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Abstract

The buoyancy driven motion of a deformable viscous drop at intermediate
Reynolds numbers has been studied using numerical techniques. The motion
was assumed to be steady and rectilinear, and a pseudo-implicit method was
used to solve the Navier-Stokes equations. Cases for a variety of values of the
Reynolds number, Weber number, viscosity ratio and density ratio have been
considered. The calculations reveal that the shape of the drop is most heavily
dependent on the Weber number, attaining spheroidal capped shapes at O(1)
Reynolds numbers, and flattened ellipsoidal shapes at higher Reynolds num-
bers. Two mechanisms are observed for vorticity production at the interface of
the drop—curvature and the no-slip coridition—and the no-slip mechanism is a
more efficient source of vorticity. When there is sufficient vorticity produced, a
detached closed streamline wake forms at the back of the drop, in contrast to

the attached wakes seen on inviscid bubbles and solid particles.

To further explore the role of vorticity production in wake formation, nu-
merical computations were done on flow past inviscid bubbles of fixed shape. It
was found that attached recirculating wakes existed at intermediate Reynolds
numbers and these wakes could not be predicted by either low or high Reynolds
number asymptotic theories. The numerical results indicate that the mechanism
responsible for flow separation at modest Reynolds numbers may be different

than that present at high Reynolds numbers.

Because of the inherent difficulties in solving the Navier-Stokes equations
using successive approximation schemes, and to investigate the behavior of so-
lutions of these equations on the dimensionless parameters, a Newton’s method
scheme has been developed and tested successfully on the steady buoyancy
driven motion of an inviscid bubble; an arc length continuation method has also

been implemented. Calculations indicate that the scheme achieves quadratic

convergence.

Last, a numerical technique has been developed for the study of the creeping
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motion of drops and particles in the presence of a rigid plane boundary. This
method is based upon the distribution of point forces on the surface of the body

and the use of a Green’s function to obtain the unknown velocity and stress on

the body surface, without having to consider the rigid boundary.
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Chapter I

Buoyancy-driven motion of a deformable drop

through a quiescent liquid at intermediate Reynolds numbers

The text of Chapter I consists of an article which has been submitted

for publication in the Journal of Fluid Mechanics



Buoyancy-driven motion of a deformable drop

through a quiescent liquid at intermediate Reynolds numbers.

D.S. Dandy and L.G. Leal

Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91125



Abstract

Numerical solutions have been obtained for steady streaming flow past an
axisymmetrc drop over a wide range of Reynolds numbers (0.005 < Re < 250),
Weber numbers (0.005 < We < 14), viscosity ratios (0.001 < A < 1000), and
density ratios (0.001 < ¢ < 100). Our results indicate that at lower Reynolds
numbers the shape of the drop tends toward a spherical cap shape with increasing
We, but at higher Re the body becomes more disk-shaped with increasing We.
Unlike the recirculating wake behind an inviscid bubble or solid particle, the
eddy behind a drop is detached from the interface. The size of the eddy and the
separation distance from the drop depend on the four dimensionless parameters
of the problem. The motion of the fluid inside the drop is seen to control the
behavior of the external flow near the body, and even for cases when A and

¢ < 1 (a “real” bubble), a recirculating wake remains unattached.



I. Introduction

The bouyancy-driven motion of drops and bubbles plays a critical role in
many areas of the chemical engineering industry. Such diverse processes as
liquid-liquid extraction, flotation, sedimentation, and combustion all rely on the
dispersion of one fluid phase in another. As a consequence, a great deal of
experimental work has been done to study the buoyancy-driven motion of bub-
bles, drops, and particles (Clift et al (1978) provides a thorough survey of both
theoretical and experimental work), and approximate theoretical solutions have
been obtained for drops and bubbles in the limit of very small deformation at
either high (Moore 1959, 1963, 1965; Harper and Moore 1968; Parlange 1970;
Harper 1972) or low (Taylor and Acrivos 1964; Brignell 1973) Reynolds num-
ber. Until recently, however, the motion of drops and bubbles at intermediate
Reynolds numbers, or with a finite degree of deformation, had not been studied
theoretically due to the lack of effective methods for dealing with the unknown
shape of the free-surface. Within the last few years, however, Ryskin and Leal
(1984) and Christov and Volkov (1985) have obtained numerical solutions for
the steady rise of a deformable inviscid bubble, without intrinsic restriction on
the bubble shape. Ryskin and Leal’s solutions encompass Reynolds and Weber
numbers in the ranges 1 < We < 20 and 1 < Re < 200, and show a dramatic
variety of shapes and flows. The present paper presents a numerical study of

the corresponding motion of a viscous drop.

The intermediate Reynolds number range is of particular interest because of
unusual flow features that have been observed experimentally, but not duplicated
via either the low or high Reynolds number asymptotic analyses. Specifically,
Garner and Tayeban (1960), and LeClair (1970) have observed a steady recir-
culating wake behind a drop, but with the eddy detached from the drop surface.
Later, Rivkind and Ryskin (1976) carried out a series of calculations for flow
past spherical liquid drops and also found that a detached wake could exist for

a wide range of viscosity ratios. However, their results were only for spheri-
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cal shapes, and the later numerical study of deformed bubble shapes showed

that deformation was critical to an understanding of wake structures at finite

Reynolds number.

The experimental observation of a detached recirculating wake is not pre-
dicted via the existing asymptotic solutions for droplet motion. The Hadamard-
Rybczinski solution for low Re indicates a single fore-aft symmetric internal
vortex and an external flowfield which is free of any recirculating wake at the
rear of the drop. For high Reynolds number, Harper and Moore (1968) carried
out a boundary layer analysis similar to an earlier work on inviscid bubbles
(1963, 1965), and found that as Re — oo the O(1) solution outside a spheri-
cal drop was potential flow and inside was Hill’s spherical vortex. Again, this

solution does not exhibit a recirculating wake.

A similar difference between results at large, but finite Re, and asymptotic
solutions for Re — oo was reported in the earlier study of inviscid bubbles
by Ryskin and Leal (1984). The numerical solutions and existing experiments
showed the presence of an attached recirculating wake at finite Reynolds num-
bers, while Moore’s boundary-layer theory predicted no separation, except in a
region of size O(Re"l/ %) near the rear stagnation point, for the limit Re — co.
Later, Dandy and Leal (1986) demonstrated that the recirculating wake behind
an inviscid bubble was strictly a finite Reynolds number phenomenon which dis-
appeared with increasing Reynolds number, and speculated that the recirculat-
ihg flow was a consequence of vorticity accumulation due to inefficient transport
of vorticity downstream of the bubble at intermediate Reynolds numbers. If the
presence of a detached wake were confirmed for viscous drops by the present
numerical solutions, taking proper account of the drop shape, this would pro-
vide strong evidence in support of the vorticity transport mechanism suggested
for existence of recirculating wakes at intermediate Reynolds number in our
earlier study. Clearly, a detached recirculating zone could not result from flow

separation at the boundary.
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The goals of the present work are broadly to study the solution behavior—
flowfield and drop shape—as a function of the four dimensionless parameters
of the problem: the Reynolds number Re, Weber number We, viscosity ratio
A, and density ratio ¢. Because of the extremely large number of combinations
of these four parameters, we show results only for selected ranges of the di-
mensionless parameters, selected to demonstrate important qualitative features
of the problem. Results for a large number of additional cases in the ranges
0 < Re < 350, 0.05 < We < 14, 0.01 < X < 1000 and 0.01 < ¢ < 2000 are
included in the appendix to Chapter L

To facilitate the study of this problem, we employ the boundary-fitted or-
thogonal curvilinear coordinate grid generation technique of Ryskin and Leal
(1983). It is not necessary to describe the method here except to note that since
it is boundary-fitted, the free surface of the droplet corresponds to a coordinate
line in the computational domain, thereby avoiding the problems associated with
interpolation between node points to provide approximate boundary conditions.
Further, there are two routes that are available when using this grid generation
. technique. The first is called the strong constraint method and is very useful
when used in conjunction with‘free-boundary problems. The second is referred
to as the weak constraint method, and this method is useful when it is necessary
to specify the positions of nodal points on the boundary. In this work we have
used the strong constraint method to generate the outer coordinate grid and the
weak constraint method to generate the grid inside the drop. The reasons for

this will be discussed shortly.



I1. Problem statement

In this section we will discuss the formulation of the problem and the
method of solution. We consider a viscous droplet that is assumed to undergo
a steady rectilinear motion, due to the action of gravity, through an outer qui-
escent liquid. The drop phase is characterized by a constant viscosity 4 and
density p (quantities associated with the drop fluid will be denoted by a ).
Likewise, the outer, or continuous phase is represented by p and p. The inter-
face between the two liquids is assumed to be completely described by a single
constant parameter, the interfacial tension ~. As shown in Fig. 1, the geometry
of the system is represented by cylindrical coordinates (2,0, $). We assume that
the drop shape and flowfield are both axisymmetric; therefore, all quantities are
independent of ¢. The flow fields inside and outside the drop, as well as the
drop shape, will be determined using a finite difference numerical scheme that

is a generalization of the method of Ryskin and Leal (1984).

a. Grid generation

In order to utilize finite difference methods, it is necessary to define a coor-
dinate grid, upon which the governipg equations can be discretized. For reasons
discussed elsewhere (Ryskin and Leal 1984; Dandy and Leal 1986) we have
chosen to use an orthogonal boundary-fitted coordinate grid that is generated
numerically. Because of axisymmetry, the grid generation problem takes the
form of numerically constructing a discrete set of mapping functions z(¢£,n) and
o(¢&,n), both inside and outside the drop. Briefly, to generate the exterior co-
ordinate system, we use the strong constaint method of Ryskin and Leal (1983,
1984), which amounts to solving the covariant Laplace equations for z and o
on a unit square in the (&,7) curvilinear coordinate system. The drop surface
corresponds to the coordinate line £ = 1, while infinity in the outer domain is
€ = 0. It is necessary to also generate a coordinate grid inside the drop, and

for this inner problem the coordinate system is spherical in nature, with the
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point (2,6) = (0,0) corresponding to ¢ = 0. After mapping, the computational
domain for both phases will always be a unit square in (£,7).

One difficulty which arises in unbounded flow problems is the treatment of
conditions at infinity. The two choices available are to either truncate the (z,0)
domain at some distance from the body, or to perform a coordinate inversion.
Grosch and Orszag (1977) compared solutions obtained using coordinate inver-
sion to those obtained via domain truncation for a variety of unbounded domain
problems, including Burger’s equation, and concluded that mapping will yield
more accurate solutions than those obtained with truncation, provided that the
solution being sought vanishes rapidly or approaches constant values at infinity.
For the present study, we follow Ryskin and Leal (1984) and use a conformal

coordinate inversion of the outer domain:

which preserves the orthogonality of the coordinate grid. Thus, rather than map
the outer (z,0) domain directly to the (§,7) computational domain, the confor-
mal mapping was used to transform the infinite (z,0) domain to an auxiliary
finite domain (2*,0*), which was then mapped to a unit square in the (¢,7) do-
main using the numerically generated orthogonal mapping technique. Since the
domain inside the drop is finite, it is not necessary to carry out the coordinate
inversion; the variables (£,6) are mapped directly onto the (£,n) computational
domain.

Because of the inherently interesting flow structures which arise at the
rear of the drops at larger values of the Reynolds number and Weber num-
ber, it is advantageous to use theistrong constraint method to generate the
coordinate grid in the continuous phase (Ryskin and Leal 1984). By using the
strong constraint method, one can control grid spacing via the distortion func-
tion, denoted by f(&,7n). Again, we follow Ryskin and Leal (1984), and choose
f(&n) = 7r§(1 — ot cos 7r77), where 0 < a < 1, which results in a grid that is finer

at the rear of the drop (near n = 0) than at the front, and also finer near the
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drop surface (¢ = 1) than at infinity.

There is one critical difference in the mapping problem for the bubble,
which requires only one coordinate map external to the bubble surface, and
the present problem, which requires both an internal and external coordinate
map. Namely, if we are to avoid large errors in applying boundary conditions
at the drop surface, it is necessary that the two coordinate grids, inside and
outside the drop, must match up exactly at the free-surface. In order to insure
that this is true, the strong constraint method is used in the outer phase and
the weak constraint method is used in the inner phase. In the weak constraint
method, complete boundary correspondence is prescribed (similar to other grid
generation techniques; see Thompson et al 1985), and because of this the dis-
tortion function f(&,7n) cannot be specified. The advantage in using the weak
constraint method in conjunction with the strong constraint method is that the
solution of the strong constraint mapping, namely the position of the free sur-
face (z(1,n),0(1,7)), is used as the boundary condition for the weak constraint
method. That is, the strong constraint method generates the grid in the outer
domain, with the position of the interface found as part of the solution, and
then the weak constraint method is used to generate a grid inside the drop

which matches exactly at the interface.

b. Governing equations

The equations governing the fluid motion and the shape of the drop are
the steady state Navier-Stokes equations and associated boundary conditions,
‘which we choose to state with respect to a frame of reference that is fixed on
the drop. In the present work, these equations and boundary conditions are
nondimensionalized using the radius a of an undeformed drop of volume -§7ra3

as the characteristic length scale, the uniform streaming velocity at infinity Uy

as a characteristic velocity, and % pUZ as the pressure scale. The dimensionless



- 10 -

equations then take the form

. . 1 A a ] 2\ 2
BT A (2
V=0 (20)
and
0-Vu=—2vp + L ge, + = V?u (3a)
TP T g 9% T R '
V.u=0. (30)

There are three dimensionless groups appearing in these equations: the Reynolds
number Re = 2palUy/u, the density ratio ¢ = j/p and the viscosity ratio A =
2/u. The boundary condition at infinity is

u— e, as ||x]| — oo. (4a)

At the drop interface we require continuity of velocity

a=u, (4b)
continuity of stress
n-(T-1T)= 4(\7 n) n (4¢)
T We ’
and the kinematic condition
n-d=n-u=0. (4d)

A fourth dimensionless group which appears in the boundary conditions is the
Weber number We = 2paU2 /7.

Due to the axisymmetry of the problem, it is convenient to use a stream-
function vorticity formulation rather than the primitive variables u and p. To

recast the problem, we first take the curl of Eqgs. (2a) and (3a) to obtain an
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equation in terms of vorticity wey and velocity. Then we define the velocities

in the general curvilinear coordinate system using the streamfunction 1:

v, = L 0¥
- ohy, On
1 9y
Uy = =,
ohe 9¢
and substitute these into the velocity-vorticity formulation to obtain
£2(06) — A Re Té.‘?..(f.f.) +712.(.“.j.> =0 (5a)
2hehy |he OENG/  h,On\E
L2 +0=0 (50)
and
2 1 Re |ueg 0 [w u,,<9(w>
- kS et “n - (= = 6
Lwo) = Shehr | hede\a) TRyam o) |70 (69
L% +w =0, (6b)
where

2o 1 |8 (f0) 0 (19
£ Rk [%(a 6&) T an (fo 6?7)]

The scale factors of the coordinate system are

8z\? [o0\?]
re=|(3) +(5%)

=9 -

(M O

b= (2) 4 (22)°
e on an

Wi

and the distortion function is
f="tn,
he
The geometric factors £2, h¢,and hy, in each phase are defined in terms of the
appropriate coordinate variables.
At large distances from the body the velocity asymptotically approaches

the uniform streaming flow ¥, ~ %02. To remove this singularity in the
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streamfunction we define a modified streamfunction by subtracting off a func-
tion which has the same asymptotic behavior at large distances and satisfies
homogenous conditioﬁs at the other three boundaries. The modified stream-
function is ¢* = ¢ — 20%(1 — £%). The subtracted term is the potential flow
solution for a spherical bubble, but it has no simple physical meaning for a drop
of arbitrary shape. From the Oseen solution (Proudman and Pearson 1957) we
know that * is bounded at infinity, and because this point is a singular point
of the differential equation, boundedness is a sufficient condition for solution
(Morse and Feshbach 1953).

The boundary conditions corresponding to Egs. (5) and (6) are: along the

lines of symmetry,
w, ¥*, D, P =0 atnp=0,1 (7a)

at infinity,
v, w=0 at £=0 (7b)

and at the center of the drop,
b, & =0 at £ = 0. (7c)
At the surface of the drop,
b =9*=0 at £ =1, (7d)
because of zero normal velocity. The tangential stress balance takes the form

(7e)

A@s—ws = 2K, (A 12,,—-%,)'£ g

where w, = w(1,7n) and &, = &(1,n). Finally, the normal stress balance is

i )] = e | )
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where the difference in pressure is given by

9 ..
5E(Uw) dn

Q|

~ 3 A2 2 4
p—p = —ZCDZ—§Un+un+‘Ee'|:/\/

a
-+ ;'a—g(O'W) d?’]} + Cl N

¢=1

where C, is a constant of integration, and normal curvatures are

1 (Bz %0 0%z 80)

Ky =

h3\onan?  on?an/ |._,
and

or = _L.‘?i’.]
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The incorporation of these boundary conditions into the numerical computations

will be discussed in the next section.

c. Details of the numerical scheme

The numerical scheme used to solve the partial differential equations is the
ADI method of Peacemann and Rachford (1955). An artificial time dependence
is imbedded in Egs. (5a), (5b), and the Laplace equations governing the mapping,
and the PDE’s are approximated using second-order centered finite differences
(see, for example, Ryskin and Leal 1984). Although Egs. (5a) and (5b) are
coupled, and the two mapping equations are coupled through the distortion
function f, each set of equations is solved successively rather than simultaneously
at each iteration, or, time step.

The homogeneous Dirichlet conditions (7a)-(7d) do not introduce any ad-
ditional terms in the tridagonal system generated by applying ADI and further,
they are strong conditions in the sense that they “tie down” the values of the
unknown vorticity at three of the four boundaries of the domain. The remain-
ing two boundary conditions—the tangential and normal stress balances—must
somehow be used to specify the three remaining unknown quantities: the inter-

face shape, @(1,7n) and w(1,7n). For application as a boundary condition, it is
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not sufficient to use Eq. (7e) as written; the numerical scheme requires explicit
values for @, and w,. Instead, we use an approach based on a method developed
by Dorodnitsyn and Meller (1968) and Israeli (1970), and described elsewhere
(Ryskin 1980). Briefly, the facts that (1) the vorticity street is proportional to
the velocity difference and (2) until numerical convergence @,(1,n) # u,(1,7)
are both used in an iterative process to explicitly specify both @(1,7) and w(1,7)
at each ADI step. That is, until continuity of tangential velocity is satisfied, the
local vorticity is adjusted proportionally to the magnitude of the velocity jump,
which itself is proportional to the corresponding vortex sheet at the surface. The
diffusion and convection of vorticity leads to a smoothing of the velocity discon-
tinuity. Egs. (7a)-(7e) are sufficient to obtain solutions to the flow equations for
P>, @, w and @. The position of the interface is then updated using the normal

stress balance, Eq. (7f), in a manner analogous to Ryskin and Leal (1984).

All calculations were done on a' CRAY XM-P/24. To insure that the code
ran as fast as possible, it was written efficiently and vectorized wherever possible.
In fact, with the exception of one loop in the entire program, all of the inner
loops vectorized. Even though the solution of the tridiagonal system arising
from the ADI scheme is recursive in nature, it is possible to reverse the order of
the loops and thus make the inner loop vectorizable. Due to the extreme under-
relaxation needed in employing the normal stress balance to move the interface,
a fairly large number of iterations were required, particularly at the larger Weber
numbers. The number of iterations needed was usually in the range 1000-7500,
and the corresponding CPU time required on the CRAY was roughly 15 to 120
seconds. There were two criteria which had to be met for convergence: the
maximum norm of the relative difference between the inner and outer velocities
and the maximum norm of the absolute error in evaluating Eq. (7f) both had to
be less than 1073, We found that if these two convergence criteria were satisfied,

the governing equations were also satisfied to within acceptable tolerances.

Solutions were obtained by choosing values for A, ¢, Re and We and march-
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ing along one of the parameter branches while holding the other three fixed. In
this manner, the solution at a particular set of parameter values was uséd as the
initial guess for an incremental change in one of the four parameters.

To explore solution beha&ior as a function of the parameter space, we di-
vided the problem up into three parts. First, we examine the effect of changing
the Reynolds number and Weber number (as would happen if the diameter of the
undeformed drop were changed) while holding the fluid properties A and ¢ fixed.
Second, the viscosity ratio A and the density ratio ¢ are varied independently
while Re and We were held fixed. Last, solutions for low Re (< 1) and high Re
(> 100) are obtained for fixed We, A, and ¢ so that the numerical results could

be compared to the asymptotic solutions for high and low Reynolds number.
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III. Results and discussion

a. Numerical results

In order to illustrate the effects of variations in Re and We, we choose a
series of solutions with the density ratio and viscosity ratio fixed at ¢ = 0.91 and
A = 4, respectively. These values are rather arbitrary, though representative of
values of O(1), but picked with the general aim of having a drop viscosity high
enough to expose interesting flow behavior (recirculating wakes) at moderate
Reynolds where solution accuracy is not an issue. Results obtained at other
values of A and ¢ (specifically, for ¢, A pairs (0.01, 0.001), (0.91, 10), (4, 0.5)
and other isolated values) show that the qualitative dependence of drop shape
on Re and We, illustrated below, was invariant to A and ¢. In general, the
flowfields for the ¢, A pairs were also similar. At the lower values of ¢ and A,
the drop acts more like a bubble, that is, with nearly zero shear stress at the

interface and a higher level of deformation than for other values of ¢ and .

Figs. 2 and 3 show results for shape and flowfield at Reynolds numbers of
2 and 10 for the values of A and ¢ mentioned above, and several values of We.
Table I contains the corresponding values of the drag coefficient. (Values of Cp
for all solutions presented in this chapter are displayed in Table I.) For fixed
values of A, ¢, and Re, the shapes shown in Fig. 2 become more deformed with
increasing We (or, decreasing surface tension), tending towards a spherical cap
shape at the higher values of the Weber number. The streamfunction plots in
Fig. 3 show that at the lower values of Re the external flow, moving from left
to right, induces the motion of a single, primary vortex inside the drop. The
results for shape and external flow are qualitatively similar to those found by
Ryskin and Leal for gas bubbles at the same values of Reynolds number and
Weber number. However, at any particular Re and We the drop is less deformed
than the bubble, due to the fact that the drop viscosity fi, and the inertia of
the inner fluid (proportional to the density 3) both act to reduce deformation.

Fluid inside the drop near the front stagnation point is caused to move because
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of the motion of the fluid outside of the drop. The inner fluid will tend to move
all the way to the rear stagnation point not only because of the outer fluid,
but also because it has inertia of its own. Thus, the fluid being “driven” to
the rear counteracts to some extent the external stagnation pressure at the rear
of the drop. There are two opposing forces at the rear of the drop: internal
inertia forcing the surface outward and stagnation pressure pushing the surface

inwards.

