 5.2 (b) show that the stress-strain 

behavior of pillars and lines is affected by the gap values (varied between 50 µm and 2 

µm). At an impact velocity of 0.95 m s-1 the pattern made of pillars with diameter of 100 

µm and gap 2 µm reaches a strain of 0.3 and a peak stress of 1 MPa. In samples with 

patterns with a larger gap (50 µm), the strain and the peak stress are 0.45 and 0.48 MPa, 

respectively.  Contrary to what is observed for patterns composed of pillars, the peak 

stress reached by lines with small gap (2 µm) is lower than the peak stress reached by 

lines with large gap values (50 µm). 
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Figure 5.2. Stress-strain curves of VACNT samples patterned with different geometrical 

micro-architectures. (a) Response of patterns containing different pillars compared with 

bulk VACNT foams and with VACNT foams patterned with concentric rings. (b) 

Response of patterns containing different lines compared with bulk VACNT foams and 

with VACNT foams patterned with concentric rings. (c) Effect of variations of the 

pillar’s diameter and (d) length on the quasi-static and dynamic response. 

The role of the geometry on the hysteretic energy dissipation is also shown in Figures 5.2 

(a) and 5.2 (b), and summarized in Table 5.1. The ability to dissipate energy (i.e., the area 

encircled by the hysteresis loop) improves in the micro-patterned VACNT samples 

compared to non-patterned VACNT forests. For example, by organizing VACNTs in 

pillars with diameters of 200 µm and gaps of 50 µm, the energy dissipation is increased 

up to ~1.7 times, and the peak stress decreases by ~3 times (compared to the same values 
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for bulk foams). Changing the gap size from 2 µm to 50 µm increases the energy 

dissipation by up to ~2 times, while the peak stress increases by ~1.3 times.  

Figure 5.2 (c) shows the effect of the pillars’ diameters on the quasistatic and dynamic 

mechanical response of the macrostructure. Both the peak stress and the energy 

dissipation increase as the pillar’s diameter is increased (Figure 5.2 (c)). Under impact 

loading, the peak stresses reached by structures made of pillars with diameters of 200 µm 

and 100 µm measure 1.17 MPa and 0.45 MPa, respectively. The VACNT foams 

patterned with pillars with diameter of 200 µm dissipate 100% more energy than those 

structured with 100 µm diameter pillars. In quasistatic tests, the energy dissipated by 

pillars with larger diameters (6.8×106 J m-3) is ~3 times higher than that measured for 

thinner pillars (2.1×106 J m-3). 

To control the sample’s recovery, even after large deformations, we varied the length of 

the pillars (i.e., the overall thickness of the samples) by varying the precursor solution in 

the synthesis process, keeping all other parameters unchanged. 600 µm thick VACNT 

samples were fabricated using 25 ml of precursor solution and 300 µm thick samples 

were obtained with 15 ml of precursor solution. Testing results (Figure 5.2 (d)) show two 

main effects: (i) the slope of the initial segment of the stress-strain curve is significantly 

higher for longer pillars; (ii) upon unloading, the thinner samples (300 µm) show almost 

full recovery, while the 600 µm samples show lower recovery. The recoverability of 

VACNT arrays has been previously investigated and it is known to depend on the 

experimental testing setup, as well on the VACNT morphology [37,40,123,175]. A recent 

study [40] showed that the amount of precursor solution used, and hence the total 

reaction time, largely affects the morphology, the density and the alignment of VACNTs. 

The tortuosity, the diameter and the length of the CNTs were found to increase as a 

function of the growth time [40]. These properties reflected on the mechanical response 

and on the resilience of the structure. Since both the structures (300 µm and 600 µm long 

pillars) exhibit the same deformation mechanism, we hypothesize that the better 

recoverability of the thinner samples is related to the different morphology and 

distribution of the CNTs within the pillars, although this was not visible in the SEM 

images. 
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The effect of the microstructural organization on the fundamental deformation 

mechanisms of the CNT structures was also investigated using high-speed microscopy 

during and after the impacts. The in-situ images reveal that samples with a gap value of 2 

µm, consisting of both pillars and lines, follow a uniaxial compression response. The 

high-speed image sequences suggest that the deformation initiates on the thin layer 

adjacent to the loading face  (top of the CNT structure) and proceeds by sequential 

buckling at the opposite side of the microstructure (bottom of the CNT structure), a 

characteristic influence of the intrinsic density gradient in the VACNT structures [37]. 

Samples patterned with 50 µm gaps show a different microstructural deformation under 

impact tests compared to that observed in those with 2 µm gaps. When impacted, the 

pillars undergo lateral deflection without exhibiting sequential buckling at the low-

density region (bottom). The deformation mechanism at the microscale might be 

compared to the buckling of an ideal column having one end fixed and the other end free 

to move laterally. The small lateral movements of the striker in the guide during impacts 

and the absence of lateral constraints at the force sensor-sample interface allow the top 

surfaces of the samples to slide laterally, while the opposite ends (the bottoms) are fixed 

to the silicon substrate. The results clearly show that the axial compressive impact force 

is higher than the critical load (or Euler buckling load) and it causes an inelastic, 

permanent deflection that does not recover after unloading. This behavior can also 

explain the low overall recovery observed in samples patterned with pillars spaced by 

larger gaps (50 µm). When the gaps are small (2 µm) the lateral deflection of the pillars is 

prevented by pillar-pillar interactions, which act as lateral supports and provide 

mechanical reinforcement.  

However, even samples with equal gaps (50 µm) but different geometries (lines and 

pillars) deform differently. The 1-D organization of the lines and their high area moments 

of inertia result in large, global shear deformations (the lines are 100 µm thick, ~800 µm 

tall and ~4 mm long). Due to the gradient in density along the sample’s thickness, an 

initially localized deformation (collective buckling) occurs at the bottom, low-density 

region of the samples. This initial non-affine deformation triggers a resulting shear 

deformation of the whole structure. Such large shear deformation is not observed in 
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patterns with 2 µm gaps, because of the mechanical constraint that occurs when the lines 

start buckling. The high-speed image sequences show that the diameter has also an effect 

on the overall response of VACNT samples patterned with pillars. Under impact, the 

pillars with diameters of 200 µm and gaps of 50 µm do not exhibit lateral deflection (as 

observed in pillars with 100 µm diameter), but they show uniaxial compression with the 

same characteristic sequential buckling as that observed in bulk CNT forests and in 

micro-patterned structures with small gap values. The critical buckling load of the 

individual pillars in the patterns depends on the “effective” elastic modulus of the 

materials from which they are composed, the pillar diameters, and their lengths. The 

increase of the pillar diameters increases the moment of inertia, hence providing the 

structures with a higher critical buckling load. In addition, the number of CNTs nodes 

(defined as sites of interaction between individual CNTs in a given structure) is higher in 

the micro-patterns made of pillars with diameters of 200 µm compared to the patterns 

made of pillars with diameters of 100 µm. This might explain the higher energy 

absorption capacity of the pillars with larger diameters. Whilst the pillars with diameters 

of 200 µm gaps of 50 µm increase substantially the peak stress and the energy absorption 

capacity compared to the pillars with diameters of 100 µm and gaps of 50 µm, they do 

not enhance the specific energy absorption (SEA). 

Table 5.1 provides the SEA of the CNT foams patterned with different structures and 

tested with an impact velocity of 0.95 m s-1. Results show that CNT foams organized in 

pillars with diameter of 100 µm and gap 50 µm have the highest specific energy absorbed, 

i.e., ~7.4±4 kJ kg-1. Besides the high value of weight-specific energy absorption, such 

patterned structures show a constant plateau stress level (Figure 5.2 (a)), a desirable 

feature for an energy absorbing material. 

The complex geometry of the micro-patterns made of columns of concentric tubes, 

allowed us to obtain lighter structures preserving the high mechanical response observed 

in the CNT bulk forest [51]. As previously reported [176–179], tubes are a common 

shape for energy absorption, in which energy can be dissipated in several modes of 

deformation. An understanding of the material behavior at high strain rates in terms of 

failure and energy absorption capability is essential for predicting the impact 
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performance of CNT structures patterned with columns of concentric tubes (Figure 5.3). 

The measured constitutive responses of these foams tested under different impact 

velocities are shown in Figure 5.3 (a). Figure 5.3 (b) and Figure 5.3 (c), which report 

selected image sequences acquired by the high-speed camera showing the buckling 

behavior of the columns, at different strain-rates. 

 

Figure 5.3. (a) Stress-strain curves of concentric rings at different strain rates. 

Deformation mechanism of concentric rings at the impact velocity of (b) 0.95 m s-1 and 

(c) 2.56 m s-1. 

Quasistatic tests, carried out at a strain rate of 0.03 s-1 (Figure 5.3 (a)) show an initial 

elastic region up to ~2.5% strain, followed by a long plateau region. Dynamic tests at 
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impact velocities of 0.95 m s-1 and 2.56 m s-1 show a different stress-strain behavior, 

exhibiting an increase in the measured stress. For example, the plateau stress reached by 

concentric rings under impact tests is significantly higher than the plateau stress 

measured in quasistatic tests. At high impact velocity (2.56 m s-1), the concentric rings 

dissipate 0.6 MJ m-3, while at 0.95 m s-1 the energy dissipated is 0.1 MJ m-3.  The specific 

damping capacity measured at the same impact velocities is compared with the 

quasistatic data. At impact velocities of 0.95 m s-1 and 2.56 m s-1, the specific damping 

capacity of the samples patterned with concentric rings measures 0.9, while it is 0.5 for 

the quasi-static tests. The lower specific damping capacity measured in quasi-static, 

compared with the dynamic results, suggests strain-rate sensitivity in the materials’ 

responses. 

Figures 5.3 (b) and 5.3 (c) report in-situ experimental observations of the buckling of 

foams patterned with concentric tubes, under dynamic loading conditions. Despite the 

different stress-strain responses, the concentric tubes under quasistatic and dynamic loads 

(0.95 m s-1) always collapse, forming progressive buckles, which develop at the bottom 

of the structure (in the low density region of the VACNTs), as shown in Figure 5.3 (b). 

The buckling observed is permanent, as the folds do not recover when unloaded. This 

suggests that at the impact velocity of 0.95 m s-1 the buckling is still driven by the 

nanostructure (the aligned CNTs of the column collapse into folds).  

The high-speed image sequence of the microstructure at different stages of crushing 

shows that at the higher impact velocity, 2.56 m s-1, the columns exhibit a much larger 

deformation and a global buckling mode (Figure 5.3 (c)). This suggests that at the highest 

impact velocity the buckling is driven by the microstructural geometry, as opposed to that 

of the nanostructure (CNT density and entanglement). The buckling starts close to the 

low-density region (bottom) of the column in a fold with a wavelength higher than that 

observed in columns impacted at lower impact velocity. As compression progresses, a 

second fold develops just next to the first one. With further compression, the strain 

localizes close to the mid-height of the column, causing a global structural buckling of 

the columns. Interestingly, despite the pronounced buckling, the columns recover ~75% 

of their original shape. 
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To study the impact absorption efficiency of the patterned VACNT microstructures, we 

calculated the dynamic cushion factor (Cdyn) and plotted this value against the maximum 

strain (εmax). The cushion factor as a function of the maximum strain was calculated for 

the impact velocities of 0.95 m s-1 and 2.56 m s-1, shown in Figures 5.4 (a) and 5.4 (b), 

respectively. Both an increase in energy absorption and decrease in the peak stress 

contribute to decrease the cushion factor, which is desirable for impact protection. At the 

lower impact velocity (0.95 m s-1), VACNT foams patterned with 1-D and 2-D periodic 

arrays exhibit improved cushioning (Figure 5.4 (a)).  

