DEVELOPMENT OF ASYMMETRIC PROTONATION REACTIONS FOR THE SYNTHESIS OF INDOLINE ALKALOIDS

Thesis by

Jane Ni

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2015

(Defended August 27, 2014)

© 2014

Jane Ni

All Rights Reserved

To my teachers

ACKNOWLEDGEMENTS

During my time at Caltech, I have had the priviledge to learn from so many intelligent, generous people, and build friendships that I will be sure to keep with me as I leave Pasadena.

First, I have to thank Professor Sarah Reisman, my advisor. I decided to work for her mostly because of a gut feeling that her lab would be a friendly and supportive learning environment. I have to say, I was absolutely right about this. As an advisor, Sarah is honest, dedicated, and extremely hard-working. Moreover, she has fostered a lab environment where everyone is always willing to help, whether that involves brainstorming possible reaction conditions, proofreading a manuscript, or fixing a rotovap. I think this is reflective of her mentoring style and personality. I am thankful for her guidance and support.

I would like to thank my committee members, Professors John Bercaw, Greg Fu, and the chairman of my committee, Professor Brian Stoltz. I have benefited greatly from their wisdom, encouragement, and enthusiasm when providing advice on chemistry and my future career plans. They are generous with their time, and our discussions have greatly improved the projects I have worked on.

Of course, none of these projects would be possible without Dr. Scott Virgil, who works tirelessly to maintain the equipment in the Center for Catalysis and Chemical Synthesis, while also answering any chemistry question you could possibly have, telling hilarious stories about his grad school experiences, and serenading the third floor of Schlinger with his piano-playing. I am also grateful to Larry Henling and the late Dr. Michael Day for obtaining X-ray crystal structures, and to Dr. David VanderVelde for assisting with my NMR experiments, and keeping the NMR lab functioning smoothly. I have to thank Agnes Tong, Leah Mentch, Anne Penny, Joe Drew, Lynne Martinez, Pat Anderson, and everyone else who helps to keep the department running. I also have to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for a graduate fellowship and the NIH for financial support.

I would not be in graduate school if it weren't for my undergraduate mentors. I learned a lot about organic chemistry in Professor Vy Dong's laboratory, and she also convinced me of how wonderful Caltech and southern California would be. I am especially grateful to Dr. Peter Dornan, the graduate student who shared his fumehood with me and taught me the laboratory techniques I've used throughout grad school. He is currently a postdoc in the Grubbs lab—further proof of how small our world is.

Through every step of my grad school experience, I have been fortunate to have Sarah's first class — Drs. Raul Navarro, Lindsay Repka, Roger Nani, Jay Codelli, and John Yeoman — as role models. When I first met them, I wasn't sure if I would fit into this tight-knit group (they had matching t-shirts!), but they were so welcoming and friendly. We've had many ups and downs, but their friendship has been strong and dependable.

My lab experience has been greatly improved by my baymates, past and present: Raul Navarro, Kangway Chuang, Dr. Angela Puchlopek, Dr. John Butler, Maddi Kieffer, and Denise Grünenfelder. Thanks to their senses of humor, and our (more or less) shared taste in music, it has been a pleasure to come to work every day. I must also thank my other friends in the Reisman lab, including Nathaniel Kadunce (and his girlfriend Julia Hammond), Lauren Chapman, Dr. Leah Cleary, Dr. Geanna Min, Alan Cherney, Haoxuan Wang, and Dr. Jake Cha.

In terms of research collaborations, I owe a lot to Dr. Lindsay Repka. Lindsay pioneered the formal (3 + 2) synthesis of pyrroloindolines described in Chapter 2, which has provided the basis for all of my graduate research. We worked very closely on that project, and became good friends. She is a hard-working and kind person, and during the past year I've missed her presence in lab and in our office, which she reliably kept stocked with chocolate. I've also had the pleasure of working with Haoxuan Wang on improving the pyrroloindoline synthesis as well as the in situ reduction to prepare indolines. His brilliance as a chemist is best exemplified by his application of the formal (3 + 2) cycloaddition to achieve elegant total syntheses of lansai B, and nocardioazines A and B. I also have to thank Blake Daniels, the first year graduate student I've started collaborating with on the Prins project. I look forward to seeing how his grad school experience evolves.

Beyond the Reisman lab, I have to thank the other friends I've made at Caltech, including Dr. Vanessa Marx, Brad Hulse, Khai Chiong, Amy Fu, and Dr. James Blakemore.

I am so grateful for the love and support from my boyfriend, Guy Edouard. He is kind enough to help me move every time I ask, and patient enough to teach me to drive. We seem to be opposites in many ways: he is funny and great at telling stories, while I usually start laughing uncontrollably at my own joke before I finish telling it; he loves Captain America, while I am Canadian and find no enjoyment in comic books/superhero movies. Nevertheless we seem to get along, and he has kept me balanced during these crazy years.

I have to thank my parents for teaching me the value of education. They are the hardest-working people I know, and the reason why I've had so many opportunities in life.

ABSTRACT

Nitrogen-containing heterocycles, such as indolines and pyrroloindolines, are prevalent in a variety of diverse natural products, many of which exhibit remarkable biological activities. These frameworks have inspired innovative research aimed at discovering novel methods for their stereoselective preparation.

We have developed an enantioselective synthesis of pyrroloindolines based on a formal (3 + 2) cycloaddition of indoles and 2-amidoacrylates. This reaction is promoted by (*R*)-BINOL·SnCl₄; this complex is a Lewis acid-assisted Brønsted acid that effects a highly face-selective catalyst-controlled protonation of an enolate. Mechanistic studies also determined that the initial product of this reaction is an indolinium ion, which upon aqueous workup undergoes cyclization to the pyrroloindoline.

Based on this result, we investigated alternative nucleophiles to trap the indolinium ion. First, addition of sodium borohydride to the optimized reaction conditions yields indoline-containing amino acid derivatives.

Next, carbon nucleophiles were explored. Indole substrates incorporating a tethered alkene were exposed to the conditions for the formal (3 + 2) cycloaddition, resulting in a conjugate addition/asymmetric protonation/Prins cyclization cascade. In this transformation, the indolinium ion is attacked by the olefin, and the resulting carbocation is quenched by a chloride ion. Zirconium tetrachloride was found to be the optimal Lewis acid. Stoichiometric proton and chloride sources were also found to be crucial for reactivity.

TABLE OF CONTENTS

СН	CHAPTER 1 1		
Strategies for the Total Synthesis of Pyrroloindoline Natural Products			
1.1	Intı	roduction	1
1.2	Pyr	roloindoline Synthesis via Oxindoles	2
1.3	Pyr	roloindoline Synthesis via C3 Functionalization/Cyclization	5
1.4	Co	ncluding Remarks	12
1.5	.5 Notes and References 1		14
CH	CHAPTER 2 15		
Ena	ntios	elective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddit	ion
2.1	Intı	roduction	15
2.2	Dev	velopment of a Formal (3 + 2) Cycloaddition	16
2	2.1	Identification of an Optimal Lewis Acid	17
2	.2.2	Optimization of the Enantioselective Reaction	18
2	.2.3	Substrate Scope of the Enantioselective Pyrroloindoline Synthesis	21
2	.2.4	Mechanistic Considerations	23
2	.2.5	Second Generation Reaction Conditions	30
2.3	Co	ncluding Remarks	33
2.4	Exp	perimental Section	35

		Х
2.4.	Materials and Methods	35
2.4.	2 Substrate Synthesis	37
2.4.	3 General Procedure C. Formal (3 + 2) Cycloaddition of Indoles and A	crylates 44
2.4.	4 Pyrroloindoline Products under General Procedure C	45
2.4.	5 SFC and HPLC Traces for Racemic and Enantioenriched Products	81
2.4.	6 Pd-catalyzed Deallylation of Pyrroloindoline Methyl Ester 99	107
2.4.	7 General Procedure D. Epimerization Studies	109
2.4.	8 Resubjection of Pure Exo and Endo Pyrroloindolines to Reaction Cor 111	nditions
2.4. ¹ H N	9 General Procedure E. in situ Monitoring of the Formal (3 + 2) Cycloa MMR.	ddition by 112
2.5 Notes and References 113		
APPENDIX 1 116		
Spectra Relevant to Chapter 2		
APPENDIX 2 203		
X-Ray Crystallography Reports Relevant to Chapter 2		
A2.1	CRYSTAL STRUCTURE ANALYSIS OF PYROLLOINDOLINE 106	g 204
A2.2	CRYSTAL STRUCTURE ANALYSIS OF PYRROLOINDOLINE 100	c 212
CHAPTER 3 219		

Conjugate Addition/in situ Reduction for the Synthesis of Indolines

	xi	
3.1 Introduction	219	
3.1.1 Methods for the Enantioselective Preparation of Indolines	220	
3.2 Development of the Indoline Synthesis	226	
3.2.1 Substrate Scope of Indoline Synthesis	227	
3.3 Concluding Remarks	221	
3.4 Experimental Section 222		
3.4.1 Materials and Methods	222	
3.4.2 General Procedure: Formal (3 + 2) Cycloaddition/in situ Reduction.	223	
3.4.3 Indoline Products	224	
3.4.4 SFC Traces for Racemic and Enantioenriched Products	234	
3.5 Notes and References 2		
APPENDIX 3 24		
Spectra Relevant to Chapter 3		
CHAPTER 4 269		
Development of a Tandem Conjugate Addition/Prins Cyclization		
4.1 Introduction	269	
4.1.1 Cascade Reactions Incorporating Prins Cyclizations	270	
4.2 Development of a Conjugate Addition/Prins Cyclization	275	
4.2.1 Catalyst Optimization	275	
4.2.2 Reactions Promoted by Zirconium•BINOL Complexes	277	

			xii
	4.2.3	Investigation of Additives	279
	4.2.4	Substrate Scope of the Conjugate Addition/Prins Cyclization	290
	4.2.5	Unsuccessful Substrates	291
	4.2.6	Mechanistic Considerations	293
	4.2.7	Extension to Intermolecular Nucleophiles	296
4.	3 Con	acluding Remarks	297
4.	4 Exp	perimental Section	299
	4.4.1	Materials and Methods	299
	4.4.2 Cycliz	General Procedure A. Conjugate Addition/Asymmetric Protonation/Prins ation Cascade	301
	4.4.3 Cycliz	Indoline Products from Conjugate Addition/Asymmetric Protonation/Prins ation Cascade	301
	4.4.4	SFC Traces for Racemic and Enantioenriched Products	311
	4.4.5	Synthesis of deuterated acrylate 67-d ₁	321
4.	5 Not	es and References	322
APPENDIX 4 324			324
S	Spectra Relevant to Chapter 4		
APPENDIX 5 349			349
X	-Ray C	rystallography Report Relevant to Chapter 4	
С	CRYSTAL STRUCTURE ANALYSIS OF INDOLINE 169 350		

ABOUT THE AUTHOR

xiii **358**

LIST OF ABBREVIATIONS

А	alanine
AAA	Asymmetric Allylic Alkylation
Å	Ångstrom
$[\alpha]_{D}$	specific rotation at wavelength of sodium D line
Ac	acetyl
APCI	atmospheric pressure chemical ionization
app	apparent
aq	aqueous
AIBN	2,2'-azobisisobutyronitrile
Ar	aryl
atm	atmosphere
BBN	borabicyclononane
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
BINOL	1,1'-Bi(2-naphthol)
Bn	benzyl
Boc	<i>tert</i> -butyloxycarbonyl
BOX	bisoxazoline
br	broad
BTF	benzotrifluoride
Bu	butyl
<i>n</i> -Bu	butyl
<i>t</i> -Bu	<i>tert</i> -Butyl
Bz	benzoyl
с	concentration for specific rotation measurements

°C	degrees Celsius
calc'd	calculated
Cbz	carbobenzyloxy
CCDC	Cambridge Crystallographic Data Centre
cm^{-1}	wavenumber(s)
cod	1,5-cyclooctadiene
d	doublet
D	deuterium
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	dichloroethane
DCM	dichloromethane
DEAD	diethyl azodicarboxylate
DFT	density functional theory
DIC	diisopropyl carbodiimide
DM RINAP	1,1'-Binaphthalene-2,2'-diyl)bis[bis(3,5-
	dimethylphenyl)phosphine]
DMA	N,N-dimethylacetamide
DMAP	4-dimethylaminopyridine
DMDO	dimethyldioxirane
DME	dimethoxyethane
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
dppf	1,1'-bis(diphenylphosphino)ferrocene
dppp	1,3-bis(diphenylphosphino)propane
dr	diastereomeric ratio
E	electrophile

EC ₅₀	median effective concentration (50%)
ee	enantiomeric excess
EI	electron impact
e.g.	for example (Latin exempli gratia)
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
ETP	epidithiodiketopiperazine
FAB	fast atom bombardment
FID	flame ionization detector
FT	fourier transform
g	gram(s)
gCOSY	gradient-selected correlation spectroscopy
oHMBC	gradient-selected heteronuclear multiple bond
glivide	correlation
h	hour(s)
HMDS	1,1,1,3,3,3-hexamethyldisilazane
HPLC	high-performance liquid chromatography
HRMS	high-resolution mass spectroscopy
HSQC	Heteronuclear single quantum coherence
hv	light
Hz	hertz
IPA	isopropanol
IR	infrared (spectroscopy)
J	coupling constant
λ	wavelength
LA	Lewis acid

LAH	lithium aluminum hydride
LBA	Lewis acid-assisted Brønsted acid
LC-MS	liquid chromatography-mass spectrometry
LDA	lithium diisopropylamide
LHMDS	lithium bis(trimethylsilyl)amide
m	multiplet; milli
m	meta
m/z	mass to charge ratio
Μ	metal; molar; molecular ion
Me	methyl
Mes	mesityl
MHz	megahertz
μ	micro
μwaves	microwave irradiation
min	minute(s)
MM	multimode
mol	mole(s)
MOM	methoxymethyl
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular sieves
n	nano
Ν	normal
NBS	N-bromosuccinimide
NCS	N-chlorosuccinimide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect

NOESY	nuclear Overhauser enhancement spectroscopy
Nu	nucleophile
nr	no reaction
0	ortho
р	para
Ph	phenyl
pН	hydrogen ion concentration in aqueous solution
PhH	benzene
Phth	phthaloyl
PhMe	toluene
PMB	<i>p</i> -methoxybenzyl
PMP	<i>p</i> -methoxyphenyl
ppm	parts per million
PPTS	pyridinium <i>p</i> -toluenesulfonate
Pr	propyl
<i>i</i> -Pr	isopropyl
q	quartet
ref	reference
R	generic for any atom or functional group
Red-Al	sodium bis(2-methoxyethoxy)aluminum dihydride
R_{f}	retention factor
rt	room temperature
S	singlet
sat.	saturated
SFC	supercritical fluid chromatography
t	triplet
TBS	tert-butyldimethylsilyl

triethylsilyl
trifluoromethanesulfonyl (trifyl)
trifluoroacetic acid; trifluoroacetyl
triflic acid
tetrahydrofuran
triisopropylsilyl
thin-layer chromatography
trimethylsilyl
time-of-flight
retention time
<i>p</i> -toluenesulfonyl (tosyl)
<i>p</i> -toluenesulfonic acid
ultraviolet
volume to volume
weight to volume
anionic ligand or halide

CHAPTER 1

Strategies for the Total Synthesis of Pyrroloindoline Natural Products

1.1 Introduction

The pyrroloindoline motif (denoted in red, Figure 1a) constitutes the core heterocyclic motif of a structurally diverse class of natural products. These compounds have been shown to exhibit remarkable biological activities in a broad range of pharmacological screens, including anticancer,^{1,2} antibacterial,³ anti-inflammatory⁴ activities, as well as the inhibition of cholinesterase.⁵ The C3a all-carbon quaternary center found in many of these compounds incorporates a wide variety of substituents. The inherent challenge of preparing such structures, combined with their promising medicinal value, has led to the development of a variety of methods for their synthesis.⁶⁻⁸

This chapter will provide an overview of strategies for the preparation of the pyrroloindoline motif in the context of natural product total synthesis. These synthetic approaches can generally be divided into two categories: (1) preparation of a suitably-functonalized oxindole, which can then be elaborated to the pyrroloindoline, and (2) tandem C3 functionalization of the indole followed by cyclization to form the pyrroloindoline (Figure 1b).

1.2 Pyrroloindoline Synthesis via Oxindoles

Various methods to prepare 3,3-disubstituted oxindoles have been developed, and these intermediates can in turn be elaborated to pyrroloindolines. Overman uses two distinct strategies to access 3,3-disubstituted oxindoles in his synthesis of idiospermuline (**25**), a natural product with three pyrroloindoine units linked together (Figure 2).⁹ The two vicinal quaternary stereocenters (3a and 3a') were generated by the reaction of tartrate-derived dielectrophile **14** and the lithium dienolate of dihydroisoindigo **13**. Bisoxindole **15** was converted to bispyrroloindoline **19** via a sequence of several steps, including reduction with Red-Al to an unstable diol which was immediately converted to

diazide **17** by a Mitsunobu reaction. Reduction to diamine **18**, cyclization by heating, and reductive methylation yields bispyrroloindoline **19**.

From there, the plan was to install the third quaternary stereocenter (3a") by a catalytic asymmetric Heck cyclization. In the event, *ortho*-lithiation of **20** and quenching with diiodoethane gave iodide **21**. The carbon framework of the third pyrroloindoline motif was then introduced by Stille cross-coupling with stannyl butenanilide **22** to furnish (*Z*)-butenanilide **23**. The best stereoselectivity for the intramolecular Heck reaction was observed with (*S*)-Tol-BINAP as the ligand and Pd(OAc)₂ as the precatalyst. The product

of this cyclization was formed as a 6:1 mixture of epimers, which were more readilyseparated at the end of the synthesis using preparative HPLC. The total synthesis of idiospermuline was completed by hydrogenation to the saturated sulfonamide, reduction of the oxindole carbonyl with Red-Al, and treatment with excess sodium in ammonia.

Figure 3. (a) Model for enantioinduction for the Mo-catalyzed AAA. (b) Mo-catalyzed AAA applied to the formal synthesis of (–)-physostigmine by Trost.

The Trost laboratory has developed a molybdenum-catalyzed asymmetric allylic alkylation (AAA reaction) of 3-alkyloxindoles to furnish oxindoles with C3 all-carbon quaternary stereocenters.¹⁰ The Mo-catalyzed AAA reaction involves precoordination of the nucleophile to the metal followed by reductive elimination, as opposed to the palladium-catalyzed process in which the nucleophile directly attacks the π -allyl from the

face opposite palladium (Figure 3a). The authors proposed that the intimate interaction between the nucleophiles and chiral molybdenum would make this system amenable for asymmetric catalysis. Indeed, high enantioselectivities are observed with *trans*-1,2diaminocyclohexane-derived ligand **27**; in the proposed model for enantiodiscrimination, the favored approach minimizes steric congestion between the ligand and the enolate of the oxindole as the C-terminus of the enolate moves toward the π -allyl. In the alternative approach, the bulk of the oxindole sterically clashes with the ligand during bond formation.

The optimal conditions for the Mo-catalyzed AAA reaction were applied to a formal total synthesis of (–)-physostigmine (Figure 3b). Allylated oxindole **28** was oxidized to aldehyde **29**, which could be recrystallized twice to 99% ee. Reductive cyclization yielded (–)-esermethole (**30**), which could be transformed to (–)-physostigmine (**1**) in two steps.

1.3 Pyrroloindoline Synthesis via C3 Functionalization/Cyclization

Electrophilic functionalization at the 3-position of indoles followed by cyclization is an efficient method for the preparation of pyrroloindoline natural products. While many syntheses are stereospecific and start from tryptophan, an abundant source of chiral material, the past decade has also witnessed the development of powerful catalytic, asymmetric methods for the preparation of the pyrroloindoline core.

Danishefsky and coworkers completed a total synthesis of the reverse-prenylated natural product amauromine (**37**) from a tryptophan precursor (Figure 4).¹¹ While they were not hopeful that a direct alkylative cyclization could introduce the dimethallyl moiety at the requisite *gem*-dimethyl carbon, they instead proposed that a heteroatom-

mediated oxidative cyclization followed by alkylation with a reverse-prenyl nucleophile would be more successful. Successful implementation of this strategy would require efficient transmission of stereochemical information from the tryptophan stereocenter to the emerging quaternary carbon.

In the forward sense, the synthesis started with bis(Boc)tryptophan methyl ester **31**, which was subjected to *N*-phenylselenophthalimide and catalytic *p*-toluenesulfonic acid to give 3-selenylated pyrroloindoline **32**. Treatment with methyl triflate and prenyl tributylstannane gave pyrroloindoline **33** bearing the reverse prenyl group at the desired position. BOP-Cl mediated coupling of differentially-protected pyrroloindolines **34** and **35** provided dipeptide **36**. Removal of the remaining Boc groups resulted in spontaneous cyclization to furnish amauromine (**37**).

Figure 4. Total synthesis of amauromine by Danishefsky.

Movassaghi and coworkers were the first to report a total synthesis of a dimeric epidithiodiketopiperazine alkaloid (Figure 5).¹² While Overman employed a dialkylation strategy to access the C3a-C3a'-linked pyrroloindoline framework of idiospermuline

(Figure 2), Movassaghi utilized a reductive dimerization approach to access the similar bispyrroloindoline motif of (+)-11,11'-dideoxyverticillin (3). Diketopiperazine **38**, derived from tryptophan and alanine, was exposed to molecular bromine, leading to cyclization to the brominated pyrroloindoline (**39**). Bromide **39** served as a precursor to tertiary radical **40**; in the presence of $CoCl(PPh_3)_3$, dimerization occurs to provide bispyrroloindoline **41**. This intermediate can then be elaborated to the natural product.

Figure 5. Total synthesis of (+)-11,11'-dideoxyverticillin A by Movassaghi.

Pyrroloindolines with aryl substituents at C3a are an especially challenging class of compounds to access. The structural complexity of these compounds have attracted the attention of many groups, and much progress has been made in recent years toward the total syntheses of these natural products. Movassaghi and coworkers effected the total syntheses of dimeric diketopiperazine alkaloids (+)-naseseazines A and B (**5** and **46**, Figure 6), in which the key C3-C7' bond was forged by a Friedel–Crafts-based method.¹³ Bromide **44** and **45** (obtained by bromocyclization of a tryptophan derivative) provided

the C3-electrophiles, and trifluoroborate 43 was the nucleophilic partner; arylation was achieved with AgSbF₆ and 18-crown-6.

Figure 6. Friedel–Crafts-based methodology for the total syntheses of naseseazines A and B by Movassaghi.

Extremely efficient routes to naseseazines A and B (**5** and **46**) were recently developed by Maddi Kieffer and Kangway Chuang, graduate students in the Reisman lab (Figure 7).¹⁴ Rather than functionalizing a 3-bromopyrroloindoline derivative, the direct C3 arylation/cyclization of diketopiperazines **47** and **51** were effected in the presence of a copper catalyst and a diimine ligand to furnish pyrroloindolines **49** and **52** in short order. Trifluoroacetamide cleavage followed by modified Larock indolizations completed the total syntheses.

Figure 7. Total syntheses of naseseazines A and B by Reisman employing direct formation of arylpyrroloindolines.

Figure 8. Total synthesis of (+)-gliocladin C by Stephenson employing visible-light phtotoredox catalysis.

The Stephenson laboratory developed a radical reaction for the coupling of pyrroloindolines and indoles mediated by visible-light photoredox catalysis (Figure 8).¹⁵ Exposure of tryptophan-derived bromopyrroloindoline **52** to the photocatalyst tris(bipyridyl)ruthenium(II) chloride generates the dehalogenated tertiary benzylic radical, which is trapped with indole derivative **53**. The C-2' aldehyde of indole **53** is required to block coupling to the pyrroloindoline at this position.

Figure 9. Enantioselective organocatalytic cyclization casacade applied to the total synthesis of minfiensine by MacMillan.

The MacMillan laboratory has completed a total synthesis of the *Strychnos* alkaloid minfiensine (**4**) utilizing an enantioselective organocatalytic Diels–Alder/amine cyclization cascade to construct the pyrroloindoline core (Figure 9). Condensation of secondary amine catalyst **60** with propynal generates an iminium ion with the acetylenic group directed away from the bulky *t*-butyl substituent of the catalyst. In this

conformation, the aryl ring shields the top face of the alkyne. An *endo*-selective Diels– Alder cycloaddition with tryptamine derivative **59** produces tricycle **61**. Enamine protonation gives rise to iminium ion **62**, which undergoes amine cyclization to deliver pyrroloindoline **63**. Elaboration to minfiensine can be achieved in five more steps.

Figure 10. Total syntheses of nocardioazines A and B by Reisman.

In Chapter 2, the development of an (*R*)-BINOL•SnCl₄-catalyzed formal (3 + 2) cycloaddition to prepare enantioenriched pyrroloindolines directly from 3-substituted indoles and 2-amidoacrylates will be described. Haoxuan Wang, a graduate student of the Reisman lab, has applied this methodology to the total syntheses of lansai B (not shown) and nocardioazines A and B (**80** and **75**, Figure 10). Structural analysis reveals that nocardioazines A and B are each composed of one *endo* and one *exo* pyrroloindoline with opposite configurations at the quaternary sterecenter. Thus, the total syntheses of these natural products are especially well-suited for asymmetric catalysis, as either enantiomer of the required pyrroloindoline building block can be accessed by selecting the appropriate enantiomer of the catalyst.

Nocardioazine B (**75**) was obtained by coupling of differentially-protected pyrroloindoline building blocks *endo*-**73** and *exo*-**69** with BOP-Cl. On the other hand, the synthesis of nocardioazine A (**80**) required early-stage epoxidation (to form **76**) followed by PyBroP-mediated intramolecular diketopiperazine formation from the free amino acid moieties of **79**.

1.4 Concluding Remarks

The pyrroloindoline family of natural products exhibit exceptional structural complexity, variety, and biological activity. This chapter outlines the strategies that have been utilized to access pyrroloindoline natural products. While early syntheses focused on the preparation of 3,3-disubstituted oxindoles, the direct functionalization of indoles has emerged as an efficient route to these targets. More recently, catalytic methods have allowed rapid access to complex, stereochemically-dense structures. In pursuing total syntheses of the compounds, limitations in the existing technology are highlighted. These

challenges will surely continue to inspire the development of novel methodologies for the preparation of the pyrroloindoline scaffold.

1.5 Notes and References

- (1) Varoglu, M.; Corbett, T. H.; Valeriote, F. A.; Crews, P. J. Org. Chem. 1997, 62, 7078–7079.
- (2) Usami, Y.; Yamaguchi, J.; Numata, A. *Heterocycles* **2004**, *63*, 1123.
- (3) Zheng, C.-J.; Kim, C.-J.; Bae, K. S.; Kim, Y.-H.; Kim, W.-G. J. Nat. Prod. 2006, 69, 1816–1819.
- (4) Tuntiwachwuttikul, P.; Taechowisan, T.; Wanbanjob, A.; Thadaniti, S.; Taylor, W. C. *Tetrahedron* **2008**, *64*, 7583–7586.
- (5) Shaw, K. P.; Aracava, Y.; Akaike, A.; Daly, J. W.; Rickett, D. L.; Albuquerque, E. X. *Mol. Pharmacol.* 1985, *28*, 527–538.
- (6) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Álvarez, M. *Chemistry* **2011**, *17*, 1388–1408.
- (7) Steven, A.; Overman, L. E. Angew. Chem. Int. Ed. Engl. 2007, 46, 5488–5508.
- (8) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151–161.
- (9) Overman, L. E.; Peterson, E. A. Angew. Chem. Int. Ed. Engl. 2003, 42, 2525–2528.
- (10) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590–4591.
- (11) Marsden, S. P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. **1994**, 116, 11143–11144.
- (12) Kim, J.; Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324, 238–241.
- (13) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2011, 133, 14940–14943.
- (14) Kieffer, M. E.; Chuang, K. V.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 5557–5560.
- (15) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem. Int. Ed. Engl. 2011, 50, 9655–9659.

CHAPTER 2

Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition⁺

2.1 Introduction

Catalytic, asymmetric methods for the construction of pyrroloindolines were recently reviewed by Dr. Lindsay Repka.¹ At the outset of our efforts in this field, only two such methods existed for the direct preparation of pyrroloindolines from indole precursors: MacMillan's organocatalytic addition-cyclization of tryptamines with α , β -unsaturated aldehydes,² and Trost's palladium-catalyzed C3-allylation of 3-substituted indoles.³

This chapter describes the development of a novel approach to the enantioselective preparation of pyrroloindolines, utilizing an (*R*)-BINOL•SnCl₄-catalyzed formal (3 + 2) cycloaddition of 3-substituted indoles and 2-amidoacrylates. This reaction is tolerant to diverse substitution patterns and incorporates the necessary C2-substitution for advancement to diketopiperazine pyrroloindoline natural products. Mechanistic

[†] Portions of this chapter have been reproduced from published studies (see references 7 and 19) and the supporting information found therein. The research presented in this chapter was completed in collaboration with Dr. Lindsay M. Repka, formerly a graduate student of the Reisman group, and Haoxuan Wang, a graduate student in the Reisman group.

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 16 studies are consistent with the proposal that this reaction proceeds *via* an asymmetric protonation as the enantiodetermining step and has consequently led to the development of related tandem conjugate addition/enantioselective protonation reaction for the synthesis of indoline-containing amino acid derivatives.

