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ABSTRACT

This thesis, which stemmed from the superconducting heavy-ion
accelerator project at Caltech, deals with the problem of phase and
ampTitude stabilization of the fields in superconducting resonators,
The problem arises from the fast (&50 Hz) resonator eigenfrequency
modulation of magnitude (~100 Hz) which is much larger than the
resonator bandwidth (10 Hz). The problem is compounded by the fact
that the coupling between the electrical and mechanical modes of the
resonator can lead to instabilities (ponderomotive instabilities).
The solution suggested involves operating the resonators in self-
excited Toops, and electronically modifying the Toop parameters in
order to lock the Toop oscillations to an external phase and amplitude
reference without attempt to modify the instantaneous resonator eigen-
frequency, It is found that this method of phase stabilization is
well suited to resonators with small energy contents and small eigen-
frequency deviations since the power required is equal to their
product; this occurs when the loaded bandwidth of the resonator is
twice the maximum eigenfrequency deviation to be compensated for, It
is also found that when the Toop is free-running, the field amplitude
is stable and no ponderomotive instabilities are present as Tong as
the non-ideal effects are limited. When the Toop is locked to an ex-
ternal phase and amplitude reference, ponderomotive instabilities can
occur; however, the loop can be made stable by adjustment of the loop
phase shift, and the stable range can be increased by using high

amplitude and phase feedback gains. It is also found that under
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certain feedback conditjons, the error on the particle energy gain
can be made to vanish, although residual phase and amplitude errors
are still present, A microprocessor-controlled feedback system based
on this analysis is then described and results of experiments per-
formed 1in conjunction with a 150 MHz lead (Pb) plated superconducting
split-ring resonator are presented, The experiments show excellent

agreement with the analysis.
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Chapter 1
INTRODUCTION

Superconductivity in metals, usually associated with zero D.C.
resistance and expulsion of magnetic field, was discovered in 1911,
However, since it is a macroscopic quantum state, it was not under-
stood and explained until 1957 when the tools to describe such a
state became available (B1). With the help of the BCS theory of super-
conductivity, the behavior of superconductors under various conditions
could be predicted. It soon became apparent that superconductivity
had great application potential, and it slowly shifted from the realm
of physics to the one of applied physics. As of this date, there are
three major areas of application of superconductivity (N1):

1. Low power superconductivity which uses the properties of

Josephson junctions

2. High power D.C. superconductivity (magnets, motors, etc.)

3. High poWer RF superconductivity (resonators)

Item 2 has already entered the engineering stage and industrial
applications abound. Item 1 and 3 are still in the developmental
stage, and should enter the industrial world in a few years.

This thesis deals with one aspect of item 3; namely RF super-
conducting resonators. In the early 1960's, it was noticed that
although superconducting surfaces operating at radio-frequencies*
had a non-zero surface resistance, this surface resistance was still

very small; and, in any case, much smaller than that of normal

*
By radio-frequency, we mean the 10 MHz - 10 GHz range.



~2-
materials like copper operating at room temperature. It then became
apparent that superconductivity could be used to great advantage
in applications where metals had to carry large RF currents. One
such application was in particle accelerators where particles gain
energy by interacting with large electromagnetic fields present in
a series of resonators.* Using superconducting materials to build
these resonators has two main advantages. Firstly, from the econom-
ics point of view, the power required to achieve a given energy gain
is greatly reduced. The surface resistance of superconductors in
the 100 - 200 MHz range is about 105 - 106 times smaller than the
one of copper. However, because the Joule losses are so small in
superconductors, other loss mechanisms which were negligible in
normal resonators can become important; namely dielectric and field
emission losses. Furthermore, each Watt dissipated in 1iquid helium
requires about 1,000 W to be extracted to room temperature. The
total power consumption is thus reduced by a factor of about 10 in-
stead of 105; since even small accelerators require amounts of power
measured in tens of MW, this factor of 10 is still very significant.
The second advantage in using superconductivity is more important to
nuclear physicists. Since the Joule dissipation in normal resonators

is so large, normal accelerators usually have to be operated with a

*

In this particular application of superconducting resonators, super-
conductivity improves what can be done with normal resonators. There
are other applications, however, where superconductivity is absolutely
required as in a new electromechanical conversion scheme recently
proposed (D4, Y1).
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Tow duty cycle (v5%) in order to keep their temperature at a reason-
able level. Superconducting accelerators, on the other hand, can
be operated with a duty cycle of 1, thus reducing the length of an
experiment by a significant factor.

The first proposals of superconducting accelerators were about
high energy electron linear accelerators (F1, S1). Despite the very
large amount of effort invested in superconducting electron acceler-
ators, some problems have still proven to be insurmountable at this
date, and their future is uncertain. A few years later, supercon-
ducting linear heavy-ion and proton accelerators were proposed, and
are now entering the final stage of development; they should be oper-
ating in the very near future (B3,K2).

It should be pointed out now that most of the problems which
have to be solved in high power RF superconductivity are not con-
sequences of superconductivity in itself, but are consequences of
the fact that the rescnators are superconducting.r By this we mean
that all the phenomena which had to be dealt with were already present
in normal resonators; however, they were overshadowed by the large
surface resistance of the normal metal, and their influence was
negligible. Because of the small surface resistance of supercon-
ductors (or small bandwidth, or large Q of superconducting resona-
tors), these phenomena become very important, and new solutions have
to be found.

In order to successfully build a superconducting heavy-ion
linear accelerator, three main problems have to be solved. Firstly,

an electromagnetic structure has to be found in which the field
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distribution is such that the particle interacts efficiently with
the field and gains as much energy as possible. The first require-
ment on the structure, then, is that the wave velocity in the resona-
tor closely matches the velocity of the particle. Since this kind
of accelerator is intended to accelerate particles from a velocity
of about 0.04c to about 0.15c, this implies that the electromagnetic
structure has to be very strongly loaded in order to decrease the
phase velocity. Another requirement placed on the structure, whether
it is normal or superconducting, is that the power dissipated at a

given energy gain is minimal. This can be expressed by:

<Bﬂ g minimum (1.1)

<E >
Z

where <%§> represents the average of the square of the magnetic
field at the surface, and <EZ> is the average electric field experi-
enced by the partic]e. There are also other requirements which are
specific to superconducting resonators. A superconducting resonator
will operate up to the field level at which at any point of the sur-
face the parallel magnetic field reaches the critical field of the
superconductor -- however small the area of high magnetic field is
and however small the magnetic field is everywhere else on the sur-

face. This can be expressed by:

By max  minimum (1.2)

<E >
Z
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Since resistive losses are small in superconducting resonators,
other loss mechanisms can become important and even dominant. One
of them is fié1d emission from points of the surface where the normal

electric field is high. A new requirement is then:

E Lmax minimum (1.3)

<E >
Z

Finally, for reasons which will become apparent in Chapter II, it is
very desirable that the energy content U of the resonator be as small

as possible at a given energy gain:

U minimum (1.4)
pa

<E >
A

There are also other requirements placed on superconducting resona-
tors which cannot be stated as simply. One of them is that the cur-
rents flowing through joints between different parts of the resonator
be as small as possible since these joints, which are necessary for
fabrication, usually have lowered superconducting properties. Another
requirement 1is that the resonator be made as mechanically rigid as
possible so as to minimize the eigenfrequency variations caused by
vibrations and radiation pressure.

As the above requirements became better understood, several
electromagnetic structures were developed; among them we may cite the

helical resonator (S2), the reentrant resonator (B2), the spiral
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resonator (D1), and the split-ring resonator (S3). With the advent
of the split-ring resonator, this area of the development program has
probably reached its final stage, and it is unlikely that a new struc-
ture will be introduced which will provide improvements for this kind
of application. It is interesting to note that the most favored struc-
tures for normal and superconducting heavy-ion LINAC are different.
In the normal case, spiral resonators are usually preferred;'whereas,
in the superconducting case, split-ring resonators are preferred. This
is due to the different requirements placed upon the structure in the
two cases. The spiral resonator has the advantage of easier fabrica-
tion while the split-ring resonator has the advantage of lower surface
fields and small RF currents flowing through the joints.

The second main area of research dealt with the material aspect.
Once a structure had been found which had an optimal field distribu-
tion, it was necessary to find a superconducting surface which would
allow the highest field magnitude. Actually, the development of the
structure and of the material occurred simultaneously and were inter-
related. Since some of the requirements placed on the structure are
incompatible with each other (for example: modifying the structure to
decrease the maximum surface magnetic field usually increases the
maximum surface electric field), the structure had to be optimized
in such a way that the maximum electric field and the maximum magnetic
field allowable by the superconductor would be reached simultaneously.
When work began on superconducting heavy-ion accelerators, there

were two candidates for the superconductor; namely niobium (Nb) and
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lead* (Pb). Although considerable improvements have been made on
these two materials, these improvements have been parallel, and the
question as to which one is preferable is still open. The main
advantage of Nb over Pb is in its superconducting properties; its
critical temperature is higher (9.5°K compared to 7.2°K), and so is
its critical field (1950 G compared to 800 G). On the other hand,
the Cu-Pb composite offers the advantage of better mechanical and
thermal properties and easier fabrication. Recently, work has begun
on a Cu-Nb composite which would improve the thermal stability of Nb
structures (S5). Other materials are also being investigated such as
NbSSn (H1); this work, however, is still in the experimental stage,
and such a surface is not yet suitable for a full-scale application.

The third area of research is in the control and stabilization of
the accelerator. Once the fields of the desired profile and magnitude
have been achieved, it is necessary to assure that the interaction
between the particle and the electromagnetic field takes place in a
controllable and predictable way. The problem arises because of the
very narrow bandwidth (v10Hz) of the resonators, and the aim of this
thesis is to provide a solution to this problem.

A heavy-ion linear accelerator is composed of a series of resona-
tors; each of them sustaining a longitudinal electric field along

the particle trajectory of the form:

E, = E(z) cos(wt + ¢) (1.5)

*
By lead, we mean a structure made of copper, electroplated with
5 - 10 p of lead (D6).
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To find the energy gain of a particle of charge q traversing
such a resonator, we will assume that the resonator is centered at
z = 0, extends from z = - %-to z =+ %-,
symetrical (E(z) is even), that the particle of velocity v = B¢

that the field profile is

reaches the center of the resonator at t = 0, and that the energy
gain is small (v = constant). With these assumptions, the energy

gain W is:

E(z) cos (% z) dz (1.6)

W=4q cos ¢ &C

N N

This can also be represented as:

W=gqcos ¢ E(g,) ¢ T(8) (1.7)

where E(BO) is the average electric field seen by a particle
whose velocity is matched to the resonator, and T(g), called the
transit time factor, characterizes the velocity acceptance of such
a resonator. Figure 1.1 shows the transit time factor of two sb]it—
ring resonators.

Equation (1.7) clearly shows that the energy gain is maximum
when the particle is in phase with the field (¢ = 0). Under this con-
dition, however, the beam of particles is unstable under deviations
of the time of arrival of the particles, and it is preferable to
operate with ¢ < 0 so that particles arriving early will experience

less acceleration than particles arriving late assuring Tongitudinal
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stability of the beam. An acceptable operating phase, also called

synchronous phase is:

¢ = -20° (1.8)

]

which is a compromise between ¢ 0 where acceleration is maximum,

-90° where the beam is most stable,

]

but the beam is unstable, and ¢
but no acceleration is provided.

From equation (1.7), it is also apparent that in order to con-
serve the monochromaticity of the beam, the RF field amplitude and the
phase between the particle and the RF field have to be as stable as
possible. Since the particles will traverse successively all the res-
onators, this implies that all the amplitudes have to be stable, and
that the fields in all the resonators have to be locked to a common
phase (or frequency) reference.

When normal resonators are used, these requirements are auto-
matically satisfied since the eigenfrequency variations of the resona-
tors are much smaller than their bandwidths so their eigenfrequencies
can be considered for all practical purposes as being identical and
constant, and all the resonators are driven by a common oscillator.
When superconducting resonators are used, however, because of their
very narrow bandwidths, their instantaneous eigenfrequencies differ
from the reference frequency by many bandwidths, so that if the resona-
tors were driven by a common oscillator, the field amplitude and
phase would be random.

The eigenfrequency deviations occur on three different time
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scales:

1. static: several resonators cannot be fabricated with a
frequency matching better than 50 kHz which cor-
responds to mechanical tolerances of less than
1 mil

2. quasi-static: variations of eigenfrequency due to temper-

ature drifts and radiation pressure

3. dynamic: excitation of the mechanical modes of the resona-

tor by external noise and the radiation pressure
(ponderomotive effects)

Effects 1 and 2 can be dealt with easily by mechanical tuning
(deformation of the resonator walls), so we will concentrate on the
dynamical effects which occur on a time scale of the order of the
period of the mechanical modes of the resonator (~20msec).