 

Figure 5.4. Plot of the cushion factor (σp/Wp) as a function of the maximum strain (εmax) 

for patterned and non-patterned structures at impact velocities of  (a) 0.95 m s-1 and (b) 

2.56 m s-1. 

Compared to non-patterned VACNT forest samples, the line arrays (1D) and pillars and 

orthogonal-line arrays (2D) deform more at moderate stress levels. The increased energy 

absorption due to the large deformations at moderate stress-levels contributes to a 

reduction in the cushion factors. In contrast, the complex structure of concentric rings 

exhibits a higher cushion factor due to lower deformation and higher peak stress reached 

during testing. However, the cushioning performance of concentric ring columns exhibit 

the best performance at higher impact velocity (2.56 m s-1), whereas the other samples of 

1-D and 2-D arrays of lines and pillars reached their performance limit, deforming 

beyond the densification strain (Figure 5.4 (b)). It should be noted that the concentric ring 

columns deformed only 40% at 2.56 m s-1 and have the capacity to cushion much higher 
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velocities of impacts. In Figure 5.5, we compare the specific energy absorption of the 

patterned VACNT foams, impacted at the velocity of 2.65 m s-1, to that of existing impact 

absorbing materials at full compaction (i.e. metal/polymer cellular structures [180], 

sandwiches [181], and tubes [182–184]). 

At high impact velocity, the VACNT foams patterned with concentric rings have a more 

competitive SEA than existing energy absorber materials. The syntactic foams based on 

an aluminum matrix [185] and the polymer foams reinforced with small carbon fiber 

reinforced epoxy tubes [182] outperform the CNT concentric rings, however the high 

specific energy absorption correlates to higher values of their density (Figure 5.5). 

 

Figure 5.5. Specific energy absorption (SEA) values of VACNT microstructures and 

other existing impact absorber materials. 

It is important to note that, in contrast to all other structures, the SEA of VACNT foams 

patterned with concentric rings is measured at the maximum strain of 0.4, and not during 

their full compaction. In addition, the in-situ videos reveal their almost full recovery and 

the absence of permanent damage, whereas all other materials/structures in Figure 5.5 
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undergo permanent failure. The results show that the SEA is strongly dependent on the 

microstructural organization of the VACNT foams and on the impact velocity. Finally, 

the results demonstrate that variations in the geometry of the micro-architectures can be 

used to control the impact performance of CNT foams in a broad design space, which can 

be made to address specific applications. Such extremely lightweight materials, 

characterized by high stiffness, strength, and energy absorption capacities, are very 

attractive for weight sensitive applications (i.e. automotive and aerospace applications). 

5.4 Conclusions 

We present the fabrication and the bulk dynamic characterization of new foam materials 

consisting of micro-patterned VACNT forests. The patterning results in materials with 

significantly reduced bulk density (up to 20 times lower than non-patterned VACNT 

foams), but with similar, or up to an order of magnitude improved, dynamic performance 

(considering peak stress and energy absorption capacity). The geometry of the micro-

structural architectures and the impact velocity (loading rate) largely affect the 

deformation mechanisms and the bulk stress-strain response of these materials. In 

particular, changes in the microscale geometry of the patterns allowed the tuning of the 

specific energy absorption (SEA) of VACNTs under impact loading. By organizing 

VACNTs in concentric ring columns, for example, we obtained a value of SEA >25 kJ 

kg-1 that is competitive with that of existing energy absorbers described in literature. The 

patterned VACNT foams described in this work hold great potential for application as 

novel lightweight materials for impact protection. 
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Chapter 6  

Influence of Microscale Heterogeneous Bands on 

the Bulk Dynamic Response of VACNT Foams5 

We describe the influence of microscale heterogeneous bands—with high-density (stiff) 

and low-density (compliant) regions—on the bulk dynamic response and the fundamental 

deformation mechanisms of the VACNT foams. These heterogeneous bands are 

synthesized by controlling the flow-rate of the feedstock during synthesis and thereby the 

microstructure of the VACNTs. We show that the banded VACNT foams exhibit a stress-

strain response that is distinctively different from the VACNT foams with no 

heterogeneous bands. Specifically, we observe a significant stress plateau at low strains 

and a deformation-arrest characteristic of the soft middle band. Both of these features are 

desirable for impact and energy absorption applications. Using in-situ high-speed 

microscopy we observed that the samples exhibit different deformation mechanisms in 

dynamics compared to responses observed previously in quasistatic compression. 

6.1 Introduction 

Vertically aligned carbon nanotube (VACNT) foams present interesting mechanical 

characteristics due to their functionally graded properties, which arise from variations in 

CNT diameter [186], density [42,187], alignment [97], defect density [188] and the 

presence of contaminants [189]. Several synthesis methods have been developed over the 

last few years to control these parameters across different length scales and affect the 

nano, micro and macro-structures of the CNT foams to ultimately tailor the bulk 

mechanical properties in desired ways [23,31,73,190]. When compressed, the VACNT 

foams undergo strain localization and characteristic sequential buckling in which the 

buckles nucleate at the bottom low-density region of the sample, and sequentially 

progress one after the other, governed by their intrinsic functional property gradient 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 This work was performed in collaboration with J. R. Raney, who synthesized the samples and supported 
the study. 
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[37,145]. Buckles always form fully before the next one forms, resulting in the remaining 

section of the sample showing no apparent deformation [123,145]. Such a controlled 

deformation is generally difficult to achieve in other macroscale materials, but a desirable 

characteristic for the design of protective materials against impact and vibration [191]. 

VACNT arrays with microscale heterogeneities have been synthesized previously 

[97,192,193] for energy dissipative applications. In a previous study, Raney et al. have 

examined the role of these microscale heterogeneities in tailoring the location and extent 

of strain localization during quasistatic loading and in changing the energy dissipation in 

low energy impact [193]. In this chapter, we examine the influence of microscale 

heterogeneities in the bulk dynamic response of VACNT arrays. We also demonstrate 

rate effects on the fundamental deformation mechanisms in the presence of the 

microscale heterogeneities. 

6.2 Experimental methods 

We synthesized the VACNT foams with microscale heterogeneities using a floating 

catalyst thermal chemical vapor deposition (tCVD) process as described in Section 2.1.1. 

The feedstock solution composed of carbon source and catalyst precursor was injected at 

controlled rates using a syringe-pump system and the input-rate was varied to cause 

heterogeneity in the microstructure during synthesis. Faster input-rates of the feedstock 

solution for a short duration results in growth of low-density regions in the sample [193]. 

It has been observed that the faster input rates have resulted in lower diameter CNTs 

compared to the normal rate of 0.8 ml min-1 (~30 nm in high input-rate and ~43 nm in 

normal input-rate), and more aligned CNT fibers [193]. We synthesized two kinds of 

samples with the middle soft band synthesized at 5 ml min-1 feedstock input rate for (i) 2 

minutes, and (ii) 6 minutes. The two sections at the bottom and top of the sample were 

synthesized at the usual feedstock input rate of 0.8 ml min-1. It should be noted that even 

though the top and bottom bands are synthesized under the same conditions, the bottom 

section grown after the soft middle band shows lower density and more aligned CNTs 

compared to the stiffest top band. All the samples were synthesized to a nominal height 

of 1 mm, and have a bulk density of 0.31±0.01 g cm-3 on average. A set of SEM images 
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showing the microstructure of a VACNT foam with one soft middle band is given in 

Figure 6.1. We extracted the standalone VACNT samples, for the mechanical 

characterizations from the substrate using a razor blade. 

 

Figure 6.1. Microstructure of the VACNT foam with one middle soft band. The 

magnified view on the right shows the transition region from the stiff to soft band. 

We performed striker impacts at controlled velocities between 0.5 and 7 m s-1 to evaluate 

the mechanical response of the samples. The standalone samples (extracted from 

substrate) were attached to a flat-plunge striker (7.2 g mass) and allowed to directly 

impact the impact force sensor mounted rigidly on a steel block. We measured the 

dynamic deformation using a geometric moiré interferometer and used a high-speed 

microscope synchronized with the rest of the experimental setup to visualize in-situ and 

characterize the complex microscale dynamic deformations. The displacement and force–

time histories were then used to calculate the dynamic stress-strain response. The 

complete description of the experimental setup and the data reduction methodologies can 

be found in Section 2.4. We also performed quasistatic compression tests on an Instron 

ElectroPulse E3000 compression testing system (see Section 2.3), to study the 

deformation mechanisms in comparison with the dynamic response. 
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6.3 Results and discussions 

 

Figure 6.2. Dynamic response of VACNT foams with heterogeneous bands (with one 

soft middle band): (a) the stress-strain response of a sample impacted at 1.85 m s-1, (b) 

the stress-strain response of a sample impacted at 2.15 m s-1 compared to the low-velocity 

impact response in (a), (c) the variation of peak stress with impact velocity, (d) the 

variation of hysteretic energy dissipated with impact velocity, and the variation of 

dynamic cushion factor with (e) maximum strain and (f) peak stress. The error bars 

represent the standard deviation of different samples tested. 

When a VACNT foam sample with a middle soft band is impacted with a low velocity 

impact (<2 m s-1), initially the stress rises linearly and then follows on to a plateau regime 

compressing the sample at very low stress levels (~0.2 MPa) and finally reaches 
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densification of the soft bands, beyond which the stress rises rapidly (Figure 6.2 (a)). 

Here, the densification strain is approximately equal to the height of the bottom band 

normalized by the height of the sample. When a sample is impacted at higher velocities 

(>2 m s-1), the initial low-stress levels continue up to the compression and densification 

of the stiff bottom and the soft middle bands followed by a rapid increase above 10 MPa 

without significant deformation (strain < 0.1) (Figure 6.2 (b)). Such a response follows 

for very high impact velocities up to 7 m s-1. 

We plotted the peak stress attained during impact and the energy dissipated through the 

loading-unloading hysteresis with increasing impact velocity (Figure 6.2 (c), (d)). Both 

the peak stress and the hysteretic energy dissipation increase with the increasing impact 

velocity. To evaluate the impact performance, we calculated the dynamic cushion 

factor—the peak stress normalized by the energy absorbed up to the peak stress—and 

plotted it against the varying maximum strain reached during impact (Figure 6.2 (e)). The 

trend in cushion factor for our samples is unique compared to conventional foam 

materials [147]. The cushion factor is very low for low velocity impacts and then exhibits 

a sharp rise above a certain impact velocity (~2 m s-1), followed by a decreasing trend 

similar to that of other foam materials. This response arises due to the heterogeneous 

bands in the VACNT foams, where only the soft bands deform during the low velocity 

impacts, exhibiting low-cushion factors. It shows a sudden increase when the soft bands 

are compressed beyond their densification strain. It should be noted that the cushion 

factors calculated from quasistatic stress-strain curves are plotted against the peak stress, 

in general [147]. A similar cushion factor curve with peak stress in dynamics is given in 

Figure 6.2 (f). 

