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Abstract

This thesis presents a method which greatly reduces the conservativeness of
conic sector analysis for sampled data feedback systems. The new method evaluates
the stability and closed-loop performance of systems with structured uncertainty
in the plant transfer function, including MIMO systems and those with multiple
sampling rates. In contrast to most multirate analysis techniques, the sampling
rates need not be related by rational numbers; this allows analysis when samplers
are not strobed to a common clock.

The method is based on a theorem from P. M. Thompson which shows how to
construct a conic sector containing a hybrid operator. Combining this theorem with
the Structured Singular Value approach of J. C. Doyle, with its heavy use of diagonal
scaling, provides an analysis framework for systems with multiple structured plant
perturbations. Chapter 3 presents a theorem for the optimal conic sector radius in
the SISO case; a MIMO extension of the the theorem completes the development
of the new method. Chapter 5 gives three examples.

Chapter 6 presents a new method, based on the complex cepstrum, for synthesis
of SISO rational functions to match given “target” transfer functions. The method
offers complete control over stability and right half plane zeros. It solves directly
for poles and zeros, avoiding the numerical sensitivity of methods which solve for
polynomial coefficients. It can synthesize minimum phase functions to match a
given magnitude or phase curve. In an example, it is used to synthesize a low-

order digital replacement for an analog compensator which gives no degradation of
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stability margin or step response.

This thesis also presents a method for Kranc vector switch decomposition in
state space; this is for stability analysis and input-output simulation of perturbed
multirate systems. Moving the 30-year-old Kranc technique from the frequency
domain to the state-space domain simplifies the analysis tremendously. Because the
number of states is preserved, the dimensionality problems long associated with the
Kranc method disappear. The new method is also useful for simulating intersample

ripple behavior.
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Chapter One — Introduction

1.1 Why use conic sectors?

Since the invention of the microprocessor, control system designers have put
the device to use on a wide scale in computer-controlled feedback systems. Digital
controllers have many advantages over their analog counterparts. They are easily
reprogrammed without expensive wiring changes; they are immune to parameter
drift over temperature or time; they are smaller in size and weight; they are often
much cheaper than analog controllers.

Because of the time-varying nature of the sampling operation of an A-D con-
verter, however, a digitally controlled feedback system is not linear time-invariant
(LTI). A transfer function cannot be defined, since the impulse response varies de-
pending on the position of the impulse within a sampling time interval. Therefore,
conventional analysis methods based on the Laplace transform cannot be used.

To circumvent this problem, analysis methods based on the z-transform were
developed. The analog portions of a system are considered only at the outputs
of samplers; in this way they can be treated as linear shift-invariant discrete-time
operators, for which transfer functions are defined. Analysis of stability and time
response proceeds easily once a transfer function for the discretized analog plant is
found.

One drawback of the z-transform approach lies in evaluating safety margins for

robust stability; that is, determining how much the analog plant can vary before the
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system becomes unstable. In practice, the plant transfer function is never known
exactly; a model is chosen to approximate the plant. The modelling error is usually
small at low frequencies and quite large at high frequencies. When the analog plant
model is discretized, however, the result is valid only if the plant exactly equals
the model at all frequencies. Attempts to carry frequency-dependent estimates
of modelling error over into the discrete-time domain are hampered by frequency
aliasing in the discretization process.

Another drawback appears when conventional z-transform methods are at-
tempted for multi-rate systems: systems with multiple samplers operating at differ-
ent speeds. Since the various discrete-time portions of such systems run in different
time frames, they are not shift invariant with respect to each other; no transfer
function exists to relate one to the other. The only way out of this dilemma which
remains within the z-transform framework is to find a common time frame for all
samplers. This is possible if the sampling rates are related by rational numbers; for
instance, if one sampler has period 7'/2 and another has period T /3, they can both
be modelled by samplers of period T with appropriate time delays and advances.
This is the objective of Kranc vector switch decomposition [12],[2]. Other methods
have been developed for the special case of sampling rates related by integers, but
these are mathematically equivalent to the Kranc method. Because Kranc switch
decomposition was originally formulated in the frequency domain (in terms of ra-
tional functions in z), it was awkward to use and generally avoided. Section 2.8 of
this thesis repeats results given earlier in [22], [21] which show that, when recast
into a state-space format, the Kranc method becomes simple and easy to use.

If the sampling rates are not related by rational numbers, however, the Kranc
method and other 2-transform methods break down completely. This can happen in
practice when samplers are free-running and not strobed to a common clock. Fur-

thermore, the Kranc method has the same weakness as other z-transform techniques
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when robust stability analysis is attempted.

One more drawback of z-transform methods lies in evaluating the continuous-
time response of a system to continuous-time inputs, e.g., the closed-loop RMS
output to a sine input. Since z-transform techniques view the analog plant only at
the output of the samplers, such continuous-time information is lost.

All of these drawbacks are consequences of discretization. All can be avoided
by switching to an analysis method which treats discrete-time compensators as
continuous-time operators. By remaining in the continuous time domain, we can
use frequency-dependent modelling error information with no conservativeness from
discretization; we can analyze multi-rate systems, even when the sampling rates
are related by irrational numbers, and we can model the input-output behavior
of systems from analog inputs to analog outputs. The price of using continuous
time analysis is that the system is not LTI it has no transfer function. However,
conic sector methods allow us to model such a system with an LTI transfer function
approximation called the cone center, and to account strictly for modelling errors
with another LTI transfer function called the cone radius. Since the cone radius
accounts strictly for the modelling error, we can make definitive statements about
system stability and performance. Conic sectors let us perform rigorous analysis of
non-LTI systems using only two LTI transfer functions.

Conic sector analysis was originated by Zames in 1966 [27], [28]. In Zames’s
original formulation, the cone center and radius both had to be constant multipliers;
frequency dependent information was lost. Later, Safonov [16] greatly generalized
Zames’s results to apply when the cone center and radius are dynamic operators,
such as transfer functions.

Conic sector methods were first applied to sampled data operators, or hybrid
operators, by Kostovetsky [11], and later by Stein [19]. In both these results the

cone radius was a constant multiplier, which led to conservativeness due to its lack
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of frequency-dependent information. Thompson [20],[29] then discovered how to
compute a frequency-dependent cone center and radius for any open-loop stable,
single-rate hybrid compensator. This thesis extends the results of [20], removing

several restrictions and reducing conservativeness, especially for multivariable Sys-

tems.

1.2 Contributions of Thesis.

There are three chief contributions of this thesis:

Improved conic sector theory for sampled-data systems. The improve-
ments in the theory presented here are all based on Theorem 3.2 of [20], which
shows how to compute the cone center and radius for a hybrid operator consist-
ing of a prefilter, sampler, digital filter, and a hold element. It was realized early
by Enns and Doyle {7},[4] that this theorem allowed for a great deal of flexibility,
since fictitious LTI operators could be substituted for the prefilter and hold. This
allowed the cone radius to be manipulated at will, and the conservativeness of the
conic sector loop stability test to be reduced. This thesis presents an optimal choice
for these fictitious operators in the SISO case; that is, a choice which minimizes the
conservativeness of the nominal stability test.

For the MIMO case, the optimal SISO result is extended in a way which, though
suboptimal, gives nonconservative results for a wide class of systems. The theory
applies equally to single-rate and multi-rate MIMO systems, even if the samping
rates are not related by rational numbers. The MIMO approach used here relies
heavily on diagonal scaling of matrices and is based on the Structured Singular Value
(SSV) analysis methods of Doyle [5],[6]. Like the SSV techniques, this method
allows for robustness analysis of systems with structured plant uncertainty; i.e

)

systems with several different model perturbations, all of which are allowed to vary



independently.

The new theory not only tests for nominal and robust system stability, but also
tests for closed-loop performance under nominal and perturbed conditions. It does
this by constructing a conic sector containing the closed-loop system. This conic
sector can be used to determine if the system meets specifications on closed-loop
response to sine waves, white noise, and other inputs.

Complex cepstrum synthesis method for sampled-data SISO com-
pensators. This is a technique for converting analog compensators into hybrid
compensators which will provide the same closed-loop response. The philosophy
1s the same as in previous work by Thompson, Sinchez Pefia, and Wong [24]:
to synthesize a digital filter K;(2) so that the hybrid compensator’s cone center
%H(]‘w)Kd(ejWT)F(jw) approximates the analog compensatior K,(s) at frequencies
inside the loop bandwidth. H and F are the hold and prefilter, respectively, and T
is the sampling period. The approach taken here is to construct a target function
defined on the unit circle, compute its complex cepstrum, and then use that to
synthesize a rational function in z of specified order which approximates it.

The complex cepstrum function was developed in the digital signal processing
community, and has been used previously in applications such as pole-zero mod-
elling of the human vocal tract and echo removal from old phonograph recordings
[14]. Tt has the very desirable property of separating the minimum phase and max-
imum phase portions of a transfer function: minimum phase functions are mapped
into causal time sequences, and maximum phase functions into anticausal time se-
quences. It also has a simple parameterization in terms of the poles and zeros of a
rational function. These two properties together give us complete control over the
number of poles and zeros inside and outside the unit circle in the synthesis pro-
cedure. We can also solve directly for pole and zero locations, rather than for the

coeflicients of the expanded numerator and denominator polynomials. This avoids



6
problems with the notorious sensitivity of high-order polynomials to tiny changes
in their coefficients.

This complex cepstrum synthesis procedure has other applications, including
fitting rational functions in s or z to measured frequency response data, generating
phase curves from magnitude information only, and generating magnitude curves
from phase curves. The relationship between magnitude and phase holds only for
minimum phase functions.

Multi-rate analysis using Kranc operators in state space. This the-
sis presents a minimal state-space realization for the MIMO linear shift invariant
operators which appear when the Kranc vector switch decomposition technique
[12],[2],[26] is used. The Kranc method applies generally to all multi-rate sampled-
data systems which have sampling rates related by rational numbers. It has been
avoided for thirty years because, when performed in the frequency domain using
rational functions in z, it is awkward and difficult. When recast into a state-space
format, however, it becomes transparently simple and easy to perform with appro-
priate software. The only “sophisticated” numerical operations needed to construct
the state-space quadruples are matrix exponentiation and matrix multiplication.
Testing for stability involves only computing the eigenvalues of the closed-loop state
transition matrix. Input-output time domain simulation is trivially easy with a
state-space representation.

This material has appeared earlier in 122]. Thompson’s method for computing

gain and phase margins using Kranc operators is also presented; this appeared

earlier in [20].

1.3 Summary of Thesis.

Chapter 1. Introduction.
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Chapter 2. Mathematical background. This covers L, and L., vector
spaces, matrix norms and singular values, conic sector definitions, the conic sector
stability criterion, standard analysis techniques for sampled data systems, and the
new material on Kranc operators in state space. Also covered is the Structured
Singular Value p and its applications for testing nominal stability, robust stability,
nominal performance, and robust performance for analog LTI feedback systems.

Chapter 3. Conic sectors for hybrid operators. This presents the new
conic sector theory. It begins by repeating Theorem 3.2 from [20] and its proof,
upon which all the new theory is based. It discusses the limitations of the theorem
and the flexibility inherent in it. A simple conic sector containing only a sampler
and a zero order hold (ZOH) is described; this has appeared previously in [23]. Then
the optimal radius for testing nominal stability of a SISO hybrid system is given,
together with a proof of its optimality. The conceptual groundwork for treating
MIMO systems with diagonal scaling is laid, then the MIMO result is described:
a (usually) nonconservative conic sector method for multi-sampler MIMO systems,
including multi-rate systems. Considerable discussion and several examples are
then devoted to examining the limits of the new technique: finding cases in which
the new method still gives conservative results. It appears that conservativeness
usually appears only when a system has poor anti-aliasing filtering, poor robustness
margins, or both. An exception occurs with multi-rate systems having a sampler
at the output of a ZOH: a modified conic sector theorem is derived for this case.

Finally, Section 3.9 describes how to perform robustness analysis tests using the
new results. The tests are grouped in the same way as those for SSV analysis [6]:
nominal stability, robust stability, nominal performance, and robust performance.

Chapter 4. Practical considerations. This chapter begins by describing
two ways to compute the conic sector radius using Theorem 3.2 of [20]. Osborne’s

matrix balancing method and its application to computing the SSV and the MIMO
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conic sector radius are discussed. Section 4.3 describes how to convert typical
control system specifications into a form compatible with the conic sector methods
of this thesis. These include gain margin, phase margin, gain-phase margin, RMS
output for sine and white noise inputs, and step response. All of these except step
response are directly compatible with conic sector methods. Even in this last case,
it is shown by example that the cone center can provide a good approximation to
the closed loop step response.

Chapter 5. Examples. Three examples are worked through in detail: a
SISO system, a MIMO single-rate system, and a multi-rate system. The first two
examples were used previously in [20] with the earlier version of the conic sector
theory. The first example is worked in great detail: nearly every test described in
this thesis is performed on it. For the last two examples, nominal stability and a
robust stability margin are tested. The first two examples prove to give extremely
nonconservative results. The last example is slightly conservative, but stiil gives a
more useful robust stability margin than Kranc techniques.

Chapter 6. Complex cepstrum synthesis method. This new synthesis
method for hybrid controllers is described. The chapter begins by defining the
complex cepstrum and describing its properties. Then a nonlinear optimization
problem to solve for poles and zeros is set up; the cost function and gradient are
shown to be simple functions of the pole and zero locations. A real parameterization
is introduced for poles and zeros which speeds the computation and guarantees
that complex poles and zeros always appear in complex conjugate pairs. Finally,
an example of the procedure is given; the result is a low-order hybrid compensator
which gives an excellent match to the target analog compensator. Another example
illustrates how to use this technique to fit rational functions to analog frequency
response data.

Chapter 7. Conclusion.



Chapter Two — Mathematical Background

2.0 Table of Symbols

R
Rn
Rnxm

onxm
AT T
A, 1
trace(A)
Xi(4)
(4)

19 Y] _9
G

=
N

=]
1Al
1Al

Ly

the real numbers

real Fuclidean space of dimension n

the set of n x m matrices with real elements
the complex numbers

the complex right half-plane

the complex left half-plane

complex Euclidean space of dimension n

the set of n x m matrices with complex elements
transpose of matrix A or vector z

Hermitian transpose of matrix A or vector z
the sum of the diagonal elements of matrix A
the 7th eigenvalue of matrix A4

the sth singular value of matrix A

maximum singular value of matrix A
minimum singular value of matrix A4

spectral radius of matrix A4

Euclidean norm of vector z in R™ or C™
induced Euclidean norm of matrix A
Frobenius norm of matrix A

square-integrable vector-valued functions of a real variable



(J,Q)
Fu(‘]7 Q)
(G)"(2)

ZOH

10
extended L, space
inner product in Ly: [5° z*(¢)y(t)dt
truncated inner product: [J z*(¢)y(¢)dt
truncation operator
(z,z)Y? for z € L,
(z,7)Y?% for = € Ly,
functions analytic in C. and square-integrable on jw-axis
functions analytic in C_ and square-integrable on Jw-axis
functions analytic in C, and bounded on jw-axis
functions bounded on jw-axis
sup o (M(jw))
linear time-invariant
linear time-varying
linear and periodically time varying
single input single output
multiple input mqltiple output
if and only if
there exists
for all
Jin + J12Q(1 — J52Q) "1 Jz; (lower fractional transformation)
Jog + InQ(I — J1uQ) ! J1, (upper fractional transformation)
sample equivalence operator for G(s)
(1= eT) /s

a zero-order hold HJ
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2.1 Vector Norms, Matrix Norms and Singular Values

For a vector z in C™ or R™, the Fuclidean norm is defined by

el = llall = || 3 el

where z; are the components of z. The symbol |z||, where z is a vector, denotes
the Euclidean norm of z throughout this thesis. For a matrix 4 = la;;] in C™ ™ or

R™ ", two norms are used in this thesis. The Frobenius norm ||Al| is defined by

IAllr = \/trace(4*A) =

The Frobenius norm is often used for the practical reason that it is easy to compute,
since [[A]|% is simply the sum of the squared magnitudes of all the elements of A.

The induced Euclidean matrix norm, or 2-norm, is given by

4l = mpx A2

]

where z ranges over all z € C™. The 2-norm may also be defined in terms of the
singular values of a matrix. The singular values of a matrix 4 in C™*" or R™*n

are given by

oi(A) = /AN (A4A)

where the A; are the eigenvalues of A*A for7 = 1 to min(m,n), and the nonnegative
square root is taken. By convention, the singular values are numbered in descending
order: o1 > 09 > ... > o,. It can be shown that the largest singular value is equal

to the 2-norm of the matrix:

o(A) = ||Afk

where 0 denotes the largest singular value. ¢ is defined similarly as the smallest

singular value. Since 6(A) is the highest possible ratio between output norm | Az]]
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and input norm ||z||, it is also called the gain of the matrix A. | Allr and || Al are

compatible norms; it can be shown that for any n x n matrix A,
[All: < [Allr < VnllAll,
The following inequality is sometimes useful for square matrices A:
2(4) < min\(4)] < max|x(4)] < o(4)

In other words, ¢(A) and 6(A) are lower and upper bounds, respectively, for the
magnitudes of the smallest and largest eigenvalues of A. max |A;(A4)] is also called

p(A), the spectral radius of A.

Any m X n matrix A has a singular value decomposition (SVD) given by
A =U0UxV*
where ¥ is an m x n matrix defined by

Yy = {ai ife=7

0 otherwise

and U and V are unitary matrices of dimension m x m and n X n, respectively.
The SVD partitions the domain and range of A into orthogonal subspaces which

correspond to the orthonormal columns of U and V. If u; and v; are the 7th columns

of U and V, respectively, then

0 0
AU{ = UZV*U,' =UxXi{1 = U| o; = 0O,U;
0 0

So the SVD assigns, to each orthogonal input “direction” v;, a gain of o; and a
corresponding output “direction” w;. If n > m (more columns than rows), then

Av; = 0 for © > m, and the extra columns of V form an orthonormal basis for the
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nullspace, or kernel, of A. If m > n, the extra columns of U (u; for 7 > n) all lie
in spatial directions which cannot be reached by any input to A. Therefore, these
columns of U form an orthonormal basis for the orthogonal complement of the range
of A; i.e. they are orthogonal to all possible values of the matrix “output” Az.
Singular values, and the entire SVD, are readily computed by reliable, numeri-
cally well-conditioned computer routines. Because of their many desirable proper-

ties, they are frequently used in present-day control theory.

2.2 L, and L;, Vector Spaces and MIMO Transfer Functions.

The Lebesgue space L, is used extensively in the conic sector theory which
follows. L; is the space of square-integrable, causal vector-valued functions of time.

Stated formally:
Ly = {z(t) | z(t) € C", t > 0, and ||z|| is finite}

where for z € Ly,

|zf) = \//Ow r(B)z(t)dt = (z,2)"?
The squared norm ||z]|* is the squared Euclidean norm of the vector z(t), integrated
over time. ||z||® is sometimes called the energy of the signal z. Note that this
definition implies that z(t) — 0 as t — oo for all z € L,. However, many signals
we are interested in do not satisfy this condition; for example, the impulse response
of an integrator. To handle such cases, it is necessary to introduce the extended
vector space Ly,. First, a few definitions are needed. Let P, be the linear truncation

operator defined as follows:
0 ift>r

In other words, P, simply truncates a time function at ¢ = r. Now define

T

(#.u), = (P, Py) = [ (@)

0
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1/2
;

izl = (z,2)

Now we can define the extended space Ls,:
Ly = {z| Pz Ly Vr12>0}

Ly, is therefore the set of vector-valued functions of time which do not “blow up”
at any finite value of time; but it includes unbounded functions such as z(t) = £2
which are finite for all finite values of ¢. L, includes the impulse responses of
all unstable, strictly proper rational transfer functions; e.g., 1/(s — 1), which has
impulse response ef.

A causal, linear time-invariant (LTT) analog system, or convolution operator,

has the following input-output behavior in the time domain:

where u is the input, y is the output, and h is the impulse response. The definition
is valid for multiple-input multiple-output (MIMO) systems when u(t) and y(t) are
vector-valued and h(t) is a matrix-valued function of time.

The transfer function is given by

H(jw) = /oo e h(¢) dt

— 00

In the MIMO case, each element of H(jw) is the Fourier transform of the cor-
responding element of A(t). In the frequency domain, the input-output behavior
is

Y(jw) = H(jw)U(jw)

where Y (jw) and U (jw) are the Fourier transforms of the output and i‘nput. Usually

the Laplace transform notation is used: Y(s) = H(s)U(s).
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Most of the analog transfer functions used in this thesis can be described in
state space:

—z = Az + Bu

y = Cz+ Du
where A, B, C', and D are real matrices. It is easily shown that the transfer function

of such a system is given by
H(s) = C(sI-A)'B+D

We will use the following convenient notation for transfer functions of this type:

A B

= C(s[—A)'B+D
C | D

This state-space representation is especially useful when computing the transfer
function of an interconnection of several systems. Section 2.2.1 below lists several
useful rules, using this notation, for system interconnection and other commonly
performed block diagram manipulations.

The poles of this type of transfer function are defined as those complex values
of s for which det(sI — A) = 0. If the transfer function H(s) is single-input single-
output (SISO), its zeros are defined as the complex values of s for which H(s) =
C(sl — A)"'B + D = 0. For MIMO systems, there are many definitions for zeros,
each with its own proponents and detractors. We will not be concerned with MIMO
zeros in this thesis.

The following norm will be used extensively in the following pages:

[1Hl[eo = sup&(H(jw))

wER

The co-norm of a MIMO transfer function is the maximum gain, over all frequencies,
of the transfer function matrix. This has many interpretations. One is that | H || o

is the maximum gain in (Euclidean) amplitude for a sine-wave input: if the input is
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u(t) = uge’™" where u is a constant vector, then the output is y(¢) = (H(jw)ue) e,

The maximum gain is then

H{jw)u ~ )
sup _H Uw)uo = supd(H(jw)) = [|H|le
WER, ugeCn HUOH wER

|H||o is also the maximum gain in the Ls-norm for the set of all inputs in Ls;
that is, for all inputs of finite energy. This can be proved as follows: let y = Hu,

with u € Ly. Since H is LTI we can find v in terms of the Fourier transform of u:

Y(jw) = H(jw)U(jw). Now

Ii* = [ v e = o [T vy e
by Parseval’s theorem. Since for fixed w,
V()Y () = YW < o*(H(w)[U(e)|
we gt
it = 52 [T vl < o [7 sG]
< o [T MY GV e = (HE Jul?

This shows that || H || > l%%ﬁu for all nonzero u € L,. This property of the co-norm

will be used in Section 2.4.

2.2.1 State space interconnection rules.

This section presents the state-space operations for several common block di-
agram manipulations. This material has appeared earlier in the Appendix of 122].
The multi-input multi-output descriptions of G;(s) or G;(z) are represented by the
state-space quadruple:

4 | B
Gi:

s D;
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Multiplication:
_Al ‘ Bl A2 1 Bg
G1G2 ==
¢ | bi)le | b
—Al BICZ BlDQ Az 0 B2
= 0 Ay B, — | BiCy A B, D,
¢, D¢, | DD DC; C, | DiD,

Note: this realization may not be minimal.

Addition: i
Ay O B,
Gl + G2 — 0 A2 B2
Cy C, Dy + D, |
Subtraction:
[A; O B,
Gl — G2 — O A2 —B2
C, C, D, — D, |

Scalar Multiplication:

A aB
aG =
C aD
Inversion:
If D7 exists then
A-BD'C | -BD!

pc | D

G ! =




Feedback Interconnections:

(I+aG)™!

G(I +G)™

G1(I + GyGy)™?

Paralleling:

Adjoint:

|

G,
0

18

[A—B(I+D)*C | —B(I+D)"
(I+D)'C (I+ D)t }
[A-B(I+D)'C | B(I+D)"
(I + D)'C (I+D)‘1D}
(A~ By ED,C,  —B,EC, \ B.E
B,EC,  Ay— B,ED\C, | B,ED,
EC, ~-EDC; | ED,

where E = (I + D1 D,)™!

A, 0 | B 0
0 } _ 0 A ! 0 B,
Gy c, 0 D, 0
0 C, 0 D,
— AT cT
GT(~s) =
—BT DT
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2.3 Conic Sectors

To define conic sectors, we need the concepts of a relation and its inverse. In
general, a relation G is any set of the form G ¢ ¥ x Y; that is, any subset of the
Cartesian product of any two sets X and Y [16]. For the purposes of this thesis, we
will usually take X and U to be L,,. A relation can be thought of as the complete
set of input-output pairs (z,y) for a system. An operator is a relation with only

one output y defined for each input =z.

The inverse of a relation G C X x Y is denoted by G! ¢ Y x X and is defined:
G' = {{y,2) €Y x X | (z,y) € G}

In other words, if G is the set of input-output pairs of a system, G is simply that
same set with the order reversed. Note that the inverse of a relation always exists,
even when a system has the same output for more than one input (noninvertible,
in the usual sense), or when it has more than one output for the same input. The
inverse of an operator, however, does not always exist. If the operator has the same
output for more than one input, the inverse cannot be defined. A singular matrix
is an example of a noninvertible operator.

A conic sector is defined as follows:
Cone(C, R) = {(2,y) € Lye X Ly, | |ly— Cz|, < |Rz|, Vr> 0}

where C and R are linear time-invariant (LTI) operators. C is called the cone center
and R is called the cone radius. A relation G can be said to be inside, strictly inside,

outside, or strictly outside a given conic sector:
(a) A relation G is said to be inside Cone(C, R) if G C Cone(C, R); that is, if
ly—Cz|, < |Rz|l, Vr>0, V¥ (z,y) € G.
(b) G is strictly inside Cone(C, R) if 3 ¢ > 0 such that

ly = Call? < [Rall? - e(lal + [w]2) ¥r>0, V(ny) eca
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(c) We say G is outside Cone(C, R) if
ly - Czl, > |Rz||, Vr>o0,V (z,y) € G

(d) Finally, G is said to be strictly outside Cone(C, R) if 3 € > 0 such that

ly = Cali2 = Rzl +e(zllf + Ju}2) ¥Yr>0, V(z,y)eq

Observe that a relation G need not be either inside or outside any given Cone(C, R);
it could satisfy |ly — Cz||? > || Rzl|? for some (z,y) € G and r > 0, and fail to satisfy
it for some other (z,y) and 7.

A conic sector can be considered a rigorous linear approximation to a system’s
input-output behavior. The system itself may be nonlinear, may have a time-varying
impulse response, or may have uncertain parameters such as plant variations over
temperature. If the system’s response is inside a conic sector Cone(C, R), the cone
center C' provides an approximation of the system’s output for any input. The
cone radius R makes the approximation rigorous by providing an upper bound on
how incorrect this approximation may be, in the form of a bound on the norm (the
energy) of the difference y — C'z between the predicted output Cz and the actual
output y. In this way the complicated description of the system’s input-output
behavior is replaced by two LTI transfer functions.

Since analysis techniques for LTI systems are very well developed, and since
LTI systems have desirable properties such as the superposition principle and the
existence of transfer functions, it can simplify an analysis considerably to replace
nonlinear and time-varying elements with conic sectors. The price paid for this
simplification is increased conservativeness. This occurs because a single operator
or relation G is replaced by a set of relations Cone(C, R). Many, perhaps most, of
the input-output pairs in Cone(C, R) do not ever occur in the actual system G, but
since these input-output pairs must be implicitly included in any further analysis,

the system’s response may appear worse than it really is.
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It is very important, therefore, to replace a system with a conic sector bound
Cone(C, R) which is as tight as possible. Some systems cannot be adequately rep-
resented with conic sectors. Consider the nonlinear system y = z°, where the input
r ranges over the full set L,,. This system has vanishingly small incremental gain
g—i for small inputs, but its gain grows without limit as the input z increases. No
matter what center C is chosen, the radius R would have to have infinite gain to
encompass the entire set of input-output pairs (z,y). Therefore this system is not
suitable for conic sector analysis.

A sampled-data system has a time-varying response, so it is desirable to model
it using conic sectors in order to simplify the analysis. This thesis outlines ways
to find tight conic sector bounds for sampled-data systems, so that conic sector

techniques may be used without introducing unnecessary conservativeness.

2.4 Conic Sector Stability Criterion

Consider the feedback system in Figure 2.4-1. Two relations & and H are con-
nected in a positive feedback loop with external inputs u; and u; entering additively.

The system equations are given by:

€1 = Uy t+y2 €2 = U+

(61) yl) €G (627 y?) cH

. . . u
Combine the two inputs and two outputs into column vectors u — ( 1) and
U2

= <zl ) We define this feedback system to be closed-loop stable if there exists
2

some finite k£ > 0 such that
lvll; < kljull, Vr>o0

This definition of stability corresponds to “finite-gain stability” in [16|. It means

that the outputs of G and H must have bounded energy for all inputs u; and u. of
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bounded energy. The following test can determine when such a feedback system is
stable:

Conic Sector Stability Criterion: Let €' and R be LTI operators. If G is
strictly inside Cone(C, R) and H' is outside Cone(C, R), then the system in Figure
2.4-1 1s closed-loop stable.

The proof is given in [16]. The Conic Sector Stability Criterion is a special case
of the “sector stability theorem” of Safonov.

Note that this is only a sufficient condition for stability, not a necessary one; the
system could be closed-loop stable without satisfying this cone separation condition
for a given Cone(C, R). Nevertheless, this basic stability criterion has great utility
and will be used extensively throughout this thesis.

The stability criterion as written above makes no assumptions for G and H
other than that one must be inside a cone, and the inverse of the other outside
the same cone. In the following pages, the criterion will always be used when H is
known to be an LTI operator. We can take advantage of this to derive a version
of the criterion that is more easily used — Safonov and Athans’s Multiloop Circle
Criterion [17]:

Multiloop Circle Criterion. Let G be a relation mapping L,, to L,, that is
strictly inside Cone(C, R). Assume further that R~! exists and is stable. Let H be
an LTT operator with transfer function H(jw). Then the system in Figure 2.4-1 is

closed-loop stable if it is stable when G is replaced by its cone center C, and if
IBRH(I - CH) M| < 1

Proof. Define the relation G = G — C and redraw the system as in Figure 2.4-2.

Then G is strictly inside Cone(0, R). This is easily shown: since G is strictly inside
Cone(C, R),

lyn — Ceill, < |Reill VY7 >0, Vnonzeroe, C Ly,
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Q|
\4
=

@
=

any

Fig. 2.4-1: A basic feedback loop. If G is strictly inside Cone(C, R)
and H' is outside Cone(C, R), then this system is stable.

”\
€1 a Y1
| - — = - — - _ _ - —
i |
i |
Uy IB@ C P> | Y,
|
| |
| |
|
ng : H +L] U2
| |
|- - _ _ _ _ |
M

Fig. 2.4-2: Gisreplaced by G+ C. G = G - C is inside Cone(0, R).
H is an LTI operator.
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y}.<“ M é—_._ul

Fig. 2.4-3: G is replaced by AR = &. A is inside Cone(0, I).

Uy = RMiu, + RMy3u,

A
A €1
<A
u >(1) A > ¥,
/I\ 2
A €2
o RM X 8.=0

Fig. 2.4-4: The feedback loop containing A. This has the same form
as Fig. 2.4-1.
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by definition. The output of G is § = y; — Cey; so ||9ll; < ||Reill, by direct
substitution. Therefore G is strictly inside Cone(0, R).
Since C and H are LTI they may be lumped together into a single LTI operator
M. Separate G from the three-input, three-output system in the dashed box and

call the new system M. Its input-output equations are given by

e H(I-CH)™* (I-HC)' HI-CH)™][# i
w| = | (I-CH™ CUI-HC)' CHI-CH)'||uw| = M|y
Vo H(I-CH)™ HCI-CH)* HI-CH)™ | |u, s

Since the feedback interconnection of C and H is stable by assumption, it can be
shown using basic LTI feedback theory that all nine elements of M are stable.
Now let the relation A be defined by G = AR. We can show that A is strictly
inside Cone(0, ):
Let the input to A to be é,. The fact that G is strictly inside Cone(0, R) implies

that

1Aa], = (IGR™ e, < [|[RR |, = [T,

for all 7 > 0, and for all nonzero é; € L,,. Therefore A is strictly inside Cone(0, I).
The system is redrawn in Figure 2.4-3. G is split into two parts R and A, and
C and H are lumped into the stable system M. If é;, and §; are the input and

output, respectively, of A, €, can be written as
&1 = RMuf + RMypuy + RMyzu,

By defining g, = RM 19 and @; = RMjyu; + RMisu,, the expression reduces to
€1 = ¥z + 4, and the system can be redrawn as in Figure 2.4-4. This system has the
same form as the basic feedback system in Figure 2.4-1, with A replacing G and
RMy, = RH(I — CH) ! replacing H. The external input 4, is identically zero.
Recall that A is strictly inside Cone(0, I), so the system in Figure 2.4-4 is closed-

loop stable if (RH (I —CH)™')! is outside Cone(0, I). Using the result at the end of
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Section 2.2 involving the co-norm, and invoking the assumption that H(I-CcH)™!

is stable:
IBH(I - CH) o < 1

= &l < flefl Ve e L,

= gl < l&zfl, Yr>0, Vé,e L,

= RH(I - CH) " is inside Cone(0, I)

= (RH(I - CH)™)"is outside Cone(0, )

= the system in Figure 2.4-4 is closed-loop stable.