In order to show how sensitive superconducting resonators are
to mechanical deformations, let's consider a 150 MHz split-ring res-
onator with a Q of 107 (bandwidth = 15 Hz). In such a resonator, the
characteristic length (the length which determines the eigenfrequency;
in this case, the distance between the drift tubes) is of the order
of 1 cm. This means that a variation of the characteristic length
of 102 will produce a change of the eigenfrequency of the order of
the bandwidth. Clearly, such variations will be easily produced by
excitation of the resonator by acoustical noise and vibrations. Such
vibrations can be kept to a minimum, but cannot be eliminated, and
random eigenfrequency variations of the order of 100 Hz or more are

to be expected. Another source of mechanical deformation of the
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resonator is the pressure exerted by the field on the walls of the
resonators, i.e. the radiation pressure. If the field amplitude were
absolutely stable, the radiation pressure-induced frequency shift
would be constant, and could be compensated for easily; however,
since it is quite large at operating field amplitude (from 400 Hz for
a split-ring resonator up to 400 kHz for a helical resonator), even
a small modulation of the field amplitude can produce large modula-
tions of the eigenfrequency. The problem is compounded by the fact
that such a coupling between the electrical and mechanical modes of
the resonator through the radiation pressure can lead to instabilities
of the electromechanical system (ponderomotive effects) (K1, S4).
Such a coupling implies a power flow between the electrical and
mechanical modes; if the power transfered from the electrical mode
to the mechanical mode is larger than the power dissipated by the
mechanical mode, instability will occur. This instability takes the
form of a building up of the mechanical mode (oscillatory instability).
Another instability, called monotonic instability, can be present. It
is analogous to the jump phenomenon in many non-linear oscillators
where there is an unstable region of amplitude between two stable
levels.

The task before us is then to find a way to stabilize the ampli-
tude and phase of the field in a resonator, although its eigenfre-
quency can change rapidly by many bandwidths, and at the same time
prevent or eliminate the instabilities produced by the electromechan-
ical coupling.

Ihtil now, the solutions to this problem involved direct
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modification of the eigenfrequency of the resonator. One method

was to connect an external reactance to the resonator through a PIN
diode switch (D2, H2, D3, P1). The diode was turned on and off with
a duty cycle such that the average frequency of the resonator would
be equal to the frequency reference it had to be locked to, and with
a switching rate such that the residual phase jitter would be accept-
able. Another method was to produce rapid mechanical deformation of
the resonator via a piezoelectric feedback system (B2).

In this thesis, we present a solution which is novel in several
ways. Firstly, we do not use a generator to drive the resonator,
but we operate it in a self-excited loop. Secondly, we make no
attempt to modify the instantaneous resonator eigenfrequency; instead,
we modify the self-excited loop so it will oscillate at a constant
frequency. It will be shown that such a system has the advantage
that even when no feedbacks are present, the loop is still oscillating
at its nominal field amplitude (amplitude of the fields in the resona-
tor ) and that the amplitude is stable, and that the ponderomotive
instabilities are easily removed. Furthermore, the feedback parameters
can be chosen so that the error on the energy gain vanishes, although
residual errors on the phase and amplitude are still present.

This thesis is divided as follows: Chapter II presents the
principle of phase stabilization of a self-excited loop. In Chapter
I1I we first determine the equations describing the behavior of a
resonator in a self-excited loop, we then determine the stability of
a free-running self-excited loop (unlocked state) in presence of

electromechanical coupling, the stability analysis is then pursued
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to the case where amplitude and phase feedback are present (Toop
locked to an external amplitude and phase reference), and finally
we determine the performance of such a system (residual phase, ampli-
tude and enérgy gain errors). In Chapter IV, we describe a system
which was built based on the analysis of Chapter III, and in Chapter V
we present experimental results obtained with this system and a 150

MHz superconducting split-ring resonator shown in Figure (1.2),
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13.75 ¢cm

Fig. 1.2. Drawing of a 150 MHz split-ring resonator.
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Chapter II
PRINCIPLE OF STABILIZATION OF A SELF-EXCITED LOOP

The principle of a self-excited loop is shown in Fig. 2.1. A
self-excited loop is composed of a filter,which will be assumed to be
linear, a phase shifter, and a limiter. Two other elements which are
usually present in a self-excited Toop but are not essential in the
understanding are an attenuator and an amplifier. The output of the
filter is used as its input after going through the phase shifter
and the Timiter. A self-excited loop is in essence an unstable
positive feedback loop where the limit cycle or amplitude of the
oscillations is set by the nonlinear element in the loop,i.e. the
1imiter. The frequency of oscillation is the one at which the
total loop phase shift is a multiple of 2.

The filter is characterized by its transfer function:

o(ie) = Alw) eie(w) (2.1)

where A(w) is the amplitude characteristic and 6(w) is the phase

chatacteristic .

The Toop will then oscillate at the frequency w, such that:
o(w) + 6, = 0 modulo 27 (2.2)
where ez is the phase shift introduced by the loop phase shifter.

Depending upon the complexity of ¢(iw), there may be several

frequencies which satisfy (2.2). We will, however, assume, for the



-17-

@(’im)
Filter
Phase
’}‘ Shifter
Amplifier (ez)

|
o

Attenuator R

v
)

Limiter

Fig. 2.1 Block diagram of a self-excited Toop containing

a filter of transfer function ¢(iw)
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sake of simplicity, that the Toop oscillates at a single frequency.

We will now assume that the filter transfer function also depends
on a parameter p, which is not controllable. As the parameter p varies
the Toop oscillation frequency will vary in such a way as to keep the

phase shift across the filter constant:
6(p,w) + 8, =0 (2.3)

On the other hand, if the loop phase shift o is varied, the
Toop oscillation frequency will also vary in order to satisfy (2.3).
Thus phase stabilization* of a self-excited loop can be accomplished
by introducing a controllable amount of additional loop phase shift
in order to compensate for the variation of the loop oscillation
frequency caused by the uncontrollable parameter p. We will now go
into more details in the specific case of a second order filter
which accurately represents an isolated mode of an electromagnetic
resonator.

To eliminate the constant phase shifts in the loop (along cables,
across the Timiter and amplifier), we will define the phase shifts
across the resonator and the phase shifter as the difference between
the actual phase shift and the one when the loop oscillation frequen-
cy is equal to the resonator eigenfrequency W, - With this convention,
if ec(w) is the phase shift across the resonator at frequency w, and
6, is the phase shift across the loop phase shifter, the Toop oscilla-

%

* By phase stabilization we mean locking the phase of the loop
oscillation to an external phase reference.
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tion frequency is defined by:

6l w) +e, =0 (2,4)

and: ec(wc) =0 (2.5)

The relationships between the amplitude characteristic A(w) of
the resonator, the loop oscillation frequency w, and the loop phase
shift e,, are shown in Fig. (2.2).

From Fig. (2.2), we see that the loop phase shift 6, does not
actually set the loop oscillation frequency but the difference be-
tween the resonator eigenfrequency and the loop oscillation frequency.
That means that even if the resonator eigenfrequency varies because
of vibrations or other causes, the operating point will be fixed
on the amplitude characteristic curve. Thus, a self-excited loop,
although not stable in frequency, is stable in amplitude.

We will now assume that the loop phase shifter is adjusted so
that the loop oscillates at the resonator eigenfrequency (ec= 6,= 0),
and we will add a signal in quadrature as shown in Fig. (2.3), The
two different signals will be referred to as "in phase" of amplitude
Ap, and "in quadrature" of amplitude Aq.

By adding a signal in quadrature, we introduce an additional

phase shift 95 defined by:

A
tan ¢. = 1 (2.6)
i Ap
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Fig. 2}2 Relationships between the amplitude characteristic
A{w), the loop oscillation frequency w, and the
loop phase shift 8, of a self-excited Toop containing

a resonator



21-

Q
Phase
Resonator shifter (7
Amplifier (6,)
Y
f
Limiter »
A —
p
{ AJ@&
4 Attenuators
' S——
Aq
@,
Phase .
Ap Shifter (+ 7l )
g
A
#i
o A
p

Fig. 2.3 Principle of stabilization of a self-excited loop

by addition of a signal in quadrature



-22 -

and the amplitude of the driving signal is now:

[a]
~No

A=NA_+A (2.7)
P
The loop oscillates now at the frequency w, = W, + 8w such that:
ec(wﬂ,) = "(b.i (2'8)

Therefore, adding a signal in quadrature introduces a frequency
shift. The principle of phase stabilization is then to add an amount
of signal in quadrature Aq such that the frequency shift dw which is

produced compensates for the frequency excursion of the resonator:

w, ¥ o = w0, = constant (2.9)
We will now make a quantitative study to see if this scheme can
be used to stabilize superconducting resonators.

We will start by defining the parameters of the resonator.

T, : Intrinsic amplitude decay time
Ao = %— : Intrinsic bandwidth
o
“c’o
QO = : Intrinsic quality factor
B : Coupling constant
o

= : Loaded amplitude decay time
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Aw = Amo(l + 8): Loaded bandwidth

Q= : Loaded quality factor

The energy content U(w) is related to the incident power Pinc

by (T1):

P.
_ 4 Q inc
Uw) = (T Bu, 1 +(2()(«.0 - wc)>2 (

Ye

2.10)

The resonator phase shift is related to the loop frequency by:

2
tan ec(w) = Q<1 - -“3-2-> = -2 g—‘*lQ (2.11)

wC c

where Sw = w -~ w

The incident power Pinc can be divided into two different
powers: Pp which energizes the resonator to an energy content U,
and Pq which produces the frequency shift at this energy content.

They are related to the incident power Pinc by:

p
= ——% (2.12)
q

.
>
o
i
pe vl
ae) n*c
b=y

Using (2.6), (2.8), (2.11) and (2.12), (2.10) transforms to:



Uw) =

Therefore, the energy content of the resonator and the field
Tevel are independent of the amount of frequency shift introduced
by the signal in quadrature Aq and depend only on the amplitude of
the signal in phase A,- In other wor /1S, when the loop phase shift
is adjusted so that the unTocked (free running) self-excited Toop
oscillates at the resonator eigenfreqyiency, the introduction of
phase feedback will not alter the amy!itude of the fields in the reso-
nator,and the phase and amplitude fee:iback loops will be decoupled.
It will be seen in Chapter III that il might be preferable to relin-
quish this condition, and to introduce @ certain amount of coupling
in order to decrease the phase jitter by increasing the amplitude
jitter.

The criterion of practicality fof this phase feedback system
can be stated as follows: What amount Of incident power P ~1is
required to produce a frequency shift 6w,,, when the resonator opera-
tes at an energy content U?

The only parameter of the resonz -0r system which can be varied
is the coupling constant 8. While Pp increases with increasing g
(beyond critical coupling), Pq decresses, and an optimal coupling

can be found which minimizes the required total power.
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The incident power Pinc<5w) which produces a frequency shift dw

at an energy content U is from (2.13):

2
2 Sw 1
Pinc(ow) = [1 * <(1 +68)Amnﬂ( 4+BB) Pabs (2.14)

where P = w v is the power dissipated in the resonator.
abs o Q0

The coupling constant Bo which minimizes the incident power for

pt
Sw = 8w is obtained by differentiation of (2.14):

max
Bopt =VA0 + 1 (2.15)
S0ax
where b, = 2 "ZBEW (2.16)

At this optimal coupling we have:

inc max o
2 m ’ ?
2A0 AO+1 Ao+1+1
(2.17)

The maximum power required is then:

P =P, (8w

max = Pinc(8unax) = U Supay F(a,) (2.18)

where f(AO) is shown in Fig. (2.4)

The proportionality between the power required and the energy
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A f(AO) = e —
0
4.
3-
2--
1
¢ -
1 2 3 4 A
0

Fig. 2.4 Graph of the function relating the energy content,
the frequency shift and the incident power (see Eq.

2.18 )
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content explains the importance of requirement (1.4); that is,to find
a structure which has a small energy content at a given accelerating
field. |

The coupling constant is not a directly measurable quantity,
but is inferred from the loaded bandwidth Aw., The optimal loaded
bandwidth is related to the maximum frequency shift by:

Awopt =2 f(AO) Gwmax (2.19)

For typical superconducting resonators used for heavy ion acce-

leration, the frequency shift 8w which has to be compensated is

much larger than the intrinsic bandwidth g and in the Timit AO>>1,

Equations (2.18) and (2.19) simplify to:

max max
(2.20)

Awopt = 2 8w an
Equations (2.20) indicate that optimal coupling occurs when the
loaded bandwidth is twice the frequency shift which has to be compen-
sated, andkthat the incident power required is the product of the
energy content at operating accelerating field and the frequency
shift to be compensated.

The split-ring resonator has the feature that both 8w ax and U

a
at the operating field are small. Typically 6mmax/2w = 100 Hz and
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U= 0.25J. Less than 200 W of RF power would then be sufficient

to provide phase stability to such a split-ring resonator.
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Chapter III
PHASE AND AMPLITUDE STABILIZATION OF A
RESONATOR OPERATING IN A SELF-EXCITED LOOQP
In this chapter we will make a detailed study of phase and
amplitude stabilization of a resonator operating in a self-excited
loop. First we will determine the equations governing the behavior
of such a loop. Then we will summarize the results obtained by
Schulze on the ponderomotive instabilities of generator-driven
resonators. Lastly, we will study the behavior of a self-excited
loop in the Tocked and unlocked state.

3.1 Differential equation of a self-excited loop

The difference between a generator-driven resonator and a
resonator in a self-excited loop is in the nature of the input and
output variables. In a generator-driven resonator, the input
variables are the generator amplitude and frequency, the output
variables being the amplitude of the field in the resonator and the
phase shift across the resonator. In a self-excited loop, the input
variables are the limiter output amplitude (which we will also call
generator amplitude) and the loop phase shift, and the output
variables are the amplitude of the field in the resonator and the
frequency of the loop oscillations. This is shown in Fig. (3.1).