2.2 Development of a Formal (3 + 2) Cycloaddition

In our approach to the enantioselective preparation of pyrroloindolines, we aimed to develop a convergent reaction between 3-substituted indoles (81) and 2-amidoacrylates (82), in what would constitute a formal (3 + 2) cycloaddition. These readily-accessible substrates would facilitate rapid access to a variety of substituted pyrroloindoline products (85). We envisioned that this reaction would proceed via Lewis acid-activation of the acrylate leading to nucleophilic attack by the indole in a 1,4-fashion. The transiently generated iminion ion intermediate would then undergo cyclization by the pendant amine to generate the desired product (Figure 1).

Proposed Formal (3 + 2) Cycloaddition Reaction:

However, we recognized that several challenges might be encountered in putting this proposal to practice. First, 2-amidoacrylates are relatively unreactive conjugate acceptors due to electron donation from the nitrogen lone pair. Second, controlling the absolute stereochemistry of the all-carbon quaternary center formed at C3 of the indole substrate was also anticipated to be a challenge, as it would require a remote chiral ligand to discriminate between prochiral faces of the nucleophilic indole. Finally, Lewis acid binding to the product might prevent turnover.

Despite these challenges, we were encouraged by results reported by Piersanti and coworkers; they found that unsubstituted indoles react with 2-amidoacrylates in the presence of two equivalents of EtAlCl₂ to give Friedel–Crafts alkylation products in good yield, thus confirming that 2-amidoacrylates can act as competent electrophiles (Figure 1).⁴ The C3 substitution of the indole substrates for the proposed pyrroloindoline reaction would preclude formation of the Friedel–Crafts products observed by Piersanti, but reaction at C2 may lead to undesired Friedel–Crafts side products.

2.2.1 Identification of an Optimal Lewis Acid

Our studies began with the model substrates 3-methylindole (**88**) and methyl 2acetamidoacrylate (**86**). A screen of Lewis acids revealed that use of 2.0 equivalents EtAlCl₂ delivered the desired pyrroloindoline (**90**) as the major product in 3:1 dr favoring the *exo* diastereomer (C3 substituent *syn* to ester, as shown), along with the C2 Friedel– Crafts alkylation product (**92**) (Table 1, entry 2). SnCl₄ was also found to effectively promote this reaction with 6:1 selectivity for pyrroloindoline formation over alkylation (entry 7). Fortunately, *N*-methylation of the indole improved selectivity for the pyrroloindoline product (entry 8). Attempts to lower the loading of Lewis acid were
Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 18 unsuccessful: no product was observed when 50 mol % of SnCl₄ was employed (entry 9). Under the optimized conditions for the racemic reaction, exposure of 1,3-dimethylindole (**89**) and methyl 2-acetamidoacrylate (**86**) to 1.2 equivalents SnCl₄ in dichloroethane gave the desired pyrroloindoline **91** in 64% yield as a 6:1 mixture of *exo* and *endo* diastereomers (entry 10).

	$ \begin{array}{c} $		$\begin{array}{c} Me \\ N \\ R \\ N \\ H \\ O \\ Me $	C2 alkylation 92 (R=H)	
Entry	Lewis Acid (equiv)	Substrate	Temperature (°C)	Pyrroloindoline: C-2 alkylation	dr ^a
1	EtAICl ₂ (1)	88	23	nr	
2	EtAICI ₂ (2)	88	8	8:1	3:1
3	MgClO ₄ (1)	88	23	nr	
4	Sc(OTf) ₂ (2)	88	23	>20:1	5:1
5	Cu(OTf) ₂ (2)	88	23	decomposition	
6	Zn(OTf) ₂ (2)	88	23	nr	
7	SnCl ₄ (1)	88	23	6:1	9:1
8	SnCl ₄ (1)	89	23	>20:1 ^b	11:1
9	SnCl ₄ (0.5)	89	23	nr	
10 ^c	SnCl₄ (1.2)	89	23	>20:1 (64) ^d	6:1

^{*a*} Determined by analysis of the crude ¹H NMR with comparison to reported spectra. ^{*b*} Complete conversion to **91** by crude ¹H NMR. ^{*c*} Reaction run in DCE. ^{*d*} Isolated yield of **91**. nr: no reaction.

2.2.2 Optimization of the Enantioselective Reaction

Having identified a Lewis acid to effect pyrroloindoline formation in a racemic fashion, our next goal was to render this reaction enantioselective. A small screen of chiral ligands revealed that (*R*)-BINOL provided promising enantioselectivity: treatment of 1,3-dimethylindole (**89**) and methyl 2-acetamidoacrylate (**86**) with a 1.1:1 mixture of (*R*)-BINOL and SnCl₄ provided pyrroloindoline **91** in 86% yield as a 4:1 mixture of diastereomers, with the *exo* diastereomer formed in 64% ee (Table 2, entry 2).

Performing side-by-side reactions with and without (*R*)-BINOL revealed that the ligand accelerated the rate of reaction.⁵ Thus it was hypothesized that high levels of enantioselectivity could be maintained with catalytic quantities of (*R*)-BINOL. Gratifyingly, treatment of 1,3-dimethylindole (**89**) and methyl 2-acetamidoacrylate (**86**) with 1.2 equivalents SnCl₄ and 20 mol % (*R*)-BINOL furnished the desired pyrroloindoline **91** in 94% yield as a 5:1 mixture of diastereomers, favoring the *exo* diastereomer in 63% ee (Table 2, entry 4). Remarkably, moderate levels of enantioselectivity are still observed when the reaction is conducted with only 5 mol % (*R*)-BINOL (entry 6).

Table 2. Optimization of (R)-BINOL loading.

	Me N N N Me Me Me N (R)-BINOL SnCl ₄ (1. DCE, 3 89	OMe OMe (X equiv) 2 equiv) 23 °C	Me 91 O Me 91	Me
Entry	(R)-BINOL (equiv)	Yield (%) ^a	dr	ee (%) ^{c,d}
1 <i>°</i>	0.0	64	6:1	
2 ^{<i>f</i>}	1.1 ^{<i>g</i>}	86	4:1	64/83
3 ^{<i>h</i>}	0.3	96	5:1	62/81
4 ^{<i>h</i>}	0.2	94	5:1	63/83
5 ^{<i>h</i>}	0.1	93	5:1	61/79
6 ^{<i>h</i>}	0.05	82	5:1	51/72

^{*a*} Isolated yield of combined diastereomers. ^{*b*} Determined by ¹H NMR analysis of crude reaction mixture. ^{*c*} Determined by chiral stationary phase SFC. ^{*d*} ee of *exo/endo* diastereomers. ^{*e*} Reaction run for 30 h. ^{*f*} Reaction run for 3.5 h. ^{*g*} 1.0 equiv of SnCl₄ was used. ^{*h*} Reaction run for 3 h.

Efforts to improve the enantioselectivity of the formal (3 + 2) cycloaddition started with an investigation of the temperature effects. It was found that ee and dr are reduced at lower temperatures (Table 3, entries 3-4). Alternatively, gentle heating of the

On the other hand, varying substitution on the acrylate was found to significantly improve selectivity in this reaction. Methyl 2-trifluoroacetamidoacrylate (**67**) provided pyrroloindoline product **94** in 86% ee (*exo* diastereomer), while benzyl 2-acetamidoacrylate (**93**) provided pyrroloindoline **95** in 74% ee (Table 3, entries 6-7). These effects were found to be additive: reaction of benzyl 2-trifluoroacetamidoacrylate (**71**) afforded pyrroloindoline **96** in 81% yield as a 3:1 mixture of *exo* and *endo* diastereomers produced in 91% and 90% ee, respectively (entry 8). A solvent screen revealed that chlorinated solvents were optimal and switching from DCE to DCM provided **96** in 86% yield and 94% ee for the *exo* diastereomer (entry 9).

(R)-BINOL (0.2 equiv) SnCl₄ (1.2 equiv) solvent (0.12 M), Ŵе 89 temperature Temperature (°C) ee (%)^{c,d} dr^b Entry $\mathbf{R}^1, \mathbf{R}^2$ pdt Solvent Yield (%)^a (Time (h)) 1 Me, Me (86) 91 DCE 94 5:1 63/83 23 (4) 2^{*e*} 88^f Me, Me (86) 91 8 (24) DCE 4:1 66/nd 3^{*e*} Me, Me (86) 91 -40 (24) CH₂Cl₂ 69^f 39/nd 3:1 4^{*e*} Me, Me (86) 91 -78 (24) CH₂Cl₂ 26' 2:1 21/nd 5^e Me, Me (86) 97^t 91 40 (0.5) DCE 5:1 66/nd 6 CF₃, Me (67) 94 23 (4) DCE 77 6:1 86/nd 7 Me, Bn (93) 95 23 (4) DCE 81 2:1 74/82 CF₃, Bn (71) 8 DCE 96 23 (4) 81 3:1 91/90 9 CF₃, Bn (71) 96 23 (5.5) CH₂Cl₂ 86 4:1 94/91 CF₃, Bn (71) 3:1 88/89 10 96 CHCl₃ 58 23 (4) CF₃, Bn (**71**) 96 23 (3.5) 11 CCl₄ 0 ------

Table 3. Enantioselectivity optimization studies.

^{*a*} Isolated yield of combined diastereomers. ^{*b*} Determined by ¹H NMR analysis of crude reaction mixture. ^{*c*} Determined by chiral stationary phase SFC or HPLC. ^{*d*} ee of *exo/endo* diastereomers. ^{*e*} 1.0 equiv of SnCl₄ and 1.1 equiv (*R*)-BINOL was used. ^{*f*} Approximate conversion to **91** based on ratio with acrylate in crude ¹H NMR. nd= not determined.

A control reaction performed in the absence of $SnCl_4$ confirmed that the Lewis acid is essential (Table 4, entry 1). Furthermore, the Brønsted acids HCl and Ph₂PO₂H fail to promote the formal (3 + 2) cycloaddition (entries 1-3). Several water and acid scavenging additives were also screened but did not result in significant changes in enantioselectivity (entries 4, 5, and 7).

	<i>Table 4.</i>	Brønsted	acid	and	additive	screen
--	-----------------	----------	------	-----	----------	--------

	Me N Me 89	F ₃ C N OBn 71 H O (<i>R</i>)-BINOL (0.2 equiv) SnCl ₄ (1.2 equiv) CH ₂ Cl ₂ (0.12 M) 23 °C, additive	Me H	→ OBn N O CF ₃	
Entry	Additive (equiv)	Time (h)	Yield (%) ^a	dr ^b	ee (%) ^{c,d}
1	^e	4	0		
2	HCI (1.2) ^e	7	0		
3	$Ph_2PO_2H(1.2)^{e}$	7	0		
4^{f}	molecular sieves	4	70	4:1	93:89
5^{f}	MgO (1)	4.5	72	4:1	93:91
6	2,6-lutidine (1)	6	0		
7	2,6-lutidine (0.2)	5	53	6:1	94:89

^{*a*} Isolated yield of combined diastereomers. ^{*b*} Determined by ¹H NMR analysis of crude reaction mixture. ^{*c*} Determined by chiral stationary phase SFC. ^{*d*} ee of *exo/endo* diastereomers. ^{*e*} Reaction run without SnCl₄. ^{*f*} Completed side-by-side with reaction under standard conditions that afforded 74% yield, 4:1 dr, 94:90% ee.

2.2.3 Substrate Scope of the Enantioselective Pyrroloindoline Synthesis

With optimized conditions for the enantioselective formal (3 + 2) cycloaddition, the scope of indole substrates was investigated (Figure 2).^{7,8} Indoles substituted at C5 with either electron-donating or electron-withdrawing groups are well-tolerated, although electron-poor indoles react at a slower rate, requiring 1.6 equivalents of SnCl₄ in some cases. Indoles with functionalized C3 substituents react in moderate to good yields with high enantioselectivity (**98f** and **98h**). Notably, the reaction of *N*-

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition methyltetrahydrocarbazole proceeds with >18:1 diastereoselectivity, delivering the *exo* diastereomer 98g in 86% ee. This reaction generates the aza-propellane core of the natural products minfiensine,⁹ echitamine,¹⁰ and vincorine¹¹ in a single step. Nsubstitution is important for reactivity: subjection of 3-methylindole to identical conditions provides pyrroloindoline 98i in only 18% yield, albeit with excellent enantioselectivity. However, N-allyl-3-methylindole successfully affords pyrroloindoline 72 in good yield and enantioselectivity. Deallylation of 99 can be effected with $Pd(PPh_3)_4$ and N,N-dimethylbarbituric acid to give pyrroloindoline 77 with an unprotected indoline nitrogen (Figure 3).¹²

^a Determined by ¹H NMR analysis of mixture. ^b Determined by chiral SFC or HPLC analysis. ^c 1.6 equiv SnCl₄ was employed.

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition Figure 3. Pyrroloindoline deallylation.

2.2.4 Mechanistic Considerations

The *exo* diasteromer is the predominant product of the formal (3 + 2) cycloaddition reaction. Previously, it was reported that the *exo* diastereomer of related pyrroloindolines is the kinetic product, while the *endo* diastereomer is thermodynamically favored.¹³

In order to determine whether this applies to the pyrroloindolines produced by the formal (3 + 2) cycloaddition, a 4:1 mixture of *exo-* and *endo-96* was exposed to excess DBU. Clean conversion to the *endo* diastereomer was observed, but surprisingly, the

product was isolated in 56% ee favoring the opposite enantiomer (Figure 4). Subsequently, treatment of pure *exo*-**96** with DBU provided *ent-endo*-**96** in 94% ee. Pure *endo*-**96** exposed to the epimerization conditions returned *endo*-**96** without significant erosion of ee. The studies indicate that the initially-formed diastereomers of **96** must possess the same configuration at C2, and the opposite configurations at the C2a and C3a bridgehead carbons.

We then sought to obtain further mechanistic insight by monitoring the reaction using ¹H NMR spectroscopy. The formal (3 + 2) cycloaddition between 1,3dimethylindole (89) and benzyl trifluoroacetamidoacrylate (71) is amenable to in situ NMR monitoring, since it is homogenous over the course of the reaction. Figure 5 shows a sample of ¹H NMR spectra taken over the first nine hours of the reaction, and reveals several interesting aspects of this transformation. Notably, upon addition of $SnCl_4$ and (R)-BINOL (7) to a mixture of 89 and 71, the indole proton resonances broaden significantly (Figure 5, t = 0). This broadening is also observed in the absence of acrylate **71**; however, SnCl₄ alone does not alter the ¹H NMR spectrum of **89**. It is possible that this broadening is due to a rapid, dynamic, proton exchange process promoted by (R)-BINOL•SnCl₄, which is consistent with the finding that (R)-BINOL that is deuteurated at the hydroxyl groups undergoes rapid D-H exchange with indole 89 under the reaction conditions (Figure 6). Interestingly, the chemical shifts of the acrylate remain unchanged, indicating that there is no significant accumulation of an acrylate–SnCl₄ complex. Over the course of the reaction, resonances corresponding to an indole-acrylate adduct grow in; however, these peaks do not correspond to the pyrroloindoline product.

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition Figure 5. In situ monitoring of the formal (3 + 2) cycloaddition using ¹H NMR.

acrylate denoted by *; 1,4-diethylbenzene (internal standard) denoted by **.

Figure 6. Deuterium-labelling studies with (R)-BINOL-d₂ and 1,3-dimethylindole.

We hypothesized that in the presence of a strong Lewis acid, such as $SnCl_4$, coordination of the amide might favor the ring-opened iminium ions *exo-100/endo-100*. To test this hypothesis, we resubjected diastereomerically-pure *exo-100* to $SnCl_4$ (1.2 equiv) and varying equivalents of (*R*)-BINOL (Figure 7).

Figure 7. NMR spectra of (a) pyrroloindoine **exo-96**, $SnCl_4$ (1.2 equiv), (R)-BINOL (1.2 equiv) (b) pyrroloindoine **exo-96**, $SnCl_4$ (1.2 equiv), (R)-BINOL (0.2 equiv) (c) pyrroloindoine **exo-96**, $SnCl_4$ (1.2 equiv) (d) pyrroloindoline **exo-96**.

The NMR spectra of the mixtures were dependent on the quantity of (*R*)-BINOL present; in the presence of 20 mol % (*R*)-BINOL, the ¹H NMR spectra closely resembled that of the indole–acrylate adduct observed in the in situ ¹H NMR experiment. Notably, this species exhibits a resonance between 9 and 10 ppm (depending on concentration of (*R*)-BINOL, Figure 7a and b), which we assign to the indolinium proton (H_b). In addition, the *N*-methyl group (H_a) in this species is shifted downfield relative to the pyrroloindoline (4.0 ppm versus 3.1 and 2.9 ppm for the two rotamers of the *exo* diastereomer), and is consistent with literature data for other iminium ions.¹⁴ This structural assignment is further supported by 2D ¹H–¹³C NMR correlation data. In the presence of SnCl₄ alone, the pyrroloindoline peaks broaden, likely due to dynamic interconversion between the ring-opened and -closed forms (Figure 7c). The fact that

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition addition of 1.0 equivalent (R)-BINOL resolves this mixture into one species suggests that (R)-BINOL•SnCl₄ might preferentially stabilize the open structure. Importantly, following aqueous work up, pyrroloindoline exo-96 is cleanly reisolated with no indication of epimerization or racemization.

In order to help elucidate the mode of activation by (R)-BINOL, reactions were carried out with mono- and bis-methylated derivatives (Figure 8). The progress of the reaction can be quantified by integrating the vinyl protons of the acrylate relative to 1,4diethylbenzene as an internal standard. Use of (R)-BINOL-Me results in a moderate decrease in both rate and enantioselectivity (83% ee, exo diastereomer), whereas (R)-BINOL-Me₂ shows no rate enhancement over SnCl₄ alone. This experiment suggests that BINOL does not activate $SnCl_4$ by dative coordination alone; rather, the free hydroxyl moieties of BINOL are required.

Further kinetic analysis of (R)-BINOL-catalyzed reaction has been complicated by several factors, including the presence of the racemic background reaction (particularly at higher $SnCl_4$:(*R*)-BINOL ratios) and product inhibition.

Figure 9. Non-linear effect observed with scalemic BINOL (4:1 d.r. for all reactions).

The pyrroloindoline synthesis was performed with scalemic BINOL to investigate the presence of non-linear effects.¹⁵ Figure 9 shows that a positive non-linear relationship was indeed observed. A possible explanation for the observed non-linear effect is the interaction shown in Figure 27, where BINOL-bound tin enolate **101** is protonated by another BINOL•SnCl₄ species. If the heterochiral combination of (*R*)- and (*S*)-BINOL is less reactive than the homochiral combinations (i.e. a reservoir for the minor enantiomer of catalyst), then a positive non-linear effect will be observed. As the observed non-linear effect is not highly pronounced, BINOL-bound tin enolate may only be a minor species, while the majority of tin enolate species in solution are not coordinated by BINOL. This situation is likely because BINOL is present in a catalytic quantity with a large excess of SnCl₄.

Although further mechanistic studies are required, our observations lead us to favor a cooperative Lewis acid–Lewis acid-assisted Brønsted acid mechanism, shown in Figure 10. Activation of acrylate **71** by coordination to $SnCl_4$ results in reversible conjugate addition by the indole, generating a racemic mixture of Sn-enolates **101** and

ent-101. Highly face selective protonation of 101/ent-101 by (*R*)-BINOL-SnCl₄ complex 102 resolves the two enantiomers into diastereomers in a rate- and selectivity-determining step. In this scenario, the ee of the two pyrroloindoline products would reflect the face selectivity of the protonation step, while the dr would reflect the difference in the rate of protonation of the two chiral enolates 101 and *ent*-101, due to "matching" and "mismatching" effects with chiral complex 102.¹⁶ The stoichiometric proton source required to turn over complex 103 could potentially be the N-H of trifluoroacetamide *exo*-105/*ent*-*endo*-105, which upon coordination to SnCl₄ would be rendered sufficiently acidic.

Figure 10. Proposed mechanism.

The proposed mechanism is consistent with Yamomoto's prior reports that (*R*)-BINOL•SnCl₄(**102**) behaves as a "Lewis acid-assisted Brønsted acid (LBA)," which is capable of catalyzing the enantioselective protonation of silyl enolates.¹⁷ However, the pyrroloindoline formation described above represents the first example of a tandem conjugate addition/asymmetric protonation process catalyzed by **102**. Based on this mechanistic proposal for pyrroloindoline formation, the Reisman group has identified similar conditions for the synthesis of unnatural tryptophan derivatives from 2-substituted indoles (**106**) and methyl 2-acetamidoacrylate (**86**), in which the sole stereogenic center is set during an asymmetric protonation step (Figure 11).^{18‡}

2.2.5 Second Generation Reaction Conditions

The fact that diastereomers formed in the pyrroloindoline synthesis are of opposite enantiomeric series presents a practical challenge for synthetic applications. Specifically, in order to preclude racemization via epimerization during subsequent synthetic steps, it is imperative to separate the two diastereomers. Unfortunately,

[‡] This work was performed by Maddi Kieffer (a graduate student) and Dr. Lindsay Repka (a former graduate student).

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 31 depending on the indole substitution pattern, separation of the diastereomers can be tedious using standard silica gel chromatography. In addition, the modest diastereoselectivity results in lower isolated yields of the pure exo-diastereomer. In an effort to identify conditions more amenable to application in total synthesis endeavors, we sought to re-optimize the reaction parameters for the formal (3 + 2) cycloaddition with the objective of improving the *diastereoselectivity* while maintaining synthetically useful enantioselectivity.

The first generation optimization studies determined that the enantio- and diastereoselectivity of pyrroloindoline formation are highly dependent on the substitution of the 2-amidoacrylate: the highest enantioselectivity was attained using benzyl 2trifluoroacetamidoacrylate (71), while the highest *diastereoselectivity* was attained using methyl 2-trifluoroacetamidoacrylate (67) (Table 3). In the later case, the ee's of two diastereomers were only modestly reduced. Thus, we returned to the use of acrylate 67 in the cycloaddition, and sought to improve the ee and dr by optimizing the catalyst structure.

A screen of other chiral diol scaffolds showed that the (R)-BINOL backbone is optimal (Figure 12). A variety of (R)-BINOL derivatives were then investigated, revealing that several catalysts containing substitution at the 3- and 3'-positions provided an improvement in both dr and ee (Table 5). Hypothesizing that catalyst selectivity might correlate to the pK_a of the BINOL O-H protons, several 6,6'-derivatives were also prepared in order to isolate the electronic and steric effects; however, no linear correlation was observed. Ultimately, (R)-3,3'-Cl₂-BINOL was identified as the catalyst that provided the optimal combination of ee, dr, and overall yield.

Figure 12. Chiral diol screen.

Table 5. (R)-BINOL-derivative screen.

$Me \xrightarrow{F_3C \downarrow_N \downarrow_0 0Me}_{H \downarrow_0 67} Me \xrightarrow{Me}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me \xrightarrow{H \downarrow_0 67}_{H \downarrow_0 67} Me \xrightarrow{H \downarrow_0 67}_{Me} Me$						
Entry	BINOL derivative	Yield (%) ^a	d.r. ^b	ee (%) ^c		
1	Н	88	10:1	90		
2	6,6'-(OMe) ₂	63	6:1	82		
3	6,6'-Br ₂	65	8:1	86		
4	3,3'-Me ₂	63	8:1	90		
5	3,3'-Br ₂	63	16:1	90		
6	3.3'-Cla	73	14:1	91		

^{*a*} Isolated yield of *exo:endo* mixture. ^{*b*} Determined by ¹H NMR analysis of crude reaction mixture. ^{*c*} Determined by HPLC using chiral stationary phase.

With these newly optimized conditions in hand, a survey of indole substrates was conducted (Table 6).¹⁹ As previously observed, indoles bearing electron-donating substrates on the aryl backbone provide the highest yields, however, both electron-rich and electron-poor substrates provided high ee's. More sterically-hindered indoles were less reactive and required 1.6 equivalents of $SnCl_4$, but nevertheless yielded the desired pyrroloindoline in good yield with high selectivity.

^{*a*} Determined by ¹H NMR analysis of crude reaction mixture. Values in parentheses are dr obtained using acrylate **71** and (*R*)-BINOL. ^{*b*} Determined by SFC using chiral stationary phase. Values in parentheses are ee obtained using acrylate **71** and (*R*)-BINOL. ^{*c*} Isolated yield of *exo*-diastereomer. ^{*d*} 1.6 equiv SnCl₄ was employed.

2.3 Concluding Remarks

We have developed a novel strategy for the prepararation of enantioenriched pyrroloindolines by an (R)-BINOL•SnCl₄-catalyzed formal (3 + 2) cycloaddition reaction. The transformation utilizes readily accessible indole and 2-amidoacrylate substrates to directly synthesize a variety of substituted pyrroloindoline products. Catalysis by (R)-BINOL allows excellent enantioselectivities to be achieved, even with an excess of Lewis acid.

Mechanistic studies have provided a more thorough understanding of this transformation. It is proposed that this reaction occurs via a highly face-selective catalyst-controlled protonation and that cyclization of the resultant iminium intermediate only occurs upon work-up. Thus, the diastereomeric products possess opposite configurations as the bridgehead quaternary carbon. The implications of these experiments have resulted in the reoptimization of the conditions for this reaction to provide higher levels of selectivity.

The mechanistic proposal has led to the development of other methods for indole alkaloid synthesis, including a tandem conjugate addition/enantioselective protonation reaction to generate tryptophan derivatives,[§] a conjugate addition/in situ reduction to yield indoline amino acid derivatives (Chapter 2), and a conjugate addition/asymmetric protonation/Prins cyclization reaction (Chapter 3).

In addition, this reaction has been utilized to prepare the core pyrroloindoline motifs in the enantioselective total syntheses of the natural products (–)-lansai B^{20} and (+)-nocardioazine A.^{21**} Further related research within the Reisman laboratory is focused on improving mechanistic understanding of the formal (3 + 2) cycloaddition reaction, application of the asymmetric protonation strategy to new methodologies, and the synthesis of pyrroloindoline natural products.

[§] This work was performed by Maddi Kieffer (a graduate student in the Reisman lab) and Dr. Lindsay Repka (a former graduate student in the Reisman lab).

^{**} Research conducted by Haoxuan Wang, a graduate student in the Reisman lab.

2.4 Experimental Section

2.4.1 Materials and Methods

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran, methylene chloride, toluene, and hexanes were dried by passing through activated alumina columns. Dimethylformamide was dried over activated molecular sieves, and dichloroethane was distilled over calcium hydride. Deuterated methylene chloride (CD₂Cl₂) for the experiments resubjecting the pyrroloindoline products to reaction conditions was dried by passing through a plug of activated alumina. All other commercially obtained reagents were used as received unless specifically indicated. EtAlCl₂ (neat) and 1 M SnCl₄ in DCM were purchased from Aldrich and (R)-BINOL was obtained from Alfa Aesar. (R)-6,6'-dimethoxy-BINOL,¹⁸ (R)-6,6'-dibromo-BINOL,²² (R)-3,3'-dimethyl-BINOL,²³ (R)-3,3'-dibromo-BINOL,²⁴ and (R)-3,3'-dichloro-BINOL²⁵ were prepared according to literature procedures. Reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 precoated plates (0.25 mm) and were visualized by UV, *p*-anisaldehyde, or KMnO₄ staining. Flash column chromatography was performed either as described by Still et al. using silica gel (particle size 0.032-0.063) purchased from Silicycle or pre-packaged RediSep[®]Rf columns on a CombiFlash Rf system (Teledyne ISCO Inc.). Diastereomeric ratios were determined by integration of NMR spectra or HPLC or SFC analysis. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz and 75 MHz, respectively), a Varian 400 (at 400 MHz and 100 MHz, respectively) or a Varian Inova 500 (at 500 MHz and 125 MHz, respectively), and are reported relative to

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 36 internal chloroform (¹H, $\delta = 7.26$, ¹³C, $\delta = 77.0$). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm⁻¹). Preparative HPLC was performed with either an Agilent 1100 or 1200 Series HPLC utilizing an Agilent Zorbax RX-SIL 5µm column (9.4 x 250 mm). Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing Chiralcel AD or OD-H columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd, with visualization at 254 nm. Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system with Chiralcel AD-H and OJ-H columns (4.6 mm x 25 cm). Melting points were determined using a Büchi B-545 capillary melting point apparatus and the values reported are uncorrected. HRMS were acquired using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) or mixed (MM) ionization mode, or obtained from the Caltech Mass Spectral Facility.

2.4.2 Substrate Synthesis

General Procedure A. Amination-Heck cascade for synthesis of indole derivatives.

Procedure was adapted from Jørgensen *et al.*²⁶ To a 50 mL Schlenk tube was added $[Pd_2dba_3]$, dppf, NaOtBu (20.8 mmol, 2.5 equiv), and toluene (10 mL). The mixture was stirred for 5 minutes, then the bromoiodide (8.3 mmol, 1.0 equiv) and allylamine (8.3 mmol, 1.0 equiv) were added. The tube was sealed, heated to 140 °C over 30 minutes, and stirred at 140 °C for 21 h. The reaction was then cooled to room temperature, diluted with 40 mL hexanes, filtered through a plug of celite, and concentrated under reduced pressure. The crude residue was purified by flash chromatography.

General Procedure B. N-methylation of indole derivatives.

In a flame-dried flask, the indole (1.7 mmol, 1.0 equiv) was dissolved in 11 mL THF. Sodium hydride (60% w/w, 2.5 mmol, 1.5 equiv) was added in one portion, then methyl iodide (3.4 mmol, 2.0 equiv) was added dropwise. The reaction was stirred at room temperature until consumption of starting material was observed by TLC. The reaction was diluted with ethyl acetate and the excess NaH was quenched with water. The organic layer was separated, and the aqueous layer was extracted 3× with ethyl acetate. The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography.