At this point, we know the system is stable with respect to the fictitious inputs
and outputs ¢ and §. To complete the proof, we need to show that it is stable for

the original inputs and outputs u,y. Recall that
Uy = RMyyuq, + RMy3u,
Uy = 0

and that RM;, and RM; are stable. This implies that 3 &; > 0 such that
il < kiflujl, Vr>o0

Now observe that the equations
Y1 = Mni1 + Mayuy + Mazu,
Y2 = Mz1G1 + Msauy + Masus

ii'nply that 3 ky, ks > 0 such that
Il < kollgl|; + ks|jul, Y7>o0

since all the elements of M are stable. The system in Figure 2.4-4 is closed-loop

stable, so by definition, 3 k4 > 0 such that

19l < kallafl, vr>o0
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Therefore for all 7 > 0,

AN

lle < kallgli + kslull,

[

kakal|al: + ks lull;

< (kakakr + ks)|ul,
and the original system is closed-loop stable. This completes the proof. This proof
is quite different from the proof in [17]. It was presented here in order to illustrate
two analysis steps which will be used extensively in the new conic sector methods
of Chapter 3. These are (a) subtracting the cone center C from an operator in-
side Cone(C, R) to produce a new operator inside Cone(0, R); and (b) factoring R
from the input of an operator inside Cone(0, R) to produce a new operator inside
Cone(0, I).

A useful interconnection rule for conic sectors and LTI operators was illustrated
above when A was extracted from G. In general, for any relation G defined on
L. X Ly, and any stable LTI operator F with stable inverse, we can cascade F with
G at the input of G, resulting in a relation GF defined on Lj, X Ls,. With these
assumptions, the following rule holds:

G is inside Cone(C,R) < GF is inside Cone(CF, RF).

Proof. (=:) Define z = Fe. Then

ly—Czl|. < ||Rz|, Y7>0, V(z,y)€G (by assumption)
= |ly—CPFe|, < |RFell, Yr>0, V(ey)ecGF
= GF is inside Cone(CF,RF).

(«<=:) Substitute ! for F.

The rule also holds if strictly inside, outside, or strictly outside is substituted
for the word inside. This rule will be used several times in Chapter 3, usually in a
way similar to its use above, where the cone bound Cone(0, R) was replaced with

the simpler cone bound Cone(0, ).
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2.5 The Structured Singular Value p

Consider the feedback system in Figure 2.5-1, in which the two operators M
and A are constant complex-valued matrices. The system is considered well-posed

if the outputs e; and e, are defined for any finite inputs u; and u,. The outputs are

) - (s ] (2)

This transfer matrix is defined as long as the two matrix inverses (I — AM)~! and

given by

(/=MA)~ exist; or equivalently, as long as det(I— AM) # 0 and det(I —~MA) # 0.
It is sufficient to check only one of these determinants, since if one of them is zero, so
is the other. This is due to the well-established identity det(/—MA) = det(I—AM).

Now suppose M is fixed, but A is a member of a set X of matrices, and we
wish to find what bounds can be put on X so that this system is well-posed for
all A € X. This is analogous to the robust stability problem when M and A are
transfer functions. If all that is known about A is its maximum gain, we can give

a bound on &(A) which insures well-posedness:
det(I - MA) #0 VAec{A|o(A)<a} & o(M) < 1/a

where o > 0 is a scalar. Since we know nothing about the internal structure of the
matrix A, it is called an unstructured uncertainty block. Now consider the following

case in which a great deal is known about the structure of A:
det(/ - MA)#0 VAe{M | eC,|A|<a} < p(M) < 1/«

where p(M) = max |A;(M)| and @ > 0 is a scalar. In this case, the only unknown
fact about A is the value of the scalar A which appears in each diagonal element.
The two results above allow us to analyze the well-posedness of the system

in Figure 2.5-1 in the face of uncertain A, but only in two rather extreme cases:
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Fig. 2.5-1: A feedback loop with constant M, A. The system is well
posed if det(I — MA) # 0.
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(1) unstructured uncertainty, in.which the maximum gain of A is all that is known
about it; and (2) the case in which A is known to be a scalar times the identity
matrix. However, one’s knowledge of A might well lie between these two extremes:
for example, a 2 by 2 matrix A = [§;;] might be known to have 6,; = 0 and 1651 <1
for the other values of 7 and j. A method is needed to handle such cases. It is
sufficient for the method to handle only block diagonal A, because a problem such

as the one above can always be rearranged into block diagonal form:

I KU
let A = {0 53] 16;] <1
) & 0 0
define A = |0 6 O
0 0 6

and note that

&6 0 01J1 0
A:[%?]:[éég]o&zo 0 1| = UAV
s 0 0 & |0 1

Therefore the matrices U and V transform the original problem into one with a

block-diagonal A:
det(I - MA) = 0 <« det(]—-VMUA) = 0

Proof :
det(] — MA) = det(I - MUAV) = 0

< 3z #0 such that MUAVz =z
& 3 (Vz) #0 such that VMUA(Vz) = (Vz)
< Jdy # 0 such that VMUZ&y:y

& det(I -VMUA) =0
This block-diagonal perturbation problem can be handled with the Structured

Singular Value u [5,(6]. Define a function u(M) such that

det(I ~MA)#0 YA€ X, < puM) <1/
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where the scalar a > 0 and
Lo = {diag(A,Ay,...,A,) | 5(Ai) < a fori=1ton}

is the set of block-diagonal matrices with gain less than or equal to . Fach square
block A; has an asuumed dimension k;. Observe that 1(M) is a function not only
of the matrix M, but also of the assumed structure of A given by the set X,; that

1s, the number and size of the blocks A; of which A is composed. Let
Loo = {diag(Ay, Ay,...,A,))

be the set of block-diagonal matrices A; with dim(A;) = k; and with no restriction

on gain. Then an alternative definition of u(M) is given in 15]:

0 if no A € X, solves
w(M) = det(I — MA) = 0;

1 .
infacy {6(A) [det(T — MA) =0} otherwise.

In other words, u(M) is the reciprocal of the gain of the smallest block-diagonal
matrix A € X, which causes the feedback system to be ill-posed. Compare this to
the results given above for (M) and p(M): (1) 5(M) is the reciprocal of the gain of
the smallest unstructured matrix A which makes the system ill-posed: and (2) p(M)
is the reciprocal of the gain of the smallest “scalar times identity” matrix which
makes the system ill-posed. Given that the case of block-diagonal A is intermediate

between cases (1) and (2), it is not too surprising that for any structure X,
p(M) < u(M) < 5(M)

#(M) can be thought of as a measure of the closeness of the feedback system
to ill-posedness (and to instability when M and A are transfer functions, as we
shall see) when the structure of A is known to be block-diagonal; hence the name

Structured Singular Value. Furthermore, it is applicable to general structures for A
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since, as was demonstrated above, non-diagonal structures can be rearranged into
diagonal ones. u-analysis is applicable to any LTI feedback system in which several
parameters vary independently over a bounded range of values.

Here are some important properties of u:
wlaM) = |a|u(M)
< nf s -1
w(M) < inf 5(DMD™
sup p(MU) < p(M)

where

D = {D|D = diag(d,],d:1,...,d,I), d; € R}
U = {U|U = diag(Uy,Us,...,U,), U; unitary}

and the dimensions of the diagonal subblocks d;I and U; match those of the sub-
blocks A; in Xo. The last two properties are especially important since they pro-
vide upper and lower bounds for . There is, as yet, no known general algorithm
to compute u exactly, so all u software to date actually computes one of these
bounds instead. Fortunately, the difference between the upper and lower bounds
is usually quite small (less than 10 percent), so this does not cause much loss of
accuracy. The upper bound is more frequently computed, since the optimization
problem associated with it is convex; this guarantees that the global minimum will
be found. Software to compute the upper bound generally runs faster than software
for the lower bound. However, progress has been made recently (8] in finding faster

algorithms to compute the lower bound.
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2.6 Robustness Analysis for LTI Systems
2.6.1 Linear Fractional Transformations

Consider the feedback system in Figure 2.6-1, in which the (possibly MIMO)

transfer function A is connected in a feedback arrangement with the MIMO transfer

X P Py
function P =
‘ (P21 Py

transfer function from u to y by the convenient notation

), a block 2 by 2 matrix. We will denote the resulting

Fu(PvA) = P22+P21A(I“*P11A)‘1P12

where the subscript u stands for “upper.” A lower linear fractional transformation
(LFT) can be defined similarly. In Figure 2.6-2, the 2-by-2 block system P is con-
nected in a feedback arrangement with K, situated below it on the block diagram.

Denote the resulting transfer function from u to y by
F(P,K) = Py + P K(I — P, K) 1Py,

where the letter | stands for “lower.”

2.6.2 Nominal Stability

Consider again the block diagram in Figure 2.6-1. We will generally think of
P as the nominal, i.e., unperturbed plant, while A will represent the allowable
perturbations or uncertainties in the plant. The word “plant” is used in a general
fashion here, since it might well include the feedback compensator. The objective
of this analysis is to determine the effects of model uncertainty on the closed-loop
feedback system after a compensator has been designed and connected to the open-
loop plant, so P will generally describe the nominal closed-loop system. A will

usually be assumed to be stable (A € H,,), norm-bounded by 1, and to have block-



34

Fig. 2.6-1: An upper linear fractional transformation.
Yy = FU(P, A)’U, = (P22 -+ leA(.[ - PllA)—IPu)u.

Fig. 2.6-2: A lower linear fractional transformation.
Yy = .F'[(P, K)u = (PII + Png(I - szK)—IPZI)U.
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diagonal structure: A € X; where
L = {A]A=diag(A1,Ay,...,A,) and  ||A]|e < 1}

As befo_re, each A; is assumed to be square, with dim(A;) = k;. This differs
from the definition of X, in Section 2.5 only in that each A; is now a frequency
dependent transfer function, not just a constant matrix. These conditions may
appear restrictive, but in fact they are very general: if the actual plant uncertainty
Ai is not equal in magnitude to 1 at all frequencies, simply construct a frequency-
dependent weighting function W, such that a(W,-Z\i) < 1 for all frequencies, and
absorb W; into the nominal plant. If the actual plant uncertainty does not have a
block-diagonal structure, we have already seen that the system can be rearranged
to give it such a structure.

The input-output behavior of the perturbed system with a particular perturba-
tion A is simply F,(P,A). To determine if the nominal system is stable, check the

stability of F,(P,A) with A = 0. But F,(P,0) = P,y; therefore

The system is nominally stable <  P,,is stable.

2.6.3 Robust stability

A much more interesting question is whether this feedback system remains stable
for all perturbations A € X;. To answer this question, we need to state exactly what
“stable” means in this context. Consider Figure 2.6-3, in which disturbance inputs
uy and uy have been added at both sides of A and the resulting “error” signals e,

and e; have been brought outside the system. Define the feedback system F,(P, A)

U1 €1
to be internally stable if the transfer function from uz | to | ey | is stable; i.e.,
u y

analytic in the right-half complex plane Cy. The following important theorem from

6] establishes robust stability for this system:



v
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~

Fig. 2.6-3: A feedback loop with disturbance inputs uy, u,.
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Robust Stability Theorem. If P is stable, F,,(P, A) is internally stable for

all real-rational, stable A € X; if and only if

le(Pu)llee < L.

The fact that this gives a necessary and sufficient condition for robust stability
means that this test is completely nonconservative, as long as the chosen structure

for A accurately reflects the possible variation in the closed-loop plant.

2.6.4 Nominal Performance

Good performance for a feedback regulator usually means that the change in the
regulated output is small for large changes in the system input. In other words, the
performance is good if the closed-loop transfer function is small at all frequencies.
For other types of feedback systems, this may not be true; for instance, a closed-
loop servo system is performing well if the output tracks the input over a wide
range of frequencies. Good performance in this case means that the closed-loop
transfer function closely matches a prescribed low-pass characteristic. In these
cases, we can define an “error” output to be the algebraic difference between the
actual output and the desired, or nominal, output. With the error output so defined,
good performance is equivalent to a small gain at all frequencies for the transfer
function to this fictitious output, as in the case of a regulator.

For robustness analysis, then, one can always define outputs which are the
difference between the outputs of the actual system and the outputs of a “reference
system” having the desired response. Frequency weights can easily be attached
to these outputs and absorbed into the system model. After these two steps of

subtracting the desired response and applying frequency weights, the performance

criterion can always be put into the form

satisfactory performance <& ||M|, < 1
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where M is an appropriately defined transfer function. Define nominal performance
to mean satisfactory performance for the unperturbed feedback system P in Figure
2.6-1, i.e.,, with A = 0. Assume that the output y is a weighted error output as

described above; then

nominal performance <  ||Palle < 1

2.6.5 Robust Performance

Since P, is an exactly known transfer function, determining whether the system
meets nominal performance requirements, i.e., || Palleo < 1, is trivial; simply com-
pute and plot the maximum singular value of Pyy(jw). The important question is
whether it meets these requirements, and remains internally stable, for all allowable

perturbations:

{(i) [Fu(P,A)]o <1 Vstable A € Xy, and
(@) lle(Pu)llo <1

By the small gain theorem, this is equivalent to robust stability for the structure
shown in Figure 2.6-4, in which another uncertainty block Ap+1 has been connected

from the lower output of P to its lower input:

(2)  IFu(P,A)]Jeo €1 Vstable A € X, and
{ (22) (Pl <1
() det(I = Fu(P(je), A()) Ans (ju) £ 0
o Vwe R,V A, Api € Hy, where A € X, |Avi1lle <1, and
(1) Nu(Pr)lle <1

¢ the system in Figure 2.6-4 is robustly stable.

However, we can simply augment A with A, 41 as shown in Figure 2.6-5 to produce

. .o A 0 L.
a new perturbation matrix A = [O A } which is also block-diagonal. Robust
n+1
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n+1

Fig. 2.6-4: A system with fictitious “performance block”™ A,.;.
Stable for ||Antile < 1iff || Fu(P, A)lleo < 1.

n+1

Fig. 2.6-5: Same as Fig. 2.6-4, but with A,,, augmented with A.
[Fu(Py A)lloo < Liff [|u(P)floo < 1.



40

stability for Figure 2.6-5 is obviously equivalent to robust stability for Figure 2.6-4,
since the blocks have only been rearranged. Robust stability for Figure 2.6-5 can
be determined, as before, by computing u at all frequencies, but now g should be
computed for the entire block 2-by-2 transfer function P. This is summed up in the
following theorem from [6]:

Robust Performance Theorem. The system in Figure 2.6-1 meets robust
performance requirements (i.e., it is robustly stable and satisfies ||F,(P, A)|s <

1 V stable A € X, if and only if

1#(P)loo < 1.

This powerful theorem shows that the Structured Singular Value y is a very use-
ful figure of merit for system robustness. By defining A-blocks and error outputs
with frequency weights that accurately reflect model uncertainty and closed-loop
performance requirements, a designer can determine if a system will meet its spec-
ifications under all allowed perturbations simply by computing and plotting p. If
u <1 at all frequencies, the system is robust.

There is a controller synthesis method, based on recent H, synthesis results,
which automatically produces stabilizing controllers to minimize ||u||o. A discussion

of it is beyond the scope of this thesis; it is described in [6] and [18].
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2.7 Sampled-data Systems
2.7.1 Digital Filters: A Continuous-time Interpretation

A digital filter with z-transform D(z) is usually thought of as an operator
mapping an input time sequence {uo,ul,u;g,...} into an output time sequence
{Y0,¥1,Y2,-..}. In this conceptual framework, the system inputs and outputs are
considered to exist only at times ¢ which are multiples of the sampling period
T: t ={..,-2T,-T,0,T,2T,... }. An alternative viewpoint is to view D(z)
as a conlinuous-time operator with an impulse response that is an impulse train:
d(t) = Zk:dk(S(t ~ kT) where D(z) = Ek:dkz“k. With this definition of impulse re-
sponse, the frequency response is readily recovered by taking the Laplace transform

of d(t) in the usual manner:

/Oo e d(t)dt = [ e Y dib(t ~ KT)db
—0oQ — 0 k

— dee—sTk — D(CST)
k

where the shorthand notation ¥, is used to represent D e oo-

The Laplace transform of d(t) evaluated on the Jw-axis is equal to the z-
transform D(z) evaluated on the unit circle, so these two ways of looking at the
action of the digital filter D(z) are equally valid.

Usually, the input to a digital filter is restricted to be an impulse train, but
the development above shows that we can define its output when the input is a
continuous-time waveform. We treat D(z) = D(e’*T) as a continuous-time LTI op-
erator, so the Fourier transform of its output is simply the product of D(e’T) with
the Fourier transform of the input. D(e’“T) can be thought of as a linear intercon-

nection of weighted time-delay elements dype™**T; the delay element corresponding

to di has a time delay of kT seconds.
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2.7.2 z-Transform Loop Stability Analysis

Figure 2.7-1 shows a sampled-data feedback system. The sampler (treated as
an impulse modulator) converts the analog output y(t) of the plant G(s) into an
impulse train 37, y(kT)6(t — kT). The impulse train is processed by the digital
filter D(z) = D(e’“T), and the result is converted back into an analog signal by the
hold operator Hj (s). The notation HZ indicates that the hold is a zero-order hold
(ZOH) with length T, defined by HT (s) = (1 — e *T)/s. The impulse response of
H{ (s) is a rectangular pulse with height 1 and a duration of T seconds. The effect
of HY (s) is to convert an impulse train with pulse spacing 7 into a stair-step analog
waveform. This waveform is the input to the analog plant G(s).

The output of a standard digital-to-analog converter (DAC) is a stair-step wave-
form of this type. Therefore most practical sampled-data systems implicitly in-
clude zero-order holds. More complicated holds, such as the first-order hold (FOH)
HY(s) = (1 —e~*T)%(s + 1/T)/s? and the slewer hold HI(s) =(1—-¢eT)?/Ts?, are
occasionally used in practice to achieve a better match between the DAC output
and some desired smooth analog signal, or to make the DAC output continuous for
systems which are sensitive to step inputs.

If the analog plant transfer function G(s) is ezactly known, then the combina-
tion of the hold, the plant, and the sampler can be viewed as a discrete-time LTI
operator, and standard z-transform techniques may be used to determine stability.
When an impulse §(¢) is applied to the ZOH’s input, the resulting impulse train at
the output of the sampler is the impulse response of this discrete-time equivalent
system. Let g(t) be the impulse response of G(s). Then y(t) = g(t)«h(t) is the input
to the sampler, where h(t) is the ZOH impulse response. If G(s) has a state-space

representation, then y(kT) may be derived as follows:

A B
G(s) =

C D
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T
a(s) ——

Hy'(s) D(z)

Fig. 2.7-1: A sampled-data feedback system.
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So

g(t) = Ce™B+ Dé(t)

h(t) is given by

1 O0<t<«1
h(t) = { =
(®) 0 otherwise.

So y(t) = g(t) = h(t); since h(t) = 0 for ¢ > 1, consider y(¢) for t > 1:

t T
y(t) = / g(t —7)h(r)dr = / g(t —7)dr
0 0
T T T
| cerIBar = certon) [ eatnpgr . cert-m) | v Bdr
0 0 0

Now define I' and ® by
T
T = / A" Bdr  ® = AT
0

For positive sample times ¢ = kT we get the sampled impulse response

D, k=0
CO1T, k>1

y(kT) = {
This impulse response has the state-space representation
¢ |

r
o D

Both ¢ and ' may be computed together in one step, using a matrix exponential

Y{z) =

routine and the following identity:

. AT BT\ _ [e*T [TeArBdr
PUo ol T lo 1

Given this z-transform for the discretized plant, it is simple to determine stability
of the loop. The discrete-time closed-loop transfer function from r to e is (I -
Y (2)D(z)); simply compute the state-space representation for this function using

the rules of Section 2.2.1, then compute the system’s poles. If all poles are inside
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the unit circle, the system is stable; if not, the system is unstable. Alternatively,
we could perform the discrete Nyquist test on the loop gain Y (2)D(z).

The problem with this approach is that it assumes the plant transfer function
G(s) is ezactly known. This is never the case in practice. For any physical system,
the best we can do is find a G(s) which closely approximates the system response,
and to find some bounds at each frequency on the error between this model and the
actual system. If the system is intended to operate over a wide range of temperature,
air pressure, component tolerances, etc., any meaningful plant model should include
these uncertainty bounds as an important part of the model.

This issue of system robustness with respect to plant uncertainty is the motiva-
tion for using conic sector analysis on sampled-data systems. Since the uncertainty
is characterized in the analog domain, it is desirable to treat all signals and all
operators in the system as analog entities. The price paid for this treatment is that
in the analog domain, the system is not LTI. The techniques described in Chapter 3

let us work around this difficulty without sacrificing accuracy.

2.7.3 Notation for Sampled Signals and Systems

There is a useful notation, due to Richard Whitbeck [26], that describes both
sampled signals and the transfer functions of discretized analog plants. If u(t) is a

continuous-time signal (possibly vector-valued), then define

So (u)” is the output of a sampler (impulse modulator) of period T when its input
is u(t). The superscript indicates the period of the sampler; this makes the notation

well suited for multi-rate systems, where all samplers do not run at the same speed.
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In a similar fashion, define

e o]

GT(z) = Z g(kT)z"*

k=0

where ¢(t) is the (possibly matrix-valued) impulse response of an analog plant with
transfer function G(s). G7(z) is the z-transform of the discretized plant G(s).
Again, the superscript indicates the sampling period.

Sometimes it is more convenient to write (u)T without parentheses, as uT. To
avoid confusion, lower-case letters will generally indicate signals, and upper-case

letters will indicate transfer functions.

2.7.4 Hybrid Operators

Consider the sampled-data operator in Figure 2.7-2. An analog input signal
u(t) passes through an LTI prefilter F(s) and the result (Fu)(t) is sampled at a
period of T seconds per sample. The sampler is modelled here, and throughout
this thesis, as an impulse modulator: its output is a weighted string of §-functions.
This impulse train is denoted (Fu)T(t) = % 6(t = kT)(Fu)(t), following Whitbeck’s
notation. (Fu)T passes through the discrete-time operator D(z) = D(e’*T) which
is a conventional digital filter. The output (DFu)?(t) of D(e*T) feeds into the
LTI hold filter #1(s) and the resulting system output is y(t) = A(t) * (D(Fu)T), the
linear convolution of the impulse train (DFu)?(t) with the impulse response h(t)
of H(s). This type of system is called a hybrid operator, since it is a combination
of continuous-time and discrete-time systems.

Since all the components of this hybrid operator are linear, so is the hybrid
itself. However, due to the action of the sampler, the hybrid is not time-invariant;
therefore no transfer function is defined for this system, and conventional frequency-
domain analysis techniques are useless. There is, however, a useful property of

hybrid operators which can be exploited: they are pertodically linear time-varying.



u(t)

—

F(s)

u ——

D(z)

H(s)

— y(t)

Fig. 2.7-2: A hybrid operator.

F(s)

H(s)

Fig. 2.7-3: A hybrid operator with D(e*T) lumped together with the
hold H(s).
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This means that, if ¢g(¢,7) is the time response of the system to an input impulse

at time 7:

gt +T,7+T) = g(t,7) Vi, r

where T is the period of the system (in this case, the period of the sampler). This
can easily be shown:

For simplicity, lump the digital filter D(e’“T) together with the hold H(s);
since both operators are LTI, this is legal. This results in the hybrid of Figure
2.7-3. Compute the output y(t) = h(t) * (Fu)T when the input is a delta function

at time 7: u(t) = 6(t — 7). Let f(t) and h(¢) denote the impulse responses of F(s)

and H(s), respectively.

(Pu)®) = [~ 1= 9)d(s~ r)ds = f(t—7)

(Fu)(t) = Z5t—kT Fu)(t) = S 6(t - kT)f (kT ~ 1)

h(t) « (Fu)T () = /°° h(t —s) 5" 6(s — kT) f(KT — 7)ds

= Y h(t—KT)(ET — 1) = gt,7)
k
Now to show that the system is PLTV with period T, evaluate g(t + T, 7 + T):
gt +T,7+T) = Y h(t+T —kT)f(kT — 1 —T)

k

= D h(t—(k—1)T)f((k-1)T — 1)
k

= Zh(t—kT)f(kT—T)
k

= g(th)

2.7.5 A Property of PLTV Operators

Any two SISO LTI operators D and G are commutative; i.e., DGu = G Du for all
inputs u. If D or G is PLTV, however, this is no longer true in general. A condition

which makes them commutative is that the LTI operator D(jw) be periodic in w
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with period 27 /T where T is the period in seconds of the PLTV operator G. This
property is easily proven, and will be exploited later in this thesis.

Let g(t,7) be the response of the PLTV operator G to an impulse at time 7.
Assume that G is periodic with period T: g(t + T,7 + T) = g(t,7). Assume that
D(jw) is the frequency response of the LTI operator D and that D(j(w+27/T)) =
D(jw) for all real w.

Then the impulse response d(¢) of D can be found by taking the Fourier series
of D(jw):

d(t) = Zd,ﬁ(t — kT) where
k

T x/T .
dy = f / e“* D(jw)dw
~x/T

2m
Note that d(t) is an impulse train, so D(jw) can be thought of as the frequency

response of a digital filter. Now for any input u(t):

(DGu)(®) = d(t) » (Gu)(®) = [ d(t = 5)((Gu)(s))ds

= /_o:o d(t — s) /ho:o g(s,7)u(r)drds
= /:; Zk: di6(t —s — kT) /_O:O g(s,7)u(r)drds

= de /_o:og(t — kT, 7)u(r)dr

and

(@Du)(t) = [~ g(t,7)((Du)(r))dr
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As long as D(jw) # O for any real w, this identity can be expressed in another way:
Gu = DGD 'y

for all inputs w. This is easily shown: DGD 'y = GDD 'y = Gu. This is the form

in which this identity will be used most often.
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2.8 Multirate Analysis: Kranc Operators in State Space

One of the main results of this thesis is a nonconservative robustness analysis
technique for multi-rate hybrid systems. In order to have a standard for compari-
son, we need a technique to compute the robustness margins ezactly in some special
cases; then we can compare the robustness margin computed with the new conic
sector method to the exact, known margin in order to estimate the conservative-
ness of the new technique. A good method for doing this is Kranc vector switch

decomposition in state space, previously reported in [22],[21].

2.8.1 State-space Realizations for Kranc Operators

Consider the multirate system in Figure 2.8-1. An analog plant G(s) (SISO
or MIMO) is fed by the output of a sampler running at period T/m, and the
output of G(s) is sampled at period T/n, where n and m are integers. The two
sampling periods are thereby related by a rational number; this assumption is re-
quired for the Kranc operator approach. The samplers are modelled by impulse
modulators, as usual. Since the sampled input sequence (u)7/™ and the sampled
output sequence (y)T/” run at different rates, the relationship between them cannot
be shift-invariant; therefore there can exist no transfer function relating these two
sequences directly.

Figure 2.8-2 shows the same system in an equivalent form: each sampler has
been replaced by a multivariable sampler with period T, with the LTI operators
E™ and E™, or E™ and E™, at its input and output. E™" and E™" are defined

as follows:

- I -
esT/nI
Ent — e‘lsT/n]

e(n—l)sT/n[_




T/m T/n
u o= G(S) " > (y
(u)T/m y

Fig. 2.8-1: A multirate system.

u —y pm+ L—-% g—; E™m-

G — Eru-

(u)T/—

)T/n

m and n are integers.

o

> ()"

Fig. 2.8-2: Same system with samplers converted to period T by

decomposition and recombination operators.

G krancT( z )

E" > (™"

Fig. 2.8-3: Same system with the discrete-time LTI operator be-

tween the samplers replaced by its Kranc operator GL

sampler is MIMO.

Kranc

(z). The
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E" — {I e~sT/n] e—?sT/nI o e—(n—l)sT/nI]

where each I is an identity matrix of appropriate dimension. E™" has the effect of
creating multiple time-advanced copies of its input signal. When the “vectorized”
signal E™"u is sampled at period T, the resulting vector-valued sequence (£ u)T
contains the same values as the original signal sampled at the faster period T'/n:
(u)T/”. The process can be thought of as taking a “frame” of n consecutive samples
from the fast-rate sequence (u)T/” and arranging them into a single vector-valued
sample of the slow-rate sequence (E™u)7.

The operator £™~ recombines such a slow-rate vector sequence back into a fast-
rate sequence. It applies increasing amounts of time delay to its n inputs to cancel
the increasing amounts of time advance that were applied to these signals by E"™.
E™ and E™ are called decomposition and recomposition operators, respectively.

Note that since both samplers in Figure 2.8-2 operate at the same period T,
we can define a MIMO discrete-time LTT operator relating the sequences (E™tu)T
and (E”*y)T appearing at the outputs of the two samplers. The impulse response
of this operator is simply the sampled impulse response of E"*GE™ . We call this

operator the Kranc operator for this multi-rate system:
Gkrane(2) = (E™G(s)E™)"(2)

An equivalent representation for this system is shown in Figure 2.8-3. The contin-
uous-time input u feeds into E™", is sampled at period T, and goes through the
discrete-time Kranc operator (E""GE™ )T. The discrete-time output of the Kranc
operator passes through E"” and emerges as a discrete-time sequence with period
T /n. Note that there is still no transfer function describing this entire system, since
the input is continuous and the output is discrete; however, the Kranc operator’s
transfer function GZ

Kranc(2) contains all the information necessary to simulate the

input-output behavior of this system for any arbitrary input.
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If the Kranc operator is treated as a rational function in z, analysis can be
difficult, since the Kranc operator is MIMO. It was shown in [22] that a state-space
quadruple can be readily constructed for G ranc(2), and that the dimension of the
state space is no greater than that of the sample-equivalent system GT/k(z) sampled
at the fast period T'/k, wﬂere k =lcm(m,n) is the least common multiple of m and
n. If G(s) has the form G(s) = Go(s)HoT/m(s) where Hg‘/m(s) is a zero-order hold
of length T'/m and Gg(s) is a rational function in s, then the Kranc operator’s
state dimension is equal to that of Go(s). This low state dimension makes the
state-space formulation of Kranc operators a very efficient analysis technique for
multi-rate systems. It is especially useful when a feedback system can be broken up
into several multi-rate subsystems of the type in Figure 2.8-1. The Kranc operator
for each subsystem can be computed separately, then the state-space quadruple
for the entire closed loop system can be readily constructed using only real matrix
arithmetic. The stability of the closed-loop system is tested by computing the
eigenvalues of the A matrix for the closed-loop system. Section 2.2.1 describes the
state-space operations required for common block diagram manipulations such as
cascading and feedback interconnection.

The state-space realizations for Kranc operators, with and without a zero-order

hold present, are given below.
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Kranc operator without a ZOH. For any analog plant with input sampled

at period T'/m and output sampled at T /n, where m and n are integers, let

A | B
GT/k(z): —_
c | b

be the z-transform of the analog plant’s impulse response sampled at period T'/%

where k = lem(m,n). The state-space quadruple of the resulting Kranc operator

(sampled at period T) is

- Ak Ak—lB Ak—l—;’fL_B o Ak__l_ (m;Ll)kB_.
C Dy Dy, A D1,
Gq];ranc(z) = CA% D21
CA("—nl)k Dnl Dn'm,
where .
-1 — 1)k
Dij = C‘I’<(l L —1)B+ﬂu’
n m

l -

0 otherwise.
a {D i G=0k G- _ g
1] — n m

0 otherwise.
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Kranc operator with a ZOH. For an analog plant of the form G(s) =
Go(s)HI™(s) (where Hg/™(s) is a zero-order hold of length T'/m), with input
sampled at period T'/m and output sampled at period T /n, compute the fast-rate

sampled impulse response

A B
(GoHy ™*)T/*(2) =

o D

with a short zero-order hold of length T /k, where again k = lecm(m,n). Then the

following formula gives a minimal realization for the Kranc operator:

Glrane(2) = (E™GoHy ™ E™)T
- & (m—1)k (rm—2)k .
A AT XB A™EXB ... XB
C Dy, Dy, Dy,

= CA= Doy
oA Do, ... D]

where

1 .

0  otherwise.