In addition to the streamlines, we also show the corresponding vorticity
fields in Fig. 3 for Re = 10. The values of vorticity are largest near the top of
the drop, where curvature is the highest, and smallest on the axes of symmetry,
where the value is zero. Because of the orientation of our coordinate system,
all values of vorticity shown, for example in Re = 10, We = 0.5 are negative.
For small values of Re and We, such as Re = 0.5, We = 0.5 (shown in the
appendix), the internal streamlines resemble Hill’s spherical vortex, that is, a
fore-aft symmetric recirculating ring, and the vorticity is a function of & only,
so that lines of constant vorticity are horizontal. As the Reynolds number is
increased, for example to 10 as in Fig. 3, the internal vortex is gradually shifted
towards the front of the drop. The lines of constant vorticity then deform in the
interior, bending upwards as they approach the surface at the rear of the drop.
When the drop becomes sufficiently deformed, at We = 4, a region of positive

vorticity appears, both inside and outside, at the rear of the drop.

For bubbles and solid particles, the appearance of a region of oppositely-
signed vorticity signals the beginning of flow separation. Further, the n (or, )
position on the surface where w; = 0 coincides with the separation point. In the
first three illustrations in Fig. 4 (a, b and ¢) we demonstrate this phenomenon for
a void. (We define a void as A — 0 and ¢ — 0.) These three figures represent
results calculated for flow past an oblate ellipsoid of revolution at three different
Reynolds numbers: 20, 90 and 180, respectively. For the shape shown in Fig. 4,

at Re = 20 there is no recirculating wake present and the vorticity has the same
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sign everywhere (negative). When Re has reached 90, an attached recirculating
wake has formed, and it can be seen in Fig. 4b that there is now a small region
of positive vorticity at the rear of the bubble. Finally, in Fig. 4c, at Re = 180
the eddy has disappeared and the vorticity is once again negative everywhere

in the domain. To see why w, = 0 marks the separation point for a bubble, we

must examine the tangential stress balance:
w — 2kquy = 0.

The necessary and sufficient condition for separation on a bubble is u, = 0,
and from the tangential stress balance, we see that this is equivalent to ws = 0,
provided that the curvature «,, is finite.

For a solid (which we regard as A — o0), a separation point is also iden-
tified by ws = 0, and a region of positive vorticity, although significantly larger
than that for a bubble of similar curvature, is also present at the rear of the
body. An example of this vorticity pattern is shown in Fig. 4d, where we show
the result for Re = 100. Fornberg (1980) displays results for streaming flow past
a solid cylinder for Reynolds numbers in the range 2 < Re < 300. The region of
positive vorticity does not form behind the cylinder until separation first occurs,
about Re = 10. This region appears to gradually increase in size with increasing
Reynolds number. The necessary and sufficient condition that separation occur
from a solid is that the tangential stress (or, “skin friction”) goes to zero. This
condition requires that du, /8¢ = 0 and this, in turn, is equivalent to stating
that w, = 0 (because dug/dn = 0 on the surface).

In Fig. 3, however, we have seen that a region of positive vorticity forms be-
hind the drop without any accompanying flow separation once the drop becomes
sufficiently deformed. As we will show below, this positive vorticity cannot be
solely an artifact of increased surface curvature or of the condition A > 1, al-
though these can certainly be contributing factors to the size of this region.
Instead, we offer the.following explanation, which is based on arguments in

Lighthill (1986, pp. 75-79). The base of the argument is the supposition that
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the layer near the drop surface containing the vorticity generated at the inter-
face can be regarded aLs a vortex sheet. The strength of this vortex sheet is fixed
by knowing the drag on the body, and the value of the vorticity at each point
on the surface is then set by requiring the total vortex strength be constant.
Assume that a point B exists on the surface of a ficticious drop near, but not
at, the rear stagnation point. Also assume that a point A exists on the surface
of this same drop, slightly upstream of B. Since the tangential velocity of the
interface is decreasing as the rear stagnation point is approached, convection
removes vorticity from the vicinity of B at a rate much smaller than at which
the vorticity from A is replacing it. The total strength of the vortex sheet must
remain unchanged, and as a consequence new vorticity of opposite sign is gen-
erated at the drop surface at a rate greater than can be compensated for by
vorticity diffusion from within the “boundary layer”. That is, if negative vortic-
ity is being produced at point A, point B will begin to produce positive vorticity
in amounts greater than can be cancelled out by negative vorticity transported
from upstream. As mentioned above, for a void or a solid, the appearance of
positive vorticity on the surface is equivalent to flow separation, and the actual
mechanism for production of positive vorticity is flow reversal. It is easy to see
this effect on a void from the tangential stress balance shown above—a change
in sign of velocity must be accompanied by change in sign of vorticity, assuming
curvature does not change sign. For the drop, however, the mechanism is not
quite so obvious since a region of positive vorticity appears without any flow
reversal; it is necessary to examine which quantities determine the vorticty, and
how they can lead to a change in sign of vorticity. On the surface of a drop of
fixed shape (that is, a surface with zero normal velocity) the vorticity is defined

to be

ws - ,Cnun T ——

The sign of this equation arises because the outer coordinate system is left-

handed. If neither the curvature nor the velocity at the surface change sign, the
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first term on the right hand side will be negative. The derivative du, /3¢ is also
negative, so w will be negative as long as the magnitude of the first term exceeds
that of the second. Thus, positive vorticity can occur if the normal derivative of
u, is large enough for the second term to dominate the first, or if u,, changes sign.
Even before the appearance of a recirculating wake, accumulation of vorticity,
both inside and outside, at the rear of the drop causes a distortion of the velocity

field, making the velocity gradient large enough for the vorticity to be positive.

In their numerical solution for steady flow past viscous spherical drops,
Rivkind and Ryskin (1976) display a series of results at Re = 100 for 1 < A <
100. At A = 1 there is no recirculating wake, but there is again a region of
positive vorticity at the rear of the drop. The fact that Rivkind and Ryskin
found this same effect for spherical drops when A = 1 indicates that neither a
vorticity jump at the surface (as would exist for A > 1) nor a region of locally
large surface curvature (as could exist for We > 1 if the drop were allowed to
deform) is requisite for the existence of a region of oppositely-signed vorticity in

the flow domain.

Similar shapes have been calculated in this work for Reynolds numbers
below approximately 60 for the values of viscosity ratio A and density ratio ¢
used in the calculations (see the Appendix). However, for Re % 60 the flow and

the shape of the drop change dramatically.

The flow changes to the extent that recirculating wakes begin to appear
behind the drops, which are O(1) in size with respect to the body. This effect
is well represented in Fig. 5a, where the flowfield for Re = 60 is shown for
several values of We. For smaller values of We the curvature of the drop is too
low to produce a sufficient accumulation of vorticity at the rear and thus lead
to a recirculating wake. But as the curvature grows with We, more vorticity
is produced at the interface than can be carried away by cbnvection, and a
recirculating wake forms. Figure 5a is a good demonstration of the appearance

and growth of a recirculating wake as the surface curvature increases with We.
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At We = 0.5, although the shape is nearly spherical, there is enough vorticity
produced due to the no-slip condition that an eddy is beginning to form at the
rear. We can also see at this Weber number that a modestly sized region of
positive vorticity has formed. As the Weber number, and thus deformation,
increases, the recirculating wake becomes larger, as does the inner and outer

regions of positive vorticity.

Figure 5b shows another example, at Re = 100. Not surprisingly, in both
of these examples deformation increases with We, but whereas the stagnation
pressure at the rear of the drop caused an indentation to occur there at the lower
Reynolds numbers, the stagnation pressure at the front of the drop begins to
dominate for Re 2 100. The result is that the front of the drop becomes flattened
at the higher Weber numbers. The present solutions were obtained assuming
the drop and the flow to be steady and axisymmetric. With this constraint, the
solutions shown in Fig. 5 were obtained via a quasi-time-dependent algorithm,
even though it is well known from experimental observation that drops and
bubbles for Re < 100 do not assume a steady shape or motion for 4 SWe < 20.
Rather, in this range of Re and We, both bubbles and drops move in a transitory
wobbling manner (and thus attain non-axisymmetric time-dependent shapes),
and it is not until We < 30 that they become spherical caps and the motion of
a drop again becomes steady. Although the steady axisymmetric calculations
that were obtained for this paper cannot capture the three dimensional transient
behavior exhibited at intermediate values of We, the steady solutions may nev-
ertheless provide important qualitative insights and serve as the basis for future
investigations of the stability of the rise trajectory. It may also be noted that
solutions in the unstable regime at a given Re and We were the same, whether
attained by fixing the Weber number at some intérmediate value and increasing

the Reynolds number, or fixing Re at some large O(100) value and increasing

the Weber number.

The most striking flow feature of Fig. 5 for both Re = 60 and 100 is the
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detached recirculating wake; this wake appears behind the droplet and increases
in size with increasing We (that is, increasing surface curvature and therefore
increasing surface vorticity). This detached wake for the liquid drop is is marked
contrast to the well known attached wakes which exist on voids (Ryskin and
Leal 1984; Miksis et al 1981), and solid particles (Taneda 1956; Nisi and Porter
1923; Kalra and Uhlherr 1971). However, as noted earlier, unattached wakes
have been observed experimentally and predicted numerically for streaming flow
past viscous spherical drops (Garner and Tayeban 1960; Rivkind and Ryskin
1976; LeClair 1970). Although the drop shape for a given Re and We has less
surface curvature than a void for the same Re and We, an eddy can still form
because vorticity is also generated via the no-slip condition at the interface.
Indeed, the maximum surface vorticity for both Re = 60 and 100 has a value of
approximately 7 when a closed streamline wake first appears, and this value is
similar to the maximum surface vorticity when a closed streamline wake appears
for both the void and a solid sphere at similar Reynolds numbers. We shall have

more to say on this later.

The closed streamline wakes of Fig. 5 are represented schematically in
Fig. 6a. The external fluid moving towards the drop along the upstream axis of
symmetry continues all the way around the drop to the rear axis of symmetry
before moving around the outside of the detached eddy. Inside the drop there
is a single recirculating vortex. As Fig. 6b shows, the situation for a void is
markedly different (see, for example, Ryskin and Leal 1984); if a wake exists
behind a void, it is attached to the void “surface”, and the motion of the ﬂuid
in the wake causes the fluid at the surface in the wake region to move upwards,
or towards the front of the void. When separation first occurs on a bubble, the
surface vorticity changes sign and becomes positive at a point near the rear axis
of symmetry. As the attached eddy grows larger, the point where the surface
vorticity changes sign moves along the surface further from the rear axis, creat-

ing a section of the body surface with positive values of w,. The fluid elements
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at the surface moving from the front of the bubble to the rear meet the upwardly
moving fluid elements from the rear at the separation point, and the fluid sub-
sequently departs the bubble surface. Figure 6¢c shows one possible sketch of
the flow that would occur if the recirculating wake were attached for a drop. In
the drop, very close to the interface,.the fluid is moving in a clockwise direction,
toward the rear stagnation point, while the outer fluid in the main recirculat-
ing region of the wake is moving in the opposite direction. Thus, the velocity
changes sign in an extremely small distance, and even though the velocities in
this region are not large, the resulting shear would nonetheless be high (based
upon the magnitude of the velocity in the rear region and the length scale over
which the velocity changes sign), certainly an energetically unlikely situation for
the drop to be in. The detached configuration in Fig. 6a, is one way to avoid

this problem and is, in fact, the observed configuration in all of our calculations.

It is interesting to note that a similar situation can occur in a cavity flow
(Kang and Chang 1982): under certain conditions, steady flow in a channel over
a cavity will cause the formation of two eddies in the cavity, both rotating in
the same direction (see Fig. 3b of Kang and Chang). Because the velocities of
the closest points of the two eddies are opposite in sign—a situation analogous

to Fig. 6c—the eddies maintain as wide a gap as possible between them.

There are of course, other multi-eddy configurations with attached recir-
culating wakes that also avoid the problem illustrated in Fig. 6¢c. The simplest
of these is the structure sketched in Fig. 6d. In fact, a configuration a double
internal vortex has been observed in numerical calculations (Rivkind and Ryskin
1976; LeClair 1972), and experiments (Pruppacher and Beard 1970), but only
for Re > 1 and ¢ > A > 1, which corresponds roughly to a mercury droplet or
even a water droplet failing through air. The present results indicate that the
detached wake similar to Fig. 6a is observed in all other cases where there is a

recirculating wake.

As mentioned above, the onset of separation for a void or solid is denoted by
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a change of sign in w,, and the situation is markedly different for a drop because
positive vorticity is observed without the accompanying flow detachment from
the surface. When a recirculating wake does appear, it is detached, and thus
there is no flow separation although there is a region of positive vorticity. A
necessary and sufficient condition for flow detachment to occur on a drop is for
Uy, = i, = 0 at a point other than n = 0 or 1. As we can see from Eq. 7e,
for arbitrary A, this condition is equivalent to A&W; — ws, = 0 or wy; = s = O.
However, we find that for all A # 1 the vorticity jump across interface is nonzero
at every point on the interface for 0 < 7 < 1, and w; and @&, are not zero at the
same point except for A = 1. The reverse is not always true, however. If A =1,
we can have w; = @, = 0 at a point and still not have flow separation, and
Eq. (7e) will still be satisfied. With this in mind, by looking at the tangential
stress balance, Eq. (7e), we can see that a change in sign of w, and/or &, does
not violate or contradict the tangential stress balance, whether or not a detached
recirculating wake is present. If there is no flow separation, then u, will have the
same sign everywhere on the surface, and thus the right hand side of Eq. (7e)
will always be positive or negative, depending on whether A is greater or less
than 1. Then, as long as the left hand side, (A& — w), does not change sign,
the tangential stress balance is satisfied. Indeed, we have found in all of our
calculations that the left hand side of Eq. (7e) does not change sign for any

choice of A.

All of the results discussed so far were obtained by varying We with the
other parameters held fixed. Here, we consider thé effect of viscosity ratio on
the shape and flowfield. In Fig. 7 we present results for the case Re = 100,
We = 4, ¢ =091 and 1 < A < 1000. One consequence of increasing A is
a decrease in deformation of the drop due to the rising resistance of the drop
to deforming forces, and we have found that for all choices of Re, We, and
¢ the change in curvature was weakly dependent to changes in viscosity ratio,

but that curvature always decreased with increasing A. A more dramatic effect
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of increasing A is that the wake becomes larger in size, in proportion to the
increase in vorticity produced at the surface as the no-slip condition becomes a
more effective source of vorticity. We have seen that there are two mechanisms
for producing vorticity at the surface of the drop: curvature and the no-slip
condition. .The results in Fig. 7 demonstrate that the no-slip mechanism is a
more efficient source of vorticity than curvature at this Re, We and ¢ because as
A increases, the curvature source decreases due to the slight decrease in curvature

and dramatic decrease in surface velocity, while the no-slip mechanism increases.

Also, as the viscosity ratio becomes larger, the strength of the flow inside
the drop becomes correspondingly smaller, and the wake moves in closer to the
body. Indeed, we find that |ju,llce o« A1 at the surface £ = 1. When the
viscosity ratio A is O(1), the velocity at the surface of the drop is the same
magnitude at the characteristic velocity, U,. However, as A rises the surface
velocity falls, and the flow inside the drop becomes weaker. Therefore, the
wake exists in a detached state because it is forced to do so by the internal
flow, and this provides further evidence that the phenomena observed arise as
a consequence of the interaction of two viscous liquids. The flowfields in Fig. 7
show that at the lower viscosity ratios the wake is not only smaller than at the
higher A’s (since less vorticity is being produced at the interface), but it is also
farther away from the body due to the strength of the flow inside the drop.
Based upon these observations it’s not surprising that an attached wake can

only occur on a droplet when A > 1.

From Fig. 7 it is not possible to see that the wakes at the highest viscosity
ratios A = 100 and A = 1000 are actually detached, but this is easily demon-
_strated by examining the signs of the velocity at the surface. The limit A — oo
can be regarded as a solid particle and the wake behind such a body will be
attached (see, for example, Masliyah 1970; Nakamura 1976). The calculations
here show that as A increases the wake moves closer to the drop, but up to

A = 1000, it is still not attached. We therefore hypothesize that for the value
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of the density ratio ¢ = 0.91, the wake will only become attached in the limit

A — 00, and that this limit is singular insofar as wake attachment is concerned.

Although Re was held fixed to obain the results shown in Fig. 7, the interior
Reynolds number decreased as A increased. To investigate the effect of fixed
inner and outer Reynolds numbers, we did a series of calculations for Re = 100
and We = 4 at various values of ¢ and A, holding their ratio fixed at 0.25 (i.e.,
¢/A = 0.25, and thus the inner Reynolds number was 25). The results of these
calculations, shown in Fig. 8, demonstrate that the interior Reynolds number
does not appear to play a significant role in the qualitative or quantitative
features of the flow field. As A and ¢ are both increased, the solutions look
very similar to those in Fig. 7, where ¢ was fixed. We see that as A and ¢ are
increased, the shape becomes less deformed, and surface velocity slows down, in
proportion to A~1, and the wake grows larger and moves closer to the rear of
the drop. The conclusion from these results is that not only does the internal
Reyholds number appear to play a small role in determining the flowfield but
also that the density ratio ¢ plays a similarly small role. In Fig. 9 we show
results for Re = 100, We = 4, XA = 1 and two values of ¢: 0.1 and 0.01. Together
with the first result in Fig. 7, for ¢ = 0.91, we see that an almost two order
of magnitude change in density ratio produces only a slight change in shape
and flowfield, leading us to conclude that ¢ does indeed only have a Slight effect
on the problem. This is not really surprising since ¢ appears in the boundary
conditions in only the pressure, whereas the viscosity ratio A appears appears
in the viscous terms in both the tangential and normal stress balances. This

observation has been confirmed by other numerical computations, particularly

those of Rivkind and Ryskin (1976).

b. Comparison with experiment

A generalized graphical correlation exists (Clift, Grace, and Weber, Fig. 2.5
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1978) for drop and bubble shape in terms of the Eétvds, or Bond number,

Fo — 4a% g Ap
v
the Morton, or M-group number,
4
gu’Ap
M= ——
Py

and the Reynolds number. These two dimensionless groups Fo and M can be

rewritten in terms of our parameters as
3
Fo = ZC D We

and .
3 We

M = -C )

4P Re*

For the case Re = 2 shown in Fig. 2, the Edtvos and Morton numbers lie in
the ranges 5.2 < Fo < 160 and 8.2 x 1072 < M < 2.0 x 103, From Fig. 2.5 of
Clift et al it can be seen that the motion and shape of the drop at this Reynolds
number are both steady for the entire spectrum of Weber numbers. At the lower
Weber numbers, the shape is nearly spherical, and for We 2 5 the shapes tend to
dimpled ellipsiodal caps, which is exactly what is shown in Fig. 2a. For Re = 10
(Fig. 3) the behavior is very similar, except that the drop shapes lie more in the
ellipsiodal range, also tending towards ellipsiodal caps at larger Weber numbers.
From the graph in Clift et al one predicts that if the Weber number is further
increased the shape will be skirted. In our calculations at Re = 2 and 10, we
stopped at We = 14 and 10 because the shapes became sufficiently distorted
that it was difficult to generate an interior mapping with high resolution near
the interface £ = 1. At these high Weber numbers, the solution process was
very unstable and extremely small time steps and relaxation parameters were
needed, increasing the computational cost to unacceptable levels.

In the graphical correlation (Clift, Grace and Weber 1978) there are three

general regimes. Two of these are steady, and they represent spherical and
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spherical/ellipsiodal cap shapes. The spherical regime corresponds to the entire
range of Reynolds numbers (up to several hundred in the chart) for sufficiently
low Weber numbers. In Fig. 1 of Wellek et al (1966), photographs ox’rer the range
91 < Re < 369 are presented, with steady shapes ranging from nearly-spherical
to ellipsoidal. In Fig. 2 of Hendrix et al, photographs of drops are shown for
the range 80 < Re < 215. Also shown are the gross structures, but not the
fine details, of the closed streamline wakes. The shapes are all nearly spherical
and, with the exception of the high Re case, all are steady. Unfortunately,
neither Wellek et al nor Hendrix et al cite interfacial tension data, so it is not
possible to explicitly state the We range. However, for both papers, the systems
were immiscible organic/water mixtures for which interfacial tensions are large
(Handbook of Chemistry and Physics 1980) and it is therefore a reasonable guess
that We = o(1).

The capped shapes also occur over the entire range of Reynolds numbers,
but only for the highest Weber numbers. Shoemaker and Marc de Chazal (1968)
present an excellent series of dimpled shapes for 2-butanone in glycerol, for
20.4 < Re £ 75.2 and 50.4 < We < 342. For this system, ¢ = 0.691 and
A = 0.00482. All shapes and flowfields are steady and axisymmetric except
for the highest value of Re and We, where there is a “ragged skirt attached
to perimeter of a rising spherical cap drop. ... Not axially symmetric because
of vortex shedding.” At intermediate values of We the shapes are ellipsiodal,
tending to unsteady wobbling motion for Re 2 100. Although direct comparison
with these unsteady shapes is not possible, disk-like shapes are known to exist
at the onset of the wobbling instability. Satapathy and Smith (1960) break
down the shape and flow regimes as a function of Reynolds number, based
on numerous experiments they performed. The authors do not even list the
fluids used in the dispersed phase, so one can only speculate from their figures
only that interfacial tensions were high, as with Wellek et al and Hendrix et

al. Satapathy and Smith found that for Re < 4 the shapes are spherical and
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the flowfield is nearly fore-aft symmetric. For 4 < Re < 10, a single ring
vortex forms at the rear of the drop, and the drag is higher than would be
expected for a sphere; the shape is ellipsoidal, with a slight flattening in the
rear. From 10 < Re < 45 the recirculating wake increases in length and the
deformation is markedly ellipsoidal. Above Re = 45, Satapathy and Smith
observe a transition to unsteady flowfield and motion, characterized by vortex
shedding. Without knowing values for any of the dimensionless groups other
than Re, it is difficult to quantitatively compare the work of Satapathy and
Smith with other experimental work mentioned above, or with the numerical
results of the present work. However, we can see that the gross features of the
present work—that is, flowfield and shape—compare favorably with the steady
cases found in these experimental papers. At low Weber numbers, the shapes of
the drops are spheroidal (nearly spherical and elliptical) and at higher values of
We the shape tends to a spherical or ellipsoidal cap. At intermediate values of
Re, the shape is ellipsoidal in nature, and appreciably sized recirculating wakes
form at the rear of the drop. While the length of the wake can be up to two
body-lengths in size, the width never exceeds that of the drop.

Thorsen et al (1968) performed a series of experiments to obtain the ter-
minal velocities of carefully purified organic/water systems. Their aim was to
obtain results for both the steady and oscillating regimes. In Fig. 13 of Thorsen
et al, a comparison is made with the earlier work of Hu and Kintner (1955). Hu
and Kintner correlated their data for organic drops falling in water by means of
a physical property group and the Weber number (Fig. 3 of Hu and Kintner).
They found that all of their data fell onto a single curve, including data taken
from solid spheres, and concluded (wrongly) that spherical liquid droplets be-
have like solid spheres for Re < 300. Thorsen et al use the same correlation as
Hu and Kintner and demonstrate that liquid drops do indeed behave differently
than solid particles, and attribute the results of Hu and Kintner to surfactants.