If we assume that the fields in the resonator can be expressed
in terms of a single mode, which is valid when both the bandwidth
and the frequency variation are small with respect to the mode
separation, the resonator can be represented as a Tumped-parameter

circuit:
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(V)

Generator Frequency

(w)

Field Amplitude

(v )

0

Resonator Phase Shift

(6.)

C

Field Amplitude

(V)

)
Loop Frequency

(a)
Limiter Output
(Vg)
Loop Phase Shift
(6,)
(b)

(0)

Fig. 3.1 Input and output variables of a resonator

(a) :

(b)

Driven by a generator

: Operated in a self-excited Toop
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co2! 2
v+—{v+wv=

c v (3.1.1)

AN

we instantaneous eigenfrequency of the resonator
1 : amplitude decay time of the resonator fields
In the case of a self-excited loop we have the following

expressions for v and Vg (see Fig. 3.2):

¢
Ve

ip 16
v
g g e e

<
H

. (3.1.2)

<
1]

V : real amplitude of the field in the resonator
¢ : RF phase of the electromagnetic field

6_: phase shift introduced by the loop phase shifter

Using equations (3.1.2) in (3.1.1) and identifying the derijv-
ative of the phase, é, with the instantaneous frequency w of the
loop oscillations, we obtain the following differential equation:
(4 . ieg

ng + Vg) e
(3.1.3)

V4 V(%-+ 2iw) + V(wg - wz + %‘iw + 1;) =

AP

This equation looks quite similar to the case where the reso-
nator is driven by an external generator of frequency w, with the
important difference that in Eq. (3.1.3) V represents the real
amplitude of the field. For comparison with the generator-driven

case, see Eq. (3.2.2) and Appendix A.
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Fig. 3.2. Block diagram of a resonator operating in a

self-excited loop
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The following approximation will be used throughout this dis-

sertation:
wz - wz = 20w - w_) (3.1.4)

Also, we will assume that the generator amplitude changes negli-
gibly during one RF period ( Vg < w Vg )

Separating real and imaginary parts of (3,1.3) and using (3,1.4),
we obtain the following set of differential equations which describes

the behavior of the fields in a resonator operating in a self-excited

loop:
y TU.J _
v+ V(1 + ?5) = Vg cos o,
- . (3.1.5)
™V vV _ .
e = ™V(w - wc) = Vg sin 6,
The steady state solutions are:
v
g
V0 =V _cos 6, = ,
1+ Y,
(3.1.6)
(0 - w )y =Y,
where Y, = tan 6,

3.2 Ponderomotive effects in RF resonators

Until now, we have considered a resonator as being equivalent

to a single electromagnetic mode, However, since the walls of the
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resonator are not infinitely rigid, a resonator has to be described
also in terms of mechanical modes, For simplicity, we will consider
a single mechanical mode of frequency Qu and decay time Ty

Ponderomotive effects in RF resonators result from a coupling
between electromagnetic and mechanical modes of the resonator caused
by radiation pressure, Electromagnetic fields confined in a resona-
tor exert a pressure on the walls of the resonator given by (B4):

o 2 fo .2

= Oy .0
P = ) H 1 E (3.2.1)

This pressure is proportional to the energy content of the
resonator or to the square of the fields. It will produce a deforma-
tion of the walls of the resonator, resulting in a change in the
eigenfrequency of the resonator and in the detuning between the gen-
erator and the resonator, This produces a variation of the energy
content and, in turn, a variation of the driving force of the mechani-
cal mode,

Thus, an RF resonator has to be represented by two coupled modes,
one electromagnetic and one (or several) mechanical. Under certain
conditions, this two-mode system can become unstable.

Ponderomotive instabjlities were first observed in normal reso-
nators (K1), and an analysis was provided in the 1limit where the
electrical decay was much smaller than the mechanical period. The
analysis was extended by Shapiro (S6) to the case where the electrical
decay time is comparable or larger than the period of the mechanical

mode by comparing the power flow between the electrical and mechanical
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modes and the power dissipated in the mechanical mode, Ponderomotive
instabilities in generator-driven resonators, both monotonic and
oscillatory, were then studied in a systematic and unified way by
Schulze (S4) who made use of the transfer function formalism. His
results will be summarized here for comparison with instabilities in
resonators operated in self-excited Toops.

The resonator is represented by an electromagnetic mode:

S ins 2 Sy 2 2,2 .\ _ 2,
V + V(27w + -{) + V(wC -w o+ by jw) = Tlw Vg (3.2.2)
and a mechanical mode:
ro  + —Z—«Am + 92 Ao = -k a W (3.2.3)
oot b oM .
-~ iec
where V=Ve complex amplitude of the fields in the
resonator
W : frequency of the generator
w, = wy F Awu : instantaneous resonator eigenfrequency
wg : resonator eigenfrequency at zero field
Ao = —kuV2 radiation pressure-induced frequency shift
ku : electromechanical coupling constant
bo o = —kuvg steady state radiation pressure-induced

frequency shift at field level VO

This electromechanical system can present two types of instabil-

ities: a monotonic instability similar to the jump phenomenon
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encountered in many non-linear oscillators, and an oscillatory

instability,.

The monotonic stability condition was found by Schulze as

follows:

2

2 +
AN 12 L (3.2.4)

And the oscillatory stability condition as:
2
y kuvo < 22

s (3.2.5)
where y = tlw - Weg ) : normalized detuning between generator

and resonator

w.. T, + AwUO : steady state resonator eigenfrequency

co )

at field level Vo’
Several remarks can be made about these results. The oscillatory
stability condition was obtained from the linearized system which means

it is a necessary condition for the nonlinear system, and the following

approximation was used:

2

Bgr 4 ) <« 1 (3.2.6)
wo u QUT

DO -

which is valid since the mechanical frequency is always much smaller

than the electrical frequency.

It can also be noted that the monotonic instability can occur
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only on the low frequency side (y < 0), and the oscillatory instabil-
ity on the higher frequency side (y > 0). When working at the res-
onance point (y = 0), no instability can occur at any field value.
However, in practice, this is not feasible since y is not a controlled
variable. y is related to the difference between the generator fre-
quency which is fixed and the resonator eigenfrequency which is vari-
able due to vibrations, and typically can vary by several electrical
bandwidths.

Typically, for superconducting resonators, the monotonic in-
stability can occur when the static radiation pressure frequency
shift is of the order of the electrical bandwidth, and the oscillatory
instability when it is of the order of the mechanical bandwidth.
Typical values for the split-Toop resonator at operating field

values are;

Aw

2:9 ~ 500 Hz
-}m 10 Hz
-TL«, 0.1 Hz
H

So these instabilities can occur at field values much smaller
than the operating field.

The last remark is that these results apply to an unlocked
generator-driven resonator. Phase and amplitude stabilization

schemes which are required to use a resonator as an accelerating
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structure will modify the stability conditions.
We will now study the stability of a resonator operating in a
self-excited Toop in the presence of ponderomotive coupling, We
will study the stability firstly in the absence of phase and amplitude
feedback (unlocked loop), and secondly in the presence of phase and
amplitude feedback (Toop Tocked to an external reference).

3.3 Ponderomotive stability of a resonator in a self-excited Toop

To study the stability of a resonator operating in a self-
excited Toop, we will use the set of differential equations describing

the electrical system which was obtained earlier:

y T(.:) -
™V + V(1 + ?BO = Vg cos 6,
(3.3.1)
v v _ .
-y - ot ™W(w - wc) = Vg sin 6,
And we will also use the differential equation representing
the mechanical oscillator which is coupled to the electrical oscil-
lator through the radiation pressure:

b+ 2 a4 Paw = -k 042 (3.3.2)
i T u M Hou

u
The task is to find the range of values of the different paramet-
ers of the system where the system will be stable. The first problem

Ties in the fact that we are in the presence of a non-linear system,

and an exact answer to the stability of this non-linear system is
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impossible to find. As a consequence, we will study the stability
of the associated Tinearized system. Throughout this thesis, a
subscript o will represent a steady state value, and a § in front
of a variable will represent the deviation of this variable around
its steady state value. We then obtain the linearized system:

5V

T - ) )
—2—+(;6V—- -t 6V_y2+ TVocSw TVOGmu 0

i

sV + sV + 80 - g (3.3.3)
2w

a;}u + %u&;” ¥ Qidwu = -ZkUszivoav
The steady state values are:
Vo =V _ cos 6,
(w-w, ), =tane, =y, (3.3.4)

The next step is to apply the Laplace transform to this system.
A function and its Laplace transform will be represented by the same

symbol :
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2
TS S - _
sV(s)(- 5 o + yz) = Tvo&uu(S) TVOSw(S)
= _ IS
sV(s)(ts + 1) = - o VOcSw(S) (3.3.5)
2 .2 2y _ 2
Swp(s)(s + _——sTu + szu) = - ZkHquoav(s)

By eliminating 6wu and 8w in the first equation, we obtain the

characteristic equation of the system which is as follows:

2.2
2 2tk Q°V
TS S puo 2w _
- Hs sy, ) -—(ts+1)=0
2w W [} 52+gs+92 S
Ty H (3.3.6)

The stability of a linear system can, in principle, be determined
from its characteristic equation. When this system js represented in
block diagram form, the Laplace transform of its output is just the
product of the Laplace transform of its input and the transfer function
of this system. The denominator of the transfer function is the

characteristic equation of the system (D5).

i(s) N(s) o(s)

In particular, if the input is a delta function, the Laplace
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transform of the output is the transfer function. The system is con-
sidered as stable if any bounded input produces a bounded output,
which is equivalent to the condition that an impulse input produces

an output W(t) which satisfies (J1):

fw}w(t)l dt < o (3.3.7)
O._

Therefore, for the system to be stable, the function whose
Laplace transform is the transfer function of the system has to

satisfy Eg. (3.3.7).

If the transfer function is a rational fraction with poles S5
(the zeros of the characteristic equation), it can be expanded in

partial fractions:

K.
N(s)
D%)T - }; ﬁs_;i (3.3.8)

from which we obtain directly the time evolution of the output

resulting from an impulse input:

5.t
Wt) = 22 K e ! (3.3.9)
1

Therefore, for a linear system to be stable, all the roots of
jts characteristic equation have to have negative real parts.
Several methods have been devised to find the sign of the

roots of an equation without actually calculating them (D5, 01); some
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algebraic (Routh, Hurwitz), some graphical (Nyquist). However, the
algebraic criteria become very lengthy when the degree of the char-
acteristic equation is larger than 4, and the graphical methods are
not suited to an analysis of a system whose stability has to be
determined in function of parameters whose numerical values are not
known.

If the roots of the characteristic equation are plotted in the
complex plane, for the system to be stable, they all have to be sit-
uated in the left-hand side either on the real axis or in conjugate
pairs as shown in Fig.(3.4).

When the parameters of the system are varied, the roots will
move in the complex plane. When one of the roots moves in the right-
hand side, the output of the system will increase exponentially
(at Teast as long as the linear approximation is valid). Two kinds
of instability can occur. When the characteristic equation has a
positive real root, the output will increase exponentially yielding
monotonic instabjlity. When a complex root has a positive real
part, the output will be an exponentially increasing sinusoid yielding
oscillatory instability. Therefore, when the system starts from a
set of parameters where it is stable and a parameter is varied, the

boundary of monotonic stability region can be found from:

D (s) = 0 (3.3.10)
s=0
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Fig. 3.4. Locus of the roots of the characteristics equation
showing the locations of the two kinds of

instabilities encountered
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If a, is the constant coefficient in D(s), this is equivalent to:

In the case of monotonic stability, not only the boundary of the
stability region, but also the region can be defined. A necessary
(but not sufficient) condition for the stability of a linear system
is that all the coefficients of the characteristic polynomial have
to be positive. Thus, the monotonic stability condition can be ex-

pressed as:
a_ >0 (3.3.11)

It should be noted that this condition is valid only when the
system parameters are continuously varied from a set of stable
parameters. For example, there might be isolated regions in the
parameter space where this condition is satisfied, but where the
system js not stable, i.e. regions where an even number of roots
have a positive real part.

The other type of instability that can occur is the oscillatory
instability. This will take place when a pair of complex conjugate
roots crosses the imaginary axis. The boundary of oscillatory

stabjlity can thus be expressed by:

D(jae)=20 (3.3.12)
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That is when a root of the characteristic equation is purely
imaginary. It should be noted that @ is an unknown, and that both
q and the values of the parameters have to be found by equating the
real and imaginary parts of D (j @) to O,

In this case, the stability region cannot be simply extracted
from the stability boundary, but can be found by taking the limit of
the value of certain parameters (to O or =) where the stability
region can be found by some other method.

In some cases, however, exact solutions cannot be found because
of the complicated nature of the characteristic equation, and we will
have to settle for approximate stability conditions.

In this particular problem, where we have to find the sign of
the roots of equation (3.3.6), we will use Routh's stability criterion

(D5), If the characteristic equation is of the form:

n
D(s) = 2, ;s (3.3.13)

s" a a s
n n-2 n-4
Sn-l 3n-1 %n-3 %n-5 R
Sn—2 b1 b2 b3 .........
?n~3 ¢, ¢ v Veeaaenae (3.3.14)
s1 j1
s0 k



where a 3 -~ aa
b= n-1%n-2 ~ %3 %n-1%n-4 7 %nn-s
1 an_1 2 an_1
_bjag 3 -ap by _bja 5 -2, by
¢ b € = b
1 1
0

The array is continued until the s~ row.

