
Speculation-aware Resource Allocation for Cluster
Schedulers

Thesis by

Xiaoqi Ren

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2015

(Submitted September 28, 2014)

ii

© 2015

Xiaoqi Ren

All Rights Reserved

ii

© 2015

Xiaoqi Ren

All Rights Reserved

iii

Acknowledgements

I am using this opportunity to express my deepest gratitude to my adviser, Prof. Adam

Wierman. His excellent guidance, enthusiasm, patience and immense knowledge always

inspires me and helps me overcome many obstacles during the past two years.

I am also grateful to my collaborators, Ganesh Ananthanarayanan, Minlan Yu and

Michael Chien-Chun Hung. Their enormous help and constructive discussions are what

made this thesis possible. The atmosphere and environment of the RSRG, Computer

Science department and Caltech are amazing and helpful. It is really a pleasure to work

and study here.

Last but not least, I would like to thank my family. I will be grateful forever for their

unconditional love and support.

iv

Abstract

Resource allocation and straggler mitigation (via “speculative” copies) are two key build-

ing blocks for analytics frameworks. Today, the two solutions are largely decoupled from

each other, losing the opportunities of joint optimization. Resource allocation across jobs

assumes that each job runs a fixed set of tasks, ignoring their need to dynamically run

speculative copies for stragglers. Consequently, straggler mitigation solutions are unsure of

how to provide for speculative tasks. In this thesis, we propose Hopper, a new speculation-

aware job scheduler. Hopper dynamically allocates resources for effective speculation based

on theoretically derived guidelines that provably minimize average job completion time.

In addition, Hopper also provides a simple knob for trading off fairness and performance.

Evaluations on a 200-node cluster with Hadoop and Spark prototypes, on production work-

loads from Facebook and Microsoft Bing, show job speedups of 50% − 70% compared to

SRPT schedulers, fairness schedulers, and straggler mitigation algorithms.1

1The paper is undersubmission to 12th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’15).

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Challenges and Opportunities 4

2.1 Background on Cluster Scheduling . 4

2.2 Strawman Approaches . 6

2.3 Speculation-aware Job Scheduling . 7

3 Scheduling Guidelines 9

3.1 Model design . 9

3.2 Model Features . 11

3.3 Virtual Job Sizes . 12

3.4 Dynamic Resource Allocation . 14

3.5 Incorporating Fairness . 19

4 Heterogeneous Job DAGs 26

4.1 DAG of Tasks . 26

4.2 Heterogeneous Stragglers . 29

vi

5 Hopper: Design and Implementation 35

5.1 Data Locality . 35

5.2 Estimating Intermediate Data Sizes . 36

5.3 System Implementation . 37

6 Evaluation 38

6.1 Setup . 38

6.2 Hopper’s Improvements . 39

6.2.1 DAG of Tasks . 40

6.2.2 Speculation Algorithm . 41

6.3 Fairness . 42

6.4 Evaluating Hopper’s Design Decisions . 43

6.4.1 Locality . 44

6.4.2 Heterogeneous Stragglers . 45

6.4.3 Scheduler Scalability . 45

7 Related Work 47

8 Conclusions 49

1

Chapter 1

Introduction

In data analytics frameworks, application jobs are constructed as a DAG of phases with

each phase running numerous parallel tasks (e.g., MapReduce [1], Dryad [2], Spark [3]).

The tasks execute on compute slots over a large set of machines, and jobs are allocated

slots for their tasks by the cluster-wide job scheduler.

Job scheduling is a much-studied topic, and there have been many algorithms suggested

that seek to schedule the right jobs to run given the limited computing resources (slots)

in order to minimize job completion time, e.g., [4, 5, 6, 7] or ensure fairness across jobs,

e.g., [8, 9]. These algorithms take the requirements (number of slots) of the jobs when they

arrive and allocate slots to them.

Requirements of jobs, however, change over time due to straggler tasks. Stragglers

are those tasks that take significantly longer than expected and they occur commonly in

large clusters [10, 11, 12, 1]. In fact, studies have reported nearly one-fifth of tasks strag-

gling in a job [12] and running up to 8× slower [11], leading to significant performance

degradation. The dominant solution for mitigating the impact of stragglers is speculation,

i.e., speculatively running extra copies of tasks that either have already, or are likely to

become, stragglers [13, 12, 1, 14], and then picking the earliest of the copies. While spec-

ulation policies differ in when to speculate tasks and how many copies to speculate, they

all dynamically change the requirements of jobs.

2

Unfortunately, in all prior work, job scheduling and straggler mitigation have been

decoupled from each other. Job schedulers assume that each job runs a fixed set of tasks and

each task in the job requires a fixed amount of resources. However, given the existence of

stragglers, each job may speculate new copies of tasks on the fly to speedup job completion.

Straggler mitigation solutions, on the other hand, assume either a fixed amount of resources

per job (which can be used for either speculation or scheduling new tasks), or a separate

pool of resources that are reserved for speculative tasks.

While such decoupling was assumed for simplicity, it loses important analytical and

systemic interactions, leading to significant inefficiencies. If the job scheduler performs

best effort speculation by treating speculative tasks as normal ones, it often lacks the

urgency required for speculative copies to be effective. However, if the scheduler budgets a

fixed amount of resources for speculation, it risks reserving too little so as to not speculate

enough tasks, or too much causing wastage of resources.

The main contribution of this thesis is the design of a new speculation-aware job sched-

uler that dynamically allocates resources to ensure effective speculation for each job. It

does so to minimize the completion time of jobs. Our design is based on a theoretical

model of schedulers built from first principles. Using this model, we derive structural (and

simple) design guidelines for provably optimal speculation-aware job scheduling.

In particular, based on the theoretical model, we introduce a virtual size for every job

that includes the “optimal speculation level” for the job. The optimal speculation level

is based on the job’s distribution of task durations and DAG characteristics. Building on

virtual job sizes, we identify different resource allocation strategies based on the availabil-

ity of slots in the cluster. When there are limited slots, we ensure the smaller jobs are

allotted their virtual job sizes. When slots are sufficient, we allocate them proportionate

to the virtual sizes of the jobs. Additionally, our theoretical model allows us to trade off

performance for fairness using a simple knob.

Based on the design guidelines from our theoretical model, we develop Hopper, a sched-

3

uler for cluster frameworks. To our best knowledge, Hopper is the first scheduler that

integrates straggler mitigation with job scheduling for data analytics clusters. Hopper uses

virtual sizes and the guidelines discussed above to schedule jobs, thus speculating smartly.

In addition, Hopper incorporates many practical features of jobs into its scheduling. It

estimates the amount of intermediate data produced by the job and pipelines their transfer

between the job’s phases for better network utilization. It also carefully balances data

locality requirements of tasks while staying faithful to the guidelines. Finally, Hopper is

compatible with all existing straggler mitigation strategies (e.g., [13, 12, 14]).

To summarize, we make the following contributions:

1. We identify the importance of jointly designing job scheduling and straggler mitiga-

tion in clusters.

2. Using a theoretical model from first principles, we develop structural scheduling

guidelines for optimal speculation-aware job scheduling.

3. We build a speculation-aware job scheduler, Hopper based on the theoretical guidelines

and generalize it to consider practical system constraints in clusters.

To evaluate the performance of Hopper, we have developed prototypes inside the Hadoop [15]

and Spark [3] computing frameworks. In doing so, our objective is to demonstrate Hop-

per’s generic design and also expose it to many varied factors in scheduling based on task

durations, straggler causes and DAG patterns.

We evaluate our prototypes on a 200 node private cluster using workloads derived

from Facebook’s and Microsoft Bing’s production analytics clusters. Our results show that

Hopper reduces average completion time of jobs by 50% compared to Shortest Remaining

Processing Time (SRPT), which is by far one of the best approaches to minimize completion

time. Compared to currently deployed fairness-based schedulers [8, 9], Hopper reduces

average job completion time by 70%. It achieves these gains with limited fallout from

unfairness: Hopper slows down fewer than 4% of jobs by ≤ 5% compared to fairness-based

schedulers.

4

Chapter 2

Challenges and Opportunities

We now present the challenges and opportunities associated with joint decisions on job

scheduling and straggler mitigation using simple examples and present some intuitions for

joint scheduling decisions.

2.1 Background on Cluster Scheduling

We begin by describing the commonly used and relevant algorithms for job scheduling and

straggler mitigation.

Job Scheduling: While job scheduling in clusters is a classical problem, traditional ap-

proaches, typically, do not consider stragglers. They assume that each job has running

time that is known a priori, and thus a job’s remaining duration can be estimated from

the remaining durations of its running tasks and unscheduled tasks. Perhaps the two

most studied job scheduling polices are the following: one aiming to minimize average job

duration and the other focusing on fairness.

Shortest Remaining Processing Time (SRPT): SRPT assigns slots to jobs in ascending

order of their remaining duration (or equivalently, remaining number of tasks, for simplic-

ity). The reason for the popularity of SRPT is that, in the case of a single server, it is

provably optimal in a very strong sense: the number of jobs in the system is minimal at all

times and the mean job completion time is also minimized [16]. Further, in the multiple

5

A3

A2

A1

time B2

0 85

A1+

B3

B1

B1+ B5

B4

3

B6 A4 B2+

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

(a) SRPT: completion
time for job A and B
are 5 and 8.

30 6

B2

B1+

B4

8

A2

A1

A1+

A3 A4

B1 B6

B5

B3 time

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

(b) Fair: completion
time for jobs A and B
are 6 and 8.

Figure 2.1: Scheduling with “best effort”
speculation for jobs A and B. The + suffix
indicates a speculative copy.

A3

A2

A1

time

B2

0 76

A1+

B3

B1

B1+

B4

3

A4

B2+

B5

B6

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

(a) SRPT: completion
time for job A and B
are 3 and 7.

B4

time

30 6

B2

8

B5

B6

B3 B1

A3

A2

A1

A4

A1+

B1+

B2+

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

(b) Fair: completion
time for jobs A and B
are 6 and 8.

Figure 2.2: Scheduling with “budgeted
speculation” (2 slots) for jobs A and B.
The + suffix indicates speculation.

server setting, although SRPT is no longer optimal in as strong a sense, it has the optimal

achievable competitive ratio among online algorithms [4]. Of course, unfairness is a concern

for SRPT given its prioritization of small jobs at the expense of large jobs.

Fair scheduling: Fairness is a crucial issue in many settings, and as a result, another

popular job scheduler is based on fair allocations. Such schedulers fairly divide the resources

in the cluster (slots, memory, network etc.) among the jobs. Without loss of generality, we

focus on the so-called Fair Scheduler, which is commonly used in cluster frameworks today

(e.g., [8]). The Fair scheduler allocates the available compute slots evenly among all the

active jobs. Such strong fairness naturally comes with performance inefficiencies compared

to SRPT.