We have superposed our numerical results on Fig. 13 of Thorsen et al, and these
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are shown in Fig. 10. The solid symbols represent experimental results obtained
by Thorsen et al using a surface active agent, while the light symbols are for
pure fluids. It is obvious that our results lie among those of the pure liquid

systems.

c. Comparison with theory

Moore (1963, 1965) carried out boundary layer analyses for high Reynolds
number flow past spherical and oblate ellipsoidal inviscid bubbles, that is, bod-
ies of fixed shape having a pure slip surface. Moore’s results showed that the
O(1) solution for the flow was the potential flow solution and consequently that
a recirculating eddy did not exist for bubbles in the limit Re — co. The nu-
merical calculations of Ryskin and Leal (1984) and Dandy and Leal (1986), on
the other hand, demonstrated that closed streamline wakes do exist at moder-
ate Re, O(100), and only disappear for an ellipsoidal void in the limit Re > 1.
Similarly, for a spherical liquid drop, Harper and Moore (1968) showed that
the limiting solution for Re — oo in the outer fluid was the potential flow
solution, and the O(1) solution for the flow inside the drop was Hill’s spherical
vortex, except for a thin boundary layer existing near the drop interface and
along the line of symmetry inside the drop. Again, all the vorticity leaving the
body surface was predicted to be confined within an infinitesimally thin wake
extending to infinity. On the other hand, our present results for free-surface
drops show that recirculating wakes appear behind drops at finite values of the
Reynolds number (exceeding some critical value for each A) provided that the
drop is sufficiently deformed, the necessary degree of deformation again depend-
ing upon A. Other workers have found via numerical calculation (Rivkind and
Ryskin 1976) that recirculating wakes also exist behind spherical liquid drops
at moderate Reynolds numbers (Re = O(100)) so long as A > 1. It is there-
fore clear that the existence of a recirculating wake must be attributed to some
mechanism which is present at moderate Reynolds numbers for both drops and

bubbles, and either absent or secondary at high Re. As discussed in Dandy and
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Leal (1986) these recirculating wake regions appear to exist as a consequence of
vorticity accumulation due to the relative inefficiency behind the bubble or drop
of convective transport of vorticity at modest Reynolds numbers. The main
difference between the bubbles considered in our earlier work, and the viscous
drop studied here, is that vorticity is generated both as a consequence of sur-
face curvature (as for the bubble) and the “no-slip” condition so that sufficient
vorticity to produce a recirculating wake can be achieved with less deformation.
Further, since the presence of the unattached recirculating wake obviously has
nothing to do with detachment of the boundary fluid for the case of the liquid
drops, it would be very surprising indeed if boundary layer theory were able to
accurately predict the flow behavior observed in this work or in Rivkind and
Ryskin (1976). Thus, if the asymptotic structure of Harper and Moore (1968)
is to provide an adequate description of the flowfield it can only be for larger

Re > 1.

To investigate the effect of the Reynolds number on the flowfields at large
Re, a series of calculations were done for We = 1, ¢ = 0.91, A = 2.5 and
150 < Re < 350. The idea was to choose a value of We and A such that the
rate of vorticity production might be small enough that convective transport
could sweep the vorticity away (and thus “dissipate” the recirculating flow) at
finite Re so that a transition toward the asymptotic structure might be evident
numerically. In using second order centered finite differences there is an upper
bound on Re for which (reliable) solutions may be obtained, which in turn
depends on the cell Reynolds number (or, a Reynolds number based on the
discretization). Thus, a fine mesh will increase the Reynolds number at which
a reliable solution can be found. With the discretization used (61x61 mesh,
inside and out), and the nearly spherical shapes arising from We = 1, we had no
trouble finding apparently reliable solutions up to Re = 400. Figure 11 shows
the flow behavior as Re is increased: the recirculating wake first appears at a

Reynolds number of approximately 60, grows to a maximum length at roughly
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Re = 180, and then completely disappears by the time the Reynolds number
reaches 350. Note that as the eddy shrinks in size the vortex inside the drop
becomes more fore-aft symmetric, that is, closer to Hill’s vortex. Comparison
of Cp between our numerical solutions and the analytical work of Harper and

Moore can be found in Table II for a variety of Reynolds numbers.

Another interesting aspect of the solutions shown in Fig. 11 is that for
Re 2100 the drop shape is relatively insensitive to Reynolds number. A simi-
lar insensitivity to Re was also observed by Ryskin and Leal in their work on
deformable voids. Had the shape not been so insensitive to Re, that is, had
deformation increased with increasing Reynolds number as was true for lower
Reynolds numbers, then it probably would not have been possible to determine
anything about the correspondece between the results of this work and those of
Harper and Moore. A great deal of care was taken to insure that the numerical
results are accurate, and that they do not depend on either numerical param-
eters or the method used. A much more detailed discussion of the accuracy of
the numerical scheme is given in an earlier paper (Dandy and Leal 1986). Of
course, the results for other values of We, A and ¢ will be different in detail from
those exhibited here, but we expect that the same qualitiative behavior would

be manifested at sufficiently large Re in all cases.

Another point of interest is the Reynolds number dependence of wake struc-
ture and its dependence on A, i.e., on the relative mix of vorticity production by
the boundary curvature and no-slip. Theory predicts that in the limit A — 0o,
the maximum surface vorticity becomes proportional to the square root of the
Reynolds number for Re > 1, that is, wm o Re!/2, and in this case, a separated
flow with recirculating wake exists even in the limit Re — oo, as predicted
by boundary-layer theory. On the other hand, for A = 0, w,, — constant as
Re — oo for a body of fixed shape, and we showed in an earlier paper that the
recirculating wake then disappears for sufficiently large Re and is not predicted

either by boundary-layer analysis. The solutions for a viscous drop, considered
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here, provide the basis for understanding and examining the transition process
where vorticity is produced by some combination of no-slip and boundary cur-
vature. In Fig. 12 we display numerical results from the present work for wp,
at fixed We = 0.5, ¢ = 0.91 and several different Reynolds numbers: 100, 150,
200 and 250. The upper solid line is w = Rel/? and it is apparent that as A
increases, wy, tends toward a Rel/? dependence. The lower solid line is a plot
of numerically calculated values of w,, as a function of Re, for a void of fixed
shape, taken from Dandy and Leal (1986). It is apparent for the void that w,,
asymptotes to a constant as Re — oo. The fact that convection of vorticity
downstream becomes increasingly efficient for increasing Re, while the rate of
production asymptotes to a constant value in this case, may explain the disap-
pearance of the recirculating wake for increasing Re (as shown by Dandy and
Leal). Similarly, for A = O(1) the magnitude of vorticity wy, for large Re in-
creases much more slowly with Re than for a solid, and thus may account for
the disappearance of the recirculating wake with increase of Re in these cases.
As a check on our numerical results at higher values of Re, we compare drag
coefficients calculated in this work against those of Rivkind and Ryskin (1976)
who present a correlation for calculating the drag on a viscous spherical drop,
as a function of Re and A:

o = 551 (& * m) + mon] g

We have computed solutions for We = 0.5 and ¢ = 0.91 and a range of Reynolds
numbers 0.5 < Re < 300 at three values of the viscosity ratio: 1.33, 2.5 and
4; some of these solutions are shown in Fig. 11, the rest are in the Appendix.
We chose We = 0.5 so the drops would be nearly spherical. We also computed
solutions for a solid spherical particle. The results of all of these numerical
calculations are compared with the correlation of Rivkind and Ryskin in Fig. 13.
The symbols correspond to our numerical results and the lines to the correlation.

At lower Reynolds numbers (< 1), numerical results are a great deal easier

to obtain, and the shapes and flowfields are simpler than at the higher Reynolds
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numbers. A comparison of a result for Re = 0.5, We = 0.5, ¢ =091 and A =4
with that of Taylor and Acrivos (1964) is shown in Fig. 14, where the solid line
indicates the result from this work and the dashed line is the result of Taylor
and Acrivos. The agreement between the two shapes is pretty good, especially
considering that the work by Taylor and Acrivos is an asymptotic analysis which
takes into account the first effects of inertia and non-sphericity. In other words,
it is implied that Re, We <« 1. The drag coefficients compare favorably, with
Taylor and Acrivos yielding Cp = 48.4, and the numerical results from this

work give Cp = 48.7.

IV. Conclusions

The problem solved here demonstrates the viability of a finite difference
technique in conjunction with the grid generation technique of Ryskin and Leal
(1983) for the solution of two-fluid free-boundary problems. In the past 15 years
a tremendous amount of work has been put into different methods of generating
both orthogonal and nonorthogonal coordinate grids (for a review of this work,
see Eiseman 1985; Thompson et al 1986), so that there is now a very versatile
collection of grid generation techniques available, and no fundamental difficulty
in applying finite difference techniques to complicated (and unknown) domains.
As far as we know, however, very little prior work has been done using esther
finite difference or finite element techniques on a two-fluid free surface boundary
problem at finite Reynolds number. In effect, our numerical technique enables
us to perform experiments that would be difficult to carry out in the laboratory:
for example, we have the ability to independently vary the four dimensionless
parameters that are present in this problem.

Although the detached recirculating wake structure is not new in the fluid
mechanics literature, it is nevertheless quite novel and its appearance is impossi-
ble to understand on the basis of concepts of separation from boundary-layer the-

ory. Indeed, as we have demonstrated, the existence of closed streamline wakes
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behind bubbles and drops is strictly a finite Reynolds number phenomenon. For
a fixed Reynolds number and Weber number, the drop shape became slightly
more distorted with decreasing density ratio or viscosity ratio. If a recirculating
wake was present, it grew in size when A was increased, and moved closer to the
rear of the drop due to the slowing of the interior flow. The range of shapes
that were observed in this work for 0.5 < Re <300 and 0.5 <We <15 were all
in agreement with the predictions of the graphical correlation in Clift et al and

with experimental observation.
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Table I. Drag coefficients in present work




_37_

Re We A 'Y Cp
60 | 2 0.5 0.91 0.890
10 1.30
1 0.1 0.998
0.5 0.01 0.001 | 0.589
4 1 2 1.15
1.33 0.91 1.22
6 10 1.51
80 | 0.5 4 1.08
100 | 1 2 0.856
4 1 0.919
2 0.990
4 1.10
10 1.21
50 1.28
100 1.29
500 1.29
1000 1.30
oo 1.31
200 100 1.29
200 500 1.29
200 2000 1.31
2 0.5 1.02
4 0.85 1.11
8 2 1.18
16 4 1.24
32 8 1.27
50 20 1.28
1 0.002 | 0.854
0.01 0.856
0.02 0.859
0.1 0.867
0.2 0.875
0.25 0.880
0.5 0.889
2 0.911
0.5 4 091 0.958
2 1.00
4 1.098
6 1.214
8 1.298

Table I (continued)
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Re | We | A 4 Cp
100 | 05 | 4 | 091 | 0.958
2 1.00
4 1.098
6 1.214
8 1.298
150 | 1 0.78
200 0.68
250 0.61
275 0.58
300 0.56
350 0.51

Table I (continued)
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Re Cp
Harper and Moore | Present Work

100 - 0.4854 0.912
150 0.3142 0.726
200 0.5192 0.633
250 0.5692 0.570
300 0.5686 0.565
350 0.5502 0.554
400 0.5256 -

Table II. Comparison between analytical results of Harper
and Moore (1968) and Present work, for A=2.5 and =091.

The formula for Cp in Harper and Moore is

Cp

2 '
48 {1 3 logRe)\b(l~|~V)c,1

= Re w T Rz~ ve

- (e () el )

where
V =u/i =04
v/ = (¢A)™Y? = 0.66332

2V + 3
Ay = T = — 0.878278
b= v+ 3

C, =~ 0.120775
Cy =~ 7.099424

C;3 ~ —8.745213
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Figure captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Schematic sketch of the problem.

(a) Shape of drop as a function of We for Re = 2, ¢ = 0.909, and
A = 4. (b) The corresponding flowfields; || > 1073,

Vorticity lines and streamlines for several values of We for Re = 10, ¢ =
0.909, and A = 4; |¢| > 1072 and |w| > 1072,

Streamfunction || > 102 and vorticity |w| > 1072 plots showing
detail of rear of (a) void with Re = 20, (b) void with Re = 90, (c) void
with Re = 180 and (d) solid with Re = 100.

Streamfunction |¢| > 1072 and vorticity |w| > 10~% plots for A = 4
and ¢ = 0.91 as a function of We for (a) Re = 60 and (b) Re = 100.

(a) Schematic of the flowfield (with arrows indicating the direction
of flow) for the case of a detached wake behind a liquid drop. (b)
Schematic for the flowfield for a gas bubble. (c¢) Hypothetical flowfield
for liquid drop with attached wake. (d) Schematic of the flowfield for
liquid drop with attached wake and secondary interior recirculating

vortex.

Streamfunction || > 1072 and vorticity |w| > 10~2 plots for Re = 100,
We = 4 and ¢ = 0.91 as a function of A. For the last plot, A = 1000,
the inner streamfunction and vorticity values are |[¢| > 10~5 and |&| >
104

Streamfunction [¢/| > 1072 and vorticity |w| > 10~2 plots for Re = 100
and We = 4 as a function of ¢/A = 0.25.

Streamfunction || > 10~2 and vorticity |w| > 102 plots for Re = 100,

We =4 and A =1 as a function of ¢.

Comparison of selected numerical results with experimental observa-

tions of Thorsen et al (1968): (A) We = 1, A = 2.5, ¢ = 0.91, Re =



Figure 11:

Figure 12:

Figure 13:

Figure 14:
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100, 150, 200, 250, 300, 350; (B) Re = 100, We =1, A = 2, ¢ = 0.5; (C)
Re = 100, We = 0.5, A = 1, ¢ = 0.02; (D) Re = 60, We = 0.5, A = 4,
¢ = 0.91; (E) Re = 60, We = 1, A = 0.01, ¢ = 0.001; (F) Re = 80,
We=0.5,1=4,¢=09l. |
The flowfield as a function of Re for We = 100, ¢ = 0.909, and A = 2.5.

Plot of maximum surface vorticity w,, versus Re for several values of
the viscosity ratio. The upper solid line is w = Re!/? and the lower

line is calculated values of w,, for a void of fixed shape.

Comparison of Cp between numerical results of current work and cor-

relation of Rivkind and Ryskin (1976).

Comparison between numerical results of this work and asymptotic
analysis of Taylor and Acrivos (1964) for Re = 0.5, We = 0.5, ¢ =
0.909, and X = 4. ‘
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Re = 60 A =4
We = 2 £

Figure %a (continued)
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Figure 5a (continued)
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We = 8 E = 091
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Figure 5b (continued)
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Figure 5b (continued)
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Figure 7
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Figure 7 (continued)
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Appendix: Additional figures
The following figures are results that, although inherently interesting, are
similar in qualitative nature to results presented in the main body of this Chap-

ter. The figures are loosely arranged by Reynolds number.
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Chapter II

A Note on Boundary-Layer Separation
From a Smooth Slip Surface

The text of Chapter II consists of an article which
appears in Physics of Fluids 29 (1986).
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Abstract

Numerical results are presented for the streaming motion of an incompress-
ible Newtonian fluid past axisymmetric ellipsoids of fixed shape, subject to the
condition of zero tangential stress on the body surface. It is demonstrated that
a substantial, closed-streamline wake appears behind the ellipsoid at moderate
Reynolds numbers, O(20 — 50), when the ellipsoid is sufficiently nonspherical,
and that this wake initially increases in size with increase of Reynolds number,
but then eventually decreases in size and disappears when the Reynolds number
is sufficiently large, O(200 — 250) in our cases. The existence of streaming flow
past a smooth, slip surface without separation is consistent with predictions
from laminar boundary layer theory. It is concluded that the recirculating wake
that appears behind moderately deformed bubbles is strictly a finite Reynolds
number phenomenon that cannot be predicted (or understood) via a boundary

layer analysis.
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1. Introduction

In the fluid mechanics literature, there are two quite distinct explanations
for the existence of recirculating wakes behind nonstreamlined bodies at large

Reynolds numbers, Re.

In the first explanation, the wake is viewed as being a consequence of vortic-
ity accumulation at the rear of the body due to the asymmetry of vorticity trans-
port, and its relative inefficiency in this region, at moderate to large Reynolds
numbers. Boundary layer separation is then seen as a necessary consequence of
the existence of the recirculating eddy. This view is intuitive if we study the
time-dependent evolution of the wake structure when a nonstreaxﬁlined body,
such as »a, sphere or circular cylinder, is impulsively started into motion from an

initial state in which both the fluid and body are at rest!.

In the second explanation, it is the breakdown and detachment of the
boundary layer which is viewed as the primary event, and the presence of a
recirculating wake is then accepted as being a consequence of this detachment.
In this description, the presence of a no-slip condition at the boundary plays a
critical role, providing a mechanism along with viscosity for decreasing the mo-
mentum of a fluid element near the boundary (relative to what it would have in
the absence of viscosity) so that its tangential motion can be completely arrested
(and thus the boundary layer become detached) when it encounters a region of
increasing pressure. Although this second explanation for the existence of the
recirculating wake is based upon boundary layer theory, and thus strictly applies
only in the asymptotic limit of infinite Reynolds number, its relevance to real
flows at finite Reynolds number would seem to be strongly supported by the
fact that boundary layer theory yields predictions for separation?, including the
position of the separation point, which are in good qualitative agreement with
experimental observation for solid bodies such as a sphere or circular cylinder, in
spite of the fact that the observations are inevitably made at finite (and usually

even quite moderate, O(10 — 100)), values of the Reynolds number.



- 139 -

This apparently straightforward connection between experimental observa-
tions at finite Re, and predictions from boundary layer theory (Re — o0)
appears somewhat less obvious, hov;lever, when we consider experimental and
theoretical results for single gas bubbles rising through a quiescent fluid. Numer-
ous experimental studies of this problem have shown that a stable recirculating
wake exists, provided that Re is sufficiently large (but finite) and the surface
tension ~ is small enough to allow significant deformation3—%. However, we have
already noted that the breakdown and detachment of a boundary layer is crit-
ically dependent upon the presence of a no-slip boundary at the body surface.
Indeed, a theoretical boundary layer analysis of Moore®—2 for motion of either
a spherical or an oblate spheroidal bubble in the asymptotic limit Re — oo,
shows that there is no flow detachment in these cases except possibly at the
rear stagnation point on the bubble surface. Further, Moore’s analysis can be
extended to a bubble of arbitrary but smooth shape with the same result. As
a consequence, there has been some reluctance to accept the experimental ob-
servations for bubbles as evidence that separation can occur at a smooth slip
boundary. Instead, it was suggested that the interface could have been con-
taminated with surfactant, so that at least a partial transition toward no-slip

conditions was effected.

Recently, however, Ryskin & Leal® carried out a detailed numerical study
of bubble motion at intermediate Reynolds numbers and Weber numbers, We.
Their study included a determination of the bubble shape, using the full Navier-
Stokes equations and the boundary condition of zero tangential stress that
applies if the bubble surface is uncontaminated. Ryskin & Leal’s® solutions
again showed the existence of attached recirculating wakes for steady, axisym-
metric bubbles when Re <10 and 2<We < 20. Furthermore, comparision of
the numerical solution for Re = 20, We = 15 with a shadowgraph picture
for Re = 19.4, We = 15.3 (see Ref. 5) showed nearly perfect quantitative

agreement for the geometry of the bubble and the recirculating wake, as well as
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excellent qualitative agreement between the calculated streamline pattern in the
wake and the lines of constant refractive index visible in Hnat & Buckmaster’s

photograph?.

Thus, it must now be accepted that both numerical and experimental stud-
ies show unequivocable evidence for the existence of recirculating wakes behind
clean, uncontaminated bubbles at finite Re. In view of the fact that bound-
ary layer theory predicts no separation for bubbles of any smooth shape (finite
curvature), we can only conclude that the presence of a recirculating wake in
the case of a bubble is a finite Reynolds number phenomenon for which bound-
ary layer theory provides no insight. Furthermore, the mechanism for existence
of the wake must be vorticity accumulation since spontaneous breakdown of
a boundary layer, leading to detachment and thus a wake, cannot occur at a

smooth, slip surface.

There is, of course, nothing paradoxical about this view — one would not
generally expect an asymptotic theory for Re — oo to provide insight into
flow behavior at moderate Reynolds numbers of O(10 — 200). The lack of qual-
itative agreement between boundary layer predictions and actual flow behavior
in the present context, however, is still somewhat of a surprise because of the
apparently excellent agreement between boundary layer predictions and sepa-
ration phenomena in similar flows past no-slip bodies at comparable Reynolds

numbers.

In particular, it is evident that the existence of a recirculating wake for a
bubble at finite Reynolds number has nothing to do with the physics of true
boundary layer separation, but is instead a consequence of vorticity accumula-

tion in the wake region.

Of course, it remains to be established that the flow past a bubble does
become consistent with the boundary layer prediction of no separation when Re
becomes sufficiently large. This was not possible in the work of Ryskin & Leal®

because of the fact that the bubble shape, and thus the local curvature of the
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bubble, continued to change up to the maximum Reynolds numbers that could
be achieved. Therefore, the rate of vorticity production at the surface (due
to curvature) increased right along with the ability of the flow to convect the

vorticity away, with the result that no asymptotic behavior could be observed.

In the present paper, we explore further the structure of the recirculating
wake behind axisymmetric bodies on which a zero tangential shear stress con-
dition is imposed as a boundary condition. We consider solutions of the full
Navier-Stokes equations as a function of Re for axisymmetric oblate ellipsoids
of fixed shape. By doing this, the Reynolds number dependence of the vorticity
transport mechanism is effectively decoupled from the dependence of the surface
curvature and surface vorticity on the same parameter. In this case we show that
the finite sized recirculating wake which exists behind a “slip” body of sufficient
curvature at finite Re, will actually decrease in size and even disappear for larger
values of Reynolds number when the boundary shape is fixed, thus giving evi-
dence of approach to an asymptotic state that is consistent with boundary layer
theory for Re — oo. We choose oblate spheroids with a sufficient ratio of the
major to minor axes to insure that a finite recirculating wake does appear, but
not so large that some evidence of an approach to the Re — 0o asymptote can-
not be achieved in the range of Reynolds numbers (say, Re < 300) that is readily
accessible to numerical computation. We demonstrate that a finite recirculating
wake can appear behind a slip body of fixed shape at large, but finite Re, which
has nothing to do with boundary layer separation in the usual sense. By doing
this, we also lend further credence to the concept of vorticity accumulation as
a mechanism for the existence of recirculating wakes at finite Re. We do not
suggest that a real bubble will necessarily follow a similar trend in which the
recirculating wake eventually diminshes in size and vanishes for sufficiently high
Reynolds numbers. We believe that this would be the case if the bubble ap-
proached a fixed, asymptotic shape with finite curvature as Re — oo, because

the maximum vorticity at its surface would then approach a finite fixed value
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in the same limit. However, we cannot rule out the possibility that the surface
curvature of a bubble would continue to increase for arbitrarily large Re in such
a way that sufficient boundary vorticity is generated to maintain a finite wake

even in the limit Re — oo.
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II. Flow past a slip body at intermediate Reynolds number

We thus consider the streaming motion of a viscous incompressible, Newto-
nian fluid past an axisymmetric body whose shape is fixed, but on whose surface
the condition of zero tangential shear stress is imposed. The fluid surrounding
the body is characterized by the constant viscosity x4 and density p. For our pur-
poses the body must be smooth, but with enough curvature that a recirculating
wake is achieved at moderate Re. For simplicity, an oblate ellipsoid has been
chosen with major and minor axes 2b and 2a, respectively (it has been observed
both numerically® and experimentally!© that a real gas bubble will be roughly
ellipsoidal if Re = O(10 — 100) and Eo = O(1 — 10), where Eo = pgb%/~v , v
being the surface tension). The geometry of the system is shown in Fig. 1.
The dependence of the wake structure on Re will be examined for fixed axis
ratio ¢ = b/a.

