DEVELOPMENT OF ASYMMETRIC PROTONATION REACTIONS FOR THE SYNTHESIS OF INDOLINE ALKALOIDS

Thesis by

Jane Ni

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2015

(Defended August 27, 2014)

© 2014

Jane Ni

All Rights Reserved

To my teachers

ACKNOWLEDGEMENTS

During my time at Caltech, I have had the priviledge to learn from so many intelligent, generous people, and build friendships that I will be sure to keep with me as I leave Pasadena.

First, I have to thank Professor Sarah Reisman, my advisor. I decided to work for her mostly because of a gut feeling that her lab would be a friendly and supportive learning environment. I have to say, I was absolutely right about this. As an advisor, Sarah is honest, dedicated, and extremely hard-working. Moreover, she has fostered a lab environment where everyone is always willing to help, whether that involves brainstorming possible reaction conditions, proofreading a manuscript, or fixing a rotovap. I think this is reflective of her mentoring style and personality. I am thankful for her guidance and support.

I would like to thank my committee members, Professors John Bercaw, Greg Fu, and the chairman of my committee, Professor Brian Stoltz. I have benefited greatly from their wisdom, encouragement, and enthusiasm when providing advice on chemistry and my future career plans. They are generous with their time, and our discussions have greatly improved the projects I have worked on.

Of course, none of these projects would be possible without Dr. Scott Virgil, who works tirelessly to maintain the equipment in the Center for Catalysis and Chemical Synthesis, while also answering any chemistry question you could possibly have, telling hilarious stories about his grad school experiences, and serenading the third floor of Schlinger with his piano-playing. I am also grateful to Larry Henling and the late Dr. Michael Day for obtaining X-ray crystal structures, and to Dr. David VanderVelde for assisting with my NMR experiments, and keeping the NMR lab functioning smoothly. I have to thank Agnes Tong, Leah Mentch, Anne Penny, Joe Drew, Lynne Martinez, Pat Anderson, and everyone else who helps to keep the department running. I also have to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for a graduate fellowship and the NIH for financial support.

I would not be in graduate school if it weren't for my undergraduate mentors. I learned a lot about organic chemistry in Professor Vy Dong's laboratory, and she also convinced me of how wonderful Caltech and southern California would be. I am especially grateful to Dr. Peter Dornan, the graduate student who shared his fumehood with me and taught me the laboratory techniques I've used throughout grad school. He is currently a postdoc in the Grubbs lab—further proof of how small our world is.

Through every step of my grad school experience, I have been fortunate to have Sarah's first class — Drs. Raul Navarro, Lindsay Repka, Roger Nani, Jay Codelli, and John Yeoman — as role models. When I first met them, I wasn't sure if I would fit into this tight-knit group (they had matching t-shirts!), but they were so welcoming and friendly. We've had many ups and downs, but their friendship has been strong and dependable.

My lab experience has been greatly improved by my baymates, past and present: Raul Navarro, Kangway Chuang, Dr. Angela Puchlopek, Dr. John Butler, Maddi Kieffer, and Denise Grünenfelder. Thanks to their senses of humor, and our (more or less) shared taste in music, it has been a pleasure to come to work every day. I must also thank my other friends in the Reisman lab, including Nathaniel Kadunce (and his girlfriend Julia Hammond), Lauren Chapman, Dr. Leah Cleary, Dr. Geanna Min, Alan Cherney, Haoxuan Wang, and Dr. Jake Cha.

In terms of research collaborations, I owe a lot to Dr. Lindsay Repka. Lindsay pioneered the formal (3 + 2) synthesis of pyrroloindolines described in Chapter 2, which has provided the basis for all of my graduate research. We worked very closely on that project, and became good friends. She is a hard-working and kind person, and during the past year I've missed her presence in lab and in our office, which she reliably kept stocked with chocolate. I've also had the pleasure of working with Haoxuan Wang on improving the pyrroloindoline synthesis as well as the in situ reduction to prepare indolines. His brilliance as a chemist is best exemplified by his application of the formal (3 + 2) cycloaddition to achieve elegant total syntheses of lansai B, and nocardioazines A and B. I also have to thank Blake Daniels, the first year graduate student I've started collaborating with on the Prins project. I look forward to seeing how his grad school experience evolves.