The number of positive roots of the characteristic equation is
equal to the number of change of sign of the elements of the first
column (with the assumption that a > 0).

In our case:

% " 2
-1 T
a4‘w(1+T )
H
1 Tﬂi 2
3=yl *7 ) -y,
H (3.3.15)
2
) 2y
T 2 2t
a2 o T'*'thj(T +1)
H U
52 2,2 2 2
CH yRQu - ZTQukuVO + 2w ( T + TQU)
_ 2
ag = ZwQu

Finding an exact solution would be extremely lengthy, and it
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would be so complicated that it would not provide much insight into
the stability of the system. However, the different terms in the
coefficients 3, have different order of magnitude, and we will keep
only the terms which have the highest degree in w and the pondero-
motive term which will be responsible for any instability. We will
also use the same approximation in all the elements of the Routh's
array.

By Tooking at a,, we see immediately that there can be no mono-
tonic instability since (3.3.11) is always satisfied; only oscil-
latory instability can occur. To obtain the oscillatory stability

condition, we build the following array:

5 20 .2 2 2
5 o 20T 2('"‘Qukuvo+‘”(? + mu))
4
s7 Lovz 20(2 + 1) 2097
w T T H
u U
3 02
S 201+ T (2 +ealor Mg v2)-ra?
T T H w uo U
oo
2
s 2wr(gl‘+1) 2wT92
T H
u
1 2. % o 2 920 2
s ~(ZR 1) -Ek VS o+ = (Tt 2R 41) (3.3.16)
Tu w u o Tu U Tu

5 ZmTQZ
U
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A1l the elements of certain rows have been multiplied by
positive constants to simplify these expressions without any con-
sequence on the stability condition,
We see that the system will be stable if the element in the s]

row is positive. This yields the oscillatory stability condition:

2 2 1 1
V2 < ;—m[ _— 2] (3.3.17)
u T QU

When the equality is satisfied (boundary of the stabjlity
region), we can obtain the frequency of the oscillations from the

row 52 by solving the following equation (D5):

Zwt(%1'+ 1)52 + ZwTQS = 0 (3.3.18)

H

Therefore, the instability oscillation has the frequency:

T —_— (3.3.19)

We see that the oscillation frequency is very close to the
mechanical frequency.

We will now examine the stabjlity condition, For all the
resonators proposed for heavy-ion acceleration, the mechanical

bandwidth is always much smaller than the electrical bandwidth

( = << 1), and the term in the bracket is always larger than 1.
u

~
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A self-excited loop will then present ponderomotive instability
when the static radiation pressure frequency shift (in absolute
value) is larger than the product of the mechanical bandwidth and
the electrical Q of the resonator.

This stability condition can also be expressed as:

2 Q 1 1
k Vo < 209 + (3.3.20)
no UQU[]_.;._Z_:E. TZQZ]
T u
U
where Q = %;— : electrical quality factor
Q = YEEE_ mechanical quality factor
u 2

In this form, we see that instability will occur when the radia-
tion pressure frequency shift is larger than twice the product of the
mechanical frequency and the ratio of the electrical and mechanical
Q's.

For all practical accelerating structures, this would occur at
fields much larger than operating fields.

As an example, for a 150 MHz split-loop resonator:

Qn 5.107

3
Q11 ~ 3.10

2

Qu ~ 3.10% rad/sec
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This would give:

2 A7
ku V0 < 10° rad/sec
At typical operating fields:
2 3
ku V0 ~ 3,107 rad/sec

Therefore, this kind of structure can be considered as being
unconditionally stable under ponderomotive coupling when operated
in a self-excited Toop.

Another perspective which might give more insight into the
stability of such a system is to represent it in the block diagram
form shown in Fig. 3.5 which was obtained from equation (3.3.5).

In this form, it can easily be seen that since the numerator of the
forward transfer function does not have a constant term, no monotonic
instabjlity (s = 0) can occur. Also, because of the very narrow
bandwidth of the feedback transfer function, if oscillatory instabil-
ity is to occur, the frequency of this instability will be close to
Qu.

Presented in this form, stability of the system can be determined
using Nyquist analysis (D5). The Nyquist criterion can be simply
stated as follows: At the frequency at which the imaginary part of
the open Toop transfer function is equal to 0, its real part has to

be larger than -1. The open loop transfer function is the product
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Fig. 3.5. Transfer functions block diagram of a resonator
operating in a self-excited loop in presence of

electromechanical coupling



-52-
of the forward and feedback transfer function,

By using this criterion, we obtajn the following stabjlity con-

dition:

2
k, Ve < §~m (14 =5 ) (3.3.21)

ya
T 8
H H

which, except for the term %—which is always much smaller than 1,
U

is jdentical to the stability condition obtained previously. To

obtain this condition, the following terms were neglected: %i— s

2
§~ s> ~YSs and we assumed that the oscillation frequency was the

mechanical frequency Qu'

It can be noted that the term in the differential equations

(3.3.1) responsible for the coupling which can lead to ponderomotive

instabilities is Eﬁy . The smallness of this term explains the

stability of a self-excited loop.

The best way to get some physical insight into the absence of
monotonic instability when the resonator is operated in a self-excited
Toop is to compare the steady state solutions of the generator-driven
and self-excited cases.

When the resonator is driven by a fixed frequency generator,

the steady-state solutions are (S4):
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Vo = Vg cos GC

(3.3,22)

_ 2
T {(w - wo) = ~tan 0¢ "Tku V0

When the resonator is operated in a self-excited Toop, the steady-

state solutions are obtained from (3.3.4):

Vo = Vg cos 6

%
(3.3.23)
T (w=-w_)=tane, -k V2
(o] 2 u O
If one recalls that 6. and 62 are related by:
6 +6 =0 (3.3.24)

we see that the two sets of relationships (3.3.22) and (3.3.23) are
absolutely identical.

However, as was mentioned earlier, the main difference between
a resonator driven by a generator and a resonator operating in a
self-excited Toop is in the nature of the input and output variables.

| If one represents the output variables ( V0 and 6. ) as a function

of the input variables ( Vg and w ) when the resonator is driven by
a generator, one obtains Fig. (3.6).

And if the output variables ( V0 and w ) are represented as

functions of the input variables ( Vg and eg ) when the resonator
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Fig. 3.6. Relationships between input and output variables
of a generator-driven resonator in presence of

electromechanical coupling
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operates in a self-excited loop, one obtains Fig, 3.7,

Thus, we see that when the resonator is driven by a generator,
under certain conditions ( w < wy Vg sufficiently high), the
output variables can become multivalued functions of the input vari-
ables,yielding monotonic instability. Whereas, when the resonator
is operated in a self-excited loop, the output variables always are
single-valued functions of the input variables which is equivalent
to monotonic stability.

For instabilities to occur, there must be some coupling from
amplitude modulation to eigenfrequency variation and back from éigen—
frequency to amplitude, The coupling from amplitude to eigenfrequency
is provided by the radiation pressure; and, in the case of generator-
driven resonators, the coupling from eigenfrequency to amplitude is
provided by the detuning between generator and resonator. When the
resonator is operated in a self-excited loop, however, as was shown
in Chapter II, the loop oscillation frequency tracks the resonator
eigenfrequency so the amplitude is undisturbed, and the coupling
from eigenfrequency to amplitude is very small. The only coupling
existing comes from the inertia of the Toop frequency in tracking

the resonator eigenfrequency; however, this coupling is of the order

T8
of ~E£—and very small so it can lead to oscillatory instability only

when the resonator is operated at a field level where the radiation
pressure frequency shift is very high. Such a field is, in general,
much higher than the operating field.

3.4 Ponderomotive stability of a non-ideal self-excited loop
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roj=
NE
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Fig. 3.7. Relationships between input and output variables
of a resonator operating in a self-excited loop in

presence of electromechanical coupling
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In the previous section, we saw that when a resonator was
operated in an ideal self-excited loop, it did not present pondero-
motive instabilities. By ideal, we mean that the loop phase shift
and the limiter output were constant. In practice, however, some
non-ideal effects might be present and can originate in many places:
detectors, phase shifter, limiter, power amplifier, etc. However,
whatever their origin, the most important non-ideal effects, as far

as stability is concerned, can be classified under:

- frequency dependent generator amplitude

- frequency dependent phase shift

In this section, we will study the stability of a self-excited
loop in presence of ponderomotive coupling and of these non-ideal
effects. This will allow us to put bounds on the allowable amount
of non-ideal effects in order to preserve ponderomotive stability
of the self-excited Toop.

The ponderomotive instabilities which might be created by these
non-ideal effects could, of course, be removed by the feedbacks which
are required to lock the phase and amplitude of the fields in the
resonator to external references, and will be discussed later. How-
ever, one great advantage of a self-excited loop is that even when
no phase and amplitude feedbacks are present, the loop is still
oscillating, and the amplitude is stable. It is important to keep

this property.
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3.4.1 Frequency dependent generator amplitude

We will use the same set of differential equations as before,
with the exception that the terms in %~w111 be neglected since it
was seen earlier that they do not create any instability in the
field range of interest:

) =V

TtV (w-~w sin 62

¢ g

W+ V= Vg cos 6, (3.4.1.1)

.. . 2 2
A+ 2 A + 0 A = -k @ V2
u TU 3] H H oM

However, in this case the generator amplitude Vg is a function of the
Toop oscillation frequency w . It will be assumed to be of the form:

Vv =YV 1+ Ya Tt (w-w_) (3.4.1.2)

g go co

The frequency-amplitude coupling constant Ya , thus defined, is
the fractional change of the generator amplitude when the loop oscil-
lation frequency varies by one-half an electrical bandwidth.

As before, the system is first linearized, then the Laplace
transform is applied to it, and by elimination of §w and 6mu, we ob-

tain the following characteristic equation:



3
> a; st =0 (3.4.1.3)

where:

a =t (1-vvy)

3
- 2t .
a2 1+ > (1 Yy Y, )
(3.4.1.4)
2,2 .
a1 = TU+ 2 (1 v, Y, )
_ 2 2
a0 = Qu (1+2+1 Yy ku VO )

To determine the stability of this system, we will use Routh's
criterion. When using this criterion, we always make the implicit

assumption that:

a >0 (3.4.1.5)

In our case, this would require:

Yy ¥, < 1 (3.4.1.6)

This condition is always satisfied since, in practice, a is

always a very small number; much smaller than 1. Also, it is very
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inefficient to operate a resonator far away from resonance, and in
practical operation Y, is always confined in the range [-1, +1] , SO
that the above condition is satisfied.

From a, and inequality (3.3.11), we obtain directly the monotonic
stability condition as follows:

2 1
Yy ku V0 < (3.4,1.7)

After building the Routh's array, we obtain the following oscil-

latory stability condition:

2 2
1 T 2 21 22 .2
¥;-+ v;;*(l”Yayl) + ;;(1'Yay2) - (Tyvydvgrak Vg > 0

(3.4.1.8)

As was mentioned earlier, the following condition is often satis-

fied in practice:
vy, |<< 1 (3.4.1.9)

Under this condition, we obtain the simplified oscillatory

stability condition:

1+_2_’_1T_
k V2 1 __?_fkn.+ 1 (3.4.1.10)
'Ya UVO < ':[- QZ Pl SO N
vl T
U

Thus, as expected, we find that there is a range for Y, around
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0 where ponderomotive stability is preserved. If Ya is positive and
sufficiently large, oscillatory instability will occur; and if Ya

is negative and sufficiently large in absolute value, monotonic
instability will occur. This is shown in Fig. (3,8).

3.4.2 Frequency dependent phase shifter

The other main non-ideal effect which might lead to pondero-
motive instability is a frequency dependent phase shifter. By this,
we do not mean that this effect actually takes place in the phase
shifter, but instead that the loop phase shift is frequency dependent.
For example, a narrow band power amplifier can introduce a frequency
dependent phase shift. It will probably also have a frequency depend-
ent gain which is equivalent to a frequency dependent generator ampli-
tude studied in the previous section.

We will again use the same set of differential equations with
the exception that now:

62 = 620 + yeT(m - wco) (3.4.2.1)

The freqguency-phase shift coupling constant Yo is defined as the
additional phase shift introduced when the loop oscillation frequency
varies by half an electrical bandwidth,

After linearizing and applying the Laplace transform, we obtain

the following characteristic equation:

3
Z a. s’ = 0 (3.4.2.2)

i=0
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monotonic oscillatory
instability instability

LS " VPP PPV
7777777 77777

1+ =
— 1‘ 1 TU + 1
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T

Fig. 3.8. Stability region of a resonator operating in a
self-excited loop in presence of electromechanical

coupling and a frequency dependent limiter output
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where:

3
2 2
a =1+ (1-v )y, (1Hy)
2 (3.4.2.3)
- 2 - 2 .
a1 = o [1 Y, (1+ Y, )| t @ (1 " )

Since in all practical applications:

vy [ << (3.4.2.4)

we have:

a >0 (3.4.2.5)

and we can use Routh's criterion,

From a and inequality (3.3.11), we directly obtain the monotonic
0

stability condition:
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2
Ye(l + Yo * ZyngAwpo‘) < 1 (3.4.2,6)

This monotonic stability condition is more easily visualized
in the figures ( 3.9 a, b, ¢, d). In those figures, the hatched
regions are the regions of monotonic instability, It should be re-

membered, however, that to obtain them we made the assumption:

<< 1 (3.4.2.7)

|~

Following the same procedure, we build the Routh's array to

obtain the following oscillatory stability condition:

1292
2t 2 TP
Tz (1- ve)(l - Ye(l + yg)) + - (1 ye)
H (3.4.2.8)
1 2 2.2 2
o=y (L y)) 4 e Qu(l - Ye)yzyekuvo > 0

i

In this form it is not very useful; however, in the practical

Timit:
| Yo [(1 + yg) << 1 (3.4.2.9)

We obtain the simplified oscillatory stability condition:
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Fig. 3.9. Regions of monotonic stability of a resonator
operating in a se]f—excfted loop in presence of
electromechanical coupling and a frequency-dependent

phase shifter for different values of the static

radiation pressure frequency shift
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Yoo 7 i Taw || T2z T 1 (3.4.2.10)
TRV Qu

This condition is graphically represented in Fig, (3.10).