To nondimensionalize the equations of motion, we use b as the characteristic
length, Uy, as the velocity scale, and %pUgo as the appropriate pressure scale.
The Reynolds number is then defined as Re = 2pbUy,/u. With the body shape
specified, the method developed by Ryskin & Leal!! was used to numerically
generate an orthogonal boundary-fitted coordinate system (£,7n). The reasons
for using this numerically generated coordinate system will be discussed shortly.
In this curvilinear coordinate system, the nondimensional equations of motion

written in terms of the streamfunction ¥, and vorticity w, are

(o) - L Be [ue @ (w) uy 8 (w)]
£l 2hehn{heaf(o>+hnan(a)]‘ W

and

L% +w=0, (2)

where
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Here, the velocity components are

ve = L 9%

¢ oh, On (4)
. — L 9%

e O'he 85

while the scale factors of the coordinate system are

- i 9z 2 N (_92 272
£7 |\ a¢ EY:
] o1 (5)
h B _6-3)2 . (?ﬁ 212
T an an
and the ratio of scale factors is denoted as
h
f= -h_n&— (6)

There are two difficulties which arise in attempting to solve a flow prob-
lem such as this in an unbounded domain. The first is that it is not possible
to numerically produce coordinate transformation functions z(¢,7) and o(¢,7)
which reach infinite values. The second is that at large distances from the body
the velocity asymptotically approaches the streaming flow form 3 ~ %02. To
remove this singularity in the streamfunction we define a modified streamfunc-
tion by subtracting off a function which has the same asymptotic behavior at
large distances and satisfies homogenous conditions at the other three bound-
aries. The modified streamfunction is ¢* = ¢ — 10%(1 — ¢%). The subtracted
term is the potential flow solution for a spherical bubble, but it has no simple
physical meaning for an ellipse. From the Oseen solution!? we know that ¢* is
bounded at infinity, and because this point is a singular point of the differential
equation, boundedness is a sufficient condition for solution?!3.

To reduce the infinite physical domain to a finite computational region
we used the following procedure: a conformal mapping was used to transform

the infinite (z,0) domain to an auxiliary finite domain (2*,0*), followed by a
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numerically generated orthogonal mapping from the auxiliary domain to a unit
square in the (£, 7) domain. The conformal mapping we employed was z+17 ¢ =
(2*—¢ 0*)71; the point 2* = 0* = 0 corresponds to infinity in the z, o-plane. The
alternative of course, is to simply truncate the (z,0) domain at some distance
from the body. However, Grosch & Orszag!* compared solutions obtained using
coordinate inversion to those obtained via domain truncation for a variety of
unbounded domain problems, including Burger’s equation, and concluded that
mapping is often better. In particular, it will yield more accurate solutions than
those obtained with truncation, provided that the solution being sought vanishes
rapidly or approaches constant values at infinity. In addition, they found that
if a mapping is used, an algebraic mapping of the infinite region onto a finite

domain works better than a logarithmic map.

Once the physical domain has been mapped onto the (z*,0*) auxiliary do-
main, the resulting body is prolate spheroidal, with the origin corresponding to
infinity in the physical domain. It is unfortunately impossible to use a prolate
spheroidal coordinate system due to the fact that the origin in our domain is a
point, while it is a line segment lying on the z*-axis in prolate spheroidal coor-
dinates. Thus, as indicated earlier, we use a numerically generated, orthogonal
and boundary-fitted coordinate grid. One advantage of this approach is that it is
very easy to control the grid densities at different points in the domain through
proper choice of the distortion function f. In general, there is also the advantage
that one is not restricted to a body shape that corresponds to a coordinate line

of some analytical coordinate system.

The problem of determining the correct numerical boundary condition for
the streamfunction at infinity is usually a serious one. Physically, we know
what its asymptotic form should be but experience (e.g., see Ref. 15) has shown
that the numerical implementation of any condition on a truncated domain re-
quires a lot of experimentation. However, the coordinate transformation is just

a different analytical representation of the infinite domain, and in this case we
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generally replace the condition at infinity by a boundedness condition on %*
at £ = 0. Due to the differencing scheme we used, along with the use of the
conformal mapping and a uniform (¢, 7n) grid, the value of the coefficient mul-
tiplying 4*(0,7) in the difference equations approximating Eq. (2) is on the
order of the square of the mesh size, or 10™*. For a spherical shape the co-
efficient is identically zero. Therefore, as long as ¥*(0,n) is finite, it does not
contribute to the solution of 1/*(¢,7). Computationally, ¥*(0,7) need only be
an O(1) constant, and for simplicity we chose zero. To verify that the value
of ¥*(0,7n) did not affect the solutions, we made two special runs for an ellip-
tical shape (¢ = 1.48), one at Re = 50 and one at Re = 200, with the infinity
boundary condition ¥%*(0,7) = 5. Although the value of ¢*(0,7) does not ap-
preciably affect Eq. (2), we know that *(0,7) does enter the finite difference
representation of Eq. (1) through the velocity u,, so it is important to make
sure that the steady state values of ¥*(¢,7) and w(¢,n) are independent of the
choice of ¢*(0,n). For both cases 1* was unchanged (to within the order of
the method) from the results obtained with the original boundary condition,
and the most that w varied was less than -;-%, and this occurred in the region
far downstream of the body. Also, as pointed 6ut by Fornberg!®, any errors
in the vorticity far downstream of the body decrease exponentially in the up-
wind direction. That is, an O(1) error in the downstream vorticity boundary
condition should not propagate upstream towards the body. Indeed, we found
that in imposing the condition w(0,7) = 0, the values of vorticity in the region
far downstream of the body were always less than 3% of the maximum surface

vorticity.

To solve the equations of motion subject to the above boundary conditions,
a ficticious time dependence was imbedded into the equations and the implicit
alternating-direction method of Peacemann & Rachford!® used. This method is
stable, it converges rather quickly, and it works well when boundary conditions

are not known explicitly. The partial derivatives in the equations were approxi-
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mated by second order accurate, centered finite differences. Since the goal was
to find steady state solutions to Egs. (1) and (2), each time step was treated as
an iteration and thus the two equations were separated and solved successively
at each iteration. The grid size used was 61x61; the reason for this choice will
be discussed in §4.

All calculations were done on a FPS-164 array processor with the code com-
piled at optimization level 2. Each solution took approximately 10-15 minutes

CPU, depending on the Reynolds number.
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III. Numerical results and discussion

The axis ratio ¢ was chosen so that the body would have enough curvature
to produce a wake at least O(a) in size, but not so much curvature that the upper
bound on Re would be reached before conclusive evidence of existence or non-
existence of a wake for Re — oo could be observed. By trial and error, it was
found that the above requirements were met for ¢ in the range 1.55 = ¢ < 1.75.
The flow results showed that for a fixed ¢, a recirculating wake appeared at
some critical Re ; as Re was increased the wake size increased until it reached a
maximum. As the Reynolds number was further increased, the wake shrank until
it eventually disappeared. Figure 2 shows the streamlines for the case ¢ = 1.65.
Of particular note is the actual disappearance of the wake occured at Re =
240, that is, at a Reynolds number high enough so that boundary layer theory
might be expected to be applicable. We then see that recirculating wakes exist
on bodies with slip boundary conditions at finite Re provided the boundary
curvature is, at least locally, sufficiently high to produce enough vorticity, even
though boundary layer theory predicts no separation. However, the numerical
solutions become qualitatively consistent with boundary layer theory when Re
is increased further. This trend was observed for all the values of ¢ chosen,
except the first case ¢ = 1.84 for which the numerical upper bound on Re was
reached before the wake disappeared. Figure 3a shows the dimensionless wake
length o = £/b as a function of Re for various values of ¢, and Fig. 3b shows
the dimensionless wake height # = w/b. Here, we have defined the wake length
¢ as the distance that the recirculating region extends behind the body. The
length of the actual wake is infinite, but its width tends to zero as the Reynolds
number goes to infinity Not surprisingly, the higher the curvature, the larger

the size of the wake at any fixed Re.

In Fig. 4, the maximum surface vorticity w,, is plotted as a function of Re
for various values of ¢ ranging from 1.60 to 2.05; we did several runs at higher

values of ¢ for the sole purpose of observing the point of initial separation.
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The quantity w,, at first increases with Re, but then approaches a constant
asymptotic limit for Re > 1. What is important is that the square marker
on each curve corresponds to the value of Re for which flow detachment first
occurs. The corresponding value of w,, is approximately 5.25, independent of
the value of ¢ ; therefore, flow detachment occurs when the maximum surface
vorticity reaches the critical value of w. ~ 5.25. While this critical value is
certainly valid only for the geometry used here, the important fact remains
that flow separation occurs when the vorticity produced at the body surface
reaches a critical value. At this point, vorticity is presumably generated at
the body surface faster than it can be convected away, and the flow near the
boundary detaches as a consequence of the accumulation of vorticity (i.e., the
existence of a recirculating flow region) behind the body. However, since the
geometry is fixed, w,, becomes independent of Re for Re > 1, and the increased
efficiency of vorticity convection eventually overcomes the tendency for vorticity
to accumulate in the wake region and the wake disappears as Re — co.

The wake behind the body at finite Reynolds number is then viewed as the
result of the inability of convection to transport vorticity away from the body.
It is possible that this mechanism is also operative in recirculating wakes behind
no-slip bodies at finite Re. In this case, the apparent correspondence between
boundary layer theory (Re — oo) and real flows at finite Re would have to
be viewed essentially as an accident. We do not suggest that this is necessarily
true. We do believe that one should exercise some caution in interpreting the
existence of recirculating wakes at finite Reynolds number as a manifestation of

separation as described by boundary layer theories for infinite Reynolds number.
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IV. Numerical accuracy

The results and conclusions presented above rely on the accuracy of the
numerical calculations. In the following section we examine the accuracy of our

numerical scheme,

It is well known that central differencing may lead to unphysical oscillatory

behavior in regions where convection strongly dominates diffusion!”.

Specif-
ically, this problem arises in implicit methods when the Reynolds number is
on the order of several hundred. Due to these numerical instabilities, we were
not able to obtain solutions on any grid for flows where Re > 340. For the
case ¢ = 1.84 we actually calculated solutions for the range 10 < Re < 310 on
three different grid densities: 41x41, 61x61, and 81x81 nodes. With Re < 240
the values for Cp on the three grids agreed to within less than 2%. However,
we were not able to obtain reliable solutions on the 41x41 grid for Re > 250
in spite of the fact that the machine would compute results all the way up to
Re = 340. Specifically, we found that the drag coefficient Cp increased when Re
went from 250 to 260 but then continued to decrease until the calculations failed
at Re = 310. In addition, the wake size at Re = 270 was larger than the wake
size at Re = 260, although the wake size had been decreasing up to that point
and continued to decrease after it. The increase in the wake length at Re = 270
was on the order of the mesh size at that distance from the body. We feel that
these errors are due to the inability of the 41x41 coordinate grid to accurately
resolve the downstream end of the recirculation bubble. Support for this asser-
tion comes from an examination of the streamfunction just below the critical
Reynolds number, which shows that the end of the wake is severely distorted.
In contrast, however, we found that the 61x61 grid and the 81x81 grid both gave
consistent results until Re ~ 310: the drag coefficient differed between the two
grids by less than 1%, and the wake size differed by the order of the mesh size
(that is, roughly 5%). Thus, as a compromise between cost and accuracy we

chose to use the 61x61 grid for the rest of the calculations.
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TABLE I. Drag Coefficients Calculated by Moore”:® and Present Work.

¢ 1 1.16 1.33 1.48 1.60 1.65

Re 300 150 180 180 200 240
Moore 0.140 0.355 0.327 0.356 0.343 0.293

Present Work 0.143 0.345 0.334 0.362 0.351 0.298

A number of other tests were done to determine the accuracy of the numeri-
cal results. First, we compared the drag coefficients we obtained from the present
calculations with those of Moore”'® for a spherical shape and for ellipses with
axis ratios ¢ = 1.16,1.33,1.48,1.60, and 1.65. We used results for each shape
at Reynolds numbers that were high enough for the wake to have disappeared.
The drag coefficient, Cp was calculated from our solutions by integrating the
stress over the surface of the body. For the sphere, at a Reynolds number of 300
Moore found Cp = 0.140, while we obtained a value of 0.143. The difference
is 2.1%. Comparing the drag coefficients in the range 200 < Re < 300 we found
that the percent difference decreased as Re increased. The results for the range
of axis ratios are summarized in Table I. The difference between the drag coef-
ficients of Moore and those we calculate are all less than 5%. This agreement
is good considering that the Reynolds numbers used are below values for which
Moore’s asymptotic theory strictly applies. We also obtained a solution for the
spherical shape with Re = 10™2; the resulting drag coefficient was 16370, com-
pared to Stoke’s result Cp = 16/ Re = 16000. Once again the agreement is good
because the discrepancy with Stoke’s solution in ¥* in the outer regions is O(r),
where r = (224 0%) 3. To perform an internal self-consistency check on our drag
coefficients, we compared the drag calculated via surface integrals of pressure
and stress with the drag found by computing the total rate of viscous dissipation
using the Bobyleff-Forsythe formula!3. Toyﬁnd the rate of viscous dissipation,
one must integrate the square of the vorticity over the entire solution domain.

For all the axis ratios considered, if Re < 90 the two calculations differed by
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less than 1%, and for 100 < Re < 250 the difference was between 1 and 5%.
The agreement between the two computations is good considering that when
we integrate over the domain we amplify any errors that occur in the far-field

vorticity.

TABLE II. Drag Coefficients Calculated From Ref. 10 and Present Work.

Re 20 40 73.6 120 . 150 180
Ref. 10 2.735 1.788 1.274 0.992 0.889 0.815

Present Work 2.738 1.781 1.266 0.984 0.880 0.822

TABLE III. Separation Angle Measured From Front Stagnation Point.

Re 40 73.6 120 150 180
Ref. 10 144.4 131.7 123.7 120.4 » 117.8
Present Work 144. 132. 124. 120.5 118.

TABLE IV. Dimensionless Wake Length.

Re 40 73.6 120 150 180
Ref. 10 0.32 0.71 1.1 1.3 1.4
Present Work 0.31 0.71 1.07 1.35 1.45

As a final check on the accuracy of the numerical scheme, and particularly
as a check on the accuracy of our calculated wake lengths and widths, we used
our method to examine streaming flow past a solid sphere, and then compared
the results with those presented in Ref. 10, Chap. 5. This reference details the
work done by many researchers on flow past solid spheres, with results presented
in both graphical and correlation form. From our numerical solutions, we com-

puted Cp, and measured separation angle and wake length, and compared these
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with the results in Ref. 10 (Table 5.2, Eq. 5-10, and Fig. 5.7, respectively).
Tables II, III, and IV show that in all cases the agreement is excellent. Figures
5a and 5b dramatically illustrate the agreement between our results for wake
geometry and the experimental observations of Tanedal®. We discontinued the
runs above Re = 200 due to cost, but the wake continued to grow monotonically
up to this point, reaching a length roughly twice the diameter of the sphere, so
we are confident that the scheme accurately models the wake. Had the shrinking
of the wake in the slip-surface case been an artifact of the numerics, we should

have encountered the same qualitative behavior here.
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V. Conclusions

" In this study we have demonstrated that a recirculating wake can exist
behind a smooth slip body of fixed shape at moderate Reynolds numbers, say
O(100), in direct disagreement with the predictions of boundary layer theory.
Although the wake initially increases in size with increase in Re, the wake even-
tually begins to decrease in size with further increase in Re, until the wake
finally disappears when the Reynolds number becomes large enough. Thus,
when Re = O(200 — 300), the results of our numerical calculations agree with
the solutions from boundary layer theory: there is no wake behind the body.
We conclude that the mechanism responsible for the presence of a recirculating
wake behind a slip body at modest Re is not the same one present in boundary
layer detachment, but rather is vorticity accumulation behind the body.

The closed streamline wakes behind slip bodies are qualitatively similar in
structure to those observed behind no-slip bodies at modest Reynolds numbers.
An obvious question then is, whether the recirculating wakes behind no-slip
bodies at moderate Reynolds numbers are truly a consequence of boundary layer
separation as we always assume, or actually reflect the vorticity accumulation

mechanism that is observed for a bubble.
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Appendix: Boundary layer theory for slip surfaces

In this section we will examine high Reynolds number streaming flow past
both smooth slip surfaces and slip surfaces whose curvature is not necessarily
small. The reason for looking at both of these cases is to determine criteria
for the existence or non-existence of steady recirculating wakes behind bubbles.
We will prove that for smooth surfaces, that is, surfaces where the curvature is
everywhere finite, that in the asymptotic limit Re — oo boundary layer theory
predicts no separation when a shear-free boundary condition is imposed at the
surface. We will also show that when the curvature of the body is not finite,
that boundary layer theory simply breaks down at the point of high curvature,

and that separation is likely to occur at this point.

I. Arbitrary smooth surfaces

To attack this problem, the solution will be assumed to have the form
of .a singular perturbation expansion. We will examine which conditions are
necessary for separation to occur, and then show that the conditions can never
be met.

First, assume that there exists a body of revolution, as shown in Fig. Al.
The contour of the body is specified by the radius r(z), where z is the length mea-
sured along the body fr-om the front stagnation point. Provided that |r”(z)|? =
O(1) (that is, the body is “smooth”), the boundary layer equations take the

nondimensional form?20:21;
du du du, d%*u
“5 T Var T %L T ave (41a)
J Jd
‘é-;(?'u) + 5'}-;(7"/) =0 (A1b)

where u and V are the velocities parallel and normal to the boundary, and u.(z)
is the tangential component of the potential flow solution evaluated at the body

surface. The boundary conditions for this problem are

u =0 atz=0 (A2a)



Tyz = 0, V=20 at Y =0 (A2b)
U — U as ¥ — oo . (A2¢)

It is well known that in the boundary layer on a pure-slip surface the veloc-
ity, to leading order, is the same order of magnitude as the free stream velocity;
that is, the velocity changes by O(Re™%) across the boundary layer?2. Thus,
in the boundary layer, the velocity is just the potential flow velocity plus a cor-
rection of o(Re'%), denoted by 4. Now assume that % can be expressed as an

asymptotic expansion of the form
i(z,Y) = Y i(Re)ui(z,Y) (A3)
=1

where the {¢;} form an asymptotic sequence and the u; are O(1); one would |
expect from the above arguments that ¢; = Re—%. If the potential flow solution
is denoted by U(z,y), then v = U+, and from Egs. (A1) the O(Re“%) problem
becomes

o du 82
(ueur) — Yg(a) ook = =22

oz Y ~ 9Y? (44)
where
1d
o) = T (uer).
The boundary condtions corresponding to Eq. (A4) are
8u1
W = (2:) atY =0 (A5CL)
uy — 0 asY — (A5b)
u; =0 atz=0 (A5¢)

The function f(z) is the non-vanishing tangential stress calculated from the
potential flow solution, and is O(1).

In order for the assumed form for Eq. (A3) to be correct, there must exist
a solution of Eq. (A4) in o&f [0,1] X [0,00), the solution must be bounded

everywhere in {2, and also be unique.
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a. existence

In the domain , (0 1] X [0,00), Eq. (A4) can be rewritten in the form

0%y du du
()8Y2+Yb( )E?—C(:c)u——a—; =0 (A6)
where
alz) = —
T ue(z)
d
b(z) zi—:gln(ue r)
and
d
c(z) = -J—x-lnue.

It’s obvious that Eq. (A6) is parabolic everywhere in .. For all physically
realistic situations, the coefficients a, b, and ¢ will be continuous functions of z
in Q.. For example, for a sphere, a(z) = cscz, b(z) = 2cotz, and ¢(z) = cot z.
Further, the initial condition is simply u;(0,Y) = 0, and since v — O as

Y — o0, we are guaranteed the existence of a solution in 02 22,

b. boundedness

First multiply each term in Eq. (A4) by u; and integrate over the domain
of Y:

o0 2 0
Ye -‘?-”—l-dY+£’3[ wdy
0

2 Jo Oz dz (A7)
1190 *© Buf © 8211,1
- -2-;-5;( e )/O Y—é"Y_-dY /O Uy ayz dY
But
ou? e e e
f Y——l—dY = ulY --/ uwidy = -/ uidY (A8)
0 0 0
an 7
e 82u1 6u1 *° e 6u1 2
dY = 2 = -
/o Mgy Y = Mgy /0 (ay> ¥
(49)

— ui(2,0) f(z) — /Ooo@-‘li})zdy
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If the relations in Eqgs. (A8) and (A9) are substituted into Eq. (A7), one obtains

Ue oui due/ u? 11.0 /°° g
/ av + G [Tty ) [ uday
= u(z,0) £(2) -/ (9—“’—1) 4y

. \av

Rearrangement of Eq. (A10) yields

d 3 2 2/ duy * 2
= All
[ru / uy dY} + 2ru; EYs ay rugg ( )

where g(z) = u;(z,0) f(z). Integration of Eq. (A11) in z from 0 to z gives

2
ru§/ w?(z,Y)dY + z/ / 6“1(,\ Y)] dY dx
0

- / r(N) u2(X) g(A) dA

(A10)

(A12)

Now, because of the orientation of the coordinate system, u.(z) > 0, and also
r(z) > 0 due to the fact that r is a cylindrical coordinate. Thus, both integrals
on the left hand side of Eq. (A12) are positive for any z > 0, and therefore
must be bounded if the integral on the right hand side of Eq. (A12) is positive
and bounded. Boundedness of the integrals on the left hand side necissitate the
boundedness of u;(z,Y) and its derivative with respect to Y.

It now remains to be shown that
A
f () u2() g(\) dA < M (413)
0

where M is a finite, positive quantity, M € R'. We know that r(z) and u?(z)
are both positive and bounded, so it is only necessary to show that g(z) =

u1(z,0) f(z) is positive and bounded. From Eq. (A3), we have

u(z,0) = U(z,0) + Re~%u(z,0), (A14)

def (

where U (z,Y) = U(z,y), and also, because of the orientation of the coordinates

u(z,y), U(:c,Y) > 0. In addition, the velocity in the boundary layer will be
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less than in the free stream, so u(z,Y) < U(z,Y). Thus, from Eq. (A14),
u1(z,0) < 0. The tangential stress residual f (z) is known from the potential
flow solution and is less than or equal to zero. Therefore, g(z) > 0 and as a
result M > 0.