&

O {D if 0 < U=k (-DE
ij = - n m

0 otherwise.
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2.8.2 Robustness Analysis Using Kranc Operators

Consider the multi-rate feedback system in Figure 2.8-4. Two analog plants G(s)
and K(s) are connected in a feedback arrangement. Their outputs are sampled at
periods T'/n and T /m, where m and n are integers. Furthermore, the plant G is
multiplied by an uncertain scalar quantity 1+ «, where « is a constant but unknown
complex number. If this system is known to be stable when o« = 0, a reasonable
test of robustness is to find the largest real number 3 such that the system remains
stable for all |a| < 8. The quantity 8 is sometimes called the gain-phase margin.

The Kranc equivalent system is shown in Figure 2.8-5. The Kranc operator for
the upper plant is (1 + a)G¥%,,,. where G%, ... = (E™*GE™ )T, and for the lower
plant it is K%, ... = (E™"KE")T. Since 1+ « is constant at all frequencies, it may
be pulled out of the Kranc operator and treated as a scalar multiplying the vector
input to G%_, . Decomposition and recomposition operators E™* and E" are
required outside the feedback loop to vectorize the -input r before sampling and to
reconstruct the slow-rate vector output of G%_,  into the fast-rate sequence (y)T/m.

It is shown in [21] that, if this system is stable for o = 0, it will remain stable

for all |a| < @ if and only if

B < mininf|t + ;1 (K,

Ghrane(¢T))]|

Kranc

where A; are the eigenvalues of K ineG%rane(67T). The closer the eigenvalues
of the nominal loop gain come to the critical point —1, the smaller the robust-
ness measure becomes. Computing this quantity requires finding the eigenvalues
of a complex-valued matrix. The computation should be carried out for many fre-
quency points; then the minimum value of the function can easily be seen on a plot
of ’1 + )\fl(KIT{mncGﬁmm(ej‘”T)] versus frequency. This technique will be used in

Chapter 5 to determine the conservativeness of the new conic sector methods in the

multirate example presented there.
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1+

G(s)

K(s)

> ()"

Fig. 2.8-4: A multirate feedback system with multiplicative pertur-

bation 1 + . « is assumed constant.

| Em+

1+«

Gkranc

Kkranc

E™”

—> ()"

Fig. 2.8-5: Kranc operator equivalent of the above system. Feedback

loop is now discrete-time LTI.
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Analogous results for the gain margin and phase margin of a multirate system
are also given in [21]. The eigenvalues );, or characteristic loci, of the loop gain
K};mncG’ﬁ,am(ej“’T) are computed; then the gain margin or phase margin for each
individual locus A; is found by the conventional SISO method. That is, the gain
margin of the locus A; is the nonnegative real interval [min(Ai) Qmax(Ai)] Where the
locus A; can be scaled by any number in the interval without crossing the critical
point —1. The phase margin is the maximum phase shift ¢, (\;) the locus can be
rotated by, in either direction, without crossing —1.

For the multirate system, the gain margin is the intersection of the gain margins

If the individual loci [21]:

GM =

3

{amin()\i)»amaxo\i)]

1

%

il

and the phase margin is the minimum of the phase margins of the individual loci:

PM = m_inqﬁmax(/\i)
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Chapter Three — Conic Sectors for Hybrid Operators

3.1 Basic Theorem: a Cone that Contains the Hybrid Operator

This section presents a theorem from [20],[29] which is the basis for this thesis.
The theorem allows us to construct a conic sector to contain any stable hybrid
operator K of the form shown in Figure 3.1-1: a prefilter F(s) followed by a sampler
with period T', a digital filter D(z), and a hold H(s). Before presenting the theorem,
let us examine in detail the input-output behavior of this hybrid operator.

This system is linear, though not time-invariant; therefore we can predict its
output for any input in L if we know its output for all complex exponential inputs
upe?™t, where ug is any constant complex column vector. In the following derivation,
let w, = 27 /7.

Suppose the input is u(t) = uee’T, where ug is a constant column vector Ug €
C™. Then the output of the sampler is

1 _
Ty = = F(jw)uge! @rken)t
T%

The output of the digital filter is
72 = g 0 D(E) P (g
Finally, the output of the hold element is
y = % ; H(jw + gkw,) D(e?T) F (ju) el ekt
Now let u(t) be any signal in L,; u has a Fourier transform representation
1

u(t) = — U(jw)e™ dw

2m — 00
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Fig. 3.1-1: A hybrid operator.
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By invoking the linearity of the system, we can find the output y with this input u:

1

y(t) = 5_ / f Z H(]w 4 ].ka)D(e]wT)F(]-w)U(].w)e](w-i—kwg)tdw
m — 00 &

By making a change of variables, this becomes

11 [

)= — -

[Z H(jw)D(e“T) F(jw — jkw,)U(jw — Tkw,)| e dw

where we have taken advantage of the periodicity of D(e’*T). Given this input-
output description of the system, we may proceed to derive a conic sector which
strictly contains it.

Let the cone center C be any LTI L,.-stable operator; we will see shortly that
the optimal choice for C is given by the baseband (non-aliased) response of the
operator K:

1
Copt = THDF

In order to simplify the notation, define

+H(jw)D(e*T)F(jw) — C(jw) if n = 0;
%H(jw)D(ej“’T)F(jw — Jjnws)  otherwise.

Note that for an input u(t) to this system,

Kn(].w) = {

1

v(t) = (Cu)(t) = - /_ : S Kn(jw)U(jw — jnws) e du

In order to assure Lebesgue Dominated Convergence, which is required in one step
of the derivation, assume for |w| sufficiently large that

D K] < g for some , 8 0.

Now we may derive the following Lemma, which is the same as Lemma 3.A of [20].
Lemma. Let e(s) be the Laplace transform of e(t) € L, and let K, be as
described above. Then
1 /"O
27 J -
1

= (ST s )P feti) P

— 00

2

dw

Z K.(jw)e(jw — jﬁws)

AN
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Proof :

2

dw

27r/

we(jw — jnw,)

< é% (2; Jw-—anQH>2dw
< o [ (St - nal) o
< 5 )T (SR ) (et - o) o

n

Now move one of the summation signs outside the integral by Lebesgue Dominated

Convergence:

= [ (Sl ) e — )P

Next make a change of variables:

[ (SRt ) ) e

1

— o [ (TR + k) ) et

This completes the proof of the Lemma.

Now we may proceed to prove the main theorem. For simplicity of notation,
define Hy(jw) = H(jw — jkw,). Define Fi(jw) and Ci(jw) similarly.

Theorem 1. Let K be a stable hybrid operator, let C be any LTI L,,-stable
operator, and let R and R™! be LTI L,,-stable operators.

(a) K is strictly inside Cone(C, R) if

F(R(w)) > —— (n{w) - n) +rw)  VeeR
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for some 1 > € > 0, where

ri(w) = % (%:52[1%(]@)]) D(eT) (ZU )
i) = g S0 Hlio) D) Byl

rs(w) = Za < Hi(jw) D(ej“’T)Fk(jw) —Ck(jw))
(b) Furthermore, the optimal center

Cljw) = %H(J'W)D(E“”T)F(Jw)

minimizes the lower bound for ¢(R(jw)).

Proof: define the truncated function

e-(t) =

{ (Re)(t) ift>r;

0 if ¢ < 7.
then
(K = C)ell?
= (K= C)R Re|;
= (K= C)RE&];

< (K -C)R'& |3,

- [l ool a

N H(K — C)R e, (jw) szw (by Parseval’s theorem)

27 J o

‘1/
27

2
dw

ZK (Jw)R ' (jw — jnw, Jér(Jw — Jnw,)
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Now applying the above Lemma:

1

< 27r/ (ZZHK (Jw + Jkw,)|] > HR (Jw)é, (jw) H dw

< o [T ) ralw) + ) R G (0)] o

< o [ 0= a0t (RGw) | R G e ) de

— o[- gt e

< o [ E - o [RGB ) o

S B O G PRy L0 S O P

27 27r 0 1nf 1 R(jw)||?

where € = ¢ <u1)1€1£2 HR(jw)|(2> > 0.

< &l - R,
< &l - R

and by causality of R™1:

Il

[Re|l? — €| R Relf2

1

[Rell7 — €flef];

< [ Ref? =" (lel + ly)?)
where

!

= >0 and a:sup(H ell

lell+

So the system K meets the definition of being strictly inside Cone(C, R). This

6II

< oo since K is stable.
1+ a?

completes the proof of part (a). The proof of part (b) is simple: observe that
rs3(w) = 0 when C = Copt = %HDF. Since r1(w) and ry(w) are independent of
C', this choice for C minimizes r;(w) — ro(w) + 73(w). This completes the proof of

Theorem 1.
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In the SISO case, the terms r; and r, may be combined in closed form to yield
a simpler formula:
Theorem 1'. Let K be a stable SISO hybrid operator, let C' be the optimal
(stable) cone center C(jw) = LH(jw)D(e™T)F(jw), and let R and R~! be LTI

Ly.-stable operators. Then K is stricly inside Cone(C, R) if

) 1 1 . i ‘w
Rw)F > 5 72 22 2 Higw) Fa(jw) | | | D(eT) 2
—e\T* 7 ntk

for some € > 0.
This version of the theorem will be used extensively in this thesis. Chapter 4

presents a method from [20] for computing this lower bound for |R| in closed form,

when H and F are SISO rational functions in s.
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3.2 Limitations of the Basic Theorem

The preceding theorem can be used directly to determine the stability of a
nominal sampled-data feedback system as long as the hybrid compensator is stable
and certain other assumptions are met. Consider the system in Figure 3.2-1. If
all the system components G(s), H(s), D(z), and F(s) are exactly known, we can
use Theorem 1 and the results of Section 2.4 to check a sufficient condition for
closed-loop stability as follows:

1. Use Theorem 1 to compute C(jw), R(jw) so that the hybrid compensator
K is strictly inside Cone(C, R).

2. Using a Nyquist plot or some other method, test for stability of the system
when C(jw) is substituted for the hybrid compensator K.

3. Compute ¢(RG(I + CG)™Y) at all frequencies. if C satisfies the test in (2)
and [|[RG(I+ CG) Y| < 1, then the conic sector stability criterion is satisfied and
the system is stable.

It is important to note, however, that this is only a sufficient condition. It is
easy to construct examples which are closed-loop stable but which have ||[RG(I —
CG) e > 1. For SISO systems, this condition is caused solely by slow rolloff
at high frequencies in F and H. An examination of the formula for R(jw) in
Theorem 1 reveals that, when the optimal cone center %HDF is used, the cone
radius consists entirely of cross-products 6*(H)5*(D)o*(F,) where k # n. That
is, every term of R?(jw) involves the product of the gains of F' and H at different
aliased frequencies w+ kw, and w + nw,. If the prefilter F and the hold A have very
low gain at frequencies above the Nyquist rate 7 /T, all of these cross-products will
be nearly zero and the radius will be very small. In the limit as perfect prefiltering is
achieved, the radius R goes to zero. This can be interpreted as follows: with perfect

prefiltering (F(yw) = 0 and H(jw) = 0 for w > 7/T), no aliasing or “stairstepping”
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Fig. 3.2-1: A sampled-data feedback loop.
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occurs, and the hybrid operator no longer has a time-varying response. It becomes
an LTI system completely described by the LTI cone center C.

Another source of conservativeness occurs only in the MIMO case. Since the
formula for R involves maximum singular values, considerable information about
the system is lost when D(z) is poorly conditioned; i.e., when « = (D) /(D) > 1
at some frequencies. This causes stable systems to fail the sufficient condition for
stability when the controller has a high condition number k. An example of this is
given in Chapter 5.

An obvious limitation of Theorem 1 is that is requires the hybrid compensator to
be stable. This rules out the direct use of the theorem for integrating compensators
such as PTand PID controllers, as well as many compensators for open-loop unstable
systems.

One more limitation in the MIMO case is that all channels must be sampled at

the same period T. This rules out direct application of the theorem to multi-rate

systems.

3.3 Flexibility of the Basic Theorem

All the limitations of Theorem 1 mentioned above can be overcome by exploit-
ing the inherent flexibility of the theorem. Although it is natural to think of the
operators F' and H as corresponding to the actual anti-aliasing filter and hold ele-
ment that are physically present in the system, F and H can be set equal to any
arbitrary transfer functions, so long as they are stable. Refer to Figure 3.3-1; a nat-
ural application of Theorem 1 would have us finding a cone bound for the hybrid
compensator in the dashed box — F, the sampler, D, and H. However, we can
choose any stable, invertible transfer functions a(s) and 8(s) with stable inverses

and restructure the system as shown in Figure 3.3-2. « and 8 appear in series
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Fig. 3.3-1: A sampled-data feedback loop. The subsystem in the
dashed box can be cone-bounded directly by Theorem 1.

Fig. 3.3-2: By inserting fictitious operators a, 8, a', and §7!, the

conservativeness of Theorem 1 can be reduced.
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with their inverses, so they have no effect on the closed-loop system. By applying
Theorem 1 to the fictitious hybrid compensator in the dashed box — o, the sam-
pler, and § — and lumping F, o~ !, 87!, D, and H with the plant G, we get an
alternative and equally valid sufficient condition for closed-loop stability. Since the
only conditions on « and g are that they be stable with stable inverses, we actually
get a family of tests for closed-loop stability.

Let K denote the hybrid operator consisting of a, the sampler, and #. Then

Theorem 1 results in C, R such that K is inside Cone(C, R) where

Cliw) = 7B(w)a(sw)

o’ (R(jw)) = %—2 {(Zk: 5(ﬂk(3'u)))> (Ek: 7(an(jw)) > Z}; F(Br(yw)ay Jw))}
For simplicity in the MIMO case, assume R to be a diagonal operator with the
squared magnitude of each diagonal element R:;i(jw) equal to the expression above.
Further assume that R;; is minimum phase; this satisfies the requirement that R and
R~! both be Ly,-stable. Denote the cone radius so defined by R = Rad(e, 8). Such
a minimum-phase factor always exists: Chapter 6 presents a method for approxi-
mating it with a rational function. However, since R is a scalar times an identity

matrix, and we already know the magnitude of the scalar, it is not necessary to

know the phase of R;; at each frequency in order to test the closed-loop stability

condition.

For this system, the closed-loop stability criterion is
|Re™ ' FGHDB (I~ Ca " FGHDB™ ) Moo < 1

where R and C are defined as above. This expression will be simplified somewhat
in Section 3.4. For now, simply note that the above expression provides a whole
family of sufficient tests for stability, parameterized by the operators a and 8. The

following sections will show how, by making appropriate choices for a and 3, to
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overcome all the limitations of Theorem 1 pointed out in the preceding section.
One improvement is already obvious: the requirement that D(z) be stable is no
longer needed. Since D has been pulled outside the hybrid operator K and lumped

with the plant, the restriction of Theorem 1 that K be stable has no influence on

D.

3.3.1 A Simple Cone for a Sampler with a ZOH

Consider the SISO hybrid operator in Figure 3.3-3. It consists of a sampler
sandwiched between two identical operators o = 1/(s+e¢), where € > 0 is vanishingly
small. We cannot simply use 1/s, because then the operator would not be L,,-
stable and Theorem 1 would not apply. This operator is inside Cone(C, R) where
C = 7o’ and R =Rad(e, ) as defined above. An examination of the formula
defining R reveals that R(jw) is periodic in w with period 27 /T; therefore, it can
be considered to be the transfer function of a discrete-time operator evaluated on
the unit circle: R(z) where z = ¢/“T. [20] presents a method to evaluate Rad(a, 8) |2
in closed form as a rational function in z when « and [ are SISO rational functions
of finite order. The method is described in Section 4.1.1 of this thesis. Application
of this method to the hybrid operator in Figure 3.3-3 gives this result:

—W(el)z (272 — (7T + eT)2t 4 1)
4E3T(1 — e«eTZ~1)2(1 — eeTZ~1)2

[R(jw)]* =
where z = /T and
W(eT) = (T +1)e " + (T —1)eT
Since for €T < 1, W(eT) ~ §E3T3, this expression simplifies greatly in the limit:

. - 2
lE%|R(Jw)| - 6(1 _Zﬁl)g
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N/

s+e€ s+e€

Fig. 3.3-3: A sampler sandwiched between two near-integrators
a=1/(s+¢€).

Fig. 3.3-4: A sampler followed by a ZOH.
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In spite of the minus sign, this expression is positive everywhere on the unit circle.

Now consider the system in Figure 3.3-4: a sampler followed by a ZOH. The
system is redrawn in Figure 3.3-5 with « and a™! inserted in series before and
after the sampler. The result above gives us a cone bound for the operator in the
dashed box; we would like to extend this to a cone bound for the entire system. In
Section 2.3, it was shown that if an operator K in Cone(C, R) is preceded by an
LTI operator F, the cascaded operator K F is inside Cone(CF,RF). We can use
this property to lump the a~! operator at the input of the dashed box inside a cone
bound, but what can be done about the operators o ' and HT at the output of
the box? Note that, since H] (jw) = (1 — e77*T)/jw, the ZOH has a factor which
is periodic in w with period 27/T. Since the operator in the box is PLTV with
period T', the results of Section 2.7.4 allow us to commute the box with the periodic
factor of the ZOH. This leads to Figure 3.3-6, in which the box is preceded by
(s +€)(1 — e™°T) and followed by (s + ¢)/s. But li_{%(s +€)/s = 1; therefore in the
limit we can ignore the operator at the output of the box and use the results of 2.3

to produce a cone bound for the entire system: the sampler followed by a ZOH is

inside Cone(Cy, Ro) where

, o1 1—271 11—271
Co(yw) = ll_f,%faz( o) T
1
= TH[SP(S)

[Bo(jw)[* = lim [Rad(ec, ) ?](s + ) (1 — =)

—T%z! 2 -1
= m(—s (1-271(1 - 2))
T?%s?
6

and z = €T s = jw as usual.
This is a remarkably simple formula, and its behavior at low frequencies agrees

well with intuition. Since the output of this system is a stairstep waveform which
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Fig. 3.3-5: A sampler and ZOH, with a = 1/(s +€) and a7 ! in-

serted. The subsystem in the dashed box has squared cone radius
R2 — _TZCJ-wT/(6(1 _ e—ij)Z).

S+€

| |
| |

A (s+e)(1-e7) : o (o |[ >
| !

Fig. 3.3-6: The same system with the (1 — e~*T) factor of HT
commuted to the input. This is legal since the system is PLTV.
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equals the input at sampling instants t = k7T, the output will closely approximate
the input when the input is slowly varying. This means that for a low-frequency
sine wave input u = Asin(wt), the output error y — Cu goes to zero as w — 0. The
radius F given above is also zero at DC, so it correctly predicts this property of
the system. Let’s examine this more closely.

For low-frequency sine wave inputs, the cone center C' = %Hg is closely ap-
proximated by a time delay of length T/2: C(jw) &~ e 7T/ for wT < 1. Figure
3.3-7 shows the output of the system and the output of C'; the two waveforms
intersect at the midpoint of each sampling interval. For wT small, Cu is well ap-
proximated inside each sampling interval ¢ € kT, kT + T] by a straight line with
slope m = Ju(t) = Awcos(wkT). We can integrate the square error over one

sampling interval:

/;TJ“T(y(t) — (Cu)(t))?dt ~ 2/OT/2(mt)2dt - mg

If we integrate over a long period of time 7 = N7

>]_vjA:)oﬁcosz(wlcT)T3 _ NA%T?

— Cul]* =
v —cut ~ 3 A -

Now compare this to the energy of Ru, where R(s) = sT//6:

NT [ AwT sin{wT)\ * N A22T3
IRul = | (w) gt VAT

V6 12

so we see that this approximation for y — C'u satisfies the conic sector inequality
ly = Cull, < ||Rul|, for large r > 0. In fact, ||y — Cu||./{|Rul|, ~ 1/+/2; this means
that for low-frequency sine wave inputs, the cone radius consistently overestimates

the error by a factor of /2.
The radius R goes to infinity as w — co. This behavior is necessary, since there

is no prefilter at all in front of the sampler. The system’s response to inputs with
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1.0
2

0.55

0.0 f/

-0.55

-1.0:.,[. e — ,..[X.&“ﬁ%";”l
0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (seconds)

Fig. 3.3-7: The outputs of C' = —%—HOT and of the sampler plus Z0H,
when the input is v = sinwt with w = 2.094 and T = 0.1 sec. Cu

approximately bisects the ZOH output in each sampling interval.
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energy at very high frequencies, e.g., white noise, is unbounded because the high-
frequency components are aliased into the baseband, where they are not attenuated
by the ZOH.

This conic sector for a sampler with hold is appealing because of its simplicity.
Any SISO sampled-data feedback system with ZOH can be rearranged to take
advantage of this simple formula. See the system in Figure 3.3-8. Since D(z) and
HZT(s) are commutative, the hold can be placed immediately after the sampler, and
F and D can be lumped with the plant G as in Figure 3.3-9. The conic sector

stability criterion is now simply stated as
1
IRFGD(1 — TH{{FGD)*HOO <1

where R(s) = sT/v/6. Since R is independent of F and D, there is no need to
recompute the infinite summations of Theorem 1 for each change in the system.
When the sampling rate 27 /7 is much greater than the loop bandwidth of the
system, this approach can give better results than a direct application of Theorem
1. In general, however, it is often still too conservative. The next section presents

an optimal solution to the SISO analysis problem.
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Fig. 3.3-8: A sampled-data feedback loop with a ZOH.

l

Fig. 3.3-9: The same system with D and HT commuted, and with
F and D lumped with G. The operator in the dashed box has cone
radius R = wT/+/6.
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3.4 Optimal Cone Radius in SISO Case

Figure 3.4-1 shows a SISO hybrid feedback system with the fictitious operators
@, 3, and their inverses embedded around the sampler. We have already seen that

a sufficient condition for stability of this system is
|Ra ' FGHDB I+ Ca 'FGHDA ™) Y| < 1

where R = Rad(e,3) and C = %Ba. This can be simplified in a way that is
also valid for MIMO systems. As in the previous section, let K denote the hybrid
operator consisting of «, the sampler, and 8. Theorem 1 guarantees that K is inside
Cone(C, R). We can split K into an LTI part C and a cone-bounded PLTV part
with cone center zero: K = C + K where K is inside Cone(0, R). Now redraw
the system as in Figure 3.4-2, with K split into two parts and with o' and 8!
duplicated. Since C = %ﬂa, the path containing C simplifies to % as in Figure
3.4-3. Finally, in Figure 3.4-4, the entire LTI portion of the remaining system is

lumped into a single operator:
1
M = FGHD(I + TFGHD)_1

The stability condition now is simply

RM 1
af ||
Note that M is independent of o and . This formulation suggests an optimization
problem:
inf || —
Bl ap |

The solution to this optimization problem provides us with the optimal, i.e., least
conservative, sufficient condition for stability of a SISO system when Theorem 1 is
used. Surprisingly, the optimal solution is trivially simple to compute. The solution

and a proof of its optimality are presented below.
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K
T T T T T T T
I T I
a-—l 1 ———/H 1
! !
| |
o !
F G D

Fig. 3.4-1: A SISO hybrid feedback system with fictitious operators
a, o ' B, 7L, Call the PLTV operator in the dashed box K.

e

ot I’%
ot C
FGHD

Fig. 3.4-2: Split K into an LTI part C = af/T and a zero-center
PLTV part K inside Cone(0, R).
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Fig. 3.4-3: Lump the lower path with FGHD and call the result
M.

Fig. 3.4-4: The simplified system. M is stable if the original system
is stable when the sampler is replaced by 1/T.

—_—— e
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3.4.1 Theorem and Proof

Since ||RM/af| o depends only on the magnitudes of R, M, a, and 8 at each
frequency, we will assume without loss of generality that each of these four functions
is a real-valued function of a real variable. This will simplify the notation in the
following theorem. For example, define M (w) to equal |Mo(jw)] for all w € R, where
My is the original complex-valued function. Define a{w), B(w), and R(w) similarly.

To simplify the notation further, define
Mi(w) = M(w + kw,)

where w, = 27/T. Define a4(w) and Br(w) similarly. This notation is not needed
for R since it is periodic in w with period ws,.

With these definitions, the radius R is given by

A

R = g5 |(Setl) (Sat) - (S et

k

1 2 2
= T2 Z Z o (w) B (w)

k n#k
Now observe that since the radius R(w) depends only upon the values of « and

B at the aliased frequencies w + kw,, the minimization problem

ot RM
inf | ——
af | af

o0
Is equivalent to a family of uncoupled minimization problems with w fixed at a point
on the interval [0,w;). In other words, we can fix w at some point on this interval

and choose a;(w) and S, (w) for each integer k to minimize

sup

If this is done for all w € [0,w,), a(w) and B(w) will be defined over their entire

domain w € R. Furthermore, since these choices for a and B will, by definition,



minimize
R(w) M, (w)

ot (w) Be(w) op |,

this is a solution to the complete minimization problem.

sup
k,w

Theorem 2. For the minimization problem with w fixed:

R(w)M;(w)
ax(w)Bi(w)

inf  sup

ap(w),fr(w) &

all optimal solutions are of the form
ak(w) = Kl Mk(w)

Br(w) = Ko/ Mi(w)

where K; and K, are arbitrary real positive constants.

Proof : Define

By definition,
R - Z Z O‘k
k n#k

so its derivatives with respect to of(w) and $?(w) are given by

AR W)

de¥(@) sz"
AR) 1
A(B7(w)) ,§ 2

Note that both derivatives are always positive. Now define [We(w)]leo = sup W, (w)
k
with w fixed. Suppose W;(w) < [|[Wi(w)||o for some . If oy(w) is varied, it will indi-

rectly change Wi{w) for all k£ # 7 by changing the value of R{w). The corresponding

derivative is

d([We(w)ll&) _ dWe(w)i%)) d(R*(w)) _ |[Wi(w llz

def(w))  d(R}(w)) d(a?(w)) R(w T?Zﬁk

1
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Since the derivative is nonzero, ||, (w)|leo can be reduced by varying a;(w), as long
as Wi(w) < [[Wi(w)lleo- The same holds for varying f;(w); just switch « and 8 in
the above derivation.

We have established that

Wi(w) < [[Wi(w)||e for somes = ak(bj)r}gk(w)Wk(w) # [IWe(w)loo
Therefore .
Welelllo = _int i)

= Wilw) = [Wi(w)]e Vi

= Wi(w) = W;{w) V4,7
Miw) M)

ai(w)Bi(w)  ej(w)Bs(w)

= og(w)fe(w) = KMi(w) ¥V k and for some K > 0

Now re-evaluate the derivatives of R? when the product a8, is constrained to

= Vi,7

be fixed at each k: oy (w)Bi(w) = KM (w) = cr(w).

R(0) = 250 Y adfw) )

k n#k aﬁ(w)
dRw) _ 1 (cz(m _ (w)ak(w))
dlai(@))  T'z\d(w)  al(w)
_ _1_ 200, ﬁ?(W)ai(w)
e & (ot - HEE)
1 1 2 2 2 2
= Tt ;(ai(w) (W) = o} ()8} (w))

and by symmetry,

d(R2(w)) — i; 2wa2w — Zwa2w
W)~ T ) i P eile) — Biw)el()

k#

Since we know that for optimal & and 8, M}? (w)/ g (w)Bi(w) is constant for all k,

optimality implies that
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Define «;(w) = Bi(w)/ai(w). Now pick any two integers 7, § so that # 7. Optimal-
ity implies that
> (@ (@)Bh(w) — al(@)B (W) = 3 (o ()8} (w) -~ ()82 w)) = 0
kit j P

Now substitute « into the equations:

o5 (w) 3 Bi(w) — K (w)af(w) Y af(w) = 0

k#j k#jy
o (W) 3 Bi(w) — £} (w)ef (w) Y- ad(w) = 0
k#i ki

Divide the top equation by o?(w) and the bottom by o?(w). Subtract the two

resulting equations to get

BEw) = B2(w) — ki) T ab(w) + r2(w) Y alw) = 0

k#7 k#i

ki (w) = w}(w)
Therefore, in order for a(w) and B(w) to be optimal, the ratio Fi(w)/a;(w) must be
constant with respect to 7. So optimality implies that

ai(w) = K/ M;(w)

5,‘(&)) = K2 Ml(w)
for some nonzero real constants K, and K.

Now examine W;(w) when a(w) and B(w) have this form.

_ R@M(@) | R@)
o; (w) B; (w) K K,
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SO

Wi(w) = % S5 My (w) M, ()

k n#k

which is independent of K, and K,. Therefore all solutions of this form are optimal

and a(w) and B(w) are optimal if and only if

ag(w) = K/ Mi(w) Be(w) = Ko/ Mi(w)

for some K;, Ky > 0.

This concludes the proof.

The theorem shows that the optimal choice for a and § is not unique, but that
all optimal solutions are related by a pair of constant scaling factors K, and K.
For the sake of simplicity, we can set K; = Ky = 1 for all w € [0,w;) and get.a
simple formula for an optimal solution. This is given by the following corollary:

Corollary to Theorem 2. An optimal solution to the minimization problem

i RM
inf || —
Al af -

is given by
alw) = Bw) = yM(w)
Proof : This follows directly from the theorem above when K, and K- are set to 1
for all values of w € [0, w,).
Let’s review the steps necessary to apply this result to stability analysis. Start-
ing with a SISO hybrid feedback system of the form in Figure 3.4-1, rearrange the

system components into the form of Figure 3.4-4. All the original system compo-

nents are lumped into the LTI closed-loop operator

M = FGHD(I — %FGHD)‘1
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which is the closed-loop transfer function when the sampler is replaced by its DC
gain 1/T. Determine the stability of this function M by some means; for example,

the Nyquist test. If M is unstable, the system fails the sufficient test for stability.

If M is stable, continue by computing

Now compute the radius:

R() = 5 3 5 ed(w)8ile)

This can be approximated numerically with relatively simple software. Chapter 4

discusses this topic in more detail. Finally, compute and plot

over a sufficiently wide range of w. If W(w) < 1 for all frequencies w, the system
passes the sufficient test for stability.

As formulated here, this process allows us to test for the stability of the nominal
plant. This is not very exciting in itself, because there are well-known, easier ways
to do this: for example, by discretizing the plant (finding the z-transform of its
impulse response sampled at period T) and checking to see whether all the poles
of the resulting closed-loop z-transform are inside the unit circle. The z-transform
method has the further advantage of being completely nonconservative: it is a
necessary and sufficient test for stability. However, by extending this conic sector
test to handle the case of robust stability — testing stability for an entire set of

plants — we can go beyond what is possible with the z-transform method. This is

the topic of the next section.
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3.4.2 Robust Stability for a System with One Sampler

Section 2.6 introduced the block-diagonal A-block model for plant uncertainty,

in which an uncertain transfer function is represented by the linear fractional trans-

formation

F(P,A) = Pii+ Py(I — APy) APy,

where A is an uncertain block-diagonal matrix with maximum gain less than one:

|Alje < 1. In the following discussion we will define the set X by:
rl = {A I A = diag(Al,Az,...,An) and HAHOO < 1}

Suppose that a SISO hybrid compensator is connected in a feedback arrangement
with an uncertain analog plant, and that the resulting system is modeled as in
Figure 3.4-5. The single sampler closes the upper loop around P, and a diagonal
uncertainty block A € X closes the lower loop. The system is said to be ro-
bustly stable if it maintains stability for all A € X1. Now convert Figure 3.4-5 into
Figure 3.4-6 using the method of the preceding section: (a) sandwich the sampler
between fictitious SISO operators «, 8, and their inverses; (b) construct a conic sec-
tor Cone(1/Tfe, R) containing the sandwiched sampler K, where R = Rad(a, 8);
(c) break K into an LTI operator 1/TBea and a cone-bounded PLTV operafor K
inside Cone(0, R); and (d) lump the components in the LTI path together to get
1/T.

Now we may use the conic sector stability criterion to state a two-part sufficient
condition for robust stability: this system is robustly stable if (1) it is stable for
all A € X, when the cone center is substituted for the cone-bounded operator

(equivalently, when K is set to zero) and (2) it satisfies

<1 VA€I1

R . -1
LGN (71— 3F(P ) F

[ee)
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A

Fig. 3.4-5: A SISO sampled-data system with model uncertainty

A e X.
] ot K g!
{g/
1/T >(H)
P
A

Fig. 3.4-6: The system after sandwiching the sampler with «, 8 and
replacing the LTT path C/aff = 1/T. K is inside Cone(0, R).
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The form of this inequality is the same as the nominal stability test of the previous
section, except that the transfer function FGHD is replaced by the set of transfer
functions Fj(P,A), A € X;.