We compared these dynamic responses of VACNT foams with heterogeneous bands to 

the responses of continuous VACNT foams (without any heterogeneous bands) of 

comparable bulk densities [166]. As shown in Figure 6.3 (a), both these foams exhibit 

similar peak stresses for a given impact velocity. The continuous VACNT foams 

dissipate higher energy through hysteresis in an intermediate velocity range between 2 m 

s-1 and 6 m s-1 and the energy dissipation is comparable for both foams bellow and above 

this range of velocities (Figure 6.3 (b)). This response leads to a better dynamic cushion 



	  
	  

107	  

factor for the continuous VACNT foams in the velocity range 2-6 m s-1 (Figure 6.3 (c), 

(d)). The lower the cushion factor, better the damping is since higher energy dissipation 

and lower transmitted stress amplitude both result in lower cushion factor. 

 

Figure 6.3. Comparison of dynamic response between VACNT foams with 

heterogeneous bands (banded VACNT) and VACNT foams without heterogeneous bands 

(VACNT foam): (a) the variation of peak stress with impact velocity, (b) the variation of 

hysteretic energy dissipated with impact velocity, and the variation of dynamic cushion 

factor with (c) maximum strain and (d) peak stress. The error bars represent the standard 

deviation of different samples tested. 

To understand the effect of the thickness of the soft band on the fundamental dynamic 

response of the VACNT foams with heterogeneous bands, we characterized the dynamic 

response of samples with the middle soft band, synthesized for 2 min and 6 min, at 

similar impact velocities. An increased duration of the higher precursor input rate results 

in a large soft middle band and more gradual variation in the microstructure. We also 

used the response of continuous VACNT foams with no heterogeneous bands for 
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more similar to the response of the VACNT foams with no heterogeneous bands. Also 

they exhibit significantly lower peak stresses compared to the VACNT foam with thin 

soft band. This response may be a result of gradual variation in the microstructure from 

the soft band to the band synthesized after the soft band, rather than the abrupt changes 

that could have been induced during the short feedstock input (2 min). The VACNT 

foams with thin soft bands exhibit a large plateau regime at very low stress levels, which 

are desirable for low-velocity impact protection applications. 

 

Figure 6.4. Comparison of the dynamic stress-strain responses of VACNT foams: (i) 

with a soft band synthesized for 2 min (banded VACNT), (ii) a soft band synthesized for 

6 min (large-banded VACNT) and (iii) with no heterogeneous bands (continuous 

VACNT foams). 

We used high-speed microscopy to visualize the deformation mechanisms in-situ, during 

dynamic compression of the samples. Snapshots from the high-speed microscopy and the 

corresponding stress-strain response for VACNT foam with a soft middle band, impacted 

at 0.85 m s-1 velocity are shown in the Figure 6.5. It should be noted that the sample 

appears inverted in the images, i.e. the section grown after the growth of soft middle band, 

which is found adjacent to the substrate in the as-grown sample is attached to the striker. 

The soft middle band appears darker than the other two sections as indicated on image (1) 

of Figure 6.5. 
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Figure 6.5. Snapshots from the high-speed microscopy showing the deformation 

mechanisms found in the dynamic compression of the VACNT foams with a middle soft 

band. The stress states corresponding to the deformations shown in the images are 

indicated as (1-8) on the dynamic stress-strain diagram. The sample was impacted at 0.85 

m s-1 impact velocity. 

When the sample is impacted, the deformation localizes first at the section adjacent to the 

striker, which is the weakest section of the sample as the final CNT growth occurs at the 

substrate interface during the termination of synthesis (image 2 of Figure 6.5.). The 

deformation progresses, compressing that section of the sample as the stress rises linearly. 

Following the linear regime, the stress progresses into a plateau regime as global 

buckling of the section occurs as indicated on image 3 of Figure 6.5. Until this instance, 

we do not notice any strain localization in the soft middle band. Stress rises moderately 

until both the bottom whole section and the soft middle band are compressed all the way 

up to the stiffest band and then rapidly increases as those two sections are densified. After 

reaching the peak stress, the striker unloads as the sample recovers. The stress rapidly 
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decreases during the initial unloading and then slowly reaches zero as the sample 

recovers more than 95% of its deformation at the end of unloading. The recovery of all 

the samples tested in velocities between 0.5 and 7 m s-1 is 93.7±4.2 % on average. When 

samples are impacted at very high velocities, the stiffest band starts deforming with 

characteristic progressive buckling once the other two soft bands are completely 

deformed and densified. 

We found that these deformation mechanisms in dynamic compression are very different 

from those of the quasistatic compression, found in the present study and in a previous 

study [193]. In the previous study, Raney et al., have shown that the intermediate soft 

bands collapse predominantly when a VACNT foam with multiple heterogeneous bands 

is compressed in a vice quasistatically (Figure 2 of [193]). When we performed in-situ 

high-speed microscopy along with a quasistatic compression test, we observed that the 

strain localizes first at the bottom region that was grown before the termination of the 

synthesis (the region of the sample that was adjacent to the substrate), similar to the 

dynamic case. This localized deformation progressed for a few more buckles and then 

localization occurred in the middle soft band, instead of progressing in the initial 

direction. During these deformations, stress rises almost linearly with strain. 

Subsequently, the bottom band undergoes a buckling as a whole during which the stress 

deviates from the linear trend and shows nonlinear rise in strain. The sample is 

compressed up to 50% strain in this experiment during which the stiffest band didn’t 

show any observable deformation. During unloading, the sample recovers 73% of its 

strain, which is, although a significant recovery, much less compared to the recovery 

during dynamic compression. 
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Figure 6.6. The stress-strain response and deformation mechanisms during quasistatic 

compression of a VACNT foam with heterogeneous bands (1-soft middle band). The 

stress-states corresponding to the snapshots from the high-speed microscopy are indicated 

as (1-6).  

6.4 Conclusions 

In summary, we performed impact experiments on the VACNT foams with 

heterogeneous bands to understand the fundamental role of the microscale heterogeneities 

on the bulk dynamic response and the deformation mechanisms. We found that the 

VACNT foams with heterogeneous bands exhibit a stress-strain response with well-

defined linear, plateau and densification regimes when impacted at low-velocities (<2 m 

s-1). When impacted at higher velocities, the samples deform at very low stress levels up 
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to the complete deformation and densification of the bottom and middle soft bands and 

then show rapid increase with small strains as the stiffest-band starts deforming. We also 

showed that the deformation mechanisms in dynamics are significantly different from the 

deformation mechanisms found in the quasistatic compression. During dynamic 

compression, the deformation always localized at the bottom region (that was adjacent to 

the substrate during the termination of growth) of the sample and progressed towards the 

soft middle band. The soft middle band acts like a deformation-arrest barrier that 

prohibits further progression of the deformation, unless impacted at very high impact 

velocities. In contrast, during quasistatic compression, the strain localized in the weakest 

sections and slowly progressed to compress the rest of the samples. We also showed that 

the stress-strain response could be significantly tailored when the thickness of the soft 

middle band is increased. Our studies show that the microstructure of the VACNT foams 

can be engineered to achieve certain desirable deformation mechanisms and to tailor the 

stress-strain response in ways that are suitable for different protective applications. 
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Chapter 7  

A Multiscale Mass-Spring Model for the Dynamic 

Response of VACNT Foams6 

We present a one-dimensional, multi-scale mass-spring model to describe the response of 

vertically aligned carbon nanotube (VACNT) foams subjected to uniaxial, high-rate 

compressive deformations. The model uses mesoscopic dissipative spring elements 

composed of a lower level chain of asymmetric, bilateral, bi-stable elastic springs to 

describe the experimentally observed rate-independent stress-strain response. The model 

shows an excellent agreement with the experimental response of VACNT foams 

undergoing finite deformations and enables in-situ identification of the constitutive 

parameters at the smaller length scales. We apply the model to two cases of VACNT 

foams impacted at 1.75 m s-1 and 4.44 m s-1 and describe their dynamic response. 

7.1 Introduction 

Macro-scale carbon nanotube (CNT) foams have been synthesized from vertically 

aligned bundles of CNTs [37] or sponges of randomly oriented CNT fibers [55]. Their 

exceptional mechanical properties and energy absorption characteristics make these 

standalone CNT-foams excellent candidates for various applications [24] including 

energy absorbing/protective packaging materials for electronics and mechanical systems 

[37,55], structural reinforcements in composites [194] and woven fibers for bulletproof 

tough textiles [95]. Bulk vertically aligned carbon nanotube (VACNT) foams present a 

hierarchical fibrous microstructure with constituent features at various length-scales ([37], 

Figure 3 in [169]): the individual multi-walled carbon nanotubes (MWCNTs) have a 

concentric tubular configuration with several walls in the nanoscale; the MWCNTs 

entangle with each other to form a forest-like system in the micro scale; and the bundles 

of MWCNTs are aligned vertically in the mesoscale. When subjected to compressive 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This work was performed in collaboration with F. Fraternali. FF developed the numerical code. RT 
developed the model with support from FF and performed the simulations. 
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loadings, they exhibit distinct deformation mechanisms at different lengthscales: a foam-

like compression in the macro-scale; collective sequential buckling of the aligned CNT 

bundles in the mesoscale; and bending and buckling of individual tubes in the micro-

scale [37,166]. The bulk compression response of VACNT foams is identified by three 

distinct loading regimes: an initial linear regime, a plateau regime governed by 

progressive buckles and a final densification regime [37]. 

VACNT foams exhibit different mechanical responses when subjected to different 

loading regimes. Macroscale samples in compression exhibit a viscoelastic response 

when subjected to long duration stress relaxation experiments in compression [60] or 

when tested for creep with nano-indentation [61]. The same material exhibits rate-

independent deformation mechanisms in quasistatic compression experiments [62]. 

However, few studies suggested dependence of VACNT foam’s unloading modulus and 

recovery on strain rate [63,64]. In the linear dynamic regime, VACNT foams subjected to 

torsional mode dynamic mechanical analysis exhibited a frequency invariant dissipative 

response [66]. The VACNTs’ storage and loss moduli were shown to be independent of 

frequency in uniaxial linear vibration experiments [65]. VACNT foams impacted by a 

striker exhibit complex rate-effects: the loading response is rate-independent whereas the 

unloading modulus increases with strain-rate [166]. When VACNT foams are impacted at 

velocities higher than a critical velocity (~6.5 m s-1), they support shock formation [166]. 

Several models have been proposed to describe the rate-independent mechanical response 

of VACNT foams in the quasistatic regime. Analytical micromechanical models 

supported by finite element models have been used to describe the response of forests of 

VACNTs subjected to nanoindentation with a spherical indenter [195]. It has been shown 

that the indentation force during nanoindentation scales linearly with tube areal density, 

tube moment of inertia, tube modulus and indenter radius, whereas the force scales 

inversely with the square of tube length [195]. Buckle formation and progression in 

VACNT micro-pillars under quasistatic compression has been modeled using a finite 

element formulation of an isotropic viscoplastic solid combined with piece-wise 

hardening-softening-hardening function [196]. It revealed that the buckle wavelength 

decreases with increasing magnitude of ‘negative hardening slope’ and the buckle wave 
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amplitude increases with the increasing width of the flow strength function well [196]. It 

was also found that the buckles always initiated near the substrate due to the 

displacement constraint and sequentially progressed, even in the absence of a property 

gradient, along the height of the sample [196].  Recently, a Timoshenko beam model for 

an inelastic column in buckling has been used to predict the critical buckling stress of 

VACNT micro-pillars with transverse isotropy [197].  