5-Fluoro-3-methyl-1*H*-indole.

Prepared from 3.75 mmol of 2-bromo-4-fluoro-1-iodobenzene, 0.63 mol % $[Pd_2dba_3]$ and 2.5 mol % dppf using general procedure A. The product was purified by flash chromatography (10% ethyl acetate/hexanes) to yield 5-fluoro-3-methyl-1*H*-indole (**128b**, 0.22 g, 38% yield). Spectral data matches that reported in the literature.²⁶

5-Fluoro-1,3-dimethyl-1*H*-indole (97b).

Prepared from 1.07 mmol of 5-fluoro-3-methyl-1*H*-indole using general procedure B. The product was purified by flash chromatography (3% ethyl acetate/hexanes) to yield **97b** (0.97 g, 55% yield) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.13 (m, 2H), 7.00 – 6.92 (m, 1H), 6.86 (s, 1H), 3.72 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.6, 132.4, 128.8, 127.2, 111.6, 109.8, 109.5, 100.8, 32.6, 9.6. IR (NaCl/thin film): 2918, 1581, 1493, 1457, 1423, 1225, 1062, 786 cm⁻¹; HRMS (MM: ESI–APCI) calc'd for [M+H]⁺ 164.0870, found 164.0873.

3,5-dimethyl-1*H*-indole.

1,3,5-trimethyl-1*H*-indole (97c).

^{Me} ^{Me} ^{Me} ^{Me} ^{Ne} ^{Ne</sub> ^{Ne} ^{Ne</sub> ^{Ne} ^{Ne} ^{Ne</sub> ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne</sub> ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne} ^{Ne}}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

5-Bromo-1,3-dimethyl-1*H*-indole (97d).

^B Frepared from 0.95 mmol of 5-bromo-3-methyl-1*H*-indole²⁸ using general procedure B. The product was purified by flash chromatography (5% ethyl acetate/hexanes) to yield **97d** (0.20 g, 90% yield) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 1.5 Hz, 1H), 7.30 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.14 (d, *J* = 8.6 Hz, 1H), 6.82 (s, 1H), 3.70 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.6, 130.3, 127.7, 124.1, 121.5, 111.9, 110.5, 109.7, 32.6, 9.4. IR (NaCl/thin film): 2918, 1563, 1479, 1422, 1279, 812, 785 cm⁻¹; HRMS (APCI) calc'd for [M+H]⁺ 224.0069, found 224.0070.

N-allyl-2-bromo-5-methylaniline.

Me Procedure was adapted from Sørensen and Pombo-Villar.²⁹ To a solution of 2-bromo-5-methylaniline (10.8 mmol, 1.0 equiv) in 29 mL THF at -78°C was added MeLi (2.9 M solution in dimethoxymethane, 11.8 mmol, 1.1 equiv), and stirred for 30 minutes. Allyl bromide was added dropwise, followed by

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 40 stirring at -78 °C for 10 minutes, then at room temperature for 5 h. Then saturated NaHCO3 (aq) solution was added, and the aqueous layer was extracted with ethyl acetate 3×. The combined organic layers were dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography $(0\rightarrow 10\%)$ ethyl acetate/hexanes) to yield N-allyl-2-bromo-5-methylaniline (1.63 g, 67% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.0 Hz, 1H), 6.46 (d, J = 1.5 Hz, 1H), 6.41 (ddd, J = 8.0, 2.0, 0.6 Hz, 1H), 5.97 (ddt, J = 17.2, 10.4, 5.2 Hz, 1H), 5.31 (ddd, J = 17.2, 3.3, 1.7 Hz, 1H), 5.21 (dq, J = 10.3, 1.5 Hz, 1H), 4.41 (s, 1H), 3.83 (s, 10.1)2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 138.4, 134.7, 132.0, 118.8, 116.3, 112.4, 106.5, 46.2, 21.5. IR (NaCl/thin film): 3411, 2920, 1596, 1506, 1416, 1016, 921, 787 cm⁻¹. HRMS (MM: ESI–APCI) calc'd for [M+H]⁺ 226.0226, found 226.0216.

3,6-dimethyl-1*H*-indole.

Procedure was adapted from Sørensen and Pombo-Villar.²⁹ A solution of N-allyl-2-bromo-5-methylaniline (1.6 mmol, 1.0 equiv), Pd(OAc)₂ (0.16 mmol, 0.1 equiv), dppp (0.16 mmol, 0.1 equiv), Bu₄NCl (1.6 mmol, 1.0 equiv), and NaOAc (6.2 mmol, 4.0 equiv) in 24 mL DMF was heated to 120 °C in a flask equipped with a reflux condenser for 16 h. The reaction was cooled to room temperature, saturated NaHCO3 (aq) solution and 100 mL water were added, then the aqueous layer was extracted with ethyl acetate $3\times$. The combined organic layers were dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (5 \rightarrow 10% ethyl acetate/hexanes) to yield 3,6-dimethyl-1*H*-indole (0.19 g, 85% yield) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (br s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.13-7.11 (m, 1H), 6.94 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 6.87 (dd, J = 2.1 Hz,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 1.1 Hz, 1H), 2.45 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 131.6, 126.2, 120.9, 120.8, 118.5, 111.6, 110.9, 21.7, 9.7. IR (NaCl/thin film): 3409, 2922, 1452, 1329, 1086, 908, 803, 733 cm⁻¹. HRMS (MM: ESI-APCI) calc'd for [M+H]⁺ 146.0964, found 146.0970.

1,3,6-trimethyl-1*H*-indole (97e).

Prepared from 0.70 mmol of 3,6-dimethyl-1H-indole using general procedure B. The product was purified by flash chromatography $(0 \rightarrow 5\%)$ ethyl acetate/hexanes) to yield 97e (62 mg, 56% yield) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 1H), 7.07 (s, 1H), 6.94 (dd, J = 8.0, 0.7 Hz, 1H), 6.75 (d, J = 0.9 Hz, 1H), 3.70 (s, 3H), 2.50 (s, 3H), 2.31 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 137.4, 131.1, 126.5, 125.8, 120.2, 118.6, 109.9, 109.0, 32.4, 21.9, 9.6. IR (NaCl/thin film): 3027, 2917, 2860, 1625, 1478, 1388, 1369, 1328, 1248, 799 cm⁻¹; HRMS (MM: ESI-APCI) calc'd for [M+H]⁺ 160.1121, found 160.1114.

1-methyl-3-t-butyldimethylsiloxyethyl-1H-indole (97f).

Prepared from 2.66 mmol of 3-t-butyldimethylsiloxyethyl-1H-indole³⁰ отвs using general procedure B. The product was purified by flash chromatography $(0 \rightarrow 5\%$ ethyl acetate/hexanes) to yield **97f** (0.67 g, 87\% yield) as an orange oil. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (dt, J = 7.9, 1.0 Hz, 1H), 7.31 (dt, J = 8.2, 0.9 Hz, 1H), 7.26 – 7.23 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.13 (ddd, J = 7.9, 6.9, 1.0 Hz, 1H), 6.91 (s, 1H), 3.90 (t, J = 7.2 Hz, 2H), 3.76 (s, 3H), 3.02 (ddd, J = 7.9, 7.1, 0.8 Hz, 2H), 0.95 (s, 9H), 0.08 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 136.8, 128.1, 126.9, 121.4, 119.0, 118.6, 111.5, 109.1, 64.1, 32.5, 29.0, 26.0, 18.4, -5.3; IR (NaCl/thin film):

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 42 3056, 2954, 2929, 2857, 1472, 1251, 1095, 836, 737 cm⁻¹; HRMS (ESI) calc'd for [M+H]⁺ 290.1940, found 290.1933.

1,3,4-trimethyl-1*H*-indole

Procedure for Vilsmeier-Haack reaction followed by LiAlH₄ reduction was adapted from Petit et al.³¹ In a flame-dried flask under nitrogen, POCl₃ (0.42 mL, 4.6 mmol) was added at 0 °C to 4-methyl-1H-indole (0.5 g, 3.8 mmol) in DMF (7.6 mL). The reaction was stirred at room temperature overnight. 2N NaOH_(au) was added, the solution was stirred for 2 h, and then poured into EtOAc. The organic

layer was washed with brine, dried (Na_2SO_4), filtered, and concentrated. The crude aldehyde was carried forward without further purification.

In a flame-dried flask under nitrogen, a solution of the Vilsmeier-Haack product (0.39 g, 2.5 mmol) in THF (5 mL) was added dropwise to a suspension of LiAlH₄ (0.19 g, 5 mmol) in THF (1.6 mL). The reaction was heated to reflux for 4 h, then cooled to room temperature and stirred overnight. The reaction was diluted with Et₂O and cooled to 0 °C. Water (0.19 mL) was added slowly, then 15% $NaOH_{(aq)}$ (0.19 mL), and then water (0.6 mL) were added. The mixture was warmed to room temperature and stirred for 15 minutes. Some $MgSO_4$ was added, the mixture was stirred for 15 minutes, filtered, and concentrated. The crude indole was carried forward without further purification.

In a flame-dried flask, the indole (0.3 g, 2.1 mmol) was dissolved in THF (13 mL). Sodium hydride (60% w/w, 124 mg, 3.1 mmol) was added in one portion, then methyl iodide (0.26 mL, 4.1 mmol) was added dropwise. The reaction was stirred at room temperature until consumption of starting material was observed by TLC. The reaction was diluted with ethyl acetate and the excess NaH was quenched with water. The organic

43

layer was separated, and the aqueous layer was extracted $3\times$ with ethyl acetate. The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (44% yield over three steps).

¹H NMR (500 MHz, CDCl₃) δ 7.12-7.05 (m, 2H), 6.81 (ddd, J = 6.6, 1.4, 0.8 Hz, 1H), 6.76 (d, J = 0.9 Hz, 1H), 3.69 (s, 3H), 2.72 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 131.4, 126.9, 126.7, 121.5, 120.0, 110.9, 107.0, 32.5, 20.0, 12.8; IR (NaCl/thin film): 2918, 1608, 1573, 1551, 1497, 1453, 1417, 1313, 1250, 1205, 1157, 1057, 767, 739 cm⁻¹.

1,3,7-trimethyl-1H-indole

Prepared according to the procedure for 1,3,4-trimethyl-1*H*-indole. Spectral data matches that reported in the literature.³²

1,3-dimethyl-5-reverse prenyl-1*H*-indole

In glovebox, $Pd_2(dba)_3$ (51 mg, 6 mmol) and SPhos (91 mg, 22 mmol) was stirred at room temperature in THF (3 mL) for 1 h until a dark yellow homogeneous solution was formed. Then the solution was

transferred into a schlenk tube. Iododimethyl indole (300 mg, 1.11 mmol), trifluorosilane³³ (256 mg in 2.1 mL THF, 1.66 mmol), TBAF (1 M solution in THF, 1.66 mL), and THF (7 mL) were added to the schlenk tube. The reaction mixture was heated to 60°C for 36 h. More TBAF (1M solution in THF, 0.55 mL) was added at 12-h intervals. The reaction was quenched with 5% EtOAc in hexanes and filtered through a silica plug. The organic solution was concentrated to give orange oil. It was then purified by flash chromatography (5% to 9% EtOAc in hexanes) to give reverse prenylated indole

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 44 **XX** as a light yellow oil (177 mg, 0.84 mmol, 76% yield). ¹H NMR (500 MHz, CDCl₃) 7.51 (t, J = 0.9 Hz, 1H), 7.24 (dd, J = 8.7, 1.83 Hz, 1H), 7.21 (d, J = 8.5 Hz, 1H), 6.80 (d, J = 1.0 Hz, 1H), 6.13 (dd, J = 17.5, 10.6 Hz, 1H), 5.09 (dd, J = 17.6, 1.5 Hz, 1H), 5.04 (dd, J = 10.5, 1.5 Hz, 1H), 3.71 (s, 3H), 2.32 (d, J = 1.0 Hz, 3H), 1.49 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) 149.1, 138.8, 135.4, 128.3, 126.7, 120.6, 115.5, 110.1, 109.9, 108.5, 41.1, 32.5, 28.8, 9.5; IR (NaCl/thin film): 3080, 2964, 2920, 1634, 1489, 1455, 1425, 1387, 1376, 1365, 1292, 1256, 1201, 1152, 1053, 1004, 909, 874, 788; HRMS (MM) calc'd for C₁₅H₁₉N [M+H]⁺ 214.1590, found 214.1592.

2.4.3 General Procedure C. Formal (3 + 2) Cycloaddition of Indoles and Acrylates

To a flame-dried flask was added indole (0.20 mmol, 1.00 equiv), acrylate (0.20 mmol, 1.00 equiv), and (*R*)-BINOL (0.04 mmol, 0.20 equiv). The flask was charged with DCM (1.5 mL), followed by addition of SnCl₄ (0.24 mmol, 1.20 equiv unless specifically indicated, 1 M in DCM), then stirred at room temperature. The reaction was quenched by diluting with 1 mL MeCN and 1 mL 1 M HCl, followed by addition of 5 mL H₂O. The aqueous layer was extracted with ethyl acetate (3 x 5 mL) and the combined organic layers were washed with either saturated NaHCO_{3(aq)} or 1 M NaOH_(aq) (10 mL). The aqueous layer was back extracted with EtOAc (10 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The crude residue was purified by flash chromatography.

Pyrroloindoline Products under General Procedure C 2.4.4

Pyrroloindoline 91.

(a) exo diastereomer

Screen varying (R)-BINOL loading. All reactions were run at room temperature for 3 h in DCE with 1,3-dimethyl-1*H*-indole³⁴ (89, 0.2) mmol, 1 equiv), methyl 2-acetamidoacrylate³⁵ (**86**, 0.2 mmol, 1 equiv)

and $SnCl_4$ (1.2 equiv, 1 M in DCM). Purified by flash chromatography

 $(0 \rightarrow 50\%$ ethyl acetate/hexanes). The diastereomeric ratio was (b) endo diastereomer determined by ¹H NMR analysis of the crude reaction mixture. The diastereomers were separated by flash chromatography $(30 \rightarrow 50\% \text{ ethyl acetate/hexanes})$. The enantiomeric excess was determined for both diastereomers by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in hexanes, $\lambda = 254$ nm).

Exo diastereomer: pale yellow oil. $t_{\rm R}$ (major) = 9.5 min $t_{\rm R}$ (minor) = 6.2 min. ¹H NMR (400 MHz, CDCl₃; compound exists as a 1:1 mixture of rotamers) δ 7.10 – 7.01 (m, 1H), 6.95 (d, J = 7.3 Hz, 0.5H), 6.91 (d, J = 7.3 Hz, 0.5H), 6.68 (t, J = 7.4 Hz, 0.5H), 6.62 (t, J = 7.4 Hz, 0.5H), 6.64 (t, J = 7.4 Hz, 0.5H),= 7.4 Hz, 0.5 H, 6.43 (d, J = 7.8 Hz, 0.5 H), 6.38 (d, J = 7.8 Hz, 0.5 H), 5.47 (s, 0.5 H), 5.04(s, 0.5H), 4.43 (dd, J = 10.0, 1.9 Hz, 0.5H), 4.30 (dd, J = 9.7, 4.7 Hz, 0.5H), 3.73 (s, 0.5H), 4.43 (dd, J = 0.0, 1.9 Hz, 0.5H), 4.30 (dd, J = 0.0, 1.9 Hz, 0.5H), 3.73 (s, 0.5H), 4.30 (dd, J = 0.0, 1.9 Hz, 0.5H), 4.30 (s, 0.5 Hz, 0.5H), 4.30 (dd, J = 0.0, 1.9 Hz, 0.5H), 4.30 (dd, J = 0.0, 1.9 Hz, 0.5H), 4.30 (dd, J = 0.0, 1.9 Hz, 0.5H), 4.30 (s, 0.5Hz, 0.5Hz,1.5H), 3.66 (s, 1.5H), 2.98 (s, 1.5H), 2.80 (s, 1.5H), 2.44 (dd, J = 13.4, 10.0 Hz, 0.5H), 2.32 (dd, J = 13.3, 9.8 Hz, 0.5H), 2.22 (s, 0.5H), 2.18 (dd, J = 13.5, 2.0 Hz, 0.5H), 1.97 -1.90 (m, 2H), 1.46 (s, 1.5H), 1.32 (s, 1.5H); ¹³C NMR (100 MHz, CDCl₃; compound exists as a 1:1 mixture of rotamers) δ 172.8, 171.7, 171.5, 169.4, 149.4, 148.5, 134.2, 128.04, 128.02, 121.0, 120.8, 118.6, 117.6, 107.7, 107.1, 91.8, 90.8, 60.5, 59.6, 52.2, 51.8, 51.6, 49.2, 43.4, 41.0, 35.9, 33.8, 22.5, 22.3, 21.9; IR (NaCl/thin film): 2954, 2877,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 46 1746, 1660, 1608, 1489, 1393, 1299, 1200, 1178, 744 cm⁻¹; $[\alpha]_{D}^{25}$ -69.7° (c = 0.85, DCM); HRMS (FAB+) calc'd for [M+H]⁺289.1552, found 289.1559.

Endo diastereomer: bright yellow oil. $t_{\rm R}$ (major) = 4.0 min $t_{\rm R}$ (minor) = 4.7 min. ¹H NMR (400 MHz, CDCl₃; compound exists as a 3:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.11 (t, J = 7.6 Hz, 1H[§]), 7.06 (t, J $= 7.8 \text{ Hz}, 1\text{H}^{*}$, 7.01 (d, $J = 7.1 \text{ Hz}, 1\text{H}^{\$}$), 6.96 (d, $J = 7.2 \text{ Hz}, 1\text{H}^{*}$), 6.68 (t, J = 7.4 Hz, $1H^{\$}$), 6.61 (t, J = 7.3 Hz, 1H*), 6.40 (d, J = 7.8 Hz, 1H^{\\$}), 6.32 (d, J = 7.8 Hz, 1H*), 5.55 (s, 1H*), 5.09 (s, 1H[§]), 4.98 (dd, J= 8.8, 5.8 Hz, 1H[§]), 4.46 (d, J = 8.3 Hz, 1H*), 3.46 (s, $3H^{\$}$), 3.25 (s, $3H^{\ast}$), 2.99 (s, $3H^{\ast}$), 2.91 (s, $3H^{\$}$), 2.68 (d, J = 13.6 Hz, $1H^{\ast}$), 2.44 – 2.16 $(m, 1H^*, 5H^{\$}), 2.05 (s, 3H^*), 1.42 (s, 3H^{\$}), 1.41 (s, 3H^*); {}^{13}C NMR (100 MHz, CDCl_3;$ compound exists as a 3.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by (δ) 171.4 (δ) , 171.1 (δ) , 170.7 (δ) , 169.6 (δ) , 150.6 (δ) , 149.0 (δ) , 133.1 (δ) , 132.4 (δ) , 132.4 (δ) , 133.1 (δ) , 132.4 (δ) , 133.1 (δ) , 132.4 (δ) , 133.1 (δ) , 133. $128.7^*, 128.6^{\$}, 122.3^*, 121.8^{\$}, 118.0^{\$}, 117.1^*, 106.4^{\$}, 105.6^*, 91.1^{\$}, 86.4^*, 61.1^*, 59.1^{\$}, 105.6^*, 91.1^{\$}, 105.6^*, 91.1^{\$}, 105.6^*, 91.1^{\$}, 105.6^*, 91.1^{\$}, 105.6^*$ 52.3[§], 52.2^{*}, 52.1[§], 50.8^{*}, 42.6^{*}, 41.7[§], 32.2^{*}, 31.6[§], 24.7^{*}, 22.8[§], 22.4^{*}, 21.9[§]; IR (NaCl/thin film): 2953, 2869, 1740, 1656, 1610, 1493, 1407, 1302, 1236, 1204, 744 cm⁻¹; $[\alpha]_{D}^{25}$ +146.5° (c = 0.79, DCM) ; HRMS (FAB+) calc'd for $[M+H]^{+}$ 289.1552 , found 289.1549.

Pyrroloindoline 94.

Prepared from 1,3-dimethyl-1*H*-indole **89** and methyl 2trifluoroacetamidoacrylate³⁶ **67** using general procedure C (with DCE as the solvent). The reaction was allowed to run for 4 h. The crude residue was purified by flash chromatography (20 \rightarrow 35% ethyl acetate/hexanes) to yield 53.0 mg (77% yield) of **94** in a 6:1 ratio of diastereomers (determined by ¹H NMR analysis of the purified product). The diastereomers were separated by preparatory HPLC

 $(0 \rightarrow 8\% \text{ ethyl acetate/hexanes}).$

Exo diastereomer: pale yellow oil that crystallized upon standing in the fridge to give crystals suitable for single crystal X-ray diffraction. The enantiomeric excess was determined to be 86% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 2.8 min $t_{\rm R}$ (minor) = 2.4 min. ¹H NMR (400 MHz, CDCl₃; compound exists as a 2.4:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 7.18 (t, J = 7.6 Hz, 1H^{*}, 1H[§]), 7.03 (d, J = 7.2 Hz, 1H^{*}, 1H[§]), 6.82 (br s, J = 7.4 Hz, 1H[§]), 6.77 (t, J = 7.3 Hz, 1H^{*}), 6.56 (br s, 1H[§]), 6.51 (d, J = 7.8 Hz, 1H^{*}), 5.62 (s, 1H^{*}), 5.34 (br s, 1H[§]), 4.72 (d, J = 9.2 Hz, 1H^{*}), 4.44 (br s, 1H[§]), 3.82 (br s, 3H^{*}), 3.77 (br s, 3H[§]), 3.08 (br s, 3H^{*}), 2.87 (br s, 3H[§]), 2.60 (dd, J = 13.0, 9.9 Hz, 1H^{*}), 2.55 – 2.44 (br m, 1H[§]), 2.37 (d, J = 12.7 Hz, 1H^{*}), 2.13-2.00 (br m, 1H[§]), 1.51 (s, 3H[§]), 1.40 (s, 3H^{*}); ¹³C NMR (100 MHz, CDCl₃; compound exists as a 2.4:1 mixture of rotamers, the major rotamer is denoted by ^{*}) δ 172.6^{*}, 170.5[§], 159.2^{*} (q, $J_{C-F} = 37.2$ Hz), 149.4^{*}, 149.2[§], 134.2^{*§}, 128.8^{*§}, 121.5^{*§}, 119.9[§],

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 48 118.7*, 116.1* (q, $J_{C-F} = 288.4 \text{ Hz}$), 109.4[§], 108.0*, 93.3*, 91.7[§], 61.3[§], 60.3*, 53.0*, 52.6[§], 49.2*[§], 44.0*, 40.6[§], 36.8*, 34.4[§], 23.5*, 22.8[§]; IR (NaCl/thin film): 2959, 1751, 1696, 1610, 1490, 1435, 1204, 1155, 988, 744 cm⁻¹; melting point: 105.5 – 107.5 °C; $[\alpha]_{D}^{25} = -118.1^{\circ}$ (c = 0.78, DCM). HRMS (ESI) calc'd for [M+H]⁺ 343.1270, found 343.1267.

Endo diastereomer: pale yellow oil. ¹H NMR (500 MHz, CDCl₃; compound exists as a 9.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.13 (t, J = 7.7 Hz, 1H[§]), 7.10 (t, J = 7.7 Hz, 1H^{*}), 7.04 (d, J = 7.5 Hz, 1H[§]), 6.98 $(d, J = 7.3 \text{ Hz}, 1\text{H}^*), 6.73 (t, J = 7.4 \text{ Hz}, 1\text{H}^{\$}), 6.66 (t, J = 7.4 \text{ Hz}, 1\text{H}^*), 6.43 (d, J = 7.8 \text{ Hz})$ Hz, $1H^{\$}$), 6.37 (d, J = 7.8 Hz, $1H^{*}$), 5.59 (s, $1H^{*}$), 5.33 (s, $1H^{\$}$), 5.07 (dd, J = 9.4, 5.2 Hz, $1H^{\$}$, 4.74 (d, J = 8.2 Hz, $1H^{*}$), 3.57 (s, $3H^{\$}$), 3.16 (s, $3H^{*}$), 3.05 (s, $3H^{*}$), 2.80 (s, $3H^{\$}$), 2.80 (d, J = 12.7 Hz, 1H*), 2.42 (dd, J = 13.3, 5.3 Hz, 1H[§]), 2.37 (dd, J = 12.9, 8.3 Hz, 1H*), 2.26 (dd, J = 13.2, 9.7 Hz, 1H[§]), 1.45 (s, 3H*), 1.43 (s, 3H[§]); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 9.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 169.9*, 156.8* (q, $J_{CF} = 36.9$ Hz), 150.4*, 148.5§, 133.0[§], 131.8^{*}, 129.1^{*}, 128.7[§], 122.5^{*}, 121.6[§], 118.6[§], 117.8^{*}, 116.1^{*} (q, $J_{CF} = 288.7$ Hz), 106.9[§], 105.7^{*}, 90.8[§], 88.5^{*}, 60.3[§], 60.1^{*}, 52.5^{*}, 52.2[§], 50.4^{*§}, 42.9^{*}, 41.1[§], 32.1^{*§}, 25.1*, 22.2[§]; IR (NaCl/thin film): 2954, 2923, 1741, 1694, 1608, 1494, 1435, 1206, 1147, 998, 860, 844, 742 cm⁻¹; $[\alpha]_D^{25} = +201.5^\circ$ (c = 0.11, DCM). HRMS (ESI) calc'd for [M+H]⁺ 343.1270, found 343.1278.

Pyrroloindoline 95.

Prepared from 1,3-dimethyl-1*H*-indole **89** and benzyl 2acetamidoacrylate³⁷ **93** using general procedure C (with DCE as the solvent). The reaction was allowed to run for 4 h. The product **95** was formed in a 2:1 ratio of diastereomers (determined by ¹H NMR analysis of the crude reaction mixture), and purified by flash chromatography (20 \rightarrow 35% ethyl acetate/hexanes) to yield 41.3 mg

(57% yield) of the exo diastereomer and 17.3 mg (24% yield) of the endo diastereomer. Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 74% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 24.6 min $t_{\rm R}$ (minor) = 19.1 min. ¹H NMR (300 MHz, CDCl₃; compound exists as a 1.1:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 7.43 - 7.29 (m, 5H*, 5H[§]), 7.19 - 7.09 (m, 1H*, 1H[§]), 7.01 (d, J = 7.3 Hz, 1H[§]), 6.96 (d, J = 7.3 Hz, 1H*), 6.76 (t, J = 8.4 Hz, 1H[§]), 6.70 (t, J = 7.4 Hz, 1H*), 6.50 (d, J = 8.2 Hz, $1H^{\$}$), 6.46 (d, J = 8.0 Hz, $1H^{*}$), 5.54 (s, $1H^{*}$), 5.28 (d, J = 12.0 Hz, $1H^{*}$), 5.21 (d, J = 9.7Hz, $1H^{\$}$), 5.20 (s, $1H^{*}$, $1H^{\$}$), 5.09 (s, $1H^{\$}$), 4.51 (dd, J = 10.1, 2.1 Hz, $1H^{*}$), 4.45 (dd, Hz) 9.8, 4.8 Hz, $1H^{\$}$), 3.06 (s, $3H^{\$}$), 2.89 (s, $3H^{\$}$), 2.53 (dd, J = 13.4, 10.0 Hz, $1H^{\$}$), 2.42 13.3, 4.8 Hz, 1H[§]), 1.95 (s, 3H*), 1.49 (s, 3H[§]), 1.32 (s, 3H*); ¹³C NMR (100 MHz, CDCl₃; compound exists as a 1.1:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by $(\delta 172.6^{\circ}, 172.0^{\circ}, 171.6^{\circ}, 170.0^{\circ}, 149.9^{\circ}, 148.9^{\circ}, 135.7^{\circ}, 135.7^{\circ}, 149.9^{\circ}, 149.9^{\circ}, 148.9^{\circ}, 135.7^{\circ}, 149.9^{\circ}, 149.9^{\circ},$ $134.9^{*}, 134.7^{*}, 134.6^{\$}, 128.8^{\$}, 128.7^{*}, 128.7^{*}, 128.5^{\$}, 128.5^{*}, 128.2^{*}, 128.2^{\$}, 121.5^{\$}, 128.2^{\$}, 121.5^{\$}, 128.2^{\$}, 121.5^{\$}, 128.2^{\ast}, 128.2^{\ast}$ $121.2^{*}, 119.1^{\$}, 118.1^{*}, 108.1^{\$}, 107.7^{*}, 92.4^{\$}, 91.4^{*}, 67.6^{*}, 66.9^{\$}, 61.1^{*}, 60.2^{\$}, 52.3^{\$},$

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 50 49.7*, 43.8*, 41.4[§], 36.5*, 34.3[§], 23.0[§], 22.7*, 22.7*, 22.4[§]; IR (NaCl/thin film): 3032, 2962, 2877, 1745, 1661, 1609, 1489, 1390, 1175, 1117, 744 cm⁻¹; $[\alpha]_{D}^{25} = -66.9^{\circ}$ (c = 0.98, DCM). HRMS (ESI) calc'd for [M+H]⁺ 365.1865, found 365.1875.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 82% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm P}$ (major) = 11.1 min $t_{\rm P}$ (minor) = 12.6 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 3.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.36 – 7.28 (m, 3H*, 3H§), 7.23 – 7.20 (m, 2H§), 7.19 – 7.15 (m, 2H*), 7.12 (td, J $= 7.7, 1.3 \text{ Hz}, 11^{\$}$, 7.08 (td, $J = 7.7, 1.3 \text{ Hz}, 11^{\$}$), 7.01 (dd, $J = 7.3, 0.9 \text{ Hz}, 11^{\$}$), 6.98 $(dd, J = 7.3, 0.9 Hz, 1H^*)$, 6.69 $(td, J = 7.4, 0.9 Hz, 1H^{\$})$, 6.64 $(td, J = 7.4, 0.9 Hz, 1H^*)$, 6.36 (d, J = 7.8 Hz, 1H[§]), 6.28 (d, J = 7.8 Hz, 1H^{*}), 5.56 (s, 1H^{*}), 5.09 (s, 1H[§]), 5.05 (dd, $J = 9.0, 6.0 \text{ Hz}, 1\text{H}^{\$}$, 4.92 (d, $J = 12.4 \text{ Hz}, 1\text{H}^{\$}$), 4.88 (d, $J = 12.4 \text{ Hz}, 1\text{H}^{\$}$), 4.69 (d, J = 12.4 Hz, 1HZ, 1HZ,12.2 Hz, 1H*), 4.55 (d, J = 12.2 Hz, 1H*), 4.51 (dd, J = 8.5, 1.9 Hz, 1H*), 2.93 (s, 3H*), 2.81 (s, $3H^{\$}$), 2.73 (dd, J = 12.8, 1.8 Hz, 1H*), 2.37 (dd, J = 13.0, 6.0 Hz, $1H^{\$}$), 2.33 (dd, $J = 12.8, 8.5 \text{ Hz}, 1\text{H}^{\$}$, 2.31 (s, 3H[§]), 2.26 (dd, $J = 13.0, 9.0 \text{ Hz}, 1\text{H}^{\$}$), 2.05 (s, 3H^{*}), 1.42 (s, $3H^{\$}$), 1.41 (s, $3H^{\ast}$); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 3.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by $\delta 170.8^*$, 170.5*, 169.6[§], 150.4*, 148.9[§], 135.5[§], 134.9*, 133.1[§], 132.5*, 128.8*, 128.6[§], 128.5*, $128.4^{\$}, 128.4^{*}, 128.2^{*}, 128.1^{\$}, 128.0^{\$}, 122.4^{*}, 121.8^{\$}, 118.0^{\$}, 117.2^{*}, 106.5^{\$}, 105.7^{*}$ $91.3^{\$}, 86.5^{*}, 67.3^{*}, 66.7^{\$}, 61.3^{*}, 59.3^{\$}, 52.3^{\$}, 50.8^{*}, 42.6^{*}, 41.8^{\$}, 32.3^{*}, 31.6^{\$}, 24.8^{*}, 31.6^{\$}, 24.8^{*}, 31.6^{\$}, 32.3^{*}, 31.6^{\$}, 32.3^{*}, 31.6^{\$}, 32.3^{*}, 31.6^{\$}, 32.3^{*}, 31.6^{\$}, 32.3^{*}, 31.6^{\$}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 32.3^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 31.6^{*}, 32.3^{*}, 32.3^{*}, 32.3^{*}, 32.3^{*}, 32.3^{*}, 32.3^{*}, 32.3^{*}, 32.3$ 22.7[§], 22.5^{*}, 21.9[§]; IR (NaCl/thin film): 2956, 1741, 1656, 1608, 1493, 1404, 1301, 1219, 1194, 1152, 1105, 992, 743 cm⁻¹; $[\alpha]_D^{25} = +114.4^{\circ}$ (*c* = 0.57, DCM). HRMS (ESI) calc'd for [M+H]⁺ 365.1865, found 365.1862.