Because A is block-diagonal, we can rearrange Figure 3.4-6 into a simpler form.
First define a PLTV operator A by K = AR, where K is the zero-center PLTV
operator defined above, and R is the cone radius R = Rad(a,8). By the elemen-
tary cone propagation results of Section 2.3.1, it is easily shown that A is inside
Cone(0, I) where I is the identity operator. Define M to be the LTI operator in
the dashed box of Figure 3.4-7, containing the original plant P, the sampler’s DC
response 1/7T, the fictitious operators o~ ! and B!, and the cone radius R. Now A
and A may be lumped into a single block-diagonal operator, and the entire system
may be redrawn in Figure 3.4-8 as a single loop connecting M and diag(A, A). The
components of M are

-1
My = Ra™'Py (I - %P11> gt

M, = Ra™ (I— %Pn) 1Pm

M, = Py (I - %Pu)_lﬂ_l

_ 1(r 1 -1
M, = Poy + Py7 (I TP11> Pyy

Let’s investigate how the robust stability conditions given above are described in
this framework. First, the system must be stable for all A & X; when the PLTV
operator A is set to zero. When this is done, the system is completely LTI and the
robust stability method of Section 2.6.3 may be used. This method itself has two
(necessary and sufficient) conditions: (1a) the nominal system M must be stable;

and (1b) M must satisfy the inequality

l1(Ma2) oo < 1

Condition (la) may be checked by conventional means, such as the Nyquist test.

An upper bound for u(M,;) at each frequency may be computed by the software
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1/T o("l R

et e e e o . —
—_ e — = = e = = - —

Fig. 3.4-7: A is inside Cone(0, I). Call the block 2 x 2 LTI operator
in the dashed box M.

B>)

Fig. 3.4-8: A and A can be lumped into a single block diagonal

operator.
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described in Chapter 4. It is easily shown using the definition for u that w(M) >
1(Ms2); therefore ||(M)]|o < 1 is a sufficient condition for le(Ma2) oo < 1.

The second requirement for robust stability is

R —
“EBFZ(P,A) (I—%FI(P,A)) o<1 vaex

[o.¢]

which, by the definition of M, is equivalent to

I (M, Al <1 VAEX

A sufficient condition for this is
(M)l < 1

Provided that M is nominally stable, this bound on (M) is a sufficient condition
for both parts of the conic sector stability criterion. We have arrived at the following
simple statement of a robust stability criterion:

The system in Figure 3.4-5 is stable for all A € X; if

(a) M is stable and

() a(M)]e < 1

This still leaves open the question of how to make the best choice for o and
8. An obvious approach to try is to find « and 3 to minimize He(M)]leo- Tt is
not so obvious how to do this, however, especially since (M) is not an analytic
function of « and 3. A more fruitful approach is to recall that the condition on
p(M) is based on simultaneously satisfying two sub-conditions: (M)l < 1
and ||[F;(M,A)|« < 1. Since M2, is independent of « and 3, our choice for these
fictitious operators will have no effect on the first of these conditions; the system
will either pass this test or not, regardless of what we do. The second test is strongly

reminiscent of the SISO test for nominal stability:

2 paup(1- LFGHD) | <1

af

0
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The optimal solution in that case was to set a = 3 = \/lFGHD(I - %FG’HD)”I.
This suggests the following (suboptimal) solution to this robust stability problem:

at each frequency let

E(P,A) (I- 2R (P,A))

o = [ = ,/sup
AeXl,

This supremum can be computed in the following way. Extract o~ !, 87!, and R
from the block diagram for M and add a scalar multiplier « in the upper output
channel. The resulting system is shown in Figure 3.4-9; call it P. The transfer
function from the upper input to the upper output, when the lower loop is closed
through A, is given by Fz(f), A) = kF)(P,A)(I — %F,(P, A)7L. If we find « so that
ili;r) FZ(P,A) = 1, then the supremum above is simply 1/x. But it can be shown,
b)ef the definition of u, that this is equivalent to finding « so that u(ﬁ) = 1, since
we have already assumed that /L(Pzg) = u(My,;) < 1. (The system would fail the
robust stability test if this condition were not met.) x enters only in the top row of
the matrix ]5; therefore we can compute the supremum by the following steps:

(1) construct P with « = 1;

(2) scale the top row of P up or down by trial values of « until ,u(f)) = 1;

(3) the supremum is given by 1/k. The computation is repeated at each fre-
quency.

This process might appear to be very computation-intensive, but programs
which perform it at satisfactory speeds on a minicomputer (the VAX 11/750) have
been written. A simple application of Newton’s method to find the root of 1 — n(P)
as k varies gives adequate results. ,u(P) is recomputed for each trial value of x until
11— u(ﬁ)[ < € for some small convergence test «.

An alternative method for choosing o and 8 which is more straightforward but

also more conservative is simply to pick « and 8 to optimize the nominal stability



J
|
L

Fig. 3.4-9: The composite operator P. If 1(Psz2) < 1 and ,u(I:’) =1,
then .
sup |[Fy(P,A)(I — 37 (P,A))7!] =

A€l K
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problem; i.e., for A = 0. Now F(P,A) = Py,, so the solution is:

«=p =

This approach is certainly much easier than the repeated calculations of i described

P (I~ 4Py)"

above. The amount of added conservativeness it produces varies with the problem
being solved. Generally speaking, if the value of I Miilleo = HO%PH(I — %Pll)_lﬂoo
is not very close to 1 when these simple choices for a and B are used, then this

simple method is nonconservative. This simple approach is used in the examples of

Chapter 5.
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3.5 Stability Criterion for a Cone-bounded Diagonal Operator

Suppose that a diagonal operator K =diag(Kj,. .., K,) is connected in feedback
with a MIMO LTT operator G, as in Figure 3.5-1. Suppose also that each element
K; of K is known to be cone-bounded with cone center 0: K is inside Cone(0, R;)
for 1 = 1 to n. The following lemma lets us construct a cone bound for the entire
operator K out of the cone bounds for its elements.

Lemma. Let K = diag(Ky, ..., K,) and let each K; be inside Cone(0, R;) as
described above. Construct the LTI MIMO operator R = diag(R;,...,R,). Then
K is inside Cone(0, R).

U 251
Proof. Let the input to K beu = | : | and let its output bey = | ! | where

Un Yn
the elements of 4 and y correspond to the elements of K. Then, since K is diagonal,

vi = K,u; for each 7 from 1 to n. Assume that v € L,,. By the definition of conic

sectors,

lg:llr = [ Kuills < [Rewll, V7> 0.

Since ||u|l, = (u,u)}/?

ol = | X ll? and ] - >
Therefore
Iyl = gny,-uz < DR = B ¥ >0
> il < [Rul, Wr >0
= K is inside Cone(0, R).

Now a straightforward application of the conic sector stability criterion, using this

new cone radius R, yields this result:

The feedback system in Figure 3.5-1 is stable if ||RG||,, < 1.
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Fig. 3.5-1: Feedback system with cone-bounded diagonal operator
K = diag(Ky,...,K,). Each element K; is inside Cone(0, R;).
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This is a first step toward a less conservative use of conic sectors for MIMO
systems. The diagonal structure of K allows us to construct a diagonal radius R
which weights each input channel of K in proportion to the maximum gain of K in
that channel. K must be diagonal for this to work, since the result depends on the
fact that each output y; dependent on only one input w;.

This result is more general than it appears. Given any collection of cone-
bounded operators K; interconnected with LTI operators in an arbitrary feedback
arrangement, we can always rearrange the system’s block diagram so that the oper-
ators R} form a single block-diagonal operator. This rearrangement technique was
demonstrated in Section 2.5. If each K; is inside Cone(C;, R;), the LTI cone centers
may be extracted, resulting in new zero-center operators K; = K; — C;. The cone
centers C; may then be lumped in with the rest of the LTI plant, leaving the system
with the structure assumed above: an operator K =diag(Kj,..., K,) where each
K; is inside Cone(0, R;).

The next section uses this result to establish a conic sector analysis technique

which greatly reduces conservativeness for a class of diagonal operators.

3.6 Improved Stability Criterion for a Class of Diagonal Cone-bounded

Operators

Consider again the feedback system in Figure 3.5-1 of the preceding section.
Suppose that each element K; of the diagonal operator K is not only cone-bounded
by Cone(0, R;), but also satisfies the following requirement: there exists an LTI
operator D; such that D; and K, commute, i.e., K;D; = D;K,. If D; is invertible,
this also implies that DiKiDi_l = K.

Construct the MIMO LTI operator D = diag(Dy,...,D,). Since DD™! = |,

we can insert DD™! into the feedback loop on each side of K without changing the
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D! G D

Fig. 3.6-1: System with D~!D pairs inserted in both sides of loop.

DGD !

Fig. 3.6-2: Same system simplified when K = DKD-'. With

freedom to choose D, this can greatly reduce conservativeness.
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operation of the system. The resulting system is shown in Figure 3.6-1. Since, by
assumption, D;K;D;! = K, for 1 = 1 to n, and since K and D are both diagonal,
DKD™' = K. Figure 3.6-2 results when this identity is applied to Figure 3.6-1.

By the results of the preceding section, we know that K is inside Cone(0, R)
where R = diag(Ry,..., R,). Now the conic sector stability criterion can be applied
to this modified system:

The system in Figure 3.5-1 is stable if IRDGD™ |, < 1.

The only requirements on D are that it be LTI and satisfy DKD ! = K. Tt is
not even necessary that it be diagonal. If there exists an entire set D of operators
that meet these requirements, we can set up a minimization problem to greatly
reduce the conservativeness of the conic sector method for this class of systems:

The system is Figure 3.5-1 is stable if
inf |[RDGD Y, < 1
Dep

If D is restricted to be diagonal as well, then it commutes with R, which is also
LTI and diagonal, so RDGD~! = DRGD~'. This form, with D and D! on the

outside of the product of matrices, is reminiscent of the upper bound for x4 described

in Section 2.5:
< inf & -1
w(RG) < Igréf[;a(DRG'D )
where in this case,

D = {D|D = diag(di1,...,d.I)}

and where each identity matrix I has the same dimension as its corresponding A-
block. This means that, if each operator K; will commute with any LTI operator
D; which is a scalar times the identity, this conic sector stability test could be
performed with existing i software.

Unfortunately, the cone-bounded operators that we will use in MIMO sampled-

data system analysis do not commute with al{ LTI operators of this form, but only
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with a subset of them. We can sandwich each sampler in a multi-sampler system
between fictitious SISO LTT operators a; and 3;, and produce a cone bound for the
resulting operator K; using Theorem 1. But since each K; is PLTV with period T;,
where T; is the period of the corresponding sampler, K;D; = D;K; only when D;
is a pertodic LTI operator satisfying D;(jw) = D;(jw + gn2m/T;) for all integers n.
This property of PLTV operators was shown in Section 2.7.4. It is not obvious how
to solve the minimization problem when D is restricted to have periodic elements
of this type.

Furthermore, this minimization problem requires that the cone radius R; for
each sandwiched sampler already be known, and this implies that the fictitious
operators ¢; and f; have already been chosen. The problem of finding a good way

to choose these is addressed in the next section.
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3.7 A Nonconservative Conic Sector Method for MIMO, Multirate, Non-

synchronous Systems
3.7.1 New Method and Explanation

Any linear sampled-data feedback system containing multiple samplers can be
represented as in Figure 3.7-1. The samplers are extracted from the system and
gathered into a diagonal structure which is connected in a feedback arrangement
with an n x n LTI MIMO operator M. Each element M;; is the transfer function
from the output of sampler j to the input of sampler «.

Now suppose we have two diagonal MIMO operators A = diag(e;,..., a,) and
B = diag(Bi,...,B.) such that each ¢; and f; is stable and has a stable inverse.
Inserting the cascades AA™! = I and BB~! = I into the loop has no effect, since
any effects of A and B are cancelled by the inverses. Figure 3.7-2 shows the modified
loop. Now draw a box around the cascaded connection of A, the samplers, and B,
and call the resulting LTV operator K. Observe that K is diagonal. Call the period
of the 2th sampler T;, and use the basic conic sector theorem for hybrid operators

(Theorem 1 of Section 3.1) to compute a conic sector Cone(C;, R;) containing each

diagonal element K; of K:
1

Cilyw) = Tiﬂi(jw)ai(jw)

|R:(jw)|* = |Rad(a, B:)]°

S CICERE

ik n#k T

2 2

. L2
Bi (]w - ﬂlf)

As we have noted earlier, the magnitude of the radius R;(jw) is periodic in w with
period 27 /T;. The formula above specifies only the magnitude of R;; a minimum
phase transfer function R; = Rad(«y, §;) always exists which is stable, has a stable
inverse, and has the magnitude given above. In practice, we do not need to actually

compute this minimum phase factorization, since only the magnitude of R;(jw) is
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Fig. 3.7-1: A MIMO sampled-data loop. All holds, prefilters, digital
filters, and other LTI components are collected in the n x n transfer
function M.

—_— e e | — —— m— — — —

Fig. 3.7-2: The system after inserting diagonal LTI operators A,
A1, B, B}, all of which are stable. The PLTV operator K can be

cone-bounded with Theorem 1.
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used in the stability test. If such a factorization were required, however, the complex
cepstrum matching technique of Chapter 6 could be used to find a rational function
in z, of arbitrary order, to approximate |R;(jw)].

So far, we have a separate cone for each element of K. Since K is diagonal,
we can combine these into a single cone containing K by the simple technique of
Section 3.5: define C = diag(Cy,...,C,) and R = diag(Ry,...,R,). Then K is
strictly inside Cone(C, R).

At this point, we can apply the conic sector stability criterion to get a sufficient
condition for closed-loop stability. Define T = diag(Ty,...,Tn),sothat C = T 'BA.

The system is stable if it is stable when K is replaced by C and if

IRA'MB Y1 - T 'BAA"'MB™) |
= |RATM(I —T7'M)' B
= |[RAT'MB™ Yo < 1

where M is defined by

~ A

M= MI-T"'M)"!

The first part of the test, that the system must be stable when K is replaced by
C, may be performed by standard LTI techniques. Since A and B are cancelled by
their inverses, this condition is equivalent to requiring that the LTI MIMO system
with loop gain T-'M be closed-loop stable. This may be verified by the MIMO
Nyquist test: plot det(I —T 1M (s)) as s traverses a standard Nyquist D-contour in
the right half-plane, in a clockwise direction. The system is stable if the number of
counter-clockwise encirclements of the origin by det(I — TﬁlM) equals the number
of unstable poles of M. Note that A and B do not appear in this part of the test.

Now let us introduce a small change in the stability test for reasons that will
be explained shortly. Since each radius R;(yw) is a periodic LTI operator with

period 27 /T;, it commutes with its respective sampler; this property of periodic
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transfer functions was shown in Secton 2.7.4. We will exploit this property to gain
a slight improvement in nonconservativeness. Factor each R;{jw) into minimum
phase square roots: R;(jw) = R,-l/z(jw)Rilﬂ(jw). This is always possible for the
same reason that a minimum phase R;(jw) can always be constructed. Again, we
will not actually need to know the phase of R1/2(jw): only its magnitude is used.
Let RY? = diag(R\?,..., RL/%).

Insert the cascaded pair RY2R™'/2 = I into the system between A and A™! as
shown in Figure 3.7-3. Since R'/%, A, and B are all diagonal and LTI, they commute
with each other. Now “push” R'? through A, the samplers, and B to produce the
equivalent system in Figure 3.7-4. The conic sector stability criterion now implies

stability if
|IR(RYV2PA'XMB'R™YY(I —T'RY? A MB'RY*) ™|
= |RY?AT*M(I - T7'M) ' BT 'RY?||,
= |RM*AT'MB*RYY|, < 1

This condition differs from the previous one by splitting R into equal parts on both
sides of the matrix product. This is desirable in order to preserve balancing in the
matrix product. This balancing is achieved in the first place by a scaling process,
which will now be explained.

So far, we have derived a MIMO conic sector stability test with fictitious op-

erators A and B, but no method has been given to choose A and B. In the SISO

RM

case, the criterion above reduces to H o

H . Section 3.4.1 showed that an optimal
choice for @ and § is |a(jw)| = |B(jw)| = |M(jw)]. A similar choice for A and B
in the MIMO case provides a suboptimal, but usually nonconservative, result.

At each frequency w, find D(w) to solve

P T .
o = Igré%a(DA/ID )
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Fig. 3.7-3: Insertion of minimum phase RY? and R~Y/?, where R =
diag(Ry,...,R,) and R; = Rad(«;, 3:).
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Fig. 3.7-4: RY? commutes with K, since both are diagonal and
each element R'/? is periodic in w with period 27 /T;. This preserves
balancing in the stability test |RY2A"'MB~'RY?||,, < 1.
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where D is the set of diagonal matrices with real, positive diagonal elements. Since
DMD™! is unchanged when D is multiplied by a scalar, normalize D by scaling
it so that (D) ¢(D) = 1. In other words, scale D so that the geometric mean
of its largest and smallest diagonal elements is 1. We denote the minimum value
of 6(DMD"1) by 4 to emphasize its close relationship to the Structured Singular

Value pu(M). Actually, £ is an upper bound for u [5].

Finally, let

A = pY*D"' and B = a'*D

This defines each fictitious operator «; and §; as a positive real-valued function of
frequency. To be rigorous, we should replace the real-valued ¢;(jw) and 8;(jw) with
minimum phase functions of the same magnitude, since A and B must be stable
transfer functions with stable inverses. However, since 6(RY2A M B~'RY?) is
unchanged when any element of A, B, or RY? is rotated in phase, we can avoid
useless complexity by simply writing A and B as the real-valued functions above.

To see why these are good choices for A and B, let’s see what happens when

we insert them into the stability test:
G(R'*AT'MBT'RY?) = o(RM*Dp\*M DT PR
= p7'e(R'V*’DMD'R'?)
< a7l (RYHe(DMD Y6 (RY?)
= &*(RY?) = &(R)

therefore

IRVPATIMBT'RY? o < |[Rlleo = max[|Rilo

So the stability criterion is bounded above by the largest magnitude of any of the
radius functions R;, which are all periodic in w. The magnitude of each radius

function R; = Rad(«,[;) is determined primarily by the high-frequency roll-off
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properties of o; and ;. The faster o; and f; roll off, the smaller R; becomes. If we
chose «; and f; to roll off faster than 412D~ and 42D, then the radii R; would
become smaller, but 6(A_1MB_1) would grow without bound with increasing w. If
we chose a; and §; to roll off slower than 2Y/*D~! and /2D, then o(A"'MB™Y)
would shrink to zero with increasing w, but the radius R; would become larger,
causing 6(R1/2A’1MB_1R1/2) to increase at low frequencies. The choice for A and
B presented here strikes a balance between these two extremes, resulting in a value
for E(Rl/zA_lj\ZB_lRl/2) which neither shrinks nor grows with increasing w.

Let’s now review the steps involved in this method:

1. Draw the system as in Figure 3.7-1, with all samplers extracted into a
diagonal structure with interconnection matrix M.

2. Compute M = M (I — T-1M)~', where T = diag(Ty, ... ,T,) and each T; is
the period of the zth sampler.

3. Perform the MIMO Nyquist test by plotting det(I — T‘lM) over a Nyquist
D-contour and counting the counter-clockwise encirclements of the origin. If the
number of encirclements equals the number of unstable poles of M, proceed. If not,
the system fails the sufficient condition for stability.

4. At each frequency w, compute 4 = Li)Ié%B(DMD”l), where D is the set of
positive definite real diagonal matrices. The issue of how to write software to do
this is addressed in Chapter 4.

5. Scale the diagonal matrix D which achieves fi above so that 6(D)g(D) = 1
for all frequencies. This minimizes the radii R; in step 7, subject to the constraint
that 4 = 6(DMD™1).

6. Let A = 2'/?D ! and B = a'/?D, where A = diag(ay,...,a,) and B =
diag(B1, ..., 0n).

7. Compute RV? = diag(R?, ..., RY/?), where R; = Rad(a, 5).

8. Compute and plot 6(R1/2A‘1]\;[B71R1/2). If this function is less than 1 at
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all frequencies, the system is stable.

This technique, while still suboptimal, is relatively simple and gives nonconser-
vative results for a wide class of sampled-data systems. Since there is no restriction
on the sampling periods T}, it works equally well for multirate and single-rate sys-
tems, even when the sampling periods are not related by rational numbers. Thus
the technique can be used for hybrid systems containing two computers which are
not run from a common clock. There are very few known stability tests which are
valid for multirate systems with sampling periods related by irrational numbers.

The new technique also eliminates nearly all the other limitations of the original
technique based on Theorem 1 of Section 3.1. The compensator need not be stable,
since it is now outside the cone-bounded operator. The use of diagonal scaling
to balance the matrix M can provide a vast improvement for systems with high
condition number (MIMO systems with much more gain for inputs in some vector
“directions” than in others). Since only the SISO version of Theorem 1 is used,
the inherent conservativeness of the formula for the radius R; is avoided. This
conservativeness occurs because the MIMO version of the formula uses products of

maximum singular values of matrices, thereby losing directionality information.
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3.7.2 How Much Conservativeness is Left?

Both the SISO and MIMO analysis techniques proposed in this chapter take
advantage of the same idea: embedding each sampler between fictitious LTI op-
erators «; and fB;. By choosing «; and f; to cause the final stability criterion
B(RI/ZA‘lﬂB“lRl/Z) to be “flat” at high frequencies, that is, neither to grow nor
to decay as w increases, we eliminate much of the conservativeness of the conic
sector approach. How much conservativeness is left? Are there systems for which
these methods still will not work, and if so, how can we identify them?

Four situations are identified below in which the conic sector approach still gives
conservative results, even when the improved methods outlined so far in this thesis
are used. These are:

1. Systems unstable with cone center, that is, unstable when each sampler is
replaced by 1/7;, where T; is its period.

2. Cases wh.ere the optimal radius is too large.

3. Systems with significant skewed sampling effects, where it makes a difference
whether all samplers “fire” simultaneously or with a fixed time offset.

4. Systems with a sampler at the output of a ZOH.

The first three situations generally occur when the system has a substantial
amount of aliasing, caused by inadequate high-frequency rolloff. Therefore, it can
be argued that most systems which fall into the first three classes are poorly de-
signed, since their poor anti-aliasing filtering will generally cause them to have high
sensitivity to noise. Furthermore, two of these situations occur only when a system
is close to the border between stability and instability, indicating poor robustness
to model uncertainty.

The fourth conservative situation occurs when a system has a sampler at the

output of a ZOH, and the ratio of the sampler’s period and the ZOH period is
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not an integer. This can occur in practice when a signal is sampled at one rate,
held in a buffer register, and then read at a different rate by the control software.
The problem arises when both samplers are extracted from the system and put in
separate conic sectors. Since the transfer function from the first sampler to the
second is a ZOH, it rolls off approximately as 1/w as w ~ oco. This slow rate of
rolloff causes the cone radius to be large, leading to conservativeness. The solution
to this problem is to put both samplers and the ZOH together in a single conic
sector, using a modified version of Theorem 1. This new theorem is presented in

Section 3.8.

3.7.2.1 Systems Unstable With Cone Center

Some systems which are in fact stable will become unstable when each sampler
is replaced by its DC gain 1/T;, where T; is the sampler’s period. This is equivalent
to having M = M(I - Zf’_lM)'l unstable. When this occurs, the conic sector
stability analysis is stopped before it begins, since the system fails at least one of
the two sufficient conditions for stability. The following example, due to Doyle [4],
illustrates this.

Consider the hybrid feedback system in Figure 3.7-5. Let the sampling period

be T = 27 seconds, and let

45
(s 4 .01)(s + .5)(s + 2)

G(s) =

The discretized system is stable, but when the sampler is replaced by 1/7, it is
not. Figure 3.7-6 illustrates this by showing partial log Nyquist plots of %GHg
and (GHI)T. The discretized loop gain (GHI)7 is plotted only from DC to half
the sampling frequency, since it is periodic beyond that point. Both plots come
very close to the critical point s = —1, but on opposite sides; therefore the discrete

system has no encirclement of s = —1, and the system with cone center has one
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Fig. 3.7-5: This system is stable, but becomes unstable when the
sampler is replaced by 1/T. G(s) = .45/((s +.01)(s +.5)(s +2)) and

T = 27 seconds.
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Fig. 3.7-6: Log Nyquist plots of %G’Hg‘ and (GHI)T. The discrete-

time loop does not encircle —1, but the LTI loop does.
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encirclement, indicating instability.

The log Nyquist plot is very useful and will be used several times in this thesis.
If the function being plotted is f(jw) = |f(jw)|e’?), then the log Nyquist plot
is the locus over w of the function (1 + log,|f(jw)|)e?®U¥) for values of w where
|f(jw)] > 0.1. The distance from the origin is on a logarithmic scale, with 1
corresponding to |f(jw)| = 1, 2 corresponding to |f(jw)| = 10, etc. All values of
|f(jw)| less than 0.1 in magnitude are mapped into the origin. The critical point is
unchanged; it is still —1. Unlike the standard linear Nyquist plot, the log Nyquist
plot clearly shows a function’s behavior at all frequencies, even if it has a dynamic
range of several decades.

Let’s try to understand Figure 3.7-6. It is well known that the discrete transfer

function is related to the cone center transfer function as follows:

. 1 . . ) .
(GHéF)T(eJ“’T) = TZG(]w—]kws)Hg(jw—]kws)
k

1 1 . . . .
= —fGHg + T > Gjw — jhwy) HY (jw — jkw,)
kA0

where w, = 2w /T. Therefore the discretized loop gain is equal to the cone center
loop gain %GHg‘ plus the sum of all its out-of-band aliased values. The smaller the
out-of-band terms are, the closer the cone center and discretized loop gains are to
each other. This means that a system with steep anti-aliasing filtering will show
good agreement between its cone center and discretized loop gains.

However, this system does have steep anti-aliasing filtering: GH/! rolls off as
1/w* as w — oco. But %GHg‘ and (GHI)T do show close agreement over most of the
log Nyquist plot; it is a relatively small difference between them near the critical
point that causes the problem. This small difference is enough to push the system
into instability because the system is not robust in the first place: the discrete
system has a phase margin of only 2.4°.

We may conjecture, then, that this problem will occur only for systems which
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either:
a) have poor anti-aliasing filtering, and thereby have high noise sensitivity; or

b) have poor robustness margins (small gain or phase margins).

3.7.2.2 Optimal Radius Too Large

There is another class of systems which are stable in fact and stable when their
samplers are replaced by 1/7;, but which fail the second part of the stability test
even when the optimal radius is used. The following example, also due to Doyle [4]

bl

illustrates this.
Let the system be described by Figure 3.7-5 as in the previous example, but let

10075 + 100
1007ks? + (m + 100)ks + k — 100

G(s) =

where T' = 27 seconds, as before, and k = 2.4. This system has one open-loop
unstable pole. The closed loop system is stable, both in fact (discretized analysis)
and when the sampler is replaced by 1/T. This can be seen in Figure 3.7-7, which
shows linear Nyquist plots of both %—GHOT and (GHI)T. The discretized loop gain
is plotted only from DC to « /T, as in the previous example. Both Nyquist plots
show one counter-clockwise encirclement of the critical point s = —1, indicating
stability.

However, when the optimal radius is plotted in Figure 3.7-8, it has maximum
amplitude greater than 1: about 1.15. Therefore this system fails the second suffi-
cient condition for stability, even though it is stable. Let’s examine the reasons for
this.

G(s) rolls off as 1/w at high frequencies, so M = GHT (I — LGHJ) ! rolls off as
1/w®. This rate of rolloff is somewhat slow, but not atypical of some real systems.
The major reason for the method’s failure here is the closeness of %:GHDT to the

critical point at low frequencies: at DC, -}—G’HOT ~ —1.03. In a typical feedback
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Fig. 3.7-7: With G(s) = (1007s +100)/(1007ks* + (7 + 100)ks + k —
100), k = 2.4, T = 27 seconds, the system in Fig. 3.7-5 is stable, but

its optimal radius is greater than 1. These are linear Nyquist plots of

1GH{ and (GH{)T.
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Fig. 3.7-8: Optimal radius has maximum gain ||Rl|s = 1.15 > 1.
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Fig. 3.7-9: Bode plot of M = GHI (1~ LGHT)™".
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Fig. 3.7-10: This two-sampler system is unstable when the samplers

fire simultaneously, but stable when sampling times are skewed by
T/2. G(s) =.2/(s+ .1).
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system, }%GH{;F] > 1 at low frequencies, so M =~ T in that frequency range. In this
example, however, M =2 220 ~ 35T at low frequencies: see the plot of M in Figure
3.7-9. Since |af = |8] = ‘]\;_[(1/2, this makes a and 3 large as well, and produces a
large radius, even in the optimal case.

The closeness of %GHOT to the critical point is an indication of a poor robust-
ness margin. In fact, the system’s gain reduction margin is only 0.25 dB: if the
system’s gain is reduced by only that very small amount, it becomes unstable. In
this example, then, as in the previous one, the system’s failure of the conic sector

stability test is caused by its poor robustness margin.

3.7.2.3 Skewed Sampling Effects

A system with two or more samplers running at the same rate can cause conic
sector analysis to exhibit another type of conservativeness, unseen in the single-
sampler case. This conservativeness is due to the fact that, when each “sandwiched”
sampler is placed in a cone, its exact sampling rate is taken into account, but the
exact timing of the sampler is ignored. For example, if two samplers have the same
period T, the first sampler might “fire” at times ¢t = 0,7,2T, ... while the second
fires at t = 0.57,1.5T,2.57,... . The amount of fixed offset, or skew, in their
relative timing could have some effect on system stability, but it is ignored in the
conic sector treatment.

The following example illustrates this. Figure 3.7-10 shows a system with two
samplers with the same period T = 27 seconds. The transfer function G(s) =
.2/(s + .1) appears twice in the system, and is preceded in both cases by a ZOH.

Since there is no model uncertainty in the system, we can perform an exact
stability analysis by standard z-transform techniques. For the case when both

samplers fire simultaneously, simply discretize the two (identical) paths between
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the samplers to get the discrete-time loop gain:
Li(z) = ((GHg)")?

Now suppose the timing of the samplers is skewed by 7/2, half a sampling period.
This may be modelled by sandwiching one of the samplers between a time delay
e~ *T/2 on one side and a time advance e*7/? on the other, and then assuming that

both samplers fire simultaneously. This produces the discrete-time loop gain for the

skewed case:

Ly(2) = (Gng‘ST/2)T(GngST/2)T

Finally, we may produce the loop gain with cone centers by replacing both samplers
with 1/T:

1

Ls(s) = —5(G(s)Hg (s))*

Figure 3.7-11 is a linear Nyquist plot of all three loop gains. The two discrete-time
functions are plotted only from DC to n/T, as usual. It shows that both the cone
center and the skewed-sampling loop gains do not encircle the critical point s = —1,
so the system is stable in those two cases. However, the discrete-time loop gain for
synchronized sampling does make one encirclement, so the system is unstable when
the samplers are synchronized.

We are able to use the SISO Nyquist test on the cone center response, even
though there are two samplers, because both samplers appear in a single SISO
loop. In general, though, applying the conic sector stability test to a multi-sampler
system requires use of the MIMO Nyquist test. Both samplers are extracted from
the system and placed in a diagonal structure in a feedback arrangement with the

2 x 2 MIMO LTI operator M. For this system,

v T
M= l 0 GHO}

GHY 0
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Fig. 3.7-11: Linear Nyquist plot of loop gain for a discrete-time sys-
tem with and without skew, and for a system with samplers replaced

by 1/T. In the synchronized case, the loop gain encircles —1.
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Fig. 3.7-12: MIMO Nyquist test for the same system. This is a
linear Nyquist plot of det(/ — T"IM). Locus does not encircle origin,
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121
To perform the MIMO Nyquist test, compute det( — T”IM) where T' = diag(T,T).
A linear Nyquist plot of det(I — T'lM) appears in Figure 3.7-12. It makes no
encirclements of the origin (the critical point here is 0, not —1), so the system with
cone center is stable. This agrees with the SISO test of Figure 3.7-11, as it should.

To complete the conic sector analysis, compute M = M(I — ZA’*IM)"1 and
then find u = i%fé(DMD_l) at each frequency. In this (rather atypical) example,
M is already balanced, and the optimal D turns out to be simply the identity
matrix [ at every frequency. Now set 4 = p'/2D"1 and B = p2D: in this case,
A=B= 161/2(A~J). Compute R = diag(R;), where R; = Rad(q;, 5;), and finally
plot 6(R1/2A_1]\~4B_1R1/2) over frequency. Figure 3.7-13 shows that this stability
criterion reaches a maximum amplitude of nearly 3, so this system fails the sufficient
condition for stability.

This accurately reflects the fact that the system is unstable for some values of
“skew” or timing offset between the two samplers: we have seen-that it is unstable
when the skew is zero. Since the conic sector method implicitly includes all possible
values of skew, from 0 to 7, this is as it should be. However, if the system were
actually built to have a timing skew of T'/2, which never changed or drifted, the
conic sector test would fail to recognize that the system is stable; in other words,
the conic sector method would be conservative.

