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Abstract

In the first half of this thesis, a new robotic instrument called a scanning impedance
probe is presented that can acquire electrochemical impedance spectra in
automated fashion from hundreds of thin film microelectrodes with systematically
varied properties. Results from this instrument are presented for three catalyst
compositions that are commonly considered for use in state-of-the-art solid oxide
fuel cell cathodes. For (Lao.sSro.2)0.9sMn0O3.s (LSM), the impedance spectra are well
fit by a through-the-film reaction pathway. Transport rates are extracted, and the
surface activity towards oxygen reduction is found to be correlated with the
number of exposed grain boundary sites, suggesting that grain boundaries are
more surface-active than grains. For LaosSrosCo003.5 (LSC), the surface activity
degrades ~50x initially and then stabilizes at a comparable activity to that of
previously measured Bag5Sro5C008Fe0.203-s films. For Sro.06Nbo.0osBi1.s703 (SNB), an
example of a doped bismuth oxide, the activity of the metal-SNB boundary is

measured.

In the second half of this thesis, SrCoo9Nbo.103-5 is selected as a case study of
perovskites containing Sr and Co, which are the most active oxygen reduction
catalysts known. Several bulk properties are measured, and synchrotron data are
presented that provide strong evidence of substantial cobalt-oxygen covalency at
high temperatures. This covalent bonding may be the underlying source of the high

surface activity.
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CHAPTER1 OVERVIEW

1.1 Summary

This thesis is divided into two halves. The first half describes a high throughput
approach for characterizing the electrochemical activity of thin film samples of
solid oxide fuel cell (SOFC) catalysts. The second half contains investigations of
bulk samples that yield insight into the defect chemistry and electronic behavior of
a model catalyst, SrCo09Nbo.103.5 (SCN). The two halves are linked by a common
motivation to understand the electrochemical properties of the most important

SOFC cathode materials. This motivation is explained below in more detail.

1.2 Why study solid oxide fuel cell (SOFC) materials?

Solid oxide fuel cells (SOFCs) are the most efficient devices yet invented for
converting fuel into electricity. Industrial systems that cogenerate electricity and
heat using SOFCs have projected efficiencies of up to ~75%, exceeding what is
possible in combustion systems.! SOFC systems are also fuel flexible; they can
generate electricity from natural gas, hydrogen, ethanol, propane, biofuels, and
more. Furthermore, when operated in reverse, SOFCs are the most efficient
electrolyzers known, i.e.,, when supplied with electricity, an SOFC can efficiently
split water to generate hydrogen fuel. Despite the enormous promise of this
technology, commercial SOFC development has been hampered by inadequate

catalyst performance, coupled with a lack of understanding of how the catalyst can



be improved. These technological capabilities and challenges are described in

detail elsewhere.12

The study of SOFC electrodes is also intricately linked to a number of fundamental
scientific questions in catalysis: What intrinsic material parameters determine the
rate of electrochemical charge transfer at an interface? What are the reaction
pathways? What chemical changes cause catalysts to improve or degrade with
time? These questions have been discussed in recent reviews pertaining to SOFC
cathode3-> and SOFC anode>® materials. Among other conclusions, these reviews
make clear the importance of electrochemical impedance measurements on dense
patterned thin film electrodes for elucidating the redox activity and catalytic

pathways at the surfaces of these materials.

1.3 Why study thin films of SOCF catalysts?

The motivation for measuring dense patterned thin films is that in porous catalyst
microstructures, a consequence of porosity is that the intrinsic surface activity of
the catalyst is convoluted with extrinsic factors like surface area, microstructure
interconnectedness, tortuosity, length of the so-called "triple phase boundary" (the
boundary between the catalyst, the electrolyte, and the gas phase, where the rate-
limiting step is often thought to occur), and so on. It can be quite difficult to
characterize and deconvolute these geometry-dependent factors. The task has
been helped by recent advances in 3D characterization techniques like x-ray

tomography and focused ion beam milling in combination with scanning electron



microscopy. However, these methods remain fairly slow and expensive and often
include significant uncertainty. On the other hand, by using dense samples with
well-characterized geometries, it becomes easier to normalize by geometry (e.g.,

scaling catalytic activity by surface area) to obtain intrinsic material properties.

A second common difficulty is that in typical electrochemical methods for
measuring activity (which involve current and voltage measurements and which
go by various names, including a.c. impedance spectroscopy and d.c. voltammetry),
it is challenging to decoupling the rates of the anode and cathode reactions, since
they occur simultaneously and both contribute to the overall measurement. In
electrochemical systems with a liquid electrolyte, this common problem is usually
resolved by using a reference electrode, i.e., a third electrode that is placed in the

liquid electrolyte to help decouple the potential changes at the two electrodes.