Straggler Mitigation: Straggler mitigation strategies primarily rely on spawning spec-

ulative copies for stragglers, and pick the result from the earliest among them; the other

copies are killed then. In particular, they assume that the job has been allocated its ca-

pacity of slots by the job scheduler (based on SRPT, fairness etc.) and then, given this

6

A3

A2

A1

time

Slot 1

Slot 2

Slot 3

B2

0 65

Slot 4

Slot 5

Slot 6

A1+

B3

B1

B1+

B4

3

A4 B2+ B5

B6

Figure 2.3: Hopper: completion time for jobs
A and B are 3 and 6, respectively.

!" !#"!$"!%"!&"

'
()('"

*" %" %" %"

'
)+,"

$" $" $" $"

-" -#" -$" -%" -&" -." -/"

'
()('"

/" /" %" %" #" #"

'
)+,"

$" $" $" $" #" #"

Table 2.1: tinit and tnew are task du-
rations of the original and speculative
copies. trem = tinit – elapsed time.

capacity, decides when to schedule speculative copies of tasks. There are many varieties

of speculation strategies, e.g., [13, 12, 14], which differ in their decisions of when to spawn

speculative copies as well as how many speculative copies to spawn.

For simplicity, we assume the following speculation strategy: if the remaining running

time (trem) is longer than the time to run a new task (tnew), speculate a new copy. We

also assume that the straggler can be detected after a new task runs for a small amount of

time.

2.2 Strawman Approaches

SRPT and Fair scheduling do not explicitly take into account speculation policies. We now

explore two natural strawman approaches for them to consider speculative copies. We use

the strawman approaches to highlight the fundamental difficulties that motivate the need

for dynamic joint decisions of scheduling and speculation.

Best-effort Speculation: Perhaps the most simple approach is to just treat speculative

tasks the same as normal tasks. Thus, the job scheduler allocates resources for speculative

tasks in a “best effort” manner, i.e., whenever there is an open slot. For example, for the

SRPT policy that prioritizes the job with the shortest remaining time, a speculative copy

for its task is scheduled when a new slot opens; crucially speculative copies are run only

when new slots become available.

Concretely, in Figure 2.1a, the SRPT job scheduler has to wait till time 3 to find an

open slot for the speculative copy of A1.1 Clearly, this approach is problematic. For

1At time 3, when A2 finishes, the job scheduler allocates the slot to job A. This is because based on

7

example, in Figure 2.1a if the job scheduler had allocated resources to speculative tasks

earlier, then job A’s completion time would have been reduced, without slowing down job

B (see Table 2.1 for the task durations).

The problem is also present with Fair scheduling. In Figure 2.1b, where both jobs are

allotted 3 slots, job A can only speculate task A1 when task A2 finishes. If it could have

speculated earlier, job A’s completion time would have reduced, again, without slowing

down job B.

Budgeted Speculation: An alternative approach is to have the job scheduler reserve a

fixed “budget” of slots for speculative tasks. In this way, speculative tasks for stragglers do

not have to wait and can be run much earlier, thus alleviating the issues discussed above.

Budgeting the right size of the resource pool for speculation, however, is challenging because

of varying straggler characteristics and fluctuating cluster utilizations. If the resource

pool is too small, it may not be enough to immediately support all the tasks that need

speculation. If the pool is too large, resource are left idle.

Concretely, in Figure 2.2a, two slots (Slot 5 and Slot 6) are reserved for speculative

tasks. Slot 6 is vacant from time 0 to 3. If the job scheduler could have used the wasted

resource to run a new task, say B1, then job B’s completion time would have been reduced.

The problem is also present with Fair Scheduling. In Figure 2.2b, if the job scheduler could

have used Slot 6 to run B4 at time 3, then job B’s completion time would have reduced.

Finally, note that reserving one instead of two slots will not solve the problem, since

both SRPT and Fair scheduling need two reserved slots to run two speculative copies

simultaneously at some time.

2.3 Speculation-aware Job Scheduling

The above strawman approaches highlight the difficulties involved in integrating specula-

tion decisions with job scheduling. To that end, the main contribution of this thesis is a

SRPT, job A’s remaining processing time is smaller than job B’s. Job A speculates task A1 because A1’s
trem = tinit − 3 = 5 is larger than tnew = 2 (see Table 2.1).

8

speculation-aware job scheduler that allocates resources to dynamically sufficient capacity

to jobs for effective speculation.

Figure 2.3 highlights the intuition behind and value of such scheduling. At time 0− 3,

we allocate 1 extra slot to job A (for a total of 5 slots), thus allowing it to speculate task

A1 promptly. After time 3, we can dynamically reallocate the slots to job B to optimize

its speculation solution and reduce its completion time. As a consequence, the average

completion time drops compared to both SRPT and Fair scheduling.

In other words, the performance of both jobs is equal to or better than their performance

with fair scheduling despite the lack of fairness guarantees and the overall performance is

improved relative to SRPT. Further, in this case it can easily be seen that the schedule

provided by Hopper is optimal (with respect to completion time).

So, the goal of speculation-aware job scheduling distills to: dynamically allocating slots

for speculation based on the distribution of stragglers and cluster utilization, while not

deviating too far from fair allocations.

9

Chapter 3

Scheduling Guidelines

We formulate an analytical model to capture the interaction between straggler mitigation

within jobs and resource allocation across jobs for optimal scheduling of job completion.

3.1 Model design

We focus on a system with S slots, each of which can have one task scheduled to it. Jobs

arrive over time and the ith arrival is denoted by Ji has Ti tasks, each of which has an i.i.d.

random task size τ . We denote the remaining number of tasks for the ith job at time t by

Ti(t). We characterize the service rate (i.e., throughput) of the ith job, µi(t), as a function

of how many slots, Si, it is allocated and the average number of speculative copies per task

k(t).

The key piece of our model is the characterization of the service rate of the ith job,

µi(t), as a function how many slots, Si, it is allocated and the average number of speculative

copies per task at time t, k(t). Note that µi(t) should be interpreted as the throughput of

the ith job. We adopt the following approximation for µi(t), which has been used previous

in the design of task level speculation policies by [14].

min(Si, Ti(t)k(t))×

(
E[τ]

k(t)E
[
min(τ1, . . . , τk(t)

]) (3.1)

To understand this approximate model, note that the first term approximates the com-

10

pletion rate of work and the second term approximates the “blow up factor,” i.e., the ratio

of the expected work completed without speculative copies to the amount of work done

with speculative copies. To understand the first term, note that there are Ti(t)k(t) tasks

available to schedule at time t, including speculative copies. Given that the maximum

capacity that can be allocated is Si, we obtain the first term in (3.1). The second term

computes the “blow up factor,” which is the the expected amount of work done per task

without speculation (E[τ]) divided by the expected amount of work done per task with

speculation (k(t)E[min(τ1, τ2, . . . , τk(Ti(t)))], since k(Ti(t)) copies are created and then they

are stopped when the first copy completes.

To specialize (3.1) further, we note that task completion times often show evidence of

Pareto tails [14]. So, we focus on the case of Pareto(xm,β) completion times. Given this

form for the task size distributions, the optimal speculation policy has been shown in [14]

to be as in (3.4).

k(t) =

2
β ,

2
βTi(t) ≥ Si

Si/Ti(t), Si >
2
βTi(t);

(3.2)

Plugging the optimal speculation policy given in (3.4) into the model for µ(t) in (3.1)

yields the following model for the service rate.

µ(t) =

β2

4(β−1)Ti(t),
2
βTi(t) ≥ Si

β
β−1Ti(t)−

1
β−1

Ti(t)
2

Si
, Si >

2
βTi(t);

(3.3)

Importantly, the model of this service rate is general enough to provide insight on job

level speculation regardless of the underlying task-level speculation policy.

While our analysis focuses on scheduling to maximize throughput (service rate), im-

proving throughput usually corresponds to improvements in response time, especially in

settings where systems are moderately or heavily loaded since improving throughput en-

11

larges the capacity region for the system.

While our focus in this thesis is on scheduling to minimize completion times, the model

described above is not well suited toward analytical results about that metric. Instead, our

analysis focuses on scheduling to maximize throughput. Of course, improving throughput

usually corresponds to improvements in response time, especially in settings where systems

are moderately or heavily loaded since improving throughput enlarges the capacity region

for the system.

It is natural to follow this approach when studying stragglers because replication pushes

the system toward high loads and is fundamentally about trading off increased resource

demands for improved performance. Importantly, our experimental results show that the

design motivated by the analysis that follows does indeed result in considerable response

time improvements.

3.2 Model Features

Our model incorporates both straggler mitigation policies per job (similar to [14]) as well

as inter-job resource allocation to study the optimal job scheduler. Important features of

jobs, like heterogeneous straggler behavior and DAGs of tasks, are included.

However, given the complexity of cluster scheduling, the model is necessarily simplistic

in order to allow for analytic tractability. In particular, many important issues are ignored.

For example, data locality is not considered. Additionally, it is assumed that the scheduler

has perfect knowledge of the remaining work in jobs and that the allocation of slots to jobs

can be adjusted dynamically at every point in time. Because of these simplifications, one

should interpret the analytic results as providing guidelines for system design, which then

need to be adjusted given practical factors that are excluded from the model. We discuss

how these practical factors are handled in Hopper’s system design in §5.

The optimal job scheduler is viewed as a dynamic resource allocation scheme, where

each job is allocated (at each time) some fraction of the slots based on a combination of

the remaining number of tasks in the job and some job-specific properties (e.g., the job’s

12

task size distribution and the job’s DAGs of tasks). The key feature of Hopper is the careful

determination of the interplay of these properties in order to ensure that the inefficiencies

in the strawman solutions of §2.2 do not occur.

There are two key design components that the analytic results highlight: First, is the

notion of a “virtual job size”, which we use to quantify the impact that job-specific factors

like stragglers, the DAG of tasks, etc., have on the optimal speculation level for a given job

(§3.3). Second, is the impact of cluster utilization on the capacity allocation. It turns out

that very different scheduling rules should be used depending on the number of available

slots in the cluster and the virtual job sizes (§3.4). Finally, we present a simple mechanism

to trade performance for fairness in §3.5.

We focus on homogeneous single-phased jobs in this section and handle heterogeneous

DAGs of tasks in §4.

3.3 Virtual Job Sizes

A crucial aspect of speculation-aware job scheduling is an understanding of how much

speculation is necessary for a given job. The idea of a “virtual job size” captures the fact

that the “true” size of a job is really the job itself plus the speculative copies that will

be spawned. It is this combined “virtual job size” that is crucial for determining how to

divide capacity across jobs.1

A key observation is that the “optimal number of speculative copies”, on average, for

the tasks in a job is a function of the magnitude of the stragglers (i.e., the distribution of

task durations) and the available compute slots (or cluster utilization). Thus, the expected

“optimal level of speculation” can be derived analytically in terms of these factors.