Coarse-grained molecular dynamic simulations of VACNT foams [67] have found that 

the frequency-independent viscoelasticity in shearing [66] arises from rapid unstable 

attachment/detachment among individual CNTs induced by the van der Walls forces and 

contributes to the constantly changing microstructure of the CNT network. This rate-

independent dissipation was also described using triboelastic constitutive models and it 

has been shown that the increased adhesive energy significantly increased the overall 

stiffness of the network compared to the tension, bending and torsion stiffnesses, 

suggesting that the van der Walls interaction not only contributes to energy dissipation 

but also influences the elasticity of the network [67]. A phenomenological multiscale 

mass-spring model with bi-stable elements has been used to describe the rate-independent 

quasistatic compressive response of macro-scale VACNT foams [198]. This model also 

enabled in-situ material parameter identification in multilayered carbon nanotube arrays, 

and allows the accurate modeling of experimentally observed local deformations [199]. It 

has been extended later to describe a few experimentally observed phenomena, such as 

preconditioning [199], loading history and loading direction dependency [62] and 

permanent damage [200]. However, numerical models of high-rate, uniaxial, finite 

deformation of VACNT foams have not yet been developed. 

Here, we propose a phenomenological mass-spring model that uses rate-independent, 

dissipative spring elements in association with phenomenological damping devices [201] 

to describe dynamic response of bulk VACNT foams. We use this model to describe the 

global dynamic response observed in experiments and then to identify the microscale 

mechanical parameters in-situ. In the following sections we provide a detailed description 

of the experimental methods and observations (Section 7.2), a detailed description of the 

generalized mechanical model (Section 7.3) and the application of this model to describe 
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the dynamic response of VACNT foams with in-situ parameter identification (Section 

7.4). 

7.2 Brief overview of experimental methods and observations 

Dynamic experiments were performed on an impact testing setup using a flat plunge 

striker as the loading apparatus. The complete description of the experimental setup and 

the data analysis methodologies can be found in [169]. The VACNT foam samples were 

attached to a striker and launched at controlled velocities on a frictionless guide to 

directly impact a force sensor. A rigidly mounted force sensor recorded the transferred 

force-time history during impact, while a geometric moiré interferometer measured the 

dynamic deformation. These measurements were then used to obtain the dynamic stress-

strain diagram, from which dynamic constitutive parameters were calculated. A high-

speed microscopic camera was used for in-situ visualization and characterization of the 

micro-scale complex deformations [169]. 

When a VACNT foam sample is impacted, the stress rises nonlinearly with strain up to 

the peak stress, corresponding to the maximum strain. In unloading, the stress decreases 

rapidly within the first 10% of the unloading strain, and gradually reaches zero. The 

stress-strain hysteresis loop formed by the loading-unloading cycle represents the energy 

dissipated during the dynamic compression. In-situ visualization using a high-speed 

microscopic camera revealed formation and progression of sequential buckle instabilities 

in the sample during the loading phase (see Supplementary Video 3.1). The synthesis of 

VACNT foams, achieved using a chemical vapor deposition (CVD) process, induces an 

intrinsic density gradient along the height of the samples [37,146]. Synchrotron X-ray 

scattering and mass attenuation measurements showed that this intrinsic density gradient 

is nonlinear in a sample synthesized using a floating catalyst CVD process and presents a 

lower density region near the growth substrate and denser region near the free surface of 

the sample [166]. Because of this characteristic anisotropic microstructure, buckles 

always nucleate at the bottom of the soft region and progress sequentially towards the 

stiffer region [166]. The formation and progression of instabilities is reflected also in the 

dynamic stress-strain diagram and the stress-time histories, and it is evident from local 
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stress drops followed by local stiffening [166,169]. Upon unloading, the buckles 

sequentially recover [166,169]. When the samples are impacted repeatedly, with 

increasing impact velocity, they exhibit a preconditioning effect, which is evident from 

the different loading paths measured during each consecutive cycle [166]. The loading 

response is independent of the impact velocity, and the unloading is rate-dependent [166]. 

The dynamic stress-strain response of VACNT foams is similar to their response in 

quasistatic compression until a critical impact velocity (~6.5 m s-1) is reached [166]. 

When the samples are impacted with striker velocities higher than the critical velocity, 

the formation of progressive buckles transitions into the formation and propagation of a 

shock [166]. 

Here, we model only the response of samples impacted at sub-critical velocities. We 

consider two samples, with similar bulk densities, that were impacted by a striker with 

mass 7 g at two different impact velocities: 1.75 m s-1 (VACNT foam-1) and 4.44 m s-1 

(VACNT foam-2). The physical properties of the two samples are summarized in Table 

7.1. Both samples exhibited full recovery of the deformation upon unloading. We use 

experimental force-time histories to prescribe load-histories in the model, and we 

calculate the dynamic responses during the time the sample is in contact with the force 

sensor. In the following section we present the numerical model in detail. 

Table 7.1. Physical properties of the VACNT foam samples 

 VACNT foam-1 VACNT foam-2 

Mass (mg) 5.56 5.05 

Diameter (mm) 5 5 

Height (mm) 1.190 1.106 

Bulk density (g cm-3) 0.238 0.232 
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7.3 Mechanical model 

We use a one-dimensional, multi-scale, phenomenological model to numerically describe 

the dynamic response observed experimentally (and summarized in Section 7.2). The 

model describes the response of VACNT foams at the mesoscopic scale through the 

discretization of the foams into a collection of lumped masses connected by dissipative 

springs [198].  Each mesoscopic spring represents the continuum limit of a chain of 

infinitely many microscopic bi-stable elastic springs. The bi-stable springs are 

characterized by two stable phases (pre-buckling loading and post-buckling densification) 

and an intermediate unstable phase (buckling phase). The dynamic snapping of the 

microscopic springs and the subsequent snapping back induce hysteretic energy 

dissipation via “transformational plasticity” [198,202]. Our model comprises two 

different time scales: an external time scale, which controls the evolution of the applied 

loading and the response at the mesoscale; and an internal time scale, which governs the 

dynamic relaxation of the system at the microscale, for a fixed external time. The 

constitutive behavior is viscous at the micro-scale, and rate-independent at the mesoscale 

[198,202]. Eventually, the overall response of a CNT structure can be described through a 

single dissipative element (macroscopic mass-spring model, [62,203]). This multi-scale 

model has been previous applied to describe the quasistatic response of CNT structures 

[62,198–200,203]. Here, the same model is applied to describe the mechanical response 

of VACNT foams under high-rate loading.  

We briefly summarize the analytic formulation of the model at the mesoscale, which is 

detailed in [198]. Let us introduce a chain of N+1 lumped masses m0……mN, connected 

by N nonlinear spring elements (N≥1). The mass m0 is clamped at the bottom (fixed-

boundary), at position x0=0, and the mass mN is free at the top (free-boundary), at 

position xN=l. Spring 1 is at the bottom and connects masses m0 and m1 while spring N is 

at the top and connects mN and mN+1. The scalar quantity, εi characterizes the total strain 

at the ith spring. 

    !! = !!!!!!!

!!
,      (7.1) 
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where ui is the axial displacement of the mass mi relative to its initial position and hi=xi-

xi-1. The constitutive equations for each mesoscopic spring are: 

!! =

! !,! = !!! !! 1 − !! ,  for !! < !!!  or !!! < !! < !!!  and    flag !!! ≠ ! ;
! !,! = !!! + !!!! !! − !!! ,  for !!! ≤ !! ≤ !!!  and flag !!! = ! ;

! !,! = !!! + ∆!! + !!!! !! − !!! ,  for !!! ≤ !! ≤ !!!  and flag !!! = ! ;

! !,! = !!! !! − !∗! 1 − !! − !∗! ,  for !! > !!!  or !!! < !! < !!!  and    flag !!! ≠ ! .

 

           (7.2) 

Here σi is the stress and at each time step t=tk (k=1…. M) and, 

    flag ! =
!,    if   !! = ! !,!

!,    if   !! = ! !,!   
flag !!! , otherwise.

   (7.3) 

The constitutive parameters !!! , !!! ,∆!! , !!! , !!! , !!!!   and !!!!  in Eq. (7.2) are seven 

independent quantities, while !!!  and !!!  are computed by solving the following equations 

(7.4) and (7.5) for !!, respectively. 

  ! !,! = ! !,! ,      (7.4) 

    ! !,! = ! !,! .      (7.5) 

The stiffness parameters !!!   and !!!  represent the initial slopes !!! !!! at !! = 0, of the 

bilateral branches OA1 and C1C2 (Figure 7.1). These two branches represent the initial 

elastic regime and the final densification regime of each spring, respectively. The !!!!  is 

the slope of the unilateral branch A1C1, describing the snap buckling and the consequent 

hardening during the loading phase. The !!!!  is the slope of the unilateral branch C2A2, 

describing the snap-back recovery of the buckles during unloading phase. When 

!!!!   and !!!!  are zero, the unilateral branches describe a perfectly plastic behavior. The 

∆!!  equals to the !!! − !!! , where the !!!  and !!!  are the stresses corresponding to the 

points A1 and C2. 
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Figure 7.1. Schematic diagram showing the response of a generic mesoscopic dissipative 

spring element and the relevant constitutive parameters. 

This model does not allow for the accumulation of permanent strains that is often found 

in the compression experiments of VACNT foams, both in their quasistatic [37] and 

dynamic [166] responses. However, it can be modified to prevent snap-back recovery of 

springs and allow permanent damage [200]. Similarly, the model can be generalized to 

describe preconditioning effects found in cyclic loading by introducing initial strains, 

!!! ≥ 0, and elastic strains, !! = !! − !!! , for each spring as described in [199]. In this 

chapter, we will not attempt to extend these features in dynamics. 

7.4 Experimental fit and in-situ parameter identification 

We model the striker as a rigid particle with lumped mass equal to the mass of the striker 

(7 g) and the force sensor as a rigid fixed wall (Figures 7.2 (a) and (b)). We apply the 

experimental stress-time history to the particle that represents the striker (top particle), 

and determine the stress-time and the displacement-time histories at the base of the 

VACNT foam (force sensor side) using the numerical model described in the previous 

section. The whole sample is assumed to be in dynamic equilibrium throughout the 

duration of the experiment [169].  

k0

σa

εa

Δσ

k+

k-
ε*

σ=kc(ε-ε*)/[1-(ε-ε*)]

σ=k0ε/(1-ε)

σ

ε
kc

O

A2

A1

C2

C1

σc

εcεa εcεc



	  
	  

121	  

 

Figure 7.2. Description of the model for the sample impacted at 1.75 m s-1. (a) Schematic 

of the experiment showing the sample being compressed by the striker against the rigidly 

mounted force sensor. (b) Three different models considered for the sample. (c) Optical 

images showing the pristine and deformed states of the sample. Markers are used to 

highlight the deformed and undeformed sections of the sample. 