3.5 Ponderomotive stabjlity of a resonator operating in a self-

In the previous sections, we saw that a resonator operating
in a self-excited loop did not present ponderomotive instabilities
if the non-ideal effects were limited, and that the field amplitude
was stable. However, for this resonator to be useful as an accelera-
ting structure, the phase and amplitude of the electromagnetic field
have to be locked to an external phase and amplitude reference. In
this section, we will study feedbacks which are required to provide
phase and amplitude locking. As a consequence of phase feedback,
the resonator will appear, in some respects, as being driven by a
fixed frequency generator, and ponderomtoive instabilities are likely
to appear. We will then have to study the influence of the feedback
parameters on the stability of the system, and find what range of
value they must have in order to provide enough phase and amplitude
Tocking while preserving stability.

3.5.1 Equations and block diagram

When the self-excited loop is locked to an external phase (or

frequency) reference, there are three frequencies of interest:

0. eigenfrequency of the resonator
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N

Fig. 3.10. Region of oscillatory stability of a resonator
operating in a self-excited loop in presence of
electromechanical coupling and a frequency-dependent

phase shifter



-68-

w, : oscillation frequency of the unlocked self-excited

Toop (no feedback)

w_ : reference frequency (frequency at which the loop is

to be locked

We define the following dimensjonless parameters:

Y, = (wzo - w O) = tan 6, where 6, is the Toop phase shift

(3.5.1.1)

We recall that subscript 0 denotes a steady-state value, while
§ represents a deviation around this steady-state.
The set of differential equations (3.3,1) and (3.3.2) will be

used to describe the electromechanical system. Once again, the fol-

Towing terms %g-, %- and %ﬁ-v will be neglected since they are much

smaller than the others; and, as was seen earlier, do not contribute
to the stability of the system.
In order to provide amplitude and phase Tocking, we have access

to two input variables:

- generator amplitude (limiter output)

- Tloop phase shift
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We can control these two input variables ejther individually,
or control some combination of them, Amplitude feedback is more
simply provided by modulating the generator amplitude (Timiter output).
In order to provide phase feedback, however, instead of controlling
simply the loop phase shift, it is more advantageous to control a
signal added in quadrature to the driving signal. This is equivalent
to a simultaneous control of loop phase shift and generator amplitude
which reduces the coupling between phase and amplitude feedback, as
was shown in Chapter II.

The signal driving the resonator is then:

8

1.
Vg = Vol o) e Y+ i(t, + 6t)) (3,5.1.2)

g 90(

In the above expression, 6vg is responsible for the amplitude
feedback, to provides the steady-state phase feedback, and &t provides
additional phase feedback required by the presence of disturbances.

The steady-state amplitude feedback was included in V o SO that ¢ov

g g9
also provides only the additional feedback required by the presence

of disturbances.
The behavior of the electrical part of the system is then repre-

sented by the following set of differential equations:

WV + V= vgo(l + 6vg)(cos 6, - sin el(t0 + 8t))
(3.5.1.3)

WV(w -~ wc) =V (1+ 6vg)(sin 6+ coS ez(to + 8t))

go %
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To which we add the following equation describing the mechanical

part of the system:

ro + E»A@ + QZAm = -k QZVZ (3.5.1.4)
Wt uou po
The steady-state solutions are:
v
Vo= 90
0 COS 92(1 + ngr)
Y. -V
t =-1—?T———‘-L-— (3.5.1.5)
° Yody
B 2
Ao o 7 'kuvo

We see that for the loop to be operating, the following condition

must be satisfied:

1+ Yy 2 0 (3.5.1.6)

Inequality (3.5.1,6) means that the loop will be operating if the
phase shift which has to be introduced in order to Tock the loop

oscillations to the frequency w is in the range |- 5 ,+ 5 [. This

r
js a direct consequence of the fact that we introduce the phase shift



71~
by adding a signal in quadrature, The steady-state solutions are
more easily presented in Fig. (3.11).

If the set of differential equations (3.5.1,3) is linearized

around the steady-state values, we obtain:

+ = - si +
6V + 8V Svg sin o, cos 92(1 yﬂyr)ét

- 2
Yooy * 8(w - w_) yrdvg + cOS eg(l + yﬁyr)ét (3.5.1.7)

c

o+ 2 sn o+ 0w = -20%k Vesv
H H M Huo

u T
H

where we used:

V=1V (1+68v) (3.5,1.8)

It should be pointed out that when the loop was unlocked, we

had:

T (w- W )O =Y, (3.5.1.9)

Whereas in this case, when the loop is locked, we have:

T (w - we )0 =Yy (3.5.1.10)
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0. = Arctan Yy

Fig. 3.11. Graphical representation of the steady-state

solutions of the system (3.5.1.3)
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We next apply the Laplace transform to the above system to get:

sv(s) = G avg(s) + G, 6t(s)

aa ta

8w - w )(s) = Gawév

c (s) + Gtwét(s) (3.5.1.11)

9

Swu(s) = Guév(s)

where we have defined the transfer functions:

N
Gaa Tors + 1

Y (1 +yy)
(1+y5)(rs + 1)

ta

Y5
Gaw T (3.5.1.12)

1+ yzyr ts + 1 + ygyr

tw T(l +,Y§) s + 1
- 292k V2

G - uyo

u 2 2 2



-74 -
Until now, we assumed that the variation of the resonator eigen-
frequency was due only to ponderomotive effects, However, there js
another source of frequency variation which is responsible for the
necessity of the feedback. It is the excitation of the mechanical

modes of the resonator by noise and ambiant vibrations, Thus we have:

é;wc = &»u + swex (3.5.1.13)

Swu : ponderomotive effects

6wex : external vibrations

The system of equations (3.5.1.11) can be best presented in the
block diagram form shown in Fig. (3.12)., 1In this block diagram, Fa
and F¢ are respectively the amplitude and phase feedback transfer
function. This block diagram can be simplified to the form shown in

Fig. (3.13), where we used:

- F¢Gta

G =
a (s + F¢Gtm)(1 + FaGaa) - F¢Gta(GawFa - GU)

(3.5.1.14)

1+FQG
a_aa

G =
¢ (s+ F¢Gtm)(1 * FaGaa) - F¢Gta(GawFa B Gu)
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G
aa

ta

Gwex

aw

W |

st

tw

Fig. 3.12.

General transfer functions block diagram of a
resonator operating in a self-excited Toop in presence
of electromechanical coupling and phase and

amplitude feedback
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S Ga S
6mex
e
e o G¢ S
. - F¢Gta
a (s + F¢Gtw)(1 + FaGaa) - F¢Gta(6awFa - GU)
1+FG
G = N a aa
6 (s + F¢Gtwy(i"+ FaGaa) - F¢Gta(GamFa - GU)

Fig. 3.13. Simplified representation of the block diagram

of Fig. 3.12

&y

Sé
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Performance and stability of the feedback system can be found
from the above transfer functions. In particular, stability can be
determined from the common denominator of Ga and G¢ which is the
characteristic equation of the system. As before, stability will be
assured if all the roots of this common denominator have negative real
parts.

Before proceeding further, however, we have to make some assump-
tion about the form of the feedback transfer functions Fa and F¢.
Because of the already complicated nature of the system, it would be
to our advantage to use transfer functions which, although realistic,
are simple enough so the analysis can be pushed exactly as far as
possible, The insight and experience gained this way can be used to
analyze the system when more complicated transfer functions are used,
and an exact analysis is impossible. Thus, we will assume that the

amplitude feedback is proportional to the amplitude error, and that

the phase feedback is proportional to the phase error. That is:

(3.5.1.15)

We will define H ( ka’ k., kp ) as the common denominator of

Ga and G¢.
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Hkykgak ) = (s + FBe )(1+ FLG ) = FuGyo(6 Fo - G)

(3.5.1.16)

Before studying the influence of ponderomotive effects on the
stability of the system, we have to make sure that the presence of
the phase and amplitude feedback does not introduce instabilities
independently of the ponderomotive effects. This can be simply done

by finding the sign of the roots of H ( Ky Kyo O ) = 0. After re-

¢
placing the various transfer functions with their expressions found

earlier, and after some manipulation, we obtain:

2
k(1 +yy) k(1 +k )(1+yy)
TSZ+TSI+k+¢ ZSLY‘ +d> a2 L'r
a 1+, 1+ ys
H(k_.k ,0) =
3~ ¢ rs(ts + 1)

(3.5.1.17)

A simple necessary and sufficient condition can be obtained
from Routh or Hurwitz' criterion in the case of a second order
equation: the roots of a second order equation will have negative
real parts if, and only if, the three coefficients are positive,
(Actually they must be of the same sign, but we always assume that
the coefficient of the highest power of s is positive.)

Therefore, from equation (3.5.1.17) we see that if the following

condition is satisfied:

1+ Yo Yp * 0 (3.5.1.18)
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the system will be stable for all values of ka and k., when no pondero-

¢
motive effects are present. This is identical to inequality (3.5.1.6),
which is a necessary conditjon for the loop to be operating,

3.5.2 Stability with zero amplitude feedback and infinite phase

feedback

Before going to the general analysis of the feedback system, we
will spend some time on the system which presents the most analogy to
the generator-driven resonator so we can make some comparisons between
the two. The system which presents such an analogy is the one where
there is no amplitude feedback, and where there is infinite phase feed-
back.

That system has a characteristic equation which is proportional

to:
G, +G6G,. 6 =0 (3.5.2.1)

or.

2 2 2, 2
tost QU) + zleQukuVO = 0

H

(ts + 1+ yzyr)(s2

(3.5.2.2)

From the constant term of the above equation and condition
(3.3.11), we obtain the following monotonic stability condition:

1+y

2 zyr
- yzkuv0 < I (3.5.2.3)
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By using Routh's criterion, we also obtain the following oscil-

latory stability condition:

2 4
(T+yy (1 =msyy)+ T?Qi
y kv < 1 L
L uo T 2.2
u TQU

(3.5.2.4)

We will now make a comparison between the results just obtained
and the ones obtained by Schulze on a generator-driven resonator (S4).
At first, conditions (3.5.2.3) and (3.5.2.4), which apply to a reso-
nator operating in a self-excited loop, look quite similar to condi-
tions (3.2.4) and (3.2.5), which apply to a generator-driven resonator.
In both cases, we find that monotonic instability can occur only on
the low-frequency side ( Yy < 0, y < 0 ) and that oscillatory instabil-
ity can occur only on the high-frequency side ( Yo > 05y > 0). We
also find that there is a range of Y, ory around 0 where the system
will have monotonic and oscillatory stability, the resonance point
( y, = 0, y = 0 ) being unconditionally stable at all field values.
Furthermore, the stability boundaries are nearly identical in magni-
tude.

Howevér, there are two main differences between the two cases.
Firstly, the self-excited loop results apply to a system locked in
phase and amplitude (we recall that an unlocked self-excited loop
did not present ponderomotive instabilities in the field range of
interest), whereas the generator-driven results apply to an unlocked

system, and the stability conditions will be modified when phase and



-81-
amplitude feedback are introduced,

Secondly, the nature of the y's are different, They were defined

as:

(3.5.2.5)

where wg> Bcg w, . are respectively the generator frequency, the

co 20

eigenfrequency of the resonator, and the frequency of the unlocked
self-excited loop. Whereas Ye is a totally controllable quantity
(being the tangent of the phase shift introduced by the Toop phase
shifter), y is not a controllable quantity since wg? the frequency

of the generator, is assumed to be fixed, and wes ejgenfrequency of
the resonator, can vary by several bandwidths due to excitation of the
mechanical modes by external vibrations. Thus, when the resonator is
operated in a self-excited loop, 6, can be adjusted so that Yy lies

in the stable range. In the generator-driven case, y cannot be ad-
justed at will to prevent ponderomotive instabilities, and external
feedback has to be provided to stabilize the system. This restriction
can be removed by allowing the generator frequency to track the reso-
nator eigenfrequency by the use of a voltage-controlled oscillator.
However, the phase of the field is not yet stable, and feedback still
has to be provided to stabilize the phase. Also, if the generator

frequency is allowed to track the resonator eigenfrequency very
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closely, the resonator cannot be considered anymore as being driven
by a generator, but must be considered as being operated in a self-
excited Toop. (See Appendix A)

3,5.3 Stability with arbitrary amplitude and phase feedback

We will now proceed into the stability analysis of a Tocked
self-excited Toop in presence of electromechanical coupling, and of
arbitrary phase and amplitude feedback.