Two undesirable features of this system combine to make the stability criterion
greater than 1. First, the rolloff of M is somewhat slow at high frequencies; it rolls
off as 1/w?. Second, and more importantly, the system with cone center is very
close to instability. The Nyquist locus of the loop gain with both samplers replaced
by 1/T comes very close to the critical point —1, corresponding to a phase margin
of only 4.2°. This produces a very large peak in some elements of M near the
unity-gain crossover frequency, and this in turn causes the radius R to have large

peaks at that frequency and all its aliases. This exhibits a general rule of conic
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Fig. 3.7-13: Bode plot of 6(R1/2A‘1]\;IB‘1R1/2). Maximum ampli-

tude is 3, so the system fails the conic sector test for stability.
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sector analysis: systems which are close to instability (i.e., with large resonances
near the crossover frequency) have large optimal radii, and are more likely to fail
the stability test.

It can be argued, then, that conservativeness due to skewed sampling effects,
like the forms of conservativeness discussed in the two previous examples, occurs
primarily in systems with poor robustness margins — systems which are close to
instability anyway. Conversely, it might be expected that systems with good ro-
bustness margins will produce little conservativeness in the conic sector method.
Preliminary tests on various examples tend to support this conclusion, with one

exception: systems with samplers at the outputs of zero-order holds.
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3.7.2.4 Sampling the Output of a ZOH

The next example identifies a class of multirate systems for which, in contrast
to the previous three examples, the conic sector method as outlined so far gives
conservative results even when the systems have good robustness margins. These
are systems in which an analog signal is sampled, fed into a zero-order hold, then
immediately sampled again at a different rate. If the rates have integer ratios, the
problem can be sidestepped successfully by Kranc operator techniques. If the rates
have a non-integer ratio, the method of Section 3.7.1 fails. A possible solution to
this problem is presented in Section 3.8.

This example is motivated by the author’s experiences with switching power
supplies; more variations on this same example are explored in Chapter 5. These
power converters typically have a lightly damped, second-order lowpass open-loop
response. Feedback controllers are used to hold the output voltage constant and
equal to a reference input, while rejecting disturbances on the input power line.
Figure 3.7-14 shows the system with an analog controller. The plant G(s) has an

open-loop transfer function

1

G(s) = ————
(s) st+ 4s+1

which is a lowpass filter with damping factor ¢ = 0.2. Typical power converters

have much higher resonant frequencies — about 3000 rad /sec — but this example

is scaled down to a resonant frequency of 1. A typical analog controller is

312(s + 1)*
K(s) = 312(s + 1)°
s(s -+ 30)
which has an integrating response at low frequencies, and two zeros at the plant’s
resonant frequency which allow the loop bandwidth to be extended to 10 radi-

ans/sec while maintaining stability. High loop bandwidth is desired in order to give

good disturbance rejection at all frequencies. The response to step reference inputs
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dist. ——>(F)— G(s) >
/‘[\

K(s) ke

ref.

Fig. 3.7-14: An analog feedback loop. G(s) = 1/(s? + .4s + 1) and
K(s) = (312(s + 1)*)/(s(s + 30)).
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Fig. 3.7-15: Step response to reference input for analog and multi-

rate systems.
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(Figure 3.7-15) shows a fairly large 20% overshoot, but this is acceptable since the
reference input typically never changes.
Now replace K(s) with the multirate digital controller shown in Figure 3.7-
16. To prevent high-frequency switching noise from entering the control loop, an
ahti—aliasing filter

3600
s2 + 60s + 3600

F(s) =

1s placed between the output of G(s) and the sampler. Suppose the filtered output
of F(s) is available at a sample period T'/2, where T = 0.1 second, but it is desired
to update the controller’s output at period 7/3. The T /2 signal can be held in
a buffer register and read at the faster 7/3 period. This is modelled by feeding
the output of the T/2 sampler into a ZOH, then sampling the ZOH output at
period T/3. A digital filter K (2) was synthesized, using the complex cepstrum
matching technique of Chapter 6, to provide closed-loop response for this system
that is similar to that of the original analog system. The philosophy behind this

will be explained later; for now, simply let

491.4(z — .075556) (z — .96736)>

Ka(z) = (z — 1) (2 + .76425)(z — .19620)

where K4(z) runs at sample period T/3.

It is straightforward to use state-space Kranc operator methods, as described
in Section 2.8, to determine the nominal stability and dynamic response of this
multirate system. Figure 3.7-15 shows the step response, for the reference input, of
both the original analog system and this multirate system. They are similar, except
that the multirate system has greater overshoot.

Now let’s attempt to use the conic sector method of Section 3.7.1 to determine
stability for this system. Extract both samplers from the system and place them in

the usual diagonal arrangement, with the 7'/2 sampler on top. The interconnection
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Fig. 3.7-16: Multirate version of Fig. 3.7-14.
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Fig. 3.7-17: Log Nyquist plot of det(I — T“M). There are no

real

encirclements of 0, so the system is stable with cone center.
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matrix M and the matrix 7" are given by

M =

0 —-FGH!K, s _ [T/2 0
HI? 0 ~ o0 T/3

The first step is to determine the stability of the system with cone center by plotting
det(] — ’f’_lM) as s ranges over a Nyquist D-contour. Since this system has a pole
at the origin, the Nyquist contour has a semicircular “notch” there. Figure 3.7-17
shows the log Nyquist plot when the notch has radius .001. The tulip-shaped locus
makes no encirclements of the origin, so the system is stable with cone center.
The next step is to compute M = M(I - TIA"_IM)_1 and u = i%f E(DMD_I).
Then construct A = diag(oy, o) = p/*D"! and B = diag(B1,82) = u*/*D where D
is scaled, as always, to satisfy 6(D)g(D) = 1. In the 2 x 2 case, it always happens
that a; = f; and ap = By; this is because d; = 1/d, in the 2 x 2 case, where D =
diag(d, ds). For this reason, only a; and §; are plotted in Figure 3.7-18. «; is seen
to roll off quickly, approximately as 1/w*®, but 3, has a disturbing characteristic:
1/2

it rolls off only as 1/w'* as w — oco. This very slow rate of rolloff means that the

cone radius formula does not converge. Recall that each radius R; is given by
e 1 : C2m\ |2 . 2w\
B(iw)l = 75 (| (5w = gn i )| ) ()6 (50 - st )
7 n 1 k

T
(. . 27r>6 ( . 27r>
o; | Jw JnT,- i | JW ]nT,-

1 2

_FZ

i on

If |8;(jw)]| is approximated by |8;(jw)| = 1/w'/?, then at low frequencies the radius

and the second infinite series does not converge. Apparently the method of Section

is approximated by

T;
27

1 27
) . 2 % - ) . _ - =
s (gw)] T? (Zn % <]w j"T,—) k

) (mz-(jw)t? by

k0

<. . 27r>ﬁ < . 27r>
Qg \ Jw jnTi i\ Jw ]nT,-

2

3.7.1 leads to an infinite radius in this example.
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Fig. 3.7-18: Bode plots of «; and ;. f; rolls off as l/cul/2 as w — 00,

so the cone radius infinite series does not converge.
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The problem is caused by the slow rolloff of the Hgﬂ element in M. This type
of element will appear in M whenever this type of multirate sampling scheme is
modelled by a sampler at the output of a ZOH.

The key to avoiding this problem is to modify the method of Section 3.7.1
slightly. Instead of extracting all the samplers in a system into a diagonal arrange-
ment, we should extract only those samplers which operate on analog signals. If a
sampler operates on a digital signal, which could be the output of another sampler
or the output of a digital filter, then it sould be modelled by some other means.
When the ratio of sampling rates is an integer, Kranc operator techniques provide
a neat solution to this problem.

When the ratio is not an integer, a possible way out of the dilemma is to put both
samplers and the ZOH inside a single conic sector. Theorem 1 must be extended to
handle this situation, since it is formulated for a single sampler. The next section

derives a modified version of Theorem 1 which handles this case.
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3.8 A Conic Sector Containing Two Samplers

Consider the SISO system in Figure 3.8-1. A signal u(t) is filtered by F(s),
sampled at period T, fed through a hold element H(s), sampled again at period
Ty, and finally filtered by G(s) to become the output y(¢). The signals at various
internal points of the system are labelled z; through z4. This system is linear,
though not time-invariant; therefore we can predict its output for any input in
L, if we know its output for all complex exponential inputs e?“!. In the following
derivation, let wy = 27 /T} and wy = 27 /Ts.

Suppose 7, = e/*!. Then the output of the first sampler is

1

- Jlwtkwy)t
Ty Tl - €
The output of the hold element is
1 - - (wtkw )t
T3 = TZH(]w+]kw1)e’ !
1

k

Sampling again at period T, replaces each exponential term e/(“+%41)t with another

infinite series:
1 | .
Ty = o= 3 H(jw 4 jhw)— 3 efletkortno)t
Tl k T2 "
Finally, z4 is filtered by G(s) to produce the output y:

1

y(t) = TT Z Z G(]w + jkwl + ].n(,dz)H(jw 4 J-kwl)ej(w+kw1+nw2)t
1£2  n

Now let u(t) be any signal in Ls; u has a Fourier transform representation

1

u(t) = 2—7r/_O:OU(jw)ej“’tdw

therefore z; is given by

n(t) = = [7 P(ju)U(jw)e™ dw

27 J -0
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T1 T2

Hy

Fig. 3.8-1: A SISO multirate system.
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Now by invoking the linearity of the system, we can find the output y with this

input u:

-2

DD G(w + jhwy + jnws)H (jw + jkwy) X
k n

1
T\T:
F(]w) U(]Q}) ej(w+kw1+nw2)tdw

By making a change of variables, this becomes

o0) = g | [ E G G~ ) (o — jhin — )

—00
U(jw — jkw; — jnw,)| e dw

Given this input-output description of the system, we may proceed to derive a conic
sector which strictly contains it. The derivation closely parallels that of Theorem
1, where the system contains a single sampler.

Let the cone center by given by the baseband (non-aliased) response of the

system K:
1
Tl T2

C = GHF

In order to simplify the notation, define

0 ifk=n=0;

Kin(jw) = { 1

s GUW)H (Jw — jnws) F(jw — jkwy — jnw,)  otherwise.

Note that for an input u(t) to this system,

y(t) — (Cu(t) = 517_; /_o; 2.0 (Kin(5w)U (jw — jko — Jnws)) et dw

In order to assure Lebesgue Dominated Convergence, which is required in one step

of the derivation, assume for |w| sufficiently large that

?; [Kk,n(]-w)f < |wﬁ+ﬁ for some a, 8 > 0
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Now we may derive the following Lemma, which is analogous to Lemma 3.A of [20].
Lemma. Let e(s) be the Laplace transform of e(t) € Ly, and let K, be as

described above. Then

2

dw

1 [oe]

27r —00

Z Z Kk,n(jw)e(jw — Jkwy — jnwz)
k n

1

2 /_‘: (; Zm: Z,:‘ Z,; [ Ken(gw + gloy + J'mwz)lz) le(jw) [2dw

[N

Proof:

2

dw

1 /00
27 J-

L ree . : : :
5;/ 22 | Kin(jw)e(jo — jkw — jnws)|* dw
e

n

2.2 Kin(jw)e(gw — jkwn — jnw)
k n

IA

= o [ S el el — ki — ) e

n

A

% /Ao:o Z};Z (’Kk,n(jw)}z) (;; le(jw — jlw, ~]-muJ2)’2> dw

n

Now move two of the summation signs outside the integral by Lebesgue Dominated

Convergence:

1 B . . . .
= =20 22 1 Ealio) [P ] le(jw — jlwy — jmew,)|* dw
2m -
I m "7 N\ n
Next make a change of variables:

= T [T (T Kl st + ) e

1

= 5 /oo (Z;;Xk:; Kin(gw + glw; +]'mw2)}2> le(jw)|*dw

— 00

This completes the proof.

Now we may proceed to prove the main theorem. The proof is analogous to the

proof of Theorem 1.
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Theorem 3. Let K be the two-sampler hybrid operator of Figure 3.8-1. As-

sume that G, H, and F are stable, and let B and R™! be LTI L,,-stable, causal

operators. Let the cone center C be given by C = TllT,GHF' Then K is strictly

inside Cone(C, R) if

R(Jw)P >

1
— 22220 Kin(jw + jlwy + jmuwy) [*
1 m k n

for all w € R and for some 1 > ¢ > 0.

Proof: define the truncated function

then

o= (0 0
(K = Cell?

(K = C)R™'Re]|}

(K = C)R™ e |2

(K = )R |3,

/Ooo (K~ )R & ()] at

2—17;/_00 ‘((K - C)R_léT) (jw)'2 dw (Parseval’s theorem)

2
1 . . . ~ . . .
= %/ (Jw)R™(Jw — Jkwy — Jnws)é, (jw — jhw, — Jnws)| dw
Now applying the above Lemma:
1 .
S (ZZZZIK“ (Jw + 7lwr + ymuw,))| ) R (jw)e Hjw)| dw
1
<

27r/ (1= 9 [RGw)* R Jw)i & (jw)]* dw

1 o B 9 1 o )R(]w ~ A 2
— ; dw — ¢ / — L \R1¢ d
27r/—oo!€ (w)|" dw “on ] 1nf R(jw) tZl ]w)i w
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where ¢’ = ¢ <inf |R(jw)]2> > 0.

weR
< ez, — €IRTE |,
< el - ¢l RTE |
and by causality of R7!:
= ||Re|l; — ¢|R7' Re|]?

= || Rell7 —€le]?

< Refl? =€ (jlel? + 1y ]2)
where

!

i >0 d
= an o = su
1 -+ a2 e,rp

[Kell-
lell»

"
€

So the system K meets the definition of being strictly inside Cone(C, R).

completes the proof.

) < oo since K is stable.

This
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3.9 Robustness Analysis Using New Results

Now we are ready to put the preceding results together to produce a unified
analysis approach for sampled-data systems that is analogous to the LTI approach
of Section 2.6, which was built around the Structured Singular Value 4. As in
that section, four tests can be made: nominal stability, robust stability, nominal
performance, and robust performance. Since the conic sector stability criterion uses
a singular value test, we can no longer use u directly, but in its place we compute
a(M) = Ii)réfD("f(DMD'l), which is an upper bound for p. This is not a great

sacrifice, because no method is yet known to compute p exactly for more than three

A-blocks; therefore 2 is generally used instead of u for LTI analysis as well.

3.9.1 Nominal Stability

Sections 3.4 and 3.7 have shown how to use conic sector theory to determine if a
sampled-data feedback system is nominally stable. Section 3.7.1 lists an eight-step
procedure for testing nominal stability of MIMO systems. In the SISO case, this

procedure gives an optimally small cone radius, as was proved in Section 3.4.1.

3.9.2 Robust Stability

Systems with plant uncertainty can be arranged, as in Figure 3.9-1, with all
samplers extracted above the nominal plant M, and with all uncertainty blocks
extracted below M in a diagonal arrangement. As in the LTI case, each A-block
can always be made to have unity magnitude: 6(A;) < 1 V w. This is done by
lumping any frequency weights together with the plant M.

As with nominal stability analysis, construct 7' = diag(Ty,...,T,) where T} is

the period of the 7th sampler. Lump T-1 together with M to form M, the operator



138

Fig. 3.9-1: A MIMO sampled-data system with structured plant

uncertainty.

N

Fig. 3.9-2: The construction of M for the robust stability test, with
T-! “folded” into M.
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in the dashed box of Figure 3.9-2. As before, this has the effect of subtracting
the cone centers from the cone-bounded “sandwiched” samplers, leaving them with
cone center 0.

The next step is to choose two diagonal operators A = diag(ay, ..., a,, I), B=
diag(fB1,...,Bn,I), and to compute individual cone radii R; = Rad(es, 8;) for the
samplers. Each R; may be factored into R3/2R3/2 as before, and since they are
periodic, one Ril/2 may be commuted with each cone-bounded sampler.

This process is identical to the nominal stability procedure, except for the pres-
ence of the LTI A-blocks. Since the next step requires us to place all the external
blocks into a single, diagonal cone-bounded operator, we need a cone bound for
each A-block. This is easy: since we have assumed ||A;|l < 1V 7, Section 2.2 tells

us that

1Az, < [[Adlellullz, < fulle, Vu€ L.

This implies that each A; is inside Cone(0, I).

Now define RY/2 = diag(R\/?, ..., RY?.1) and transfer the LTI A-blocks to the
upper side of M in Figure 3.9-3. The PLTV operators A, are zero-center, unity-
radius cone-bounded operators obtained, as in Section 3.4.2, by factoring R; from
the input of each Cone(0, R;). That is, if A;R; is inside Cone(0, R;), then A; is
inside Cone(0,I). In this way, every PLTV A; block and every LTI A; block is
inside Cone(0,I), so we can use the lemma of Section 3.5 to lump them all into a
single diagonal operator K which is inside Cone(0, I).

The conic sector stability criterion says that this system is stable if

(1) RY?A~'MB~1RY? is stable; and

(2) |RY*A"'MB™'RY?||, < 1.

Since RY?, A~' and B~! are stable by construction (they are defined as stable,
minimum-phase transfer functions of given magnitude), we need only check the

stability of M. This can be done by a MIMO Nyquist test on det(/ — T‘lz\/fu).
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K
A,
A
1/2 n 1/2
R A, R
Am
A7 M B!

Fig. 3.9-3: After subtracting the cone centers and factoring out R,
the PLTV operators A; are each inside Cone(0,I). Lumped together

with the LTI operators A;, they form the diagonal operator K, which
is inside Cone(0, I).
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Before computing 5(R1/2A“1]\;[B_1R1/2) at each frequency, we can exploit one
additional trick to reduce the singular value. Although the use of diagonal scaling
in the LTV A-blocks is restricted (since Dl-AiDi_l -+ A; unless D;(jw) is periodic
in w with period 27 /T;), we may use diagonal scaling on the LTI A-blocks. Define

the set

D = {diag(]n,dllkl,...,dmlkm)}

where k; is the dimension of the th LTI A-block, and d; > 0V 7. Now at each

frequency find

i o= [i)rg)6(DR1/2A‘1MB‘1R1/2D‘1)
If |2]]co < 1, the system is robustly stable.
We have not yet addressed the question of how to choose A and B for the robust
stability test. A straightforward way is to repeat the method used for the nominal
sta.bility test, but using M, instead of the entire matrix M, where

~ My Mg
M = | - ~
[Mm Mzz}

and where ]\;In € C™", Define

D, = {diag(dl,...,dn) | d; >0\V/l'}

and compute

ﬁ‘l e DilIéfD1 6'(D1M11D1_1)

Then let A4, = 2i?D7' = diag(ay,...,,) and B, = 42D, = diag (B1,.. ., 5
after scaling D, so that 6(D)o(Dy) =1 Vw.
A less conservative method would be to define 4, as

jn = inf Astelgla(DlFl(M,A)Dll)
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and then to proceed as above. A way to do this when there is only one sampler
(so that D; is a scalar) was discussed in Section 3.4.2. With multiple samplers,
however, this appears very difficult.

Let’s review the steps for the robust stability test:

1. Set up the system as in Figure 3.9-1, with all samplers and LTI A-blocks
arranged diagonally about an LTI interconnection matrix M.

2. Construct 7' = diag(7y,...,7,) where T is the tth sampler’s period, then

“fold” T~ into M to produce M as in Figure 3.9-2. M is now given by

M = ]\:411 ]\2112} _ [Mll(l—f_lMll)_l (I - MyT-1) "My,
My Ma, Moy (I — T7 Myy) ™ My,

3. Determine the stability of M by performing the MIMO Nyquist test on
det(I — T“IMH). If M is stable, proceed.
4. At each frequency w, compute 1; = Di%fp 6(D1]\~411D1"1). (Optional: if there

is only one sampler, compute instead f; = sup [Fl(]\;l, A)| by the method of Section
AeX; -

3.4.2.)

5. Scale Dy so that d(D;)o(D1) =1 at each frequency.

6. Let 4; = [L}/2D‘1 = diag(ay,...,a,) and By = ,&}/2D1 = diag(B4,...,0n).
Then let A = diag(A;,I) and B = diag(B, ).

7. Compute RY/? = diag(Ri/z, ..., RY2 I), where R, = Rad(a, ).

8. Compute and plot

p = inf 6(DRV*A'MB™'RY*D ™).
Dep

(Remember that the first n elements of D are all 1.) If [|illos < 1, the system is

robustly stable.

3.9.3 Nominal Performance

In the LTI analysis method of Section 2.6.4, a system is considered to meet its
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nominal performance requirements if its nominal gain is less than 1 at all frequencies:
IMs|loo < 1. Since the nominal system Mo may be defined to include frequency
weights and a desired “target” response, this approach is general. Since a sampled-
data system is LTV, however, it is not enough to put bounds only on its gain
f(;r sine-wave inputs, because this ignores aliasing effects. Instead we may define
a system to be within its performance requirements if its input-output relation is

inside a conic sector of unity radius and zero center:
Mj inside Cone(0, I).

As in the LTI case, frequency weights may be included at the input and output
of My and a desired input-output response may be included in the model. TFor
analysis purposes, the output of My may be considered to be the frequency-weighted
difference between its actual and desired outputs.

How can we use the results of the previous sections to test whether M is inside
a given cone? The previous analyses have concentrated on testing the stability of
the system, when parts of M, (the sandwiched samplers) are already known to be
inside certain cones. We need to turn this around to test the conicity of My when
the stability of a system containing M is already known. But since the conic sector
stability criterion is only a sufficient condition for stability, not a necessary and
sufficient one, the test can be turned around only under special conditions.

Consider Figure 3.9-4, a feedback loop containing two relations K and G. The
conic sector stability criterion tells us that if K is inside Cone(0, /) and G’ is outside
Cone(0, I), then this system is stable. Equivalently, it is stable if K and G are both
inside Cone(0, I). What assumptions can be made about G which will allow us to
reverse this, so that stability implies that K is inside Cone(0, I)?

Lemma. If the system in Figure 3.9-4 is stable for all § inside Cone(0, ), then

K is inside Cone(0, ]).
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Y2 G <— Uy

Fig. 3.9-4: A feedback loop containing two relations K and §.
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Proof : Suppose K is not inside Cone(0, I).

= 3 (zo,y0) € K such that |jyo|| > l|zolls > O for some 7 > 0, where zq,y0 € L.

= 3 G inside Cone(0,I) such that (P,yo, Przo) € §

= dJy= <y1> = (];TZZ) when v = <u1> = 0 for some § € Cone(0, 1)

Y2 Ug

= |lyl|- > k|lu|l, = O for some 7 > 0, for some y,u € Ly, and ¥ finite k£ > 0

Therefore the feedback system is not closed-loop stable for all § inside Cone(0, I)
if K is not inside Cone(0,I). (See the definition of stability in Section 2.4.) This
completes the proof.

Our analysis method, then, is to connect the output of the closed-loop sampled-
data system to its input through a “dummy” relation An—i—ls where we allow Anﬂ
to range over Cone(0, I), and then to determine stability. If this fictitious system is
stable, then the original system is inside Cone(0, ) and the nominal performance
~requirement is met.

In the previous section, the system was manipulated so that each cone-bounded
sampler was modelled by a PLTV operator inside Cone(0,]). All the operators
were then combined into a single diagonal operator, also inside Cone(0, I). We can
repeat this process, but also include the dummy operator Anﬂ. Now the system is
reduced to a single, block-diagonal operator inside Cone(0, ) in feedback with an
exactly known LTI operator, and the standard stability test may be applied.

Here are the steps for the nominal performance test:

1. Set up the system as in Figure 3.9-5, with all samplers arranged diagonally
about an LTT interconnection matrix M.

2. Construct T = diag(Th,...,Tn) where T; is the ¢th sampler’s period, then
“fold” 7! into M to produce M as in Figure 3.9-6. M is now given by

Moo= J\:411 ]\Efrz _ Mll(IAji_lMll)vl (]_Muiﬂfl)fljww
My My Mo (I =T M)~} My,
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Fig. 3.9-5: A nominal MIMO sampled-data system with input-

output response preserved.

]

<
VvV Vv

— e o ] - — —— —— — — —

Fig. 3.9-6: The construction of M for the nominal performance test.
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3. Determine the stability of M by performing the MIMO Nyquist test on
det(I — T~'Myy). If M is stable, proceed.

4. At each frequency w, compute i, = Diréfp 6(D1M11D;1), where
D = { diag(dy,...,d,) | di > OV}

5. Scale Dy so that 6(D;)a(D1) = 1 at each frequency.

6. Let A; = ﬂi/zD“l = diag(oy,...,0,) and By = ,&i/le = diag(B,..-,0n)-
Then let A = diag(A;,I) and B = diag(By,I).

7. Compute RY? = diag(Ri/z,. .., RY% I), where R; = Rad(eu, 5:)-

8. Compute and plot i = 6(R1/2A’1]\~4B“1RI/2) over all frequencies. If || 4]|co <
1, the system is stable for all dummy blocks An-{-—l inside Cone(0, I), which implies
that the nominal closed-loop system is inside Cone(0,I). Therefore the system

meets its nominal performance requirements.

3.9.4 Robust Performance

By extending the robust performance test of the preceding section to cover a
set of sampled-data systems, rather than the nominal system only, we get a robust
performance test. This test can be defined in a way analogous to the LTI test of
Section 2.6.5, except that the performance bound is a conic sector rather than an oco-
norm. That is, a system is considered to meet its robust performance specification
if, for all allowed plant perturbations, its input-output relation is inside Cone(0, I).
As in Section 3.9.3, the output used for the test may be the frequency-weighted
difference between its actual and desired outputs.

Figure 3.9-7 shows a generic model of a sampled-data system with plant un-
certainty. All n samplers are, as usual, extracted from the plant and arranged
diagonally above it. In addition, all m LTI uncertainty blocks A; are extracted and

arranged diagonally outside the plant. The plant’s external input and output are
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M

N

Fig. 3.9-7: An uncertain MIMO system with input-output response

preserved.
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also shown. The resulting LTI operator M has a 3 x 3 block structure. Assume
that the LTI A-blocks are already normalized, so that |A;||,, < 1 for ¢ =1 to m.

We can repeat the procedures of the previous sections to model the LTV effects
of each sampler with a cone-bounded PLTV operator A,- that is inside Cone(0, I).
Then we may determine whether the closed-loop system is inside Cone(0,I) by
connecting its output to its input through a “dummy” relation An+1, as in Sec-
tion 3.9.3. If the resulting fictitious feedback system is stable for all Anﬂ inside
Cone(0, I), then the robust performance requirement is met.

Here are the steps for the robust performance test:

1. Set up the system as in Figure 3.9-7, with all samplers and LTI A-blocks
arranged diagonally about an LTI interconnection matrix M.

2. Construct T = diag(Ti,...,T,) where T; is the ¢th sampler’s period, then
“fold” T~! into M to produce M as in Figure 3.9-8. M is now given by

M = | My M22 Mo

. -J\:/lll M12 M13}
| Moy Mz, Ms

)

)"

)

My (=T "My)™" (I = MpuT Y My, (- M7 My,
= le(I T an ! My, My
| M5 (I — T-'M;)"! M, Mss

3. Determine the stability of M by performing the MIMO Nyquist test on
det(I — T‘lMu). If M is stable, proceed.

4. At each frequency w, compute 4, = inf 6(D1M11D1_1), where

1€

= { diag(dy,...,d,) | d; >0V}

5. Scale D, so that (D;)o(D;) =1 at each frequency.
6. Let A, = AI/ZD ' = diag(ay,...,a,) and By = ,&i/le = diag(B,.. ., 0n).
Then let A = diag(A4,, 1) and B = diag(By, I).

7. Compute R'/2 = diag(R}/* ... RY? I), where R; = Rad(e;,5;).
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Fig. 3.9-8: The construction of M for the robust performance test.
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8. Define

D = {dia’g(lnadljkla---adm—[kma[)|di>0 VZ}

where I, is an n x n identity matrix and k; is the dimension of the ¢th LTI A-block.

Over all frequencies, compute and plot
f = inf 6(DRV*A"'M B 'RY*D™)
Dep

(Remember that the first n elements of D are all 1.) If |2llee < 1, the system is
stable for all dummy blocks Anﬂ inside Cone(0, I) and for all LTI A-blocks such
that [|Ai]lc < 1, which implies that the closed-loop system is inside Cone(0, 1)
for all allowed perturbations. Therefore the system meets its robust performance
requirements.

The only significant difference beween this procedure and the nominal perfor-
mance test of Section 3.9.3 is that diagonal scaling is allowed in the LTI A-block
channels. Diagonal scaling is not used in the PLTV A, channels, because for an LTI
operator D;, DiA,»D;l # A, unless D; (jw) is periodic in w with period 27 /T;. Such
a restriction on D is very difficult to handle algorithmically, and the pre-scaling of
My, by D, prior to computing the radius should reduce the need for scaling in those
channels.

Frequency-independent scaling cannot be used on the “dummy” channel Anﬂ
because Anﬂ cannot be assumed to be LTI; it must be allowed to range over all of

Cone(0, I). In fact, it cannot even be assumed to be linear.
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Chapter Four — Practical Considerations

4.1 Computing the Cone Center and Radius
4.1.1 State-space Method for SISO Operators

The basic theorem of Section 3.1 states that a SISO hybrid operator with pre-
filter F'(s), sampling period 7', and hold H(s) is inside Cone(C, R) where C(s) =
T+ H(s)F(s) and

G = (2 mGF) (2 i) - (2 Al ) ) |

k k k

If F(s) and H(s) are proper rational functions, they can be represented by state-

space quadruples:

A1 Bl A2 B2

F(s) = H(s) =

C1 0 C, 0

[t is assumed that the D termns are zero, since the infinite series would not converge
if they were not: F(s) and H(s) must roll off at high frequencies. Given these
state-space quadruples, we can compute the three infinite series in closed form
using only real matrix multiplication and a matrix exponential routine, by using a
method presented in [20]. Recall from basic sampling theory that the z-transform
of a discretized analog plant, evaluated on the unit circle, is 1/7 times the infinite

summation of the aliased analog transfer function:

() = 2 Guljw)
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We saw in Section 2.7.2 that GT(z) may be computed from G(s) in state space:

A | B
¢ | D

A transfer function which equals |F(jw)|? on the jw-axis can be constructed in state

CAT CATB

if G(s) = , then GT(z) =

o D

space by taking advantage of the fact that |F(jw)|* = F*(jw)F(jw) where F*(jw) is
the complex conjugate of F(jw). (F* is the adjoint operator of F.) Using the rules

in Section 2.2.1 for taking the adjoint of a system and the cascade of two systems,

we get
) AT | —cT) A | B
Fi(s)F(s) = |—'— '
BT | o |la | o
-—'A{ ~C£‘FCI 0 N -
A B
— 0 Al Bl = ‘
BT 0 | o ©cl0
Now find )
AT AT B
Z EGw)l® = (FTF)'(2) = |~
k C 0

where z = /7T,
Repeat this process to find 7 3 |H(jw)[* and L ¥ |Fu(jw) Hy(jw)?. For the
k k
latter summation, first cascade F' and H, then compute (FH)*(FH). In terms of

the three summations, the squared cone radius is

RGw)l* = ( Zle (70)] ) ( Z’Hk (Jw)l > - % <¥ le(J'w)Hk(J'W)lZ)
= (F*FY () (B H)" (=) - (0 F P H)"(2)

where z = /T,
This procedure works if H(s) is a rational function in s. More typically, however,
H is a zero-order hold: H(s) = HJ(s) = (1 — e*T)/s. Since this is an infinite-

dimensional system, no state-space quadruple exists for it. However, since the
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factor 1 — e™7*7 is periodic in w, it can be pulled outside the summation:

1 — e iWT+27k) 2

> HH e (Gw)F = 3

= (w4 27k/T)

2

_ p—jwT ) R
Loe” = [1— T S A (s)P
k

- Zk: J(w+ 27k/T)

where H(s) = 1/s, a simple integrator.
Therefore we may handle the case of a ZOH by setting H(s) = ﬁ(s) =1/s and

applying the state-space method described above, then multiplying the resulting

value of |R(jw)|* by {1 —e T2 = (1 - 2)(1 — 27 1):
RGP = {(F ) @D () = (P FEY ()} (- 2)(1 - =)

where z = /¥T,

This method, although accurate and appealingly simple, is not well suited for
the new nonconservative conic sector results of this thesis. This is because the new
methods set F(jw) = a(jw) and H(jw) = B(jw), where a and f are not rational
functions in s. Therefore no state-space quadruples exist for « and 3. This requires
us to approximate the radius numerically by first finding « and g for a large number

of frequency points, then computing the truncated infinite series. This technique is

described in the next section.