To derive this optimal level of speculation, we assume that task durations follow a

Pareto distribution, which is based on the production traces in Facebook and Microsoft

Bing [14]. The Pareto tail parameter β represents the likelihood of stragglers. Roughly,

1Of course, straggler mitigation strategies typically spawn speculative copies for a task only after observ-
ing its performance for a short duration. We ignore this observation duration as it is relatively negligible
to the task’s duration.

13

when β is smaller, it means that if a task has already run for some time, there is higher

likelihood of the task continuing to run longer. Typically, production traces suggest that

β < 2, and so we make that assumption in our analysis.

Given that task durations have Pareto (β) tails with β < 2, our analytic model shows

that the optimal (average) speculation per task of a job is given by the following, where Si

is the number of slots allocated to job i and Ti(t) is the remaining number of tasks of the

job.
2
β ,

2
βTi(t) ≥ Si

Si/Ti(t), Si >
2
βTi(t);

(3.4)

Equation 3.4 can be interpreted as saying that the optimal (average) level of speculation

for a job is 2/β, which ensures that if stragglers are likely to be long (i.e., β is small), then

more speculation is used. The first case in Equation 3.4, which corresponds to the early set

of tasks, shows that the optimal level of speculation should not be sacrificed even when the

system is capacity constrained (i.e., when not all tasks can be scheduled). However, the

equation also highlights that during the last set of tasks of a job (second case in Equation

3.4), it should not leave slots unused. So, it should speculate aggressively to make use of

the capacity available.

Given Equation 3.4, it is natural to think of 2/β as the optimal level of speculation

that a job would like to maintain. And thus, we define the virtual remaining size of a job

as its number of remaining tasks multiplied by the “optimal speculation level”.

Vi(t) =
2

β
Ti(t) (3.5)

A nice consequence of defining the virtual size of a job is the decoupling of the spec-

ulation decisions from the allocation of slots to jobs. Note that the virtual size of a job

dynamically changes as its tasks finish.

14

3.4 Dynamic Resource Allocation

Given the virtual job sizes (i.e., how much capacity a job needs to perform optimal specu-

lation), the next question is how to allocate resources across jobs. There are two distinct

cases one must consider: (i) How should slots be allocated if there are not enough slots

to give every job enough space to perform optimal speculation? (ii) How should slots be

allocated if there are more than enough slots to give every job enough space to perform

optimal speculation. In (i) the sum is more than the number of slots, while in (ii) the sum

of the virtual sizes is less than the number of slots.

(i) Resource allocation when the system is capacity constrained: If there are not

enough slots to give every job enough space to perform optimal speculation, then the key

design challenge is to decide how much capacity to trim from the desired allocations of each

job. There are many options for how to do this. For example, one could give the limited

resources to a few jobs and allow them to maintain the optimal level of speculation, or one

could give all jobs some sub-optimal amount of resources to avoid starving any of the jobs.

Of course, there are also lots of strategies in between these extremes.

Our analytic results highlight that the job scheduler should give as many jobs as possible

their optimal speculation level, i.e., their full virtual job size. Thus, the scheduler should

start with the job with the smallest virtual job size Vi(t) and work its way to larger jobs

giving all the jobs the optimal level until capacity is exhausted.

Guideline 1. If there are not enough slots for every job to maintain its optimal level of

speculation, i.e., a number of slots equal to its virtual size, then slots should be dedicated

to the smallest jobs and each job should be given a number of slots equal to its virtual size.

This guideline is similar to the spirit of SRPT, however (unlike SRPT) it crucially

pays attention to the optimal speculation level of jobs when allocating capacity. As the

examples in §2 highlight, this leads to improved performance. Note that prioritizing small

jobs may lead to unfairness for larger jobs. We discuss this issue in §3.5.

15

procedure Hopper(〈Job〉 J , int S, float β)
totalVirtualTasks ← 0
for each Job j in J do

j.Vrem = (2/β) j.Trem

. j.Trem: remaining number of tasks
. j.Vrem: virtual remaining number of tasks

totalVirtualTasks += j.Vrem

SortAscending(J , Vrem)
if S < totalVirtualTasks then

for each Job j in J do
j.slots← bmin(S, j.Vrem)c
S ← max(S − j.slots, 0)

else
for each Job j in J do

j.slots← b(j.Vrem/totalVirtualTasks)Sc

Pseudocode 1: Hopper (simple version) for jobs in set J with S slots in the cluster and
shape parameter β.

(ii) Resource allocation when the system is not capacity constrained: If there

are more than enough slots to give every job enough space to perform optimal speculation,

then the key design challenge becomes how to divide the extra capacity among the jobs

present. There are many options for how to do this. For example, the scheduler could give

all the extra slots to a few jobs in order to complete them very quickly, or the scheduler

could split the slots evenly across jobs. Of course, there are many other options between

these extremes.

Our analytic results highlight that the job scheduler should do a form of proportional

sharing to determine the allocation of slots to jobs. Specifically, jobs should be allocated

slots proportionally to their virtual job sizes, i.e., job i receives(
Vi(t)∑
j Vj(t)

)
S =

(
Ti(t)∑
j Tj(t)

)
S slots, (3.6)

where S is the number of slots available in the system. In the above we have assumed

Vi(t) = (2/β)Ti(t), as discussed above.

Guideline 2. If there are enough slots to permit every job to maintain its optimal level of

16

speculation, i.e., a number of slots equal to its virtual size, then the slots should be shared

“proportional” to the virtual sizes of the jobs.

Note that this guideline is different in spirit from SRPT – large jobs get allocated more

slots than small jobs. The reason for this is that every job is guaranteed the optimal level

of speculation already. Extra slots are more valuable for large jobs due to the fact that

they are likely to incur more stragglers. Importantly, this prioritization of large jobs helps

to reduce the unfairness large jobs experience due to Guideline 1.

Algorithm 1 (Hopper, single phased job).

Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system at time t sorted in increasing

order of remaining tasks, so T1(t) ≤ . . . ≤ Tn(t).

1. If 2
β

∑
Ti(t) ≥ S, then assign Si = 2

βTi(t) to jobs in order from i = 1 to n until no

slots remain and assign Si = 0 for all remaining jobs.

2. If 2
β

∑
Ti(t) < S, the assign Si =

(
Ti(t)∑
Tj(t)

)
S for all jobs Ji ∈ J(t).

Summary: Algorithm 1 (also see Pseudocode 1) combines the above two guidelines for

homogeneous single phase jobs. And, we have the following theorem.

Theorem 1. Algorithm 1 is throughput maximal for single-phased jobs, i.e., it maximizes∑
µi(t).

Proof. We divide the problem into two cases based on the relationship of the total number

of slots, S, and the sum of remaining number of tasks for all jobs,
∑
Ti(t).

Case 1: S ≤ 2
β

∑
Ti(t)

If we assign slots more than its optimal speculation level to job Ji, the throughput for

17

job Ji is,
β

β − 1
Ti(t)−

1

β − 1

Ti(t)
2

Si

=
1

β − 1

1

Si

(
−Ti(t)2 + βTi(t)Si − (

βSi
2

)2
)

+
1

β − 1

1

Si
(
βSi
2

)2

=− 1

(β − 1)Si
(Ti(t)−

βSi
2

)2 +
β2

4(β − 1)
Si

≤ β2

4(β − 1)
Si.

(3.7)

The above inequality implies that if any job that is assigned less than optimal specu-

lation level slots, then, no job should get more than its optimal speculation level slots.

In other words, when 2
β

∑
Ti(t) ≥ S,optimal speculation scheduling should assign no

more than 2
βTi(t) to every job Ji ∈ J(t). To minimize the total completion time, since

T1(t) ≤ T2(t) ≤ . . . ≤ Tn(t), from SRPT, we should always satisfy the need for small jobs,

i.e., assign 2
βTi(t) to jobs in order from i = 1 to n, until there is no slots remain.

Case 2: S > 2
β

∑
Ti(t)

When 2
β

∑
Ti(t) ≤ S, denote the set of jobs which get Si ≤ 2

βTi(t) by J1(t) and the set

of jobs which get Si ≥ 2
βTi(t) by J2(t). Then, the total throughput is,

∑
J1(t)

µi(t) +
∑
J2(t)

µi(t) =
∑
J1(t)

β2

4(β − 1)
Si +

∑
J2(t)

(
β

β − 1
Ti(t)−

1

β − 1

Ti(t)
2

Si

)

=
∑
J1(t)

β2

4(β − 1)
Si +

∑
J2(t)

(
− 1

(β − 1)Si
(Ti(t)−

βSi
2

)2 +
β2

4(β − 1)
Si

)

=
β2

4(β − 1)

∑
J1(t)+J2(t)

Si −
∑
J2(t)

1

(β − 1)Si
(Ti(t)−

βSi
2

)2

=
β2

4(β − 1)
S − 1

(β − 1)
∑
J2(t)

Si

∑
J2(t)

Si

∑
J2(t)

1

Si
(
βSi
2
− Ti(t))2

≤ β2

4(β − 1)
S − 1

(β − 1)
∑
J2(t)

Si

∑
J2(t)

(
β

2
Si − Ti(t))

2

,

18

where the final line follows from the Cauchy-Schwartz inequality.

Next, since β
2

∑
J2(t)

Si = β
2S −

β
2

∑
J1(t)

Si ≥ β
2S −

β
2

(
2
β

∑
J1(t)

Ti(t)

)
= β

2S −
∑
J1(t)

Ti(t), we

have

∑
J1(t)

µi(t) +
∑
J2(t)

µi(t) ≤
β2

4(β − 1)
S − 1

(β − 1)
∑
J2(t)

Si

∑
J2(t)

(
β

2
Si − Ti(t))

2

=
β2

4(β − 1)
S − 1

(β − 1)
∑
J2(t)

Si

∑
J2(t)

β

2
Si −

∑
J2(t)

Ti(t)

2

≤ β2

4(β − 1)
S − 1

(β − 1)
∑
J2(t)

Si

β
2
S −

∑
J1(t)

Ti(t)−
∑
J2(t)

Ti(t)

2

≤ β2

4(β − 1)
S − 1

(β − 1)S

β
2
S −

∑
J1(t)

Ti(t)−
∑
J2(t)

Ti(t)

2

≤ β2

4(β − 1)
S − 1

(β − 1)S

β
2
S −

∑
J(t)

Ti(t)

2

Equality is obtained when,

1.
∑
J2(t)

Si = S

2.
∑
J1(t)

Ti(t) +
∑
J2(t)

Ti(t) =
∑
J(t)

Ti(t)

3. For all Ji ∈ J1(t), Si = 2
βTi(t)

4. For all Ji ∈ J2(t), Ti(t)
Si

= const., i.e., for all Ji ∈ J2(t), Si = Ti(t)∑
J2(t)

Tj(t)

∑
J2(t)

Si

That is, optimal scheduling satisfies J2(t) = J(t), and assigns Ti(t)∑
Tj
S slots for any job Ji ∈

J(t). It follows that if 2
β

∑
Ti(t) < S, the optimal scheduling should assign Si =

(
Ti(t)∑
Tj(t)

)
S

for all jobs Ji ∈ J(t).

