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ABSTRACT 

 

 Nitrogen-containing heterocycles, such as indolines and pyrroloindolines, are 

prevalent in a variety of diverse natural products, many of which exhibit remarkable 

biological activities. These frameworks have inspired innovative research aimed at 

discovering novel methods for their stereoselective preparation. 

 We have developed an enantioselective synthesis of pyrroloindolines based on a 

formal (3 + 2) cycloaddition of indoles and 2-amidoacrylates. This reaction is promoted 

by (R)-BINOLSnCl4; this complex is a Lewis acid-assisted Brønsted acid that effects a 

highly face-selective catalyst-controlled protonation of an enolate. Mechanistic studies 

also determined that the initial product of this reaction is an indolinium ion, which upon 

aqueous workup undergoes cyclization to the pyrroloindoline. 

 Based on this result, we investigated alternative nucleophiles to trap the 

indolinium ion. First, addition of sodium borohydride to the optimized reaction 

conditions yields indoline-containing amino acid derivatives.  

Next, carbon nucleophiles were explored. Indole substrates incorporating a 

tethered alkene were exposed to the conditions for the formal (3 + 2) cycloaddition, 

resulting in a conjugate addition/asymmetric protonation/Prins cyclization cascade. In 

this transformation, the indolinium ion is attacked by the olefin, and the resulting 

carbocation is quenched by a chloride ion. Zirconium tetrachloride was found to be the 

optimal Lewis acid. Stoichiometric proton and chloride sources were also found to be 

crucial for reactivity. 
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