The monotonic stability criterion can be found easily, Since

2

we know that when no electromechanical coupling is present (kp Vo = 0)

the system is stable for arbitrary ka and k , the monotonic stability

(p’
condition can simply be stated as:

H(k., k., k) > 0 (3.5.3.1)

Using the expressions obtained earlier for the various transfer

functions, we get:

2 1
- yzkuvO < é;-(l + yﬁyr)(l + ka) (3.5.3.2)

It is immediately apparent from the above expression that mono-
tonic stability can be greatly improved by the introduction of ampli-
tude feedback, and that the stability boundary can be pushed arbitari-
ly far by increasing the amplitude feedback gain. We note that k

¢
is not present in this expression, which means that monotonic stability
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is not affected by the presence of phase feedback, However, we have
to remember that some phase feedback has to be present to provide
frequency locking around w, and that k¢ has to be large enough so that
the use of the linearized system is valid,

Finding the oscillatory stability condition is more complicated,

and because of the complex nature of H ( k_, k, ku ), the use of

27 7o

Routh's criterion would lead to very lengthy calculations. We can,
however, find an expression for the stability boundary. We recall
that oscillatory instability will start to occur when a root of the

characteristic equation becomes purely imaginary; that is, the stabil-

ity boundary can be expressed as:

= 0 (3.5.3.3)

In other words, we have to find Q and kuvgt so that both real

and imaginary parts of H ( ka’ k¢, ku );S i are equal to 0. VOt

is the threshold field or field at which instability will start to
occur, all other parameters being held constant.

After replacing the transfer functions by their expressions, and
some manipulations, we obtain:

2
1+yy, ts(1 + yi)(rs + 1) . kaTs(l + yl)

(1 + yi)(vs +1) 14y, 1+yy,

kK, k) =

¢
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| 2Tk¢y£95kpvst

tk(ts+1+yy)+kk(l+yy)+

¢ r a ¢ r S2 + %—s + Q2
H

(3.5.3.4)

Since we are interested only in the roots of H, we will drop

the term in front of the brackets, and concentrate only on the expres-

sion inside,
We next replace s by jo, and by equating to 0 the real and

imaginary parts of the expression inside the brackets, we get the fol-

Towing relations:

2 2, .2
1+y 2k y 2%k V
L U L A B UL
Yy (2 - ad)? 4 4 g
H
T
u
2 2, .2
1+y 2k, y 2%k V
(k. + 1) ok, ¢4 7w uot 2
L+ Yy A 5?-92 W
T
H
(3.5.3.5)

By taking the ratio of these two expressions, we obtain the

instability frequency:
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2
) 1+y, +k¢(ka+1)(1+y2yr) .
2.2
l+yy T 8
QZ=9241+-§1 rr — (
’ M2t L+ Yy,
;‘*+(ka+1) +k¢
U L+yy., ’
(3.5.3.6)

We notice that if the feedback gains become sufficiently large,
the oscillation frequency can become significantly different from
the mechanical frequency. In particular, for the two frequencies to
be assumed as identical in the calculations without introducing any

significant error, the following condition must be satisfied:

© 1 k¢(ka + 1)
T Tzﬂi k¢ + ka +1

<< 1 (3.5.3.7)

By using the solution for g obtained above, we get the following

stability boundary:

2
‘y,Q,kHVOt - r 292 k (1 + )
- T b e Yoy
k. (k. + 1)(1+y.y )2 - TZQZ(l + yz) ‘
x TZQZ + ' a r u £

2t 2
H hadi il
(ky + 1+ Tu)(1 ) k(L vy )
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2 272 2
20 Kylky + D1+ yy )" - (1 +y))

I 21 2
wo(k, 1+ ;;~(1 Y k(1 yy)

(3.5.3.8)

) as being the right-hand side of

. . 1
We will define ?;Bos(ka’k¢

Loyl s . .
Fq. (3.5.3.8). Bos(ka’k¢)"yngkuvot is a dimensionless number
defining the equation of the stability boundary in the feedback

parameters space as a function of the electromechanical parameters.

To obtain the stability condition from the stability boundary, we go

to the Timit:

(3.5.3.9)

where we obtained the stability condition (3.5.2.4).
From the stability boundary (3.5.3.8), we obtain:

2.2 2, 2t
ot (Lryy )" ALy

B (0,x) = u
1292

0s
(3.5.3.10)

Therefore, the oscillatory stability condition in presence of

arbitrary phase and amplitude feedback is:
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2 1
yzkuv0 < ¥; Bos(ka’k¢) (3.5.3.11)

Bos(ka’k¢) is a complicated function of the system parameters,

however, in the Timits:

‘yz << 1
[yzyrl << 1
—E— << 1 (3.5.3.12)
H
k. +1 >> 1@
u
k¢ >> TQU

which are the normal operating conditions, it simplifies to:

2
k¢(ka + 1)

B .(k .,k )= (3.5.3.15)

os* a’ ¢ ngi (ka + 14 k¢)

Therefore, the oscillatory stability threshold can be pushed

arbitrarily far by using high amplitude and phase feedback gains.

3.6 Performance of the stabilization system

In the previous section, we saw that when a resonator was
operated in a self-excited loop, simple phase and amplitude feedback
could provide locking to an external'phase and amplitude reference

while preserving the stability of the system under electromechanical
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coupling. In this section, we will estimate the residual phase
error 8¢ and amplitude error 6v in such a system,.

Since &¢ and év have their origin in the variations of the
resonator eigenfrequency caused by external noise and vibrations
which are random processes, exact expressions for the time dependence
of 8¢ and 8v are impossible to find. Instead, we will obtain
expressions for the mean-square amplitude and phase errors <6v2>

and <5¢2> respectively defined as:

f'+T
<sv®s = Tim . sv2(t) dt
Tesoo J 7
(3.6.1)
P+T
<6p’> = Tim Lo s62(t) dt
Toew J 1

To do this, we will use the tools and results of the theory
of stationary random processes (Y2,57). Let x(t) be a stationary
random process whose mean, <x>, will be assumed to be zero. We can

define the auto-correlation function, Rx(r), of x(t) as:

+T

R.(t) = Tim x(t)x(t+r) dt (3.6.2)

N} bt
—

We can also define the spectral density, Sx(w), of x(t) as:
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S (0) = i R () e  dr (3.6.3)

The above relation indicates that SX (v) is the Fourier transform

of RX (t); consequently, we also have the relation:

R (7) = S (w) e dw (3.6.4)

The mean-square value of x (t), <x2> , can simply be expressed

from the auto-correlation function and the spectral density:

<x"> = R (0) = Sx(m) duw (3.6.5)

An important result of the theory of stationary random processes
relates the spectral densities of the input and output of a linear
system. Let x (t) be the input of a linear system of transfer func-
tion ¢ (j w) and y (t) be its output; we then have the following

relation:

. 12
S,(0) = 5,(0) [2(30)] (3.6.6)
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In this particular case, we obviously have;:

l2

w
—~~
1S
St
il

s () |6, (ju)
(3.6.7)

w
—
1=
—
it

. 2
S, (w) IG¢(Jw)!

where S_ (w), S, (w) and S, (w) are respectively the spectral density

¢
of sv (t), s¢ (t) and 8 o (t), and Ga (jw) and G¢ (jw) are the
transfer functions defined in equation (3.5.1.14).

We now have to find an expression for the spectral density Sw (w)
of the eigenfrequency deviation. The external noise will excite the
mechanical modes of the resonator; since only those modes which inter-
act with the electromagnetic field will produce frequency deviations,
we will assume that a single mode is excited by the noise, and that

it is the same that Teads to ponderomotive instability, With this

assumption, we have the following relation:

where S (w) is the spectral density of the external noise driving
the mechanical modes of the resonator. We then have the following

expressions for the mean-square amplitude and phase error:
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2 Ga(Jw) 2
<6V > = Sn(u)) 2 2 d‘}d
o QU -w + ;u\]w
(3.6.9)
+oo
G (ju) 2
<6¢2> = Sn(w) 5 ¢ 5 { dw
e QU - w + ?qu

We cannot theoretically obtain an exact expression for Sn (w),
and it has to be determined experimentally. However, since the
integrands are very narrowly peaked at Qu and very small everywhere
else, only the values of Sn (w) around Qu are of any relevance, and
we will assume S (w) to be constant over the whole frequency spectrum.
This is equivalent to the assumption that the mechanical oscillator

is driven by white noise:
_ a2
S (w) = A (3.6.10)

We then have the following expressions for < § v2 > and < & ¢2 >:

+co .

2 2 Ga(Jw) 12
<6V > = A 2 2 “2 d(.x)
Q8 - w = \]w‘

—wl My Tu
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dw

(3.6.11)

For ease of calculation, and without restricting substantially
the validity of the results, we will make the following simplifica-

tions in Ga and G¢ :

; 2
1+ Y, = 1
(3.6.12)
1+ Yo Yy ® 1

which means that the difference between the unlocked Toop oscillation
frequency ( w, ) and the resonator eigenfrequency ( 0, ) is much
smaller than the resonator bandwidth. If necessary, the above co-
efficients can be reintroduced in a straightforward manner in the
final results.

Using the expression found earlier for G, (s), we obtain:

6, (3u) - 3 (3.6.13)
— = 7 3 . 6.
T Jw aow + alw + azw a3w a4
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with:
222
b3 k¢r Yy,
_ 2

a; = - JT( + k + k¢ + 1)
T

ay =~ (Kl + 1)+ el BE(k k +1))
2 ' a T )
a, = J ~2——k (k. + 1) + TQz(k +k o+ 1)

3 T ' a uoa ¢ )

_ 2 2
3, = k¢nu ((ka + 1) + ZTkaUVO>

Integrals of the form:

o g.(x)

b = 23 ”ﬁhTTdX

where

- 2n"‘2 2n‘*1 T E RN Ly
gn = bOX + blx + + bnﬂl

n n-1 . .
h = 4 + Aktit‘tstlntgqg_’_
aox alx an

have been tabulated (S7,J1). In our case with n=4 and bo=

(3.6.14)

b.=b,=0

172
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we have; )
b, (aja, -~ a,a
[, =,2.03 172 (3.6.15)
4 2a4 (a al - a2 - 8,8,3,)
0%3 7 %1% T 91993

It can be noted that the stability of the system as expressed
by Routh's or Hurwitz' criterion requires that the three factors
containing the a's be positive (01). In particular:

a4>0

is the monotonic stability condition, and

2 2 -
3~ 313y "aga,3, > 0
is the oscillatory stability condition.

Thus, we find the intuitively obvious fact that the mean-square
errors are defined only within the stable range, and diverge when
either stability boundary is approached.

With the above definitions for <6v2> and 14 we obtain:

<sv®> = 2njh°1, (3.6.16)

However, expressing the mean-square amplitude error in terms

of the noise is not very useful, and it would be more significant
to express it in terms of the mean-square frequency deviation <6m§x>.

This can be obtained from:



+

<6m§x> = A2 5 Zde > = ZﬂjAZIZ
2% - 0" += jol
— O U Tu
(3.6.17)
where:
+oo
I, = oo dy T (3.6.18)
2 2% _m>lﬂ . w2 + ”.Jw‘z 4Q2
u
Thus, we have:
2 2 Iy

<fy > = <5wex> -—é— (3.6.19)

Replacing the a's in (3.6.19) would lead to a very complicated
formula; however, it can be greatly simplified and made easier to
understand if it is expressed in terms of the stability boundaries.
Earlier, we defined Bos( ka’k¢) as a dimensionless function of the
feedback parameters such that the oscillatory stability condition

can be expressed as:

2

szpkuvo Bos(ka’k¢) (3.6.20)
In a similar manner, we define:
_ 1
Bmo(ka) = 5 (1 + ygyr)(l + ka) (3.6.21)
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so that the monotonic stability condition can be expressed as:

2
- yxrkuvo < Bmo(ka) (3.6.22)

We then obtain the following expression for <5v2>:

2
covls = <6m2>¥-&~2—
ex ZQ
u
K (k. +1) (k. +k +1)425 (k_+k +1)2+7202 +Vgl'2(k K +1)
o a ¢ a t[a¢ Tp} (’[ a ¢
X H i1
(kotk 4145592 (B +y tk VO) (B - y .t k V9)
ae T mo Y20/ Pos T YT XY

(3.6.23)

The dependence of the mean-square amplitude error on the loop
phase shift is represented in Figure (3.14).
<6¢2> can be obtained in a similar manner. The a's in 14 are

identical, but now:

b2=1‘4
2
by = <*(k, + 1)°
[ %Pyt b5lagas - 2g3y) (3.6.24)
4 ?