Figure 7.2 (c) shows selected snap shots obtained from the high-speed image sequence, 

corresponding to the pristine state of the VACNT foam-1 at the instance of impact 

(Vstriker=1.75 m s-1) and the deformed state at maximum compression (Vstriker=0). A 

visualization of the dynamic deformation of the sample can be found in Supplementary 

Video 3.1. As shown on Figure 7.2 (c), collective buckles nucleate at the bottom of the 

sample during impact and progressively compress the sample to the height of hc=0.490 

mm. The remaining section of the sample with height, hi=0.700 mm undergoes 

infinitesimal compressive strains. As a first approximation (Model-1 in Figure 7.2(b)), we 

represent the whole height (1.190 mm) of the sample as a single effective spring 

(macroscopic dissipative element) that connects the striker particle to the rigid wall (force 

sensor). In addition, we neglect the mass of the VACNT foam (5.56 mg) in comparison to 

the large striker mass (7 g). The seven independent parameters that define the nonlinear 
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spring of Model-1 are listed in Table 7.2. Figure 7.3 (a) (top panel) shows the stress- and 

displacement-time histories and the stress-strain diagram obtained with Model-1 (and 

superimposed to the experimental data). The overall results show a good agreement with 

experiments. The time histories of stress and displacement, however, exhibit significant 

oscillations that arise from numerical instabilities. These instabilities are particularly 

evident when the model transitions between adjacent branches of the dissipative spring 

element—for example, see the inset of stress-time history in Figure 7.3 (a). 

 

Figure 7.3. Comparison of the numerical and experimental results of stress-time histories, 

displacement-time histories and stress-strain responses for (a) Model-1, (b) Model-2 and 

(c) Model-3 of the VACNT foam-1. 

To ensure stability during the dynamic transitions between phases, we introduced an 

onsite damper with damping coefficient 0.01 MPa s to the striker mass (Model-2 in 

Figure 7.2 (b)). The damping ratio between the adopted damping coefficient and the 

critical damping coefficient associated with the unloading branch ( 2  ℎ !!!    ) is 

calculated to be 0.894. As shown in the middle panel of Figure 7.3 (b), the damper 
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reduces the numerical instabilities significantly and facilitates smooth dynamic 

transitions. 

Table 7.2. Parameters of the models of VACNT foam-1.  

(The definition of these parameters is shown in Figure 7.3.  In Model-3, S1 is the linear 

spring and S2 is the nonlinear, bi-stable spring.) 

 !! 

(MPa) 

∆! !! !  

(Pa.s) 

!! !! ℎ 

(mm) 

!!! !! !!! !! !! !! 

Model-1 5.50 -0.20 - 0.14 0.31 1.190 2.60 0.450 15 

Model-2 5.50 -0.20 1x104 0.14 0.31 1.190 2.60 0.425 15 

Mod

el-3 

S1 60 - 3 x102 - - 0.700 - - - 

S2 2 -0.32  0.35 0.71 0.490 3.40 0.525 30 

 

We refine the model further to account for the elastic properties of the deformed section 

of the CNT foams (Model-3). The refined model employs a dissipative spring element 

(S2,), with height h2=0.490 mm, to describe the response of the heavily deformed (or 

“buckled”) section of the sample, and models the section of the sample that undergoes 

infinitesimal strains through a linear spring (S1) with height h1=0.700 mm (Figure 7.2 (b)). 

We set the stiffness of this linear spring to be approximately equal to the unloading 

stiffness (kc) of the nonlinear spring, in order to localize the deformation in S2. We 

introduce another lumped mass equal to the mass of the VACNT foam sample (5.56 mg) 

in between these two springs. The bottom panel of Figure 7.3 (c) shows that the 

numerically obtained global dynamic response of the sample is in good agreement with 

experiments. As shown in the parameters listed in Table 7.2, the nonlinear spring (S2) of 

Model-3 exhibits lower initial stiffness (k0) compared to that in Model-2, since it 

identifies specifically the buckled region as an effective spring. Also, due to the snap-

buckle and the consequent densification in spring S2, the unloading stiffness parameter kc 
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shows a higher value compared to that of Model-2. The damping ratio required for 

ensuring the numerical stability of Model-3 is 0.0297 (significantly less than the same 

value in Model-2). 

We apply a similar two-spring model to the VACNT foam-2 that was impacted at 4.44 m 

s-1 (Figure 7.4). In a similar manner to the previous case, we use a dissipative element as 

an effective spring for the buckled section of the sample (h2=0.756 mm) and represent the 

infinitesimally strained section (h1=0.350 mm) with a unilateral linear spring. An onsite 

damper with damping coefficient of 1 x 104 is used to ensure stability during numerical 

simulation. The damping ratio required for such numerical stability is 0.525. 

 

Figure 7.4. (a) Optical images selected from the high-speed camera sequence showing the 

sample VACNT foam-2 before the impact (pristine state), at its maximum deformation 

(deformed state) and after load release (recovered state) [169]. The schematic diagram on 

the right shows the model employed and its relevant parameters. This sample was impacted 

at 4.44 m s-1. (b) Comparison of the numerical and experimental results for the stress-time 

history, displacement-time history and stress-strain response. 

Figure 7.4 (b) shows the comparison of numerical and experimental results. The model 

captures the global dynamics, while identifying the constitutive parameters at a lower 
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length-scale compared to the sample height (Table 7.3). It should be noted that the 

sample impacted at high velocity deforms more and reaches higher maximum strain, as 

compared to VACNT foam-1. Since the height of the nonlinear spring (S2) describing the 

buckled region is significantly higher in VACNT foam-2 than in VACNT foam-1, the 

stiffness constant k0 of VACNT foam-2 (5.75 MPa) is appreciably higher than k0 of 

VACNT foam-1 (2.00 MPa). This increase in stiffness is explained by the increase in the 

intrinsic density of CNTs along the height [166].   

Table 7.3. Parameters of the model of VACNT foam-2. 

(The definitions of these parameters are shown on the Figure 7.3. S1 is the linear spring 

and S2 is the nonlinear bi-stable spring.) 

 !! 

(MPa) 

∆! !! !  

(Pa.s) 

!! !! ℎ 

(mm) 

!!! !! !!! !! !! !! 

S1 250 - 
1 x104 

- - 0.350 - - - 

S2 5.75 -0.80 0.40 0.70 0.756 6.00 0.200 40 

 

7.5 Conclusions 

We introduced phenomenological models to describe the dynamic response of VACNT 

foams under high-rate compression. The models use a one-dimensional mass-spring 

system containing an effective dissipative spring element, which describes either the 

entire sample (single-spring model), or its buckled (heavily deformed) section (two-

spring model). We have shown that the models allow us to characterize the bulk dynamic 

response of the VACNT foams and their dissipation properties. The adopted spring 

models employ the concept of rate-independent, transformational plasticity, as opposed to 

more conventional, rate-dependent and/or plastic models. We have also introduced 

numerical viscosity through the phenomenological approach proposed in [201]. The two-
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spring model enables the identification of the VACNT foams’ mechanical parameters, at 

length-scales smaller than the sample height. 
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Chapter 8  

Conclusions and Future Outlook 

8.1 Conclusions 

This dissertation has described the dynamic response and rate effects in CNT foams with 

different microstructures. Our experiments have revealed correlations between variations of 

key structural features at the micro- and nano-scales and the foams’ bulk functional 

properties and deformation mechanisms. To this end, we fabricated various CNT foams 

with different morphologies, bulk densities, microscale heterogeneities and microstructural 

geometries using standard CVD techniques and photolithography techniques. We studied 

their structure-function relations in the dynamic loading regime using the experimental 

platform we developed. 

Using these CNT foams with engineered microstructures, we have shown that the bulk 

properties can be tailored significantly either by varying the bulk density and morphology 

or by engineering micro-architectures that take advantage of principles of structural 

mechanics. We identified which fundamental deformation mechanisms of structural 

features at different lengthscales are responsible for the bulk mechanical properties of the 

foams and their energy dissipative characteristics. For example, when the bulk VACNT 

foams undergo macroscale compression, the bundles of VACNTs buckle collectively in a 

sequential progressive fashion at the mesoscale. At the microscale, individual CNTs 

undergo bending and buckling, and at the nanoscale, CNT walls exhibit buckling-induced 

wrinkles. These structural deformation mechanisms specific to different geometries and 

structures can be exploited in order to enhance the bulk functional properties in the design 

of new materials. For example, we have shown that the stiffness and the specific energy 

absorption of VACNT foams can be significantly increased, while simultaneously reducing 

their density appreciably, by introducing microscale patterns of concentric tubes at the 

mesoscale. Similarly, engineering few-micrometers-thick heterogeneous bands in the 

VACNT foams can provide unique deformation responses. For instance, a microscale 
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intermediate band with low-density and high-compliance in the VACNT foams can act as a 

deformation arrest barrier and result in controlled deformations. 

We also identified rate-sensitive responses in different loading regimes. VACNT foams, for 

instance, exhibit rate-independent stress-strain responses in the quasistatic regime, rate-

independent loading and rate-dependent unloading responses in low-velocity (sub-critical 

velocity) impacts and support shock formation in high-velocity (super-critical velocity) 

impacts. This knowledge of rate-sensitive material behavior can provide guidelines for the 

design of new materials with enhanced performance at specific loading regimes. 

 

Figure 8.1. Synopsis of the key-findings. 

Our studies have shown that VACNT foams have superior dynamic mechanical properties 

and energy dissipative characteristics that are desirable for protective applications. Their 

functional properties and deformation responses are sensitive to their micro- and nano- 

structures that can be tailored significantly for desired applications. As shown in Figure 8.1, 

we have found that the density of the CNT foams affects the bulk mechanical properties 
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significantly and it can be varied through modifying the nanostructure (number of walls 

and diameter) of the MWCNTs. Modifying the nanoscale geometry of the CNTs from the 

usual straight to helical coil geometry does not affect the bulk properties significantly. 

However, the coil-geometry leads to unique rate-sensitive deformation mechanisms and 

improved elasticity compared to straight-geometry. Moreover, given a particular 

nanostructure and morphology, engineering the VACNT foam’s structure in the mesoscale 

using periodically ordered structural geometries could have pronounced effect on their bulk 

mechanical properties. For example, the periodic arrays of concentric ring patterns have 

shown the highest specific energy absorption at ultra-low-densities. Their performance 

surpasses that of the continuous VACNT foams and many other crashworthy foam 

materials reported in literature (see Figure 5.5).  

Above all, the VACNT foams have the ability to recover very high deformations of over a 

strain of 80%, a feature that is not present in other crashworthy materials—e.g.: metallic 

foams, carbon fiber tubes, stiff polymer foams, etc.—as they undergo plastic deformations 

or permanent crushing during the first impact itself. As this dissertation demonstrated, the 

micro and mesoscale interactions within the ensemble of CNTs lead to remarkable 

recovery of the bulk sample, even when the sample experiences damage/fracture at the 

nano and microscales during dynamic compression. Such phenomenal impact resilience of 

VACNT foams offers new pathways for engineering efficient crashworthy materials that 

can survive multiple impacts. The fundamental understanding developed in this dissertation 

concerning the relationships between the structural organizations at different lengthscales 

and the bulk functional properties of CNT foams could help in guiding the design of 

engineering materials and systems using hierarchical materials with fibrous morphology. 

8.2 Future outlook 

This dissertation provides new insights into the design, synthesis and high strain-rate 

mechanical characterization of novel materials for protective applications, which can be 

extended in different directions. A few prospects of the research presented in this 

dissertation are discussed below. 
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Experimental technique: The dynamic testing platform we developed during this study is 

not limited to characterizing the CNT foams alone and can be used to characterize many 

other soft, complex and/or hierarchical materials. With fewer modifications to the loading 

apparatus, the setup can also be applied to study stiffer structured materials. It can serve as 

a powerful tool to study the rate sensitivity and the complex microscale deformation 

mechanisms in hierarchical and structured materials, even with small sample sizes. 