In summary, the optimal scheduling should:

19

1. If 2
β

∑
Ti(t) ≥ S, then assign Si = 2

βTi(t) to jobs in order from i = 1 to n until no

slots remain and assign Si = 0 for all remaining jobs.

2. If 2
β

∑
Ti(t) < S, the assign Si =

(
Ti(t)∑
Tj(t)

)
S for all jobs Ji ∈ J(t).

3.5 Incorporating Fairness

Fairness is an important constraint on cluster scheduling and, intuitively, the guidelines we

have described so far may create unfairness. We extend our guidelines to adapt the notion

of fairness currently employed by cluster schedulers today, e.g., [8]: if there are N(t) active

jobs at time t, then each job is assigned S/N(t) slots. While this is a natural notion of

fairness, it leaves no flexibility for optimizing performance.

To allow some flexibility, while still tightly controlling the unfairness introduced, we

define a notion of approximate fairness as follows. We say that a scheduler is ε-fair if it

guarantees that every job receives at least S/N(t)−ε slots at all times t. The fairness knob

ε can be set as a fraction of S/N(t); ε → 0 indicates total fairness while ε → 1 indicate

focus on performance.

In a nutshell, the scheduler should begin by using the guidelines we have already de-

scribed. Then, if a job receives less than the its fair share, i.e., fewer than S/N(t)− ε slots,

the job’s capacity assignment is bumped up to S/N(t) − ε. Next, the remaining slots are

allocated to the remaining jobs according to Guidelines 1 and 2. Note that this is a form

of projection from the original (unfair) allocation into the feasible set of allocations defined

by the fairness constraints. Algorithm 2 describes it in detail.

Algorithm 2 (Fairness).

Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system at time t sorted in increasing

order of remaining tasks, so T1(t) ≤ . . . ≤ Tn(t). Define m1 such that i ≤ m1 implies

2
βTi(t) ≤

S
N − ε.

20

1. If S ≤ 2
β

n∑
i=m1+1

Ti(t) + m1

(
S
N − ε

)
, begin by assigning all jobs S

N − ε slots. Then

assign an additional 2
βTi(t)− (SN − ε) slots to jobs Ji from i = m1 + 1 to n until no

slots remain.

2. If S > 2
β

n∑
i=m1+1

Ti(t) +m1

(
S
N − ε

)
, then define m2 as the minimum value such that

Tm2+1(t)
N∑

i=m2+1
Ti(t)

(S −m2(
S

N
− ε)) ≥ max{ S

N
− ε, 2

β
Tm2+1(t)}.

Then, assign S
N − ε slots to jobs Ji with 1 ≤ i ≤ m2, and assign Ti(t)

N∑
i=m2+1

Ti(t)

(S −

m2(
S
N − ε)) slots to jobs Ji with m2 + 1 ≤ i ≤ N .

Theorem 2. Algorithm 2 is throughput maximal among ε-fair allocations.

Proof. Let Jm(t) = {J1, J2, . . . , Jm1}. Similarly, we divide the problem into two cases.

Case 1: S ≤ 2
β

N∑
i=m1+1

Ti(t) + (SN − ε)m1

Without the fairness constraint, when S ≤ 2
βTi(t), to maximize the throughput, the

scheduler should assign exactly 2
βTi(t) to jobs Ji for i from 1 to n until no remaining slot.

With fairness constraint, for any job Ji ∈ Jm(t), it will surely get S
N − ε ≥

2
βTi(t) slots.

So when slots are not enough to share across jobs in J(t) − Jm(t) to guarantee optimal

speculation level for every job, jobs in Jm(t) should not get more slots than S
N − ε.

Thus, when S ≤ 2
β

N∑
i=m1+1

Ti(t) + (SN − ε)m1, optimal scheduling should assign every

job S
N − ε slots at first step. Then, assign 2

βTi(t) − (SN − ε) slots to job Ji ∈ J(t) from

i = m+ 1 to N until slots remain.

Case 2: S > 2
β

N∑
i=m1+1

Ti(t) + (SN − ε)m1

When S ≥ 2
β

N∑
i=m+1

Ti(t) + (SN − ε)m, all jobs should get at least max{ SN − ε,
2
βTi(t)}

slots. The first constraint is from fairness and the second constraint is from the optimality

of 2
βTi(t). Then, the throughput maximization problem is equivalent to the following

21

optimization problem,

maximize
N∑
i=1

(
β

β − 1
Ti(t)−

1

β − 1

Ti(t)
2

Si

)

subject to
N∑
i=1

Si = S

Si ≥
2

β
Ti(t)

Si ≥
S

N
− ε

Note that from the definition of m1,
S
N − ε ≥

2
βTi(t) for all 1 ≤ i ≤ m1, and S

N − ε ≤
2
βTi(t)

for all m1 + 1 ≤ i ≤ N . Thus, the optimization problem can be simplified as,

minimize
N∑
i=1

Ti(t)
2

Si
(3.8)

subject to
N∑
i=1

Si = S

Si ≥
2

β
Ti(t), i = m+ 1, . . . , N

Si ≥
S

N
− ε, i = 1, . . . ,m

The above is a convex optimization problem. The Lagrange dual function L(S1, . . . , SN , λ, v)

is,

N∑
i=1

Ti(t)
2

Si
+ v(

N∑
i=1

Si − S) +

m∑
i=1

λi(
S

N
− ε− Si) +

N∑
i=m+1

λi(
2

β
Ti(t)− Si). (3.9)

22

From KKT condition, in optimal solution,

−Ti(t)
2

S2
i

+ v − λi = 0, (3.10)

which implies Si = Ti(t)√
v−λi

, and

λi 6= 0⇔ Si = max{ 2

β
Ti(t),

S

N
− ε}. (3.11)

Substitute (3.11) into (3.10), we get if Si 6= max{ 2βTi(t),
S
N − ε}, then Si = Ti(t)√

v
, which

indicates that for jobs Ji with Si 6= max{ 2βTi(t),
S
N − ε}, the slots assigned to Ji is on

proportional to Ti(t). Precisely, The slot assignment for each job falls into the following

three cases,

1. Si = S
N − ε

2. Si = 2
βTi(t)

3. Si 6= S
N − ε and Si 6= 2

βTi(t)

Let Ji(t) denote the jobs falling in case i, for i = 1, 2, 3. Then, specifically, for job Ji in

J3(t), Si = Ti(t)∑
J3(t)

Ti(t)
Sr, where Sr is the remaining number of slots after assignment of J1(t)

and J2(t).

The only remaining question is, given a job Ji, in optimal scheduling, which set,

J1(t), J2(t) or J3(t), it belongs to. From the following three claims, we prove J1(t) ⊂

Jm1(t), J2(t) = ∅, and J3(t) = J(t)− J1(t).

1. Claim: In optimal solution, S1 ≤ S2 ≤ . . . ≤ Sn.

Proof. For any i < j, if Si ≥ Sj , we can always let S′i = Sj and S′j = Si and obtain

an smaller result in (3.8).

23

2. Claim: there exists a number m2, 1 ≤ m2 ≤ m1 such that in optimal scheduling,

J1(t) = {J1, J2, . . . , Jm2}

Proof. From objective function
N∑
i=1

Ti(t)
2

Si
, and claim in (a),

If Si = S
N − ε, then∀j ≤ i, Sj = S

N − ε, and if Si 6= S
N − ε, which implies Si >

S
N − ε,

then ∀j ≥ i, Sj > S
N − ε.

Suppose the last job in J(t) with S
N − ε slots is Jm2 . Obviously, 1 ≤ m2 ≤ m1. Then,

J1(t) = {J1, J2, . . . , Jm2}.

3. Claim : J2(t) = ∅

Proof. Since S > 2
β

N∑
i=m+1

Ti(t) + (SN − ε)m1, J3(t) 6= ∅.

Denote the total slots assigned to J2(t) and J3(t) by S2 and S3, respectively. It is easy

to verify that Ti(t)∑
J2(t)+J3(t)

Ti(t)
(S2 + S3) ≥ 2

βTi(t), and Ti(t)∑
J2(t)+J3(t)

Ti(t)
(S2 + S3) ≥ S

N − ε

(second equality holds since β
2Ti(t) ≥

S
N − ε, ∀Ji ∈ J2(t) + J3(t)). Thus, if J2(t) 6= ∅,

we can always combine J2(t) and J3(t), and do load balancing in the new set. From

Theorem 1, the latter method obtains a better throughput.

From the above three claims, in optimal scheduling, J1(t) = {J1, . . . , Jm2}, and J3(t) =

J(t) − J1(t). The only question to ask is, what m2 is in optimal scheduling. We find m2

by studying the optimal total throughput.

The total throughput is,

N∑
i=1

(
β

β − 1
Ti(t)−

1

β − 1

Ti(t)
2

Si

)

=

N∑
i=1

β

β − 1
Ti(t)−

1

β − 1

m2∑
i=1

Ti(t)
2

S
N − ε

− 1

β − 1

N∑
i=m2+1

Ti(t)
2

Si

=
N∑
i=1

β

β − 1
Ti(t)−

1

β − 1

m2∑
i=1

Ti(t)
2

S
N − ε

− 1

β − 1

(
N∑

i=m2+1

Ti(t)

)2
1

S −m2(
S
N − ε)

24

It is easy to verify, as m2 increases, the total throughput decreases. Thus, the optimal

scheduling should find the minimal m2 while satisfies the following conditions,

1. 1 ≤ m2 ≤ m1

2. Ti(t)
N∑

i=n1+1
Ti(t)

(S − n1(SN − ε)) ≥ max{ SN − ε,
2
βTi(t)}, for all i ≥ n1 + 1

Note, since T1(t) ≤ T2(t) ≤ . . . ≤ TN (t), condition 2 can be simplified as,

Tm2+1

N∑
i=m2+1

Ti(t)

(S −m2(
S

N
− ε)) ≥ max{ S

N
− ε, 2

β
Tm2+1}.

And m2 always exists, since m1 itself satisfies the above two conditions.

In summary, the optimal scheduling should:

1. If S ≤ 2
β

n∑
i=m1+1

Ti(t) + m1

(
S
N − ε

)
, begin by assigning all jobs S

N − ε slots. Then

assign an additional 2
βTi(t)− (SN − ε) slots to jobs Ji from i = m1 + 1 to n until no

slots remain.