We also know that U(z,Y) = O(1), so f(z) = §%(z,0) = O(1). All that
is left to proof then is that u(z,0) is bounded; if this is so then M is bounded.
The proof is formulated as follows: at each z, we assume that in the region

Y € (0,6), 0 <6 < oo that u, is defined, and further that u; € C*[(0,6)].

Because the residual of the shear stress is bounded at y = 0, we know that

6u1

yoo+ 3y (415)

where m is a known bounded function. Since %1‘1—}- is bounded at Y = 0, it is not
unreasonable that it also be continuous in the range (0,6) — however small —

then the mean value theorem can be applied:

ous

Sk (2,6)

lui(z,v1) — vi(z,92)| = lvi — v2 (A1e)

Further, the Lipschitz condition will also be satisfied:

lui(z,y1) — vi(z,v2)| < K |y1 — y2| (A17)

The conditions must hold for all y;, y, € (0,6). Then, take the interval (0, ) and
the sequence {y,} such that 0 < y; < §, and construct the sequence {u;(z,y,)}.
Because u; satisfies Egs. (A16) and (A17), the sequence {u1(z,y,)} is a Cauchy
sequence which converges to a finite limit 8 as the sequence {y,} converges to

zero. Therefore,

lim ui(z,Y) — B » (A18)

—

We-have thus proven that u;(z,Y) is bounded in the domain 0 < z <1, 0 <
Y < oo, and u; € C2{[0,1] x [0, 00) }.
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c. uniqueness
Assume that there are two distinct solutions 4 and @ which satisfy Eq. (A4)

plus the boundary conditions in Egs. (A5). Since the equations are all linear,

w = 4 — % must also be a solution. The equations for w(z,Y) are

0 ow 9%w
o (vew) = V(o) om = =, (419)

along with the boundary conditions

g—l“} =0 at¥ =0 (A20q)
w— 0 as Y — oo (A200)
w =0 atz=0 (A20¢)

In a manner similar to the proof of boundedness above, multiply Eq. (A19) by

w and integrate over the domain of Y:

) oo
/ uewé—u-)— dY + / wzdue dY
0 az 0 d:c

After some manipulation, one obtains

rui’/ w dY+2/ / ueaw dYdx = 0 (A22)
o ,

Since the integrands in Eq. (A22) are both positive semi-definite, the only way
Eq. (A22) can be satisfied is if w(z,Y) = 0, that is, 4 = @, and the solution
u1(z,Y") is therefore unique.

Although the body in question in three-dimensional, for which there will (or
will not) be a separation line rather than a separation point, it is reasonable to
assume that separation (if it occurs) will occur at the same z position all around

the body. So it is obvious that a necessary condition for flow detachment to occur
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is u(z,0) = 0 at some point 0 < z < 1. It has been shown that the flow solution

can be expressed as
w=U+@%=0U-+ReFu + - (A23)

and so the condition that u(z,0) = 0 will only be satisfied if each term in
Eq. (A23) vanishes individually. Thus, a necessary condition for separation is
U(z,0) dre-fue(:n) = 0 for some 0 < z£ < 1. For streaming flow past smooth bodies
it is obvious that u. # O for any 0 < z < 1. Therefore, boundary layer theory

predicts no flow detachment.

II. High curvature

We now consider the situation where an arbitrary axisymmetric body (see
Fig. A2) with a surface whose local curvature may not be finite at some point.
The geometry is described by an orthogonal curvilinear coordinate system hav-
ing components (zy, 23, @), such that £; = 0 is the body surface. In this coor-

dinate system, the continuity equation is
a(hhu)—i—a(hh ) 0 (A24)
JE— JE— U —_
321 2780 81!2 178%2

where the k; are the scale factors (hj is in the ¢-direction). In the boundary

layer, the velocity field can be written as
u=U+i (A25)

where u = (u1,u2)?, U = (V,0)T is the potential flow solution, and @ =
(@1,%2)T is the perturbation to the potential flow solution (||| < ||UJ)). So,

for the perturbation velocity the continuity equation is

0 . d .
—a"‘x—l'(hghgul) -+ 5‘;;;()11h3’d2) = 0 (A26)



- 163 ~

The equations of motion in the tangential and normal directions (“2” and “1”

respectively) are
1 8 .- @, 80U  V 9y
=2 (T ht 3 z
P LD Rl el
Uu1 ahg + V{m ahz _ 2‘7111 8h1
h1h2 61131 h1h2 6.731 h1h2 8582
1 1 0 J . ] hs
— (i1 h) | —
{ [ (o 1)} 9z, <h1h2>

iha) —

_19p 1 2
he 8zy |« Re | hihg |02y 2 9z,
1 092 1 92

 REh, 923 (aha) + o A, 523 \Lzhiha)
1 8 [ hy \ 8 .

* R2h, oz, (h2h3> 3z, Ushiha)

L1 0 &lh';’) 8 (hahs) , i 92 (h2h3>

h%hz (9232 h2h3 3171 hl h§h36m28:c1 hl

(A27a)

1 0 ,; iy OV U 94
174 — —_—
AT R W Pl e v
Viy 0hy  2Udy 9hy
h1h2 8:1:2 h1h2 8.7:1
3 ( hs )

1 1 d Jd ,.
{ [ (t2h2) — E(ulhl)JE i

Uu1 8h1 4

h1h2 (9122
1 dp

T "hidz; ' Re

h1 8:51

h2h3 81:1

1 9% 1 4?
* hong a3 h) T s g (Bhaha)
1 9 hy d .
* RiRZ 9z, (hlhg) 5z, (Uihzha) |
N 1 8 [4zh2\ 8 [hihs N iy 02 hihs
hlhg 8231 h1h3 6.‘32 h2 h%h;g 8:1:28:51 h2

(A27b)

where p is the actual pressure in the boundary layer minus the potential flow

pressure field.
Now, we must rescale the equations so that all of the derivatives become

O(1). In addition to the usual boundary layer rescaling, we must also take into

1. ves
account the possibility that the curvature may be large at some point on the
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surface. The curvature in the tangential (or,“2”) direction is

1 ohy
h1h2 6121

Ko = (A28)

Regardless of how high the curvature in the streamwise direction is, we can ex-
pect that hy, hgz, and all their derivatives will be O(1). To rescale the variables,
let z; = Y Re®, %y = v ReP, %3 = u Re?, 73;-‘3%? = ky Re*, 2o =z,and U = U.
One would expect that o, #, ¥ <0 and A > 0 (for A = 0 the Egs. (A27) should
just be the usual boundary layer equations). Further, because V =0 at z; =0
and assumes its potential flow value at the outer edge of the boundary layer,
ggl- = O(1). This implies that V = O(Re?), and so we define V = V Re®.

The continuity equation, Eq. (A24), can be now written as

3 19
Reﬁ’*"\ hgvﬂz + Reﬂ“':ﬁ,—(ha ’U) + Reqh—zg(hlhgu) = 0 (A29)
The tangential stress balance is
hy @ (U hy 8 (iz\ _
» 8x1(h2) YT <h2) =0 (430)

From the potential flow solution, we know that the first term in Eq. (A30) is
O(1). Thus,

hy O

U .~ 1 Ou UK
-~ 4+ ReV™® ———— _ A 22
hy 0z, ( ) Re Re 0. (A31)

he )% h1
The tangential component of the Navier-Stokes equations is

1 0
RC’Y'};—;E—;(UU) -+ Re

p 2 U | per Y 90U | psaUV
nooy TR ey TR e

Vau 2V v 8h
R a+'7+/\___ ___R Ot+ﬁ________1
T e hy 2T Rh, 0z

1 9p 1 —a_10u O [h3
- - ZF ReY—o—1Z22_~7 [
h28x+h1h3{ ¢ 8Y82:1<h1)

\—1 h3 Ou d /h uh
— Ren—atA-113 Y+A-1 *3 — RpeYt2A-1273 2
¢ h1 0Y,€2 + e uc?:cl <h1>&2 Re hl 2

10 0 (h
- RE’B_I—“““(U h]_)é’x'—]"(“i) + RC'H+/\—1—-}-L§—i(U hl)K‘,z}

ha Oz hy hihg Oz
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wl“ahz 1-atr-12 O0U
TR o TR X

1 a? Rev=1 92
r—2a—1
+ Re RI8YZ | hihihs 922
Re™™1 9/ hy \ 8 RePT2=1 9 /v h?
hZh, 8x<h2h3)3 (uhihs) + =3 8x(h2h3)
ReP~1 3 (vhf) ) (_}fi)
h% oz h2h3 83:1 hl

(u hlhg)

+ . (H.0.T.). (32a)

The normal component is

U dv u OV Uu
B Re®t7 — — RetTA =
hy Bz | hy 92 By 2
ﬁ Vu ahl _Reﬂ U'U 2-’}_1
hlhz 3:8 h1h2 or
_Re™® ap 1 du 8 (h3
ReY—o— 1
h, 0Y h2h3{ ¢ 3Y 9z (hl)
hs Ou Jh 8 rh
— Rev—a—1_ 73 T YR2 N+A-1, Y (13
Re hih, 0Y 0z T X “ax(hl)’”

vir-1 ks Ohy o 51 8 9 (_hs
— Re hih2 9z 2 Re B(Uh)8x<hh2>

R B~ 1'Uh3(9 hz
hz 82:1

2] v Ref—1 52
B—2a—1 +2a—1 2
ke EVE: XA 57z (VR

h 8 1 K 8
B4+A—1 3 ReP—atAr-1 2 h
Ref—a—1 6 ( 1 ) ] (
h1 8231 h1h3 aY

Ref — h11 57 (Vv) + Re

+Rea+

+

o]
{2R€ﬁ+>“1&2 ‘(—9—?' (’U hg)

h2hs
2

(v hg)} + ReP

vh3) + -+ (H.O.T.). (320)

The underlined terms are the ones that are present in the boundary layer equa-

tions when the curvature is finite (A ~ 0), and it is obvious that when A = 0

matching yields a =~y = —-%, = 1. The resulting equations are the boundary
layer equations:
a Ju 0%u
b—'}; - O(Re ) (A33b)
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Here, however, we assume that A > 0 to account for possible high curva-
ture. As with normal boundary layer analysis, the terms in Egs. (A32) must be
examined with the intent of balancing the largest viscous and convective terms,
but also balancing the largest of the terms involving the curvature. From the

continuity equation, Eq. (A29), it can be seen that
B+A=p0—-a=x (A34)

thus making all three terms the same order of magnitude. Similarly for the
tangential stress condition, Eq. (A31), to insure that the last two terms balance

the O(1) first term,
Yy—a=~9+A=0 (A35)

The tangential component of the governing equations, Eq. (A32a), reveals that
the largest convective terms are Re”, Reft? and Rext7+A (= ReP+X from
Eq. (A34) above), and the largest viscous terms are Re?~2%~1 and Rev—>+*—1
(= Re*!, from Eq. (A35) above). The various balances v = 84+ = y—2a—1 =
A — 1 arising in the tangential component of the equations of motion can be

satisfied if

1 1

5 B=-1 (A36)

Using these exponents, the continuity equation becomes

9 (whihs) = o, (437a)

d 1
havkg + -——-(v hg) -+ h_2$

oY
the z-component of the Navier-Stokes equations (Eq. (A32a)) reduces to
b5} he_ du ha

5o (Uv) + i ar t Koy (Uv+Vu) | o
___a_é-i_nghz—ai thlﬁz'*‘fl—%azu—{—O(Re—é‘) )
9z = h? 3Y k2 "? R29Y? ’
the Y-component (Eq. (A32b)) is
2Uuky = o0 + O(Re™1), (A37¢)

Yy
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and the shear stress condition is

= f(z). (A37d)

Thus, when the curvature becomes important the pressure is not approxi-
mately constant across the boundary layer, as is true in Eq. (A33b), but instead
is directly proportional to the curvature. In fact, Eq. (A37¢) shows that the
change in pressure across the boundary layer (that is, in the Y-direction) is
equal to the centrifugal force due to the movement of fluid around the point of
highest curvature. This result is physically realistic, and it points to a probable

breakdown of the boundary layer at the point of high curvature.
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Figure captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure A1.

Figure A2.

Sketch of the coordinate system for the exterior of an axisymmetric

bubble with an attached wake region; the flow is from left to right.
Streamlines at various Reynolds numbers for the case ¢ = 1.65.

(a) Dimensionless wake length o = £/b as a function of Reynolds num-
ber, and (b) dimensionless wake width 8 = w/b: ¢ = 1.60, o ;
1.65, A; 1.84, x .

Maximum surface vorticity as a function of Reynolds number for vari-

ous ¢.

Streaming flow past solid sphere. Streamlines computed by authors
and photographs of Tanedal!®, for (a) Re = 73.6, and (b) Re = 118.

(Photographs reproduced with permission.)

Schematic of the coordinate system for an arbitrary, smooth body of

revolution.

Schematic of the coordinate system for a body of revolution whose

surface curvature is not finite at a point.
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Chapter III

Development of a Newton’s method scheme for

intermediate Reynolds number free-surface flow problems
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I. Introduction

The theoretical study of the buoyancy-driven motion of a deformable bub-
ble provides physical insight into the nature of transport processes near a free-
surface, particularly at intermediate Reynolds numbers, where observed phe-
nomena cannot be explained by any existing asymptotic theories. For example,
both the shape and the flowfield can dramatically affect quantities such as heat

or mass flux (Sundarajan and Ayyaswamy 1984).

There are some quite interesting and innovative numerical techniques which
employ the boundary integral method for studying highly deformed, time de-
pendent interfaces (Geller et al 1986; Appendix II, in this thesis; Miksis et al
1981). Unfortunately, this method is restricted to creeping or potential flow.

To date, much of the numerical work done‘in the more general area of in-
termediate Reynolds number free-surface flows has centered around the use of
finite element techniques. Finite elements gained an early foothold in the in-
termediate Reynolds number category because of the difficulties encountered in
finding suitable coordinate geometries for use with finite difference techniques.
Early attempts at using finite differences were restricted to problems with do-
main boundaries coinciding with analytical coordinate lines, or else resorted to
describing the boundaries and accompanying boundary conditions by interpo-
lation between nodal points on the pre-assigned finite difference grid. However,
finite difference techniques are slowly growing in popularity due to the advent
of boundary-fitted grid generation techniques (Thompson et al 1985). Two ex-
amples of the use of finite differences for the motion of bubbles at intermediate
Reynolds numbers are Ryskin and Leal (1984) and Christov and Volkov (1985).
Although these two groups worked on the same problem, the first used an or-
thogonal boundary-fitted grid and the second a non-orthogonal grid. These
works, together with Dandy and Leal (1987), represent all of the finite differ-
ence contributions to the intermediate Reynolds number free-surface flow area

so far as we are aware. The general numerical technique used in all three of
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these studies was successive approximations with the calculation of the interface
shape decoupled from the flow variables.

Because of the quadratic nonlinearities present in the Navier-Stokes equa-
tions, successive approximation methods can be very slow to converge (that is,
many iterations are needed) particularly when extreme under-relaxation is }e-
quired. An alternative to successive approximations is to simultaneously iterate
on all of the unknown variables (flowfield and shape). Equally important, we
are trying to solve a set of coupled, nonlinear partial differential equations and
boundary conditions, for which no theory exists on solution existence, unique-
ness or boundedness. Consequently, it is of extreme interest to know the depen-
dence of the solution on the dimensionless parameters of the problem—Reynolds
number and Weber number—and Newton’s method, which achieves quadratic
convergence, provides us with powerful techniques for computer-aided study of
this dependence, along with the ability to examine multiplicity (Brown et al
1980).

In this chapter, we will describe the use of Newton’s method to solve the
Navier-Stokes equations and boundary conditions for the shape and flowfield for
a buoyant deformable bubble, using a solution of Laplaces equation to describe
an orthogonal boundary-fitted coordinate grid, and finite difference approxima-
tions for all equations and boundary conditions. To implement Newton’s method
for this problem, it is necessary to include as unknowns not only the shape and
flow variables, but also the mapping variables. We demonstrate that Newton’s

method is indeed a viable means of solving problems of this type.
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II. Formulation

In this section we will discuss the formulation of the problem and the
method of solution. We consider a gas bubble (void) that is assumed to un-
dergo a steady rectilinear motion, due to the action of gravity, through an outer
quiescient liquid. The continuous phase is characterized by a constant viscosity
w1 and density p. The interface is assumed to be completely described by a single
constant parameter, the surface tension v. As shown in Fig. 1, the geometry of
the system is represented by cylindrical coordinates (z,0,¢). We assume that
the motion of the drop is rectilinear and thus that the shape and flowfield are
both axisymmetric; therefore, all quantities are independent of ¢. It is also as-
sumed that both the dispersed and continuous phases are incompressible, and
the volume of the bubble is therefore constant.

The position of the interface is represented by r = ¢() in the spherical
coordinate variables (r, 8, ¢). The reason for representing the surface position in
spherical variables rather than the cylindrical coordinate geometry mentioned
above is that the cylindrical representation becomes double-valued in cases when
a dimple forms at the rear of the bubble. We define a function R such that
R =r — g() = 0. Then, the unit normal at the interface is

VR

n = g

IVE]| (1)
= (ger — g'eq) / K,

where ¢’ = dg/df and

K = [gz + (g/)2}1/2'

Similarly, the unit tangent vector at the surface is
t = (g'e, + gep). (2)

Because we are describing our system geometry in cylindrical coordinates it is

necessary to transform the components of n and t from the local spherical to
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cylindrical system. Since

e, = e,sinf + e cosd

ey = e,cosf — e,sind,

then }
n = -}—[(gsinB — g'cosb)e, + (gcost + g'sin())ez]
X (3)
t = —E[(g'sinﬂ + gcos())eCr + (g'c050 - gsin@)ez]

Application of Newton’s method to the solution of a system of algebraic
equations is straightforward: the vector set of equations is symbolically repre-
sented by G(x; Re, We) = 0, where x is the vector of unknowns. If we start
with a “reasonable” initial guess x(°), then at the (n+1)-st iteration, or Newton

step, the approximation to the solution is

x (1) = x(n) _ (A("))"lg(n),

where A is the Jacobian matrix defined by A = G /dx. The difficulty comes
in computing the elements of A.

Although the goal of this work is to develop a scheme which will simulta-
neously solve for all unknowns in the system, we will present the formulation in
three parts: the mapping equations, the flow equations and the complete prob-
lem. This fragmentation provides us with a means of checking the reliability of

the components of the overall scheme.

a. The mapping equations

As was pointed out in Chapter I, axisymmetry enables us to simplify the
mapping problem from construction of a three dimensional grid to a two dimen-
sional grid. For reasons also mentioned in Chapter I, we perform an inverse
conformal mapping to map the infinite flow domain to a finite auxilliary do-

main. We then solve the Laplace equations to obtain a discrete set z*(£,n) and

o*(&,m).
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Inclusion of all equations and unknowns in a Newton’s scheme requires
use of the weak constraint method (Ryskin and Leal 1983); in particular, the
explicit description of the interface position with a function g(8) requires that the
distortion function f(¢,n) be implicitly specified. Through the shape function
g we are specifying the boundary correspondence, and therefore if f(1,7)-is
also specified, the mapping problem will be over-determined. Thus, so long
as we do not specify f(1,7n), we are free to determine f(&,n) for £ < 1 (that
is, in the interior of the domain) with a variety of methods (Ryskin and Leal
1983; Chikhiwala and Yortsos 1985). The “formula” used to obtain f in the
interior must be linear in the curvilinear coordinates (£, ) so that orthogonality
is preserved. In the present work, to calculate f in the interior, we have chosen
a simple interpolation formula, which will be presented below.

For the duration of this chapter, a shorthand notation will be used: partial
derivatives of the dependent variables with respect to £ will be denoted by the
subscript z, and partial derivatives of the same variables with respect to n will be
denoted by the subscript y. These subscripts are used to distinguish derivatives
from components: u, = du/dn whereas u, is the component of velocity in the

n direction.

In this shorthand notation, the equations describing the mapping are

22t + z;y + ffz2p — fyz;/f =0 (4a)

and
203z + 0py + ffz05 — fyoi/f =0, (4b)

where

f(&n) = &f(L,n) + (1 —n)f(§,0) + nf(&1)
— £(1—n)f(1,0) — &nf(1,1).

Remember that the distortion function at the interface ¢ = 1 is also unknown,

(4¢)

and if we are to use a Newton’s method to solve the mapping equations we must

include f(1,7) in the set of unknowns. For the required set of extra equations,
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we use the definition of the distortion function:

ofn) - [z% + o;?] i 222 + 0;2]—1/ - (4d)

=1

We will use the notation a(n) = f(1,7) throughout the rest of the chapter. The

mapping functions must satisfy the following boundary conditions:

2" =0"=0 at (&,m) = (0,0) (5a)
0" =2;,=0 atn=0,1 0<&é<1 (5b)

and
2" =cosb/g o* =sinf/g atE=1 0<n<1 (5¢).

Because of the form of the boundary condition (5b) we have the freedom to
specify the distortion function at the two boundaries n = 0,1. This enables us to
maintain some control over the grid spacing in the domain interior. Symbolically,
we represent the choices of these distortion functions as f(&,0) = a(&) and
f(&,1) = b(£), but in practice we chose a(§) = b(€) = 7 €. Using these values,

the formula for the distortion function and it derivatives are
f(&,n) = €a(n) + (1 —n)a(€) + nb(€) — £(1 —n)a(0) — €na(l), (6a)

fz(&;n) = a(n) + (1 —n)az (&) + nbz(€) — (1 —n)a(0) — na(l), (6b)
and
fy(€m) = Eay(n) — a(€) + b(¢) + €a(0) — Ea(l). (6¢)

It should be noted that in order to actually solve the Egs. (4) subject to the
the boudary conditions (5), another set of equations must be included if g(8) is
unknown. If, however, g is specified, Eqs. (4) and (5) constitute a well-posed
problem.

To generate the set of algebraic equations that will be solved using Newton’s

method, we must discretize the differential equations and boundary conditions.
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The derivatives are approximated using centered, second-order finite differences
and, if we use a square computational grid with an equal number of nodes in

both the & and 7 directions, we arrive at the functions

Hij = fij (fij + €(fo)is)2ipe; — 20+ f5)2l + fii (fij — e(fa)is) 23y,
+ (L= e(fy)i/ fii) 2l + (U4 e(fy)is/ fi) 21 = O

Lij = fij (fis + e(f2)i) oty — 2L + f5)ofy + fij (fis — e(f2)i)oiy;
+ (L= e(fy)ij/ fi)olian + L+ efy) i/ fis)olsr = 0,

2
Py = a; — {(C080j+1/gj+1 - 00501‘-—1/91'—1)
. . 071/2
+ (Sln9j+1/gj+1 - Sme:’—-l/gj—l) ]
* * 2
X [(3(:05 0;/9; — 42N _1; +ZN—2]')
. . . 51—1/2
-+ (3sm(),-/gj - 4UN—1j + UN-Zj) ]

= 0,
(7)
1 < 1,7 < N, where ¢ = h/2, and h is the mesh size; h = 1/(N — 1), where

N is the number of mesh points in either the £ or n directions. Assuming that

a(¢§) = b(¢) = n¢,

fij = iy + 1€ — &(1—nj)on — &njan, (8a)
(fz)ij =oa; + 7 — (1—-n;)a1 — njan, (8b)
(fy)ij = gig'iil"zzh'gi:i + (o1 — an) (8¢)

The elements of the Jacobian matrix can then be computed by taking the Frechet
derivatives of the algebraic equations (7). The details of this are shown in the
appendix.