Pyrroloindoline 96.

Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 94%. $t_{\rm R}({\rm major}) = 12.5 \, {\rm min} \, t_{\rm R}({\rm minor}) = 10.7 \, {\rm min}.$ ¹H NMR (500 MHz, CDCl₃; compound exists as a 2.6:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 7.53-7.36 (m, 5H*, 5H[§]), 7.23 (br t, $J = 7.6 \, {\rm Hz}, 1{\rm H}^*, 1{\rm H}^{\rm §})$, 7.11 (br d, $J = 6.7 \, {\rm Hz}, 1{\rm H}^{\rm §}$), 7.07 (br d, $J = 7.2 \, {\rm Hz}, 1{\rm H}^*$), 6.93 – 6.86 (m, 1H[§]), 6.83 (br t, $J = 7.3 \, {\rm Hz}, 1{\rm H}^*$), 6.64 (br d, $J = 7.3 \, {\rm Hz}, 1{\rm H}^{\rm §}$), 6.57 (br d, $J = 7.8 \, {\rm Hz}, 1{\rm H}^*$), 5.69 (s, 1H*), 5.42 (s, 1H[§]), 5.36 – 5.21 (m, 2H*, 2H[§]), 4.82 (br d, $J = 9.2 \, {\rm Hz}, 1{\rm H}^*$), 4.57 (m, 1H[§]), 3.14 (br s, 3H*), 2.94 (br s, 3H[§]), 2.60 (br dd, $J = 13.3, 9.7 \, {\rm Hz}, 1{\rm H}^*$), 2.60 – 2.52 (m, 1H[§]), 2.41 (br d, $J = 14.7 \, {\rm Hz}, 1{\rm H}^*$), 2.12 (br dd, $J = 12.7, 6.0 \, {\rm Hz}, 1{\rm H}^{\rm §}$), 1.54 (s, 3H[§]), 1.34 (s, 3H*); ¹³C NMR (100 MHz, CDCl₃; compound exists as a 2.6:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 171.9*, 169.6[§], 158.9 (q, $J_{CF} = 37.0 \, {\rm Hz}$)*, 157.3 (q, $J_{CF} = 38.1 \, {\rm Hz}$)[§], 149.2*, 149.0[§], 135.1[§], 134.5*, 134.2*, 134.0[§], 128.6*, 128.6*, 128.6*, 128.4^{§}, 128.4^{§}, 128.2^{§}, 128.1^{§}, 121.3*, 119.8^{§}, 188.5*, 116.0 (q, $J_{CF} = 38.1 \, {\rm Hz}$)*

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 52 288.6 Hz)*, 109.3[§], 107.8^{*}, 93.1^{*}, 91.6[§], 67.8^{*}, 67.1[§], 61.2[§], 60.2 (q, $J_{CF} = 2.44$ Hz)*, 52.9[§], 49.0^{*}, 43.6^{*}, 40.2[§], 36.5^{*}, 34.2[§], 23.1^{*}, 22.5[§]; IR (NaCl/thin film): 3034, 2966, 1747, 1695, 1610, 1490, 1456, 1432, 1188, 1156, 745 cm⁻¹; $[\alpha]_{D}^{25}$ -90.1° (c = 1.11, DCM); HRMS (FAB+) calc'd for [M+H]⁺ 419.1583, found 419.1562.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 91%. $t_{\rm R}$ (major) = 5.8 min $t_{\rm R}$ (minor) = 5.0 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 10.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.43 – 7.30 (m, 3H*, 3H§) 7.22 (dd, J = 6.8, 2.8 Hz, 1H§), 7.20-7.09 (m, $2H^{\$}$, $1H^{\$}$), 7.04 (d, J = 7.3 Hz, $1H^{\$}$), 7.00 (d, J = 7.3 Hz, $1H^{\$}$), 6.78 – 6.72 (m, $1H^{\$}$), 6.68 $(t, J = 7.4 \text{ Hz}, 1\text{H}^*), 6.36 \text{ (d}, J = 7.8 \text{ Hz}, 1\text{H}^{\$}), 6.27 \text{ (d}, J = 7.8 \text{ Hz}, 1\text{H}^*), 5.60 \text{ (s}, 1\text{H}^*),$ 5.32 (s, 1H[§]), 5.14 (dd, J = 9.5, 4.9 Hz, 1H[§]), 5.04 (d, J = 12.4 Hz, 1H[§]), 4.94 (d, J = 12.4Hz, $1H^{\$}$), 4.79 (d, J = 8.1 Hz, $1H^{*}$), 4.63 (d, J = 12.1 Hz, $1H^{*}$), 4.36 (d, J = 12.1 Hz, 1H*), 2.95 (s, 3H*), 2.85 (d, J = 12.9 Hz, 1H*), 2.65 (s, 3H[§]), 2.46 (dd, J = 13.3, 5.3 Hz, $1H^{\$}$), 2.39 (dd, J = 13.0, 8.4 Hz, $1H^{\ast}$), 2.28 (dd, J = 13.3, 9.7 Hz, $1H^{\$}$), 1.46 (s, $3H^{\ast}$), 1.43 (s, $3H^{\$}$); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 10.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 169.3, 169.2^{*} , 156.9 (q, $J_{C-F} = 36.7 \text{ Hz})^{\$}$, 150.3*, 148.5^{\\$}, 135.2^{\\$}, 134.6*, 133.1^{\\$}, 131.8*, 129.1*, 128.7[§], 128.5[§], 128.44*, 128.40*, 128.3*, 128.2[§], 122.5*, 121.6[§], 118.6[§], 117.7*, 116.1 (q, J=288.8)*, 107.0[§], 105.9*, 90.9[§], 88.6*, 67.6*, 67.2[§], 60.5[§], 60.3 (q, J_{C-F} = 3.1 Hz)*, 52.2[§], 50.4*, 42.9*, 41.1[§], 32.0*, 29.7[§], 25.2*, 22.3[§]; IR (NaCl/thin film): 3034, 2960, 1752, 1741, 1697, 1609, 1494, 1442, 1211, 1149, 742 cm⁻¹; $[\alpha]_{D}^{25}$ +187.7° (c = 0.78, DCM); HRMS (FAB+) calc'd for [M+H]⁺ 418.1504, found 418.1517.

Pyrroloindoline 98a.

Prepared from 5-methoxy-1,3-dimethyl-1*H*-indole³⁹ and benzyl 2trifluoroacetamidoacrylate using general procedure C. The reaction was allowed to run for 4 h. The crude residue was purified by flash chromatography (5 \rightarrow 10% ethyl acetate/hexanes) to yield 83.1 mg (93% yield) of **98a** in a 3:1 ratio of diastereomers (determined by HPLC analysis of the purified product). The diastereomers were separated by preparatory HPLC $(0\rightarrow 10\%$ ethyl acetate/hexanes). The enantiomeric excesses of both diastereomers were determined by chiral HPLC analysis (OD-H, 1

mL/min, 10% IPA in hexanes, $\lambda = 254$ nm).

Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 93%. $t_{\rm R}$ (major) = 11.3 min $t_{\rm R}$ (minor) = 9.9 min. ¹H NMR (400 MHz, CDCl₃; compound exists as a 1.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.46 – 7.29 (m, 5H*, 5H§), 6.72 (d, J = 8.4 Hz, 1H*, 1H§), 6.63 (d, J =13.4 Hz, 1H*, 1H[§]), 6.55 (d, J = 8.4 Hz, 1H[§]), 6.44 (d, J = 8.5 Hz, 1H*), 5.53 (br s, 1H*), 5.24 (br s, 2H*, 1H[§]), 5.19 (br s, 2H[§]), 4.76 (br d, J = 9.3 Hz, 1H*), 4.44 (t, J = 7.8 Hz, $1H^{\$}$), 3.75 (br s, $3H^{\$}$, $3H^{\$}$), 3.04 (br s, $3H^{\$}$), 2.86 (br s, $3H^{\$}$), 2.61 – 2.48 (m, $1H^{\$}$, $1H^{\$}$), 2.31 (d, J = 13.4 Hz, 1H*), 2.09 – 1.99 (m, 1H[§]), 1.45 (br s, 3H[§]), 1.26 (br s, 3H*); ¹³C NMR (100 MHz, $CDCl_3$; compound exists as a 1.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.0*, 169.9[§], 159.0* (q, J_{C-H} = 36.8 Hz), 154.7[§], 153.6^{*}, 143.7^{*§}, 135.8[§], 135.8^{*}, 135.2[§], 134.6^{*}, 128.8[§], 128.8^{*}, 128.7^{*}, $128.6^{\$}, 128.4^{\$}, 128.3^{*}, 116.1^{*}$ (q, $J_{CF} = 288.6$ Hz), $113.4^{\$}, 113.1^{*}, 111.5^{*}, 109.0^{*},$ $108.8^{\$}, 94.2^{*}, 92.4^{\$}, 68.1^{*}, 67.3^{\$}, 61.2^{\$}, 60.4^{*}, 55.9^{*}, 53.6^{\$}, 49.3^{\$}, 43.8^{*}, 39.9^{\$}, 38.1^{*},$
991, 754 cm⁻¹; $[\alpha]_D^{25} = -78.1^{\circ}$ (*c* 1.07, DCM); HRMS (ESI) calc'd for $[M+H]^+$ 449.1683, found 449.1676.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 92%. $t_{\rm R}$ (major) = 6.6 min $t_{\rm R}$ (minor) = 7.4 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 6.1:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.37 – 7.29 (m, 3H*, 3H§), 7.24 – 7.21 (m, 2H§), 7.19 – 7.12 (m, 2H*), 6.68 (dd, J = 8.4, 2.5 Hz, 1H*, 1H[§]), 6.67 (d, J = 2.5 Hz, 1H[§]), 6.63 (d, J = 2.5 Hz, 1H*), 6.31 - 6.26 (m, $1H^{\$}$), 6.19 (d, J = 8.4 Hz, $1H^{\$}$), 5.57 (s, $1H^{\$}$), 5.22 (br d, J = 1.8 Hz, 1H§), 5.13 (dd, J = 9.7, 5.3 Hz, 1H[§]), 5.07 (d, J = 12.3 Hz, 1H[§]), 4.97 (d, J = 12.3 Hz, $1H^{\$}$), 4.78 (d, J = 8.4 Hz, $1H^{*}$), 4.66 (d, J = 12.1 Hz, $1H^{*}$), 4.46 (d, J = 12.1 Hz, $1H^{*}$), 3.75 (s, $3H^{\$}$), 3.72 (s, $3H^{*}$), 2.92 (s, $3H^{*}$), 2.81 (d, J = 13.0 Hz, $1H^{*}$), 2.59 (d, J = 1.3 Hz, $3H^{\$}$), 2.45 (dd, J = 13.3, 5.3 Hz, $1H^{\$}$), 2.36 (dd, J = 13.0, 8.4 Hz, $1H^{\ast}$), 2.26 (dd, J = 13.0, 8.4 Hz, $1H^{\ast}$), 2.26 (dd, J = 13.0, J =13.3, 9.7 Hz, 1H[§]), 1.44 (s, 3H*), 1.40 (s, 3H[§]); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 6.1:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 169.4[§], 169.1^{*}, 156.9^{*} (q, J_{CF} = 36.7 Hz), 153.4[§], 152.8^{*}, 144.7^{*}, 142.7[§], $135.3^{\$}, 134.7^{*}, 134.5^{\$}, 133.2^{*}, 128.5^{*}, 128.4^{*}, 128.3^{*}, 128.3^{\$}, 128.1^{\$}, 116.2^{*}$ (q, J_{CF} = 288.8 Hz), 113.5*, 112.8[§], 110.0*, 109.4[§], 107.7[§], 106.4*, 91.6[§], 89.4*, 67.7*, 67.2[§], 60.5[§], 60.2^{*}, 56.0^{*}, 56.9[§], 52.2[§], 50.6^{*}, 42.8^{*}, 40.8[§], 32.6^{*}, 32.0[§], 25.1^{*}, 22.2[§]; IR (NaCl/thin film): 2957, 1750, 1697, 1500, 1446, 1282, 1210, 1157, 1031, 994, 850 cm⁻¹; $[\alpha]_{D}^{25} = +162.4^{\circ}$ (c 1.41, DCM); HRMS (ESI) calc'd for $[M+H]^{+}$ 449.1683, found 449.1682.

Pyrroloindoline 98b.

(b) endo diastereomer

Prepared from 5-fluoro-1,3-dimethyl-1*H*-indole **97b** and benzyl 2trifluoroacetamidoacrylate using general procedure C. The reaction was allowed to run for 5.5 h. The crude residue was purified by flash chromatography (5 \rightarrow 12% ethyl acetate/hexanes) to yield 53.0 mg (61% yield) of **98b** in a 3:1 ratio of diastereomers (determined by ¹H NMR analysis of the purified product). The diastereomers were

separated by preparatory HPLC ($0 \rightarrow 8\%$ ethyl acetate/hexanes). The enantiomeric excesses of both diastereomers were determined by chiral HPLC analysis (OD-H, 1 mL/min, 3% IPA in hexanes, $\lambda = 254$ nm).

Exo diastereomer: pale yellow oil. The ee was determined to be 93%. $t_{\rm R}$ (major) = 14.7 min $t_{\rm R}$ (minor) = 18.0 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 2.3:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 7.38 (br s, 5H*, 5H[§]), 6.85 (br t, J = 7.8 Hz, 1H*, 1H[§]), 6.75 (br s, 1H[§]), 6.71 (br d, J = 7.8 Hz, 1H*), 6.50 (br s, 1H[§]), 6.39 (dd, J = 8.4, 3.8 Hz, 1H*), 5.58 (br s, 1H*), 5.34 – 5.16 (m, 2H*, 3H[§]), 4.75 (br d, J = 9.3 Hz, 1H*), 4.47 (br t, J = 6.8 Hz, 1H[§]), 3.04 (br s, 3H*), 2.85 (br s, 3H[§]), 2.55 (dd, J = 13.2, 9.9 Hz, 1H*), 2.55 – 2.45 (m, 1H[§]), 2.31 (br d, J = 13.4 Hz, 1H*), 2.10 – 1.97 (m, 1H[§]), 1.45 (br s, 3H[§]), 1.24 (s, 3H*); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 2.3:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 171.9*, 169.7[§], 159.1* (q, $J_{CF} = 37.1$ Hz), 157.0* (d, $J_{CF} = 236.5$ Hz), 145.6*, 145.4[§], 135.7* (d, $J_{CF} = 7.3$ Hz), 135.1[§], 134.6*, 128.9*, 128.8*, 128.7*, 128.6[§], 128.5[§], 128.4[§], 116.2* (q, $J_{CF} = 267.0$ Hz), 114.9[§], 114.7* (d, $J_{CF} = 23.0$ Hz), 110.5[§], 109.3* (d, $J_{CF} = 24.3$ Hz), 108.6* (d, $J_{CF} = 7.8$ Hz), 93.9*,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 56 92.2[§], 68.2^{*}, 67.5[§], 61.3[§], 60.3^{*}, 53.2[§], 49.2^{*}, 43.7^{*}, 40.1[§], 37.6^{*}, 35.6[§], 23.3^{*}, 22.9[§]; IR (NaCl/thin film): 2966, 1748, 1698, 1495, 1434, 1350, 1270, 1157, 994, 843 cm⁻¹; [α]_D²⁵ $=-81.7^{\circ}$ (c 1.14, DCM); HRMS (ESI) calc'd for [M+H]⁺ 437.1483, found 437.1476.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 90%. $t_{\rm R}$ (major) = 9.1 min $t_{\rm R}$ (minor) = 10.5 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 9.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.37 – 7.30 (m, 3H*, 3H§), 7.24 – 7.20 (m, 2H§), 7.18 – 7.12 (m, $2H^*$), 6.83 – 6.74 (m, 1H*, 2H[§]), 6.71 (dd, J = 8.0, 2.6 Hz, 1H*), 6.23 (dd, J = 8.5, 4.0Hz, $1H^{\$}$), 6.14 (dd, J = 8.5, 4.0 Hz, $1H^{\ast}$), 5.60 (s, $1H^{\ast}$), 5.29 (d, J = 1.7 Hz, $1H^{\$}$), 5.14 $(dd, J = 9.6, 5.0 \text{ Hz}, 1\text{H}^{\$}), 5.06 (d, J = 12.2 \text{ Hz}, 1\text{H}^{\$}), 4.97 (d, J = 12.2 \text{ Hz}, 1\text{H}^{\$}), 4.79 (d, J = 12.2 \text{Hz}, 1\text{H}^{\$}), 4.79$ J = 8.5 Hz, 1H*, 4.70 (d, J = 12.0 Hz, 1H*), 4.50 (d, J = 12.1 Hz, 1H*), 2.93 (s, 3H*), 2.78 (d, J = 13.1 Hz, 1H*), 2.60 (d, J = 1.3 Hz, 3H[§]), 2.45 (dd, J = 13.3, 5.0 Hz, 1H[§]), 2.37 (dd, J = 13.1, 8.5 Hz, 1H*), 2.26 (dd, J = 13.4, 9.7 Hz, 1H[§]), 1.44 (s, 3H*), 1.41 (s, 3H[§]); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 9.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 169.2 δ , 169.0*, 156.9* (q, $J_{CF} = 36.7 \text{ Hz}$, 156.3* (q, $J_{CF} = 235.3 \text{ Hz}$), 146.5*, 144.7[§], 135.2[§], 134.5*, 133.3* (d, J_{CF}) = 7.2 Hz), 128.5*, 128.4*, 128.2[§], 116.1* (q, J_{C-F} = 288.6 Hz), 115.0* (d, J_{C-F} = 23.0 Hz), 114.5[§] (d, $J_{C-F} = 23.1$ Hz), 110.2^{*} (d, $J_{C-F} = 24.4$ Hz), 109.6^{*} (d, $J_{C-F} = 24.6$ Hz), 107.3[§] (d, $J_{C-F} = 7.7$ Hz), 106.0* (d, $J_{C-F} = 7.9$ Hz), 91.3[§], 89.1*, 67.8*, 67.3[§], 60.4[§], 60.2*, 52.2[§], 50.4*, 42.8[§], 40.9[§], 32.4*, 31.5[§], 25.1*, 22.3[§]; IR (NaCl/thin film): 2961, 1749, 1698, 1498, 1439, 1270, 1207, 1157, 995, 852, 752 cm⁻¹; $[\alpha]_D^{25} = +156.8^\circ$ (c 1.16, DCM); HRMS (ESI) calc'd for [M+H]⁺ 437.1483, found 437.1490.

Pyrroloindoline 98c.

(b) endo diastereomer

Prepared from 5-methyl-1,3-dimethyl-1*H*-indole (97c) and benzyl 2trifluoroacetamidoacrylate using general procedure C. The reaction was allowed to run for 4 h. The crude residue was purified by flash chromatography $(5 \rightarrow 15\%)$ ethyl acetate/hexanes) to yield 72.9 mg (84% yield) of **98c** in a 5:1 ratio of diastereomers (determined by ¹H NMR analysis of the purified product). The diastereomers were separated by preparatory HPLC ($0 \rightarrow 10\%$ ethyl acetate/hexanes).

Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 94% by chiral SFC analysis (OJ-H, 2.5 mL/min, 2% IPA in CO₂, $\lambda = 254$ nm): t_{R} (major) = 20.5 min $t_{\rm R}$ (minor) = 16.6 min. ¹H NMR (400 MHz, CDCl₃; compound exists as a 2.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 7.39 (br s, 5H*, 5H[§]), 6.97 (br d, J = 7.7 Hz, 1H*, 1H[§]), 6.85 (br s, 1H[§]), 6.81 (br s, 1H*), 6.50 (br d, J = 7.6 Hz, 1H[§]), 6.42 (br d, J = 7.9 Hz, 1H^{*}), 5.56 (br s, 1H^{*}), 5.32 – 5.15 (br m, 2H*, 3H[§]), 4.76 (br d, J = 9.3 Hz, 1H*), 4.47 (br t, J = 7.5 Hz, 1H[§]), 3.05 (br s, 3H*), 2.87 (br s, $3H^{\$}$), 2.61 – 2.46 (m, $1H^{\$}$, $1H^{\$}$), 2.30 (d, J = 21.3 Hz, $1H^{\$}$), 2.27 (s, $3H^{\$}$, $3H^{\$}$), 2.09 – 1.98 (br m, $1H^{\$}$), 1.45 (br s, $3H^{\$}$), 1.26 (s, $3H^{\$}$); ¹³C NMR (100 MHz, CDCl₃; compound exists as a 2.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.0*, 169.9[§], 159.1* (q, J_{CF} = 36.8 Hz), 157.7[§] (q, J_{CF} = 37.9 Hz, $147.3^{\$\$}$, $135.2^{\$}$, $134.6^{\$}$, $134.5^{\$}$, $134.4^{\$}$, $129.7^{\$}$, $129.2^{\$}$, $129.0^{\$}$, $128.8^{\$}$, $128.8^{*}, 128.7^{*}, 128.6^{*}, 128.4^{*}, 128.2^{\$}, 122.3^{*\$}, 116.1^{*}$ (q, $J_{CF} = 288.7$ Hz), $110.0^{\$}$, $108.2^*, 93.8^*, 92.1^{\$}, 68.0^*, 67.3^{\$}, 61.4^{\$}, 60.4^*, 53.3^{\$}, 49.2^*, 43.9^*, 40.2^{\$}, 37.4^*, 35.6^{\$},$ 23.4*, 23.2[§], 20.7*[§]; IR (NaCl/thin film): 2965, 1748, 1697, 1499, 1456, 1433, 1348, 1194, 1153, 992, 754 cm⁻¹; $[\alpha]_D^{25} = -87.1^\circ$ (c 0.90, DCM); HRMS (APCI) calc'd for

[M+H]⁺ 433.1734, found 433.1713.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 91% by chiral HPLC analysis (OD-H, 1 mL/min, 3% IPA in hexanes, $\lambda = 254$ nm): $t_{\rm P}$ (major) = 6.5 min $t_{\rm P}$ (minor) = 7.3 min. ¹H NMR (300 MHz, CDCl₃; compound exists as a 6.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.40 – 7.29 (m, 3H*, 3H[§]), 7.23 – 7.18 (m, 2H[§]), 7.18 – 7.10 (m, 2H*), 6.96 – 6.84 (m, 1H*, 2H[§]), 6.81 (br s, 1H*), 6.27 (d, J = 7.9 Hz, 1H[§]), 6.18 (d, J = 7.9 Hz, 1H*), 5.57 (s, 1H*), 5.25 (br d, J = 1.9 Hz, 1H[§]), 5.12 (dd, J = 9.6, 5.4 Hz, 1H[§]), 5.05 (d, J = 12.4Hz, $1H^{\$}$), 4.94 (d, J = 12.2 Hz, $1H^{\$}$), 4.78 (d, J = 8.4 Hz, $1H^{\ast}$), 4.63 (d, J = 12.2 Hz, 1H*), 4.41 (d, J = 12.2 Hz, 1H*), 2.92 (s, 3H*), 2.82 (d, J = 13.0 Hz, 1H*), 2.61 (d, J = 13.0 Hz, 2.61 (d, J = 13.0 Hz, 2.61 (d, J = 13.0 Hz, 2.61 (d, J = 13.0 (d, J 1.4 Hz, $3H^{\$}$), 2.44 (dd, J = 13.3, 5.3 Hz, $1H^{\$}$), 2.37 (dd, J = 13.0, 8.4 Hz, $1H^{\ast}$), 2.26 (s, $3H^{\$}$), 2.23 (s, $3H^{*}$), 1.44 (s, $3H^{*}$), 1.41 (s, $3H^{\$}$); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 6.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 169.4§, 169.2*, 156.9* (q, J_{CF} = 36.6 Hz), 148.2*, 135.3§, 134.7*, 133.3§, 132.0*, 129.3*, 128.9[§], 128.5[§], 128.5*, 128.4*, 128.3[§], 128.2*, 128.1[§], 126.9*[§], 123.2*, $122.5^{\$}, 116.2^{\ast}$ (q, $J_{C-F} = 288.8$ Hz), $107.0^{\$}, 105.9^{\ast}, 91.3^{\$}, 89.0^{\ast}, 67.6^{\ast}, 67.2^{\$}, 60.5^{\$}, 61.5^{\ast}, 61$ 60.2*, 52.2[§], 50.4*, 42.9*, 41.1[§], 32.2*, 31.4[§], 25.2*[§], 22.2[§], 20.7*; IR (NaCl/thin film): 2958, 1752, 1698, 1619, 1505, 1443, 1210, 1158, 995, 851, 752 cm⁻¹; $[\alpha]_{D}^{25} = +176.4^{\circ}$ (c 0.97, DCM); HRMS (ESI) calc'd for [M+H]⁺ 433.1734, found 433.1737.

Pyrroloindoline 98d.

(b) endo diastereomer

Prepared from 5-bromo-1,3-dimethyl-1*H*-indole (**97d**) and benzyl 2trifluoroacetamidoacrylate using general procedure C, in DCE with 1.6 equivalents SnCl₄. The reaction was allowed to run for 57 h. The crude residue was purified by flash chromatography ($0 \rightarrow 5\%$ ethyl acetate/hexanes) to yield 50 mg (51% yield) of **98d** in a 3:1 ratio of diastereomers (determined by ¹H NMR analysis of the pure product).

The diastereomers were separated by prepatory HPLC ($0 \rightarrow 10\%$ ethyl acetate/hexanes).