Beyond the Reisman lab, I have to thank the other friends I've made at Caltech, including Dr. Vanessa Marx, Brad Hulse, Khai Chiong, Amy Fu, and Dr. James Blakemore.

I am so grateful for the love and support from my boyfriend, Guy Edouard. He is kind enough to help me move every time I ask, and patient enough to teach me to drive. We seem to be opposites in many ways: he is funny and great at telling stories, while I usually start laughing uncontrollably at my own joke before I finish telling it; he loves Captain America, while I am Canadian and find no enjoyment in comic books/superhero movies. Nevertheless we seem to get along, and he has kept me balanced during these crazy years.

I have to thank my parents for teaching me the value of education. They are the hardest-working people I know, and the reason why I've had so many opportunities in life.

ABSTRACT

Nitrogen-containing heterocycles, such as indolines and pyrroloindolines, are prevalent in a variety of diverse natural products, many of which exhibit remarkable biological activities. These frameworks have inspired innovative research aimed at discovering novel methods for their stereoselective preparation.

We have developed an enantioselective synthesis of pyrroloindolines based on a formal (3 + 2) cycloaddition of indoles and 2-amidoacrylates. This reaction is promoted by (*R*)-BINOL·SnCl₄; this complex is a Lewis acid-assisted Brønsted acid that effects a highly face-selective catalyst-controlled protonation of an enolate. Mechanistic studies also determined that the initial product of this reaction is an indolinium ion, which upon aqueous workup undergoes cyclization to the pyrroloindoline.

Based on this result, we investigated alternative nucleophiles to trap the indolinium ion. First, addition of sodium borohydride to the optimized reaction conditions yields indoline-containing amino acid derivatives.

Next, carbon nucleophiles were explored. Indole substrates incorporating a tethered alkene were exposed to the conditions for the formal (3 + 2) cycloaddition, resulting in a conjugate addition/asymmetric protonation/Prins cyclization cascade. In this transformation, the indolinium ion is attacked by the olefin, and the resulting carbocation is quenched by a chloride ion. Zirconium tetrachloride was found to be the optimal Lewis acid. Stoichiometric proton and chloride sources were also found to be crucial for reactivity.

TABLE OF CONTENTS

СН	CHAPTER 1 1		
Stra	Strategies for the Total Synthesis of Pyrroloindoline Natural Products		
1.1	Intı	roduction	1
1.2	Pyr	roloindoline Synthesis via Oxindoles	2
1.3	Pyr	roloindoline Synthesis via C3 Functionalization/Cyclization	5
1.4	Co	ncluding Remarks	12
1.5	1.5Notes and References1		14
CH	APTI	ER 2	15
Ena	ntios	elective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddit	ion
2.1	Intı	roduction	15
2.2	Dev	velopment of a Formal (3 + 2) Cycloaddition	16
2	2.1	Identification of an Optimal Lewis Acid	17
2	.2.2	Optimization of the Enantioselective Reaction	18
2	.2.3	Substrate Scope of the Enantioselective Pyrroloindoline Synthesis	21
2	.2.4	Mechanistic Considerations	23
2	.2.5	Second Generation Reaction Conditions	30
2.3	Co	ncluding Remarks	33
2.4	Exp	perimental Section	35