As an example of the size of the Jacobian matrix generated in this mapping
problem, consider a square computational grid with 61 grid points on a side.
In this case, for the mapping problem, the Jacobian is of order 7021. To make

the numerical computations as efficient as possible, the band structure of the
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Jacobian should be tight, and to achieve this tightness, care must be taken in
the ordering of the equations. If we take the straightforward approach and order
the equations in the order that they appear, that is, first the equations for 2%,
then the equations for ¢* and finally the equations for «, we obtain a matrix
with the non-zero structure shown in Fig. 2. The bandwidth is over 3500, and
the level of fill would be enormous. If, however, we are more careful about the
ordering, we can reduce the bandwidth to 118. Consider the representation of
the computational grid shown in Fig. 3: because of the boundary conditions at
the perimeter, we only have to solve the interior (N —2)?% equations. To order the
equations, we start at 7,7 = 2. The equations for z* are numbered at this ¢ for
j=2,---,N—1, followed by the equations for o*. This sequence is then carried
out at 1 = 3,--+, N — 1 so that we end up (N — 2)? equations, with alternating
blocks of N — 2 z* and ¢* equations. Last we write the N — 2 equations for a.
Actually, 2}y, 2}y, @1 and ay are also unknown, but we can use Eq. (5b) and
symmetry to write these variables in terms of the other unknowns. With the
equations ordered in this manner, the band structure of the Jacobian takes the
form shown in Fig. 4; the block-column of “N”-shaped structures in the matrix

arise from the dependence of the equations on the distortion function c.

To check the formulation of the mapping equations we ran several tests:
first, we considered the situation where the boundary shape (i.e., g(f)) is known.
Then there are 7021 equations and unknowns. In the second test, we assumed
that g(8) was not known, but was required to satisfy an equation which specified
the curvature at £ = 1 (that is, V -n is known at each point on the surface; the
set of equations is denoted by Cj, 2 < 7 < N —1. This will be discussed in more
detail in subsection (c)). The curvatures were chosen so that the final surface
shape was the same as the one specified in the first test. In the second test,
there are 7080 equations and unknowns. The band structure of this Jacobian is
shown in Fig. 5. Results of these two tests were compared against each other,

and with grids generated using the ADI scheme of Peacemann and Rachford
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(1955). Several examples of these grids are shown in Figs. 6. The grids are
everywhere orthogonal to within less than one percent and the results obtained
using Newton’s method agree with the ADI results to within 0.0001 percent.
The difference between the Newton results and the ADI results is that it took 2
Newton steps to achieve convergence, and 1500-3000 ADI steps to achieve the
same convergence.

As an aside, we also used Newton’s method to experiment on the strong
constraint method, in which f(£,n) is explicitly specified everywhere in the do-
main. At £ = 1, the boundary conditions on the unknowns are o* = specified,
and z} = specified. With the Neumann condition on 2* at { = 1, we have no
control of the resulting boundary shape (unless we know a prior: the correspon-
dence between derivative and function), but the strong constraint method does
nonetheless have its strengths (Ryskin and Leal 1984). We found that the strong

constraint scheme would frequently converge in just 1 Newton step.

b. The flow equations

Due to the axisymmetry of the problem, it is convenient to cast the flow
equations in terms of the streamfunction and vorticity rather than the primitive
variables u, p. The process for arriving at the final equations is carried out in
detail elsewhere (Chapter II), but we will briefly review the steps here. First the
steady Navier-Stokes and continuity equations are non-dimensionalized using a
characteristic length a (the radius of an undeformed bubble of volume $ma®),
a characteric velocity Uy (the uniform streaming velocity at infinity) and a
pressure scale -21; pUZ . The resulting equations contain the Reynolds number Re,
which is defined as Re = 2palUq/p. The curl of the dimensionless Navier-Stokes
equations is taken and we obtain an equation in terms of the vorticity wey and

velocity u. We then define the components of the velocities in the general (£,7)

coordinate system using the streamfunction ¥:

1 8¢

£~ T T o

ohy On
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. — L 9%
"7 ohe OE

and substitute into the velocity-vorticity formulation to obtain

1 Re |ug 0 (w Uy 0 [w
2 _= ok S e 2 (Y =
Lwo) = 37k [heag (0) T R, on (J] 0

L% +w =0,

2o L |0 (fO0) O (19
£ -;%hn[aa(oas)*’an<faan>}‘

The scale factors of the coordinate system are

where

9z\? do 2]
e |(52) + (5)

1/2

h B _a—z 2+ —a—g 27
T\ an an

e

1/2

and the distortion function is

h
f=32.
he

When the operators in Eqgs. (9) are expanded, we obtain the following:

f

Re
fzw:za: + Wyy + f(fx + ';0':: - "i"hnué)wx

+ (10 1 Re
o Y 20

— ;%(fzaz + 03)]0) = 0,
and

P+ by + 17— Lon)us

1

- (ffy + %%)T/J; - 3f§0(-gf§0x + %fafgc + fo)

+ hf,orw = 0.

R
'ffy - "é"hnun)wy + {"—ehn (fugos + unoy)

(9a)

(90)

(10q)

(105)
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Since v asymptotically approaches infinite values as 0 — o, we have defined
a modified streamfunction ¢* = ¢ — 10%(1 — £®) which is bounded at infinity.

With this modified streamfunction, we can write the velocity components as
hyue = ——g* — (1— €3
nte = awy ( £%)oy

and

hpun = fE:‘/); + (1 - 53)‘% - %‘752]-

The boundary conditions for the flow equations require a detailed explanation,

and this will be presented in a later section.

Note that the unknowns appearing in Egs. (10) are ¢*, w, z and ¢; but from
the previous section, the coordinate unknowns are z* and o*. Thus, everywhere
that 2z, o, and their derivatives appear in the governing equations and boundary
conditions for the flow, the definitions appearing in Chapter I must be used to
write all of these variables in terms of the auxilliary mapping variables z* and
o*. Also, note that the distortion function appearing in Egs. (10) is the same
as presented in (a) in Egs. (6).

When we write the flow equations in finite difference form, the resulting

algebraic equations are:

Fij = (f% + 6‘11.5)“’1‘4—11’ + (q3ijh'2 —2 *%' B 2)%"
+ (f% - GCII;j)Wi_lj + (1+ 6<12,-,~)wij+1 + (1= 5‘12ej)wi1'-1 (11a)

and

Gy = ( l'zj+w1ij)¢:+1j - 2(1+ 123)1:[’:7 + (f1,2] - fwl,-,-)"/);‘k._u
+ (14 ews, )i g + (1— ews, )0l y + hPwy, (110)
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where the coefficients are given by

2
i Re
qu; = fis(fa)is + = (02)is — - fis(hnue)is
ij
1 1 Re
q2;, oi (0y)is fis (fy)is 2 (hnun)ij
Re 1
0s;; = Fﬁ[fij(hnué)ii(az)ij + (hnun)ij("y)ij} - ;gj[f?(ci)ij + (03)1']'}
and
2
Wi; = fij(f)i5 — ;ﬁ_‘(ax)ii
1 1
w,; = —}i—j(fy)ij - ;;(Uy)ij

wy,;, = —3fi;&04 (gfijfi(o'x)ij + %fiaij(fz)ij + fijoij) + hgnjaijwij-
The expressions for o, and o, are shown in the Appendix.

To check the formulation of the flow problem, we ran tests at several values
of Re and compared them with results obtained using ADI. The tests were
carried out by assuming that the shape was fixed, leaving as unknowns ¥*(&,7)
and w(¢,7n), 0 < &1 < 1. The vorticity at the surface w(1l,7), 0 < n < 1is
also unknown, and we included the tangential stress balance as the additional
set of equations. For this problem, there are 7021 equations and unknowns—
the structure of the Jacobian is shown in Fig. 7. We found that the Newton
results and the ADI results agreed to within 0.00001 per cent. Several example

solutions are shown in Figs. 8.

¢. The full problem

Integration of the mapping problem and the flow problem obviously in-
creases the complexity of the equations due to the coupling between the flow
equations and the mapping variables z* and ¢*. Additionally, we now relax the
restriction on the fixed boundary shape, thereby further increasing the num-
ber of unknowns. The inclusion of the unknown g(6)’s requires the addition of

another set of equations, and here we add the normal stress balance.
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The set of boundary conditions take the form: along the axes of symmetry,
w, ¥, z,, 0* =0 atn=0,1 (12a)

and at infinity,
V¥, w, 2%, 0" =0 at £ =0. (120)

At the surface of the drop,
Yp* =0 (12¢)

because of zero normal velocity. The two remaining boundary conditions are

the two components of the stress balance at the surface:

A 4

ne(T-1)==(V-n)n, (12d)

where the Weber number We is We = 2paU2 /v. In terms of the shape function

g(0), the curvature is

——_2_.___21_ __}_ 91_(9')2 7
Ven = = chota g[K Ka(g—i—g)], , (13)

where K is defined at the top of this section. Now, because the shape function is
in spherical coordinates and the geometry of the system is in cylindrical coordi-
nates, and also because the computational domain is in the arbitrary curvilinear
coordinates (£,n), we must transform Eq. (12d) from spherical to cylindrical to
curvilinear. To perform these operations, we take the cylindrical representa-
tion of n and t and operate on the stress tensor T in Eq. (12d). Upon doing

so we obtain the two equations referred to as the normal and tangential stress

balances:
M = 1 0 ' cos 0) 2
= —Ei[(gsm — g’ cos ) Too
+ Z(g sinf — g’ cos 0) (g cos 6 + ¢'sin 0)7'02

4 !
+ (gcosﬂ-&-g'sin@)z'rzz] —-p - ———-—{-12- — 9 cotg (14)

We LK gK
- % -+ )
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and
N = (gsin — g'cos ) (gcosf + g'sinb) (166 — 72z)
+ [(g cosf + ¢'sinf)’ — (gsind — g’ cos 0)2]7” (15)
= 0.

An expression for the pressure p in Eq. (14) is found by taking the n-component

of the Navier-Stokes equations and integrating at £ = 1:

3 4 ad
p = ZCDZ - uf, — ;52;((4)0')(17] + )\

where A is the unknown constant of integration, and

1 4 "o 8 .
| Cp = 2/(; aay[u -+ —RTe(/ -0—-5%-(@)0) dn — ;—}Zb—;(una))] dn.

Egs. (14) and (15) contain components of the rate of strain tensor in cylindrical
coordinates. It is necessary to represent these tensor components in terms of

the curvilinear coordinate variables. We know that

I 8 Jdu,
72~ Re 90
_ _8Joz(z Un _ 2= _ 2 }
= Re{hz [hgu"’ e P R (2e222 + 02022)) = Frue.
o u
+ hg [h Up, + }'fé(zzy n2 (zxzxy’*‘ox"zy))]}
(16)
8 Ju,
Tzz = T~
Re 0z
_ 8o Un Oz _ % ]
= Re{hz [hgu"’ t e 0o B2 (22222 + 02022)) = 3 oue, (17)
2y [0z u
hg [h Uy, + Fz-(azy h2 (zzzzy—f-ozow))]}
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4 Rz [ 2z u 2y
== -i-z—e-{——-’-z—z-[ﬁgunz + "’;‘Z‘(Zzz" h2 (ZzZzz+Uz0xm)) - h—ﬂ-ugz]

U
- -’—1—2- .—h;u,,y + -h_:— (z:cy hz (szxy + O'zc'xy))]

+ -y _"ur]z +

u Oz
2 hf E’;L(azz - 'h_z(zxzx:c +Ux0xx)) - —‘ufz}

h
¢ n
Oy [O u

(18)

At £ = 1 the derivatives of u, and u¢ are

_ 1 Y [
Yne = O‘hgdj“’ ohe t 2

— (22222 + U:cazz)}

\ (19)

ke ‘2

N
m;;'q m;t:) =

3
( Oz +U) + (zzzzz‘*’o'xo'xz),

1, ay(s\_1_*)

Uny = =77 Vzy — 7T \5
oh he ‘2 o2

1 3 1.,
5y ey + 020) Go = 202)
and

1, oy
Ug, = ---—————o_hn'lﬁmy + 3 (21)

;Z—n—.

So, for the full problem, we have the following unknowns: there are (N —2)?
interior unknowns for ¢;;, wij, z; and of;, for a total of 4(N — 2)? interior
unknowns; at the interface £ =1, there are (N — 2) unknowns for wy;, g; and
aj, and A, for a total of 3(NV — 2) + 1 unknowns. Thus, there are a grand
total of 4(N — 2)2 + 3(N —2) + 1 unknowns; for our 61 X 61 mesh, we then
have 14102 unknowns. Egs. (7), (11), (14), and (15) provide us with a total
of 4(N — 2)% + 3(N — 2) (14101, for the 612 grid) equations, which leaves us
with one more unknown than equation. This extra unknown is A, the constant

of integration in the pressure. Adding an extra constraint to the system will

determine a unique A, and so we require that the volume of the bubble remain
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constant. The final equation can be written as
™
V=2- f ¢%(8)sinddo = 0. (22)
0

To reduce Egs. (11), (14) and (15) from differential equations to algebraic
equations, it is a simple matter of using centered, second-order finite differences,
just as was done to obtain Eq. (7). It is also necessary to eliminate the integrals
appearing in Eq. (22) and the expression for the pressure and replace them with
algebraic expressions. To approximate the integrals, we used Simpson’s rule for
Eq. (22) and the drag coefficient Cp, and a trapezoidal rule for the integral
appearing in the pressure. The reason for using the two different integration
schemes is that although Simpson’s rule has higher accuracy than the trapezoidal
rule, it requires that the number of points in the integration be odd—which is
true when we integrate over the surface from 0 to 7 since there are 61 points—
but when we integrate over only part of the surface (from 0 to 7;) the number of
points alternates between odd and even as j increases. The algebraic equation
resulting from Eq. (22) is

Agr Nl N-2

V=2———[4 g~sin0j+22g?sin0j} = 0.

Jj=2 7=3
éven odd

.0

To achieve a tight band structure in the Jacobian matrix, we again order
the equations and unknowns in alternating groups of (N —2), starting at 7,5 = 2:
for each 7, in or‘der of appearance, we write (N — 2) equations for ¥*, w, 2*
and o*. After all of the governing Egs. (7a,b) and (11) have been written, we
include the boundary conditions in the following order: normal stress balance
(14), tangential stress balance (15), the definition of & (7¢) and finally the volume
constraint (22). The band structure arising from this ordering is shown in Fig. 9.
There is a high degree of density in the normal stress balance due to the integral

terms. In this matrix of order 14102 we have a bandwidth of 708.
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II1. Details of the numerical scheme

Solution of the linear systems generated in previous sections (a), (b) and
(c) requires the use of a sparse matrix package, one which efficiently orders
and stores the elements of the Jacobian and also provides a fast, accurate so-
lution. We have experimented with four such sparse matrix library packages:
SPARSPAK (George et al 1980), SMPAK (Yale), ILUPACK (Simon 1984) and
Harwell MA32 (AERE Harwell 1985). Both SPARSPAK and SMPAK proved
unusable because neither makes any provision for pivoting, which is crucial in
our problems. They also assume that the matrix is symmetric and positive defi-
nite, and this acts to reduce the efficiency of storage and elimination. ILUPACK
was designed to efficiently solve large sparse unsymmetric linear systems by con-
jugate gradient-type iterative methods; additionally, ILUPACK uses incomplete
LU factorization extensions to SPARSPAK. There are seven possible conjugate
gradient methods for the user to choose from. They are

1 The ORTHOMIN(K) method of Vinsome (1976); K is an integer denoting
the dimension of the subspace used for approximation.

2 The minimum residual method (Elman 1982) is a simple descent method.

3 The generalized conjugate residual method GCR(K) is a restarted version
of Orthomin.

4 The generalized minimum residual method GMRES(K) uses orthogonality
of the basis vectors to construct a solution which minimizes the residual
norm over the subspace (Saad and Schultz 1983).

5 USYMLQ (Saunders, Simon and Yip 1984) uses a subspace for computing
approximate solution vectors which is built by using multiplications of the
matrix and its transpose in turn. This method minimizes the Euclidean
norm of the error over the subspace.

6 USYMQR is like USYMLQ except that it minimizes the residual norm over
the subspace, rather than the Euclidean norm.

7 LSPR uses conjugate gradients applied to the normal equations (Paige and
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Saunders 1982).

We found that GMRES(K) out-performed all of the other six methods in
tests run on the mapping problem and the flow problem. In actuality, only two of
the other methods would even work on our test problems (ORTHOMIN(K) and
GCR(K)); the other methods either “blew up” or converged to incorrect finite
solutions. For both the mapping and the flow tests, the order of the system of
equations was 7021; one Newton step, using GMRES(K) as the solver, took 2-2.5
CPU seconds on a CRAY XM-P/24. (The CRAY used was located at Boeing
Computer Services). This time includes evaluation of the matrix elements and
right hand side, and all calls to ILUPACK. One disadvantage of ILUPACK is
that it is an in-core matrix solver. Although the package efficiently orders and
stores the elements of the sparse matrix, the workspace required by ILUPACK
is nonetheless quite high—almost 2 million words for each problem. This is half
of the core memory of the XM-P /24, and to use more than half is very expensive
(since it would effectively be taking memory away from the secona processor).
Clearly this memory limitation has serious consequences for the full problem,

where the order of the system is over 14000.

The package with which we have had the most success is MA32 from Har-
well. MA32 solves large sparse systems by the frontal method, optionally using
disk storage for the matrix factors; it is a direct solver employing partial pivot-
ing. Aside from the obvious strength of being able to solve very large problems
in a specified and relatively small amount of core storage, MA32 was written so
that equations can be input by the user in one of two ways: (i) by elements, as
is natural in finite element calculations or (ii) by a row at a time, as is natu-
ral when using finite differencing. During elimination, the number of variables
needed in core (or, in the “front”) at any time is essentially dependent on the
bandwidth of the matrix, provided that the matrix has some regular pattern
structure. MA32 accepts input by equation, and will commence elimination on

a variable when that variable is fully summed, that is, the variable is available
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for use as a pivot in Gaussian elimination when it has appeared for the last time
and does not occur in future equations.

We have found. that for the mapping, flow, and full problems the minimum
front size allowable is 157 x 196, 118 X 156 and 313 x 469, respectively. For these
front sizes, the disk spaces needed to store the UQ decompositions (in double
precision words) are 637440, 503806 and 3068928. The amount of real work
space needed by MA32 varies from 250 000 to 500 000, depending on the front size
and output buffer. All of the tests with MA32 have been performed on a CRAY
XM-P/48 located at the San Diego Supercomputer Center. Execution times
for these cases are approximately 2, 3, and 16.5 CPU seconds, respectively, per
Newton step. Unfortunately, SDSC does not possess a SSD (Solid state Storage
Device), so the temporary files are created on the local disks. Access to SSD
for temporary storage would increase the I/O speed by a factor of 100-1000.
The run time for the full problem seems unusually high, but at present we have
not been able to detect any irregularities in the operation of the matrix library.
Because of the seemingly excessive time required for the full problem, we have
incorporated a chord method into the Fortran code. Preliminary tests with the
Newton-chord method indicate that a chord step usually requires only 2 seconds
of CPU.

The convergence criteria that we have been using for these runs is very
simple; we require that the magnitudes of the elements of the residual vector G

(that is, the vector of equations) satisfy the following:

max Gi S ﬂoo
1

M

LiSe <o

i=1
We have found that reasonable values for these tolerances are fo, = 10™% and
B2 = 10710, v
One disadvantage to MA32—compared to the other sparse matrix libraries

tested—is the necessity to give MA32 the locations of the non-zero elements
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twice, once for ‘the package to determine when each variable is fully summed
and again for MA32 to perform the eliminations. Additionally, this process
must be repeated twice for each Newton step. In other words, in libraries like
SPARSPAK and ILUPAK, the user must give the package the non-zero indices
only when the structure of the matrix changes, and for problems such as ours,
this means we only have to give the structure once, at the beginning of the run.
However, MA32 loses the index information between each solution, so that the
index information must be given to MA32 twice for each Newton step. Aside
from the increased computational cost, this behavior almost doubles the amount
of Fortran source code, appreciably increasing the compilation time. Except for

this inconvenience, MA32 has proved to be a versatile sparse matrix package.
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IV. Continuation

Continuation can play a vital role in the development of a Newton’s method
scheme, particularly when the solution behavior changes dramatically with small
changes in one or more of the parameters. Schreiber and Keller (1983), in a
study of driven cavity flows, present what they call “Euler-Newton” continuation
(based on procedures developed by Keller (1977) ). In this method, the Jacobian
of the converged solution at a particular value of a parameter—for example, the
Reynolds number— is used to obtain an initial guess to the solution at a slightly
different value of this parameter.

If we denote G as our vector set of the equations and x the vector set of

unknowns, then the Jacobian can be symbolically represented by

oG
A"—"‘a”i".

Then, if we wish to perform continuation in Reynolds number we take the deriva-

tive of G with respect to Re:

G G Ix ox

9Re ~ ox 9Re _  3Re (23)
We obtain a similar expression for the We:

oG oG Jx ax

We = 9x IWe A oWe’ (24)

Thus, with the Jacobian A obtained from the converged solution, we can cal-
culate dx/JRe or dx/0We by solving either of the linear systems (23) or (24).

An initial guess is found by taking an Euler step:

x(©) (Re, We+AWe) = X(Re, We) + AWe 8?/1)/(

. (Re, We) (25)

or

x°)(Re + ARe, We) = x(Re, We) + ARe%—é(Re, We), (26)
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where x(Re, We) is the converged solution at the current Reynolds number
and Weber number. Obviously, this continuation algorithm will only succeed
if the matrix A is regular; it breaks down at a branch point. This is a serious
restriction if we wish to do continuation at limit points.