4.1.2 Numerical Method for SISO Operators

The new analysis methods of this thesis require solving numerical minimization
problems at many frequency points. For instance, to make the MIMO nominal
stability test, we solve

A e T -1
,u—lljrg)o(DMD )

at each frequency, where D is a set of positive real diagonal matrices. The next step
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is to let

A= p"'D7l = diag(ay,..., )

B = p**D = diag(By,...,B)
and then to compute n cone radii R; = Rad(qy, §;) using the SISO version of the
basic theorem. Therefore «; and 3; are typically given as a set of logarithmically
spaced data points. The state-space method of Section 4.1.1 is not applicable, since
we have no state-space representation of «; and f;; in fact, o; and B; are usually
not rational functions of s.

The formula for the cone radius is

Red(on ) = 75 { (S lontio)l) (S 1outiot?) - (Slatiaiantior) |

The three infinite series can be approximated numerically by truncating each series
at a sufficiently high number of terms. Since the input data is available only at
certain fixed frequency points, most of the aliased terms o(jw) and Bi(jw) must
be estimated by interpolating between the points that are available. For large values
of k, the aliased frequency may be well above the highest frequency point in the

input data. In these cases, a(jw) and B;(jw) may be estimated by assuming that

at high frequencies,

K, . K
la(jw)| < o and [f(jw)] < ;”E for some a,b, K,, K, > 0

The constants a and b set the rate of rolloff at high frequencies. The faster « and
B roll off, the smaller Rad(«a, 3) becomes.

Most of the cone radius plots in this thesis were generated by a simple FOR-
TRAN program using this approach. The program reads two data files containing «
and f at logarithmically spaced points, then prompts the user for the high-frequency
rolloff constants a and 6. It computes the three truncated infinite series using linear

interpolation at low frequencies and the rolloff bounds at high frequencies. Then it
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combines the three series by the above formula and writes Rad(e, 8) to an output
file, for the same frequency points as the input files o and 8. Although not as
elegant as the state-space method of Section 4.1.1, the program runs quickly and is
well suited to the new conic sector methods of this thesis.

It is not necessary to compute cone radii using the MIMO version of the basic
theorem, since the methods of this thesis treat MIMO systems by a series of ap-
plications of the SISO version of the theorem. That is, each SISO sampler is first
placed within its own conic sector, then recombined with others to form a MIMO

operator.

4.2 Matrix Balancing and Diagonal Scaling
4.2.1 Osborne’s Method

The multivariable results of Chapter 3 depend on computing a diagonal matrix
D € D which minimizes 6(DMD‘1). Since this is not an analytic function of D, the
minimization problem is complicated, and available software to solve it converges
rather slowly. This problem is discussed further in the next section. A closely
related problem with an efficient, elegant solution algorithm is Ii)rg) ||DMD"11|F,
where || - ||r is the Frobenius norm.

This problem can be solved by a rapidly convergent iterative method due to
Osborne [13]. Recall that the squared Frobenius norm of a matrix is simply the
sum of the squared magnitudes of all its elements; i.e.,

non
[All7 = D>_ lagl? for Ac Cm
i=1j=1
For simplicity, assume that each diagonal element d; of D = diag(di,...,d,) is a
free variable; when some elements are repeated, the method can be easily modified.

Now observe that when an element d, is varied, only the kth row and kth
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column of DAD™! are changed; furthermore, the kth diagonal element of DAD™!

is unchanged. This is because

(paD™) = =

Since ||DAD™!||% is simply the sum of all squared elements of DAD™, it may be

decomposed into three parts: a term proportional to d%, a term proportional to

1/d%, and a term independent of dZ.

Ipap- = 33 4l

) & |akyl2 2 2 EE d2|a,]|2 2
S ) Dh-- LIS SV PHLEE Do) i L LRV
s % & o 2k T2k %
2 ].
= dkR+ﬁS+C
k

Simple calculus shows that this expression is minimized when

SVl oS

Therefore the Frobenius norm may be minimized with respect to a single element
of D in only one step. Osborne’s algorithm to find the optimal D is to let k step
from 1 through n, then back to 1, until the norm has converged:

1. Let k=1and D = 1.

2. Compute the sums

R = 5 and S = Zd?{at”z
i i

3. Let dy = (S/R)Y*.
4. Test for convergence. If converged, stop; otherwise increment k£ by 1. If
k=n,let £ =1 again.

5. Go to Step 2.
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This method always converges and usually does so very quickly. Only a small
amount of computation is involved, since the sums R and S have only n — 1 terms
each.
Since || - || and || - ||, are compatible norms, the D which minimizes |DMD™Y|p

usually comes close to minimizing |[DM D}, = o(DMD™1) as well:
IDMD™2 < ||IDMD™|lp < nl|DMD™;

For this reason, it is often sufficient simply to apply Osborne’s method alone when
using the methods of Chapter 3 for MIMO sampled-data system analysis. That
is, instead of solving i = li)r&lj)&(D]\;[D'l) directly, solve lijxg) HDMD‘1HF and then
compute 4 = c_r(DMD—l) with the resulting D. This can save a considerable amount

of computer time without significantly degrading the results.

4.2.2 Singular Value Minimization

For cases where the Osborne method is not enough, other iterative techniques
exist to directly minimize 5(DMD™). Since the singular values of a matrix are
not, in general, differentiable functions of the matrix elements, a gradient cannot
always be defined for steepest descent methods. In [5], however, Doyle defines a
generalized gradient which serves the same purpose of providing a search direction
which reduces (DM D). Since this function can be shown to be convex in D, the
function always converges to its global minimum if it is reduced at each iteration.
A complete description of the method is beyond the scope of this thesis; see [5] for
details.

In Chapter 3, grg)é(DMD_l) is desired for direct use; in analysis of purely LTI
systems, it is desired only as an upper bound for the true Structured Singular Value

p. In addition to [5], another article discussing the computation of y is 8.
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4.3 Application to Typical Control System Specifications

This section discusses how to use the conic sector methods of this thesis to
test typical control system specifications. These include gain and phase margins,
loop-at-a-time margins for multiloop systems, RMS output error for sine-wave and

white noise inputs, step response, and rise time.

4.3.1 Gain Margin, Phase Margin, and Gain-phase Margin

For a system with a single feedback loop, gain margin is usually defined as the
amount by which the loop gain can be increased or reduced, without phase shift,
before the system becomes unstable. Refer to Figure 4.3-1; the system has been
drawn as a lower fractional transformation so that its single SISO feedback loop
passes through the parameter o, which is nominally 1. Any single-loop system may
be redrawn in this way. The gain margin is the interval on the real number line,
containing 1, of values for a which stabilize the system. A typical gain margin
(GM) is GM = [0.1,2] = {~20 dB, +6 dB].

Phase margin (PM) is defined in a similar way, but instead of varying « over
the real numbers, we vary it over the unit-magnitude complex numbers: o = &%,
where ¢ € R. The phase margin is the range of real values of ¢, containing 0, for
which the system is stable. The interval is always symmetrical about 0, because
changing ¢ has the effect of rotating the Nyquist locus, which is itself symmetrical
around the real axis. A typical phase margin is PM = —7m/4,7/4] = [—45°, +45°].

The phase margin is rather unrealistic, since an operator a with equal phase
shift at all frequencies is unrealizable. It is useful, however, in showing nearness to
instability in a general way, and in giving a rough indication of the nominal system’s
damping at the unity loop gain crossover frequency.

Another single-loop robustness margin is sometimes called the gain-phase mar-
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Fig. 4.3-1: Calculation of gain and phase margins. « is nominally

1; it is varied along the real axis or the unit circle until the loop is
destabilized.

Fig. 4.3-2: Calculation of gain-phase margin. A is inside the disk
|A| < B; B is increased until some A in the disk destabilizes the loop.
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gin. Replace o by 1+ A where |A] < 8 and A ranges over all complex values inside
a disk of radiﬁs 8. The gain-phase margin is the largest value for B which maintains
stability for all |A| < 8. The system is redrawn in Figure 4.3-2 with 1 + A replacing
. If M is LTI, the gain “seen” by a is simply M,y /{1 — Ms,); so by the small gain
theorem, the system is stable if [3Mass/(1 — My,)| < 1 at all frequencies. Therefore

the gain-phase margin is

1-— M22 (]W)

max —— inf .
o M22(]W)

wER

The gain-phase margin is well matched to the methods of this thesis, since it models
plant uncertainty as a complex disk: |Allce < 8. By including the scaling factor
B with the plant, we get the usual normalized form |Alleo < 1. For a system with
one or more samplers, then, the gain-phase margin can be determined by increasing
B from O until the system fails the robust stability test lZllee < 1 as described in
Section 3.9.2. Increasing f is equivalent to scaling one of the rows or columns of
the interconnection matrix M. An example of this procedure is in Section 5.1.
Gain margins and phase margins, however, are less well suited to the A-block
representation of uncertainty used in this thesis, because each A-block is always
assumed to take on all the values in a complex disk. In the definition of gain
margin, « takes only real values; for phase margin, it takes on values along an arc
in the complex plane. Although it is always possible to enclose these loci in disks,
it usually leads to conservativeness, since such a disk includes many values for o
which are not of interest. With conic sector analysis of single-loop sampled-data
systems, then, the gain and phase margins can be computed only with an indirect,
iterative method: substitute various values for a along a real line (or an arc) and
then make the nominal stability test ||R1/2A’1]\;IB“1R1/2]|OO < 1. Continue varying
o until the system fails the stability test. In this way a guaranteed gain or phase

margin may be generated. Since the conic sector method provides only a sufficient
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condition for stability, the system may be stable outside the guaranteed interval, so
some conservativeness remains.

If a single-loop system has only one sampler or has several synchronized sam-
plers with rates related by rational numbers, we can fall back on LTI methods
and use the Kranc operator robustness analysis of Section 2.8.2. This allows us to
produce exact (necessary and sufficient) gain, phase, and gain-phase margins for
such systems. It will be used in Chapter 5 to test the conservativeness of the new
conic sector methods. Kranc robustness analysis involves computing the character-
istic loci (eigenvalues) versus frequency for the matrix-valued Kranc operator loop
transfer function. For a single-rate system, the matrix becomes a scalar.

It should be noted that gain, phase and gain-phase margins all make unreason-
able assumptions about plant uncertainty: they all assume that the nominal plant
is perturbed in a way that is the same at all Jrequencies. This is very unrealistic.
A more logical way to define system robustness is to use engineering judgment at
the beginning of an analysis, and define frequency-dependent models for plant un-
certainty at the same time as models for the plant itself. In this way, each plant
subsystem is treated from the beginning, not with a single, unrealistic model, but
with a set of models. If the uncertainty at each frequency can be modelled by
an interconnection of disk-bounded A-blocks, then the frequency weights may be
absorbed into the plant, resulting in the block-diagonal |Allee < 1 model used

throughout this thesis.

4.3.2 Loop-at-a-time Margins

Multi-loop feedback systems are sometimes required to meet loop-at-a-time
gain, phase, or gain-phase margin requirements. These are defined by setting the

loop gains in all but one of the loops to their nominal values, then varying the
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gain in the remaining loop in the manner discussed in the previous section until
the system becomes unstable. This approach gives one a qualitative idea of how
close a system is to instability, but it can lead to a false sense of security. This is
because it ignores the effects of allowing the gains in all loops to vary simultane-
ously, which is what happens in actual operation. Examples can be constructed 6]
of multi-loop systems with excellent loop-at-a-time margins which are arbitrarily
close to instability when all their channels are perturbed at once.

The multiple A-block model of plant uncertainty due to Doyle [5],/6] and used

throughout this thesis inherently includes the effects of perturbations in all channels

at once.

4.3.3 RMS Output Error for Sinusoidal Inputs

Feedback regulators, which have the purpose of holding their outputs constant
when their inputs are disturbed, are often specified in terms of allowable root-mean-
square output error when input sine waves of given frequency and magnitude are
applied. If the closed-loop regulator is known to be inside a zero-center conic sector
Cone(0, R), this type of specification is trivially easy to test. Call the input v and

the output e, and let u = uge’** where ug € C"; then the RMS output is

les = Jim | [ oottt = i Ll < a(RG)

T-400 \/F
so the cone radius provides a direct bound on the RMS output. This follows from

the definition of a conic sector. Call the regulator’s input-output operator K; then

if K is inside Cone(0, R),

HeHT < HRU‘“T V7>0
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As 7 — oo, the steady-state response of the LTI operator R dominates:

1 1 .
. < . - R , = . e . Jwt .
lim lim, | Rule = Jim —] R(jw)uoe™|

1
T—00 WHGHT oo T—00 \/?
< (R(jw))lluollz
If the cone-bounded operator is SISO, we can drop the pretense that the input is

complex-valued. Let u = ksinwt, where k& > 0. Then
1 ) 1
lellrms < lim %HRksinthT = k[R(jw)|Tli_)I£10 W||sinwt|[,

k|R(jw)]|
V2

Conic sector methods, then, are well matched to this type of specification. We may
use the nominal performance or robust performance methods of Sections 3.9.3 and
3.9.4 to find the smallest possible cone radius R such that the closed-loop system is
inside Cone(0, R). Recall that these methods determine whether the input-output
operator is inside Cone(0,I). We can convert this to Cone(0, R) by adding trial
frequency weights R~! to the input of the system, not the ou'tput , before performing

the above test. This is valid because
K inside Cone(0,R) ¢ KR! inside Cone(0, )

Since this statement holds only for R~! at the input of K, not the output, the trial
values of R™! must be applied to the input. By increasing R~! until the system
fails the Cone(0, I) test, we can find the smallest possible radius.

Because the computation of Rad(c, 3) involves the products of many aliased
terms, there will generally be interdependence between the magnitudes of R at
different frequencies. That is, R can be decreased at one frequency in exchange
for increasing it at another. To avoid being mired in such complications, it is best
to first work directly from the system specifications to find an R such that, if the
system K is inside Cone(0, R), it passes its specifications. Then scale R~! into the

plant’s input and apply the Cone(0, I) test.



165

The above description assumes a cone center of 0. In general, when the methods
of this thesis are applied, it is more natural to try to derive a conic sector with
nonzero center. This can be done by replacing each LTI uncertainty A-block with 0,
and each sampler with 1/T;, where T is its period. Then compute the input-output
transfer function for the resulting LTI system, and call it C'. This provides a good
choice for an input-output cone center. C is then subtracted from the appropriate
elements of the interconection matrix M, and the procedure above may be applied
to the modified M. Now the tests will determine if the input-output response is
inside Cone(C, R). This is especially important for servo systems, for which the
desired response is nonzero.

When the system is inside a cone with nonzero center, the remarks made about
RMS output must be amended. The system can be conceptually broken into two
parallel parts: an exactly known LTI operator C, and a partially unknown operator
K inside Cone(0, R). The earlier remarks apply to K, but the actual system output
is the sum of the two parts. It might be thought that bounds on the RMS outputs
of the two parts can be added together in an r.s.s. fashion; i.e., by taking the
square root of the sum of their squares. Howver, this is not valid, since K could
have sinusoidal components in phase with the output of C. Instead, a valid bound
is achieved by adding the two bounds directly: if the input u is again u = uge’*?,

where ug € C™, then

lellams < [o(C(Gw)) + &(R(5w))] [luoll2

Proof :
le=Cull; < |Rull,

lefle < lle = Cull- + ICull: < [[Cull + || Rull,

. 1 . 4 . _ 1 . .
i, el < Jim, OG0 -+ Jim, 2l Rjw)uoe™

T—00 \/F T 00 \/- T

lellmvs < [3(Cw) + o(R(w))] [luoll
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Again, in the SISO case, if u = ksin wt, where k > 0, then
) ) k ) )
lellems < (IC(Gw)] + [R(5w))) 7 (CGw)] + [R(Iw))) [[ullams
Examples of the ideas presented here are in the first example of Chapter 5.

4.3.4 RMS Output for White Noise Inputs

Some systems have performance specifications on the allowable RMS output
error when white noise is applied to the input. This type of specification also
translates easily into conic sector terms. If a system’s input-output operator K is
inside Cone(0, R) and the input u is a stationary, ergodic, Gaussian white noise

process satisfying E[u(t + r)u*(¢)] = I6(r), ¥V t,7 € R, then the RMS level of the

output e.is

lelhoes = \/Eim - [ e ()et)ar] = elgim L) <

T—00 7 Jo T—00 T

where the 2-norm of a matrix-valued transfer function is defined by

11E = o [ IRGe) fde

This result follows from the definition of a conic sector. Assume that R is an m x n
transfer function matrix. If K is inside Cone(0, R), then for the u described above,
lellrms < ||R[)s.

Proof : By the definition of conic sectors,

lel? < |Rul?  VYr>0,Vue Ly,
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Therefore

lellrss = E[lim 2[lel?]

T—00 T 00
1 r m n * n

= lim FE —/ Z (ZR{]"U,]') (Z Rﬂcuk) dT}

e 770 o U=t k=1

J

=22 > limE [;/ (Rz‘juj)*(Rikuk)dT}

1=1j7=1k=1

m n . 1 .
=> > limE [—/ |Rijuy) dr]

1—1]'217_-“><> T
= 22 o [T R = L [ RGw)2ds = R

=121 2T J—o0 ’ 27 J - F 2

so the cone radius provides a direct bound on RMS output error in the white
noise case as well as the sinusoidal input case. This time, the relevant quantity
is the squared radius integrated over frequency, rather than the radius at a single
frequency. Note that the condition E[u(t -+ T)u*(t)] = Ié(r) implies that each
element of the vector signal w is uncorrelated with the others, as well as being
a white noise process of unit magnitude. If the actual input signal is frequency-
dependent (colored) noise rather than white noise, or if the actual elements of % are
correlated, it is always possible to construct an LTI operator which produces the
actual signal when uncorrelated white noise is applied to its input. This operator
can then be lumped with the system and the above test can still be applied.

If the best available conic sector description of the system has nonzero center,
a bound analogous to the one in Section 4.3.3 can be used. Suppose K is inside
Cone(0, R), and the same white noise signal u(t) satisfying Elu(t + r)u(t)] = 16(r)

is applied to its input. Then the RMS output level satisfies

lellavs < [Clla + [ R]):
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This is true because

ie = Cull, < [|Rul],

el < fle = Cull: + ICull. < [|Cull, + || Rul|,

T—00 \/;

E[um inenf] < [,lgg \—};HCuHT] +E[Tligglo —};nRun,}
lellais < €]z + 1B]]

Note that we have adopted very different definitions for the 2-norm depending on
whether it is applied to a transfer function or a constant matrix. The 2-norm of
a constant matrix is its maximum singular value; the squared 2-norm of a ma-
trix transfer function is 1/27 times its squared Frobenius norm integrated over all
frequencies.

If the radius R(jw) does not roll off faster than 1/v/@ as w — oo, then the
integral defining || R||; does not converge; it “blows up.” In this case we can say
nothing about the RMS response to white noise until a valid alternative radius
if found. Recall that for sampled-data operators, the basic theorem of Section
3.1 produces cone radii that are periodic in w, and do not roll off at all at high
frequencies. Such a radius is unsuitable for this test. Fortunately, there can be
much flexibility in choosing a valid radius R.

The best approach is to work from the specifications to determine what input
and output frequency weights, and what cone center and radius C, R, are needed
such that the frequency-weighted system will pass its speciﬁcat.ions if it is inside
Cone(C, R). Then apply the weights, subtract C, and weight the input further
with R™!. Next apply the tests of Sections 3.9.3 or 3.9.4 to see if the modified
system is inside Cone(0,). The input weights should be chosen to convert the
white noise u(t) into the actual input seen by the system (colored noise, correlated
inputs, magnitude other than 1). The output weights could be bandpass filters to

account for specifications requiring, for instance, that the RMS output in a given
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frequency band be less than a given amount.

4.3.5 Step Response

Systems are often given specifications on their step response, such as rise time,
overshoot, decay time, or other time-domain quantitities. Often the specification
is in the form of a template or envelope of allowable step responses; if the step
response fits inside the envelope, it meets the specification. Unfortunately, conic
sector methods do not lend themsélves to time-domain envelope tests of this type.
The reason is that the cone radius R puts bounds only on the squared output error
integrated over all time, not on the value of the output at a single instant of time.
That is, if a system K with input « and output y is inside Cone(C, R), we can say

only that

lv=cule = /[ Iy Culitar < IRl Vue Lo v >0

It is possible, in principle, for y—Cu to be a tall, narrow pulse similar to a §-function
and still pass this test. Since there is no limit on how tall the pulse can be, or on
its position in time, we can make no categorical statements about the maximum
output error for a given time ¢, unless we have additional information about the
system.

This problem is not unique to conic sector methods, however, since it also occurs
in conventional LTT analysis. If an LTI system’s transfer function is uncertain and
bounded by limits in the frequency domain, it is also impossible to guarantee that
its step response is within any given envelope. The reason is the same: its step
response could, in principle, contain a tall, narrow pulse. To make such guarantees,
we would need more information such as the relative degree of the uncertain transfer

function.

The cone center C can still be useful, however, for estimating the system’s re-
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sponse to a step or any other input. By replacing each sampler with 1/T; and each
LTT A-block with O in the manner already discussed, one can derive a transfer func-
tion C' which gives a good approximation to the sampled-data system’s response.
Since a C obtained in this way contains both analog and digital elements, however,
it will generally have no simple state-space representation.

One way to work around this is to sample C(jw) on an evenly spaced grid of
frequencies, then apply the Fast Fourier Transform (FFT) to find an approximation
of the impulse response. The step response can then be formed by integrating the
impulse response numerically.

Another approach is to use the complex cepstrum matching technique of Chap-
ter 6 to find a good analog state-space approximation to C. Then conventional
computer methods (numerical integration in state space) can be used to simulate
the response of C to a step or to any other input waveform. An example of this
appears in Chapter 5, where a systems’s actual step response is compared to the

approximate step response obtained from C.
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Chapter Five — Examples

5.1 SISO Single Rate Example

Consider the feedback system of Figure 5.1-1, with elements given by

150 2500 _ .80498(z — .90993)?

G(s) = GGy 9T ars y e KG) = (= — 98750)(z — .47744)

with sampling period T = .031416 = 7/100 sec and HY a zero-order hold. G(s) rep-
resents an analog plant, and F(s) is a second order Butterworth prefilter with cor-
ner frequency at 50 rad/sec, or one-half the Nyquist frequency 7/T = 100 rad/sec.
This example has been used previously in 120] and [23]. We will use this example to
demonstrate most of the analysis techniques presented in Chapters 3 and 4, includ-
ing nominal stability, robust stability, nominal performance, robust performance,
gain and phase margins, RMS gain for sinusoidal inputs, and step response approx-
imation using the closed-loop cone center. In every test, the new methods prove to
be extremely nonconservative.

Nominal stability. Rearrange the system as in Figure 5.1-2, with the sampler
extracted outside the system and the 2 x 2 operator M representing the intercon-

nection of the inputs and outputs of the sampler and the system itself. M is given

by
M - ~-FGHI'K FG
- | -GHTK ¢
where K(z) is always evaluated on the unit circle: z = /%7,

The next step, conceptually, is to sandwich the sampler between fictitious oper-

ators a and 8 and to cone-bound the result using Theorem 1. By lumping the cone
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Ho" e K(z)k— ] F(s)

Fig. 5.1-1: A SISO single rate system.

Fig. 5.1-2: The rearranged system with the sampler extracted from
the 2 x 2 operator M.
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center with the system M to produce M, and breaking up the remaining zero-center
operator into Rl/ZARlﬂ, where A is a PLTV operator inside Cone(0, I), we get the
transformed system of Figure 5.1-3. M is given by

8f - |FGHIK(1+ £FGHIK)™ FG(1 + %H{KFG)‘I} _ []\EIH 1\2112]

—GH{K(IJr%FGHOTK)“l G(1+%H31KFG’)_1 My My,

Actually, we only need Mn to perform the nominal stability test, but we will use all
of M to make the nominal performance test next. Following Section 3.4, we choose

the sandwiching operators o and 3 to give an optimally small value for the stability

criterion ]]RMM/OLBHOO :
o(w) = flw) = [My(jw)'*

Next compute R = Rad(e, §); now since |R]\;Iu/aﬁi = |R|, a plot of the cone radius
tells us if the stability test is satisfied. Figure 5.1-4 shows R, and it can be seen
that [[R|e is much less than 1: actually || R||o, = .0052. So this part of the nominal
stability test is passed by a wide margin.

The other part of the nominal stability test is simply to verify that M, is
stable, or equivalently that the system is stable when the sampler is replaced by
1/T. Figure 5.1-5 shows a log Nyquist plot of the cone center loop gain %FGHOTK;
it can be seen that the Nyquist locus makes no encirclements of the critical point
-1, so ]\;Iu 1s stable and the system passes both parts of the nominal stability test.

The log Nyquist plot in Figure 5.1-5 is of the same type introduced in Section
3.7.2; the distance from the origin is 1 + log,o (|5 FGHT K|) at each frequency for
points larger in magnitude than 0.1. Points smaller than 0.1 in magnitude are
mapped to the origin. Phase is represented in the same way as in a conventional
Nyquist plot.

Figure 5.1-5 actually shows two log Nyquist plots, but they are so close to-

gether that they are indistinguishable. The other plot is of the discretized loop gain
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0052 < 1, the system passes part of the nominal stability test.
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Fig. 5.1-5: Log Nyquist plot of the cone center loop gain %FGHg'K.
Since it does not encircle —1, M is stable and the system passes the
second part of the nominal stability test. Also plotted is the dis-
cretized loop gain K(FGH{)T from 0 to 7/T. The plots are indistin-
guishable.



176
K(z)(FGH{)"(2) from 0 to n/T in frequency. Since this Nyquist locus also makes
no encirclements of —1, the conventional method also indicates nominal stability
for the system. The two plots are nearly identical because the steep high frequency
rolloff of FGHT keeps aliasing to a minimum when (FGHI)T is computed. Actu-
ally the plots are quite different at high frequencies, since the discretized loop gain
is periodic in w, and the cone center loop gain decays to 0 as w — oo.

Nominal performance. In Section 3.9.3, a sampled-data system is said to
meet i1ts nominal performance requirements if its closed loop input-output response
is inside Cone(0,I). By applying suitable frequency weights to the system input
and adding an LTI operator C in parallel to the system, this problem can be made
equivalent to testing whether the closed-loop system is inside a given Cone(C, R:).
Since we have no such performance specification for this example, we can run the
problem in reverse and find a Cone(C, R,) which contains the closed-loop response
and which has the smallest possible radius R,.

We can, in principle, choose any operator C for our cone center, but a good
choice is C = My, = G(1 + +HIKFG)™'. This is the closed-loop response of
the LTI system produced when the sampler is replaced by 1/7T. Now construct
the system of Figure 5.1-6. M @, B, RY? and A are the same operators as in
Figure 5.1-3. In addition, operators D and D~! have been sandwiched around the
PLTV operator A, C has been subtracted from the response from input 2 to output
2 of ]\;_[, and a new weighting operator R, ' has been placed at input 2 of the new

system M. M is the 2 x 2 LTI operator inside the dashed box; it is given by
RM,,  DRY*M,,

N o= af _alt, - ]\2[11 Azfm
R1/2M21 Mzg - C M21 M22
D R,

Mgz goes to zero when we set C = A;[n; this is an indication that this is a good
choice for C'. The purpose of C and R, is to convert a test for Cone(C, R;) into a

test for Cone(0, I), since it is an elementary conic sector result that for any operator
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Fig. 5.1-6: M for the nominal performance test. If this system is
stable for all A in Cone(0,I), then the closed-loop response is inside
Cone(C, R,).



178

K inside Cone(C, R;) ¢ (K — C)R;! inside Cone(0, I).

Now by applying the nominal performance test of Section 3.9.3 to M and by decreas-
ing R; at each frequency until the system fails the test, we may find the smallest
radius R; such that the nominal closed loop system in inside Cone(C, R,).

A word must be said about the LTI operator D. Its inclusion in the system Is
valid only if DAD™! = A. Since A is PLTV with period T, this will be true only
when D is periodic in w with period 2 /T. If D is the set of such operators, we

want to compute the smallest R; such that

jnf 5(M (jw))Hoo <1

With D constrained to be periodic, it is not obvious how to make this calculation.
We can compromise by selecting a D which is constant over frequency. A good
way to choose this is to make a first computer run with no constraints on DD by

~

computing, at each frequency, the smallest R, such that Ii)ré% (M (jw)) = 1, where
D now includes non-periodic transfer functions. Then find the frequency at which
R, is largest, and set D to be constant at its value at that frequency. Then make
a second computer run with D constant, and compute the smallest R, at each
frequency such that 6(M(jw)) = 1. |

Figure 5.1-7 shows the result of such a computation: a conic sector Cone(C, R»)
containing the nominal closed loop response from u to y. The magnitude of both
Ry and C = My, = G(1 + :%HOTKFG)_1 are shown. Note that the cone radius is
much smaller than the cone center from DC to about 1000 rad/sec; this indicates
that the closed loop system acts much like an LTI system, with little distortion due
to aliasing or “stairstepping.”

Robust stability. To test robust stability, we must first define the structure

of the plant uncertainty. Consider Figure 5.1-8, in which multiplicative uncertainty
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Fig. 5.1-7: Bode plots of C and R; for the nominal performance
test. The closed-loop response is inside Cone(C, R). Since |R| < |C!
at all frequencies, the closed-loop system acts approximately like the
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Fig. 5.1-8: The system with multiplicative uncertainty 1 + AW at
the output of G.
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1 + WA has been inserted at the output of G. If we had a specification for the
allowable amount of perturbation W A| at each frequency, we could set \W| equal
to the maximum allowed perturbation and then make the robust stability test with
[Aljee < 1. Instead, we will work in reverse to find the largest allowable [WA] at
each frequency which maintains stability.
Redraw the system as in Figure 5.1-9, with the sampler extracted above and

the A-block below the interconnection matrix M. M is given by

v - | FGHJK F
~-GHIK 0

Now by sandwiching the sampler between « and B as before, applying Theorem
1, lumping the cone center with M, and factoring the remaining PLTV operator
into RY2ZARY? as before, where A is inside Cone(0,I), we get the system of Figure
5.1-10. M is the new interconnection matrix with the cone center lumped with M,

and M is the 2 x 2 LTI operator in the dashed box. M is given by

xf — |FGHID(+ L) F(1+L,)? _ My My,
- | “GH{D(O+ L) —LGHIDFO+L)| = My My

where L, = %FG’Hg‘K is the loop gain when the sampler is replaced by 1/7'. M is

given by _ .
RM RY2M,
N o= of3 alD
- 1/2 7 ~
R ]\éZJDW MW

Now by the robust stability method of Section 3.9.4, this system is stable for all
stable LTI A satisfying [|Allo < 1if |[M|o < 1. Since D and D! are sandwiched
around an LTI operator this time, not a PLTV operator, there is no constraint that
D must be periodic in w. If D is the set of all LTI operators, then, we can compute

Ii)n% 5(M) at each frequency. By finding the largest W at each frequency such that
€

A

Ii)n% (M) =1, we can find a frequency dependent robustness margin. Figure 5.1-11
€

shows a magnitude Bode plot of the margin obtained in this way. The system is

guaranteed stable for any multiplicative perturbation lying below that curve.
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Fig. 5.1-9: The restructured system for the robust stability test.
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Fig. 5.1-10: Construction of M for the robust stability test. The
A and A blocks are both inside Cone(0,1); A 'is LTI and A is PLTV
with period 7.
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For comparison purposes, Figure 5.1-11 also shows |1+ L;'(2)] over frequency,
where Lq(z) = K(2)(FGHT)T(z) is the discretized loop gain. Conventional dig-
ital analysis techniques tell us that the system will be stable for any constant
(not frequency dependent) multiplicative perturbation A which satisfies |A] <
ui;Iel}fztl + L7 (e’T)]. The two curves are nearly equal at their minima: the mini-
mum of |1+ L7%(z)] is .7445 at w = 6.31 rad/sec, and the value of the conic sector
robustness margin at the same frequency is .7417, only 0.4% smaller. The conic
sector robust stability test, then, is extremely nonconservative for this example.
Furthermore, it gives us much more usable information than the conventional test,
since it is a frequency dependent quantity. For instance, at w = 100, it shows that
a multiplicative perturbation with magnitude of nearly 200 is acceptable, while the
digital test implies that multiplicative perturbations should be less than .7445 in
magnitude at all frequencies.

This illustrates an important motivation for using conic sector methods: they
preserve the analog nature of a sampled-data feedback system. Since models for
physical systems typically have small uncertainty at low frequencies and large un-
certainty at high frequencies, it is important to be able to derive robustness margins
which reflect this fact.

Robust performance. For the robust performance test, we can use the same
type of plant uncertainty as for the robust stability test: the system of Figure 5.1-8,
with a multiplicative perturbation 1 + WA at the output of G. This time, we want
to find a conic sector, with the smallest possible radius, which contains the closed
loop response from u to y for any perturbation WA in a given set. This time we
will work in the forward direction by specifying the set of perturbations first.