; 2
2a4(a0a3 +aja, - a1a2a3)



-97-

<6V2>92
4_.“2%3.
<6mex>
" B ~Bos
k V2 Lk Ve
u o U uo

Fig.3.14. Mean-square amplitude error vs. tangent of the

loop phase shift
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We obtain for <6¢2>:

< >
Gwex

<o’> = T
25k
v ¢

2.2 21 . 2
X [ 21 Quk¢(ka+k +1+~T-)(B + y»Q/TkUVO)

¢ o mo
F(k 1) 2k (k1) (K 4k +1)+§1((k wko+1) %4 292)+413(k * +1)]
a [ o' a o a e \Mahe Y 20a g
u

21,2
X [ (ka+k¢+1+:{- (BmO

vy k VB -y k V) .
y yZT uo 0S yltu uo

(3.6.25)

The dependence of the mean-square phase error on the loop
phase shift is represented in Figure (3.15).
It should be pointed out that in the graph (3.14) of <5v2> and

2> , the oscillatory stability asymptote

in the graph (3.15) of <6¢
on the right of the vertical axis has been placed much further from
this axis, as compared to the left asymptote, than occurs in reality.
From these two graphs, we can draw some conclusions. First of
all, we see that when the loop phase shift is adjusted so that the
unlocked self-excited loop operates on resonance (y2 = 0), the mean-
square amplitude error is equal to 0. This is just a consequence of

the fact that on resonance, phase and amplitude feedbacks are de-

coupled. Also, we see that when either stability boundary is
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_<8¢ >
A <8 2 >
T <Sugy
Yy
B .
~_mo _Bos
1k V2 T k V2
u 0 oo

Fig. 3.15 Mean-square phase error vs. tangent of the loop

phase shift
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approached, the mean-square errors increase rapidly and eventually

diverge, Lastly, we see that it might be preferable to operate off
resonance on the low frequency side (y2 < 0). This has the consequence
of decreasing the mean-square phase error while increasing the mean-
square amplitude error, Thus, depending upon the application, a
balance between phase and amplitude errors can be achieved, This
decreasing of the phase error is due to the fact that the phase mod-
ulation creates an amplitude modulation through the transfer function
Gta (see Fig. 3.12), which, in turn, drives the mechanical mode to
produce an additional phase modulation. When the loop operates on

the Tow frequency side, (yz < 0), this additional phase modulation has
a sign opposite to the original phase modulation, effectively operating
as an jnternal damping of the mechanical mode of the resonator.

In the practical limits:

u
k. +1 > 10
u
k >> 10
¢ u

expressions (3.6.23) and (3.6.25) for <6v2> and <6¢2> simplify to:

2
y k. (k_+1)

cov’ = Sway” jLz o 7 7
29u (ka+k¢+1)(Bmo + ‘ySLTkuVO)(BOS - szukuVo)



), <tul > (k_+1)°
<69 > = 7
29 k¢(ka+k¢+1)(8m + _yQTkUVO)(BOS ygTuk VO)
(3.6.26)
with:
1+k
Bo = "7
(3.6.27)
k (k. + 1)2
B s 7 g .
0
Lot nu(k¢ +k, 1)
In particular:
T <8w,_ >
<56%> - o & (3.6.28)
=0 %
YQ é

We also have the following relationship between mean-square

phase and amplitude error:

2
2 , o
T (3.6.29)
<8¢ > (ka + 1)

This relationship can be easily extended to the instantaneous
values of &v(t) and 8¢(t) since they are very strongly correlated.

In effect, from Equations (3.5.1.14), we have:
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G_(s) y (1 +y,y.) k
a = X >r ¢ (3.6.30)
G¢(s) 1+y, ky+1+7s
So, when
k. +1 >> 10 (3.6.31)
a H
sv(t) and s¢(t) are proportional and related by:
sv(t) o1+ vy K (3.6.32)
so(t) 1+ yi k, + 1

In Chapter I we obtained an equation for the energy gain W of

a particle going through a resonator which was as follows:
W=gq cos ¢ E(eo) T(B) (3.6.33)
Keeping in mind that E(BO) is proportional to the instantaneous
field V in the resonator, we obtain by differentiation the energy

error caused by the phase and amplitude error:

AW -tan ¢S 8¢ + 8V (3.6.34)

where ¢s is the synchronous phase.
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This equation applies to a single bunch of particles going
through a single resonator. If we assume that the beam entering
the accelerator is purely monochromatic, the energy spread of such
a beam at the output averaged over many bunches going through n

identical resonators will be;

AW ’ 1 2 2 2
(“,*.) = o (tan%e  86% + &v°) (3.6.35)

where wt = nW is the total energy gain. To obtain the above equation,
we assumed that Sv and 8¢ were independent random variables, and it
clearly shows that in order to keep the beam as monochromatic as
possible, both 8¢ and &v have to be minimized.

However, the previous analysis shows that with this particular
feedback system, sv and §¢ are very strongly correlated; in fact,
in the 1imit (3.6.31), they can be considered as being proportional
as indicated by equation (3.6.32). It should be emphasized that
although ¢v and s§¢ are random variables, the proportionality is not
between magnitudes or mean-square values, but between instantaneous
values. So that a new expression for the energy gain error, modified

by this correlation, is:

y k l+y y
AT o] - taneg 4 PR BT
a 1+y£

(3.6.36)
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which, in practical cases, simplifies to:

ty, e (3.6.37)
a

The above equation shows that if the feedback parameters are
carefully chosen (especially yg), the energy gain error can be made
to vanish although phase and amplitude errors are still present. In
other words, the feedback parameters can be chosen so that the effects
of the residual phase and amplitude errors compensate for each other,

and the beam quality is preserved. This occurs if:

k
% -
Yok w17 BN 4 (3.6.38)

Since ¢ = —200, this would imply working on the low frequency
side which, as we already mentioned, is to be preferred as the system
is more stable than on the high frequency side.

More complicated feedback transfer functions can be devised
in order to decrease sv and &¢ : terms proportional to %%¥-and %%?
can be added together with feedback from &§¢ to dvg and from sv to &t.
However, if this decrease of &v and 6§¢ is obtained at the expense of
giving up the proportionality relationship, a net increase in aW
could result.

This cancellation of the energy gain error is a direct result of

the proportionality between instantaneous values of the residual phase
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and amplitude errors, In practice, however, this proportionality will
not be absolute at all times because of two reasons. Firstly, this
proportionality, as indicated by equation (3,6.32), was obtained from
a study of the linearized system, and under Targe frequency excursions,
equation (3.6.32) might become only an approximation. Secondly, under
high feedback gains, some elements in the feedback system might
present a non-linear behavior. Although exact cancellation of the
energy gain error will probably not happen in reality, operating the
feedback system under conditions where equation (3.6.38) is satisfied,
however, should result in a significant decrease of the residual
energy gain error.

3.7 Conclusions

In this chapter, we derived a set of differential equations de-
scribing a resonator in a self-excited loop, Using these differential
equations, it was shown that when the loop was free-running the ampli-
tude of the field was stable, and the loop did not present pondeko—
motive instabilities, When the loop was locked to an external ampli-
tude and phase reference, ponderomotive instabilities could occur; how-
ever, the loop could be made stable by adjustment of the loop phase
shift and the stable range could be increased by using high feedback
gains, It was also shown that the feedback parameters could be chosen
in such a way as to greatly reduce the residual energy gain error while

phase and amplitude errors were still present,
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Chapter 1V
DESCRIPTION OF A FEEDBACK SYSTEM FOR PHASE AND AMPLITUDE
STABILIZATION OF SUPERCONDUCTING RESONATORS

In this chapter, we will present the design and realization of
a phase and amplitude stabilization system for a superconducting res-
onator. This system was not simply designed to provide experimental
verification of the analysis of the previous chapter, nor was it
designed only to provide stabilization of a single resonator, It was
conceived as a building block of the stabilization and control system
of a full scale many-resonator accelerator. With this in mind, the
control system had to fulfill two requirements. Firstly, it had to
be flexible enough so that any control function deemed necessary
could be implemented easily; secondly, there should be easy access
to and easy manipulation of all the parameters of the system ejther
manually or automatically.

In order to provide the design flexibility mentioned above, the
control system was designed to operate at audio-frequency (D.C. -
200 kHz) where the signals are more easily and more economically
manipulated than at the RF frequency of the resonator. The range of
feasible signal manipulations is also vastly greater at audio fre-
quency than at radio-frequency. This has the added advantage that
the control system can be designed independently of the frequency of
the resonator; only the RF - IF interface has to be modified. Thus,
this control system can be used to stabilize resonators with eigen-
frequencies ranging from less than 50MHz to more than 5 GHz.

The access to all the parameters and the automatic operation of
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the control system was obtained by having all the parameters entered

digitally by a microprocessor.
Thus, this control system is composed of three levels:
- RF level: power amplifier and resonator (150 MHz)
- IF level: feedback and signal manipulation (D.C, - 200 kHz)

- Digital level: parameter setting and decision making

And of two interfaces:
- RF -'IF
- IF - Digital

We will now proceed into the description of the feedback system
without going into technical details.

This stabilization system is novel in several ways:

- The controlled element is not a resonator but a self-excited

loop containing a resonator.

- No external voltage-controlled reactance was used; instead,

stabilization was provided by negative electronic feedback.,

- A1l the control takes place at audio-frequency.

A block diagram of the stabilization system is shown in Fig. (4.1).

The three most important parts of this system are:

- The RF -~ IF interface
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Fig. 4.1. Block diagram of the stabilization system of

a single resonator.
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- The drive Toop which completes the rf section of the self-

excited Tloop,

- The control loop where phase and amplitude errors are deter-

mined, and where feedback takes place.

4.1 RF - IF Interface

As was mentioned in the introductjon, both phase and amplitude
of the field in the resonator have to be stabilized. This means that
in the RF to IF conversion, two IF signals have to be extracted from
the RF signal coming from the resonator in order to obtain all the
information required. This interface is shown in Fig. (4.2).

The down-conversion can be realized by mixers operating as phase
detectors, If the RF input is low enough so that the mixer operates
jn its linear range, the instantaneous IF output is proportional to
both the RF amplitude and the cosine of the phase difference between
the RF and Local Oscillator inputs, The two IF signals which are re-
quired are obtained by first splitting the local oscillator signal by
a quadrature hybrid. A quadrature hybrid is a one input - two outputs
device whose two outputs are 3 dB lower than the input; one being in
phase with the input, and the other being shifted by -90°.

Thus, one obtains two IF signals whose common frequency is the
difference between the loop frequency and the reference frequency,
and whose amplitudes are proportional to the amplitude of the field
in the resonator. In other words, X and Y are the components of the

resonator field in the rotating frame of the reference. From X and Y,
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Fig. 4.2. The RF to IF interface used to convert the signal

coming from the resonator into two low frequency
signals. The IF to RF interface is identical with
the exception that the mixers operate as current-
controlled attenuators and the power splitter as a

power combiner



-112-

V and ¢ can be unambiguously determined, There is of course, a
proportionality constant between the resonator field amplitude and
the IF signals amplitude, but this constant will be omitted from now
on and V will represent simultaneously the field amplitude and the
IF signal amplitude, The additive constant between the absolute
phase of the resonator field and Arctan %-w111 also be omitted, and
both will be represented by ¢,

The two IF signals X and Y are the ones which are manipulated
in the control system to provide two outputs Xout and YOut (in fact,
the outputs are two currents, IXOut and IYout’ which are proportional

to X and Yout)' The up-conversion from IF to RF is done in the

out
same manner as the down-conversion with the exception that the mixers
now operate as current-controlled attenuators, and the power splitter
now operates as a power combiner,

4,2 Drive-loop

We will now describe the IF portion of the se]f—exci?ed loop.
X and Y are first amplified by two programmable gain amplifiers,
whose common gain is set digitally, to bring the low-level mixers'
output to usable levels,

The two important blocks of a self-excited loop are the phase
shifter and the Timiter. The unusual requirements placed upon these
two is that they have to be usable down to DC. In fact, when the Toop
js lTocked, X and Y are DC signals since the local oscillator pro-
vides the RF phase reference to which the resonator has to be locked.
In this particular application, since both components of a signal

are available, X and Y, it is meaningful to speak about negative
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frequency, and the system designed to operate between D,C, and 200 kHz
had én equivalent RF bandwidth of 400 kHz,

The phase shifter had to be designed to provide a continuously
variable phase shift from 0 to 2w, but independent of the input sig-
nals' amplitude and frequency. This was realized by using four
multiplying digital to analog converters yielding two outputs which
were linear combinations of the two inputs és shown in Fig. 4.3; the
digitally-set coefficients of this Tinear combination being the sine
and the cosine of the shifting angle.

The limiter, shown in Fig. 4.4, was realized by using an analog
multiplier in each of the channels whose first input was either X| or
Y‘ and whose second input was an analog signal proportional to-%
provided by the coordinate conversion module which will be described
in the control loop. E is the amplitude reference set digitally,
and V= X2 + Y2 is the field amplitude.

Thus, we obtain two signals which are the components of a signal
whose phase is equal to the input phase plus a constant, and whose
amplitude is independent of the input amplitude. This part of the
system operates as a phase shifter and a Timiter in a self-excited
Toop. The self-excited loop is completed by converting the outputs
of the Timiter from voltages to currents, and returning them to the

up conversion part of the RF - IF interface.

4,3 Control loop

As has been described until now, the system operates as an un-
locked self-excited Toop. To be useful as an accelerating structure

control system, phase and amplitude stabilization has to be provided
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Fig. 4.3. Schematics of the digitally controlled phase shifter
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X' = Vcos(o+a)

Xout = Ecos(¢+a)

pr—

gt

E/V

out = Esin{¢+a)

Y' = Vsin(¢+a)

N\

Fig. 4.4. Schematics of the limiter
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which is the role of the control Toop.

The heart of the control loop is the coordinate conversion module,
Since the variables of interest are Vand ¢, amplitude and phase, and
the variables to which we have access are X = Vcos ¢ and Y = Vsin ¢,
some form of rectangular to polar coordinates conversion has to be
provided.