To circumvent this difficulty, we turn to arc length continuation. This type
of continuation is described in a variety of texts, but the source of most of our
information on this area is Kubitek and Marek (1983). We want to generate a
complete dependence x(Re) or x(We) which forms a continuous smooth curve
in (M + 1)-dimensional space (z1, z2, ..., Tm, Re or We). This continuation
method get its name because we will use the arc length s of the solution curve
as a parameter of the method. Rather than differentiate the residual vector G
with respect to Re or We—as we did above for Euler-Newton continuation—we

differentiate with respect to the length of arc s:

dG; 0G; dRe 9G; dz;
, = = 27
ds ORe ds Z 82:] ds 0, (27)
if we are performing continuation in Re, and
dG; 0G; dWe 0G; dz;
_ = 28
ds We ds Z %, (28)

BzJ ds

if we are considering We. With the addition of arc length s into the set of
equations, we need one more constraint on the system. This extra condition

specifies the normalized length of the curve in solution space. Thus, we require
dzri\? dzo\2 dzp\2 dRe\2
(ds)+(ds) +”+(d.s>+(ds) =1L (29)

if we are again considering continuation in Re, for example. Now, Eq. (27) forms

a set of M linear algebraic equations in the (M + 1) unknowns dz;/ds, i =
1,...,M + 1, where zpr,1 = Re. The number of unknowns in Eq. (27) can be

reduced by one if we define a new set of unknowns «; such that

dm- dzk .
'T;:”‘EZ’ t=12,...,k—1,k+1,...,M +1, (30)



- 202 -

for some 9z /ds # 0,1 < k < M +1. Equation (27) then reduces to a system of
M equations and M unknowns, which can be solved for the «;’s. The coefficient

matrix of this linear system is

8(}1/83:1 8G’1/8zk_1 aGl/azk+1 8G1/8$M+1
A BG2/6x1 6G2/3xk__1 3G2/3.’Ek+1 3G2/8$M+1
BGM/6x1 e aGM/aIBk_]_ aGM/a$k+1 PN aGM/a$M+1

This matrix is, in general, nonsingular at limit points, making arc length con-
tinuation a valuable means of branching around limit points. With the values of
ki, we can then compute dzy/ds by using Eq. (29). These equations comprise
a set of (M + 1) coupled differential equations which can be solved by a variety
of methods.

We have tested the Euler-Newton continuation on the flow problem and the
full problem and found that it works reasonably well in the regions of parameter
space considered (low Re and We). Specifically, with the initial guess gener-
ated using continuation, we were always able to obtain a solution at the new
parameter value with Newton’s method. However, in all cases done, we were
also always able to obtain a solution—usually in the same number of steps—at
the new parameter value using the solution at the old parameter value as the
initial guess. Basically, we find (so far) that the initial guess is not as impor-
tant as is usually claimed for this method. This will undoubtedly change as a
branch point is approached. We have not yet tested the arc length continuation,
but as it is much more versatile than the Euler-Newton continuation, it will be

incorporated into the code in the future.
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V. Discussion

Although we have done extensive tests and run numerous cases of the map-
ping and flow problems, some of which are mentioned in Section II, for the full
problem we have thus far obtained results at only a limited number of values of
Reynolds number and Weber number, specifically for the (Re, We) pairs (0.5,
0.5), (2, 0.5) and (2, 2). The flowfields for these cases are shown in Fig. 10. De-
formation of the bubble is slight at the low values of We presented here, but the
bubble does show the characteristic flattening at the rear for We = 2. Ryskin
and Leal (1984) used a different numerical technique (ADI) to calculate shapes
and-flowfields for this problem, that is, for the steady rectilinear motion of a
deformable bubble. In Table I we present a comparison of drag coefficients be-
tween the results of the present work, the earlier numerical work of Ryskin and
Leal, and the low Re, We asymptotic analysis of Taylor and Acrivos (1964).
The important conclusion of this comparison is that the numerical results of
the present work (obtained using Newton’s method) and the results of Ryskin
and Leal (obtained with ADI) are in agreement to within at least three deci-

mal places. For the case (Re, We) = (0.5, 0.5), we used the following initial

condition:
z;."j = & 005(7”]_7') 0';-;- = & Sin(ﬂ”?]j) 1<+j<N
zp;-"jzw;j:O ISi,jSN
g;i =1 1<j<N
and
A=1

Convergence was reached in 2 Newton steps. As an initial guess for (Re, We) =
(2, 0.5) we tried two different things: the solution for (0.5, 0.5), and continuation

in Re from this solution. Both of these initial guesses converged to the solution
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in 2 Newton steps. Finally, for (Re, We) = (2, 2) we used the same approach
for the initial guess: the solution for (2, 0.5), and continuation in We from this
solution. The initial guess from continuation converged in 2 Newton steps, but
the initial guess from the previous solution took 3. (For practical purposes it
required two steps, because the error was just above the tolerance after two

steps.)
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Appendix

For a system of equations as complicated as the one we are trying to solve,
it is not possible to display all of the expressions generated after taking the
Frechet derivatives of the algebraic equations. However, because of the use
of the general curvilinear coordinate system, the problem under consideration
is sufficiently general that presenting some of these derivatives may be useful.
Before proceeding, we must note two things: (1) although z and ¢ appear in the
governing equations for the flow, and the normal and tangential stress balances,
the unknown mapping functions are really z* and o*; and (2) The Frechet
derivatives of the aforementioned flow equations and stress boundary conditions
with respect to z* and o* are too complicated to display. These derivatives are
just combinations of derivatives of z, o, 25, 0, 2y, 0y, ..., so we will present

only these Frechet derivatives.

a. The coordinate inversion
The coordinate inversion used in the derivation of the equations takes the

form

z2+10 = ——— (A1)

2* — 1o*’
so that the mapping variables are related by

*

= z
- *2 *2
2** + o
x (42)
7=z T o2
Then the derivatives of 2z and o are
20%%\ o* 20%z*z%
Or = (1 - "‘_X )‘)—;' - '—‘““‘“Xz = (A3)
2%\ 22 20*z%0;
== (- )3 T (44
20*%\ o* 20*z*c*
w=(-F)F- =" (49)



22*2\ z} 20*z%0
2= (1-F)F -~ (46)
0un = (z*2 — 0*%)o?, _ 20727z, + 20*(40*2 B 3) (02)?
X2 X2 X X2 (A7)
42*2 2* 2 0*2 2*o*
+20° (% ”1)();2 (- )
R o o o o P C i
we X2 X2 X X2 (48)
, (40*? (k)2 L (422 ziolk
v (- ) S e (- )5
o (2** — 0" %o}, 20727z, 20*<4o*2 B 3) (03)?
vy X2 X2 X X2 (49)
42*2 (23)2 L (4o*? 249y
vt (- )5 e (T - )
L (0*? —2*%)z}, _ 20%z%0y, 0 *(42*2 B 3) (25)?
vy X? X? X? (A10)
4 *2 0.* 2 4 *2 z*a*
(- )G e ()
*2 *2 * 2 * ok
Ozy = (2 _;2 )oay _ 22*;;;!1 + 2 *(4‘;( _ )";(azy
, (4z*? 232, | 22" (40" (kL w
+ 20 ( X 1) xz T XZ( X 1)("Izy + 0yz)
(A11)
*2 *2) % *o ok Lk %2 * %
om = L TE S BT (B )2
40*2 oi0%  20* [4z*2 . . . x
+ 22* (—-X—-—- - 1) Xzy + e ( %~ 1) (axzy + oyzx)
(A12)
We have used the shorthand notation X = 2*2 + o*2.
b. The vorticity equation F
oF;; 1
YT —-hRei (gdy d wy) (A13)
b 4 Y ij
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(The right hand side in Eq. (A13), and in all of the following equations, is

evaluated at the (¢, 7) point.)

OF; _ OFy
a¢z 1j 8¢z+1]
8F” = — 1hRei(gaz — wx)
OVl 4 o\o
OF; _ OFy
8¢t] 1 a’tpz]—f-l
By = 2(1 + f ) + qs;;
oF;;
Il EE— f2 -+ quij
Owitij
Ow;—15 =/ "
OF;;
____'F_]_ =1 4+ 592.-,~
Qwijt1
OF,-j
oyt L %

c. The streamfunction equation G

9G;; 2
—i = _2(1 +
S = 20+ 5
anJ
= f2 -+ Ewy,,
3¢,+1,
= f - Ewlij
a¢t~—1]
0G;;
" I =1+ €Wy,
al/)ij-{—l
0G;;
b =1 - ewz‘_j

a¢t] 1

(A14)

(A15)

(Al6)

(A17)

(A18)

(A19)

(A20)

(A21)

(422)

(A423)

(A24)

(425)

(A26)
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0G; | 2
Owij n? ( )

d. The mapping equations H and L

OH;; OL;; 2
= = —2(1 A28
Bz;“j Bofj ( + ) ( )
0H; OL;;
- = - = f{f + €f, (A29)
0zfy1; 994y, ( )
0H;; OL;;
= = — A30
OHy _ OLi _y _ cs5 (431)
azij+1 8Uij+1
0H;; OL;;
- = 3

e. Other Frechet deriatives appearing in the governing equations
The only mapping variables appearing explicitly in the governing equations

are o, 0, 0y and h,27.

aa* = —20z2 (A33)
Bzij
9 _ ;2 _ g2 (A34)
80,’_1'
do 2 2 [ s o * * %2 %
825 = —--5(—50 z; + —X?[z 0;(30 2z 2) + 40*z zzx} (A35)
do, z0o
- = - — (A36)
az£+13 h
do, zo
— A37
8z;‘_1j h ( )
80'2; 2 * ok * % 2 * _* *2 *«2 *2 % %
3gr = " —)—(—2(20 oy+2*z}) + —X—3[a 0330 —2*") +40*°2 zz] (A38)

1]
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B0, _ 2% - o’ (A439)
80;“+U 2h
do, 0% — 22 '
o - o7 (A40)
i—17
do 2 * % 2 x *2 *2 * %2+
-52—5 = -5z + —)Eg[z 0,(30™" = 2*%) + 40”2 Zy] (A41)
doy zo
_ _*% A42
82;‘3_,_1 h ( )
do zo
= 2 (A43)
ij—1
do 2 % % * % 2 * % *2 *2 *2 _ % _*
805‘; = — }5(20 oy+z*z)) + —ﬁ[o oy (30 —2**) + 40*%2 Zy} (A44)
oy, 2% —o? (A45)
BafjH N 2h
doy o — 22
= A46
60;."].__1 2h ( )
Oh?
n = —4 h2 A47
9zf; &t (447)
dh2 oz (A48)
9z% 4y hX?
Oh? zk
7 _ y
8z5,_,  hX? (449)
Oh?
ij
Oh2 o '
il B (A51)
9011 hX?
Oh? o
n__ y
dof_,  RX? (452)

f. The distortion function f ,
Each N-shaped block structure generated by differentiating Fi;, G;;, Hyj

and L;; is composed of a tridiagonal portion, plus the first two and last two
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columns. The first and last two columns arise because of the presence of a; and
ay in every one of the 4(N —2)? governing equations. Although a; and ay are
technically unknown, we can eliminate them by using the fact that da/dn =0

at n = 0,1. Thus,

| =

oy = (4052 - a3)

and

ay = =(4an_1 — an_2),

| b

and now a2, agz, ay-2 and ay-1 appear in every one of the governing equations.
The components of the Jacobian arising from differentiation with respect to «
can then be computed by taking the derivatives of f, f, and f, with respect to
oz, a3, Qj_1, 04, 0jty, ey—zand ay_;, 2<J <N -1,

The normal and tangential stress boundary conditions present the largest
amount of work in terms of evaluating the Frechet derivatives. All possible
derivatives of z, ¢ and ¥* appear in these two equations, and it must be re-
membered that all of these derivatives with respect to £ are approximated by
one-sided differences, not centered differences. The multitude of terms arising
from taking all of the Frechet derivatives are not presented here, but they are

available upon request.



Re, We Cp
Present Work | Ryskin and Leal | Taylor and Acrivos
05,0 33.6 33.6 33.7
0.5,0.5 34.7 34.7 35.1
2,0.5 9.62 9.62 -
2,2 10.6 10.6 -

Table I. Comparison of the present results for the drag
coefficient Cp with the results of Ryskin and Leal (1984) and
with the low Re,We asymptotic results of Taylor and Acrivos (1964).
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Figure captions

Figure 1:

Figure 2:

Figure 3:
Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Schematic sketch of the problem.

Band structure of the mapping Jacobian arising from non-optimal or-

dering.
Representation of the (&, n) finite difference grid.
Band structure of the mapping Jacobian arising from optimal ordering.

Band structure of the mapping Jacobian arising from optimal ordering

when the shape is also considered unknown.

Weak constraint maps generated using Newton’s method: (a) a finite
auxiliary grid and (b) an actual grid.
Band structure of the flow Jacobian arising from optimal ordering of

the equations.

Flowfields for fixed spheroidal shapes. (a) sphere with Re = 20, Cp =
1.404 and (b) Ellipse with Re = 90, Cp = 0.862.

Band structure of the Jacobian of the full problem.

Flowfields and shapes of the full problem for the following (Re, We)
pairs: (a) (0.5, 0.5), (b) (2, 0.5) and (c) (2, 2).
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Appendix I

A Note on Distortion Functions for the
Strong Constraint Method of Numerically
Generating Orthogonal Coordinate Grids

The text of the Appendix I consists of an article which has been accepted

for publication in the Journal of Computational Physics
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Abstract

In the strong constraint method of Ryskin and Leal, a boundary-fitted
orthogonal coordinate grid is constructed by solution of the covariant Laplace
equation on a unit square. The ratio of the diagonal elements of the metric tensor
is specified as input to the method, thereby providing control over spacing of
the resultant coordinate grid. In this note a proof is presented for the existence

for orthogonal mappings generated by the strong constraint method.
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I. Introduction

The emergence of large scale computing facilities in the last two decades
has made it possible to solve problems that had previously been considered as
intractable. In particular, the complicated partial differential equations which
arise in areas such as fluid dynamics, optics, structural analysis, and quantum
chemistry can now be solved efficiently using either finite difference or finite
element techniques. An important advance in the application of finite difference
techniques has been the development of methods to construct boundary-fitted
curvilinear coordinates so that solutions can be obtained on domains of quite
general shape without loss of any accuracy in the application of boundary con-
ditions. An extensive survey of research in grid generation was done in an early
paper by Thompson et al [1], and more recently by Eiseman [2]. In the most com-
prehensive work on grid generation to date, Thompson et al [3] compiled a list
of virtually every known method of grid generation. There is a broad spectrum
of coordinate grid types that can be created, either analytically or numerically;

these grids can be orthogonal, nonortﬁogonal, conformal, or non-conformal.

The most common approach to numerically construct curvilinear coordinate
grids is to solve an elliptic partial differential system, usually subject to Dirichlet
conditions at the four boundaries. The solution of the two equations is a set of
points z(&,n), y(¢,n) which represent a discrete mapping between the physical
(z,y) space and the curvilinear (computational) (£,7) space. For example, the
points z(§,7n,) and y(&,7n,) correspond to a coordinate line of constant n = 7,
in (z,y) space. Of the elliptic PDE techniques, one that has proven to be
extremely powerful in the study of free surface flow problems in fluid dynamics is
a method due to Ryskin & Leal (4] (henceforth referred to as R&L). This method
was developed for the construction of boundary-fitted orthogonal curvilinear
coordinate systems in 2D, with the mapping defined by the covariant Laplace
equation, and constraints imposed on the components of the metric tensor to

insure orthogonality and to control grid spacing. Its power for the solution of
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free surface flow problems is primarily due to the the method of implementation
that R&L refer to as the strong constraint method. The underpinnings of the
theory behind this method are also presented in some detail in Thompson et al
(3], although the work of R&L is not mentioned.

The strong constraint method is a one-step method of mapping a discrete set
of points evenly distributed inside a unit square in a (£, n) curvilinear coordinate
domain onto a discrete set of points in (z,y). The two coordinate grids are
related via the metric tensor, and to insure orthogonality of the generated grid
the off-diagonal components of the metric tensor are required to be zero. The

diagonal components of the metric tensor — referred to as the scale factors by

R&L - are defined by

-

az\? oy 2]
e [(8+2)
i 9¢ a¢

i : (1a)

oz\* /oy\?
= |(5) +(5)

b

P

[N

The ratio h,(&,7n)/he(€,7) is called the distortion function and is denoted by
f(&,m). In the strong constraint method of R&L the distortion function is
allowed to vary with position in the domain, and, in fact is specified on the
(¢,7) domain [0,1] x [0,1) as input to the method. In contrast, the ratio of the
diagonal components would be unity for a comformal mapping.

The system to be solved for the mapping functions z(£,7) and y(&,7n) on a

unit square in (&,7) is

0 oz d /1 Oz

7(r%) + m75) =
9 (;9% _?_lﬁy):
65<f3€)+8n(f an) =

Particular to free surface problems in conjunction with the strong constraint

(1)

method is the boundary condition on the above mapping system which is applied

at the free surface (§ = 1): here h¢ is specified. This boundary condition is of
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neither Neumann or Dirichlet type and it, in part, reflects the functional coupling
of z and y along the free boundary.

Roughly speaking, a particular value of the distortion function‘ f(&osm0)
corresponds to the ratio of the sides of an infinitesimal rectangle in the (z,y)
plane which is the image of an infinitesimal square in the (£,7) plane about the
point (&5,70). Thus, f is a measure of the stretching of the coordinate grid
from a conformal mapping to an orthogonal one. However, since an arbitrary
stretching of an orthogonal grid can produce a highly skewed, non-orthogonal
grid, it is not obvious that an orthogonal mapping should exist for all choices of
f(&,7m). The lack of criteria for choosing an f that will insure the existence of an
orthogonal map is the most important limitation of the strong constraint method
of orthogonal mapping. In the present note, we show that for a restricted class
of distortion functions, the strong constraint method can be looked upon as a
two-step process for which the first step is stretching of the (&,7n) coordinate
lines to an intermediate set of coordinates, and the second step a conformal
map of the intermediate coordinates to (z,y). As might be anticipated, a group
of distortion functions which allow this interpretation are those which stretch ¢
along itself independent of n, and n along itself independent of ¢, and so, in a
manner analogous to classical separation of variables, a product form for f, that
is, f(&,m) = ®(&) O(n), suggests itself. The following analysis shows that if f is
of a product form, then the mapping equations, Eq. (1b), with their associated
boundary conditions comprise a well-posed problem and that the existence of
an othogonal coordinate grid is guaranteed (subject, of course, to discretization
error in the numerical implementation ). Necessary restrictions on ® and © will

be discussed.
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II. Formulation

The strong constraint method splits a free boundary problem via Picard
type iteratioﬁs into two distinct sequences of components: (a) dynamic flow
problems, and (b) coordinate grid generation problems. In terms of finite differ-
encing, at each iteration a coordinate grid is generated for which the free surface
corresponds to a coordinate line. In turn, the dynamic component provides up-
dated information concerning the shape of the free boundary.

For illustrative purposes, consider the problem of flow past a deformable
drop or bubble described by R&L. In terms of the natural cartesian variables
(z,y) the external flow domain is of infinite extent. In R&L, as well as in
this paper, a preliminary conformal transformation is performed (see Fig. 1).
The fluid interface T in (z,y) space is transformed to I'* in (z*,y*), so that
infinity in (z,y) is transformed to the origin in (z*,y*), and this simple trans-
formation replaces the unbounded coordinates (z,y), eliminating the need for
truncation of the domain. The bounded domain (z*,y*) is then mapped via
the grid generation method of R&L onto a unit square in which (£,7) are the
working variables. Computation of the dynamic portion of the problem takes
place in this unit square. The coordinate line £ = 1 corresponds to the free
surface I'*, while { = 0 corresponds to the origin in the (z*,y*) space. The
coordinate n is of “angular” type (¢ is of radial type) and is required to satisfy
periodic constraints, so that (£,0) and (§,1) correspond to the same point in
(z*,y*). Relative to the system (z*,y*) the coordinate grid generation problem
may be mathematically formulated as follows: the covariant Laplace equations

for the mapping functions z*(€,7n) and y*(&,n) are
7] oz* a (1 dz*
R + — - = 0
il 55) + (7 %)
d ay*) o (1 8y*>
— + — = = 0
(1 56) * (7 2

Due to the connection between the system of Laplace equations and the Cauchy-

(2)

Riemann equations in conformal mapping, it is evident that one can write an
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analogous set of equations:
dz*  9y” or* y*
T%¢ = o o = I
As mentioned before, the distortion function f is specified as input in the strong

constraint method, along with the scale factor h3(1,7) for n € [0,1). Here,
1

h* é—g‘f B _?ﬁ 2 N ay* 272
¢ aE EY:

B def YEIRS + ay*\*]
T\ an an

The curve defining the free surface is

= {z*(1,n), y*(1,n) : ne(o1) }. (30)

(M

Due to periodicity,

(z*(¢,1),97(§,1)) = (27(£,0),¥7(£,0)) ¢eo,1], (3¢)
and the origin is defined by

(z*(0,n),y*(0,n)) = (0,0) n €[0,1). (34)
Finally, we require that
y*(1,0) =0. (3e)
Conditions (3d) and (3e) are imposed to make the mapping concrete, such that
Eq. (3d) fixes a particular translation of the coordinates, and Eq. (3e) fixes the
“starting point” of the angular type coordinate 7.

To reiterate, in this framework, the information provided by the dynamic
problem at the most recent step is a new set of values for A%(1,7). The variable
f, referred to as the distortion functon in R&L is to be specified in advance by
the implementer, and is incorporated into the method to provide control over
grid spacing. Little guidance toward the choice of f is available. Further, R&L
do not discuss the question of the existence of solutions to Eq. (2) relative to
the choice of f. This note demonstrates the existence of solutions to Eq. (2) for
a restricted class of f’s, specifically the case when f is of special separable (that

is, product) form in the variables ¢ and 7.
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ITII. The proof

It must be shown that there exists a path between the unit square in
the (£,7) domain and the desired domain D in the (z*,y*) plane. This will
be accomplished by breaking the path up into three steps (see Fig. 2), with
the first step being a change of variables r = f;(¢) and § = fa(n), from a
unit square in the (£,7) computational domain to a rectangle in a circular
cylindrical-type (r,6) coordinate domain (maintaining the radial sense of £ and
the angular sense of ). The functions f;(¢) and f2(n) are assumed to be one-
to-one and smooth f, and are normalized and shifted for convenience so that
f1(0) =0, f1(1) =1, f2(0) = 0, and f2(1) = 27. Beyond these elementary
restrictions f; and fo are arbitrary. The function f; represents a stretching
or shrinking of the coordinate ¢, independent.of n, and likewise, fy causes a
stretching or shrinking of 7 independent of ¢. The functions f1 and fo will
be used to construct the distortion funtion f. In this context then, freedom
in choosing f; and f; corresponds to control over grid spacing. As mentioned
above, the coordinate variables r and 8 are circular cylindrical-type, and so the
rectangle in (r,8) can be transformed to a unit disk in (u,v) space using the
relations v = r cos§ and v = rsinf. The motivation for carrying out these two
coordinate transformations (from (¢,7) to (r,8) to (u,v) ) arises from complex
variable theory, where the Rieménn Mapping theorem guarantees the existence
of a conformal map connecting a given, non-trivial two-dimensional domain to a
unit disk. We have an analogous situation here except that for the strong con-
straint method the actual domain D in (z*,y*) is not known, since the boundary

I'* of D is itself unknown. What is known instead is Re(1,n).