For this example, let W = 0.3 and |A(jw)| < 1 at all frequencies; this is 30%
plant uncertainty. A more realistic choice for W might increase in magnitude at

high frequencies, but this choice is sufficient to illustrate the method.
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Redraw the system as in Figure 5.1-12 with the sampler and WA both extracted

above the system. The 3 x 3 interconnection matrix is given by

~FGHT'K F FG
M = | —GH'K 0 @&
~GHTK 1 ¢

Now by folding the sampler’s cone center 1/T into the system in the usual manner,

we get the closed loop interconnection matrix M:

) —FGHI(1+ L) F(1+1L,)7" FG(1+ L,)!
M = | =GHyK(1+ L)™' —1GHIKF(1+L.)' G(1+L,)""
—-GHYK(1+4 L)} (L+ L)t G(1+L.)™!

where L, = %FGH&PK is the loop gain when the sampler is replaced by 1/7.

Figure 5.1-13 shows the system with all three input-output loops closed; through
Z&, the PLTV operator inside Cone(0,I); through A, the uncertain LTI operator
satisfying [[Allo < 1; and through a new fictitious A, operator inside Cone(0, I).
As explained in Section 3.9.4, we can make no assumptions such as linearity for A,;
we assume only that it is inside Cone(0, I).

If the system of Figure 5.1-13 is stable for all A, in Cone(0, 1), then the re-
sponse from input 3 to output 3 of the operator M in the dashed box is also inside
Cone(0, I); this was shown in Section 3.9.3. This, in turn, is equivalent to the
original system’s closed-loop response from u to y being inside Cone(C, R;); this
fact was already used to test nominal performance above. We will set C = M33 =
G(1+ %—HS“KFG)—1 and then find the smallest R, at each frequency which passes
this test. The test requires that 5(M(jw)) < 1 at all frequencies.

We can take advantage of our knowledge of A and A to include the scaling
factors Dy and D,, which can be varied to reduce 6(M). Since A is LTI, any choice
for D, satisfies D;'AD, = A; therefore D, is a free parameter at every frequency.
A, however, is PLTV; therefore D7'AD, = A only if D;(jw) is periodic in w with
period 27 /T. Rather than work with this messy constraint, we will instead choose

D to be constant over frequency.
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Fig. 5.1-13: Construction of M for the robust performance test. A,
A, and A, are all inside Cone(0,I). A is LTI and A is PLTV with
period T. If this system is stable for all A; inside Cone(0,1), the
closed-loop response is inside Cone(C, Ry).
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We can solve the problem in two steps, similarly to the way the nominal performance
test was made. Make a first computer run with both Dy and D, free parameters
at each frequency, and find the smallest R, at each frequency such that E(M) = 1.
Then set D, to its value at the frequency where the resulting R, is largest. Make
another computer run with D, constant at this value, and find the smallest R, so
that (M) = 1 with D, still free. This value of Ry(jw) is a valid cone radius for the
closed loop system for all stable perturbations Al < 1.

Figure 5.1-14 shows a plot of C' and R2 computed in this way. C is, of course,
the same cone center used for the nominal performance test. R, is now signifi-
cantly larger at all frequencies than it was in the nominal case, reflecting the added
plant uncertainty. R, is still smaller than C for w < 200, indicating that the sys-
tem will still act much like an LTI operator, with little distortion from aliasing or
stairstepping.

Gain and phase margins. We may compute the exact gain and phase margins
for this system by conventional LTI methods, since there is only a single sampler.
Since Figure 5.1-5 shows the discretized loop gain Li(z) = K(2)(FGHI)T(2) (as
well as the cone center loop gain L, = %FG'H(;‘"K), the gain and phase margins
may be read off this plot. The loop gain crosses the real axis at the point —.2931
at 17.8 rad/sec, so the gain can be increased by a factor of 1/.2931 = 3.412 before

the locus hits the critical point —1; therefore the gain margin is
[~oco dB,+10.7 dB]

The loop gain locus crosses the unit circle at 6.69 rad/sec with a phase shift of
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Fig. 5.1-14: Bode plots of C and R, for the robust performance
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Fig. 5.1-15: Behavior of the optimal sandwiching operator o when
G is scaled by 4. When v = 3.41, o develops a large peak, indicating
a gain margin of about 3.41.
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—135.6°; so the phase can be rotated by 44.4° before crossing the critical point.

The phase margin is therefore
PM = [—44.4°, +44.4°|

We can find guaranteed gain and phase margins (sufficient conditions only) by conic
sector methods. Recall that for the nominal stability test, the optimal sandwiching

operators a and (3 are given by

1/2

a(w) = Bw) = WuGw)[" = }FGH(?K(H%FGHOTK)*

If a fictitious gain block - is placed in series with G, the new optimal « and 8 are

1/2

aw) = Bw) = "yFGHOTK(lnL%,—fyFGHOTK)“l

By varying « in the neighborhoods of v = 3.412 and ~ = e 727(444/360) ynti] the
system fails the nominal stability test, we can generate lower bounds for the gain

and phase margins. Recall that the test is

where R = Rad{e, 8). Figures 5.1-15 and 5.1-16 show what happens when ~ takes
on values in these critical ranges: « and § acquire strong peaks at the frequency
where the loop gain approaches the critical point. The magnitudes of the peaks rise
to infinity as v approaches the critical values 3.412 and e 777°; the radius R also
acquires peaks at the same frequencies.

However, the value of v gets so close to the critical values before ||R||,, > 1 that
it is beyond the accuracy of these computer programs to measure how close. The
reason is that all curves are evaluated only at discrete points, not on a continuum,
so the points never coincide perfectly with the critical point —1. Therefore we can

only say that the gain and phase margins computed by conic sector methods are
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negligibly smaller than the actual margins found by LTI methods. Conic sector
methods are extremely nonconservative for this example.
RMS output for sine inputs. In Section 4.3.3 it was shown that if a sine

wave u is input to a SISO operator inside Cone(C, R), then the RMS level of the

output y satisfies

|y ||rms

o < [C(w)] + [R(w)

where w is the frequency of u. We can compute an exact expression for the RMS
output of this system when u is a sine wave, and compare it to (|C| + |R|)||u|rMs
to test the conservativeness of this bound.

Redraw the system as in Figure 5.1-17, where the output of the sampler is
extracted as the system output, rather than y. The output of this modified system,

and therefore of the sampler in the original system, is
z = (1+ La(2)) M (FGu)" where Ly(2) = K(2)(FGHI)T ()

If u = ¢/, we may use the identity (u)” = LY e/@tkwet where w, = 27/T, to
p

write

1 .
2 = (14 L) PG Y ko
T
The output y of the original system is

y = Gu— GHI Kz

i 1 .
- GCJLUt o FG(l + Ld)_l‘]‘“Z(GHg‘K)kej(w+ka)t

k

1 : 1 .
= |G- FFG(+ Ld)‘lGHOTK} e = ZFG(1+ La)™! S (GHT K)ol torhent
k#0

and the squared RMS level is found by adding the squared magnitude of each

component of y:

Z (GHTK).|

Ivies = 161~ mFGHTR(U s 207+ [LPG(+ L)
k#0
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on cone center C'. A state-space representation for C was found using

the complex cepstrum method of Chapter 6.
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where (GH] K), = (GHI K)(j(w + kw,)). Since lullkms = 1, this expression is
the actual squared RMS gain of the system. Figure 5.1-18 is a plot of this actual
RMS gain and the upper bound |C| + |R|, where C and R are the cone center and
radius derived earlier in the nominal performance test. The upper bound is so tight
that the curves are nearly indistinguishable, except for small peaks at multiples of
200 rad/sec where R has peaks. A closer check of the computed values shows that
\C|+ |R| is greater than the actual RMS gain at every frequency (as it should be!),
but only by a very small difference of O.i% at low frequencies. Conic sector methods
are very nonconservative in this example.

Step response. Section 4.3.5 explained why conic sector methods cannot
provide error bounds in the time domain, such as an envelope containing the step
response. Nevertheless, the closed-loop cone center can be useful in computing
approximate simulations of the closed-loop system, as long as the radius is small by
comparison.

One difficulty appears because the cone center typically is a mixture of analog

and digital transfer functions; therefore its state space is infinite-dimensional. The

cone center for this example is
1 : . -1
Cliv) = G(w) (L+ AT Gu)K (@) PG)G) )

The discrete-time operator K causes the problem in this case. The problem may
be circumvented by using the complex cepstrum matching technique of Chapter
6 to approximate C(jw) with a finite-degree analog transfer function. A state-
space quadruple can be constructed for the resulting approximation of C'. The
approximation’s step response can then be computed by numerical integration in
state space or by direct Laplace transform inversion of the transfer function.

This same C(jw) is used as an example of the complex cepstrum matching

method in Chapter 6. The result is a fifth order transfer function which approx-
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imates C'(jw) so well that the difference is not visible on a Bode plot. The step
response of this approximation is shown in Figure 5.1-19. Also shown is the actual
system step response at 7'/10 time intervals, which was computed by the Kranc
operator method of Section 2.8.

The two plots are very close, differing significantly only by a small error at the
peak of the overshoot. This shows that the cone center provides a very good model
of the closed-loop system in this example.

Note that even though the output in Figure 5.1-19 was computed with 10 points
for every sampling period T, none of the stairstepping typical of many sampled
data systems is apparent. This is due to the fact the G imposes a second order
high frequency rolloff between the output of H and the system output y. Visible
stairstepping would probably appear if G had a first order rolloff. This partly
explains why this system can have such a srﬁall cone radius: a system with visible

stairstepping could not possibly be closely modelled by an LTI operator, so a larger

radius would be needed to account for the error.
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5.2 MIMO Single Rate Example

Figure 5.2-1 shows a MIMO sampled-data feedback system with multiplicative
uncertainty and a single sampling period T' = .02 second. All the operators shown
— G(s), F(s), HI (s), K(z), and AW — are 2 x 2 LTI transfer functions. K(z)isa
discrete time operator; the others are continuous time. F(s) is a diagonal prefilter

operator, and HY in this example is a diagonal operator made of two ZOHs:

- 2500 0
70s + 2500
F(s) = | 57T 3+ 2500 }

L s2 4+ 70s + 2500
r 1 . C_ST

e 0

Hg(S) = ° 1 — e—sT :|

.0 s

G(s) is described by a 4-state state space model, and K(z) by an 8-state model.
Their state-space quadruples are shown in Figure 5.2-2. The multiplicative un-
certainty block is factored into two parts W and A, where A is an uncertain full
matrix satisfying 6(A) < 1 at all frequencies, and where W is a scalar weighting
factor times an identity matrix. A and W are, as always, assumed to be stable.

This example is taken from [20]. G(s) is a linearized model of the pitch axis
motion of the HIMAT highly maneuverable aircraft. Its four states are forward
velocity, angle of attack, pitch rate, and pitch attitude, and its two inputs are
the two control surface positions. The two outputs are angle of attack and pitch
attitude. In this example, we are not concerned with the physical system, however,
but merely with testing the conservativeness of the new conic sector methods.

The MIMO digital compensator K(z) was derived in [20]. First a stabilizing
analog compensator was synthesized by the LQG loop transfer recovery technique
of [3]. Then the analog compensator was discretized by using the Tustin (bilinear)
transformation prewarped about 7 rad/sec, which is the approximate loop band-

width. K (z) has two poles at z = 1, but none outside the unit circle; G(s) has two

RHP poles.
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Fig. 5.2-1: A 2 x 2 MIMO feedback system with multiplicative
uncertainty 1 + AW at the output of the plant G.
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Before proceeding with conic sector analysis, we can provide a basis for com-
parison by using standard LTI techniques. Since F(s) is a scalar times an identity
matrix, it commutes with 1 + AW. If AW is assumed to be constant at all fre-
quencies, then 1 + AW also commutes with the sampler. In this case, we get the
equivalent discrete time system of Figure 5.2-3. Provided that the nominal gain

—(FGH{)"K(I+(FGHT)TK)~! seen by AW is stable, then the perturbed system

is stable if
5(aW)o ((FGHT)TK(I + (FGHY )"K)™') < 1 at all frequencies.
This can be written equivalently as
o(AW) < o ((FGHD)TK(I + (FGH])TK) ™)) = o (1+ (FGHT)TE)™)

This provides a robustness margin against this type of constant perturbation AW.
Although somewhat unrealistic, since actual perturbations will certainly be fre-
quency-dependent, this test does give some indication of the system’s nearness to

instability. The system will be stable for any constant AW satisfying

(AW) < inf o <I+ <(FGHOT)T(ej“’T)K(ej“T))_1>
The minimum singular value is plotted as the dashed line in Figure 5.2-8. Its mini-
mum value is .487; this will provide a basis for comparison when we find robustness
margins using conic sectors.

Figure 5.2-4 is a log Nyquist plot of det(I+ (FGHT)T K) over frequencies —n/T
to 7 /T. Since K(z) has poles at z = 1, the Nyquist contour has a semicircular notch
of radius .017T = .0004 around z = 1. The notch maps into the large near-circle
of the plot. If the notch radius were reduced, the circle would grow and the tips
of the crescent shape would approach, but never touch, the real axis. Since the

determinant makes two counter-clockwise encirclements of the origin, equal to the

number of unstable poles of (FGHI )T K, the nominal discretized system is stable.
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Fig. 5.2-3: Equivalent discrete-time system when AW is a constant.
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Fig. 5.2-4: MIMO log Nyquist plot of det(I + (FGHT)TK) over
frequencies —7/T to m/T. There are two CCW encirclements of 0,
equal to the number of unstable poles of (FGHI)T, so the discretized

system is stable.
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Now we may proceed with the conic sector tests. Rearrange the system as
in Figure 5.2-5, with the two samplers extracted above the system and the AW

perturbation below. The 4 x 4 interconnection matrix M is given by

~-FGHTK F
~GHIK -GHIKF

M —
Next follow the usual analysis process. Sandwich the samplers between fictitious
operators A = diag(ay, ;) and B = diag(Bi, B;), then cone-bound them individu-
ally using Theorem 1. Compute R = diag( Rad(ey, 8), Rad(as, B5)) and its square
root RY2. Absorb the normalized cone center T = diag(1/T,1/T) into the system
to produce the closed loop interconnection matrix M:
~ M, My,
M = |- ~
[le My,

~FGHTK(I + LFGHT K)~! F(I+AGHTKF)™!
~GHJK(I+ 3 FGHIK)™  —L1GHTKF(I + LGHT KF)-!

The system can now be redrawn as in Figure 5.2-6. A is a PLTV operator inside
Cone(0,I), as usual. Scaling has been exploited for the analog A block, since
DyAD;Y = A for any LTI scalar D,. D, must be scalar (or equivalently, a scalar

times the identity matrix) because A is now a full 2 x 2 matrix. The 4 x 4 operator

M inside the dashed box is given by

M B R1/2A_1~MHB_1R1/2 RI/QA_I{\ZUD;I
| D;WMy, B1RY? W M,

Provided that the system meets the nominal stability test, it will be robustly stable
if | Mle < 1.
Nominal stability. The system is nominally stable if Mu 1s stable and if

G(RVPA M BT'RY?) <1

at all frequencies. We can test the stability of My, by the MIMO Nyquist test.

Figure 5.2-4 shows a log Nyquist plot of det(] + L FGHTK). This same plot was
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Fig. 5.2-5: Rearranged system for conic sector analysis.

Pa
< A
M
= = — — - L _ ____
| |
) !
RI/ZA—I B—IRI/Z L
! M :
) [
I - |
| D?W D, ! ,
| 1
b - - - - - - - ________ |
A

Fig. 5.2-6: Construction of M for robust stability test.
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carlier identified as a log Nyquist plot of det([ + (FGHI)YTK) for the discrete
time stability test. Actually, it shows both functions superimposed. The two loci
are so nearly identical that they are indistinguishable. This time, the Nyquist
contour has a semicircular notch of radius .01 around s = 0. The earlier remarks
about locus behavior as the notch shrinks still apply. Since the locus makes two
counter-clockwise encirlements of the origin, equal to the number of unstable poles
of %FGHOTK, Z\;Iu is stable.

To compute the operators 4, B, and R by the MIMO method of Section 3.7.1,

find the diagonal LTI operator D which solves
h = i%fa(D]\;IuD‘l)

at each frequency. Then let 4 = 3*/2D"! and B = 42D, where D has first been
scaled to satisfy 6(D)o(D) = 1. Since D is 2 x 2 in this case, this means that
the two diagonal elements of D are reciprocals of each other; this in turn means
that a; = By and a; = f;. Therefore both diagonal elements of the radius R are
the same, and R is a scalar times identity in the single rate 2 x 2 case. While the
inequality 5(R1/2A_1M11B‘1R1/2) < &(R) is true in general with these choices for
A and B, in the single rate 2 x 2 case it holds with equality.

Figure 5.2-7 is a plot of o(R) = 6(R1/2A_1]\~411B”1R1/2) over frequency. Its
maximum values is || ]|, = .0123 < 1; therefore the system is nominally stable.

Robust stability. To compute a frequency dependent robust stability margin,
find the largest W at each frequency such that

info(M) = 1

D,

Recall that Dy and W are both scalars times identity matrices, so each has only
one degree of freedom for the optimization problem. The solid line in Figure 5.2-8

is a plot of (W) derived in this way. Observe that, at low frequencies, it very
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closely matches the dashed plot of ¢ (I + (FGHI)TK)™Y), which gave us a ro-
bustness margin for constant perturbations. The difference is that the solid line is
a frequency-dependent robustness margin: any stable per.turbation AW for which
(AW) lies below that curve at all frequencies will not destabilize the system. This
gives us much more useful information than the discrete time test, for which only
the minimum of the curve is a valid margin.

At the frequency where the dashed line reaches its minimum of 487, the solid
line hits its minimum of .484. For this example, then, the conic sector method is
conservative by only 0.7% in computing a bound for constant perturbations. In
exchange for this tiny amount of conservativeness, conic sectors give a much more
useful frequency-dependent robustness margin.

At high frequencies, (W) oscillates between large peaks of about 10° and deep
minima of approximate size 10. If a larger robustness margin at high frequencies
is desired, the choices for 4 and B may be manipulated to trade off larger high
frequency margin for a slightly smaller margin at low frequencies. As w — co, the
A and B operators used above roll off approximately as 1/w?. By scaling A and B
by the weighting function |1 + w/100|, we can make A and B roll off as 1/w, still
fast enough for Rad(ey, ;) to converge. This will produce a larger radius R, but
in exchange, it will cause 3 of the 4 block elements of M to roll off more quickly as

w — oo. This allows the robustness margin W to be increased while still keeping

~

(M) = 1.

When A and B are so modified, the new cone radius R has maximum gain
[Rlle = .0499. This is four times larger than with the original A and B, but
still less than 1. Therefore the system still passes the nominal stability test with
this A, B. Now, when the maximum (W) is computed such that igfé(l\;f) =1,
the result is the alternative robustness margin of Figure 5.2-9. This curve rolls up

approximately as w as w — oo, so it increases for high frequencies. At w — 1000, it
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is an order of magnitude larger than the margin of Figure 5.2-8. At low frequencies,
it has a minimum value of .474, which is 2.1% smaller than the previous conic sector
margin and 2.8% smaller than the absolute bound from discrete analysis.

The new conic sector methods of this thesis have proved to be very noncon-
servative for this MIMO example, which is based on a genuine control problem.
The conic sector robustness margin is only 0.7% smaller than the actual (necessary
and sufficient) margin derived by a standard LTI method. Moreover, the conic
sector margin is much more useful than the standard result, since it gives a fre-
quency dependent bound on allowable perturbations. Conic sector methods also

allow tradeoffs between low frequency and high frequency model uncertainty.

5.3 Multirate Example

Figure 5.3-1 shows a single-loop SISO feedback system containing two samplers
which run at different rates. The plant G(s) is a lightly damped second order
system, and the integrating compensator K (s) provides a unity loop gain crossover
frequency of 1 rad/sec. G is fed by a sampler of period T/3, and K by a sampler of
period T'/2, where T = 0.1 sec. Both samplers are followed by ZOHs of appropriate
length. A stable multiplicative perturbation 1 + AW acts on the output of G. As
usual, A is an unknown perturbation satisfying 1Al < 1 and W is a weighting
function. We will use robustness tests to find limits on W. The transfer functions

F, G, and K are given by

3600 1
F(s) = — G(s) = 57—
s* -+ 100s + 3600 s+ 4s + 1
312 1)?
K(s) = ———(S+ )
s(s +30)2

Since the two sampling rates are related by a rational number, we may use the state-

space Kranc operator techniques of Section 2.8 both to test for nominal stability
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and to find a limit on constant perturbations AW. We will use the robustness
margin from the Kranc method to test the conservativeness of the new conic sector
methods for this example. Note, however, that the sampling rates do not have to
be related by a rational number for the conic sector methods; this is a limitation
only for the Kranc technique.

Kranc analysis. Divide the loop into two halves, operating from the 7/3
sampler to the 7°/2 sampler and vice versa. The Kranc operators for each half are
found by first discretizing at the short period ged(T/2,T/3) = T/6 with a short

Z0H HOT/G. Let these two discretized operators be given by

(rarteys = |2 D
1C1 | D
(rrEeys = |2
LC2 | Dq]

Now to account for the longer lengths 7'/2 and T'/3 of the actual ZOHs, we use the

formula for forming Kranc operators with a ZOH:

4 A*X B, AXX, B, XiB
T
(FG)Kranc - Cl Dl 0 0
CiA} | C(A2+ A, +D1)B, CiBi+D;, O

where Xy = A, + I;

A5 A3X, By X, B,
(FK)T _ Cy l D, 0
ferane C3 A2 | Cy(Ay + I)B, + D.
245 2( 2 + ) 9+ Dy 0
Cy A* CyA; X, B,y CyB, + D,

where X, = A2 + Ay + 1.

The state-space quadruple for the closed-loop Kranc operator of the entire Sys-
tem can now be formed using standard state-space system interconnection rules.
The closed-loop poles are the eigenvalues of the state transition matrix for the
closed-loop system. These poles were computed and are all inside the unit circle;

therefore this system is closed-loop stable.
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Next we use the method from [20] described in Section 2.8.2 to find an upper

bound on constant perturbations AW which maintain stability. Compute and plot

i (14 (PG e (FE) ) )

over frequency; the system is stable for any constant complex AW with magnitude
less than this quantity at all frequencies. Figure 5.3-2 includes a plot of the minimum
magnitude eigenvalue. The smallest value achieved by this function is .752 at w =
1.26. Therefore the system is stable for all constant |[AW| < .752.

Now we may proceed with the conic sector tests.

Nominal stability. Extract the two samplers and AW from the system as in

Figure 5.3-3. The interconnection matrix M is given by

0 FKHI® o
M = | -FGH® 0 _F
GHI"? 0 0

Form T = diag(T/3,T/2) and lump 7! together with M in the usual manner to

produce the closed-loop cone center matrix M:

~tkmH*GH, " KHI" ~2KH"
M = ~GHI?® ~2GH{PKH]" -1 (1+ L)
T T T 3 T
GHI® 2GHPKH? - 5GHIPKH

where L = —,%FKHOTNFGH(;F/S is the loop gain when the samplers are replaced by
3/T and 2/T. Denote by M., the upper left 2 x 2 submatrix of M this gives the
interconnection of the two zero-center cone-bounded samplers. We can compute

good choices for the sandwiching operators «;, 8; by solving for
i = i%fﬁ(DMulD_l)

at each frequency, where D ranges over all 2 x 2 diagonal matrices. Now construct
A = diag(e, o) = 2Y2D7! and B = diag(81, 8:) = 42D, where D has first been

scaled to satisfy @(D)o(D) = 1 at every frequency. Sandwich the 7'/3 sampler
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between a; and f8; and the T'/2 sampler between ay and S, and compute the
cone radii R; = Rad(a, ;). Note that since the sampling rates are different, the
radii must be computed with different aliasing frequencies w, = 27 /T;. The use
of different formulas for the radii means that R; # R,, even though oy = By and
az = .

Figure 5.3-4 shows «; and az, and Figure 5.3-5 shows the two cone radii R;
and R,. Since max || Rillec is an upper bound for HR1/2A_1Mu1B“1R1/2||m, where
R = diag(Ri, Ry), and since both R; and R, are less than 1, the system passes
one of the two requirements for nominal stability. For completeness’s sake, the
quantity 5(R1/2A_1Mu1B_1R1/2) is shown in Figure 5.3-6; its maximum value is
336 at w = 1.19.

The other requirement is that M, be stable; this is equivalent to (1 + L)™!
being stable. Figure 5.3-7 is a log Nyquist plot of L. Since L has a pole at s = 0,
the D-contour has a notch of radius .01 around the origin; the notch maps into the
large semicircle. The Nyquist locus makes no encirclements of the critical point —1.
Since L has no unstable poles, this means that Mul is stable, and this system is
nominally stable.

Robust stability. To make the robust stability test, lump R, A™!, B~!, and
W together with M as shown in Figure 5.3-8. Also substitute DyAD; ! for A, and
lump the scaling factors D, and D;! with M as well. The two samplers are now
represented by the LTV operator A= diag(Al,Ag), where Al and Az are each

inside Cone(0, I). Call the operator in the dashed box M; it is given by

. RY2AY 0o | - [B'RYZ 0
M“[ 0 DZW]M[ 0 D;l]

For any given uncertainty weight W, the system is robustly stable if ‘]MHOO < 1.
D, is a free parameter at each frequency, since A is LTI and puts no periodicity

constraint on Dy. We may compute a robustness margin by finding the largest W
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at each frequency such that

inf (M) =1
D2€R

Figure 5.3-2 shows the result of such a calculation. Wy, is the robustness margin.
The system is robustly stable for any stable perturbation AW satisfying |[AW | <

Winax at all frequencies. The Kranc robustness margin

AminlT + ((FG) kpane (F K ) Krane) )]

Kranc

is shown on the same plot. At w = 1.26, where the Kranc margin reaches its
minimum value of .752, W., = .528. This means that the conic sector robustness
margin is conservative at this frequency by 30%. However, the conic sector margin
is still more useful, since it is frequency dependent. For example, the plot of Wi .«
shows that at w = 10, a perturbation with magnitude nearly 30 is acceptable;
the LTI Kranc margin makes no guarantees if |AW| is greater than .752 at any
frequency.

The conservativeness of the new method for this example does not imply that
conic sector methods are always conservative for multirate systems. In this exam-
ple the conservativeness is mostly due to the high gain of K above the crossover
frequency. From w = 1 to w = 30, |K]| increases at a 20 dB/decade slope. As a
result, a; is relatively large at high frequencies, causing R to be large in turn. In
general, conic sector robustness margins are the most conservative at frequencies

where R is largest; as R approaches 1, the margin approaches zero.
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Chapter Six — Synthesis of Digital Controllers

The previous chapters have dealt with the analysis of sampled-data feedback
systems after the systems have been designed. In this chapter, we will touch on the
design of digital controllers to achieve desired closed loop performance.

The literature on optimal control system synthesis is vast and beyond the scope
of this thesis. In this chapter, we will deal only with the synthesis of digital con-
trollers which approximately match the response of given analog controllers. The
analog controllers may be arrived at by any design method, such as u-synthesis,
Hoo-synthesis, LQG, singular value loop shaping, pole placement, etc. Once a “tar-
get” analog controller is decided on, a stabilizing digital controller can be found for
which the cone center frequency response matches that of the target as closely as
possible.

To be more specific, suppose the target is a SISO controller K,(s). We wish to
replace it with the hybrid controller in Fig. 6.1-1, which includes a prefilter F(s),
a sampler of period 7', a digital filter K4(z), and a hold element H(s). When the
sampler is cone-bounded in the manner of the previous chapters, and the resulting
cone center is lumped with the system, the effect is the same as replacing the sampler
with 1/T. The cone center frequency response of the controller, then, is %HKdF.
We would like to synthesize K (z) so that %HKdF ~ K, at frequencies inside the
loop bandwidth; then the hybrid controller will have much the same effect on the
system as the original analog target. Of course, it is impossible to match K, at all

frequencies; since K, is periodic in w, if we match closely from w = 0 to 7 /T, then



Fig. 6.1-1: A SISO hybrid controller.
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%HKdF is predetermined at all higher frequencies. However, since the controller
has little effect on the system for w above the loop bandwidth, the high-frequency
error is not very important.

Sections 6.1 through 6.3 outline a technique based on the complex cepstrum
which chooses K4(z) to closely match the target TK,/HF from w = 0 to 7T/T: The
technique gives us control over the number of stable and unstable poles of K; and
the number of minimum phase and maximum phase zeros. It matches both phase
and the log of magnitude, so it matches equally well at frequencies where the target
magnitude is small or large. It has applications beyond control system synthesis,
such as matching rational transfer functions to measured frequency response data.

Section 6.4 gives an example of matching a target analog transfer function with

this method. Section 6.5 presents an example of digital controller synthesis.

6.1 The Complex Cepstrum

The complex cepstrum is a discrete time sequence which is derived from an
original time sequence by a nonlinear three-step process [14]. First evaluate the
z-transform of the original sequence z(n) on the unit circle |z| = 1. This is sim-
ply the frequency response if the sequence is the impulse response of a system;
call it X(e’*T). Second, compute the complex logarithm of X (e*T); recall that
Re[log( X (e?“T))] is the log of the magnitude of X (e/*T), and Im[log (X (e7“T))] is its
phase in radians. Third, find the Fourier series components for log[X (ejwT)]| and
arrange them as a time sequence:

27r/T . X
in) = L [ e tog (e
0

27
The time sequence £(n) is the complex cepstrum of z(n).
The complex cepstrum was first introduced in [1] in 1963. Since then it has been

used mostly within the digital signal processing community for such applications as
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echo removal and finding pole-zero models of the human vocal tract [14]. Appar-
ently, in most applications only the real part (log magnitude) of log(X (7)) is of
interest. In this chapter, the imaginary part is of equal importance, since we wish
to match the phase as well as the log magnitude of the target transfer function.

The complex cepstrum is very well suited to computer calculation, with one
caveat. Rather than compute the integral in the third step above, it is much easier
to first sample log(X (e’“T)) on an evenly spaced grid of frequency points, and then
to compute £(n) with the Fast Fourier Transform (FFT). The well-known efficiency
of the FIF'T algorithm speeds the calculation tremendously. Since sampling in the
frequency domain introduces aliasing in the time domain, however, it is important
to sample the unit circle on a sufficiently large number of points. For a typical
transfer function X (e’“T), 512 = 2° points are more than enough to make aliasing
effects negligible.

Care must be taken in computing the phase Im[log(X (e?“T))]. Since log(s) is not
a one-to-one mapping, the correct branch of the function must be chosen to avoid
phase discontinuities. Standard computer inverse tangent routines return values in
the range —7 to 7; sometimes multiples of 27 must be added or subtracted from
this to avoid phase discontinuity. If the frequency point spacing is sufficiently small,
this “phase unwrapping” problem can be handled simply in software.

Note that £(n) is always real if the original sequence z(n) is real.

6.2 Complex Cepstrum of a Rational Function in z

If a sequence’s z-transform X (z) is arational function in z, its complex cepstrum
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can be written in closed form [14]. Let,

X(z) =

Tz i ;:12
].-.-A
i P—‘
< |
3 o
N
bl
’I_l_‘

where |ay|, [bx|, [ck|, and |dy| are all less than 1, and A > 0. Then the coefficients ay,
and ¢, are zeros and poles, respectively, that are inside the unit circle. The zeros

and poles outside the unit circle are given by 1/b; and 1/d;. The log of X(z) is
log(X(z)) = X(z)

N. Ny
= log(A) + > log(1 — agz”') + > log(1 — byz)
k=1 k=1

Nc Nd
— > log(l —cpz™t) — > log(1 — di2)
k=1 k=1
Finding the Fourier series for z(z) evaluated on the unit circle is equivalent to

finding the time sequence Z(n) which has X(z) as its z-transform. We can do this

in closed form by using these two power series expansions:

—n

log(l —az7!) = i

for |z] > |a]

:l%

3
—

log(1—fz) = i

:\?

2" for |z| < |B7Y

For the above assumptions and for z on the unit circle
max{layl, e} < 2] = 1 < min{|b;),]d; )

implies that the power series expansions converge on the unit circle when applied

~

to X(z). Using the expansions to express X(z) as an infinite geometric series in z

lets us read off the time sequence % ) directly:

t(n
gNll N n =
()v Z-ni Z—k n >0

-n

Ic

n <0

=1
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This formula gives the entire complex cepstrum for X(z) directly in terms of its
poles and zeros. Note that a; and c;, the minimum phase zeros and poles, appear
in the cepstrum only for n > 0. Likewise the maximum phase (outside unit circle)
zeros and poles 1/b; and 1/d, appear only for n < 0. This means that the complex
cepétrum maps minimum phase transfer functions into causal time sequences, and
1t maps maximum phase transfer functions into anti-causal time sequences. If a
transfer function is a product of minimum phase and maximum phase functions,
the cepstrum maps them separately into the n > 0 and n < 0 regions.