Improving the current setup to accommodate very high strain rate deformations will enable 

the characterization of materials in the shock regime and allow the development of a 

complete description of shock Hugoniot. The shock Hugoniot for a material can be 

represented by the relationships between the shock velocity and the impact velocity or the 

Hugoniot strain (strain behind the shock) and the impact velocity. When these descriptions 

are found, all the mechanical parameters can be calculated without resorting to an assumed 

constitutive model [153]. 

Preconditioning effects in VACNT foams: One of the fundamental questions that needs 

further investigation is the source of the preconditioning effects that were observed in the 

cyclic stress-strain response of the VACNT foams. As previously described, when VACNT 

foams are subjected to multiple cycles of loading and unloading, the consecutive cycles 

differ significantly from the first cycle, exhibiting much narrower hysteresis. This 

preconditioning effect is commonly found in many synthetic and biological materials with 

hierarchical microstructures. In VACNT foams, the source of this preconditioning is often 

attributed to microstructural rearrangements of the CNT fibers within the foam sample. 

However, this claim stands without concrete experimental evidence (so far) to support it. 

One possible experimental tool that can facilitate probing into such a fundamental question 

would be Raman spectroscopy [204–206]. Characterizing the VACNT foams using Raman 

spectroscopy before and after deformation, or performing an in-situ Raman spectroscopy 

during cyclic mechanical tests, could provide further insights into the source and nature of 

preconditioning effects on hierarchical materials with fibrous morphology. 

Composites of VACNT foams: This dissertation focused on investigating freestanding 

CNT foams and structures to understand the response of such materials at different length 

and time scales. However, when considering commercial applications, these CNT foams 
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and structures are likely to be embedded in polymers or other materials, forming a 

composite. Future research could employ the fundamental understanding provided by this 

dissertation to the structure-function relations of soft materials to design composite 

materials with enhanced/tailored mechanical properties. 

Numerical modeling: The one-dimensional multi-scale mass-spring model of VACNT 

foams is different from other bi-stable spring models, since it includes an intermediate 

mesoscale dissipative element in between the microscale bi-stable springs and the sample’s 

macroscale. The model could be extended in the future to capture other phenomena such as 

preconditioning, Mullins-like effect, permanent deformations and rate-dependent bulk 

responses. One of the main advantages of the model is that it enables mechanical parameter 

identification in length scales that are much smaller than the sample height. Therefore, it 

can be employed to model the response of multilayered structures and to identify local 

mechanical parameters within each layer. Even though the model is used here to describe 

the VACNT foam’s responses, it could be generalized to model many other hierarchical 

materials and foams with large hysteresis. 
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Appendix A 

Sequential Buckle Characteristics and Mechanical 

Response of VACNT Foams Synthesized Using 

Fixed-catalyst CVD Process7 

In this chapter, we present the mechanical response and a unique buckling characteristic 

observed in vertically aligned carbon nanotube (VACNT) foams synthesized using fixed-

catalyst thermal chemical vapor deposition (tCVD) process. These VACNT samples are 

composed of multi-walled CNTs (MWCNTs) with fewer walls and as a result have an 

order-of-magnitude-lower density compared to the VACNT foams synthesized using the 

floating-catalyst tCVD process. They present an intrinsic mass density gradient along the 

height that we measured using synchrotron x-ray scattering and mass attenuation. We 

correlate their mechanical response and their fundamental deformation mechanisms to the 

intrinsic density gradient and the foam morphology. We observe that the buckles formed 

at the external edges of the samples are much fewer and have significantly large 

wavelengths compared to the buckles formed inside the samples. We performed 

simplified Euler buckling calculations and found that the buckling modes found inside 

the sample are the dominant deformation mechanism that governs the measured bulk 

mechanical response. 

A.1 Synthesis and morphological characteristics of the VACNT foams 

We used a thermal chemical vapor deposition process (tCVD) to synthesize the VACNT 

foams on substrates with fixed-catalyst as described in Section 2.1.2. The synthesized 

samples had an average height of 1.02±0.076 mm and an average bulk density of 

0.011±0.0031 g cm-3. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 This work was performed in collaboration with A. Fischer and E. R. Meshot. AF synthesized the samples, 
conducted mechanical tests and performed analysis under the guidance of R. Thevamaran. ERM performed 
the synchrotron x-ray scattering structural characterization. RT wrote the article with the support of AF. 
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We used scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) to characterize the morphology of the sample. The samples showed a hierarchical 

structure (Figure A.1) in which the macroscale VACNT foams constitute vertically 

aligned bundles of CNTs in the mesoscale, entangled CNTs form a forest-like system in 

the microscale and the individual CNTs have a multiwalled structure with number of 

walls varying between three and seven. The MWCNTs in the forest have average outer 

diameter of 8.6±1.8 nm. 

 

Figure A.1. The hierarchical structure of VACNT foams in which the macroscale 

VACNT foam constitutes vertically aligned bundles of CNTs in the mesoscale, entangled 

CNTs form a forest like system in the microscale and the individual CNTs have a 

multiwalled structure. 

We performed synchrotron X-ray scattering and mass attenuation measurements to 

nondestructively quantify the density and alignment within VACNT foams (see section 

2.2 for detailed methods). The results revealed the presence of an intrinsic mass density 

gradient along the height of the sample (Figure A.2 (a)). A representative sample showed 

a 40% density gradient with mass density varying from 0.009 to 0.015 g cm-3 from 

bottom to top of the sample and had an average bulk density of 0.012 g cm-3. The 

Herman’s orientation factor was found to be, on average, 0.31 and it increased towards 

the bottom of the sample, implying more vertical alignment at the bottom than the top 

(Figure A.2 (b)). However, the average alignment was significantly lower than that of the 

VACNT foams synthesized using the floating-catalyst CVD process. The floating-

catalyst CVD exhibited an average orientation factor from 0.54-0.7 depending on the 

hydrogen concentration used during synthesis (higher hydrogen concentrations result in 

less alignment) [166]. 
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Figure A.2. Structural characteristics of the VACNT foams: (a) the mass density gradient 

along the height, from the top of the sample, (b) variation of the Herman’s orientation 

factor along the height, from the top of the sample. 

A.2 Mechanical response of the VACNT foams 

 

Figure A.3. A characteristic stress-strain response of a VACNT foam subjected to three 

compressive loading-unloading cycles. 

We performed quasistatic compression experiments on the VACNT foams using a 

commercial compression testing system (Instron ElectroPulse E3000) to characterize 

their mechanical behavior (see Section 2.3). Initially a small precompression (<0.025 

MPa) was applied to ensure the whole top surface of the sample was in contact with the 
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loading plate. When the sample was compressed, the stress rose linearly with strain 

initially and then followed a nonlinear stress rise in strain as the sample was compressed 

to up to 80% strain (Figure A.3). Upon unloading, sample did not show any significant 

strain recovery (only 3.6% recovery) and remained compressed. The consecutive cycles 

did not show any stress rise until the loading plate came into contact with the sample and 

then the stress rose to the peak stress level reached at 80% strain during the first cycle. 

Almost all the work done during loading is dissipated by the sample and this sample 

dissipated 82.1 kJ m-3 energy in the first cycle. On average the VACNT samples 

dissipated 66.3±18.3 kJ m-3 energy in the first cycle. 

 

Figure A.4. (a) A characteristic stress-strain response of a VACNT sample showing the 

method of calculating unloading modulus. (b) The variation of unloading modulus of the 

VACNT foams with strain. Error bars represent the standard deviation of many samples 

tested. 
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Figure A.5. The variation of the compressive strength (peak stress at 80% strain) with the 

bulk density of the VACNT foams. 

We quantified the elastic modulus of the VACNT foam by measuring the unloading 

modulus at different strains as shown in the Figure A.4 (a). The unloading modulus is 

calculated as the slope of the initial 30% of unloading from the corresponding strain. The 

elastic modulus increases with the strain moderately (at ~20 kPa) up to the densification 

strain (~65%) and then shows a rapid increase with strain (Figure A.4 (b)). The elastic 

moduli is significantly affected by the variations in bulk density of the samples and the 

error bars in Figure A.4 (b) represent the standard deviation of several samples tested. We 

found that the compressive strength (peak stress at 80%) is also a function of bulk density 

and it showed a linear correlation with the bulk density of the samples (Figure A.5). 

A.3 Characteristics of the deformations 

We used high-speed microscopy for in-situ visualization and characterization of the 

deformation mechanisms during compression. When the sample is compressed, following 

the initial linear stress rise in strain, local buckles nucleate adjacent to the substrate and 

progresses laterally at first until a height segment of the sample is fully buckled and 

compressed. After that, the buckles progress upwards sequentially while the compressive 

stress rises nonlinearly. We correlate the formation of instabilities at the bottom of the 

sample and its progression towards the top of the sample to the intrinsic density gradient 

we measured using synchrotron x-ray scattering. Buckles nucleate at the bottom low-

density (soft) region and progress sequentially towards the top dense region of the sample. 

The in-situ microscopy and post-compression SEM imaging revealed two interesting 

observations (Figure A.6): (i) the buckles always nucleate locally at several locations 

along the width of the sample and a particular height segment of the sample does not 

form a single buckle and collapse at once, (ii) the samples exhibit local buckle-induced 

delamination at the interface between the VACNTs and the substrate. The local variations 

in the morphology (density, orientation of CNTs, alignment of bundles, etc.) and non-

uniformity in the height of the sample across the width may modulate the formation of 

the buckles locally. Further, the SEM images of onset of buckling demonstrate that 
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buckling in VACNT foams is a mesoscale effect coming from the collective response of 

the CNTs rather than a microscale effect governed by the strength of individual CNTs. 

The local delamination of VACNTs from the substrate under macro-compression of 

VACNT arrays has been observed previously and it was attributed to local stress 

concentrations that can impose local tensile stresses to overcome the adhesion between 

the VACNTs and the substrate [207]. 

 

Figure A.6. (a-d) Local non-uniform buckle formation: (a) onset of buckling at different 

locations, (b) closer view of onset of buckling, (c) after several buckles have formed 

sequentially under compression, (d) closer view showing non-uniformity in the buckles. 

(e-f) Buckle induced delamination of the VACNTs from the substrate: (e) delamination at 

the interface of VACNTs and substrate, (f) closer view of the delaminated surface of the 
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VACNTs. 

We observed another intriguing response from the SEM images performed on the 

compressed sample, on the external surface and the inside of the sample that was 

accessed by cutting the compressed external surface (Figure A.7). The inside of the 

samples present large number of buckles of much smaller wavelengths, compared to the 

outside edge. The source of such a large difference remains unclear and has to be verified 

through further experiments and analysis. One possible source could be variations in 

structural characteristics of the VACNTs between the central volume and the edges of the 

samples, when synthesized using a fixed-catalyst tCVD process. We plan to perform 

synchrotron x-ray scattering and mass attenuation measurements to characterize the 

VACNT morphology along the width of the sample to verify this phenomenon. 

 

Figure A.7. Collective buckles observed (a) outside and (b) inside a VACNT foam 

sample. SEM images were acquired at the same scales for a side-by-side comparison. 

From the in-situ high-speed microscope video obtained on the edge of the sample, we 

measured the critical onset buckling wavelengths (Lcr) and the buckle wavelengths after 

the buckle was completely formed (Lco), as a function of the location along the height of 

the sample (Figure A.8 (a)). The buckle wavelengths varied largely from sample to 

sample and didn’t show a particular correlation with the height (Figure A.8 (b), (c)). 