2. If S > 2
β

n∑
i=m1+1

Ti(t) +m1

(
S
N − ε

)
, then define m2 as the minimum value such that

Tm2+1(t)
N∑

i=m2+1
Ti(t)

(S −m2(
S

N
− ε)) ≥ max{ S

N
− ε, 2

β
Tm2+1(t)}.

Then, assign S
N − ε slots to jobs Ji with 1 ≤ i ≤ m2, and assign Ti(t)

N∑
i=m2+1

Ti(t)

(S −

m2(
S
N − ε)) slots to jobs Ji with m2 + 1 ≤ i ≤ N .

The main message from the analysis is that ε-fairness can be maintained without major

changes to the structure of the algorithm.

25

Our experimental results (§6.3) highlight that ε-fairness achieves significant gains with

little downside. In fact, even at moderate values of ε, nearly all jobs finish faster then they

would have under fair scheduling.

This fact, though initially surprising, is actually similar to the conclusions that have

been derived about fairness of policies that prioritize small jobs in other contexts. For

example, in single server scheduling it has been shown that SRPT scheduling, which is

seemingly unfair to large job sizes, actually can improve the response time of every job size

(when job sizes are heavy-tailed) compared to fair scheduling policies [17, 18, 19].

26

Chapter 4

Heterogeneous Job DAGs

The design guidelines we have discussed so far are based on homogeneous single-phased

jobs. In this section, we extend them to handle more complex real-world DAGs of jobs

(§4.1) with heterogeneous distributions (β) of task durations (§4.2). Our generic model

ensures that the guidelines require only minor adjustments.

4.1 DAG of Tasks

We now extend our analysis of single-phased jobs to multi-phased DAGs of tasks that

have varied communication patterns (e.g., many-to-one or all-to-all). We consider multiple

phases that are not separated by strict barriers but are rather pipelined. Downstream tasks

do not wait for all the upstream tasks to finish but read the upstream outputs as the tasks

finish.

Reading the outputs relies on the network and pipelining the reads is beneficial because

the upstream tasks are typically bottlenecked on other non-overlapping resources (CPU,

memory). While pipelining improves utilization of the different resources in the cluster, it

adds a challenging dimension to the scheduling problem.

The scheduler’s goal is to balance the gains due to overlapping network utilization

while still favoring upstream phases with smaller number of tasks. We capture this using

a simple weighting factor, α per job, set to be the ratio of remaining work in network

transfer in the downstream phase to the work in the upstream phase. We approximate

27

the former using the amount of data remaining to be read and the latter with the number

of remaining upstream tasks. We defer the exact details of estimating α to §5.2 but it

suffices to understand that it is favors jobs with higher remaining communication and

lower remaining tasks in the running phase.

Given the weighting factor α, our analytic results highlight that the structural form of

Guidelines 1 and 2 do not change. However, the following adjustments are required.

First, in Guideline 1, the prioritization of jobs based on Ti(t) should be replaced by

a prioritization of jobs based on max{Ti(t), T ′i (t)}, where Ti(t) is the remaining number

of tasks in the current phase and T ′i (t) is the remaining work in communication in the

downstream phase. This adjustment is motivated by the work of [5], which proves that,

so-called, MaxSRPT is 2-speed optimal for completion times.1 However, the model in [5]

does not include stragglers, and so we need to supplement MaxSRPT using Guidelines 1

and 2 in order to incorporate speculation.

To accomplish this, the second change we make is to redefine the virtual size of a job

to include α. In particular, we now define the virtual size of a job as

Vi(t) =
2

β
Ti(t)

√
αi.

This change to the virtual size impacts both Guideline 1 and 2. Importantly, it means that

Guideline 2 suggests sharing capacity as follows: job i receives

(
Vi(t)∑
Vj(t)

)
S =

(
Ti(t)

√
αi∑

Tj(t)
√
αj

)
S slots. (4.1)

We used a weighting factor αi to understand how to adjust the optimal speculation

level of jobs depending on the relative sizes of job i in the current phase and the following

phase. For example, by setting αi = T ′i/Ti, it captures number of tasks created in the next

12-speed optimal means that MaxSRPT guarantees response times better than the optimal in the original
system, if it is given twice the service capacity. Note that [5] also shows that it is impossible to be constant-
competitive without being granted extra service capacity.

28

phase per task completed in the current phase, which is appropriate when adjacent phases

in the DAG can be pipelined.

Mathematically, one can show that if we seek to maximize the α-weighted throughput,

i.e.
∑

i αiµi(t), then the optimal speculation level changes from 2/βTi(T) to 2/βTi(t)
√
αi/αmin,

where αmin is the smallest αj among the jobs that are currently running. This leads to

the following algorithm for the case of DAGs of tasks.

Algorithm 3 (DAGs of tasks).

Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system at time t sorted in ascending

order of max{Ti(t), T ′i (t)}. If Ji and Jj have the same max{Ti(t), T ′i (t)} then the job with

larger weight is listed first. Let α
(k)
min denote the minimum weight of weights for first k jobs

in J(t), so α
(k)
min = min{α1, α2, . . . , αk}. And let Jkmin

denote the job has the minimum

weight in first k jobs, so the weight of Jkmin
is α

(k)
min. Let Vi(t) denote the virtual size for

job Ji ∈ J(t), so Vi(t) = 2
βTi(t)

√
αi.

1. If S ≤ V1(t)√
α
(2)
min

,assign S1 = S and Si = 0 for i > 1.

2. If ∃ k < n such that
k∑
i=1

Vi(t)√
α
(k+1)
min

< S ≤
k+1∑
i=1

Vi(t)√
α
(k+1)
min

,assign Si = Vi(t)√
α
(k+1)
min

for i in order

of {1, 2, . . . , kmin−1, kmin +1, . . . , k, k+1, kmin} until no remain slots, and Si = 0 for

i > k + 1.

3. If ∃ k < n− 1 such that
k+1∑
i=1

Vi(t)√
α
(k+1)
min

< S ≤
k+1∑
i=1

Vi(t)√
α
(k+2)
min

, then assign Si = Vi(t)
k+1∑
i=1

Vi(t)

S

for i = 1, . . . , k + 1, and Si = 0 for i > k + 1.

4. If
n∑
i=1

Vi(t)√
α
(n)
min

< S, then assign Si = Vi(t)
n∑

i=1
Vi(t)

S for i = 1, 2, . . . , n.

Algorithm 3 presents the details of the allocation and we evaluate the gains from this

generalization in §6.4. Interestingly, the optimality of a square-root weighting factor has

been observed in other heterogeneous cluster scheduling problems as well, e.g., load bal-

ancing across servers with heterogeneous speeds [20].

29

4.2 Heterogeneous Stragglers

In the previous sections, we have assumed that all jobs have the same task size distributions,

i.e., have the same straggler behavior. This may not always be the case and, more generally,

different classes of jobs may have different straggler behaviors. This could be specific to the

jobs’ computation and input locations, or wider (but time-varying) cluster characteristics

like resource contentions due to utilization and hotspots [21].

Heterogeneous straggler behaviors can have a significant impact on scheduling. In

particular, if one class of jobs is likely to have stragglers more frequently, then speculation

will be more valuable within those jobs. Thus, the job scheduler may want to leave more

capacity for such jobs, but this extra capacity comes at the expense of other jobs, and so

it is not clear how much extra capacity should be allocated.

Our analytic results highlight that the structural forms of Guidelines 1 and 2 do not

change in this setting; however, the virtual sizes of the jobs are adjusted depending on

the job-class βi and the specific form of the proportional sharing should be adjusted as

follows. Specifically, suppose that there are two classes that have different Pareto(βi) task

size distributions. Then, our analytic results suggest that class I should be allocated

∑
I
Ti(t)

√
βI−1∑

I
Ti(t)

√
βI−1

+

∑
II
Ti(t)

√
βII−1

S slots,

and the allocation among jobs within the class should then happen according to the

the proportional sharing in Equation 4.1. Algorithm 4 gives the details of the design and

we evaluate the gains from this generalization in §6.4. Interestingly, the form mimics the

proportional sharing in Guideline 2, and the weighting of β is again by its square root.

Note that the importance of (β − 1) is natural since when β < 2 the mean is infinite.

Algorithm 4 (Heterogenous stragglers).

Let I(t) and II(t) denote the set of type 1 and type 2 jobs present at time t, respectively.

30

1. If S < 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), then assign all S slots to type 1 jobs.

2. If 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S ≤ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)+
2
β2

∑
II(t)

Ti(t), then assign 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)

slots to type 1 jobs and the rest to type 2 jobs.

3. If S ≥ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) + 2
β2

∑
II(t)

Ti(t), then assign

∑
I(t)

Ti(t)

√
β1−1∑

I(t)

Ti(t)

√
β1−1

+

∑
II(t)

Ti(t)

√
β2−1

S slots to type

1 jobs and the rest to type 2 jobs.

Given this allocation of capacity to type 1 and 2 jobs, use Algorithm ?? to assign capacity

within each type.

Theorem 3. Algorithm 4 is throughput maximal.

Proof. Note, if we know the optimal scheduling algorithm assigns S1 slots to type 1 jobs

and S2 slots to type 2 jobs, then we know how to allocate slots across jobs within the same

type as indicated in Algorithm ??. The remaining question is how to allocate slots across

different types.

Similar to proof for Theorem 1, we divide the problem into three cases.

Case 1: S ≤ 2
β1

∑
I(t)

Ti(t)

Note that β1 < β2 gives
β2
1

4(β1−1) >
β2
2

4(β2−1) , as f(x) = x2

x−1 is a decreasing function for

x ∈ (1, 2). When S ≤ 2
β1

∑
I(t)

Ti(t), from (3.7), we know, we should assign all slots to type

1 jobs.

Case 2: 2
β1

∑
I(t)

Ti(t) ≤ S ≤ 2
β1

∑
I(t)

Ti(t) + 2
β2

∑
II(t)

Ti(t)

When 2
β1

∑
I(t)

Ti(t) ≤ S ≤ 2
β1

∑
I(t)

Ti(t)+ 2
β2

∑
II(t)

Ti(t), denote the number of slots we assign

to type 1 jobs by S1 and the number of slots we assign to type 2 jobs by S2. From (3.7),

unless type 1 jobs get optimal speculation level slots, no slot should be assigned to type

2 jobs. Thus, the slots assigned to type 1 and type 2 jobs should satisfy S1 ≥ 2
β1

∑
I(t)

Ti(t)

31

and S2 ≤ 2
β2

∑
II(t)

Ti(t). The total throughput is,

β1
β1 − 1

∑
I(t)

Ti(t)−
1

(β1 − 1)S1
(
∑
I(t)

Ti(t))
2 +

β22
4(β2 − 1)

S2

=
β1

β1 − 1

∑
I(t)

Ti(t)−
1

(β1 − 1)S1
(
∑
I(t)

Ti(t))
2 +

β22
4(β2 − 1)

(S − S1)

=
β1

β1 − 1

∑
I(t)

Ti(t) +
β22

4(β2 − 1)
S − 1

(β1 − 1)
(
∑
I(t)

Ti(t))
2 1

S1
− β22

4(β2 − 1)
S1 (4.2)

≤ β1
β1 − 1

∑
I(t)

Ti(t) +
β22

4(β2 − 1)
S − β2√

(β1 − 1)(β2 − 1)

∑
I(t)

Ti(t),

where the last line follows from a2 + b2 ≥ 2ab.