		Х	
2.4.1	Materials and Methods	35	
2.4.2	2 Substrate Synthesis	37	
2.4.3	General Procedure C. Formal (3 + 2) Cycloaddition of Indoles and Ac	rylates 44	
2.4.4	Pyrroloindoline Products under General Procedure C	45	
2.4.5	SFC and HPLC Traces for Racemic and Enantioenriched Products	81	
2.4.6	Pd-catalyzed Deallylation of Pyrroloindoline Methyl Ester 99	107	
2.4.7	General Procedure D. Epimerization Studies	109	
2.4.8	Resubjection of Pure Exo and Endo Pyrroloindolines to Reaction Con- 111	ditions	
2.4.9	General Procedure E. in situ Monitoring of the Formal (3 + 2) Cycload	ldition by	
¹ H N	MR.	112	
2.5 Notes and References 113			
APPENDIX 1 116			
Spectra Relevant to Chapter 2			
APPEN	APPENDIX 2 203		
X-Ray Crystallography Reports Relevant to Chapter 2			
A2.1	CRYSTAL STRUCTURE ANALYSIS OF PYROLLOINDOLINE 106g	204	
A2.2	CRYSTAL STRUCTURE ANALYSIS OF PYRROLOINDOLINE 100c	212	
СНАР	CHAPTER 3 219		

Conjugate Addition/in situ Reduction for the Synthesis of Indolines

	xi	
3.1 Introduction	219	
3.1.1 Methods for the Enantioselective Preparation of Indolines	220	
3.2 Development of the Indoline Synthesis	226	
3.2.1 Substrate Scope of Indoline Synthesis	227	
3.3 Concluding Remarks	221	
3.4 Experimental Section	222	
3.4.1 Materials and Methods	222	
3.4.2 General Procedure: Formal (3 + 2) Cycloaddition/in situ Reduction.	223	
3.4.3 Indoline Products	224	
3.4.4 SFC Traces for Racemic and Enantioenriched Products	234	
3.5 Notes and References	245	
APPENDIX 3	246	
Spectra Relevant to Chapter 3		
CHAPTER 4 269		
Development of a Tandem Conjugate Addition/Prins Cyclization		
4.1 Introduction	269	
4.1.1 Cascade Reactions Incorporating Prins Cyclizations	270	
4.2 Development of a Conjugate Addition/Prins Cyclization	275	
4.2.1 Catalyst Optimization	275	
4.2.2 Reactions Promoted by Zirconium•BINOL Complexes	277	

			xii
	4.2.3	Investigation of Additives	279
	4.2.4	Substrate Scope of the Conjugate Addition/Prins Cyclization	290
	4.2.5	Unsuccessful Substrates	291
	4.2.6	Mechanistic Considerations	293
	4.2.7	Extension to Intermolecular Nucleophiles	296
4.	3 Con	acluding Remarks	297
4.	4 Exp	perimental Section	299
	4.4.1	Materials and Methods	299
	4.4.2 Cycliz	General Procedure A. Conjugate Addition/Asymmetric Protonation/Prins ation Cascade	301
	4.4.3 Cycliz	Indoline Products from Conjugate Addition/Asymmetric Protonation/Prins ation Cascade	301
	4.4.4	SFC Traces for Racemic and Enantioenriched Products	311
	4.4.5	Synthesis of deuterated acrylate 67-d ₁	321
4.	5 Not	es and References	322
APPENDIX 4 324			324
S	oectra	Relevant to Chapter 4	
APPENDIX 5 349			349
X	-Ray C	rystallography Report Relevant to Chapter 4	
С	CRYSTAL STRUCTURE ANALYSIS OF INDOLINE 169 350		

ABOUT THE AUTHOR

xiii **358**

LIST OF ABBREVIATIONS

А	alanine
AAA	Asymmetric Allylic Alkylation
Å	Ångstrom
$[\alpha]_{D}$	specific rotation at wavelength of sodium D line
Ac	acetyl
APCI	atmospheric pressure chemical ionization
app	apparent
aq	aqueous
AIBN	2,2'-azobisisobutyronitrile
Ar	aryl
atm	atmosphere
BBN	borabicyclononane
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
BINOL	1,1'-Bi(2-naphthol)
Bn	benzyl
Boc	tert-butyloxycarbonyl
BOX	bisoxazoline
br	broad
BTF	benzotrifluoride
Bu	butyl
<i>n</i> -Bu	butyl
<i>t</i> -Bu	<i>tert</i> -Butyl
Bz	benzoyl
С	concentration for specific rotation measurements