Exo diastereomer: The enantiomeric excess was determined to be 87% by chiral HPLC analysis (OD-H, 2.5 mL/min, 5% IPA in hexanes, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 14.7 min $t_{\rm R}$ (minor) = 12.5 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 3.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 7.38 (br s, 5H*, 5H[§]), 7.24 (br d, J = 8.3 Hz, 1H*, 1H[§]), 7.11 (br s, 1H[§]), 7.05 (br s, 1H*), 6.41 (br d, J = 7.1 Hz, $1H^{\$}$), 6.35 (br d, J = 8.3 Hz, $1H^{\$}$), 5.60 (br s, $1H^{\$}$), 5.34 (br s, $1H^{\$}$), 5.28 – 5.15 (m, 2H*, 2H^{\\$}), 4.74 (br d, J = 9.0 Hz, 1H*), 4.50 (br t, J = 7.0 Hz, $1H^{\$}$), 3.03 (br s, 3H*), 2.83 (br s, 3H[§]), 2.53 (br dd, J = 12.9, 10.2 Hz, 1H*), 2.47 (br t, J = 11.1 Hz, 1H[§]), 2.30 (br d, J = 13.4 Hz, 1H^{*}), 2.02 (br dd, J = 12.2, 6.5 Hz, 1H[§]), 1.45 (br s, 1H[§]), 1.23 (br s, 3H*); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 3.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ $171.9^{\circ}, 169.6^{\circ}, 159.18 \text{ (g}, J_{C-F} = 37.1 \text{ Hz})^{\circ}, 157.42 \text{ (d}, J_{C-F} = 39.7 \text{ Hz})^{\circ}, 148.4^{\circ}, 148.0^{\circ},$ $136.4^{\$}, 136.2^{\$}, 135.0^{\$}, 134.5^{\$}, 131.5^{\$}, 131.4^{\ast}, 128.9^{\ast}, 128.8^{\ast}, 128.7^{\ast}, 128.4^{\$}, 124.7^{\ast}, 124.7^{\ast}, 128.9^{\ast}, 128.8^{\ast}, 128.7^{\ast}, 128.4^{\ast}, 124.7^{\ast}, 128.4^{\ast}, 128.7^{\ast}, 128.4^{\ast}, 128.4^{\ast}$ 116.0 (q, $J_{C-F} = 288.5 \text{ Hz}$)*, 111.5[§], 110.5*, 110.2[§], 109.4*, 93.1*, 91.5[§], 68.2*, 67.5[§], 61.4[§], 60.2^{*}, 52.9[§], 49.1^{*}, 43.7^{*}, 40.4[§], 36.7^{*}, 33.9[§], 23.2^{*}, 22.3[§]; IR (NaCl/thin film):

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 60 $3034, 2965, 2931, 1747, 1698, 1602, 1489, 1205, 1154, 806, 751 \text{ cm}^{-1}; [\alpha]_{\text{D}}^{25}-86.4^{\circ}$ (c = 0.60, DCM); HRMS (FAB+) calc'd for [M+H]⁺ 498.0589, found 498.0576.

Endo diastereomer: The enantiomeric excess was determined to be 85% by chiral HPLC analysis (OD-H, 2.5 mL/min, 5% IPA in hexanes, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.3 min $t_{\rm p}$ (minor) = 8.1 min. ¹H NMR (400 MHz, CDCl₃; compound exists as a 12.5:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 7.39 - 7.30 (m, $3H^*$, $3H^{\$}$), 7.23 - 7.13 (m, $3H^*$, $3H^{\$}$), 7.11 (s, $1H^{\$}$), 7.08 (s, $1H^{\ast}$), 6.19 $(d, J = 8.5 \text{ Hz}, 1\text{H}^{\$}), 6.13 (d, J = 8.3 \text{ Hz}, 1\text{H}^{\$}), 5.59 (s, 1\text{H}^{\$}), 5.33 (s, 1\text{H}^{\$}), 5.14 (dd, J = 8.3 \text{ Hz}, 1\text{H}^{\$}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (dd, J = 8.3 \text{ Hz}), 5.59 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.14 (s, 100 \text{ Hz}), 5.33 (s, 100 \text{ Hz}), 5.34 (s, 10$ $10.0, 4.9 \text{ Hz}, 11^{\$}$, 5.06 (d, J=11.9 Hz, 1H^{\$}), 4.93 (dd, J = 11.9 Hz, 1H^{\$}), 4.79 (d, J = 8.4 Hz, 1H*), 4.64 (d, J = 12.0 Hz, 1H*), 4.56 (d, J=12.0, 1H*), 2.94 (s, 3H*), 2.78 (d, J =13.2 Hz, 1H^{*}), 2.61 (s, 3H[§]), 2.45 (dd, J = 13.7, 3.9 Hz, 1H[§]), 2.37 (dd, J = 13.1, 8.4 Hz, 1H*), 2.26 (dd, J = 14.3, 9.9 Hz, 1H[§]), 1.44 (s, 3H*), 1.41 (s, 3H[§]); ¹³C NMR (125 MHz, $CDCl_3$; compound exists as a 12.5:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 169.0*, 156.9 (q, $J_{C-F} = 37.0 \text{ Hz}$)*, 149.4*, 134.4*, $134.2^{*}, 131.8^{*}, 131.4^{\$}, 125.5^{*}, 124.9^{\$}, 116.1(q, J_{C-F} = 288.6 \text{ Hz})^{*}, 108.9^{*}, 108.3^{\$},$ $107.5^{\$}, 107.3^{*}, 90.6^{\$}, 88.5^{*}, 67.9^{*}, 67.4^{\$}, 60.4^{\$}, 60.2^{*}, 50.4^{*}, 42.8^{*}, 41.1^{\$}, 32.1^{*}, 25.3^{*},$ 22.5[§]; IR (NaCl/thin film): 3034, 2962, 2930, 1749, 1698, 1602, 1493, 1442, 1261, 1211, 1151, 804, 750 cm⁻¹; $[\alpha]_{D}^{25}$ + 156.3° (c = 0.24, DCM) ; HRMS (FAB+) calc'd for [M+H]⁺ 498.0589, found 498.0606.

Pyrroloindoline 98e.

Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 94%. $t_{\rm R}({\rm major}) = 14.5 \, {\rm min} \, t_{\rm R}({\rm minor}) = 12.9 \, {\rm min}. \, {}^{1}{\rm H} \, {\rm NMR}$ (500 MHz, CDCl₃; compound exists as a 2.2:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by *) δ 7.40 (br s, 5H*, 5H*), 6.93 (br d, $J = 7.1 \, {\rm Hz}$, 1H*), 6.89 (br d, $J = 7.4 \, {\rm Hz}$, 1H*), 6.65 (br d, $J = 6.8 \, {\rm Hz}$, 1H*), 6.58 (br d, $J = 7.3 \, {\rm Hz}$, 1H*), 6.42 (br s, 1H*), 6.35 (br s, 1H*), 5.60 (br s, 1H*), 5.32 (br s, 1H*), 5.29 – 5.14 (m, 2H*, 2H*), 4.76 (br d, $J = 9.2 \, {\rm Hz}$, 1H*), 4.50 (br t, $J = 7.2 \, {\rm Hz}$, 1H*), 3.07 (br s, 3H*), 2.88 (br s, 3H*), 2.61 – 2.42 (m, 1H*, 1H*), 2.32 (br s, $J = 5.8 \, {\rm Hz}$, 4H*, 3H*), 2.10 – 1.98 (m, 1H*), 1.46 (s, 3H*), 1.27 (s, 3H*); ${}^{13}{\rm C} \, {\rm NMR} \, (125 \, {\rm MHz}, {\rm CDCl}_3;$ compound exists as a 2.2:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by *) δ 172.1*, 169.9*, 159.2* (q, $J_{\rm CF} = 37.0 \, {\rm Hz}$), 157.7* (q, $J_{\rm CF} = 38.4 \, {\rm Hz}$), 149.6*, 149.5*, 139.0*, 138.8*, 135.2*, 134.7*, 131.7*, 131.4*, 128.9*, 128.8*, 128.7*, 128.6*, 128.5*, 128.4*, 121.3*, 121.2*, 120.7*, 119.3*, 116.1* (q, $J_{\rm CF} = 288.4 \, {\rm Hz}$), 116.0* (q, $J_{\rm CF} = 286.5 \, {\rm Hz}$), 110.5*, 108.9*, 93.6*,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 62 $92.0^{\$}, 68.1^{\ast}, 67.4^{\$}, 61.5^{\$}, 60.5^{\ast}, 52.9^{\$}, 49.0^{\ast}, 43.9^{\ast}, 40.4^{\$}, 36.8^{\ast}, 34.7^{\$}, 23.5^{\ast}, 23.0^{\$},$ 21.7*[§]; IR (NaCl/thin film): 2964, 1748, 1697, 1616, 1499, 1456, 1423, 1160, 1004, 752 cm⁻¹; $[\alpha]_{D}^{25} = -85.6^{\circ}$ (c 0.93, DCM); HRMS (EI+) calc'd for M^{+•} 432.1661, found 432.1663.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 90%. $t_{\rm R}$ (major) = 7.8 min $t_{\rm R}$ (minor) = 8.3 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 9.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.38 – 7.29 (m, 3H*, 3H§), 7.21 (dd, J = 6.6, 2.9 Hz, 2H§), 7.16 – 7.10 (m, 2H*), 6.92 (d, J = 7.4 Hz, 1H[§]), 6.86 (d, J = 7.4 Hz, 1H*), 6.55 (d, J = 7.4 Hz, 1H[§]), 6.49 (dd, J = 7.4, 0.6 Hz, 1H*), 6.17 (s, 1H[§]), 6.06 (s, 1H*), 5.57 (s, 1H*), 5.28 (d, J =1.9 Hz, 1H[§]), 5.12 (dd, J = 9.6, 5.2 Hz, 1H[§]), 5.03 (d, J = 12.3 Hz, 1H[§]), 4.95 (d, J = 12.3Hz, $1H^{\$}$), 4.78 (d, J = 8.4 Hz, $1H^{*}$), 4.67 (d, J = 12.1 Hz, $1H^{*}$), 4.33 (d, J = 12.2 Hz, 1H*), 2.91 (s, 3H*), 2.82 (d, J = 12.9 Hz, 1H*), 2.62 (d, J = 1.4 Hz, 3H[§]), 2.43 (dd, J =13.3, 5.2 Hz, 1H[§]), 2.36 (dd, J = 12.9, 8.3 Hz, 1H^{*}), 2.30 (s, 3H[§]), 2.28 (s, 3H^{*}), 2.24 $(dd, J = 13.3, 9.6 \text{ Hz}, 11^{\$})$, 1.43 (s, 3H*), 1.40 (s, 3H^{\\$}); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 9.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 169.4§, 169.3*, 156.9* (q, $J_{CF} = 36.8$ Hz), 150.4*, 148.7§, 139.0*, 138.7[§], 135.2[§], 134.7*, 130.3[§], 129.0*, 128.5[§], 128.4*, 128.4*, 128.3[§], 128.2*, $122.3^{\circ}, 121.3^{\circ}, 119.1^{\circ}, 118.4^{\circ}, 116.2^{\circ}$ (q, $J_{CF} = 288.7$ Hz), $108.0^{\circ}, 106.8^{\circ}, 91.1^{\circ}, 88.9^{\circ}, 106.8^{\circ}, 91.1^{\circ}, 108.0^{\circ}, 106.8^{\circ}, 91.1^{\circ}, 108.0^{\circ}, 106.8^{\circ}, 91.1^{\circ}, 108.0^{\circ}, 106.8^{\circ}, 106.8^{\circ}$ 67.6*, 67.2[§], 60.5[§], 60.3*, 52.0[§], 50.2*, 42.9*, 41.1[§], 32.0*, 31.0[§], 25.3*[§], 22.4[§], 21.8*; IR (NaCl/thin film): 2923, 1740, 1698, 1612, 1501, 1440, 1214, 1150, 1011, 849, 746 cm⁻¹; $[\alpha]_{D}^{25} = +165.5^{\circ}$ (c 0.53, DCM); HRMS (ESI) calc'd for $[M+H]^{+}$ 433.1739, found 433.1756.

Pyrroloindoline 98f.

Prepared from 1-methyl-3-*t*-butyldimethylsiloxyethyl-1*H*-indole (**97f**) and benzyl 2-trifluoroacetamidoacrylate using general procedure C. The reaction was allowed to run for 20 h. The crude residue was purified by flash chromatography ($0 \rightarrow 5\%$ ethyl acetate/hexanes) to yield 61 mg (54% yield) of **98f** in a 6:1 ratio of diastereomers (determined by ¹H NMR analysis of the purified product). The

diastereomers were separated by preparatory HPLC ($0 \rightarrow 5\%$ ethyl acetate/hexanes).

Exo diastereomer: The enantiomeric excess was determined to be 92% by chiral HPLC analysis (OD-H, 1 mL/min, 0.6% EtOH in hexanes, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 10.7 min $t_{\rm R}$ (minor) = 12.1 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 1.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 7.38 (br s, 5H*, 5H[§]), 7.17 (t, J = 7.6 Hz, 1H*, 1H[§]), 7.00 (br d, J = 6.7 Hz, 1H*, 1H[§]), 6.87-6.78 (br m, 1H[§]), 6.76 (br t, J = 6.7 Hz, 1H^{*}), 6.59 (br d, J = 6.0 Hz, 1H[§]), 6.51 (br d, J = 7.4 Hz, 1H*), 5.89 (br s, 1H*), 5.79 (br s, 1H[§]), 5.30 – 5.10 (m, 2H*, 2H[§]), 4.61 (br s, 1H*), 4.32 (br s, 1H[§]), 3.60 (br d, J = 22.3 Hz, 2H[§]), 3.49 (br s, 2H*), 3.10 (s, 3H*), 2.94 (br s, $3H^{\$}$), 2.74 – 2.64 (m, 1H*), 2.63 – 2.52 (m, 1H[§]), 2.39 (br d, J = 10.1 Hz, 1H*), 2.18 (br t, J = 9.9 Hz, 1H[§]), 1.97 (br s, 2H[§]), 1.82 (br td, J = 13.6, 7.9 Hz, 2H*), 0.86 (br s, 9H*, 9H[§]), 0.02 – -0.06 (m, 6H*, 6H[§]); ¹³C NMR (100 MHz, CDCl₃; compound exists as a 1.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.0*, 169.9§, 159.0 (q, $J_{C-F} = 37.9 \text{ Hz}$)*, 157.7 (q, $J_{C-F} = 38.1$ Hz)[§], 150.5[§], 150.0^{*}, 135.2[§], 134.7^{*}, 131.7[§], 131.5^{*}, 128.8^{*§}, 128.6^{*§}, 128.4^{*§}, 122.4^{*§}, $119.9^{\$}$, 118.4^{*} , 116.0 (q, $J_{C-F} = 288.0$ Hz)*, $110.0^{\$}$, 108^{*} , 90.8^{*} , $89.5^{\$}$, 67.9^{*} , $67.3^{\$}$,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 64 $60.5^{\$}, 59.6^{*}, 56.4^{\$}, 52.3^{*}, 43.5^{*}, 39.9^{\$}, 39.1^{\$}, 39.0^{*}, 36.4^{*}, 35.7^{\$}, 25.8^{*}, 18.1^{\$}, -5.6^{*}$ IR (NaCl/thin film): 3035, 2955, 2930, 2857, 2884, 1750, 1694, 1492, 1432, 1257, 1201, 1158, 1106, 837 cm⁻¹; $[\alpha]_{D}^{25} = -95.3^{\circ}$ (c =1.38, DCM); HRMS (FAB+) calc'd for [M+H]⁺ 562.2475, found 562.2468.

Endo diastereomer: The enantiomeric excess was determined to be 90% by chiral HPLC analysis (AD-H, 1 mL/min, 0.5% EtOH in hexanes, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 6.5 min $t_{\rm p}(\text{minor}) = 5.8 \text{ min.}$ ¹H NMR (500 MHz, CDCl₃; compound exists as a 16.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ δ 7.38 - 7.29 (m, $3H^*$, $3H^{\$}$), 7.20 - 7.07 (m, $3H^*$, $3H^{\$}$), 6.96 (d, J = 7.2 Hz, $1H^*$, $1H^{\$}$), 6.69 (t, J = 7.5 Hz, $1H^{\$}$), 6.65 (t, J = 7.4 Hz, $1H^{\$}$), 6.27 (d, J = 8.2 Hz, $1H^{\$}$), 6.25 (d, J =7.9 Hz, 1H*), 5.90 (s, 1H[§]), 5.83 (s, 1H*), 5.12 (dd, J = 9.3, 3.0 Hz, 1H[§]), 4.86 (d, 12.2 Hz, 1H[§]), 4.79 (d, J = 12.2 Hz, 1H[§]), 4.77 (d, J = 8.2 Hz, 1H^{*}), 4.60 (d, J = 12.1 Hz, 1H*), 4.33 (d, J = 12.2 Hz, 1H*), 3.65 – 3.49 (m, 2H*, 2H[§]), 2.92 (s, 3H*), 2.88 (d, J =13.1 Hz, 1H*), 2.67 (s, 3H[§]), 2.58 (dd, J = 13.1, 3.3 Hz, 1H[§]), 2.49 (dd, J = 13.1, 8.4 Hz, 1H*), 2.28 (dd, $J = 13.7, 10.1 \text{ Hz}, 1\text{H}^{\$}$), 2.07 – 1.84 (m, 2H*, 2H[§]), 0.87 (s, 9H*), 0.80 (s, $9H^{\$}$), 0.00 (d, J = 4.0 Hz, $6H^{\ast}$), -0.09 (d, J = 13.9 Hz, $6H^{\$}$); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 16.7:1 mixture of rotamers, only the major rotamer is reported) δ 169.3, 156.8 (q, *J*_{C-F} = 37.9 Hz), 151.2, 134.7, 129.6, 129.2, 128.43, 128.37, 128.2, 123.5, 117.5, 116. 2 (q, $J_{C-F} = 289.0 \text{ Hz}$), 107.5, 105.9, 87.1, 67.5, 59.9, 59.4, 53.0, 42.2, 40.4, 31.9, 25.9, 18.2, -5.6 (*J* = 6.1 Hz); IR (NaCl/thin film): 3034, 2954, 2930, 2857, 1742, 1699, 1609, 1494, 1441, 1255, 1207, 1146, 1104, 837, 745 cm⁻¹; $[\alpha]_{D}^{25}$ +148.5° (c = 0.33, DCM); HRMS (FAB+) calc'd for [M+H]⁺ 562.2475, found 562.2458.

Pyrroloindoline 98g.

Prepared from 9-methyl-2,3,4,9-tetrahydro-1*H*-carbazole ⁴⁰ and benzyl 2trifluoroacetamidoacrylate using general procedure C. The reaction was allowed to run for 11 h. The crude residue was purified by flash chromatography $(5\rightarrow 20\%$ ethyl acetate/hexanes) to yield 60 mg (65% yield) of **98g** in a >18:1 ratio of diastereomers (determined by ¹H NMR analysis of the pure product). The diastereomers were separated by prep HPLC (0 \rightarrow 10% ethyl acetate/hexanes).

Exo diastereomer: pale yellow oil. The oil was crystallized from ethyl acetate/hexanes to give crystals suitable for single crystal X-ray diffraction. The enantiomeric excess was determined to be 86% by chiral SFC analysis (OJ-H, 2.5 mL/min, 6% IPA in hexanes, $\lambda = 254$ nm): $t_R(major) = 4.5$ min $t_R(minor) = 6.9$ min. ¹H NMR (300 MHz, CDCl₃; compound exists as a >20:1 mixture of rotamers) δ 7.44 – 7.29 (m, 5H), 7.16 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 7.0 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.51 (d, J = 7.8 Hz, 1H), 5.20 (dd, J = 29.3, 12.1 Hz, 2H), 4.43 (t, J = 8.2 Hz, 1H), 3.20 (d, J = 15.5 Hz, 1H), 3.10 (s, 3H), 2.75 (dd, J = 13.0, 8.6 Hz, 1H), 2.28 (dd, J = 13.0, 9.3 Hz, 1H), 2.02 – 1.75 (m, 2H), 1.75 – 1.55 (m, J = 12.9 Hz, 1H), 1.53 – 1.38 (m, 1H), 1.36 – 1.07 (m, 3H); ¹³C NMR (125 MHz, CDCl₃; compound exists as a >20:1 mixture of rotamers) δ 172.4, 157.7 (q, $J_{CF} = 36.3$ Hz), 148.0, 134.9, 133.7, 128.7, 128.6, 128.4, 120.8, 118.0, 115.8 (q, $J_{CF} = 289.8$ Hz), 112.3, 107.1, 95.6, 67.6, 58.4 (q, $J_{CF} = 3.5$ Hz), 52.3, 35.2, 33.9, 30.7, 26.8, 21.5, 20.4 ; IR (NaCl/thin film): 3034, 2928, 2857, 1749,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 66 1693, 1609, 1490, 1214, 1186, 1160, 741 cm⁻¹; melting point: 106 - 108 °C; $[\alpha]_{D}^{25} = -$ 92.6° (c = 1.40, DCM); HRMS (ESI+) calc'd for $[M+H]^+$ 459.1890, found 459.1892.

Pyrrolidinoindoline 98h.

Prepared from 3-phenethyl-1-methyl-1H-indole⁴¹ and benzyl 2-OBn trifluoroacetamidoacrylate using general procedure C, with 1.6 equivalents SnCl₄. The reaction was allowed to run for 9.5 h. The crude residue was purified by flash chromatography $(5 \rightarrow 20\% \text{ ethyl})$ OBn acetate/hexanes) to yield 81 mg (80% yield) of 98h in a 4:1 ratio of diastereomers (determined by ¹H NMR analysis of the crude reaction mixture). The diastereomers were separated by preparatory HPLC $(0 \rightarrow 6\%)$ ethyl acetate/hexanes). The enantiomeric excess of both diastereomers was determined by

Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 92%. t_{R} (major) = 33.3 min t_{R} (minor) = 28.0 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 2.6:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ^{1} H NMR (500 MHz, CDCl₃) $\delta^{7.39} - 7.28$ (m, 5H*, 5H[§]), 7.28 - 7.16 (m, $4H^{\$}, 4H^{\$}$, 7.12 - 7.06 (br s, $3H^{\$}$), 7.02 (m, $3H^{\$}$), 6.90-6.81 (br s, $1H^{\$}$), 6.81 (t, J = 6.9Hz, 1H*), 6.63 - 6.57 (m, J = 9.8 Hz, 1H[§]), 6.55 (br d, J = 7.5 Hz, 1H*), 5.70 (br s, 1H*), 5.45 (br s, 1H[§]), 5.25-5.15 (m, 2H^{*}, 2H[§]), 4.69 (br d, J = 7.4 Hz, 1H^{*}), 4.39 (br s, 1H[§]), 3.12 (br s, 3H*), 2.90 (br s, 3H[§]), 2.78 – 1.73 (m, 6H*, 6H[§]); ¹³C NMR (125 MHz, $CDCl_3$; compound exists as a 2.6:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.0*, 169.8§, 159.0 (q, $J_{C-F} = 36.7 \text{ Hz}$)*, 157.60 (q, J_{C-F} = 36.7 \text{ Hz})*, 157.60 (q, J_{C-F} = 36.7 \text{ Hz})*, 157.60 (q, J_{C-F} = 36.7 \text{ Hz})*, 157.60 (q, J_{C-F} = 3

chiral SFC analysis (OJ-H, 2.5 mL/min, 6% IPA in hexanes, $\lambda = 254$ nm).

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 67 $_{\rm F} = 32.9 \text{ Hz})^{\$}$, 150.3*\$, 141.0*\$, 135.1\$, 134.5*, 132.0*, 131.6\$, 129.1\$, 128.9\$, 128.8\$, 128.7*, 128.4*, 128.2*, 126.0*\$, 122.3\$, 121.9*, 120.1\$, 118.9*, 116.0 (q, $J_{\rm C-F} = 288.4$ Hz)*, 109.7\$, 108.3*, 90.4*, 89.2\$, 68.1*, 67.4\$, 60.7\$, 59.5*, 57.5\$, 53.7*, 43.5*, 40.0\$, 39.0*, 38.6\$, 36.9*, 35.1\$, 31.9*\$; IR (NaCl/thin film): 3030, 2921, 2852, 1747, 1694, 1607, 1492, 1455, 1433, 1190, 1152, 750 cm⁻¹; $[\alpha]_{\rm D}^{25}$ –113.8° (c =1.17, DCM); HRMS (ESI) calc'd for [M+H]⁺509.2047, found 509.2052.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 90%. $t_{\rm R}$ (major) = 11.6 min $t_{\rm R}$ (minor) = 17.5 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 14.5:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.37 – 7.30 (m, 3H*, 3H[§]), 7.23 (d, J = 7.6 Hz, 2H*, 2H[§]), 7.19 - 7.12 (m, 4H*, 4H[§]), 7.07 (d, J = 7.3 Hz, 2H*, 2H[§]), 7.03 (d, J = 7.2 Hz, 1H*, 1H[§]), 6.76 (t, J = 7.3 Hz, $1H^{\$}$), 6.71 (t, J = 7.3 Hz, $1H^{\$}$), 6.33 (d, J = 7.8 Hz, $1H^{\$}$), 6.28 (d, J =7.8 Hz, 1H*), 5.70 (s, 1H*), 5.49 (s, 1H[§]), 5.13 (dd, J = 9.4, 3.5 Hz, 1H[§]), 4.91 (d, J =12.2 Hz, 1H[§]), 4.83 (d, J = 12.2 Hz, 1H[§]), 4.80 (d, J = 8.2 Hz, 1H^{*}), 4.63 (d, J = 12.1 Hz, 1H*), 4.37 (d, J = 12.1 Hz, 1H*), 2.94 (s, 3H*), 2.86 (d, J = 12.9 Hz, 1H*), 2.65 (s, 3H[§]), 2.59 (td, J = 12.9, 5.3 Hz, 1H*), 2.53 – 2.46 (m, 1H[§]), 2.45 – 2.32 (m, 2H*), 2.27 (dd, J =13.2, 9.6 Hz, $1H^{\$}$), 2.23 – 2.18 (m, $1H^{\$}$), 2.15 – 1.89 (m, $2H^{\ast}$, $2H^{\$}$); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 14.5:1 mixture of rotamers, only the major rotamer is reported) δ 169.2, 156.8 (q, J_{C-F} = 36.9 Hz), 151.3, 141.2, 134.7, 129.6, 129.4, 128.5, 128.43, 128.41, 128.3, 128.2, 126.0, 123.1, 117.8, 116.2 (q, J = 288.9 Hz), 105.9, 86.9, 67.7, 60.0 (q, J_{C-F} = 3.2 Hz). 54.3, 47.5, 42.2, 41.0, 31.9, 31.1; IR (NaCl/thin film): 2919, 2850, 1738, 1694, 1607, 1493, 1455, 1441, 1204, 1142, 744 cm⁻¹; $[\alpha]_{D}^{25}$ +119.6° (c = 0.87, DCM); HRMS (ESI) calc'd for [M+H]⁺ 509.2047, found 509.2048.

Pyrroloindoline 72.

Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 93% by chiral SFC analysis (OJ-H, 2.5 mL/min, 6% IPA in CO₂, λ = 254 nm): t_R (major) = 5.7 min t_R (minor) = 4.3 min. ¹H NMR (400 MHz, CDCl₃; compound exists as a 5.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 7.40 (br s, 5H*, 5H[§]), 7.14 (t, J = 7.7 Hz, 1H*, 1H[§]), 7.09 – 6.95 (br m, 1H[§]), 7.00 (br d, J = 7.2 Hz, 1H*), 6.90 – 6.71 (br m, 1H[§]), 6.76 (br t, J = 7.3 Hz, 1H*), 6.68 – 6.44 (br m, 1H[§]), 6.54 (br d, J = 7.9 Hz, 1H*), 5.82 (br ddd, J = 21.5, 10.5, 5.7 Hz, 1H*, 1H[§]), 5.73 (br s, 1H*), 5.52 (br s, 1H[§]), 5.34 – 5.09 (m, 4H*, 4H[§]), 4.75 (br d, J = 9.2 Hz, 1H*), 4.40 (br s, 1H[§]), 4.26 (br d, J = 13.1 Hz, 1H*), 4.04 (br dd, J = 16.3, 5.9 Hz, 1H*, 1H[§]), 3.83 (br s, 1H[§]), 2.60 (br dd, J = 13.3, 9.8 Hz, 1H*, 1H[§]), 2.36 (br d, J = 13.4 Hz, 1H*), 2.20 – 2.03 (m, 1H[§]), 1.46 (s, J = 10.6 Hz, 3H[§]), 1.27 (s, J = 8.7 Hz, 3H*); ¹³C NMR (100 MHz, CDCl₃; compound exists as a 5.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 172.0*, 169.8[§], 158.9* (q, J_{CF} = 37.0 Hz), 148.4^{*§}, 134.8*, 134.6*, 133.8*, 133.4[§], 128.8*, 128.7*, 128.7*, 121.5*, 120.3[§], 118.7*, 117.7[§],

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 69 116.7*, 116.0* (q, $J_{CF} = 288.5$ Hz), 110.8[§], 108.4*, 91.3*, 89.7[§], 68.0*, 67.4[§], 61.1[§], 60.0*, 53.6[§], 51.8*, 50.5[§], 49.4*, 44.1*, 40.7[§], 23.5*[§]; IR (NaCl/thin film): 3035, 2968, 1748, 1694, 1609, 1488, 1424, 1339, 1257, 1148, 1026, 921, 744 cm⁻¹; $[\alpha]_D^{25} = -94.3^{\circ}$ (*c* 1.14, DCM); HRMS (ESI) calc'd for [M+H]⁺ 445.1734, found 445.1750.