Equality is achieved when
β2
2

4(β2−1)S1 = 1
(β1−1)S1

(
∑
I(t)

Ti(t))
2, i.e., S1 = 2

β2

√
β2−1
β1−1

∑
I(t)

Ti(t).

And (4.2) increases for S1 ≤ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) and decreases afterwards. Also note that, if

S1 = 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), then S1 ≥ 2
β1

∑
I(t)

Ti(t). Thus, when 2
β1

∑
I(t)

Ti(t) ≤ S ≤ 2
β1

∑
I(t)

Ti(t)+

2
β2

∑
II(t)

Ti(t), the optimal scheduling should:

1. when S < 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), assign all S slots to type 1 jobs.

2. when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S ≤ 2
β1

∑
I(t)

Ti(t) + 2
β2

∑
II(t)

Ti(t), assign 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)

slots to type 1 jobs and the rest to type 2 jobs.

Case 3: S ≥ 2
β1

∑
I(t)

Ti(t) + 2
β2

∑
II(t)

Ti(t)

When S ≥ 2
β1

∑
I(t)

Ti(t) + 2
β2

∑
II(t)

Ti(t), similarly, from (3.7), in optimal scheduling, the

number of slots assigned to type 1 jobs should be no less than the optimal speculation

scheduling level, so S1 ≥ 2
β1

∑
I(t)

Ti(t). Depending on how many slots we have, S2 can be

either less than or more than optimal speculation level. We discuss the two cases separately

in the following.

32

1. If S2 ≤ 2
β2

∑
II(t)

Ti(t), which implies S − S1 ≤ 2
β2

∑
II(t)

Ti(t), as we already proved,

S1 = max{ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), S − 2
β2

∑
II(t)

Ti(t)}, and S2 = S − S1. Specifically,

(a) when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) ≥ S − 2
β2

∑
II(t)

Ti(t), if S1 ≥ 2
β1

∑
I(t)

Ti(t) and S2 ≤

2
β2

∑
II(t)

Ti(t) in optimal scheduling, then S1 = 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) and S2 = S−S1.

(b) when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S − 2
β2

∑
II(t)

Ti(t), if S1 ≥ 2
β1

∑
I(t)

Ti(t) and S2 ≤

2
β2

∑
II(t)

Ti(t) in optimal scheduling , then S1 = S− 2
β2

∑
II(t)

Ti(t) and S2 = S−S1.

2. If S2 ≥ 2
β2

∑
II(t)

Ti(t), which implies S − S1 ≥ 2
β2

∑
II(t)

Ti(t), total throughput is,

β1
β1 − 1

∑
I(t)

Ti(t)−
1

(β1 − 1)S1
(
∑
I(t)

Ti(t))
2 +

β2
β2 − 1

∑
II(t)

Ti(t)−
1

(β2 − 1)S2
(
∑
II(t)

Ti(t))
2

=
β1

β1 − 1

∑
I(t)

Ti(t) +
β2

β2 − 1

∑
II(t)

Ti(t)−
1

(β1 − 1)S1
(
∑
I(t)

Ti(t))
2 − 1

(β2 − 1)S2
(
∑
II(t)

Ti(t))
2

≤ β1
β1 − 1

∑
I(t)

Ti(t) +
β2

β2 − 1

∑
II(t)

Ti(t)−
1

S1 + S2

√ 1

β1 − 1

∑
I(t)

Ti(t) +

√
1

β2 − 1

∑
II(t)

Ti(t)

2

=
β1

β1 − 1

∑
I(t)

Ti(t) +
β2

β2 − 1

∑
II(t)

Ti(t)−
1

S

√ 1

β1 − 1

∑
I(t)

Ti(t) +

√
1

β2 − 1

∑
II(t)

Ti(t)

2

,

(4.3)

where the inequality follows from Cauchy-Schwartz inequality.

Equality is achieved when S1 =

∑
I(t)

Ti(t)

√
β1−1∑

I(t)

Ti(t)

√
β1−1

+

∑
II(t)

Ti(t)

√
β2−1

S

Combining above two results, when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S − 2
β2

∑
II(t)

Ti(t), the op-

timal assignment from first case is a boundary point for second case. Obviously,

33

the optimal assignment from case 2 is the global optimal assignment. But, when

2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) ≥ S − 2
β2

∑
II(t)

Ti(t), it still remain unclear which assignment is op-

timal. Thus, in next step, we compare the maximum total throughput in two cases

under that setting.

(a) In case 1, from (4.2), throughput µs = β1
β1−1

∑
I(t)

Ti(t)+
β2
2

4(β2−1)S−
β2√

(β1−1)(β2−1)

∑
I(t)

Ti(t)

(b) In case 2, from (4.3), throughput µl = β1
β1−1

∑
I(t)

Ti(t)+
β2
β2−1

∑
II(t)

Ti(t)− 1
S

(√
1

β1−1
∑
I(t)

Ti(t) +
√

1
β2−1

∑
II(t)

Ti(t)

)2

µs − µl =
β1

β1 − 1

∑
I(t)

Ti(t) +
β22

4(β2 − 1)
S − β2√

(β1 − 1)(β2 − 1)

∑
I(t)

Ti(t)

−

 β1
β1 − 1

∑
I(t)

Ti(t) +
β2

β2 − 1

∑
II(t)

Ti(t)−
1

S

√ 1

β1 − 1

∑
I(t)

Ti(t) +

√
1

β2 − 1

∑
II(t)

Ti(t)

2
=

β22
4(β2 − 1)

S +
1

S

√ 1

β1 − 1

∑
I(t)

Ti(t) +

√
1

β2 − 1

∑
II(t)

Ti(t)

2

− β2√
(β1 − 1)(β2 − 1)

∑
I(t)

Ti(t)−
β2

β2 − 1

∑
II(t)

Ti(t)

≥ β2√
β2 − 1

√ 1

β1 − 1

∑
I(t)

Ti(t) +

√
1

β2 − 1

∑
II(t)

Ti(t)

− β2√

(β1 − 1)(β2 − 1)

∑
I(t)

Ti(t)−
β2

β2 − 1

∑
II(t)

Ti(t)

=0

The above result implies when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) ≥ S − 2
β2

∑
II(t)

Ti(t), the optimal

assignment from case 1 is the global optimal assignment.

In summary, the optimal scheduling should:

1. If S < 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), then assign all S slots to type 1 jobs.

34

2. If 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S ≤ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)+
2
β2

∑
II(t)

Ti(t), then assign 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)

slots to type 1 jobs and the rest to type 2 jobs.

3. If S ≥ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)+ 2
β2

∑
II(t)

Ti(t), then assign

∑
I(t)

Ti(t)

√
β1−1∑

I(t)

Ti(t)

√
β1−1

+

∑
II(t)

Ti(t)

√
β2−1

S slots to type

1 jobs and the rest to type 2 jobs.

35

Chapter 5

Hopper: Design and Implementation

In this section, we build our system, Hopper, based on the theoretical guidelines. Hopper is

implemented inside Hadoop [15] and Spark [3] compute frameworks.

5.1 Data Locality

Implicit in our model’s goal of allocating slots to jobs is the assumption that all the slots

are equivalent. In practice, however, tasks have preferences towards machines with specific

characteristics [22]. The dominant instance of such preferences is data locality, i.e., execute

tasks on the same machine as their input. With the trend towards in-memory storage [3,

23], reading data from local memory is appreciably faster than remote reads over the

network. As these tasks are predominantly IO-intensive, data locality is crucial.

As per our guidelines, however, tasks of the next best job to schedule may not have

memory local slots available [21]. Our analysis shows that memory locality drops from

98% of tasks with currently deployed techniques to as low as 54% if scheduled purely based

on our guidelines without regard to memory locality. Not only are the tasks not achieving

memory locality slowed down, the ensuing increase in network traffic also slows down the

data transfers of intermediate phases.

We devise a simple relaxation approach to balance adherence to our guidelines and

locality. In the ordering of jobs, instead of allotting slots to the job with the smallest

virtual size, we allow for picking any of the smallest k% of jobs whose tasks can run with

36

memory locality on the available slots. Among these smallest k% jobs, we pick the one

which can achieve memory locality for the maximum number of tasks. Further, once we

pick a job, we schedule all its tasks (so that a few unscheduled tasks do not delay it) before

resuming to the scheduling order as per our guidelines. In practice, a small value of k

suffices (≤ 5%) due to high churn in task completions and slot availabilities (evaluated in

§6.4.1).

5.2 Estimating Intermediate Data Sizes

Recall from §4.1 that our scheduling guidelines recommend scaling every job’s allocation

by
√
α in the case of DAGs. The factor α is the ratio of the amounts of work remaining in

the downstream phase over the amounts of works remaining in the upstream phase of the

job’s DAG. The purpose of the scaling is to ensure pipelining of the reading of upstream

tasks’ outputs over the network.

The key to calculating α is estimating the size of the intermediate output produced

by tasks. Unlike the job’s input size, intermediate data sizes are not known upfront.

We predict intermediate data sizes based on similar jobs in the past. Clusters typically

have many recurring jobs that execute periodically as newer data streams in, and produce

intermediate data of similar sizes.

For multi-waved jobs [23, 24], Hopper can do better. It uses the ratio of intermediate to

input data of the completed tasks as a predictor the future (incomplete) tasks. Data from

Facebook’s and Microsoft Bing’s clusters (described in §6.1) shows that while the ratio of

input to output data size of tasks vary from 0.05 all the way to 18, the ratios within tasks of

a phase have a coefficient-of-variation of only 0.07 and 0.24 at median and 90th percentile,

thus lending themselves to effective learning. Hopper calculates α as the ratio of the data

remaining to be read (by downstream tasks) over the data remaining to be produced (by

upstream tasks).

Hopper’s approach for pipelining phases easily composes to DAGs of arbitrary depth

since it deals with only two phases at time, i.e., the currently running phase and the

37

downstream phase reading the output from the running phase. Further, the usage of α

is generically applicable to all communication patterns of intermediate data (e.g., many-

to-one, all-to-all) as it only considers the amount of data outputted and read (shown in

§6.2.1)

5.3 System Implementation

We implement Hopper inside two frameworks: Hadoop YARN (version 2.3) and Spark

(version 0.7.3). Hadoop jobs read data from HDFS [25] while Spark jobs read from in-

memory RDDs. Consequently, Spark tasks finish faster than Hadoop tasks for the same

input size.