This immediately suggests a practical application. Suppose only the magnitude
of a minimum phase discrete-time transfer function G(e™7T) is known, and it is
desired to synthesize its phase. Computing the complex cepstrum of the squared
magnitude |G|* = G(e’*T)G(e77“T) maps the original function G(e’*T) into a causal
sequence and maps its maximum phase complex conjugate G(e7*T) into an anti-
causal one. The causal portion can be extracted by setting Z(n) =0 for n < 0 and
halving the £(0) term. Then run the operation backvx}ard, performing a forward FFT
on z(n) to get X(e/*T), then finding exp(X (e“T)) = X (e’ to produce a transfer
function with the original magnitude and with phase response corresponding to a
minimum phase function.

The form of the expression for Z(n) gives us individual control over the number
of minimum phase and maximum phase poles and zeros in the cepstrum-matching

optimization problem of the next section.

6.3 Optimal Matching of the Complex Cepstrum

Given a complex cepstrum sequence Z(n), we can set up a nonlinear optimization
problem to find the best fit between Z(n) and the cepstrum of a rational function

- - _ 41 -
with specified numbers of poles and zeros ay, b ', ¢y, d, . We will choose, as a cost
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function J, the total squared error between Z(n) and its best fit; this is the squared
l;-norm of the error. But since the squared [;-norm of a Fourier series equals the
mean-square level of the original periodic waveform, a fit which minimizes this .J
also minimizes the mean square error for X(eij) in the frequency domain. The

result is a least-squares fit to the log of the target transfer function.

6.3.1 The Cost Function J and its Gradient

The scaling factor A can be found immediately by the equation £(0) = log(|A|).
Since the minimum phase and maximum phase portions of the transfer function are
partitioned into the n > 0and n < 0 regions of Z(n), we can set up separate opti-
mization problems for the minimum phase poles and zeros ay, ¢, and the maximum
phase b, ', d;'. For the problem involving ay, ¢, define the cost function by

© Na an NL- Cn
J = > |¢(n)]* where én) = &)+ £ - =%
n=1 k=1 g 7

Here Z(n) is the complex cepstrum of the target function, and the terms involving
ar and ¢, give the complex cepstrum of the best fit. Since the transfer functions we
are interested in always have real-valued impulse responses, #(n) can be assumed
real. By restricting all complex a; and ¢, to complex conjugate pairs, we can insure
that é(n) is real and drop the absolute value sign above. With these assumptions,

the gradient is readily computed:

— = 2 é(n)a?! — = -2 é(n)cr !

aak Z ( ) ko 8Ck nzz:l ( ) k

Now the reason is apparent for performing optimization in the time domain, on
£(n), rather than directly in the frequency domain on X(eT) = log(X(e’T)). The
cost function and gradient both are given by simple formulas which can be efficiently

computed. This advantage is in addition to the complex cepstrum’s clean separation
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of minimum phase and maximum phase factors. Furthermore, since é(n) and J are
real, the computation can be done mostly with real arithmetic if a suitable real
parameterization of poles and zeros is used.
Of course, the true infinite series cannot be computed; the series must be trun-
cated. Since Z(n) decays rapidly as n — oo, the series can be truncated to a
relatively small number of terms without sacrificing accuracy.

For the anti-causal part of #(n), define the cost function J by

Ny b;n Ny d];n

T = 3 ) where o(n) = #(m) - 3075+ 2

This can be rewritten as
J = > |é(—n)?
n=1

with é(n) the same as before. Now the gradient is

aJ el aJ ad
_— = 2 el — b”_l —— = -9 A dn~1
abk ;e( n) k 8dk ;e( n) k

6.3.2 Real Parameterization of Poles and Zeros

Since all complex poles and zeros come in conjugate pairs, it is possible to
parameterize IV poles or zeros with N real numbers. For instance, parameterize the

set of minimum phase zeros {a;} by the N, real numbers {a;}, where

{ ap + @pe1 i Gry1 >0
ap —

- .. r - and
ar +Japer i ag, <0

{ak —agy1  ifagy >0

A1 — ~ o~ p o~

ag — Jaggr i apyey <0

for all odd k < N,. If N, is odd, let the last zero be assumed real and let ay, = ay,.
This parameterization causes no loss of generality, since it allows as many as N,

non-real zeros and as few as none. The sign of each even-indexed parameter a;.

determines whether that pair of zeros is real or complex. If az,; = 0, a double
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zero is produced. Let all by, ¢k, and d; be parameterized in the same way. Now

recompute the gradients:

oJ <<9J Bak)+< 8J Bag

= 92 5 n—1 n—1 d
dag day day dar., Oy ) ;e(n)[ak +ai ;] an

oJ i <8J aak ) 4 ( oJ 8ak+1>
Oty day 0drqy Ok 41 00k 41
2 é(n)[a;:_l - CLZ;H if &k+1 Z 0
25> é(n)lay ' —apiy] if @p <O

for all odd k¥ < N,. If N, is odd, 8J/day, is defined as before. Note that the
gradient is always real, even when @4y < 0, since in that case [af ™' — a;:;ﬂ is
purely imaginary and is made real by the factor 25 in the last equation.

The other gradients are given by the same formula when by, ¢, or d; are sub-
stituted for ax, except that the sign of the gradient is reversed for ¢, and d;. Also,
é(n) must be replaced by é(—n) for the gradients with b, and d.

Complex arithmetic is still required to compute the terms a}. However, this
parameterization reduces the optimization problem to one involving, e.g., N = N, +
N, real variables instead of twice that number. This speeds the calculation greatly
and automatically insures that the poles and zeros appear in complex conjugate
pairs.

With the above formulas for the cost function J and its gradient with respect
to all ag, bg, ¢k, and di, any gradient-based nonlinear optimization technique may
be used to find the best fit to a given complex cepstrum. The author has written
a FORTRAN program which uses the Davidon-Fletcher-Powell (DFP) method to
solve this problem [9]. The user enters the desired numbers of poles and zeros N,

Ny, N., and N,, and also enters a convergence test limit €. The program iteratively

searches for the minimum J until the relative change in J from one iteration to
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the next is less than e. Then it reverses the real parameterization and prints the

complex pole and zero locations of the best fit.

6.3.3 Applications

The method above finds a best fit to a discrete-time transfer function evaluated
on the unit circle. It can also be used to find a best fit to an analog transfer function,
evaluated on the jw-axis. This can be done by mapping the target analog function
onto the unit circle using the prewarped Tustin transformation:

z—1 o+ S
S = «@ z =
z+4+1 oa— S

where o« > 0. This maps each analog frequency s = jw into a point on the unit
circle e/ where w' = 2tan”"'(w/a). The analog frequency jw, = je is mapped
into z = ¢/™/?. By choosing a to map the most critical frequency range of the
analog target into the region around e/™/2, one can insure the best possible fit in
that frequency range.

Usually, the analog target function is not available as a rational function in s,
however; instead it is given as a set of frequency points. This situation is easily
handled by applying the mapping w' = 2tan™!(w/a) to each frequency point. The
resulting set of points can be sampled on an evenly spaced grid of, say, 512 points
from 0 to 27; grid points which lie between the given points can be estimated by
linear, cubic spline, or any other interpolation scheme. Then log(H(e’*")) can be
computed for each grid point, the complex cepstrum computed by FFT, and the
optimization problem solved.

The example of the next section starts with an analog target function and uses
this prewarped Tustin mapping to convert it to a discrete-time function. Since the
optimization problem returns poles and zeros in the z-plane, the last step is to

convert them back into the analog s-plane with the inverse Tustin mapping: a pole
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or zero at zp maps to a pole or zero at sq = a(zo — 1)/(20 + 1).

This technique is useful for fitting rational functions in s to a set of measured
frequency response points of an analog system. Another application is SISO model
reduction. If a high-order rational function in Is or z is given, and it is desired
to approximate it with a lower-order function, then the frequency response of the
target function (or its Tustin mapping) can simply be evaluated on a unit circle
grid of points. After the cepstrum is computed, one can experiment with various
numbers of poles and zeros (minimum and maximum phase) to find the lowest order
rational function that gives an acceptable fit.

Once a state-space representation of the best fit is set up, standard numerical
integration methods can be used to perform I/O simulation, such as finding the step
response. In this way accurate predictions of time domain response can be made
from a set of frequency response points. This was done for the example system
of Section 5.1. Of course, if the frequency response of a discrete-time system is
known, its impulse response can be computed directly via the FFT. In the analog
case, however, directly sampling the frequency response and performing an FFT
can lead to inaccuracies due to aliasing in the time domain. Fitting the frequency

response first to a rational function in s sidesteps this problem.

6.4 Example: Matching an Analog Transfer Function

Section 5.1 used a system’s closed-loop cone center transfer function
. . 1., ST oy - 0!
Cliw) = Gljw) (1+ 5 HE () K (e™T)F(j0) G jw)

to approximate the closed-loop step response. An approximating state-space quad-
ruple was found using the complex cepstrum matching method and then the step
response was generated by standard numerical integration techniques. This section

describes in detail the steps involved.
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Figure 6.4-1 shows the magnitude and phase of C(jw). C rolls off at a —40
dB/decade slope as w — co. Since computing the complex cepstrum involves finding
the log of C'(jw), it is not permissible for |C(jw)| to go to zero; this would cause

Reflog(C'(jw))] to go to —co. To avoid this problem, prescale C' with two zeros at

s = —12:

~

Clw) = C (J'w)<

s+12>2
12

This prescaling cancels the high-frequency rolloff of C, so that é’(jw) iIs nonzero
as w — 0o. Figure 6.4-1 shows é’(jw). The new zeros also change the net phase
shift as w goes from 0 to oo; C has a net change of 0°, while C changes by 180°. It
is important that the net phase shift be zero, so that no discontinuities appear in
X(ejw') = log X(&’*') as e/*' ranges around the unit circle.

The next step is to use the prewarped Tustin transformation to map é’(jw)
onto the unit circle. We will set the prewarping parameter o = 12. Since C’(jw) is
given to us as a set of frequency points, the transformation is easily accomplished
by replacing each frequency w with w' = 2tan™'(w/a). Now the discrete-time
equivalent of ' is X(e™') = C(jw) Vw € R. Note that the zeros at s = —12 = —q
map to z = (a + s)/{a — s} = 0. The resulting unevenly spaced set of points
for X(ej“") was linearly interpolated onto an evenly spaced grid of 256 points going
around the unit circle. The log of each point was then found, giving X(ejw'). Figure
6.4-2 shows the real and imaginary parts of X(ejw') for w' = 0 to 2m; that is, it shows
the log magnitude and the phase of X(ej‘*").

Finally, the complex cepstrum £(n) was computed by performing an inverse
FFT on X(ej“"). The resulting real-valued sequence is plotted in Figure 6.4-3. The
sequence is causal, indicating that X (e/*') and C’(jw) are minimum phase.

Since Z(0) —= .9080, we can immediately find the scaling factor A for the best
fit rational function, because £(0) = log|A|. Therefore 4 = ¢°% = 2.47935.

The complex cepstrum Z(n) was input to the DFP optimization program, which
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uses the cost function and gradient of Section 6.3.1 to find a best fit rational function
In z. A close fit was achieved with a third-order minimum phase transfer function

with the following poles and zeros:
a; = —.366669 + 7.320346 az; = —.366669 — 7.320346 as = .937329

¢y = .113022 4 7.400815 ¢z = .113022 — 5.400815 c3 = .667762

These poles and zeros, together with the scaling factor A, produced the rational

function

2.47935(2% +.7333382 + .237068) (2 — .937329)

X =
(2) (2 — 2260442 + .173427) (2 — .667762)

Applying the inverse Tustin transformation z = (a + s/a — s) converts this back
to the continuous time domain. The last step is to cancel the prescaling zeros with
poles: multiply by 122/(s+12)%. The final result is a fifth-order rational function in |
s which approximates C(jw) so closely on the Jw-axis that the difference is invisible
on a Bode plot. Figure 6.4-4 is a magnitude Bode plot of both C(jw) and the
approximation error |C(jw) — P(jw)|, where P(s) is the fifth-order best fit transfer
function. The error is approximately 1% at all frequencies. This corresponds to a
magnitude error of 0.09 dB and a phase error of 0.6°.

The roughly constant relative error magnitude QI;%{ at all frequencies illustrates
one of the advantages of matching to the log of a transfer function: the relative error,
not the absolute error, is minimized at all frequencies. Minimizing the absolute
error, as in Hg,-optimization, leads to a good fit at frequencies where the magnitude

1s large, but a poor fit where the magnitude is small.

6.5 Example: Discrete-time Compensator Synthesis

In the previous example, a nearly perfect fit was achieved for an analog transfer

function target. In this next example, we will attempt to synthesize a discrete-time
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rational function which makes a hybrid compensator’s cone center transfer function
match a target analog compensator. In this case, constraints on phase shift and
stability make a perfect match impossible. We will see, however, that the complex
cepstrum technique still allows for a nearly perfect match inside the loop bandwidth.

Consider the SISO feedback systems of Figures 6.5-1 and 6.5-2. The plant G(s)
is the same in both cases. The first system has an analog compensator K,(s). In
the second system, K, is replaced by a hybrid compensator consisting of a prefilter

F(s), a sampler of period T = 7/100 = .031416 sec, a digital filter Ky(z), and a

ZOH H{ (s). The various transfer functions are:

150 2500
G(s) = F(s) = —
s“ 4 70s + 2500

(s +1)(s+3)

(s +3)°
(s + .4)(s + 22.5)

K.(s) =

This example has been used before in [20],(23],[24]. With the exception of K,(z),

this is the same system studied earlier in Section 5.1.

K,(s) is given; we wish to synthesize K,(z) so that the cone center response

%HOTKdF approximates K, at low frequencies. That is,

%Hg(j'w)Kd(ej“’T)F(]'w) ~ K,(jw) for — % <w < %

If this relation is satisfied, we can expect the closed-loop response and stability
robustness margins to be approximately the same for both systems. Just how closely
equal they are still depends on the sampling period T" and the high-frequency rolloff
around the loop, since these quantities affect the cone radius E. Nevertheless, if
%HngF ~ K, inside the loop bandwidth, the closed-loop cone center responses
for both systems are nearly equal.

The target function for Ky, then, is TK,/FHY. Figure 6.5-3 shows magnitude
and phase plots of this target from w = .01 to 7/T = 100 rad/sec. One problem

is immediately apparent: the target’s phase at 7/T is not realizable. If Ka(z)



Fig. 6.5-1: An analog feedback system.

‘HOT Kd \ F

Fig. 6.5-2: The system with K,(s) replaced by a hybrid controller.
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is a rational function with real coefficients, its phase at z = ¢/ = —1 must be
either 0° or 180°. We must correct the target’s phase at high frequencies. Since
the phase shift is +229° = 3.997 rad at w = 100, multiply the target by e 7«’/*
where © = 1002/3.997 = 2501.9. This has no effect on the magnitude, but it applies
increasing amounts of phase lag at high frequencies, up to —229° at w = 100. The
w? factor causes the phase lag to grow quickly at high frequencies with little effect
at low frequencies. The phase shift at loop gain crossover w = 7 is only —1.1°.
Figure 6.5-3 also shows the phase of the corrected target function; the magnitude
is unchanged.

Now that the corrected target is realizable, we can map it onto the unit circle,
compute its complex cepstrum, and run the cepstrum-matching optimization pro-
gram. The most straightforward mapping is simply to replace w with /¥’ where
w' = 7/100; this maps w = 100 to e~/ = —1. However, this would crowd the entire
lw| < 7 region, which we are most concerned with, into a small fraction of the unit
circle. We can instead apply the Tustin transformation twice, first from z-plane
to s-plane and then back again, to map w = 7 onto z = /™2, This assigns half
the unit circle to the |w| < 7 region. First replace w' above with w" = tan(w'/2);
this maps w' = 7 to w" = o0 and w’' = 77/100 to w" = .110. Second, replace w"
with w" = 2tan™(w" /@) where a = .110; this maps w" = .110 to w™ = 7 /2. Since

’

w" = .110 corresponds to w = 7, this sequence of transformations has the desired

effect. Expressed in one step, the sequence is

mn -1 1 W
w = 2tan —tan | —
o 200

It is easily verified that w" = 7 for w = 100 and w" = 7/2 for w = 7.
The importance of using the Tustin transformation is that it preserves the num-
ber of poles and zeros, their status as minimum phase or maximum phase, and the

transfer function’s magnitude and phase on the unit circle. The optimization pro-
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gram will find pole and zero locations in the w" plane; we can map these back to
the w' plane easily. If 2" is a pole or zero in the w" plane, first map it to the w"
plane by the inverse prewarped Tustin transformation: s'o = a(2"o — 1)/ (2" + 1).
Second, map it to the w' plane using 2/, = (14 s"9)/(1 — s"5). The final pole or

zero location is given by 2'g. Expressed in one step, the complete transformation is

To summarize, first warp the corrected target, which is defined for lw| < 100, onto
the unit circle z = /@™, Compute the complex cepstrum for the warped target,
and run the optimization program to find its poles and zeros. Finally, warp these
poles and zeros back to the w' plane.

Now we can proceed with the synthesis procedure. Sample the warped target
function X(ej“’m) onto an evenly-spaced grid of 256 points on the unit circle. Com-
pute the log of each point to get X(ej”"'), then compute the inverse FFT to produce
the complex cepstrum £(n). Figure 6.5-4 shows Z(n), which is of course real-valued.
A new problem is apparent here: #(n) is not causal. While we can stil] synthesize
a rational function to match the anti-causal component of Z(n), any such rational
function will be unstable, non-causal, or both. Since the hybrid compensator must
be causal and must have the same number of unstable poles as K,(s) (zero for this
example), we cannot use this portion of the cepstrum.

Figure 6.5-5 shows the result of matching only the causal portion of the complex
cepstrum. A third-order rational function was found to provide a very close fit;
using higher-order approximations makes no significant difference. The third-order
function has been transformed back into the original w-plane and plotted together
with the corrected target function. The fit is good at low frequencies, but at w = 7
a phase error of 7° is already apparent. This error is due to ignoring the non-

causal portion of Z(n). While fairly small, this phase error significantly reduces the
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Fig. 6.5-4: Complex cepstrum Z(n) of the corrected target function
after mapping onto the unit circle. Noncausality implies that the

target cannot be matched perfectly with a minimum phase function.
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system’s damping and its robustness margins. Fortunately, we can do better than
this. By exploiting a basic property of the discrete Fourier transform, we can make
the phase error arbitrarily small at all frequencies.

The key lies in realizing that once the phase of a minimum phase transfer func-
tion is given, its magnitude is predetermined. Likewise, the magnitude determines
the phase. A simple modification of the complex cepstrum will produce a function
with the same phase curve as the original target, but with an altered magnitude.

Any even real-valued sequence (i.e., one satisfying #(n) = £(—n)) is mapped
by the FFT into another even real-valued sequence. Since the imaginary part of
X(ejw"') corresponds to phase, we can add any even real-valued sequence to the orig-

inal complex cepstrum Z(n) without affecting the function’s phase. If we construct
the sequence

—-%(-n) n>0

za(n) = (0 n=20

-z(n) n<o0O
and add it to Z(n), the anti-causal portion is canceled. The result is a causal
sequence corresponding to a minimum phase function with exactly the same phase
curve as the original target.

The optimization program was run on this modified sequence Z(n) + z,(n).
Best fits were computed for second-order and third-order rational functions. The
results, warped onto the original w plane, are plotted in Figure 6.5-6, along with the
corrected and uncorrected target functions. The third-order compensator achieves a
nearly perfect phase match over the entire frequency range, indicating that higher-
order compensators will do no better. The second-order best fit has significant
high-frequency phase error, but it matches very well for w < 7. Since errors outside
the loop bandwidth have little effect on the system, the second-order compensator

should perform as well as the third-order one.

The magnitude plots match closely for fw| < 7, and deviate significantly from
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the target at high frequencies. This is the price paid for perfect phase matching:
control over the magnitude is lost. Since errors above w — 7 have no significant
effect on system response, however, this is of no consequence for this example. As a
practical matter, then, we have achieved an optimal match to the target with only
a second-ord;er compensator, which is given by

2.856(1 — 1.8248127! + .833049522)

K =
a(2) (1 +.8069212-1)(1 — .98691021)

Figure 6.5-7 shows the original system’s loop gain K,G and the cone center loop gain
%HngFG of the hybrid system. As expected, the magnitude and phase match
very closely for |w| < 7. Figure 6.5-8 shows the step response of both systems. The
hybrid system’s step response closely matches that of the original analog system.
It is our tight control over the phase response of K,4(z) that allows us to match
the hybrid system so closely to the original analog one. By maintaining the same
phase shift at loop gain crossover, we give the hybrid system approximately the
same damping, overshoot, and phase margin as the target analog system. Use of
the complex cepstrum provides this control by allowing us to synthesize minimum

phase rational functions with any realizable phase response.
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Chapter Seven — Conclusion

The chief contribution of this thesis is a method which greatly reduces the con-
servativeness of conic sector analysis for sampled-data feedback systems. Based on
Theorem 3.2 from [20], which first showed how to construct a conic sector containing
a hybrid operator, the new approach begins by taking advantage of the theorem’s
inherent flexibility in the choice of prefilter and hold. Each sampler is extracted
from the system and sandwiched between fictitious LTI operators, in series with
their inverses; the fictitious operators are then substituted for the prefilter and hold
of the theorem. This approach was investigated earlier by Doyle and others [7].
Section 3.;1 presents an optimal choice of the fictitious operators o and S for the
SISO nominal stability test; the optimal choice minimizes the co-norm of the conic
sector stability criterion RM/af.

Section 3.7 extends the SISO result to the MIMO case in a way which, though
suboptimal, is nonconservative for a wide class of systems. Each sampler is extracted
from the system and placed in a diagonal structure; the samplers are sandwiched
between fictitious scalar operators a;, f; and placed in cone bounds individually.
The operators «;, §; are chosen by applying frequency-dependent diagonal scaling
to the MIMO LTI system M to minimize the gain 5(D]\;ID‘1) at every frequency.
This approach was inspired by the LTI Structured Singular Value (SSV), or u-
analysis, methods of Doyle [5],[6]; the only significant difference is that for LTI
systems, E(D]\;ID*I) is only an upper bound for the crucial quantity u, while in the

conic sector method of this thesis, the gain 6(D]\;ID‘1) Is an important quantity in
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its own right. Software written to find the upper bound for x4 may be used for this
conic sector analysis without modification.

Several examples in Section 3.7.2 explore the limits of the new MIMO method,
illustrating cases in which the new method is still conservative. Two of the examples
are due to Doyle, and appeared previously in [4]. With one exception, it appears
that conservativeness appears only when a system has poor anti-aliasing filtering,
poor robustness margins, or both. To the extent that this is true, it means that
the new methods will work well for well-designed systems. The exception occurs in
systems with samplers at the output of a zero-order hold; this can occur in some
multi-rate systems when data is sampled at one rate, held in a buffer register, then
used at a different rate. Theorem 3.8 presents a modification to the basic theorem
which can handle this case. Unfortunately, direct use of the modified theorem would
require numerical approximation of a quadruple infinite series, a very computation-
intensive enterprise. A better solution: to this problem awaits further research.

It is worth noting that, by placing all samplers in an external diagonal structure,
the new method makes no distinction between MIMO systems and SISO systems
with multiple samplers. The total number of samplers is the only important quantity
in determining the analysis structure. This means that the method makes no dis-
tinction between single-loop centralized controllers and multiple-loop decentralized
systems. Furthermore, it makes no distinction between single-rate and multi-rate
systems; since each sampler is initially placed in its own separate conic sector, there
are no implicit assumptions on the relative timing of the samplers. Even multi-
rate systems with sampling rates related by irrational numbers are included in this
framework. Skewed samping effects, caused when samplers have the same rate but
fire with a fixed time offset, are implicitly included. This high level of flexibility
allows a large range of systems to be handled by one unified analysis method.

Section 3.9 explains how to do robustness analysis in this new framework. Plant
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uncertainty is handled in the same way as in SSV analysis: all perturbations are
modelled as normalized A-blocks, extracted from the system and arranged in a
block-diagonal structure. This approach to structured uncertainty has great power
and is much less conservative than older approaches to MIMO model uncertainty;
it also merges naturailly with the new conic sector methods of this thesis. All
cone-bounded samplers and LTI A-blocks are arranged into a single block-diagonal
operator and placed in a single collective conic sector; then the standard conic sector
stability criterion can be applied.

The basic system tests are the same as in SSV analysis: nominal stability,
robust stability, nominal performance, and robust performance. The performance
tests amount to finding a conic sector containing the closed-loop system, either the
nominal system or the set of all allowed perturbed systems. Chapter 4 explains how
to use such a closed-loop cone to test specifications on RMS response to sine wave
and white noise inputs. The closed-loop cone center may be used to estimate the
closed loop step response; an example of this is given in Chapter 5. Unfortunately,
no error bounds, in the form of an envelope containing the step response, can be
given. Chapter 4 also describes how to compute lower bounds for the gain margin,
phase margin, and gain-phase margins in the conic sector framework. Sections
4.1 and 4.2 discuss algorithms for computing the cone radius and for performing
diagonal scaling.

In Chapter 5, three examples were presented: a SISO system with one sampler, a
MIMO single rate system, and a multi-rate system. The first example was examined
in detail, to illustrate most of the analysis tests of Chapters 3 and 4. For the second
and third examples, the nominal and robust stability tests were made. The first
two examples provided extremely nonconservative results. The conic sector based
gain-phase margin of the SISO system was only 0.4% smaller than the margin com-

puted by standard z-transform techniques. For the MIMO system, the conic sector
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based margin for constant multiplicative perturbations was only 0.7% smaller than
the z-transform based margin. In return for this small degree of conservativeness,
the conic sector methods gave a frequency-dependent bound on allowable plant per-
turbations, which is much more useful than the constant bound from z-transform
methods.

The multi-rate example gave more conservative results, with a conic sector
based gain-phase margin 30% smaller than the margin derived from Kranc opera-
tor analysis. Again, however, the conic sector based margin is based on the real-
istic assumption of frequency-dependent plant perturbations, not on the assumed
constant perturbations of the Kranc method and of standard z-transform meth-
ods. Therefore the frequency-dependent conic sector based robustness margin has
greater practical use.

The second chief contribution of this thesis is presented in Chapter 6; it is a
synthesis method for SISO hybrid compensators based on the complex cepstrum.
The philosophy is the same as that of previous work by Thompson, Sdnchez Pena,
and Wong [24]: to synthesize a digital filter K4(2) so that the hybrid compensator’s
cone center %H(jw)Kd(ej“’T)F(jw) closely approximates a target analog compen-
sator K,(jw) for w inside the loop bandwidth. This approach compensates for the
phase lag introduced by the hold H and prefilter F'; this phase lag has been ignored
in many conventional discretization techniques and often leads either to inferior
compensators or to excessively high sampling rates.

The target function TK,/HF is computed and its phase near w = /T is
adjusted to make it realizable. Then the target function is mapped onto the unit
circle and its complex cepstrum is computed via the complex logarithm and the
FFT. An appropriate cost function is defined and a nonlinear optimization problem
is solved to find the best fit. Since both the cost function and its gradient are simple

functions of the estimated pole and zero locations, gradient-based iterative methods
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such as the Davidon-Fletcher-Powell (DFP) algorithm can solve the problem with
relative efficiency.

In an example in Chapter 6, the complex cepstrum method provides an excellent
fit to a second-order compensator with a second-order discrete-time compensator.
The significant in-band phase lag of the prefilter and hold is completely cancelled
out without resorting to a higher order compensator. This excellent control over
phase shift is a consequence of a basic property of Fourier transforms, which allows
us to synthesize a minimum-phase function with any desired phase response.

In a second example, another application of the complex cepstrum synthesis
method is shown: fitting rational functions of given order to a set of magnitude and
phase points of an analog (or discrete) transfer function. The data points can be
actual measurements or computed values, as in the example. A fifth-order rational
function in s is found which closely approximates the closed loop cone center of
the example system from Section 5.1. Since the cone center contains /7 terms,
it is actually infinite-dimensional; the fifth-order best fit is seen to approximate it
extremely well at all frequencies.

This method is equally useful for matching both analog and discrete transfer
functions, since one can be mapped into the other by the bilinear, or prewarped
Tustin, transformation.

The third contribution of this thesis is a state-space realization for Kranc op-
erators, used in multi-rate system analysis. This material was presented in Section
2.8 at the end of the chapter on mathematical background, since it has appeared
earlier in [22], and since it merges naturally with the standard z-transform methods
of Section 2.7. Kranc switch decomposition consists of replacing a sampler of period
T /n with n samplers of period T, each in series with appropriate time delays and
advances. In this way each subsystem of a multi-rate feedback system is replaced

by a MIMO single-rate systemn, for which a transfer function is defined. Then stan-
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dard MIMO z-transform methods can be used to check stability. When done in
the z-transform domain, however, this process can lead to large matrices of high-
order rational functions in z, which are difficult to work with. In the state-space
domain, however, such MIMO Kranc operators are easy to compute in the form
of a state-space quadruple. Furthermore, the number of states of a subsystem’s
Kranc operator is the same as that of the original subsystem, if zero-order holds
are used. This preservation of the number of states is the payoff for state-space
Kranc analysis; it keeps the problem complexity from growing out of control as the
number of inputs and outputs is increased.

Closed-loop stability is checked by first interconnecting the state-space Kranc
operator representations, a simple process; then by computing the maximum eigen-
value of the closed loop state transition matrix. Time domain input-output sim-
ulation is trivial with a state-space quadruple for the closed loop system’s Kranc
operator. Fictitious high-speed samplers can even be placed at the system’s analog
outputs to check intersample ripple behavior.

In addition to the state-space realization for Kranc operators, Section 2.8 also
presented Thompson’s methods [21] for using Kranc operators to find robustness
margins for multi-rate systems. These results were later used in Section 5.3 to test
the conservativeness of the conic sector methods for a multi-rate example. Section

5.3 also gave two explicit examples of the calculation of state-space quadruples for

Kranc operators.

7.1 Suggestions for Future Research

1. MIMO complex cepstrum synthesis. The complex cepstrum synthesis
method of Chapter 6 can be used only to find best fits to SISO transfer functions,

since the complex cepstrum is parameterized in terms of SISO poles and zeros.
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An equivalent complex cepstrum for a matrix-valued transfer function can be de-
fined and computed easily enough, by simply finding the complex cepstrum of each
matrix element and arranging the results in a new matrix. To use this for synthe-
sis, however, would require a parameterization in terms of some underlying MIMO
structure, either a state-space quadruple or appropriately defined MIMO poles and
ZEros.

If such a parameterization is found and is usable, it could have great utility
not only in MIMO digital compensator design but also in MIMO model reduction,
which is now something of a black art. Modern analog synthesis techniques, such
as H® methods and p-synthesis, tend to produce compensators of very high order
which must then be approximated by low-order functions.

2. Synchronized sampling. The approach of this thesis in placing every
sampler in its own individual conic sector allows us to handle skewed and multi-
rate sampling schemes with no additional effort. However, for systems which have
known, unchanging time offsets between their various samplers (most systems do)
this can potentially lead to conservativeness, since useful information is being dis-
carded. This situation might be improved by using non-diagonal scaling factors,
which are equivalent to crossfeeds between channels which are known to be syn-
chronized. The inverse of such a scaling factor, placed after the samplers, removes
the effects of the crossfeed if the scaling factor is constant or periodic in w. The
additional freedom of allowing off-diagonal elements in D could further reduce the
gain i%fa(D]\ZfD'l) and lead to a smaller cone radius.

3. Optimal choice of A, B in MIMO case. The method of Section 3.7,
which finds 4 = i%f(_f(DMD_l) and sets A = /% = diag(ey,...,a,) and B =
pyr = diag(fi,...,0,) produces a guaranteed upper bound o(R) for the conic
sector stability criterion 6(R1/2A‘-1]\~4B“1Rl/2). However, it does not guarantee

to minimize |[RY*A-'M B~ RV?||,,, so it is a suboptimal solution. A systematic
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way to find the optimal choice for 4 and B would further reduce this method’s
conservativeness.

4. Less conservative sector methods for nonlinear systems. Conic sec-
tor theory, and Safonov’s generalized sector theory of which it forms a part, are
formulated to allow nonlinear system analysis. Unfortunately, conic sectors gen-
erally produce very conservative bounds for many typical nonlinearities, including
amplifier saturation and the quantization that occurs in A/D converters. Perhaps
the more general sector theory of [16] can be employed to find less conservative
bounds for these commonly encountered nonlinearities; the results could be useful

in determining, for instance, the required number of bits for an A/D converter or a

digital filter.
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