Endo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 89% by chiral SFC analysis (OJ-H, 2.5 mL/min, 2% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 5.9 min $t_{\rm R}$ (minor) = 5.1 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 15.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 7.36 – 7.30 (m, 3H*, 3H§), 7.19 (dd, J = 6.5, 3.0 Hz, 2H), 7.16 – 7.11 (m, 2H*), 7.08 (td, J = 7.7, 1.3 Hz, 1H*, 1H[§]), 7.04 (d, J = 7.4 Hz, 1H[§]), 6.99 (dd, J = 7.4, 0.9 Hz, 1H*), 6.73 (t, J = 7.0 Hz, 1H[§]), 6.68 (td, J = 7.4, 0.9 Hz, 1H*), 6.35 (d, J = 7.4 Hz, 1H§), $6.34 (d, J = 7.8 Hz, 1H^*), 5.77 (dddd, J = 17.1, 10.4, 5.5, 5.1 Hz, 1H^*), 5.73 - 5.67 (m, 10.4, 10$ $1H^{\$}$), 5.58 (s, 1H*), 5.55 – 5.53 (m, 1H^{\\$}), 5.22 (dq, J = 17.1, 1.6 Hz, 1H*), 5.16 (dd, J =9.6, 4.3 Hz, $1H^{\$}$), 5.14 – 5.10 (m, $2H^{\$}$), 5.05 (dq, J = 10.2, 1.5 Hz, $1H^{\$}$), 4.97 (d, J = 12.3Hz, $1H^{\$}$), 4.91 (d, J = 12.3 Hz, $1H^{\$}$), 4.80 (d, J = 8.5 Hz, $1H^{\ast}$), 4.68 (d, J = 12.1 Hz, 1H*), 4.36 (d, J = 12.1 Hz, 1H*), 4.15 (ddt, J = 16.7, 5.9, 1.5 Hz, 1H*), 4.01 (ddt, J =16.7, 5.0, 1.6 Hz, 1H*), 3.68 - 3.64 (m, 1H[§]), 2.88 (d, J = 13.0 Hz, 1H*), 2.53 (dd, J = 13.0 Hz, 2.53 (dd, J = 13.0 13.3, 4.3 Hz, 1H[§]), 2.40 (dd, J = 13.0, 8.5 Hz, 1H^{*}), 2.26 (dd, J = 13.3, 9.6 Hz, 1H[§]), 1.44 (s, 1H[§]), 1.43 (s, 1H^{*}); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 15.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ $169.3^{*}, 156.9^{*}$ (q, $J_{CF} = 36.9$ Hz), $149.3^{*}, 147.7^{\$}, 134.7^{*}, 134.1^{*}, 133.2^{\$}, 132.4^{\$}, 132.0^{*}, 132.0$ 128.9*, 128.6[§], 128.5[§], 128.5*, 128.4*, 128.3*, 128.2[§], 122.6*, 121.7[§], 118.7[§], 118.0*, $117.1^{\$}$, 116.3^{*} , 116.2^{*} (q, $J_{C-F} = 288.7$ Hz), $108.0^{\$}$, 106.9^{*} , 88.1^{*} , 67.6^{*} , $67.3^{\$}$, $60.4^{\$}$,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 60.2*, 52.7[§], 50.6*, 48.8*, 42.5*, 41.5[§], 25.8*, 23.1[§]; IR (NaCl/thin film): 2962, 1739, 1697, 1608, 1491, 1447, 1269, 1211, 1145, 851, 742 cm⁻¹; $\left[\alpha\right]_{D}^{25} = +166.6^{\circ}$ (c 1.52, DCM); HRMS (ESI) calc'd for [M+H]⁺ 445.1734, found 445.1740.

Pyrroloindoline 98i.

Prepared from 3-methyl-1H-indole (0.15 mmol) and benzyl 2trifluoroacetamidoacrylate (0.15 mmol) using general procedure C. The reaction was allowed to run for 5.5 h. The crude residue was purified

by flash chromatography $(0 \rightarrow 20\%$ ethyl acetate/hexanes) to yield 10.7 mg (18% yield) of 98i in an 8:1 ratio of diastereomers (determined by NMR analysis of the pure product). The diastereomers were separated by prepatory HPLC ($5 \rightarrow 12\%$ ethyl acetate/hexanes).

Exo diastereomer: pale yellow oil. The enantiomeric excess was determined to be 95% by chiral SFC analysis (OJ-H, 2.5 mL/min, 7% IPA in hexanes, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 9.6 min $t_{\rm R}$ (minor) = 7.4 min. ¹H NMR (500 MHz, CDCl₃; compound exists as a 1:1 mixture of rotamers) δ 7.43 – 7.31 (m, 5H), 7.12 (t, J = 8.1 Hz, 0.5H), 7.10 (t, J = 8.1 Hz, 0.5H), 7.05 (d, J = 4.1 Hz, 0.5H), 7.04 (d, J = 3.9 Hz, 0.5H), 6.82 (t, J = 7.5 Hz, 0.5H), 6.77 (t, J = 7.5 Hz, 0.5H), 6.64 (d, J = 7.8 Hz, 0.5H), 6.60 (d, J = 7.8 Hz, 0.5H), 5.63 (s, 0.5 H), 5.57 (s, 0.5H), 5.30 (s, 0.5H), 5.23 (s, 1H), 5.22 (d, J = 12.2 Hz, 0.5H), 5.17 (d, J = 12.2 Hz, 0.5H), 4.76 (s, 0.5H), 4.68 – 4.62 (m, 0.5H), 4.50 (t, J = 7.7 Hz, 0.5H), 2.72 (dd, J = 13.5, 9.2 Hz, 0.5H), 2.58 (dd, J = 13.1, 8.5 Hz, 0.5H), 2.33 (dd, J = 13.1, 8.5 Hz, 0.5H), 2.34, 8.5 Hz, 0.5H), 2.5 13.4, 3.9 Hz, 0.5H), 2.17 (dd, J = 13.1, 6.9 Hz, 0.5H), 1.44 (s, 1.5H), 1.31 (s, 1.5H); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 1:1 mixture of rotamers) δ 171.5, 170.2, 156.8 (q, $J_{C-F} = 38.7$ Hz), 146.8, 146.3, 135.2, 134.7, 133.2, 133.1, 128.9, 128.8, 128.7, Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 71 128.6, 128.5, 128.4, 122.3, 122.1,120.2, 119.3, 116.1 (q, $J_{C-F} = 287.2$), 115.7 (q, $J_{C-F} = 287.2$), 109.9, 109.3, 86.5, 84.5, 68.10, 67.5, 61.3, 59.6, 54.5, 50.3, 43.7, 40.3, 24.2, 23.9 ; IR (NaCl/thin film): 3390, 3034, 2961, 2920, 1748, 1687, 1610, 1486, 1469, 1456, 1189, 1158, 745 cm⁻¹; $[\alpha]_D^{25}$ –111.8° (c = 0.22, DCM); HRMS (EI+) calc'd for M⁺⁺ 404.1348, found 404.1344.

Pyrroloindoline 110a.

The d.r. was determined to be 7:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography $(0\rightarrow 10\%$ ethyl acetate/hexanes) to yield 46.4 mg

(66% yield) of **110a**. The enantiomeric excess was determined to be 95% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): t_{R} (major) = 3.1 min t_{R} (minor) = 2.3 min. The major diastereomer was separated by flash chromatography (0 \rightarrow 10% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃; compound exists as a 3.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 7.08 (t, *J* = 7.8 Hz, 1H*, 1H[§]), 6.65-6.57 (m, 1H[§]), 6.55 (d, *J* = 7.6 Hz, 1H*), 6.45-6.40 (m, 1H[§]), 6.38 (d, *J* = 7.8 Hz, 1H*), 5.49 (s, 1H*), 5.29 (s, 1H[§]), 4.74 (d, *J* = 9.3 Hz, 1H*), 4.45 (m, 1H[§]), 3.83 (s, 3H*), 3.78 (s, 3H[§]), 3.12 (s, 3H*), 2.85 (s, 3H[§]), 2.68 (dd, *J* = 13.3, 9.7 Hz, 1H*), 2.64-2.59 (m, 1H[§]), 1.60 (s, 3H[§]), 1.47 (s, 3H*); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 3.7:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer is denoted by *, minor rotamer is denoted by *, 130.9[§], 128.8*[§], 122.6[§], 121.5*, 116.1* (q, *J*_{CF} = 288.3 Hz), 107.3[§], 106.2*,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 72 $94.0^{\circ}, 92.0^{\circ}, 61.3^{\circ}, 60.0^{\circ}, 53.1^{\circ}, 52.6^{\circ}, 50.0^{\circ}, 42.7^{\circ}, 39.4^{\circ}, 37.4^{\circ}, 34.6^{\circ}, 24.1^{\circ}, 23.3^{\circ},$ 18.5*[§]: IR (NaCl/thin film): 3047, 2957, 2930, 2880, 2825, 1752, 1701, 1596, 1477, 1434, 1385, 1356, 1338, 1293, 1263, 1254, 1216, 1204, 1155, 1097, 1064, 1020, 989, 854, 772, 744, 727 cm⁻¹; $[\alpha]_{D}^{25} = -158.8$ (c = 1.01, CHCl₃). HRMS (APCI) calc'd for $C_{17}H_{19}F_{3}N_{2}O_{3}$ [M+H]⁺ 357.1421, found 357.1426.

The d.r. was determined to be 13:1 by ¹H NMR analysis of the crude

Pyrroloindoline 110b.

reaction mixture. The crude residue was purified by flash chromatography $(0 \rightarrow 10\%$ ethyl acetate/hexanes) to yield 48.2 mg (68% yield) of 110b. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 4.4 min $t_{\rm R}$ (minor) = 2.7 min. The major diastereomer was separated by flash chromatography $(0\rightarrow 10\%)$ ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃; compound exists as a 1.9:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by $\delta 6.98$ (d, J $= 7.4 \text{ Hz}, 1\text{H}^{\$}, 1\text{H}^{\$}, 6.87 \text{ (s}, 1\text{H}^{\$}), 6.84 \text{ (s}, 1\text{H}^{\$}), 6.50 \text{ (d}, J = 7.8 \text{ Hz}, 1\text{H}^{\$}), 6.43 \text{ (d}, J = 7.8 \text{ Hz}, 1\text{H}^{\$})$ 8.0 Hz, 1H*), 5.57 (s, 1H*), 5.27 (s, 1H[§]), 4.73 (d, J = 9.3 Hz, 1H*), 4.41 (t, J = 7.6 Hz, $1H^{\$}$), 3.82 (s, 3H*), 3.76 (s, 3H[§]), 3.05 (s, 3H*), 2.86 (s, 3H[§]), 2.59 (dd, J = 13.3, 9.7 Hz, 1H*), 2.55-2.48 (m, 1H[§]), 2.35 (dd, J = 13.5, 2.2 Hz, 1H*), 2.28 (br s, 3H[§]), 2.20-2.10 $(m, 1H^{\$}), 1.49 (s, 3H^{\$}), 1.38 (s, 3H^{*});$ ¹³C NMR (125 MHz, CDCl₃; compound exists as a 1.9:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 172.6*, 170.7[§], 159.1[§] (q, J_{CF} = 37.0 Hz), 147.3*, 147.2[§], 134.4*[§], 129.7[§], 129.2[§], $129.1^{*}, 128.2^{*}, 122.3^{*\$}, 116.1^{*}$ (q, $J_{CF} = 288.2$ Hz), $109.9^{\$}, 108.2^{*}, 93.8^{*}, 92.1^{\$}, 61.2^{\$},$ 60.3*, 53.2[§], 53.0*, 52.5[§], 49.2*, 44.0*, 40.3[§], 37.4*, 35.5[§], 23.5*, 23.2[§], 20.8*[§]; IR

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 73 (NaCl/thin film): 2958, 2924, 2873, 2822, 1750, 1699, 1618, 1500, 1435, 1384, 1356, 1339, 1288, 1257, 1201, 1152, 1117, 1094, 1057, 1035, 986, 874, 844, 807, 761, 728 cm⁻¹; $[\alpha]_D^{25} = -128.4$ (c = 1.08, CHCl₃). HRMS (APCI) calc'd for C₁₇H₁₉F₃N₂O₃ [M+H]⁺ 357.1421, found 357.1407.

Pyrroloindoline 110c.

The d.r. was determined to be 14:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography $(0 \rightarrow 10\%$ ethyl acetate/hexanes) to yield 58.8 mg (83% yield) of **110c**. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 3.4 min $t_{\rm R}$ (minor) = 2.8 min. The major diastereomer was separated by flash chromatography $(0 \rightarrow 10\%)$ ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃; compound exists as a 2.4:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 6.99-6.93 (m, $1H^{\$}$, 6.91 (d, J = 7.4 Hz, $1H^{\ast}$), 6.65 (d, J = 6.7 Hz, $1H^{\$}$), 6.58 (d, J = 7.3 Hz, $1H^{\ast}$), 6.41 $(s, 1H^{\$}), 6.34 (s, 1H^{*}), 5.60 (s, 1H^{*}), 5.31 (s, 1H^{\$}), 4.72 (d, J = 9.0 Hz, 1H^{*}), 4.48-4.39$ $(m, 1H^{\$}), 3.82 (s, 3H^{\ast}), 3.77 (s, 3H^{\$}), 3.06 (s, 3H^{\ast}), 2.86 (s, 3H^{\$}), 2.58 (dd, J = 13.2, 9.2)$ Hz, 1H*), 2.52-2.45 (m, 1H[§]), 2.39-2.33 (m, 1H*), 2.32 (br s, 3H*, 3H[§]), 2.10-2.00 (m, 1H[§]), 1.49 (s, 3H[§]), 1.38 (s, 3H^{*}); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 2.4:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.6*, 170.6§, 159.1§ (q, J_{CF} = 37.9 Hz), 149.6*, 149.4§, 139.0§, 138.9*, 131.5*, $131.4^{\$}, 121.2^{*\$}, 120.6^{\$}, 119.3^{*}, 116.1^{*}$ (q, $J_{C-F} = 288.4$ Hz), $110.4^{\$}, 108.9^{*}, 93.5^{*}, 91.9^{\$}$, 61.3[§], 60.3^{*}, 53.0^{*}, 52.9[§], 52.5[§], 49.0^{*}, 44.0^{*}, 40.5[§], 36.7^{*}, 34.6[§], 23.6^{*}, 23.0[§], 21.7^{*}; IR (NaCl/thin film): 2958, 2929, 2875, 2813, 1750, 1697, 1617, 1594, 1499, 1435, 1382,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 1356, 1341, 1294, 1257, 1203, 1190, 1148, 1111, 1094, 1059, 1034, 1006, 985, 877, 852, 803, 763, 729 cm⁻¹; $[\alpha]_D^{25} = -115.4$ (c = 1.54, CHCl₃). HRMS (MM) calc'd for $C_{17}H_{19}F_{3}N_{2}O_{3}$ [M+H]⁺ 357.1421, found 357.1434.

Pyrroloindoline 110d.

The d.r. was determined to be 15:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography (5 \rightarrow 25% ethyl acetate/hexanes) to yield 48.1 mg (68% yield) of **110d** (major diastereomer only). The enantiomeric excess was determined to be 93% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 3.6 min $t_{\rm p}({\rm minor}) = 2.5 {\rm min.}^{1}{\rm H} {\rm NMR}$ (500 MHz, CDCl₃; compound exists as a 6.1:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by $(3) \times 7.05 - 7.00$ (m, 1H*), 7.00-6.93 (m, 2H*, 1H[§]), 6.91 (d, J = 7.2 Hz, 1H[§]), 6.82 (t, J = 7.4 Hz, 1H[§]), 5.27 $(s, 1H^{\$}), 5.14$ (d, J = 1.6 Hz, 1H*), 4.59 (dd, J = 9.1, 2.3 Hz, 1H[§]), 4.06 (dd, J = 11.2, 6.6Hz, 1H*), 3.80 (s, 3H[§]), 3.72 (s, 3H*), 3.26 (s, 3H[§]), 2.99 (s, 3H*), 2.67 (dd, J = 12.6, 6.6Hz, 1H*), 2.57 (dd, J = 13.4, 9.2 Hz, 1H[§]), 2.30 (s, 3H[§]), 2.22 (s, 3H*), 2.13-2.03 (m, 1H*, 1H[§]), 1.47 (s, 3H*), 1.42 (s, 3H[§]); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 6.1:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.6[§], 171.1^{*}, 158.7^{*}, 149.9^{*}, 148.8[§], 136.6^{*§}, 131.4[§], 131.0^{*}, 126.6^{*}, 124.01^{*}, $122.6^{\$}, 121.2^{\$}, 119.6^{\ast}, 119.4^{\$}, 116.0^{\ast}$ (q, $J_{CF} = 285.8$ Hz), $95.6^{\$}, 92.5^{\ast}, 60.3^{\ast}, 59.2^{\$},$ 55.1*, 52.9[§], 52.4*, 49.7[§], 44.0[§], 41.9[§], 41.0*, 38.6*, 26.3*, 26.0[§], 18.9[§], 17.5*; IR (NaCl/thin film): 2963, 1753, 1684, 1437, 1359, 1269, 1162, 1120, 1103, 1086, 1067, 977 cm⁻¹; $[\alpha]_D^{25} = -27.0$ (c = 0.91, CH₂Cl₂). HRMS (MM) calc'd for C₁₇H₁₉F₃N₂O₃ [M+H]⁺ 357.1421, found 357.1434.

Pyrroloindoline 110e.

The d.r. was determined to be 10:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash

chromatography $(5 \rightarrow 25\%$ ethyl acetate/hexanes) to yield 41.4 mg (58% yield) of 110e. The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 3.7 min $t_{\rm R}$ (minor) = 2.3 min. The major diastereomer was separated by flash chromatography $(0\rightarrow 10\%)$ ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃; compound exists as a 2.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 6.92-6.82 $(m, 1H^*, 1H^{\$}), 6.81-6.76 \ (m, 1H^{\$}), 6.74 \ (dd, J = 8.0, 2.7 \ Hz, 1H^*), 6.50 \ (dd, J = 8.6, 4.1)$ Hz, $1H^{\$}$), 6.40 (dd, J = 8.6, 4.1 Hz, $1H^{\ast}$), 5.60 (s, $1H^{\ast}$), 5.31 (s, $1H^{\$}$), 4.74 (d, J = 9.3 Hz, 1H*), 4.43 (t, J = 7.8 Hz, 1H[§]), 3.82 (s, 3H*), 3.77 (s, 3H[§]), 3.04 (s, 3H*), 2.85 (s, 3H[§]), 2.58 (dd, J = 13.5, 9.6 Hz, 1H*), 2.53-2.45 (m, 1H[§]), 2.40-2.32 (m, 1H*), 2.06 (dd, J =13.3, 6.6 Hz, 1H[§]), 1.49 (s, 3H[§]), 1.38 (s, 3H^{*}); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 2.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.4*, 170.5[§], 159.0[§] (q, J_{C-F} = 35.8 Hz), 157.9*, 156.7[§], 156.0*, 145.6*, $145.4^{\$}, 135.8^{\$}$ (d, $J_{C-F} = 8.7$ Hz), 135.6^{\ast} (d, $J_{C-F} = 7.5$ Hz), 116.0^{\ast} (q, $J_{C-F} = 289.2$ Hz), 115.1[§], 114.8^{*} (d, $J_{C-F} = 23.2$ Hz), 110.5[§] (d, $J_{C-F} = 7.3$ Hz), 110.2[§] (d, $J_{C-F} = 24.3$ Hz), $109.4^{\$}$ (d, $J_{C-F} = 24.1$ Hz), 109.3^{\ast} (d, $J_{C-F} = 24.4$ Hz), 108.6^{\ast} (d, $J_{C-F} = 8.1$ Hz), $105.9^{\$}$ (d, $J_{CF} = 8.0 \text{ Hz}$), 93.8*, 92.1[§], 61.1[§], 60.2*, 53.2[§], 53.1*, 52.6[§], 49.2[§], 43.8*, 40.1[§], 37.6*, 35.5[§], 23.4^{*}, 22.9[§]; IR (NaCl/thin film): 2959, 2880, 2825, 1750, 1699, 1611, 1495, 1436, 1386, 1356, 1339, 1270, 1229, 1202, 1178, 1152, 1118, 1091, 1052, 1034, 986, 872, 845,

Pyrroloindoline 110f.

OMe TFA

The d.r. was determined to be 10:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography $(0 \rightarrow 10\%$ ethyl acetate/hexanes) to yield 44.8 mg

(61% yield) of **110f**. The enantiomeric excess was determined to be 90% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 3.8 min $t_{\rm R}$ (minor) = 2.5 min. The major diastereomer was separated by flash chromatography $(0 \rightarrow 10\%)$ ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃; compound exists as a 1.8:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by $\delta 6.75-6.70$ $(m, 1H^*, 1H^{\$}), 6.67-6.65 \ (m, 1H^{\$}), 6.64 \ (d, J = 2.4 \ Hz, 1H^{*}), 6.55 \ (d, J = 8.5 \ Hz, 1H^{\$}),$ 6.45 (d, J = 8.5 Hz, 1H*), 5.55 (s, 1H*), 5.24 (s, 1H[§]), 4.74 (d, J = 9.4 Hz, 1H*), 4.38 (t, $J = 8.0 \text{ Hz}, 1\text{H}^{\$}$, 3.81 (s, 3H*), 3.77 (s, 3H^{\\$}), 3.76 (s, 3H*, 3H^{\\$}), 3.04 (s, 3H*), 2.86 (s, $3H^{\$}$), 2.59 (dd, J = 13.5, 9.6 Hz, 1H*), 2.52 (dd, J = 13.0, 8.7 Hz, 1H^{\\$}), 2.35 (dd, J = 13.0, 8.7 Hz, 1Hz, 1Hz, 1Hz, 1Hz 13.5, 2.5 Hz, 1H*), 2.09-2.00 (m, 1H[§]), 1.48 (s, 3H[§]), 1.38 (s, 3H*); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 1.8:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.5*, 170.7§, 159.0§ (q, $J_{C-F} = 37.1, 36.6 \text{ Hz}$), 154.6§, 153.6° , 143.7° , 143.6° , 135.9° , 135.7° , 116.1° (q, $J_{CF} = 288.3$ Hz), 113.3° , 113.0° , $111.4^{\$}, 109.02^{*}, 108.98^{*}, 108.8^{\$}, 94.1^{*}, 92.3^{\$}, 61.0^{\$}, 60.3^{*}, 56.0^{*}, 55.9^{\$}, 53.6^{\$}, 53.1^{*},$ 52.6[§], 49.3^{*}, 43.9^{*}, 39.9[§], 38.1^{*}, 36.8[§], 23.5^{*§}; IR (NaCl/thin film): 2958, 2833, 1750, 1691, 1598, 1497, 1434, 1384, 1356, 1341, 1281, 1259, 1231, 1203, 1154, 1093, 1062,

Pyrroloindoline 110g.

The diastereomeric ratio was determined to be 13:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography $(5 \rightarrow 20\%$ ethyl acetate/hexanes) to yield 74.1 mg (86% yield) of 110g. The enantiomeric excess was determined to be 87% by chiral SFC analysis (AD-H, 2.5 mL/min, 8% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 5.3 min $t_{\rm R}$ (minor) = 8.1 min. The major diastereomer was separated by flash chromatography (5% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃; compound exists as a 2.6:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 7.32-7.15 (m, 4H*, 4H[§]), 7.08 (br t, J = 7.7 Hz, $3H^{\circ}$, $3H^{\circ}$), 6.95-6.75 (m, $1H^{\circ}$, $1H^{\circ}$), 6.65-6.50 (m, $1H^{\circ}$, $1H^{\circ}$), 5.72 (br s, 1H*), 5.46 (br s, 1H[§]), 4.65 (br d, J = 6.3 Hz, 1H*), 4.33 (br s, 1H[§]), 3.78 (br s, 3H*, $3H^{\$}$), 3.13 (br s, $3H^{\ast}$), 2.90 (br s, $3H^{\$}$), 2.76-1.87 (m, $6H^{\ast}$, $6H^{\$}$); ¹³C NMR (125 MHz, $CDCl_3$; compound exists as a 2.6:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by §) δ 172.6*, 170.6§, 159.0* (q, $J_{C-F} = 37.5$ Hz), 150.3*§, 141.1*[§], 131.9*, 131.7[§], 129.0*[§], 128.5*[§], 128.2*[§], 126.1*[§], 122.0*, 121.2* (q, $J_{C-F} = 0.000$ 278.2 Hz), 119.0*, 117.2[§], 114.9[§], 109.8[§], 108.3*, 90.5*, 89.2[§]; IR (NaCl/thin film): 3026, 2952, 1751, 1701, 1607, 1491, 1437, 1355, 1204, 1151, 985, 749 cm⁻¹; $[\alpha]_{D}^{25} = -128.3$ (c = 1.22, CH₂Cl₂). HRMS (MM) calc'd for $C_{23}H_{23}F_{3}N_{2}O_{3}$ [M+H]⁺ 433.1734, found 433.1750.

The diastereomeric ratio was determined to be 5:1 by ¹H NMR OMe analysis of the crude reaction mixture. The crude residue was purified allvi TFA by flash chromatography $(5\rightarrow 15\%$ ethyl acetate/hexanes) to yield 61.1 mg of white needles (84% yield). The enantiomeric excess was determined to be 90% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.8 min $t_{\rm R}$ (minor) = 3.5 min. The major and minor diastereomers were separated by reverse phase preparatory HPLC (50→95% acetonitrile/water, 0.05% trifluoroacetic acid). ¹H NMR (500 MHz, CDCl₃; compound exists as a 4.9:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 7.14 (td, J = 7.7, 1.3 Hz, 1H*, 1H δ), 7.03 (br d, J = 7.3 Hz, 1H*, 1H[§]), 6.90-6.80 (br s, 1H[§]), 6.76 (t, J = 7.4 Hz, 1H*), 6.67-6.58 (br s, $1H^{\$}$, 6.54 (d, J = 7.9 Hz, $1H^{\$}$), 5.81 (dtd, J = 16.5, 11.6, 11.1, 6.2 Hz, $1H^{\$}$, $1H^{\$}$), 5.74 (s, 1H*), 5.51 (br s, 1H[§]), 5.27 (br d, J = 17.1 Hz, 1H*, 1H[§]), 5.14 (br d, J = 10.2 Hz, 1H*, $1H^{\$}$, 4.72 (d, J = 9.1 Hz, $1H^{\ast}$), 4.34 (br s, $1H^{\$}$), 4.25 (dd, J = 16.5, 3.6 Hz, $1H^{\ast}$), 4.04 $(dd, J = 16.5, 6.2 \text{ Hz}, 1\text{H}^{*}), 4.00-3.94 \text{ (m}, 1\text{H}^{\$}), 3.82 \text{ (s}, 3\text{H}^{*}), 3.76 \text{ (s}, 3\text{H}^{\$}), 2.62 \text{ (dd}, J = 16.5 \text{ (s}, 3\text{H}^{\$}), 3.76 \text{$ 13.3, 9.7 Hz, $1H^*$), 2.58-2.49 (m, $1H^*$), 2.40 (dd, J = 13.5, 2.6 Hz, $1H^*$), 2.11 (br s, $1H^*$), 1.48 (s, $3H^{\$}$), 1.39 (s, $3H^{*}$); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 4.9:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ $172.6^{\$}, 170.6^{\$}, 158.9^{\$}$ (q, $J_{C-F} = 36.9$ Hz), 148.4^{*}, 134.7^{*}, 133.8^{*}, 133.3[§], 128.7^{*}, 121.7[§], $121.5^{\circ}, 120.3^{\circ}, 118.8^{\circ}, 117.8^{\circ}, 116.8^{\circ}, 116.0^{\circ}$ (q, $J_{CF} = 288.4$ Hz), $110.8^{\circ}, 108.5^{\circ}, 91.3^{\circ}, 108.5^{\circ}, 108.5^{\circ}, 91.3^{\circ}, 108.5^{\circ}, 108.5$ $89.6^{\$}, 60.9^{\$}, 59.9^{\ast}, 53.0^{\ast}, 52.5^{\$}, 51.8^{\ast}, 50.4^{\$}, 49.4^{\ast}, 44.3^{\ast}, 40.8^{\$}, 23.7^{\ast}, 23.4^{\$};$ IR (NaCl/thin film): 3053, 2958, 2877, 1751, 1700, 1691, 1685, 1642, 1608, 1487, 1437, 1384, 1356, 1340, 1309, 1257, 1205, 1151, 1106, 1093, 1027, 991, 925, 841, 817, 792, 744 cm⁻¹; $[\alpha]_D^{25} = -146.2$ (c = 1.60, CHCl₃). HRMS (APCI) calc'd for C₁₈H₁₉F₃N₂O₃ [M+H]⁺ 369.1421, found 369.1416.

Pyrroloindoline endo-110h.