However, we found a linear correlation between the critical onset of buckling 

wavelengths (Lcr) and the post-buckle wavelengths (Lco) (Figure A.8 (d)). We measured 

the post-compression buckle wavelength (Lco) inside the sample by first cutting off the 

edges using a razor blade and then performing SEM imaging of the internal view (Figure 

A.8 (e)). From Figure A.8 (f), it can be seen that the buckle wavelengths found inside the 

sample are much lower compared to the outside buckles. In addition, the compressed 
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buckle wavelengths increase with height, which could be an outcome of the increasing 

intrinsic density gradient along the height from the bottom of the sample. 

 

Figure A.8. (a-d) Buckle wavelengths measured outside the sample: (a) in-situ 

microscopy image showing the critical buckle wavelength onset of buckling (Lcr) and the 

buckle wavelength after the buckle is compressed (Lco), (b) variation of the critical 

buckle wavelength (Lcr) with location of the buckle measured from the substrate, (c) 

variation of buckle wavelength after the buckle is compressed (Lco) with location of the 

buckle measured from the substrate, and (d) the linear correlation between the buckle 

wavelength’s onset of buckling and after compression. (e-f) Buckle wavelengths 

measured inside the sample: (e) SEM images showing large number of buckles with 

much lower wavelengths, and (f) variation of compressed buckle wavelengths (Lco) with 

location of the buckle measured from the substrate. 

A.4 Simplified analysis of the buckling 

We now discuss a simplified Euler buckling analysis performed to analytically find the 

critical buckle wavelength for an individual CNT, ignoring the entanglement and the 
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nearest neighbor interactions between the CNTs. Even though such an assumption is not 

completely justifiable, because of the entangled morphology of the VACNTs and the 

collective buckles observed, we found that this approximate calculation results in buckle 

wavelengths that closely match the internal buckle wavelengths. 

 

Figure A.9. A simplified Euler buckling model of the CNT in a VACNT array. A CNT is 

modeled as a cylindrical hollow column with pin supports in both ends. 

In this simplified model, we consider a MWCNT as a hollow cylinder that is pin 

supported in top and bottom ends. From the TEM images of our MWCNTs, we find the 

average outer diameter of the CNTs (do) is 8.6 nm, and the inner diameter (di) is 5 nm. 

Therefore, the area moment of inertia (I) is calculated to be 237.83 nm4 from 

    ! = ! (!!!!!!!)
!"

.     (A.1) 

The critical Euler buckling load (Fcr) is given by 

    !!" =
!!!"
!" ! ,      (A.2) 

where E is the elastic modulus, L is the unsupported length of the column and k is equal 

to 1 for a column with both ends pin supported. From the experimental measurements 

reported in literature for a single CNT, we find the elastic modulus to be 1 TPa [175,208]. 

We calculated the critical force on a single CNT from the measured critical force on the 

whole sample, divided by the number of CNTs in the array. We calculated the number of 

CNTs in the array from the measured average weight of the sample divided by the 

calculated average weight of a CNT. The weight of a representative individual CNT with 

five walls on average is calculated from the weight of the carbon atoms multiplied by the 

σcr
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number of carbon atoms in a CNT, assuming that the CNTs are free of any defects and 

have a perfect structure. This calculation showed that there are 3.38x109 tubes present in 

our sample with area (5 mm x 5 mm). Therefore the areal density of the CNTs in our 

VACNT sample is 1.35x1010 tubes cm-2, which is comparable to the number density 

found in literature for VACNT samples synthesized with hydrogen annealed fixed-

catalyst (1.84x1010 tubes cm-2 [39]). 

We choose the nominal stress found at 40% strain of the sample, 0.05 MPa, as the critical 

stress causing bucking, since 40% strain approximately represents the section of the 

sample that has the value of the average bulk density along the intrinsic density gradient. 

Therefore, the critical force on a MWCNT is calculated as 0.37 nN, from the CNT 

number density and the total critical force on the sample. Therefore from Equation (A.2) 

the column length, L, is calculated to be 2.52 µm. Therefore the wavelength of the buckle 

is 5.04 µm at onset of buckling. The onset of buckling wavelength (Lcr) measured from 

the SEM images for the internal buckles, is ~8.4 µm (this Lcr is calculated by multiplying 

the compressed buckle wavelength, Lco by the linear correlation coefficient found 

between Lco and Lcr for external buckles, assuming that the correlation coefficient 

remains the same for inside and outside (Figure A.8 (d))). The measured onset of 

buckling wavelength (Lcr) for the externally observed buckles is ~80 µm which is nearly 

16 times larger than the calculated wavelength. The close match found between the 

calculated and the measured internal buckle wavelengths in these approximate 

calculations demonstrates that the characteristic internal buckling modes found in the 

samples are the dominant deformation mechanisms that govern the bulk mechanical 

response. 

A.5 Conclusions 

In summary, the VACNT foams synthesized using the fixed-catalyst tCVD process have 

significantly low density compared to the VACNT foams synthesized using floating-

catalyst samples. As a result, they present very soft mechanical responses subjected to 

quasistatic compression. Unlike the floating catalyst VACNT foams, these VACNT 

foams do not show any significant recovery upon unloading. They present progressive 
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sequential buckling that is governed by the intrinsic density gradient along the height. We 

have identified buckling with different characteristic wavelengths inside and outside the 

samples. The external surface of the samples presents fewer buckles with significantly 

larger wavelengths. From simplified Euler buckling analysis we have shown that the 

internal buckling modes represent the governing deformation mechanism of the bulk 

sample. 
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Appendix B 

Wave Propagation in a Periodic Array of VACNT 

Foams Alternated with Rigid Interlayers8 

We show a unique wave propagation characteristic in a one-dimensional periodic array of 

vertically aligned carbon nanotube (VACNT) foams with rigid interlayers. The effective 

velocity of the propagating wave in the periodic array decreases with increasing impact 

force. The array is excited transiently using spherical strikers launched at controlled 

velocities of between 1 and 8 m s-1. We also show that the wave velocity is highly tunable 

by more than 200%, simply by applying static precompression to the system, merely 

between 0.28 and 2.8 MPa. We develop an analytical rate-independent hysteretic model 

for the VACNT foams and explain the unique wave propagation characteristics observed 

in the system. 

B.1 Introduction. 

Heterogeneous layered composites made of constituent materials with drastically 

different physical and mechanical properties often present intriguing physical responses. 

For example, forming a laminated composite using alternating hard (e.g. ceramics, 

metals) and soft materials (e.g. polymers) reduces the wave velocity compared to that of 

in the individual constituent materials [209,210]. It also takes advantage of the crack-

arresting feature of the soft layer, thereby improving the penetration resistance in ballistic 

impacts [209]. Periodic layering of dissimilar materials also leads to interface scattering, 

increased shock viscosity and the formation of structured shock waves during transient 

excitations [210] or formation of selective frequency band gaps and wave attenuation in 

continuous excitations [211]. The wave characteristics in such layered media are 

influenced by several heterogeneity factors such as impedance mismatch between the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  This work was performed in collaboration with M. Serra. R. Thevamaran performed the experiments and 
analyzed the data. MS developed the model and performed the numerical simulations. RT acknowledges 
the work of N. Yammamoto on VACNT/polycarbonate and polymeric foam/stainless steel arrays, which 
benefited this study. 
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layers, interface density (the density of the interface area per volume), and the thickness 

ratio of the layers [212]. Analytical and numerical studies have proposed several ways to 

engineer the interlayers to enhance the wave propagation characteristics, for instance, by 

introducing functionally graded materials to induce time delays [213] or by introducing 

shape memory materials for active controlling of wave propagation [214]. 

Recently several periodically layered nanocomposites with superior characteristics have 

been fabricated for applications requiring impact and energy absorption. For example, 

polyurethane multiblock-segmented copolymers [215] and polystyrene-

polydimethylsiloxane (PS-PDMS) diblock copolymers [113] composed of ‘hard’ glassy 

and ‘soft’ rubbery polymer segments have been shown to exhibit outstanding 

performance in high-rate compression [215] and in micro ballistic impacts [113]. Their 

superior performance is attributed to their nanoscale superstructures, the self-healing 

ability of polymers, and layer-orientation-dependent fundamental deformation 

mechanisms such as layer kinking, layer compression, domain fragmentation and liquid 

formation [113,215]. Vertically aligned carbon nanotube (VACNT) reinforced polymer 

sandwich composites have been shown to display high rigidity and enhanced damping in 

the linear dynamic regime [86]. Hybrid layered nanocomposites made by intercalating 

VACNTs into natural inorganic materials and tested in quasistatic compression cycles 

have shown compressibility up to 90% of their initial heights and ~10 times higher 

energy absorptions than their original constituent materials [71]. Similar multilayer arrays 

of VACNT foams with thin polymer (PDMS) interlayers have been shown to exhibit 

exceptional energy absorption in quasistatic compression cycles, ~200 times higher than 

those of commercial foams of similar bulk densities [72]. Introducing microstructural 

heterogeneities within the VACNT foams by synthesizing discrete ‘soft’ and ‘stiff’ bands 

has also been shown to improve the energy absorption and result in controlled 

deformations of the foams when impacted with a spherical striker (3.47 g) at low impact 

velocities (0.7-1.7 ms-1) [193]. 

Free standing VACNT foams that have been synthesized using standard chemical vapor 

deposition (CVD) techniques present several unique mechanical characteristics that are 

desirable for protective applications and can serve as a model material for understanding 
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the fundamental mechanical response of fibrous hierarchical materials. When compressed, 

they exhibit foam-like nonlinear stress-strain responses with hysteresis loops [37]. They 

undergo super compressibility in quasistatic [37] and dynamic [14] compression [169] 

and recover most of their deformation. They dissipate energy through hysteresis [37] and 

survive fatigue at up to millions of compression cycles [38].  They undergo sequential 

collective buckling in quasistic compression [145] and exhibit shock formation when 

impacted at velocities higher than their critical velocity [166]. Sequential progressive 

buckling and the stress-strain response are highly influenced by the functionally graded 

properties of VACNT foams (intrinsic density and stiffness gradients) that arise from the 

CVD synthesis process [166,216]. It has been shown that the mechanical properties of the 

VACNT foams can be tailored significantly over a broad range using different synthesis 

techniques: for example, soft VACNT foams can be synthesized by introducing varying 

concentrations of hydrogen in the carrier gas [42] or very stiff VACNT foams can be 

synthesized through attachment of metal oxide nanoparticles to the CNTs [44].  

Here, we present the experimental and numerical studies of wave propagation in a one-

dimensional periodic array of VACNT foams with rigid interlayers. We demonstrate 

highly tunable, unique wave propagation characteristics in the multilayer array. We use a 

rate-independent hysteretic model to describe the VACNT response and model the 

unique wave propagation characteristics observed in the experiments using a chain of 

masses connected by the proposed VACNT model. 

B.2 Experimental setup and methods 

B.2.1 Synthesis of VACNT foams 

We synthesized the VACNT foams using a floating catalyst thermal CVD process 

described in Section 2.1.1. Resultant VACNT foams had bulk density ~0.30 g cm-3 and 

thickness ~1.8 mm. The VACNT foams were then cut-extracted from the substrate using 

a custom-made core drill into 4.76 mm diameter freestanding samples for constructing 

the periodic array. 
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B.2.2 Wave propagation experiments 

 

Figure B.1. Schematic of the experimental setup and data reduction method: (a) 

experimental setup showing the periodic array of VACNT foams and stainless steel 

cylinders, static precompression applied by the pulley-weight system, striker impact 

generator, optical interrupters for striker velocity measurements and the dynamic force 

sensors for force-time measurements, (b) dynamic force sensor bead with embedded 

piezoelectric disc (c) characteristic dynamic force-time profiles measured by sensors; 

inset shows the effective time (Δt) measurement scheme based on the full duration at half 

maximum method. 