Briefly, these frameworks implement two level scheduling where a central resource man-

ager assigns slots to the different job managers. When a job is submitted to the resource

manager, a job manager is started on one of the machines, that then executes the job’s

DAG of tasks. The job manager negotiates with the resource manager for resources for its

tasks.

We built Hopper as a scheduling plug-in module to the resource manager. This makes the

frameworks use our design to allocate slots to the job managers. We also piggybacked on the

communication protocol between the job manager and resource manager to communicate

the intermediate data produced and read by the phases of the job to vary α accordingly;

locality and other preferences are already communicated between them.

38

Chapter 6

Evaluation

We evaluate our prototype of Hopper on a 200 node cluster using production workloads from

Facebook and Microsoft Bing. We present Hopper’s overall gains in §6.2, fairness results in

§6.3, and design implications in §6.4.

1. Hopper improves the average job duration by 50% compared to SRPT scheduling and

70% compared to fair schedulers.

2. Hopper’s balancing of fairness and performance ensures that only 4% of jobs slow

down and by ≤ 5%.

6.1 Setup

Workload: Our evaluation is based on traces from Facebook’s production Hadoop [15]

cluster (3, 500 machines) and Microsoft Bing’s Dryad cluster (O (1000) machines) from

Oct-Dec 2012. The traces capture over a million jobs (experimental & production). The

tasks had diverse resource demands of CPU, memory and IO, varying by a factor of 24×.

To create our workload, we retain the inter-arrival times of jobs, their input sizes and

number of tasks, resource demands as well as job scripts.

Cluster Deployment: We deploy our Hadoop and Spark prototypes on a 200-node pri-

vate cluster and evaluate them using the workload described above. Each machine had 16

cores, 34GB of memory, 1Gbps network and 4 disks. The machines were connected using a

39

0

20

40

60

80

100
Hadoop

Spark

Job Bin

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

������� ��	 �
�

�	

�
�

�		

��		

(a) Facebook

0

20

40

60

80

100
Hadoop

Spark

Job Bin

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

������� ��	 �
�

�	

�
�

�		

��		

(b) Bing

Figure 6.1: Hopper’s gains (Facebook and Bing workloads).

network with no over-subscription. Each experiment is repeated five times and we report

the median.

Baseline: We contrast Hopper with state-of-the-art scheduling algorithms and straggler

mitigation schemes. We use scheduling baselines of SRPT and fair scheduling. Fair schedul-

ing is commonly used in clusters today, e.g., [8, 9], but is inefficient with respect to com-

pletion time. In contrast, SRPT provides quite a competitive baseline for completion time

(at the expense of unfairness). We combine each of them with the LATE [13], Mantri [12]

and GRASS [14] speculation algorithms.

6.2 Hopper’s Improvements

We first compare Hopper with SRPT. Unless specified, both Hopper and the baseline of SRPT

executes the GRASS speculation algorithm per job, i.e. GRASS+Hopper vs. GRASS+SRPT;

recent results have shown GRASS beats its competitors [14]. However, we also evaluate

Hopper’s compatibility with other speculation algorithms (LATE, Mantri) in §6.2.2. In our

experiments, we set the fairness allowance ε to be 10% and locality parameter k as 3%

unless otherwise stated.

Overall Gains: Figure 6.1 plots Hopper’s gains in both Hadoop and Spark compared to

SRPT. Jobs, overall, speedup by ∼ 50% in both prototypes (and workloads), which is

significant given our aggressive baselines.

We observe two trends in the results. (a) First, gains for small jobs are less compared

to the large jobs. This is only expected given that our baseline of SRPT already favors

40

0

20

40

60

80

100
Hadoop Spark

R
e

d
u

c
ti
o

n
 (

%
)

in
 J

o
b

D
u

ra
ti
o

n

���� ���� ���� ��
�� ���� ����

Percentile

(a) Distribution

0

10

20

30

40

50

60

2 3 4 5 6 7 8

Hadoop

Spark

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Length of Job’s DAG

(b) DAG

Figure 6.2: (a) Hopper’s gains at various percentiles, and (b) gains as the length of the
job’s DAG varies.

the small jobs. Nonetheless, Hopper’s smart allocation of speculative slots offers 29%−40%

improvement. Gains for large jobs, in contrast, are over 80%. This not only shows that

there is sufficient room for the large jobs despite favoring small jobs (due to the power law

in distribution of job sizes [23, 11]) but also that the value of deciding between speculative

tasks and unscheduled tasks of other jobs increases with the number of tasks in the job.

With trends of smaller tasks and hence, larger number of tasks per job [24], Hopper’s

allocation will become important. (b) Second, gains for Spark are consistently higher

(albeit, only modestly). Spark’s small task durations makes it more sensitive to stragglers

and thus it spawns many more speculative copies. This makes Hopper’s scheduling more

crucial.

Given the similarity in results (and for brevity), we only present the Facebook work-

load’s results from now.

Distribution of Gains: Figure 6.2a plots the distribution of gains across jobs. While the

median gains are just higher than the average, there is a > 70% gains at higher percentiles.

The encouraging aspect is that gains even at the 10th percentile are 14% and 22% in our

Hadoop and Spark prototypes, respectively, which shows Hopper’s ability to improve even

the worse case performance.

6.2.1 DAG of Tasks

Hopper’s gains hold steady for jobs with varying DAG lengths. We achieve different DAG

41

lengths by modifying the input script of the job to contain the required number of phases,

and enforce pipelining of data transfers of downstream phases with upstream tasks [26].

The communication patterns in the DAGs are varied (e.g., all-to-all, many-to-one etc.) and

thus the results also serve to underscore Hopper’s generality. As Figure 6.2b shows, name’s

gains continue to hold with the job’s DAG length.

Recall from §4.1 that we use a factor α for pipelined downstream communication.

To appropriately capture the network-intensiveness of the downstream phase, we use a

dampening value for α.1 For Spark jobs with fast in-memory map phases, intermediate

data communication is the bottleneck, and a dampening value of 0.8 works best. Hadoop

jobs spend most of their time in the map phase [23], and we use a dampening value of 0.3.

6.2.2 Speculation Algorithm

We now experimentally evaluate Hopper’s performance with the different speculation mech-

anisms that are proposed and deployed. LATE [13] is deployed in Facebook’s clusters,

Mantri [12] is in operation in Microsoft Bing, and GRASS [14] is a recently reported strag-

gler mitigation system that was demonstrated to perform near-optimal speculation. Our

experiments in this section still use SRPT as the baseline but pair with the different strag-

gler mitigation algorithms (e.g., LATE+SRPT vs. LATE+Hopper, and so forth). Figure 6.3

plots the results. We show results for Hadoop only due to space restrictions. The results

for Spark are similar.

While the earlier results were achieved in conjunction with GRASS, a remarkable point

is the similarity in gains even with LATE and Mantri. This indicates that as long as

the straggler mitigation algorithms are aggressive in asking for speculative copies, Hopper

will appropriately allocate as per the optimal speculation level. Overall, it emphasizes the

aspect that resource allocation across jobs (with speculation) has a higher performance

value than straggler mitigation within jobs.

1The dampening value is in [0, 1]. High values indicate a shuffle-intensive job, low values indicate a
map-intensive job. We set the dampening value based on earlier similar jobs.

42

0

20

40

60

80

100

Overall < 50 51-150 151-500 > 500

LATE+Hopper vs. LATE+SRPT

Mantri+Hopper vs. Mantri+SRPT

GRASS+Hopper vs. GRASS+SRPT

Job Bin

R
e

d
u

ct
io

n
 (

%
)

in

A
ve

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Figure 6.3: Hopper’s results are independent of the straggler mitigation strategy.

0

20

40

60

80

0 5 10 15 20 25 30

Hadoop

Spark

Fairness ɛ (%)

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

(a) Sensitivity

0

5

10

15

20

0 5 10 15 20 25 30
Fairness ɛ (%)

(%
)

S
lo

w
e

d
 J

o
b

s
(b) (%) of Jobs Slowed

0

5

10

15

20

25

0 5 10 15 20 25 30

Average Worst

Fairness ɛ (%)

In
c
re

a
s
e

 (
%

)
in

J
o

b
 d

u
ra

ti
o

n
 o

f

S
lo

w
e

d
 J

o
b

s

(c) Magnitude (%) of Slowdown

Figure 6.4: ε Fairness. Figure (a) shows sensitivity of gains to ε. Figure (b) shows
the fraction of jobs that slowed down compared to a fair allocation, and (c) shows the
magnitude of their slowdowns (average and worst).

6.3 Fairness

As we had described in §3.5, the fairness knob of ε decides the leeway for Hopper to trade-off

fairness for performance. Thus far, we had set ε to be 10% of the perfectly fair share of a

job (ratio of total slots to jobs), now we analyze its sensitivity to Hopper’s gains.

Figure 6.4a plots the increase in gains as we increase ε from 0 to 30%. The gains quickly

rise for small values of ε and plateau beyond ε = 15% with both our Hadoop as well as

Spark prototypes; both curves follow each other. Hence, we conservatively set ε to be 10%.

An important consideration in setting ε is the amount of slowdown of jobs compared to a

43

0

20

40

60

80

100
Hadoop Spark

������� ��	 �
�

�	

�
�

�		

��		

Job Bin

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n
(a) Baseline: Fair Sched-
uler

0

10

20

30

40

50

60
Hadoop Spark

������� ��	 �
�

�	

�
�

�		

��		

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Job Bin

(b) Baseline: DRF

Figure 6.5: Hopper’s gains with fair allocators as baseline.

perfectly fair allocation (ε = 0), i.e., all the jobs are guaranteed their fair share at all times.

Figure 6.4b measures the number of jobs that slowed down, and for the slowed jobs,

Figure 6.4c plots their average and worst case slowdowns. Note that fewer than 4% of

jobs slow down with Hopper compared to a fair allocation at ε = 10%. The corresponding

numbers for the Bing workload are 3.8% of jobs slowing down. In fact, both the average

and worst case slowdowns are limited at ε = 10%, thus demonstrating that Hopper’s focus

on performance does not unduly slow down jobs.

Comparison to fairness algorithms: While we used SRPT scheduling as our baseline due

to its focus on job completion, clusters commonly deploy fairness based job schedulers. We

briefly look at Hopper’s gains with the slot-based Fair Scheduler [8] and Dominant Resource

Fairness (DRF) scheduler [9] as baselines.2 Job speedups are over 70%, or in other words

a > 20% raise from earlier (Figure 6.5). While gains for small jobs improve, gains for large

jobs stay relatively unchanged. We believe that these gains compared to currently deployed

fair schedulers coupled with very few jobs slowing down motivates clusters to safely deploy

Hopper.