¹H NMR (500 MHz, CDCl₃; compound exists as a 15.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by allvÍ §) δ 7.11-7.07 (m, 1H[§]), 7.06 (td, J = 7.6, 1.3 Hz, 1H^{*}), 7.06-7.03 (m, 1H[§]), 6.98 (dd, J = 7.3, 0.7 Hz, 1H*), 6.73 (td, J = 7.4, 1.0 Hz, 1H[§]), 6.66 (td, J = 7.4, 1.0 Hz, 1H*), 6.46- $6.44 \text{ (m, 1H}^{\$}), 6.44 \text{ (d, } J = 7.9 \text{ Hz}, 1\text{H}^{\$}), 5.87 \text{ (dddd, } J = 17.1, 10.3, 5.9, 5.1 \text{ Hz}, 1\text{H}^{\$}),$ 5.82-5.75 (m, 1H[§]), 5.57 (s, 1H^{*}), 5.53 (d, J = 1.4 Hz, 1H[§]), 5.30 (dq, J = 17.2, 1.7 Hz, 1H*), 5.22-5.19 (m, 1H[§]), 5.16 (dq, J = 10.2, 1.5 Hz, 1H*), 5.10 (dd, J = 9.5, 4.5 Hz, $1H^{\$}$, 4.75 (dt, J = 8.4, 1.3 Hz, $1H^{*}$), 4.24-4.13 (m, $2H^{*}$), 3.85 (ddd, J = 49.3, 17.2, 5.1Hz, $2H^{\$}$), 3.53 (s, $3H^{\$}$), 3.17 (s, $3H^{\ast}$), 2.85 (d, J = 13.0 Hz, $1H^{\ast}$), 2.50 (dd, J = 13.2, 4.5Hz, $1H^{\$}$), 2.39 (dd, J = 13.0, 8.4 Hz, $1H^{\ast}$), 2.25 (dd, J = 13.3, 9.6 Hz, $1H^{\$}$), 1.44 (s, $3H^{\$}$), 1.42 (s, 3H*); ¹³C NMR (125 MHz, CDCl₃; compound exists as a 15.0:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by δ 170.0*, $156.8^{\$} \text{ (q, } J_{\text{C-F}} = 36.8 \text{ Hz}\text{), } 149.3^{\$}, 147.8^{\$}, 134.2^{\$}, 133.2^{\$}, 132.6^{\$}, 132.0^{\ast}, 128.9^{\ast}, 128.6^{\$}, 128.9^{\ast}, 128.6^{\$}, 132.0^{\ast}, 128.9^{\ast}, 128.6^{\$}, 132.6^{\$}, 132.0^{\ast}, 128.9^{\ast}, 128.6^{\$}, 132.6^{\ast}, 132.6^{\$}, 132.6^{\$}, 132.6^{\ast}, 132$ $122.5^{*}, 121.7^{\$}, 118.7^{\$}, 118.0^{*}, 117.1^{\$}, 116.3^{*}, 116.1^{*}$ (q, $J_{C-F} = 288.6$ Hz), $108.0^{\$}$, $106.8^{*}, 88.7^{\$}, 88.1^{*}, 60.3^{\$}, 60.1^{*}$ (q, $J_{CF} = 3.1$ Hz), $52.6^{\$}, 52.5^{\$}, 52.4^{*}, 50.6^{*}, 49.0^{*}, 60.1^{*}$ 46.6[§], 42.5^{*}, 41.4[§], 25.7^{*}, 22.9[§]; IR (NaCl/thin film): 3055, 2954, 2869, 1760, 1742, 1699, 1607, 1490, 1447, 1436, 1338, 1317, 1274, 1254, 1208, 1183, 1144, 1105, 1093, $1032, 999, 942, 922, 887, 842, 859, 742 \text{ cm}^{-1}; [\alpha]_{D}^{25} = +188.1 (c = 0.275, \text{CHCl}_{3})$. HRMS (APCI) calc'd for $C_{18}H_{19}F_3N_2O_3$ [M+H]⁺ 369.1421, found 369.1429.

Pyrroloindoline 110i.

to yield 68.6 mg (84% yield) of **110i.** The enantiomeric excess was determined to be 92% by chiral SFC analysis (OD, 2.5 mL/min, 3% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 6.5 min $t_{\rm R}$ (minor) = 5.6 min. The major diastereomer was separated by flash chromatography (0→10% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃; compound exists as a 2.1:1 mixture of rotamers, the major rotamer is denoted by *, minor rotamer denoted by [§]) δ 7.16 (d, *J* = 8.1 Hz, 1H*, 1H[§]), 7.02 (s, 1H[§]), 6.99 (s, 1H*), 6.52 (d, *J* = 7.7 Hz, 1H[§]), 6.45 (d, *J* = 8.2 Hz, 1H*), 6.00 (dd, *J* = 17.3, 10.5 Hz, 1H*), 14.7 – 4.41 (m, 1H[§]), 5.31 (s, 1H[§]), 5.07 – 4.96 (m, 2H*, 2H[§]), 4.73 (d, *J* = 9.3 Hz, 1H*), 4.47 – 4.41 (m, 1H[§]), 3.82 (s, 1H*), 3.77 (s, 1H[§]), 3.06 (s, 1H*), 2.86 (s, 1H[§]), 2.60 (dd, *J* = 13.1, 9.9 Hz, 1H*), 2.52 (t, *J* = 10.7 Hz, 1H[§]), 2.38 (d, *J* = 12.5 Hz, 1H*), 2.14 – 1.98 (m, 1H[§]), 1.57 – 1.31 (m, 9H*, 9H[§]); ¹³C NMR (126 MHz, CDCl₃) ; IR (NaCl/thin film): 3081, 2965, 2874, 2822, 1753, 1698, 1618, 1496, 1434, 1359, 1283, 1257, 1204, 1156, 1117, 1054, 995, 912, 844, 813; [α]_D²⁵ = -115 (*c* = 0.450, CHCl₃). HRMS (ESI) calc'd for C₂₁H₂₅F₃N₂O₃ [M+H]⁺ 411.1890, found 411.1901.

2.4.5 SFC and HPLC Traces for Racemic and Enantioenriched Products

91 (Table 3, entry 2): enantioenriched, exo: 64% ee, endo: 83% ee (1.1 equiv BINOL)

582.45917

0.3330 2605.91260

41.28461

130.42717

14.4386

64.5981

0.2351

3

4

6.238 MM

9.647 MM

91 (Table 3, entry 4): enantioenriched, exo: 63% ee, endo: 83% ee (0.2 equiv BINOL)

exo-94 (Table 3, entry 6): racemic

exo-94 (Table 3, entry 6): enantioenriched, 86% ee

exo-95 (Table 3, entry 7): racemic

exo-95 (Table 3, entry 7): enantioenriched, 74% ee

2 24.623 MM

1.0448 1.25921e4

200.87437

86.8546

endo-95 (Table 3, entry 7): racemic

endo-95 (Table 3, entry 7): enantioenriched, 82% ee

96 (Table 3, entry 9): racemic

96 (Table 3, entry 9): enantioenriched, exo: 94% ee, endo: 91% ee

98a (Figure 2): racemic

98a (Figure 2): exo: 93% ee, endo: 92% ee

98b (Figure 2): racemic

98b (Figure 2): exo: 93% ee endo: 90% ee

98c (Figure 2): racemic

98c (Figure 2): enantioenriched, exo: 94% ee, endo: 91% ee

ear	Necitime	TAbe	Withun	Area		nergiic		Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
1	6.505	MM	0.1760	1410	.45825	133.5	56871	16.3830	
2	7.313	MM	0.2416	64	.74883	4.4	16749	0.7521	
3	10.246	MF	0.5768	203	.07445	5.8	36773	2.3588	
4	11.281	FM	0.5342	6931	.01367	216.2	22461	80.5062	
endo-98d (Figure 2): racemic

exo-98d (Figure 2): racemic

98d (Figure 2): exo: 87% ee, endo: 85% ee

98e (Figure 2): racemic

98e (Figure 2): *exo*: 94% ee, *endo*: 90% ee

endo-98f (Figure 2): racemic

endo-98f (Figure 2): 90% ee

exo-98f (Figure 2): racemic

exo-98f (Figure 2): 92% ee

98g (Figure 2): racemic

98g (Figure 2): *exo:* 86% ee

98h (Figure 2): racemic

98h (Figure 2): *exo*: 92% ee, *endo*: 90% ee

72 (Figure 2): racemic

72 (Figure 2): exo: 93% ee, endo: 90% ee

98i (Figure 2): enantioenriched, exo: 95% ee

110a (Table 6): racemic

110a (Table 6): 93% ee

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	2.349	MM	0.1076	52.53596	8.13525	3.3231	
2	2.943	MM	0.1211	1528.41553	210.29921	96.6769	

110b (Table 6): racemic

110b (Table 6): 89% ee

reak #	[min]	туре	[min]	[mAU*s]	[mAU]	Area %
1	2.835	MM	0.1175	187.96922	26.66648	5.4030
2	4.420	MM	0.1709	3291.00049	320.93707	94.5970

110c (Table 6): racemic

110c (Table 6): 90% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.146	MM	0.1214	138.59100	19.02013	5.0547
2	3.652	MM	0.1394	2603.21704	311.29327	94.9453

110d (Table 6): racemic

110d (Table 6): 93% ee

110e (Table 6): racemic

110e (Table 6): 92% ee

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	2.311	MM	0.1219	46.32927	6.33424	3.9754	
2	3.714	MM	0.1503	1119.06885	124.07474	96.0246	

110f (Table 6): racemic

110f (Table 6): 90% ee

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	2.571	MM	0.1029	78.74822	12.75990	4.9025	
2	3.805	MM	0.1340	1527.54749	190.03099	95.0975	

110g (Table 6): racemic

110g (Table 6): 89% ee

110h (Table 6): racemic

43.92808 49.6318

110h (Table 6): 92% ee

2

2.4.6

Pd-catalyzed Deallylation of Pyrroloindoline Methyl Ester 99

An oven-dried microwave vial was charged with allylpyrroloindoline 99 (55.0 mg, 0.149 mmol, 1.00 equiv), $Pd(PPh_3)_4$ (6.9 mg, 6.0 µmol, 0.040 equiv), and N,Ndimethylbarbituric acid (70.0 mg, 0.448 mmol, 3.01 equiv) and then sealed under nitrogen. 1.1 mL DCM was added and the reaction mixture was heated to 35 °C in an oil bath. Two additional 7.0 mg portions of $Pd(PPh_3)_4$ were added after 34 h and after 75 h. After heating at 35 °C for 123 h, the reaction was concentrated and the crude residue was diluted in Et₂O, washed with saturated aqueous Na_2CO_3 , dried (Na_2SO_4), filtered, and concentrated. The crude residue was subjected to silica gel column chromatography (10:90 EtOAc:hexanes) to yield 34.8 mg (71% yield) of 77 as a colorless oil in an 8:1 mixture of diastereomers (determined by NMR analysis of the pure product). The product was resubjected to identical column conditions to obtain exo-77 in >20:1 dr. ¹H NMR (500 MHz, CDCl₃; compound exists as a 1:1 mixture of rotamers) δ 7.13 (dd, J = 7.8, 1.2) Hz, 0.5H), 7.10 (dd, J = 7.9, 1.3 Hz, 0.5H), 7.08 (ddd, J = 1.3, 0.6, 0.6 Hz, 0.5H), 7.07 (ddd, J = 1.3, 0.6, 0.6 Hz, 0.5H), 6.83 (ddd, J = 7.5, 7.5, 1.0 Hz, 0.5H), 6.79 (ddd, J = 7.4)7.4, 1.0 Hz, 0.5H), 6.64 (ddd, J = 7.8, 0.7, 0.7 Hz, 0.5H), 6.61 (dt, J = 7.8, 0.8, 0.8 Hz, 0.5H), 5.64 (app q, J = 1.9 Hz, 0.5H), 5.58 (s, 0.5H), 4.62 (ap ddq, J = 9.1, 4.4, 1.5 Hz, 0.5H, 4.45 (dd, J = 8.5, 7.0 Hz, 0.5H), 3.81 (s, 1.5H), 3.77 (s, 1.5H), 2.75 (dd, J = 13.4, 9.1 Hz, 0.5H), 2.59 (ddd, J = 13.2, 8.5, 0.5 Hz, 0.5H), 2.37 (dd, J = 13.4, 4.4 Hz, 0.5H), 2.19 (dd, J = 13.2, 7.0 Hz, 0.5H), 1.49 (s, 1.5H), 1.41 (s, 1.5H).; ¹³C NMR (125 MHz,

Chapter 2–Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2) Cycloaddition 108 CDCl₃; compound exists as a 1:1 mixture of rotamers) δ 172.1, 170.9, 157.6 (q, J_{C-F} = 37.5 Hz), 156. 7 (q, J_{C-F} = 38.0 Hz), 146.8, 146.4, 133.14, 133.10, 128.9, 128.7, 122.3, 122.1, 120.2, 119.3, 116.1 (q, J_{C-F} = 287.1 Hz), 115.7 (q, J_{C-F} = 286.2 Hz), 109.9, 109.4, 86.4, 84.4 (q, J_{C-F} = 2.2 Hz), 61.1, 59.5 (q, J_{C-F} = 3.1 Hz), 54.5, 53.0, 52.6, 50.3, 43.7, 40.3, 24.2, 24.0.; IR (NaCl/thin film): 3387, 2959, 1751, 1693, 1613, 1489, 1469, 1450, 1438, 1359, 1195, 1160, 1104 cm⁻¹; $[\alpha]_D^{25}$ -182.7° (c = 0.50, DCM); HRMS (MM) calc'd for C₁₅H₁₆F₃N₂O₃ [M+H]⁺ 329.1108, found 329.1122.

2.4.7 General Procedure D. Epimerization Studies

To an NMR tube was added a solution of pyrroloindoline **96** (0.063 mmol, 1.00 equiv) in CD_2Cl_2 (0.46 mL), followed by DBU (0.63 mmol, 10.00 equiv). The reaction was monitored by ¹H NMR until the ratio of diastereomers reached an equilibrium. At this point the reaction was diluted with 3 mL CHCl₃ and 25 mL ethyl acetate and washed with saturated NaHCO_{3(aq)} (3 x 15 mL). The organic layer was dried (Na₂SO₄), filtered, and concentrated to give the mixture of pyrroloindoline diastereomers as a pale yellow oil with quantitative recovery of material.

Experiment 1: Treatment of a 4:1 mixture of *exo-96* (94% ee) + *endo-96* (91% ee) with DBU (10 equiv) for 65 h to give >10:1 *ent-endo-96* (56% ee).

Experiment 2: Treatment of diastereomerically pure *exo-96* (94% ee) with DBU (10 equiv) for 96 h to give >10:1 *ent-endo-96* (94% ee).

Experiment 3: Treatment of diastereomerically pure *endo-96* (91% ee) with DBU (10 equiv) for 30 h to return *endo-96* (89% ee).

2.4.8 Resubjection of Pure Exo and Endo Pyrroloindolines to Reaction Conditions

111

To an NMR tube was added a solution of pure pyrroloindoline *exo*-**96** (0.073 mmol, 1.00 equiv, 94% ee) in CD_2Cl_2 (297 µL), followed by (*R*)-BINOL (from a 0.0675 M solution in CD_2Cl_2 , 0.015 mmol, 0.20 equiv) and $SnCl_4$ (from a 0.72 M solution in CD_2Cl_2 , 0.088 mmol, 1.2 equiv). After 4 h at room temperature, the solution was quenched according to general procedure C. The same experiment was performed with pure *endo*-**96** (91% ee), except at a concentration of 0.065 M. In both cases, no epimerization or erosion of ee was observed.

2.4.9 General Procedure E. in situ Monitoring of the Formal (3 + 2) Cycloaddition by ¹H NMR.

In the glovebox, a 1 M solution of 1,3-dimethylindole, a 1 M solution of benzyl trifluoroacetamidoacrylate (with 0.3 equiv 1,4-diethylbenzene as an internal standard), a 0.72 M solution of SnCl₄, and a 0.0675 M solution of (*R*)-BINOL in CD₂Cl₂ were made. To an oven-dried NMR tube equipped with a teflon-lined cap were added 90 μ L of the indole solution, μ L of the acrylate + internal standard solution, 267 μ L of the (*R*)-BINOL solution, and 186 μ L of CD₂Cl₂. A ¹H NMR spectrum was taken (1 scan) to determine the initial ratio of substrates, (*R*)-BINOL, and internal standard. Immediately before beginning the collection of kinetics data, SnCl₄ was added via a microsyringe through the teflon cap of the NMR tube. The tube was inverted once, then quickly inserted into the instrument. The concentration of acrylate over the course of the reaction was determined by integrating its resonance at 6.3 ppm, then normalizing by the internal standard's resonance at 2.74 ppm.

2.5 Notes and References

- (1) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013, 78, 12314–12320.
- (2) Austin, J. F.; Kim, S.-G.; Sinz, C. J.; Xiao, W.-J.; MacMillan, D. W. C. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, *101*, 5482–5487.
- (3) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314–6315.
- (4) Angelini, E.; Balsamini, C.; Bartoccini, F.; Lucarini, S.; Piersanti, G. J. Org. Chem. **2008**, 73, 5654–5657.
- (5) For applications of chiral biphenols in ligand-accelerated 1,2 and 1,4-addition of allyl, alkenyl, and alkynyl boronates to carbonyls, see: (a) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2005, 127, 3244–3245. (b) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128, 12660–12661. (c) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2007, 129, 4908–4909. (d) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007, 129, 15398–15404. (e) Lou, S.; Schaus, S. E. J. Am. Chem. Soc. 2007, 129, 15398–15404. (e) Lou, S.; Schaus, S. E. J. Am. Chem. Soc. 2008, 130, 6922–6923.
- (6) (a) Fu, I.; Uang, B.-J. *Tetrahedron: Asymmetry* 2001, *12*, 45–48. (b) Guillarme, S.; Whiting, A. *Synlett* 2004, 711–713.
- (7) Repka, L. M.; Ni, J.; Reisman, S. E. J. Am. Chem. Soc. 2010, 132, 14418–14420.
- (8) Shortly before publication of our report, the Piersanti group published a non-asymmetric version of this reaction: Lucarini, S.; Bartoccini, F.; Battistoni, F.; Diamantini, G.; Piersanti, G.; Righi, M.; Spadoni, G. Org. Lett. 2010, 12, 3844–3847.
- (9) Massiot, G.; Thepenier, P.; Jacquier, M.-J.; Le Men-Olivier, L.; Delaude, C. *Heterocycles* 1989, 29, 1435–1438.
- (10) Goodson, J. A.; Henry, T. A. J. Chem. Soc. 1925, 127, 1640.
- (11) Mokry, J.; Dubravkova, L.; Sefcovic, P. Experientia 1962, 18, 564–545.
- (12) Garro-Helion, F.; Merzouk, A.; Guibe, F. J. Org. Chem. **1993**, 58, 6109–6113. Application to pyrroloindolines: Li, G.; Padwa, A. Org. Lett. **2011**, 13, 3767–3769.
- (13) Crich, D.; Bruncko, M.; Natarajan, S.; Teo, B. K.; Tocher, D. A. *Tetrahedron* **1995**, *51*, 2215–2228.
- (14) Mills, J. E.; Maryanoff, C. A.; McComsey, D. F.; Stanzione, R. C.; Scott, L. J. Org. Chem. 1987, 52, 1857–1859.
- (15) (a) Kagan, H. B. Adv. Synth. Catal. 2001, 343, 227–233; (b) Girard, C.; Kagan, H.

B. Angew. Chem. Int. Ed. Engl. **1998**, *37*, 2922–2959; (c) Blackmond, D. G. Acc. Chem. Res. **2000**, *33*, 402–411.

- (16) An alternative scenario would involve a moderately selective, enantioselective, irreversible conjugate addition, followed by a highly selective, catalyst-controlled irreversible protonation.
- (17) (a) Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179–11180. (b) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854–12855. (c) Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 3049–3050. (d) Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24–25. (e) Rauniyar, V.; Zhai, H.; Hall, D. G. J. Am. Chem. Soc. 2008, 130, 8481–8490. (f) Yamamoto, H.; Futatsugi, K. Angew. Chem. Int. Ed. Engl. 2005, 44, 1924–1942.
- (18) Kieffer, M. E.; Repka, L. M.; Reisman, S. E. J. Am. Chem. Soc. 2012, 134, 5131– 5137.
- (19) Ni, J.; Wang, H.; Reisman, S. E. *Tetrahedron* **2013**, *69*, 5622–5633.
- (20) Tuntiwachwuttikul, P.; Taechowisan, T.; Wanbanjob, A.; Thadaniti, S.; Taylor, W. C. *Tetrahedron* **2008**, *64*, 7583–7586.
- (21) Raju, R.; Piggott, A. M.; Huang, X.-C.; Capon, R. J. Org. Lett. 2011, 13, 2770–2773.
- (22) M. Rueping, E. Sugiono, A. Steck, T. Thiessmann. Adv. Synth. Catal. 2010, 352, 281–287.
- (23) Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701–2704.
- (24) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139-5151.
- (25) Ito, K.; Takahashi, M.; Hoshino, T.; Nishiki, M.; Ohba, Y. Lett. Org. Chem. 2006, 3, 735.
- (26) Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jørgensen, M. Angew. Chem. Int. Ed. 2008, 47, 888.
- (27) van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Spek, A. L. Organometallics 2002, 21, 2119.
- (28) Petit, S.; Duroc, Y.; Larue, V.; Giglione, Léon, C.; Soulama, C.; Denis, A.; Dardel, F. Meinnel, T.; Artaud, I. *ChemMedChem* 2009, 4, 261.
- (29) Sørensen, U. S.; Pombo-Villar, E. Helv. Chim. Acta. 2004, 87, 82.

- (30) Hirose, T.; Sunazuka, T.; Yamamoto, D.; Kojima, N.; Shirahata, T.; Harigaya, Y.; Kuwajima, I.; Ōmura, S. *Tetrahedron* **2005**, *61*, 6015.
- (31) Petit, S.; Duroc, Y.; Larue, V.; Giglione, Léon, C.; Soulama, C.; Denis, A.; Dardel, F. Meinnel, T.; Artaud, I. *ChemMedChem* 2009, 4, 261.
- (32) Bajwa, G. S.; Brown, R. K. Can. J. Chem. 1969, 47, 785.
- (33) Kira, M.; Hino, T.; Sakurai, H. Tetrahedron Lett. 1989, 30, 1099.
- (34) Rodriguez, J. G.; Lafuente, A.; Garcia-Almaraz, P. J. Heterocycl. Chem. 2000, 37, 1281.
- (35) Methyl 2-acetamidoacrylate is commercially available, or can be prepared according to Crestey, F.; Collot, V.; Steibing, S.; Rault, S. Synthesis 2006, 20, 3506.
- (36) Synthesis of methyl 2-trifluoroacetamidoacrylate: Navarre, L.; Martinez, R.; Genet, J.; Darses, S. J. Am. Chem. Soc. 2008, 130, 6159.
- (37) Synthesis of benzyl 2-acetamidoacrylate: Liu, G.; Xin, Z.; Liang, H.; Abad-Zapatero, C.; Hajduk, P. J.; Janowick, D. A.; Szczepankiewicz, B. G.; Pei, Z.; Hutchins, C. W.; Ballaron, S. J.; Stashko, M. A.; Lubben, T. H.; Berg, C. E.; Rondinone, C. M.; Trevillyan, J. M.; Jirousek, M. R. J. Med. Chem. 2003, 46, 3437.
- (38) Synthesis of benzyl 2-trifluoroacetamidoacrylate: Crossley, M.; Stamford, A. Aust. J. Chem. **1994**, 47, 1695.
- (39) Underwood, R.; Prasad, K.; Repic, O.; Hardtmann, G. E. Synth. Commun. **1992**, 22, 343.
- (40) Pitts, M. R.; Harrison, J. R.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 2001, 9, 955.
- (41) Ferreira, E. Ph.D. Dissertation, California Institute of Technology, 2005.
- (42) Odle, R.; Blevins, B.; Ratcliff, M.; Hegedus, L. S. J. Org. Chem. **1980**, 45, 2709.

APPENDIX 1

Spectra Relevant to Chapter 2:

Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2)

Cycloaddition

Sample Name: JN-1-197-co1 Data Collected on: pa3.caltech.edu-mercury300 Archive directory: /home/jni/vnmrsys/data Sample directory: JN-1-197-co1 FidFile: PROTON01 Pulse Sequence: FROTON (s2pul) Solvent: cdcl3 Data collected on: Jul 19 2010

Temp. 25.0 C / 298.1 K Sample #22, Operator: jni Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.706 sec Width 4810.0 Hz 16 repetitions OBSENE H1, 300.0862583 MHz DATA PROCESSING FT size 32768 Total time 0 min 45 sec

117

Sample Name:
JN-1-183-col2
Data Collected on:
indy.caltech.edu-inova500
Archive directory:
/home/janeni/vnmrsys/data
Sample directory:
JN-1-183-co12
FidFile: PROTON01

Me Me

Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Jul 6 2010

Temp. 25.0 C / 298.1 K Operator: janeni Relax. delay 2.000 sec Pulse 45.0 degrees Acq. time 2.048 sec Width 80000 Hz 16 repetitions OBSERVE H1, 499.7420500 MHz DATA PROCESSING FT size 32768 Total time 1 min 5 sec

indy.caltech.edu-inova500 Archive directory: /home/janeni/vnmrsys/data Sample directory: JN-1-181-col FidFile: PROTON01 Sample Name: JN-1-181-col Data Collected on:

Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Jun 27 2010

Pulse 45.0 degrees Acq. time 2.048 sec Width 8000.0 Hz

Sample Name: JN-1-199-col Data Collected on: siena.caltech.edu-vnmrs400 Archive directory: /homé/jni/vnmrsys/data Sample directory: JN-1-199-col

Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Jul 24 2010

FidFile: PROTON01

Temp. 26.0 C / 299.1 K Sample #11, Operator: jni

16 repetitions OBSERVE H1, 399.7942813 MHz DATA PROCESSING FT size 32768 Total time 0 min 57 sec Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Width 6410.3 Hz

Sample Name: JN-1-201-col Data Collected on: siena.caltech.edu-vnmrs400 Archive directory: /home/jni/vnmrsys/data Sample directory: JN-1-201-col FidFile: PROTON01 Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Jul 24 2010

Temp. 26.0 C / 299.1 K Sample #12, Operator: jni Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Midth 6410.3 Hz 16 repetitions OBSERVE H1, 399.7942813 MHz OBSERVE H1, 399.7942813 MHz DATA PROCESSING PATA PROCESSING DATA PROCESING Pata time 0 min 57 sec

Sample Name: JN-1-203-col Data Collected on: hg3.caltech.edu-mercury300 Archive directory: /homé/jni/vnmrsys/data Sample directory: JN-1-203-col FidFile: PROTON01 Pulse Sequence: PROTON (s2pul)
Solvent: cdc13
Data collected on: Jul 19 2010

Temp. 25.0 C / 298.1 K Sample #21, Operator: jni

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.706 sec Width 4810.0 Hz 16 repetitions OBSERVE H1, 300.0862580 MHz DATA PROCESSING FT size 32768 Total time 0 min 45 sec

JN-1-203

Appendix 1—Spectra Relevant to Chapter 2

LMRIV-291-majordr-hsqc

siena.caltech.edu-vnmrs400

Archive directory:

LMRIV-291-majordr-hsqc Data Collected on:

Sample Name:

siena.caltech.edu-vnmrs400 Archive directory: /home/lrepka/vnmrsys/data LMRIV-291-majordr-conc LMRIV-291-majordr-conc Data Collected on: Sample directory: FidFile: CARBONO1 Sample Name:

Data collected on: Jul 31 2010 Solvent: cdcl3

Temp. 25.0 C / 298.1 K Sample #11, Operator: Irepka

3000 repetitions OBSERVE C13, 100.5283980 MHz DECOUPLE H1, 399.7962875 MHz Line broadening 1.0 Hz Acq. time 1.468 sec Pulse 45.0 degrees WALTZ-16 modulated Width 22321.4 Hz continuously on DATA PROCESSING FT size 65536 Power 39 dB

LMRIV-291-minordr-hsqc

Appendix 1—Spectra Relevant to Chapter 2

Sample Name: JN-1-131-majordiast Data Collected on: siena.caltech.edu-vnmrs400 Archive directory: /home/jni/vnmrsys/data Sample directory: JN-1-131-majordiast

FidFile: PROTON01

Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Aug 5 2010

Temp. 25.0 C / 298.1 K Sample #1, Operator: jni

16 repetitions OBSERVE H1, 399.7943120 MHz DATA PROCESSING FT size 32768 Total time 7 min 21 sec Acq. time 2.556 sec Width 6410.3 Hz Pulse 45.0 degrees

JN-1-131-majordiast

Sample Name: JN-1-131-minordiast3 Data Collected on: indy.caltech.edu-inova500 Archive directory: /home/janeni/vnmrsys/data Sample directory: JN-1-131-minordiast3 Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Aug 5 2010

FidFile: PROTON01

Operator: janeni

Relax. delay 25.000 sec Pulse 45.0 degrees Acg. time 2.500 sec Width 8000.0 Hz 16 repetitions OBSERVE H1, 499.7420505 MHz DATA PROCESSING DATA PROCESSING Line broadening 0.2 Hz Line broadening 0.2 Hz Total time 7 min 20 sec

Sample Name: JN-1-151-major Data Collected on: hg3.caltech.edu-mercury300 Archive directory: /home/jni/vnmrsys/data Sample directory: JN-1-151-major

FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun 24 2010

139

mqq

ч

1.71 -[J.52 -[

N - T9 · T 85 · 0 - 29 · 0 - 40 · T - 17 · 7 - 5 · 7

ω____2.52.1 1.52 −[

0:36 ₹

1.57 1.02

- 52.0

- 00.τ

£0.1 20.1 20.1 09.₽

ဖ

ω

თ

10

JN-1-151

Data Collected on: indy.caltech.edu-inova500 /home/janeni/vnmrsys/data Sample directory: JN-1-151-minordiast3 FidFile: PROTON01 Sample Name: JN-1-151-minordiast3 Archive directory:

Pulse Sequence:PROTON (s2pul)Solvent:cdcl3Data collected on:Aug42010

Operator: janeni

16 repetitions OBSERVE H1, 499.7420463 MHz DATA PROCESSING Relax. delay 25.000 sec Line broadening 0.2 Hz FT size 65536 Total time 7 min 20 sec Pulse 45.0 degrees Acq. time 2.500 sec Width 8000.0 Hz