We assembled the one-dimensional twenty-unit cell array on four horizontal low-friction 

polycarbonate support rods mounted on a rigid steel block (Figure B.1(a)). Each unit cell 

consists of a stainless steel cylinder (McMaster-Carr; grade 316, length = 4.76 mm, 

diameter = 4.76 mm, mass = 0.677 g) and a standalone VACNT foam sample. The 

aligned CNT bundles in the VACNT foams were oriented along the longitudinal axis of 
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the one-dimensional periodic array. A precompression of 5 N was applied to the periodic 

array using a pulley-weight system as shown in the Figure B.1(a) to ensure that the 

component layers of the periodic array were fully in contact. Changing the hanging 

weight varied the applied precompression on the system. We excited the periodic array 

using striker impacts, where a spherical striker (diameter = 4.76 mm) was launched on a 

low friction polytetrafluoroethylene (PTFE) striker guide using a pneumatic cylinder at 

controlled velocities between 1 and 8 m s-1. A PTFE striker (mass = 0.122 g) and a 

stainless steel striker (mass = 0.451 g) were used to deliver low and high amplitude force 

impacts, respectively. A custom-made optical interrupter built into the striker guide 

measured the impact velocity of the striker before the impact. When the striker interrupts 

the two optical paths spaced at 8.89 mm, it generates voltage signals from which the time 

taken for the striker to travel 8.89 mm is obtained, from which the velocity of the striker 

is calculated. 

We embedded piezoelectric ceramic sensors into the twelfth and fourteenth beads 

(sensor-1 and sensor-2) to measure the dynamic force-time history of the propagating 

stress waves. As shown in Figure B.1 (b), the piezo discs were embedded into the half-

split stainless steel cylinders using a five-minute epoxy. A thin Kapton tape layer was 

introduced between the piezo disc and the stainless steel cylinder to prevent any charge 

leakage from the piezo disc during dynamic compression. The wires from the sensors 

were connected to an oscilloscope using a BNC cable and the force-time history was 

recorded on the oscilloscope. The characteristic force-time histories recorded on the 

sensors 1 and 2 are shown in Figure B.1 (c). 

We calculated the effective wave velocity (Vwave) in the one-dimensional array from the 

measured force-time history and the physical distance (d1-2) between the two sensor beads. 

We used the full duration at half maximum method to calculate the effective time (Δt) 

taken for the wave to travel between the sensors (inset of Figure B.1 (c)). For the 

effective time calculations, only the first compressive segment of the recorded force pulse 

was considered. The centers of the half-maximum wave width were identified as the 

centers of the compressive pulses (c1 and c2). We defined the effective wave velocity as 

Vwave=d1-2/Δt and the dynamic force amplitude (Fd) as the average of the amplitudes of 
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the two compressive pulses (Fd=(F1+F2)/2). We plotted the effective wave velocity with 

the dynamic force (Fd) normalized by the static precompression (Fs) applied on the one-

dimensional array.  

B.3 Experimental observations and discussions 

Our observations revealed an interesting trend of the effective wave velocity with the 

normalized dynamic force—the wave velocity reduces with the dynamic force (see the 

curve corresponding to Fs=5N in Figure B.2 (a)). This response suggests a softening 

behavior with increasing dynamic force. However, our previous studies of the 

constitutive responses of VACNT foams obtained in both quasistatic compression [42] 

and flat plunge striker impacts showed a nonlinear stiffening response [169]. It was also 

observed that the stress-strain responses of the VACNT foams have different loading and 

unloading responses with large hysteresis in both quasistatic and dynamic compressions. 

In addition, the loading and unloading moduli are significantly different. Such 

characteristics of the VACNT foams lead to softening responses when the stress-strain 

path transitions from the loading to unloading curve, or vice versa, with rapid 

convergence. This claim is supported using numerical modeling in Section B.4. 

We show that the wave velocity is highly tunable over a broad range by varying the 

applied static precompression (Figure B.2 (a)). Varying the precompression on the 

periodic array compresses individual VACNT foams in the array towards the ‘stiff’ 

regions of its nonlinear stress-strain curve (Figure B.2 (b)) and as a result, increases the 

overall stiffness of the periodic array. As shown in the scanning electron microscope 

(SEM) images in Figure B.2 (c), when the VACNT foam is compressed, buckles form at 

the bottom ‘soft’ region of the sample and progresses sequentially as further compression 

is applied. The unbuckled region remains intact without any observable deformations as 

shown in the top SEM image. Due to this increasing stiffness of the periodic array, we 

observe that the velocity of the wave increases with increasing precompression (upward 

shift in curves of Figure B.2 (a), from 5N to 40N precompression).  
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Figure B.2. (a) The variation of effective wave velocity with the dynamic force 

normalized by static precompression (b) Characteristic stress-strain response of a single 

layer VACNT foam in quasistatic compression cycle (c) Scanning electron microscope 

images showing the formation of buckles at the bottom ‘soft’ region of a VACNT foam 

at 0.20 strain. 
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B.4 Modeling and discussions 

B.4.1 Proposed analytical model 

We model the response of VACNT foams using a model that is similar to the Bouc-Wen 

model [217], which describes the hysteresis using a differential equation and results in a 

rate-independent force-displacement hysteresis. Our proposed model is given by 

    !(!) = !!! ! + 1− ! !! ! ,   (B.1) 

    ! = ! ! !!
!"!!!

! .      (B.2) 

Here, !(!) is the force at displacement !, and !! and !! are the experimentally measured 

loading and unloading force-displacement curves. The ℎ !  is the Heaviside step 

function given by, 

    ℎ ! = 1,            ! ≥ 0
0,            ! < 0 .    (B.3) 

The two independent parameters of the model are Λ and !!, which control the transition 

speed. Equation (B.1) states that the force at any particular instance can be on the loading 

curve, unloading curve or somewhere in between the loading and unloading curves. 

Equation (B.2) states that the transition between loading and unloading is a function of 

the velocity (!) and the transition occurs at a characteristic strain rate given by Λ. Small 

values of Λ result in steep spatial transitions while large values of Λ result in soft spatial 

transitions. 
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B.4.2 Numerical model and the results 

 

Figure B.3. (a) Exponential loading and unloading curve-fits for the experimental 

quasistatic force-displacement curve. (b) The comparison of the force-displacement 

curves obtained from experiment and the simulated model. 

We replaced the experimental quasistatic force-displacement curve with exponential fits 

to avoid oscillations in the response due to both the buckling events occurring in smaller 

length scales and the noise from the load cell. Therefore, the loading and unloading 

curves are given by 

    !!(!) = !!!",     (B.4) 

    !!(!) = !"!!".     (B.5) 

The constant multiplier, !, in front of the exponential does not have any effect on the 

response, because it manifests as a change in the initial elongation of the nanotubes !! 

(Equations B.6-B.8). Therefore the force depends only on the initial static force applied 

on the system, !! and the exponent, !. 

    !!(!) = !!!(!!!!!),     (B.6) 

    !! = !!!!!, at Δ! = 0.    (B.7) 

Therefore, 

(a) (b)
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    !!(!) = !!!!".     (B.8) 

We used the displacements from the fitted loading and unloading curves as the input to 

our model. The simulated result from our model for the force-displacement curve is 

presented in Figure B.3(b) in comparison with the experimental force-displacement curve. 

It can be seen that the model is in good agreement with the experimental curve. The 

parameters for the fit are given in Table B.1. 

Table B.1. Parameters of the model for the VACNT foams. 

Λ 0.065 

!! 34.48 µm 

A 4.681 N 

! 0.179 

! 8.619 mm-1 

 

We modeled the periodic array of stainless steel cylinders and the VACNT foams as a 

chain of point masses and dissipative springs such as those described by our model. The 

equation of motion for the ith particle is given by 

    !!! = ! !!!! − !! − ! !! − !!!! ,   (B.9) 

    !!! = !! − !!"#$!! − ! !! − !! ,   (B.10) 

where !!"#$ is the stiffness of the wire that was used to apply the static precompression 

in experiments. The force F is given by the Equation B.1. 

We first applied the static precompression on the sample and then simulated the transient 

wave propagation in the chain by specifying the initial velocities of the first particle in 

the chain. We obtained the force-time responses at the twelfth and fourteenth particles. 
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The effective wave propagation velocity was calculated from the center-to-center 

distance between the two particles and the time difference between the two peaks of the 

simulated force-time profiles. The wave velocity exhibits a slowdown effect with 

increasing impact force, as observed in the experiments. The qualitative comparison 

between the experimental and the numerical results are presented in Figure B.4. We 

observed from the simulations that the transition between the loading and unloading 

curves leads to a softening response, that results in lower wave velocities when impacted 

at higher striker velocities (Figure B.5). It should be noted that the prescribed initial 

condition ! of the numerical model and the applied precompression together set the 

initial stress-strain state of the VACNT foams. In our simulation, we set the initial 

velocities of the particles to zero, and the parameter ! = 0.75. Most values of ! correctly 

reproduce the velocity slowdown. We have chosen the value of 0.75 because it results in 

the best qualitative agreement with the experiments. We believe that the initial value of ! 

is a result of creep after the compression has been set. 

 

Figure B.4. A qualitative comparison between (a) the numerical results and (b) the 

experimental results, of the decreasing trend of the effective wave velocity at different 

static precompressions. 

(a) (b)
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Figure B.5. The dynamic loading-unloading response of a VACNT foam during the 

transient excitation of the periodic array, showing the softening response. 

In addition, the wave velocity increases when the precompression is increased, 

reproducing the experimental observations. However, the model does not show 

quantitative agreement with the experiments for the velocities predicted. When the 

exponent ! of the model is increased to 34.48 mm-1 and the !! is reduced to 4.31 µm, 

keeping all the other parameters constant, the model predicted results that are in good 

quantitative agreement with the experiments. The reasons for this quantitative 

discrepancy between the model and the experiments are unclear. However, the model is 

extremely simple and correctly explains the velocity slowdown effect, which is the 

novelty of the experiments. We have neglected many other experimental issues such as 

friction between the support rods and the periodic array, strain rate effects and 

preconditioning of the nanotubes. 
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Figure B.6. Comparison of the numerical results with experimental results, of the 

decreasing trend of the effective wave velocity at different static precompressions, 

calculated for !=34.48 mm-1 and !!=4.31 µm. 

B.5 Conclusions 

We have experimentally studied the wave propagation in a periodic array of VACNT 

foams alternated with stainless steel interlayers, subjected to transient excitations. We 

show a unique response, where the effective velocity of the propagating wave decreases 

with the increasing impact force. The wave velocity is also highly tunable over a broad 

range using a static precompression applied to the array. We developed an analytical 

model with rate-independent hysteresis for the VACNT foams. We modeled the periodic 

array using a chain of masses connected by the developed VACNT foam model and 

qualitatively show the wave slowdown effect.  We showed that the wave slowdown effect 

arises from the softening response of VACNT foams that occurs when transitioning 

between loading and unloading curves with large hysteresis. 
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