°C	degrees Celsius
calc'd	calculated
Cbz	carbobenzyloxy
CCDC	Cambridge Crystallographic Data Centre
cm^{-1}	wavenumber(s)
cod	1,5-cyclooctadiene
d	doublet
D	deuterium
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	dichloroethane
DCM	dichloromethane
DEAD	diethyl azodicarboxylate
DFT	density functional theory
DIC	diisopropyl carbodiimide
DM-BINAP	1,1'-Binaphthalene-2,2'-diyl)bis[bis(3,5-
DM-DINAF	dimethylphenyl)phosphine]
DMA	N,N-dimethylacetamide
DMAP	4-dimethylaminopyridine
DMDO	dimethyldioxirane
DME	dimethoxyethane
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
dppf	1,1'-bis(diphenylphosphino)ferrocene
dppp	1,3-bis(diphenylphosphino)propane
dr	diastereomeric ratio
Ε	electrophile

EC ₅₀	median effective concentration (50%)
ee	enantiomeric excess
EI	electron impact
e.g.	for example (Latin exempli gratia)
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
ETP	epidithiodiketopiperazine
FAB	fast atom bombardment
FID	flame ionization detector
FT	fourier transform
g	gram(s)
gCOSY	gradient-selected correlation spectroscopy
gHMBC	gradient-selected heteronuclear multiple bond
ginvibe	correlation
h	hour(s)
HMDS	1,1,1,3,3,3-hexamethyldisilazane
HPLC	high-performance liquid chromatography
HRMS	high-resolution mass spectroscopy
HSQC	Heteronuclear single quantum coherence
hv	light
Hz	hertz
IPA	isopropanol
IR	
щ	infrared (spectroscopy)
J	infrared (spectroscopy) coupling constant

LAH	lithium aluminum hydride
LBA	Lewis acid-assisted Brønsted acid
LC-MS	liquid chromatography-mass spectrometry
LDA	lithium diisopropylamide
LHMDS	lithium bis(trimethylsilyl)amide
m	multiplet; milli
т	meta
m/z	mass to charge ratio
Μ	metal; molar; molecular ion
Me	methyl
Mes	mesityl
MHz	megahertz
μ	micro
μwaves	microwave irradiation
min	minute(s)
MM	multimode
mol	mole(s)
MOM	methoxymethyl
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular sieves
n	nano
Ν	normal
NBS	N-bromosuccinimide
NCS	N-chlorosuccinimide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect

NOESY	nuclear Overhauser enhancement spectroscopy
Nu	nucleophile
nr	no reaction
0	ortho
р	para
Ph	phenyl
рН	hydrogen ion concentration in aqueous solution
PhH	benzene
Phth	phthaloyl
PhMe	toluene
PMB	<i>p</i> -methoxybenzyl
PMP	<i>p</i> -methoxyphenyl
ppm	parts per million
PPTS	pyridinium <i>p</i> -toluenesulfonate
Pr	propyl
<i>i</i> -Pr	isopropyl
q	quartet
ref	reference
R	generic for any atom or functional group
Red-Al	sodium bis(2-methoxyethoxy)aluminum dihydride
R_{f}	retention factor
rt	room temperature
S	singlet
sat.	saturated
SFC	supercritical fluid chromatography
t	triplet
TBS	tert-butyldimethylsilyl

triethylsilyl
trifluoromethanesulfonyl (trifyl)
trifluoroacetic acid; trifluoroacetyl
triflic acid
tetrahydrofuran
triisopropylsilyl
thin-layer chromatography
trimethylsilyl
time-of-flight
retention time
<i>p</i> -toluenesulfonyl (tosyl)
<i>p</i> -toluenesulfonic acid
ultraviolet
volume to volume
weight to volume
anionic ligand or halide