6.4 Evaluating Hopper’s Design Decisions

We evaluate the design implications of Hopper: (i) data-local scheduling (§6.4.1), (ii) het-

erogeneous stragglers (§6.4.2), and (iii) scheduler scalability (§6.4.3).

2We implement multi-resource scheduling in Hopper by calculating a equal-weighted normalized value

44

0
20
40
60
80
100

0
10
20
30
40
50
60

0 1 2 3 4 5 6 7 8 9 10

Gains (Hadoop) Gains (Spark)
Locality (Hadoop) Locality (Spark)

Locality Allowance, k (%)

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n T
a

s
k
 L

o
c
a

lity
 (%

)
(a) Sensitivity of gains and % local tasks to k.

0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10

Hadoop
Spark

M
a

p
 P

h
a

s
e

 G
a

in
 (

%
)

Locality Allowance, k (%)

(b) Map Phase

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

Hadoop

Spark

R
e

d
u

c
e

 P
h

a
s
e

 G
a

in
 (

%
)

Locality Allowance, k (%)

(c) Reduce Reduce

Figure 6.6: Locality Allowance (k), see §5.1.

6.4.1 Locality

Achieving locality in scheduling (for map tasks) was an important aspect as we translated

our scheduling guidelines into Hopper in §5.1. As Figure 6.6a shows, a small relaxation

of k = 3% achieves appreciable increase in locality. Gains steady for a bit but then

start dropping beyond a k value of 7%. This is because the deviation from the theoretical

guidelines overshadows any increase in gains from locality. The fraction of data local tasks,

naturally, increase with k (Figure 6.6a, right axis).

An interesting aspect is that not all the gains with k are attributed to only increase

in locality. To see this, we slice the gains of individual phases—map phase, which is

directly affected by locality, and reduce phase. Figure 6.6b, shows that the map phases

in Spark speed up significantly as locality increases; Hadoop jobs’ map phases do not.

This is because data locality is more significant in Spark’s in-memory system as opposed

to Hadoop’s disk-based storage; fast networks make disk locality less useful [27]. Hadoop

jobs gain by improvement in their reduce phases due to lesser network contention during

across all the resources for the task demands and cluster capacity.

45

0

20

40

60

80
Heterogeneous β
Single β

������� �� �	 �
 ��

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Job Group

β=1.21

β=1.36

β=1.28

β=1.54

(a) Hadoop

0

20

40

60

80

100
Heterogeneous β
Single β

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Job Group
������� �� �	 �
 ��

β=1.26

β=1.46 β=1.4

β=1.59

(b) Spark

Figure 6.7: Value of considering heterogeneity of task durations across job groups
(shape parameter, β).

transfers of intermediate data (Figure 6.6c).

6.4.2 Heterogeneous Stragglers

We now analyze the effect of using different straggler distributions for different job groups in

our scheduling; we base our groups on simple higher-level organizational semantics. Within

each group of jobs, we periodically model their distribution of task durations (βi). Thus,

every job arrives with a unique group i, and we allocate resources to groups as described

in §4.2.

Figure 6.7 shows the benefits of considering heterogeneous task distributions as opposed

to a homogeneous distribution (β=1.2) across all the tasks. We see a valuable difference

of ∼ 10% in the overall completion time. The job groups with the most gains are those

whose βi values are much farther from the homogeneous β of 1.2. Note that since β is a

function of task durations, they vary between our Hadoop and Spark deployments.

6.4.3 Scheduler Scalability

The guidelines in §3 rely on the total number of tasks in the system. Therefore, they

result in a recalculation and change in allocation at the completion of every task. Since

schedulers in current frameworks are optimized to handle tens of thousands of tasks per

second [28], making expensive scheduling decisions are problematic. Measurements of the

scheduler’s throughput show no more than 1.6% drop: the throughput drops from 12, 200

46

tasks/second with stock Hadoop and Spark schedulers to 12, 010 tasks/second with Hopper.

We attribute this to Hopper’s lightweight design decisions on all its aspects.

47

Chapter 7

Related Work

The problem of stragglers was first identified in the original MapReduce paper [1], and

since then there have been many works that propose to mitigate the stragglers by utilizing

speculative copies, e.g., [12, 13, 14]. These solutions, however, aim at mitigating the strag-

glers within each job, and lack coordination of resource allocation among all concurrently

running jobs.

Job scheduling, on the other hand, is often done via algorithms that do not integrate

straggler mitigation. Specifically, FIFO [4], the default scheduler for Hadoop and Spark,

suffers from well known head-of-line blocking in multi-user cloud sharing settings. The

inefficiency of FIFO inspired two different approaches: 1) introducing fairness among jobs;

2) prioritizing small jobs.

Based on the first approach, widely used solutions include the Fair Scheduler [8], Capac-

ity Scheduler [29], DRF [9], FLEX [30], and Quincy [31]. While these schedulers guarantee

fair sharing among jobs, fairness comes with its performance inefficiencies. Thus, advance-

ments such as the Delay scheduler [32], and the Coupling Scheduler [33] have focused on

mitigating some of these issues (e.g., locality) but still within a job.

On the second approach, the optimality of SRPT scheduling in both single and multi-

server settings in queuing theory motivates a focus on prioritizing small jobs. Variations

of SRPT that accommodate a variety of workload properties have been proposed. The

48

dependency of two adjacent phases is highlighted in [5, 7]. Various queuing models (such

as two-stage flexible flow-shop model [34], overlapping tandem queue model [5]) inspire

new algorithmic designs.

Importantly, none of the systems provide job level scheduling algorithms considering

speculative copies for stragglers. Further, as the examples in §2 illustrate, integrating

straggler mitigation with job scheduling is challenging. We believe we are the first design

to propose such a joint scheduler that focuses on performance while limiting the fallout

due to unfairness using a simple knob.

49

Chapter 8

Conclusions

Guided by analytic scheduling guidelines, this thesis proposes Hopper, a job scheduler that

is aware of speculative copies for stragglers. We believe Hopper is the first scheduler that

combines the hitherto decoupled solutions for job scheduling and straggler mitigation. Hop-

per’s design also incorporates practically important features like pipelining of intermediate

data and data locality for tasks. Our evaluation using Hadoop and Spark prototypes show

that Hopper speeds up average job completion time by 50% − 70% compared to SRPT

scheduling, fair scheduling and straggler mitigation solutions. Further, Hopper’s simple

knob to trade fairness and performance results in fewer than 4% of jobs slowing down by

≤ 5% compared to fairness-based schedulers.

50

Bibliography

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM, 2008.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly. Dryad: Distributed Data-

parallel Programs from Sequential Building Blocks. In ACM Eurosys, 2007.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S.

Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing. In USENIX NSDI, 2012.

[4] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. Handbook of scheduling: algo-

rithms, models, and performance analysis, pages 15–1, 2004.

[5] M. Lin, L. Zhang, A. Wierman, and J. Tan. Joint Optimization of Overlapping Phases

in MapReduce. Performance Evaluation, 2013.

[6] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang . A Throughput Optimal Algorithm

for Map Task Scheduling in Mapreduce with Data Locality. In ACM SIGMETRICS,

2013.

[7] Y. Wang, J. Tan, W. Yu, L. Zhang, X. Meng. Preemptive ReduceTask Scheduling for

Fast and Fair Job Completion. USENIX ICAC, 2013.

[8] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.

51

Job scheduling for multi-user mapreduce clusters. In UC Berkeley Technical Report

UCB/EECS-2009-55, 2009.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dom-

inant Resource Fairness: Fair Allocation of Multiple Resource Types. In USENIX

NSDI, 2011.

[10] J. Dean. Achieving Rapid Response Times in Large Online Services. In Berkeley

AMPLab Cloud Seminar, 2012.

[11] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective Straggler Mit-

igation: Attack of the Clones. In USENIX NSDI, 2013.

[12] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, E. Harris, and B. Saha.

Reining in the Outliers in Map-Reduce Clusters Using Mantri. In USENIX OSDI,

2010.

[13] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving MapRe-

duce Performance in Heterogeneous Environments. In USENIX OSDI, 2008.

[14] G. Ananthanarayanan, M. Hung, X. Ren, I. Stoica, A. Wierman, and M. Yu. GRASS:

Trimming Stragglers in Approximation Analytics. In USENIX NSDI, 2014.

[15] Hadoop. http://hadoop.apache.org.

[16] L. Schrage. A proof of the optimality of the shortest remaining processing time disci-

pline. Operations Research, 16(3):687–690, 1968.

[17] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling

to improve web performance. ACM Transactions on Computer Systems (TOCS),

21(2):207–233, 2003.

52

[18] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to

unfairness in an m/gi/1. In ACM SIGMETRICS Performance Evaluation Review,

volume 31, pages 238–249. ACM, 2003.

[19] A. Wierman. Fairness and scheduling in single server queues. Surveys in Operations

Research and Management Science, 16(1):39–48, 2011.

[20] H. Chen, J. Marden, and A. Wierman. On the Impact of Heterogeneity and Back-end

Scheduling in Load Balancing Designs. In INFOCOM. IEEE, 2009.

[21] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan,

E. Harris. Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters.

In EuroSys, 2011.

[22] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, C. R. Das. Modeling and Syn-

thesizing Task Placement Constraints in Google Compute Clusters. In ACM SOCC,

2011.

[23] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker,

and I. Stoica. PACMan: Coordinated Memory Caching for Parallel Jobs. In USENIX

NSDI, 2012.

[24] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,

S. Shenker, and I. Stoica. The Case for Tiny Tasks in Compute Clusters. In USENIX

HotOS, 2013.

[25] Hadoop Distributed File System. http://hadoop.apache.org/hdfs.

[26] Hadoop Slowstart. https://issues.apache.org/jira/browse/MAPREDUCE-1184/.

[27] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica. Disk Locality Considered

Irrelevant. In USENIX HotOS, 2011.

53

[28] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz, S. Shenker,

I. Stoica. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.

In USENIX NSDI, 2011.

[29] Hadoop Capacity Scheduler. http://hadoop.apache.org/docs/r1.2.1/capacity

scheduler.html.

[30] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K. Wu, and

A. Balmin. FLEX: a Slot Allocation Scheduling Optimizer for MapReduce Workloads.

In Middleware 2010. Springer, 2010.

[31] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy:

Fair Scheduling for Distributed Computing Clusters. In ACM SOSP, 2009.

[32] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.

Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster

Scheduling. In ACM EuroSys, 2010.

[33] J. Tan, X. Meng, and L. Zhang. Delay Tails in MapReduce Scheduling. ACM SIG-

METRICS Performance Evaluation Review, 2012.

[34] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós. On Scheduling in Map-reduce

and Flow-shops. In ACM SPAA, 2011.

[35] Hopper Technical Report. https://sites.google.com/site/hoppertechreport2014/.