Consider a particular choice for f, namely

£1(8) fi(m)

t In theory, f; and f; should be C* but in numerical implementation this

restriction may be relaxed.
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For this choice of distortion function, Eq. (2) on the unit disk reduces to

d3z* 0%z*
+ =0
8u2 31}2 (5)
azy* aZy*
+ = 0.
du? ov?

This choice of distortion function f(&,7) is a product of the functions f1(€)/f1(€)
and f;(n), and the form may appear confusing at first glance due to the term
f1 in the numerator. However, this term is present because it is the necessary
“length” factor required when dealing with angular and radial type coordinate
systems.

The form of Eq. (5) suggests that we seek an analytic function F of the
form F(w) = F(u + w) = z* + 1y* on the closed unit disk «2 + v2 < 1. This
function maps the unit disk onto the domain D. Direct manipulation shows
that specification of h%(1,n) is equivalent to specifying |F’|, the norm of the
derivative of the analytic function, on the boundary of the disk. As a result of

the Cauchy-Riemann equations

oz* dy* oz*  9y*

du v v du’
Eq. (5) is identically satisfied.
Further, Eqgs. (3a)-(3d) reduce to the very simple constraints

F(0)=0 (6a)

and
arg{F(1)} = 0. (6)

The analytic function F(w) is required to be invertible, so in addition to the
above two constraints we impose |F’| # 0 on the closed disk.

As mentioned earlier, if I'* (or equivalently, the value of F on the bound-
ary of the disk) is known, then the Riemann mapping theorem guarantees the
existence of the conformal mapping F(w), and therefore the existence of an or-

thogonal mapping between (£,7) and (z,y). Here instead we have |F'| specified
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on the boundary, and it is necessary to prove the existence of F (w). This is

carried out as follows: first, define the function
G(u+w) = log(F') = In|F'| + rarg{F'},

where the £ = 0 branch of the log has been selected. The function F is assumed
analytic on the disk, implying that F’, and therefore G1, is also analytic on the
disk. As a result, specification of |[F'| on the boundary (of the disk) is equivalent
to specification of {G} on the boundary. Poisson’s formula immediately gives

R{G} in the interior of the disk (r < 1):

2w - 7.2
R{G(re)} = .2—17?/0 1-2r cols(0 —a) + r? R{G(e") } der (")

Then, ${G} = arg{F'} is determined in the disk via the Cauchy-Riemann

equations for G

23{G} _ oR{G} 3%{G} _  om{G} .
ov  Bu du dv
and subsequent direct integration, and further, arg{F'} = s(u,v) +¢; =

S(uw + 1) + ¢y, where ¢; is a real constant resulting from the integration. The
total derivative F'(w) is then recovered as F' = |F’| exp[sS + ¢;]. Analyticity

of F' implies the existence of a Taylor series representation in the disk
F'(w) = ¢ (e +aw + --) (9)

where w = u + w. A subsequent complex integration of F '(w) yields F(w) to

within a second complex constant, c:
(14 1
F(w) = ca+ € (aow + Fuw+ e Jw (10)

Application of condition (6a) yields ¢, = 0, and the real constant ¢; represents
the rotational orientation of the mapping and is fixed by condition (6b). There-

fore, the mapping F(w) does exist subject to the constraints mentioned above.

T since [F’| # 0 on the disk, G is well defined
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Thus, by a route involving two coordinate transformations and one conformal
map, we have shown that an orthogonal mapping between (¢, n) and (z,y) does
exist, and that it is determined by specification of h%(1,n) along with a special

product form for the distortion function f.
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IV. Conclusions

The purpose of the strong constraint method is to generate an orthogonal
coordinate system by imposing suitable boundary conditions on the computa-
tional (£,7) domain, in conjunction with specification of the distortion function
f(&,m). The boundary conditions reflect the periodicity of the angular coordi-
nate direction and the fact that the image of a boundary line in the (&,7) space
is the origin in the (z*,y*) coordinate plane. In addition, along the coordinate
line £ = 1 (corresponding to the free surface in physical space) the distortion
function hg is specified.

One very important consideration is the relationship between the choice of
f and the existence of an orthogonal mapping. It is intuitive that an arbitrary
stretching of a conformal map will yield a non-orthogonal mesh, or mapping,
and further that a solution to Eq. (2) may not even exist for certain choices of
f. In this note we have shown that if f is of a special product form, represented
by Eq. (4), and if k% is specified at one boundary, then an orthogonal mapping
does exist between (¢,7) and (z, y).
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Appendix: Details of the proof

The main text of Chapter III provides little detail regarding the necessary
coordinate transformations, how the form for the distortion function f arises,
and the connection between hj(1,7) on the computational domain and |F'| on
the boundary of the unit disk; in this section we will derive the equations in the

previous section.

1. the coordinate transformations

To demonstrate that a path exists between (z*,y*) and (&,7) it is more
convenient to proceed in the reverse order to the one presented above. That is,
we will follow the path from (z*,y*) to (£, 7) rather than from (&, 7n) to (z*, y*).
The Laplace equations (the mapping equations) in terms of the cartesian-like

variables (u,v) are

o3+ d?z*
- =0
8u2 6'02 (Al)
azy* a2y*
+ = 0.
ou? ov?

By using the relations v = rcos § and v = rsin 8, these equations can be written

in the (r,8) domain as

19 s dz* 1 8%z*
r5: (7 5r) * g = O )
* 2,,%
199y, L% _
rdr\ Or r? 962
where the scale factors for this coordinate system are
L
ozx*\?2 dy*\2|2
w=(E)+ ()] -
(A3)

= [(Z) (2T = -

Application of the chain rule, along with the relationship F(u + w) = z* + wy*
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to the derivatives in Eq. (A2) yields

or* OR{F} ) 85}%{F}
3 = cos § ™ -+ sin Bv
Br 3u a‘U (A4)
oz* . BBR{F} tr OSBBSE{F}
g ~ T Mgy ¢ £
dy* _ . 0S{F} oOS{F}
2 = —rsin g E 4+ rcosd Eat
These relations, together with the Cauchy-Riemann equations
O{F} _ OR{F} O{F} _ IR{F} (45)
Jv - Jdu du - ov '’

show that the coordinate mapping defined by Eq. (A2) is orthogonal.

Now, we transform coordinates from the circular cylindrical-type (r,8) do-
main to the (£,7) domain via the relations r = f1(€) and 8 = f2(n). Noting
that

o _ a0
ot ~ acor 5
9 _wo _ 0 o
dn ~ nadd — a0’
then Eq. (A3) can be written as
1 i(&&x*) + 1 _(2_(_1_8:1:*) _ 0
T 0E\fi 98) T TIrion\7i on )
2 (5%) - e (%) -
fifid&\fi ¢ fifyon\fy om '
Multiplying Eqs. (A7) by f1f]f} we obtain
(f1fz 333*) n __Q_( fi 333*) ~ 0
F) In\fify on /)
¢ f1 3 n\fifs 9In (AS)

m(flfz ay*) N _a_( 7l ay*) o
¢\ f1 9¢ on\ fifs 9n '
Thus, if we denote the function f;f}/ fi as the distortion function f(¢,n),
Egs. (A8) reduce to the mapping equations of R&L shown in Egs. (2) of the
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previous section, and this f is of separable (product) form. It is now clear that
the particular choice of the form of f in Eq. (4) of the previous section arose
from requiring that Eqgs. (A8) simplify to the R&L’s mapping equations when
going from the (r,#) domain to the (¢,n) domain.

Finally, we must show that the coordinate mapping functions z*(£,7n) and
y*(&,n) resulting from the solution of Egs. (A8) form an orthogonal coordinate
grid, and that the Cauchy Riemann-like equations for this system are the same

as the ones found by R&L. First, define the vector R = z*ez« 4+ y*ey«. Then,

o — ORJOr % e,. + %L e, (49)
T Jemjar] T (224 (%L)z
and thus
R
OR /8¢ s
e = = - = e,. (A10)
|oR /0¢| lf{ oR

Similarly, we find that e, = e4. Since the (r,6) coordinate system is orthogonal
it is clear that the (£,7n) coordinate system is also orthogonal, with e; - e, =

er'eG:O.

To prove that the solutions of Eqs. (A8) form an orthogonal mapping, we

must show that

dz* dz*  dy* Ay* ‘
= 0. 1

58 on ' B¢ on (41

Equation (A11) corresponds to the off-diagonal component of the metric tensor

relating (z*,y*) and (£,7), and we denote the components of this matrix by g;;.
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Substitution of the relations in Egs. (A6), (A4), and (A5) into Eq. (A11) yields

dz* dz* dy* dy*
= gl
0 = 11355 + o o)

' et OR{F . OR{F
= flfz{(cosﬁ%&—l+sm0~—aiv—})
/ AR{F}

OR{F}
™ + rcos 19-————-——av )

OR{F} . OR{F}
BT +sm0~———m )

X (—-rsinﬁ

(A12)
+ (—-cos 0

. BQR{F} OR{F}
X (rs1n0~—5;-— + rcos £ )
= 0.

In the (r,8) coordinate domain the Cauchy Riemann-like equations are

oz* 10y* 10z* dy*
or ~ r 99 rag  or’ (413)
so that substitution of the relations in Eq. (A6) into Eq. (A13) gives us
_graz _ 1,ay 1’8:1: =___%,_8y. (A14)
f1 9¢€ fifz On fifs on fi 8¢

When both equations in Eq. (A14) are multiplied by f; f} we obtain the relations
found by R&L, again provided that the distortion function f is of the form given
in Eq. (4) of §III of this chapter.

I1. The boundary condition at £ =1
As described in §1II of this chapter, the boundary condition applied at the

free surface is the specification of the scale factor, A¢(1,7). The scale factor is

defined by
x x %
() @) o

and use of the relations in Eq. (A6) yields

- [ -@)]-

[l
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Finally, employing Eqs. (A4) and (A5) we can write Eq. (A16) as

- fl[( ER{F} sing as;{p})z
(

BJ{F} i 8§{F} 2]

4+ | cos § ———=

KC 892{F} Cin acs{p} 2

=)
BE‘R{F}Q 2}

(A17)
+ (c BQ{F} +sin @ E -
- #[(% ) (%) ]
= f; ]F u+w)

It is obvious, then, that specification of h}(1,7) is equivalent to specification of

|F'(w)| on the boundary of the unit disk in the (u,v) domain.



— 247 -

References

1. J.F. Thompson, F.C. Thames, and C.W. Mastin, “Automatic numerical
generation of body-fitted curvilinear coordinate system for field containing

any number of arbitrary two-dimensional bodies”, J. Comp. Phys. 15,

299-319 (1974).

2. P.R. Eiseman, “Grid generation for fluid mechanics computations”, Ann.

Rev. Fluid Mech. 17, 487-522 (1985).

3. J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin, Numerical Grid Generation,
Elsevier Science Publishing Co., New York (1985).

4. G. Ryskin and L.G. Leal, “Orthogonal mapping”, J. Comp. Phys. 50, 71-100
(1983).



— 248 -

Figure captions

Figure 1: Conformal mapping between the infinite physical domain and the finite

auxiliary domain.

Figure 2: Schematic representation of the transformation path between the finite

auxiliary domain and a unit square in the computational domain.
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Appendix II

The growth of creeping plumes
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I. Introduction

In this chapter we present an efficient numerical scheme for studying the
creeping motion of bubbles and drops in the presence of, or attached to a rigid
plane boundary. Specifically, we will focus on the growth of a creeping plume.
This scheme is based on the now-familar boundary integral technique first ex-
ploited in the study of low Reynolds number flows by Youngren and Acrivos
(1976) when they considered streaming flow past an arbitrary body of revo-
lution. In their work, Youngren and Acrivos took advantage of an integral
reformulation of the Stokes’ system derived by Odgqvist (1930): the problem is
reduced to calculation of unknown normal tractions at the surface of the body.
Their computations were further simplified by the axisymmetry of the geome-
try, which lowers the domain of integration from two dimensions to one. The
approach taken by Youngren and Acrivos was ideally suited to the infinite flow
domain, because the boundary integral method—as indicated by its name—
reduces a problem over the full domain (usually a subset of R2) to integration
over all of the boundaries of the domain (a subset of ®2), and in the infinite do-
main problem considered by Youngren and Acrivos this means integration over
the body surface. In concept, there are no restrictions on the number of surfaces
comprising the boundaries of a domain, but since the number of boundaries is
equal to the number of surface integrals, in numerical practice the number of
surfaces (i.e., integrals) matters greatly, since the transition from a continuous
integral équation to a discrete sum is a tradeoff between desired accuracy and
actual computational tractability. Specifically, as far as computations are con-
cerned, the boundary element method requires the solution of a linear system
having a dense coefficient matrix; the order of the matrix is 4N, where N is the
total number of sub-elements into which all of the surfaces have been divided.
Clearly, the cost in computational speed and storage requirements must dictate

the level of accuracy, in terms of discretization, which can be achieved.

Recently, researchers have turned their attention to applying the boundary
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integral method to bodies in the presence of boundaries. The reason for the
work is twofold: first, the influence of walls or deformable interfaces on the rise
or settiing of particles is of industrial importance, and also is a more realistic
situation than an “infinite” domain free of boundaries. Second, the situation
lends itself to more complicated flowfields and behavior due to the interaction
between the wall and the body, and thus can be considered inherently interesting.
Several examples of this phenomenon are the sedimentation of solid particles
towards a rigid boundary or through an interface between two immiscible liquids,
and the coalescence problem, in which a drop of one liquid moves under the
action of buoyancy through a second liquid towards an interface separating the
continuous fluid from the drop fluid. Lee and Leal (1982) considered the case
of a solid sphere moving with constant velocity in a direction normal to a rigid
interface. Berdan (1982) and Geller et al (1986) extended this earlier work to
study the motion of a solid sphere moving in a direction normal to a deformable
liquid-liquid interface. The latter study focused on large deformations of the
interface, in particular, the formation of relatively long tails of fluid “pulled”
along with the sphere as it passed through the plane of the undeformed interface.
As with the work of Youngren and Acrivos, Berdan, Geller et al and Chi and
Leal (1987) also used the fundamental singular solution (or Green’s function)
put forth by Odqvist (c.f. Ladyzhenskaya 1963). The numerical implementation
of the boundary integral technique involved numerical integration not only over
the surface of the solid sphere, but also over the interface, theoretically extending

out to infinity.

There is a large class of problems, however, which involves the motion of a
body (or bodies) in the presence of a plane wall: the growth of an attached drop
due to the flow of fluid through an orifice (that is, a plume); the growth of an
attached vapor bubble due to boiling; the motion of a deformable drop or bubble
due to the action of gravity; the stretching and eventual breakage of a pendant

drop; and the well-known coating flow problem. All of these problems are strong
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candidates for solution via the boundary integral (i.e., BI) method because a
knowledge of the full velocity and stress fields is of secondary importance relative
to the shape and velocity of free surface. Of course, the BI method is limited
to situations where the Reynolds number is, in theory, zero or infinite, whereas
several of the examples above involve flows where Re can be large but finite,
especially boiling and coating flows, and the technique is obviously not valid in
conjunction with these problems. This is not to say that all boiling and coating
problems are characterized by high Reynolds number, and the strengths of the
BI method—relatively low computational memory requirements and suitability
for use with complicated geometries—make it a potentially powerful tool to

study these problems.

To demonstrate the effectiveness of the method, we will consider as an il-
lustrative example the pendant drop problem. The static pendant drop problem
has received considerable attention due to its use as a means of computing in-
terfacial tension (e.g., Pierson and Whitaker 1976). The static problem provides
a check on the long time behavior of the boundary integral scheme because it
can be compared with the static analysis of Brown et al (1980). In the static
analysis, the position of the contact line is assumed known and the angle is al-
lowed to vary. More on this will be said in the discussion. The dynamic pendant
drop (or, plume) is of considerable interest in oceanography (Olson and Singer
1985), and considerable experimental work has been done in this area (Rouse
et al 1952; Richards 1963). Creeping plumes are divided into two classes: di-
apiric plumes, for which the viscosities of the plume fluid and surrounding fluid
are approximately equal, and cavity plumes, for which the viscosity ratio of the
plume is much less than the ambient fluid viscosity. Diapiric plumes are char-
acterized by thick tails, while cavity plumes have thin, thread-like tails. In the
experimental work of Olson and Singer, laboratory plumes were generated by
injecting a glucose solution through a very small orifice into another glucose solu-

tion of different density. Almost all of the previous theoretical work on creeping
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plumes has been concerned with steady motion; similarity solutions have been
obtained for steady-state plumes when heat transfer is neglected (Brand and
Lahey 1967; Roberts 1977) and also when heat transfer is considered (Spaulding
and Cruddace 1961).

The time-dependent growth and formation of plumes has not received as
much attention. There have been two-dimensional plume experiments (Foster
1971; Boss and Sacks 1985) and Morris (1985) obtained an approximate asymp-
totic solution for the growth of a two-dimensional plume. Additionally all of
this previous work on plume growth has focused on diapirs. Here, we will ob-
tain solutions for plumes at a variety of viscosity ratios and show that when the
viscosity ratio is O(1) we do indeed see diapirs, and when the viscosity ratio is

less than 1 cavity plumes are observed.

The approach taken to solve this plume problem differs from previous
boundary integral work mentioned above in the choice of the Green’s function.
We will demonstrate that a particular choice of the Green’s function eliminates
surface integrals involving the wall, thereby allowing greater nodal density at
the surface of the plume. That is, since the wall is not included in the integral
equations it is not necessary to truncate the domain due to computational con-
siderations. Further, from the standpoint of computational cost there is a limit
on the total number of sub-elements into which the boundaries can be divided.
Removal of one of the boundaries (the wall) allows the use of more sub-elements
on the surface of the plume, increasing the accuracy of the method. Although
the problem under consideration is axisymmetric, this approach is fully appli-
cable to and is extremely well-suited for three dimensional problems; in three
dimensions, distributing elements on the surface of the body does not prove in-
tractable in terms of computational ability since it is not necessary to discretize

the wall.

To model the injection of the buoyant plume fluid, we use a solution in

Happel and Brenner (1983 pp. 153-154) for steady flow through a circular orifice.
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For constant head (pressﬁre drop across the orifice) there is an exact solution in
oblate spheroidal coordinates. The disturbance velocity and stress induced by
this flow will be seen to depend on a dimensionless volumetric flow rate M, and
the expressions for velocity and stress can be found in the Appendix.

The qualitative features of the solutions to the creeping plume problem will
be seen to depend on several dimensionless quantities: the viscosity ratio A;
the capillary number Ca, which reflects the relative magnitude of viscous and
surface tension forces; and the gravity number Cg, which is the ratio of body
force to surface tension force. For the results obtained here, the mass flow rate
M was chosen sufficiently small that it had no effect on the motion of the plume,
yet large enough to supply necessary mass flow.

In §II the governing equations and boundary conditions are presented, and
the integral equations are derived. A brief summary of the mechanics behind

implementation follow. A discussion of the results obtained is given in §III.
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II. Formulation

a. Equations and boundary conditions

We consider a drop which is attached to a plane wall, as shown in Fig. 1.
The drop fluid will be denoted as fluid 1 and the outer phase as fluid 2. It
is convenient to describe the geometry in terms of the cylindrical coordinates
(p, 8, 2) (since the problem under consideration is axisymmetric, the coordinates
will usually be referred to as (p, z) ), with z = O corresponding to the wall.
Both the drop and the surrounding liquid are assumed to be Newtonian and
incompressible, so that the inner fluid is characterized by constant viscosity
and density g;, and the outer fluid by u, and g5. The analysis relies on the
assumption that movement of the plume is slow enough so that the effects of
inertia are negligibile both inside and outside the drop. This statement can be

expresssed mathematically as

Ua
— ],
V2

The characteristic velocity U is the terminal velocity of a spherical drop having
the initial volume as the plume and a is the radius of this sphere. The govern-
ing equations, the Stokes equations, have been derived in dimensionless form

elsewhere (Lee and Leal 1982) and are restated below:

0= -Vp) 4 Av2u®
0=V-ul®

for the inner fluid, and in the outer:

0=-Vp® 4+ viu®

2
0=V.ul® )

where A = uy/p; and arises due to nondimensionalization of the pressure. The

boundary conditions are

u® —o as ||x|| — oo (3)
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in the upper half-space, and at the interface x € S;:
u = @, (4)
The stress jump at the interface Sy is
D _per®Y 2 (Ll L
(z\n T; n-Tj ) = n( aV n + z), (5)

and the kinematic condition is

—DE?—=%€-+u-VF=O. (6)
The stress tensor T in Eq. (5) does not contain the hydrostatic contribution,
and so the body force term appears explicitly as the second term on the right
hand side of the stress balance. However, in Egs. (1) and (2) the body force is
incorporated into the pressure.

The function F appearing in the kinematic equation, Eq. (6), is the para-
metrical representation of the position of the surface F (p(s), 2(s); t) = Oat any
time ¢ in terms of the arc-length s. By convention, arc-length is measured from
the contact point between the interface and the wall. (In actuality, there is a
contact line between the plume and the wall, but in the axisymmetric computa-
tion the line reduces to a point.) The normal to the surface is outward-pointing
from fluid 1, and is defined in terms of F as

n= -——

VF

IVF|’
Using an arclength parametrization of the interface position has many advan-
tages over using a representation which relies on describing the position in terms
of a function of one of the independent coordinate variables (Simmons 1985).
The coordinate representation is only valid when the functional representation
of the interface position is single valued. For cartesian and cylindrical type rep-

resentations, the onset of double valued behavior is manifested by very large

(or infinite) values of the derivative of the coordinate functional. For example,
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Geller et al (1986) analyze the creeping motion of a solid sphere normal to a
deformable, initially flat interface. To represent the interface, three different
“shape functions” were required, resulting from the use of three matched co-
ordinate systems: two cylindrical and one spherical. Obviously, an arclength
parametrization suffers from none of these difficulties.

In terms of the parametrization, the components of the unit normal to the

surface are

z
e = — ToN1/2
(P2 +z2) / ™
b
2z ]
and the curvature is
V.n= ad v L2 P2 (8)

p(p? + 32) 1/2 (62 + ,32)3/2.'
The dot refers to differentiation with respect to the parameter s.

There are three dimensionless parameters resulting from nondimensional-
ization of the equations and boundary conditions. They are the viscosity ra-
tio, A = p1/u2; the capillary number Ca = uoU/7; and the gravity number
Cg = uyU/a?g(e2 — @1). Additionally, a fourth parameter M arises, which is

the volumetric flow rate through the orifice.

b. The boundary integral method

The crux of the boundary integral technique is the transformation of a
linear partial differential system into an integral system. The technique used to
accomplish this parallels the standard conversion of linear ordinary differential
equations into integral equations via Green’s functions and the adjoint operator
(Coddington and Levinson 1955). In a manner analogous to the earlier work
of Lee and Leal (1982) we can obtain an integral expression for an unknown

velocity u at any arbitrary point x € 1 (1 is the domain under consideration):

- (u(x)), = fm (7€) vI(x,8) — m- 2 (x,€) - u(6)) dS¢ (9)