Numerous workers have also tried to use a reference electrode to decouple the
anode and cathode overpotentials in systems with a solid electrolyte. However,
papers by Adler and others have shown quantitatively that "minor errors in the
alignment of the anode and cathode can create significant errors in the measured
half-cell overpotential... [including] cross-contamination of anode and cathode
frequency response... [and] even if electrodes are perfectly aligned, differences [in
kinetics]... may cause inherent distortion of the impedance, including frequency
dispersion and inductive artifacts."” For this reason, reference electrodes have

largely fallen out of favor in studies of the activity of SOFC catalysts.



As an alternative, microelectrodes have emerged over the last fifteen years as a
reference-less way to decouple the anode and cathode behavior. In this approach,
the two electrodes are fabricated with vastly different surface areas: a small area
working electrode (~ 10-4 cm?) is dwarfed by a large area counter electrode (~ 1
cm?). In such a configuration, the measured electrochemical response can often be
attributed entirely to the small area electrode, a.k.a. the microelectrode, with
negligible error. The conditions under which this attribution is sufficiently

accurate have been estimated previously.8

These sample requirements --- dense, geometrically well-defined, and having tiny
area --- motivate the use of patterned thin film microelectrodes. First reported in
2000,° such films are typically grown by physical vapor deposition (usually pulsed
laser deposition or sputtering) and then patterned into the desired shapes by
photolithography and subsequent dry etching (milling with argon ions) or wet
etching (dissolution in acid). The area/perimeter of the microelectrodes can be
systematically varied within a single pattern, which helps to identify scaling
relations and interpret the electrochemical results. Roughly 25 papers using this

approach have been published since 2000.

Despite its success, a number of issues have constrained the microelectrode
approach. First, sample preparation is slowed by the need to synthesize a different

target for each composition prior to physical vapor deposition. Studying tens or



hundreds of compositions can thus be quite cumbersome. (This constraint is not
unique to the microelectrode approach.) Varying other parameters besides
composition --- film thickness, surface decoration, growth conditions, substrate
orientation, and so on --- has also required growing numerous films one at a time,
in series. Acquiring impedance spectra from these samples also had to be done in
series, further adding to the experiment time. This time constraint likely explains
why studies typically report results for only two or three film thicknesses, even in
cases where film thickness appears to be a critical parameter.1%11 Another issue is
that subtle differences between samples prepared or characterized in series can
introduce experimental errors that mask trends of interest. Surface activity may be
sensitive to small changes in impurity content, for example. Also, prior to this
work, the acquisition of each of hundreds or potentially thousands of impedance
spectra required the cumbersome operator task of manually contacting each
microelectrode with a tiny metal probe tip every few minutes. Perhaps in part
because of the repetitive nature of this task, the stability and repeatability of
impedance measurements from microelectrodes are not always clearly reported in
the literature. Indeed, sometimes the stability is not mentioned at all,1%11 leaving
the reader to assume(perhaps incorrectly) that the material properties are entirely

stable over time.

1.4 Why study bulk defect chemistry?



The surface activity is arguably the single most important property of a catalyst,
but there are many reasons why understanding the bulk defect chemistry may also

be extremely useful:

First, bulk thermodynamic instability of a material can explain why its surface
properties change with time. Second, correlations between surface and bulk
transport rates (specifically, the oxygen tracer surface exchange coefficient k* and
the oxygen tracer bulk diffusion coefficient D*) have been observed over a wide
range of oxygen-conducting materials,1213 suggesting that the surface and bulk
properties are closely linked. Third, in SrTii«Fex03.s a strong correlation has been
observed between the surface activity and the Fermi level in bulk samples, again
suggesting that the surface catalystis and the bulk electronic structure can be
closely linked.* Fourth, a knowledge of bulk properties helps with experimental
design. For example, the results of thin film studies of surface activity can be
distorted if electronic sheet resistance contributes significantly to the measured
impedance, and knowing the electronic conductivity helps in predicting and
avoiding this distortion.?> Fifth, a knowledge of bulk properties also helps with
device fabrication. For example, a nearly ubiquitous concern in developing
practical solid oxide fuel cell devices is that if the thermochemical expansivities of
the cathode and electrolyte are not well-matched, mechanical stresses can crack

the electrolyte and ruin the device.



1.5 Why focus on the bulk defect chemistry of SrCoo.0Nbo.103-5?

As described further in Section 3.2, a large number of state-of-the-art SOFC
cathode catalysts are materials with the perovskite structure that contain the
elements Sr and Co. This category of materials includes such compositions as
BaosSrosCoosFen203.5 (BSCF), LaixSrxCoi.yFey03.s (LSCF), La1xSrCoOs.s (LSC),
SmySr1.xCo03 (SSC), and others. The composition SrCoo9Nbo.103.5 (SCN)!® also
exhibits extraordinary performance as a fuel cell cathode,!? yet its defect chemistry
is likely simpler than many of the above compositions, since it contains only three
cations, and the niobium cation is in relatively low concentration and is fixed-
valent (as shown in Chapter 6).18 For these reasons SCN is a reasonable choice as a
"model material" for fundamental studies of persovskites containing Sr and Co;
thus SCN is the focus of the bulk defect chemistry investigations in Chapter 5 and

Chapter 6.