We will mention now a second phase shifter (of angle —¢O) placed
before the coordinate conversion. All the resonators have to be
Jocked to the same phase (or frequency) reference; however, to allow
for different cable length and the time of flight of the particles
between the different accelerating resonators, a certain constant
phase difference has to be allowed between the field in each resonator
and the phase reference. This is the purpose of this second phase
shifter, to account for this phase difference. The phase of the
signal represented by the two outputs of the reference phase shifter
is then the phase error between the phase of the field in the res-
onator and the phase to which it should be locked.

Obtaining V from X and Y is relatively easy by solving the

implicit equation:

This can be done, as shown in Fig. 4.5, by using analog multi-
plier-dividers which are three inputs - one output devices (one

input being differential) with the following transfer function:
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{;ii;D
<<

Fig. 4.5. Schematics of the determination of the amplitude

of a vector from its Cartesian components



The phase conversion, which is equivalent to solving the equation:

- Y
6 = Arctan X

is more difficult to realize.
In fact, an exact solution is impossible, and some approximation
will have to be found,

A suitable approximation was found to be:

0! = sin 6 - Y
a +bcos 8 aV+ bX

where a and b are free parameters which can be chosen to minimize
either the relative or absolute error over any symetrical range
around 6 = 0. a + b =1 yields a relative error of the order of
63 around 0, and a = 0.642, b = 0.358 minimizes the relative error
in the range [— g—, + %-]to + 0.8%. The second and third quadrants
are unimportant since in the locked state 6 = 0.

The above approximation can be implemented easily with an
analog multiplier-divider. Three other useful signals are also
generated in this module: E/ V where E is a digitally-set amplitude
reference and is used in the limiter described above, e = (E - V)/ V

which is a normalized amplitude error, and f which is the instantane-

ous frequency difference between the self-excited loop and the
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frequency reference, f was defined and implemented as:

XY -XY
fe=riotl

oV

Thus, f gives us the magnitude and sign of the frequency differ-
ence, and is independent of the phase and amplitude of the input.

To provide amplitude stabilization, the normalized amplitude
error e is amplified by a digitally programmable gain amplifier (of
gain Ae) added to E/V to control the Timjter output. This provides
us with a smooth transition between unlocked and locked amplitude
states. Even when no amplitude feedback is provided, the loop is still
oscillating and the amplitude is stable. An even smoother transition
is accomplished when the input buffers gain is adjusted so that at
operating field V = E in the unlocked state,

Phase stabilization is accomplished by adding a signal in quad-
rature with the loop signal which is controlled by the phase error
between the self-excited loop and the phase reference, as shown in
Fig., 4.1. This is accomplished by using the two outputs of the loop

! ]
phase shifter X and Y , making the transformation:

then multiplying each of them by A¢e where A¢ is the digitally-set

gain of a programmable gain amplifier and 6 is the phase error, and



-120-
adding them to the inputs of the limiter-amplitude modulation module,

Thus, the output signal of the feedback system is:

E E-V ;
V_V+Aa(‘v )‘_1+1A¢e_
- T r n

i E-V :
or: E i 1 + Aa ( £ )_ ] 1+ 1 A¢ 6~

which is identical in form to what was used in the analysis of the
previous chapter as indicated by Equation (3.5.1.2).

In the design of this system, great care was taken to prevent
the introduction of any unintentional coupling between phase and
amplitude feedback which could hamper the stability of the system

by exciting the mechanical mode of the resonator.
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Chapter V

EXPERIMENTS

A prototype of the feedback system analyzed in Chapter III and
described in Chapter IV has been designed and built to stabilize reso-
nators for use as accelerating structures for heayy-ijons. A series of
experiments has been performed to test this system in conjunction with
a 150 MHz lead (Pb) plated split-ring resonator at 4,20 K,

Some of the stabilization experiments have already been published
elsewhere (D7). In those experiments, the feedback system analyzed
here has been successfully used to stabilize a 150 MHz split-ring
resonator at an average accelerating field of 2 MV/m with a residual
amplitude error 8v < = 0,1% and phase error &¢ < # 0.1°.

Fig. (5.1) shows an experimental determination of the probability
density of the jnstantaneous eigenfrequency of an unlocked resonator
in a laboratory environment, These results were obtained by the micro-
processor performing 10,000 measurements in 40 sec of (f) the differ-
ence between the loop frequency which tracks the resonator eigenfre-
quency, and the reference synthesizer frequency. This typical peak to
peak excursion of 100 Hz in the resonator eigenfrequency (v150 MHz) is
much Targer than the intrinsic bandwidth of the resonator (~20 Hz).

Fig. (5.2) shows an experimental determination of the normalized

auto-correlation function, pf(T), of the frequency deviation:
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0021

Fig. 5.1. Probability density of the resonant freauency
of a 150 Mz superconductina split-ring

resonator.
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where +T

sf(t) sf(t+r) dt

§F = f - <f>

These results were also obtained by the microprocessor making
measurements of (f) every 2 msec.

The auto-correlation function shows that two mechanical modes
are excited by vibrations and interact with the electromagnetic field,
These two modes were identified at room temperature by stroboscopic
means. One s a torsional and bending mode of the loop where the
drift tubes move in opposite direction along the beam line and has a
frequency 9 = 47 Hz. The other is a bending mode of the loop where
the drift tubes move in a plane perpendicular to the beam 1ine and has

a frequency , = 50 Hz.

In Fig. (5.2), the solid line represents a least-square fit to

the experimental points by a function of the form:

p (1) = A1 cos Q1 + AZ COS QT
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i

50 Hz

with A1 0.55 Ql/Zw

}
]
~No
Pt

A2 = 92/2w = 46,8 Hz

Such a trial function assumes that the eigenfrequency deviation
is due to two independent mechanical oscillators excited by white
noise with Q's much Targer than 1. It can be noted that Al + A2 < 1,
This is to take into account a superimposed high frequency nojse
introduced by the electronics which had the effect of decreasing the
value of the normalized auto-correlation function for all values of
T # 0.

The contribution of mode 2 to the total frequency shift can,
in principle, be determined from the electromagnetic field distribu-
tion inside the resonator. The contribution of mode 1, however, is
more difficult to estimate; since it is very sensitive to the position
of the drift tubes along the beam line.

It can be seen from Fig. (5.3) that the electric force excited by
one end plate on its facing drift tube nearly cancels the force ex-
erted by the other drift tube. However, a small displacement of any
drift tube along the beam line will result in a net electric force and
an increased contribution of the mechanical mode 1 to the eigenfre-
quency variation by an amount which is difficult to predict, and varies
from resonator to resonator,

For example, the total radiation pressure frequency shift at an

average accelerating field of 2 MV/m was reduced from 4 KHz to 400 Hz
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by adjusting the position of the drift tubes along the beam line. It
can be seen from Fig, (5.2), where the fundamental frequency is 50 Hz,

that the main contribution to the frequency shift comes from the me-

chanical mode 2.
We found in Chapter III that when the amplitude feedback gain fis
sufficiently high (ka + 1 > TQH), there exists a simple relationship

between residual phase and amplitude error as expressed by equation

(3.6.32).
This relationship was tested with the feedback system described

in Chapter IV and a 150 MHz resonator locked to an external reference,

k. +1
The results are shown in Fig, (5.4) where w{?-w—»%%-(in %/deg) is
¢

plotted as a function of 6, the loop phase shift. The solid line is

52/3

Tﬁg»sin 6, COS 6 which is what is expected from the relation with

Yp = 0. The only adjustable parameter is a constant offset in 6, since
the absolute loop phase shift is impossible to measure. Fig. (5.4)
shows an excellent agreement between analysis and experiments.

In another series of experiments, the oscillatory stability
boundary was measured and compared with theory.

In the first experiment, the field amplitude VO and the phase

feedback gain k, were held constant, and the loop phase shift 8, at

¢
which ponderomotive oscillatory instability started to occur, was
measured as a function of the amplitude feedback gain ka' The results
are presented in Fig, (5.5) where the solid Tine js what is expected

from theory. This was obtained from:
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Fig. 5.4. Normalized ratio of residual amplitude and

phase error vs. loop phase shift.
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Fig. 5.5. Oscillatory stability boundary vs. amplitude

feedback gain.
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) BOS ( ka, k¢ )
Yo © ?
% Tt k V
u u O

by solving for Y, 3s @ function of ka‘ This solution had to be found
by successive approximations since Yy, is also present in Bos' In the
expression for Bos’ we made the approximation: Yy = 0, and besides an
offset in o, which was determined from Fig, (5.4), all the parameters
were either measured or calculated.

The agreement between theory and experiment is excellent, es-
pecially at Tow values of Y, and ka' At higher values of Yg» however,
there seems to be some discrepancies. These discrepancies have their
origin not in some inexactitude of the analysis, but in the breakdown
of the feedback system. As we mentioned in Chapter II, the coupling
of the resonator is adjusted so that the maximum frequency excursion
is half the bandwidth of the resonator; this means that Yy varies in
the range [~1, +1] .

However, for the loop and the feedback system to be operating,
condition (3.5.1.6) must be satisfied, and we see that when Y, gets of
the order of 1, the feedback system can become unstable independently
of ponderomotive effects.

The same experiment was made where Y, was measured as a function
of k¢ for fixed ka and is shown in Fig. (5.6). Here again, the agree-
ment between theory and experiment is excellent,

In conclusion, the experiments successfully demonstrated the

principle of phase and amplitude stabilization of resonators operated
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Fig. 5.6. Oscillatory stability boundary vs. phase feedback

gain.
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in self-excited loops by electronic feedback, They also confirmed the

results of the analysis pertaining to the relative values of the resid-

ual phase and amplitude errors, and of the oscillatory stabjlity of the

electromechanical system.
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Appendix A

RESONATOR DRIVEN BY A VOLTAGE-CONTROLLED OSCILLATOR

Throughout this thesis, we have studied a resonator operated in
a self-excited loop, and in some instances, we have made references
to another case where the resonator is driven by a fixed frequency
generator. A third case, however, can occur in practice where the
resonator is driven by a voltage-controlled oscillator (V.C.0.), that
is, a generator whose frequency is not fixed, but is controlled by
an external variable, in this case, the phase shift across the resona-
tor as shown in figure (A.1).

Since the generator frequency is not fixed, the resonator input
is best represented in terms of a real amplitude and an absolute RF

phase:

(A1)

The resonator output can be represented in several ways whose
convenience varies depending upon the application. The most common
is to assign to the output the same RF phase as the input, and then
include any phase shift between input and output into a complex

amplitude:
v = Vel® (A.2)

Another way is to describe the fields in terms of a real ampli-

tude and an absolute RF phase:
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Fig. Afl. Block diagram of a resonator driven by a

voltage-controlled oscillator
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v=yel (A.3)

The phase difference between input and output is sensed by a
phase detector, and after addition of an arbitrary phase offset 6,
this signal is amplified by an amplifier of gain K to control the

V.C,0, frequency which is now:

do

t ~ “go

1+K(¢-at 6) (A.4)

where “g0 is the frequency of the V,C.0. when no phase locking is

provided,

We also define 6. as being the phase shift across the resonator.

- (1 do 4 N\1
8. = ¢ - a ‘(wgo & -l)g -9 (A.5)

As usual, the resonator is represented in terms of a single

electromagnetic mode:
G + %—Q + w2 vV = -Q (A.6)

By replacing v and Vg in (A.6) by their expressions (A.1) and

(A.2), one gets the following differential equation:

V+ V(2ia + %9 + V(ia + %ﬁ& " wg Cady = 2y wiav) (A7)

) = 2V g

AN
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If (A.3) instead is used for v, we get:

.. . .0 2 .0. .o ’ 2 . .'
V(2o + ) ¢ vlig + Big v of - 67) = 2V 4 dav)) (A.8)

By using (A.4) and (A.5), (A.7) and (A.8) transform respectively

to:
v+ \7[21‘0390(1 + Ko, +8,)) + ;2[—]
# ¥ [iKnggoe + Bug (14 Klag + 6,)) + wd - w2 (1+ Ko, +0,))°
- %-[\'/g #ingy(1+ Klog + 0, )V (A.9)
and to:

V o+ V(2i¢ + %) +V(i¢ + %ﬁé + wg - éz)

. 1, 1 da .

_ 2 1 92 - k‘(ra—{ - 1) . e o
=7 e go (Vg + 'l(d) - k‘(:);‘o“)vg ) (A.IO)

It should remembered that although (A.9) and (A.10) look very
different, they describe the same time evolution of the fields in the
resonator. The differences have their origin in the two different
representations used for the fields.

One important 1imit case which is obvious to understand is when
the phase-locking system does not operate. In this instance, it is

expected that the above differential equation reduces to the one
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describing a resonator driven by a fixed frequency generator, In
effect, if we set K=0 in (A.9), we get:

2

T -2, 2
V + V(21wgo + T-) + V(~T~1wgo + W, wgo

which describes a resonator driven by a generator of frequency Y90

Another important 1imit case is when phase-locking is perfect,
so that the generator frequency is determined only by the phase shift
across the resonator. If we set K=~ in (A.10), we get:

et 2 2
Vo V(2 + )+ V(e + S+ g - ¢%)

i8
~2—e ’@(
T

Ly
V9 ¢ g)
(A.12)

which is just the differential equation describing a resonator
operated in a self-excited loop whose loop phase shift is ez and
whose limiter output is Vg.

Thus, the two cases where the resonator is driven by a fixed
frequency generator, or is operated in a self-excited loop, can be
considered as 1imits of a third, more general, case where the

resonator is driven by a voltage-controlled oscillator.
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