Appendix 1—Spectra Relevant to Chapter 2

LMRIV-287-majordr-rd25

LMRIV-287-minor-8-5-10 Data Collected on: FidFile: PROTON01 Sample Name:

Solvent: cdcl3 Data collected on: Aug 5 2010 Pulse Sequence: PROTON (s2pul)

Appendix 1—Spectra Relevant to Chapter 2

JN-1-191-majordiast

Sample Name: JN-1-191-minordiast Data Collected on: indy.caltech.edu-inova500 Archive directory:

/home/janeni/vnmrsys/data

Sample directory: JN-1-191-minordiast FidFile: PROTON01

Solvent: cdc13 Data collected on: Jul 18 2010 Pulse Sequence: PROTON (s2pul)

Temp. 25.0 C / 298.1 K Operator: janeni

16 repetitions OBSERVE H1, 499.7420505 MHz Relax. delay 25.000 sec Pulse 45.0 degrees Acq. time 2.500 sec Width 8000.0 Hz

JN-1-195-majordiast4

indy.caltech.edu-inova500 /home/janeni/vnmrsys/data Sample directory: JN-1-195-minordiast FidFile: PROTON01 JN-1-195-minordiast Data Collected on: Archive directory: Sample Name:

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 15 2010

Temp. 25.0 C / 298.1 K Operator: janeni Relax. delay 25.000 sec Pulse 45.0 degrees Acq. time 2.500 sec Width 8000.0 Hz 16 repetitions OBSERVE H1, 499.7420463 MHz

155

0.99 7-]-

т. 02 1.02 1.02 } 7-

]- 0ε.0 - 99.0

2.33

- 70.0

0.32 =

1.00 22.0 70.32

- \$0.2

mdd

JN-1-171-mindiast2

Sample Name:

hg3.caltech.edu-mercury300 /home/jni/vnmrsys/data Data Collected on: Archive directory:

LMRIV-177-majordr-hsgc2

LMRIV-177-minordr-hsgc Data Collected on: indy.caltech.edu-inova500 Archive directory: /home/lrepka/vnmrsys/data Sample directory: LMRIV-177-minordr-hsqc Sample Name:

Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Aug 1 2010 FidFile: PROTON01

Operator: lrepka

Appendix 1—Spectra Relevant to Chapter 2

Sample Name: JN-1-215-majordiast2 Data Collected on: indy.caltech.edu-inova500 Archive directory: /home/janeni/vnmrsys/data

Sample directory: JN-1-215-majordiast2 FidFile: PROTON01 Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Aug 3 2010

Operator: janeni

OBSERVE H1, 499.7420463 MHz Relax. delay 25.000 sec Pulse 45.0 degrees Acq. time 2.500 sec Width 8000.0 Hz 16 repetitions Line broadening 0.2 Hz FT size 65536 Total time 7 min 20 sec DATA PROCESSING

163

wdd

Sample Name: JN-1-215-minordiast2 Data Collected on: indy.caltech.edu-inova500 Archive directory:

/home/janeni/vnmrsys/data Sample directory: JN-1-215-minordiast2

JN-1-215-minordiast2 FidFile: PROTON01 Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Aug 2 2010

LMRIV-285-major-rd25

LMRIV-275-pentanewash Data Collected on: hg3.caltech.edu-mercury300 Archive directory: /home/lrepka/vnmrsys/data Sample Name:

Sample directory: LMRIV-275-pentanewash FidFile: PROTON01 Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Jul 14 2010

Temp. 25.0 C / 298.1 K Sample #33, Operator: lrepka

Relax. delay 2.000 sec Pulse 45.0 degrees Acq. time 1.705 sec Width 4810.0 Hz

Sample directory: LMRIV-267-minor3_20100717_01 LMRIV-267-minor3 Data Collected on: indy.caltech.edu-inova500 Archive directory: /nome/lrepka/vnmrsys/data Sample Name:

FidFile: data_s2pul_001

Pulse Sequence: PROTON (s2pul) Solvent: CDC13 Data collected on: Jul 17 2010

Temp. 25.0 C / 298.1 K Operator: lrepka

OBSERVE H1, 499.7420487 MHz DATA PROCESSING Relax. delay 25.000 sec Pulse 45.0 degrees Acq. time 2.049 sec Width 7996.0 Hz FT size 32768 Total time 3 min 36 sec 8 repetitions

|--|

Pulse Sequence: CARBON (s2pul) Solvent: CDCl3 Data collected on: Jul 17 2010

Temp. 25.0 C / 298.1 K Operator: lrepka Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.043 sec Width 31409.5 Hz 12000 repetitions 0BSERVE 13, 125.6602386 MHz 0BSERVE 13, 125.6602386 MHz DECOUPLE H1, 499.7445450 MHz Power 39 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz Line broadening 1.0 Hz Total time 6 hr, 50 min

Sample Name: JN-1-211-minordiast Data Collected on: indy.caltech.edu-inova500 Archive directory:

/home/janeni/vnmrsys/data Sample directory: JN-1-211-minordiast FidFile: PROTON01

Solvent: cdc13 Data collected on: Jul 28 2010 Pulse Sequence: PROTON (s2pul)

Operator: janeni

Relax. delay 25.000 sec Pulse 45.0 degrees

WHX-3-99-Rep-F2-Jan_22_INDY_CDCL3

Sarrpie Name WHX-3-99-Rep-F2-Jan_22_IND/%_C0004.00 ne PROTON Date collected 2012-01-22 Solvent edct3 110a ₹ B ъ ٩ e = = = > E 0.20 not used 0 179.6 -20.2 not used not used 20 0.008 9.700 6.600 -250.0 5496.8 1048.3 234 8 157 3 PROCESSING DISPLAY SPECIAL FLAGS temp gain spin hst pw/90 alla fd PLOT wel 음 윤 윤 양 행 트 등 두 다 al the wo 9 E _ date Jan 22 2012 solvent data/indy/hwwang/ itte / data/indy/hwwang/ wmmsys/data/WHX-3-99-Re P-F2-Jan_22_INDY_COCL3/P ROTON01.fid H1 499.726 499.7 61 4.850 9 35 32258 8000.0 2.500 40000 not used C13 0 16 16 5 8 5.000 uuu PRESATURATION TRANSMITTER ACQUISITION DECOUPLER SAMPLE solvent tile satmode decw date tn strg tol pwr dpwr dmf Б do di SW at d1 bs d1

mqq

2

2.45 1.22

2.34 1.08 3.09 0.74 0.87

3.07 ┟ 4

> 0.79]-

1.04

}.00 1.00

0.82

ß

9

00

6

10

} } m

tn strg tpwr pw

at at at at at a sw

dpwr dmf щ d d

mqq

2.08 1.062.92 0.98 0.87

2.16 0.88

0.31

0.34

0.67

0.67

do đ

at at bs d1 sw

tn strg tol pwr

sw df df df df df df df sw

SAMPLE

date solvent file

mqq

0.60.99

2.54

0.81 2.52

satmode

decwarv dpwr dmf

u lo E

mqq

dmf

do d ш

dn dol dm decwa

dpwr dmf

tn strq tol pwr

JN-3-053-col2

APPENDIX 2

X-Ray Crystallography Reports Relevant to Chapter 2:

Enantioselective Synthesis of Pyrroloindolines by a Formal (3 + 2)

Cycloaddition⁺

[†] The work disclosed in this appendix for the x-ray crystallographic analysis of **100c** and **106g** was completed entirely by Larry Henling and Dr. Michael Day in the Caltech X-ray crystallography lab.

A2.1 CRYSTAL STRUCTURE ANALYSIS OF PYROLLOINDOLINE 106g

Figure A2.1. Pyrroloindoline **106g** is shown with 50% probability ellipsoids. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 787164.

Table A2.1. Crystal data and structure refinement for pyrroloindoline **106g** (CCDC 787164).

Data Collection

Empirical formula
Formula weight
Crystallization Solvent
Crystal Habit
Crystal size
Crystal color

C₂₅H₂₅F₃N₂O₃ 458.47 Hexanes/ethyl acetate Plate 0.23 x 0.19 x 0.02 mm³ Colorless

Type of diffractometer	Bruker KAPPA APEX II	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 5569 reflections used in lattice determination	2.19 to 24.93°	
Unit cell dimensions	a = $9.8089(6)$ Å b = $8.4633(5)$ Å c = $13.9252(9)$ Å	$\alpha = 90^{\circ}$ $\beta = 108.657(3)^{\circ}$ $\gamma = 90^{\circ}$
Volume	1095.26(12) Å ³	
Z	2	
Crystal system	Monoclinic	
Space group	P 2 ₁	
Density (calculated)	1.390 Mg/m ³	
F(000)	480	
Data collection program	Bruker APEX2 v2009.7-0	
θ range for data collection	2.19 to 30.52°	
Completeness to $\theta = 30.52^{\circ}$	91.3 %	
Index ranges	$-13 \le h \le 13, -11 \le k \le 11,$	-19 ≤ l ≤ 19
Data collection scan type	ω scans; 8 settings	
Data reduction program	Bruker SAINT-Plus v7.66	A
Reflections collected	20200	
Independent reflections	5883 [$R_{int} = 0.0461$]	
Absorption coefficient	0.109 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9978 and 0.9755	

205

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	5883 / 1 / 398
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.140
Final R indices [I> $2\sigma(I)$, 4601 reflections]	R1 = 0.0393, wR2 = 0.0443
R indices (all data)	R1 = 0.0561, wR2 = 0.0463
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.001
Average shift/error	0.000
Absolute structure determination	Unknown
Absolute structure parameter	0.1(4)
Largest diff. peak and hole	0.245 and -0.273 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

It is not possible to reliably determine the absolute configuration of this molecule due to the lack of atoms with sufficient anomalous scattering.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances,

angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table A2.2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 x \ 10^3$) for pyrroloindoline **106g** (CCDC 787164). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U _{eq}
F(1)	3918(1)	4664(1)	10172(1)	32(1)
F(2)	3607(1)	4695(1)	8564(1)	27(1)
F(3)	3993(1)	2504(1)	9381(1)	33(1)
O(1)	1918(1)	7940(1)	7621(1)	20(1)
O(2)	1842(1)	7188(1)	9164(1)	22(1)
O(3)	1481(1)	2670(1)	9761(1)	25(1)
N(1)	684(1)	4212(1)	8351(1)	14(1)
N(2)	-1102(1)	2048(2)	7926(1)	14(1)
C(1)	4492(2)	9288(2)	7202(1)	28(1)
C(2)	5169(2)	9805(2)	6533(2)	35(1)
C(3)	4687(2)	11150(2)	5965(2)	32(1)
C(4)	3526(2)	11960(2)	6066(1)	31(1)
C(5)	2821(2)	11417(2)	6732(1)	25(1)
C(6)	3305(2)	10072(2)	7304(1)	18(1)
C(7)	2596(2)	9456(2)	8032(1)	22(1)
C(8)	1606(2)	6946(2)	8279(1)	16(1)
C(9)	838(2)	5515(2)	7694(1)	14(1)
C(10)	-729(2)	5990(2)	7108(1)	15(1)
C(11)	-1598(2)	4502(2)	7091(1)	13(1)
C(12)	-3220(2)	4815(2)	6864(1)	18(1)
C(13)	-3617(2)	5480(2)	7758(1)	21(1)
C(14)	-3057(2)	4415(2)	8680(1)	21(1)
C(15)	-1419(2)	4324(2)	8991(1)	16(1)
C(16)	-899(2)	3723(2)	8148(1)	13(1)
C(17)	-1397(2)	3220(2)	6391(1)	13(1)
C(18)	-1534(2)	3247(2)	5377(1)	19(1)
C(19)	-1410(2)	1830(2)	4889(1)	23(1)
C(20)	-1171(2)	419(2)	5432(1)	22(1)
C(21)	-1052(2)	377(2)	6453(1)	18(1)
C(22)	-1167(2)	1787(2)	6929(1)	14(1)
C(23)	-1076(2)	774(2)	8626(1)	19(1)
C(24)	1708(2)	3572(2)	9147(1)	17(1)
C(25)	3315(2)	3892(2)	9305(1)	22(1)

Table A2.3. Bond lengths [A	Å] and angles [°] for	pyrroloindoline 106	g (CCDC 787164).
-----------------------------	-----------------------	---------------------	------------------

F(1)-C(25)	1.3329(18)	C(18)-H(18)	0.935(15)
F(2)-C(25)	1.3403(19)	C(19)-C(20)	1.393(2)
F(3)-C(25)	1.3374(18)	С(19)-Н(19)	0.969(15)
O(1)-C(8)	1.3487(18)	C(20)-C(21)	1.389(2)
O(1)-C(7)	1.4743(19)	C(20)-H(20)	0.965(15)
O(2)-C(8)	1.1966(17)	C(21)-C(22)	1.387(2)
O(3)-C(24)	1.2187(19)	C(21)-H(21)	0.994(15)
N(1)-C(24)	1.3487(18)	C(23)-H(23A)	1.054(15)
N(1)-C(9)	1.4715(19)	C(23)-H(23B)	0.989(15)
N(1)-C(16)	1.5426(18)	C(23)-H(23C)	1.010(14)
N(2)-C(22)	1.3868(18)	C(24)-C(25)	1.544(2)
N(2)-C(23)	1.4491(19)		
N(2)-C(16)	1.4507(18)	C(8)-O(1)-C(7)	116.90(12)
C(1)-C(2)	1.377(3)	C(24)-N(1)-C(9)	127.88(13)
C(1)-C(6)	1.387(2)	C(24)-N(1)-C(16)	118.98(12)
C(1)-H(1)	0.945(17)	C(9)-N(1)-C(16)	112.63(11)
C(2)-C(3)	1.380(3)	C(22)-N(2)-C(23)	122.70(14)
C(2)-H(2)	1.029(19)	C(22)-N(2)-C(16)	109.17(13)
C(3)-C(4)	1.374(3)	C(23)-N(2)-C(16)	127.76(14)
C(3)-H(3)	0.968(16)	C(2)-C(1)-C(6)	121.29(18)
C(4)-C(5)	1.401(2)	C(2)-C(1)-H(1)	119.9(10)
C(4)-H(4)	0.946(18)	C(6)-C(1)-H(1)	118.8(11)
C(5)-C(6)	1.383(2)	C(1)-C(2)-C(3)	119.92(19)
C(5)-H(5)	0.969(14)	C(1)-C(2)-H(2)	121.2(11)
C(6)-C(7)	1.494(2)	C(3)-C(2)-H(2)	118.8(11)
C(7)-H(7A)	1.088(16)	C(4)-C(3)-C(2)	119.75(18)
C(7)-H(7B)	0.972(14)	C(4)-C(3)-H(3)	118.6(10)
C(8)-C(9)	1.518(2)	C(2)-C(3)-H(3)	121.6(10)
C(9)-C(10)	1.545(2)	C(3)-C(4)-C(5)	120.33(18)
C(9)-H(9)	1.013(13)	C(3)-C(4)-H(4)	118.3(11)
C(10)-C(11)	1.517(2)	C(5)-C(4)-H(4)	121.3(11)
C(10)-H(10A)	1.001(13)	C(6)-C(5)-C(4)	119.98(18)
C(10)-H(10B)	0.990(14)	C(6)-C(5)-H(5)	121.8(9)
C(11)-C(17)	1.513(2)	C(4)-C(5)-H(5)	118.2(9)
C(11)-C(12)	1.543(2)	C(5)-C(6)-C(1)	118.71(17)
C(11)-C(16)	1.557(2)	C(5)-C(6)-C(7)	121.90(16)
C(12)-C(13)	1.525(2)	C(1)-C(6)-C(7)	119.38(15)
C(12)-H(12A)	0.954(15)	O(1)-C(7)-C(6)	106.95(13)
C(12)-H(12B)	1.045(15)	O(1)-C(7)-H(7A)	111.0(9)
C(13)-C(14)	1.521(2)	C(6)-C(7)-H(7A)	111.9(9)
C(13)-H(13A)	1.068(16)	O(1)-C(7)-H(7B)	105.6(9)
C(13)-H(13B)	0.952(14)	C(6)-C(7)-H(7B)	115.4(9)
C(14)-C(15)	1.526(2)	H(7A)-C(7)-H(7B)	105.8(12)
C(14)-H(14A)	0.955(14)	O(2)-C(8)-O(1)	125.53(15)
C(14)-H(14B)	0.953(14)	O(2)-C(8)-C(9)	126.07(15)
C(15)-C(16)	1.510(2)	O(1)-C(8)-C(9)	108.32(13)
C(15)-H(15A)	0.950(14)	N(1)-C(9)-C(8)	113.32(12)
C(15)-H(15B)	1.009(16)	N(1)-C(9)-C(10)	103.92(12)
C(17)-C(18)	1.375(2)	C(8)-C(9)-C(10)	108.33(12)
C(17)-C(22)	1.404(2)	N(1)-C(9)-H(9)	112.3(8)
C(18)-C(19)	1.404(2)	C(8)-C(9)-H(9)	108.3(8)

Table A2.3 (continued)

C(10)-C(9)-H(9)	110.5(7)	N(2)-C(16)-N(1)	111.25(12)
C(11)-C(10)-C(9)	104.52(12)	C(15)-C(16)-N(1)	109.73(12)
C(11)-C(10)-H(10A)	114.5(7)	N(2)-C(16)-C(11)	102.90(12)
C(9)-C(10)-H(10A)	110.4(7)	C(15)-C(16)-C(11)	115.86(13)
C(11)-C(10)-H(10B)	112.1(8)	N(1)-C(16)-C(11)	99.95(11)
C(9)-C(10)-H(10B)	109.6(7)	C(18)-C(17)-C(22)	120.54(15)
H(10A)-C(10)-H(10B)	105.7(10)	C(18)-C(17)-C(11)	131.23(15)
C(17)-C(11)-C(10)	114.67(13)	C(22)-C(17)-C(11)	107.92(14)
C(17)-C(11)-C(12)	109.24(12)	C(17)-C(18)-C(19)	119.20(16)
C(10)-C(11)-C(12)	113.47(13)	C(17)-C(18)-H(18)	121.0(10)
C(17)-C(11)-C(16)	101.33(12)	C(19)-C(18)-H(18)	119.7(9)
C(10)-C(11)-C(16)	105.18(12)	C(20)-C(19)-C(18)	119.67(16)
C(12)-C(11)-C(16)	112.29(13)	C(20)-C(19)-H(19)	122.6(10)
C(13)-C(12)-C(11)	114.34(13)	C(18)-C(19)-H(19)	117.7(10)
C(13)-C(12)-H(12A)	107.5(10)	C(21)-C(20)-C(19)	121.50(17)
C(11)-C(12)-H(12A)	107.9(9)	C(21)-C(20)-H(20)	118.3(9)
C(13)-C(12)-H(12B)	111.6(8)	C(19)-C(20)-H(20)	120.2(9)
C(11)-C(12)-H(12B)	108.0(8)	C(22)-C(21)-C(20)	118.26(16)
H(12A)-C(12)-H(12B)	107.2(11)	C(22)-C(21)-H(21)	121.5(9)
C(14)-C(13)-C(12)	110.66(15)	C(20)-C(21)-H(21)	120.2(9)
C(14)-C(13)-H(13A)	108.2(8)	N(2)-C(22)-C(21)	129.06(15)
C(12)-C(13)-H(13A)	112.9(9)	N(2)-C(22)-C(17)	110.12(14)
C(14)-C(13)-H(13B)	110.4(9)	C(21)-C(22)-C(17)	120.82(14)
C(12)-C(13)-H(13B)	110.4(9)	N(2)-C(23)-H(23A)	111.7(9)
H(13A)-C(13)-H(13B)	104.1(12)	N(2)-C(23)-H(23B)	111.3(9)
C(13)-C(14)-C(15)	109.41(14)	H(23A)-C(23)-H(23B)	108.3(11)
C(13)-C(14)-H(14A)	109.4(9)	N(2)-C(23)-H(23C)	110.2(8)
C(15)-C(14)-H(14A)	111.8(8)	H(23A)-C(23)-H(23C)	107.9(12)
C(13)-C(14)-H(14B)	110.8(9)	H(23B)-C(23)-H(23C)	107.3(12)
C(15)-C(14)-H(14B)	109.7(8)	O(3)-C(24)-N(1)	124.92(15)
H(14A)-C(14)-H(14B)	105.7(12)	O(3)-C(24)-C(25)	114.67(14)
C(16)-C(15)-C(14)	112.55(13)	N(1)-C(24)-C(25)	120.33(14)
C(16)-C(15)-H(15A)	110.5(9)	F(1)-C(25)-F(3)	107.01(13)
C(14)-C(15)-H(15A)	112.1(8)	F(1)-C(25)-F(2)	107.80(13)
C(16)-C(15)-H(15B)	108.1(9)	F(3)-C(25)-F(2)	106.44(14)
C(14)-C(15)-H(15B)	107.2(8)	F(1)-C(25)-C(24)	110.64(14)
H(15A)-C(15)-H(15B)	106.1(11)	F(3)-C(25)-C(24)	108.48(13)
N(2)-C(16)-C(15)	115.92(14)	F(2)-C(25)-C(24)	116.05(13)

Table A2.4. Anisotropic displacement parameters ($\mathring{A}^2x \ 10^4$) for pyrroloindoline **106g** (CCDC 787164). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hk a^*b^*U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	210(5)	405(7)	277(6)	-65(5)	-6(4)	-86(5)
F(2)	160(5)	341(6)	323(6)	69(5)	108(4)	-5(5)
F(3)	213(6)	254(6)	502(7)	52(5)	91(5)	83(5)
O(1)	264(7)	161(6)	174(6)	-7(5)	60(5)	-94(5)
O(2)	303(7)	209(7)	174(6)	-42(5)	108(5)	-79(5)
O(3)	193(6)	262(7)	244(7)	90(6)	17(5)	-38(5)
N(1)	107(7)	148(7)	153(7)	23(6)	45(5)	-12(6)
N(2)	187(7)	114(7)	132(7)	12(6)	51(6)	-22(6)
C(1)	209(10)	220(10)	396(12)	34(10)	81(9)	15(9)
C(2)	232(11)	385(12)	455(13)	-89(11)	156(9)	-69(10)
C(3)	311(12)	403(13)	251(11)	-71(9)	108(9)	-241(10)
C(4)	362(12)	230(11)	267(11)	65(10)	12(9)	-97(10)
C(5)	209(10)	169(9)	342(11)	-11(8)	39(9)	-20(8)
C(6)	151(9)	168(9)	190(9)	-37(7)	18(7)	-58(7)
C(7)	257(10)	155(9)	236(10)	-40(8)	53(8)	-94(8)
C(8)	122(8)	159(9)	202(9)	-4(8)	64(7)	8(7)
C(9)	149(9)	130(8)	134(8)	17(7)	51(7)	-6(7)
C(10)	160(9)	100(8)	179(9)	12(7)	43(7)	-1(7)
C(11)	125(8)	108(8)	149(8)	4(7)	37(6)	-11(7)
C(12)	135(9)	164(9)	222(9)	6(8)	27(7)	9(8)
C(13)	127(9)	189(9)	315(10)	-24(9)	93(8)	20(8)
C(14)	182(10)	250(10)	242(10)	-46(9)	120(8)	-1(8)
C(15)	164(9)	166(9)	162(8)	-8(8)	68(7)	-12(7)
C(16)	104(8)	115(8)	170(8)	8(7)	31(7)	-9(7)
C(17)	83(8)	144(8)	174(8)	-2(7)	42(7)	-2(6)
C(18)	173(9)	207(10)	186(9)	24(8)	51(7)	-16(8)
C(19)	249(10)	297(11)	173(9)	-38(9)	93(8)	-11(8)
C(20)	208(9)	197(9)	256(10)	-91(9)	96(8)	-6(8)
C(21)	161(9)	136(8)	236(10)	-1(8)	58(7)	8(7)
C(22)	89(8)	146(8)	172(8)	-22(8)	37(7)	-24(7)
C(23)	235(10)	170(10)	177(9)	34(8)	81(8)	-14(8)
C(24)	173(9)	160(9)	175(9)	-21(8)	39(7)	-19(7)
C(25)	180(10)	232(10)	248(10)	11(8)	48(8)	1(8)

	Х	у	Z	U _{iso}
H(1)	4843(17)	8390(20)	7608(13)	38(6)
H(2)	6021(19)	9190(20)	6434(14)	55(7)
H(3)	5155(16)	11553(18)	5500(11)	26(5)
H(4)	3201(18)	12870(20)	5659(13)	51(6)
H(5)	2013(15)	12023(17)	6791(10)	19(5)
H(7A)	1806(16)	10280(20)	8136(12)	37(5)
H(7B)	3239(14)	9221(18)	8708(11)	20(5)
H(9)	1360(13)	5177(17)	7207(10)	10(4)
H(10A)	-798(13)	6411(15)	6422(9)	3(4)
H(10B)	-1028(13)	6869(17)	7465(10)	13(4)
H(12A)	-3714(15)	3834(17)	6680(11)	15(4)
H(12B)	-3564(14)	5555(17)	6232(11)	21(4)
H(13A)	-3204(16)	6640(20)	7967(11)	35(5)
H(13B)	-4632(15)	5603(18)	7581(11)	23(5)
H(14A)	-3490(14)	3396(17)	8527(10)	10(4)
H(14B)	-3337(14)	4805(17)	9231(11)	13(4)
H(15A)	-1022(14)	3712(18)	9588(11)	13(4)
H(15B)	-1040(15)	5431(19)	9167(11)	22(4)
H(18)	-1721(14)	4191(18)	5008(11)	19(5)
H(19)	-1521(15)	1876(19)	4172(11)	24(4)
H(20)	-1059(14)	-557(18)	5107(11)	14(4)
H(21)	-902(14)	-646(18)	6824(11)	20(4)
H(23A)	-103(16)	136(19)	8815(12)	40(5)
H(23B)	-1203(13)	1175(17)	9259(12)	11(4)
H(23C)	-1889(14)	10(18)	8313(11)	21(5)

Table A2.5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for pyrroloindoline **106g** (CCDC 787164).

A2.2 CRYSTAL STRUCTURE ANALYSIS OF PYRROLOINDOLINE 100c

Figure 2.2. Pyrroloindoline **100c** is shown with 50% probability ellipsoids. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 788553.

Table A2.6. Crystal data and structure refinement for pyrroloindoline **100c** (CCDC 788553).

Empirical formula	$C_{16}H_{17}F_{3}N_{2}O_{3} \\$	
Formula weight	342.32	
Crystallization Solvent	Chloroform	
Crystal Habit	Block	
Crystal size	0.31 x 0.30 x 0.28 mm ³	
Crystal color	Colorless	
Data	Collection	
Type of diffractometer	Bruker SMART 1000	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9932 reflections used in lattice determination	3.07 to 36.76°	
Unit cell dimensions	a = 13.9506(5) Å b = 7.2073(2) Å c = 16.3208(5) Å	$\alpha = 90^{\circ}$ $\beta = 107.9900(10)^{\circ}$ $\gamma = 90^{\circ}$
Volume	1560.77(9) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	P 2 ₁ / <i>c</i>	
Density (calculated)	1.457 Mg/m ³	
F(000)	712	
Data collection program	Bruker SMART v5.630	
θ range for data collection	1.53 to 37.55°	
Completeness to $\theta = 37.55^{\circ}$	88.2 %	
Index ranges	$-22 \le h \le 22, -11 \le k \le 1$	$12, -26 \le 1 \le 26$
Data collection scan type	ω scans at 7 settings	
Data reduction program	Bruker SAINT v6.45A	
Reflections collected	35665	
Independent reflections	7261 [$R_{int} = 0.0549$]	
Absorption coefficient	0.125 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9660 and 0.9624	

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	7261 / 0 / 285
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.940
Final R indices [I> 2σ (I), 4934 reflections]	R1 = 0.0469, wR2 = 0.0737
R indices (all data)	R1 = 0.0757, wR2 = 0.0765
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.001
Average shift/error	0.000
Largest diff. peak and hole	0.427 and -0.429 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table A2.7. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for pyrroloindoline **100c** (CCDC 788553). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U _{eq}
F(1)	7030(1)	5654(1)	4071(1)	26(1)
F(2)	5844(1)	4727(1)	4558(1)	34(1)
F(3)	7372(1)	4868(1)	5397(1)	32(1)
O(1)	5686(1)	3285(1)	2789(1)	23(1)
O(2)	6430(1)	4211(1)	1815(1)	19(1)
O(3)	6740(1)	1296(1)	4926(1)	23(1)
N(1)	8666(1)	-681(1)	4302(1)	15(1)
N(2)	7456(1)	1872(1)	3869(1)	14(1)
C(1)	9002(1)	-1980(1)	3811(1)	15(1)
C(2)	9801(1)	-3225(1)	4089(1)	19(1)
C(3)	10002(1)	-4371(1)	3469(1)	20(1)
C(4)	9425(1)	-4302(1)	2610(1)	18(1)
C(5)	8620(1)	-3049(1)	2340(1)	16(1)
C(6)	8421(1)	-1888(1)	2943(1)	14(1)
C(7)	7622(1)	-411(1)	2841(1)	13(1)
C(8)	7975(1)	1517(1)	2628(1)	14(1)
C(9)	7490(1)	2906(1)	3095(1)	14(1)
C(10)	7643(1)	-124(1)	3784(1)	13(1)
C(11)	6586(1)	-959(1)	2246(1)	18(1)
C(12)	6424(1)	3475(1)	2559(1)	15(1)
C(13)	5449(1)	4754(2)	1236(1)	24(1)
C(14)	6975(1)	2367(1)	4443(1)	16(1)
C(15)	6795(1)	4432(1)	4596(1)	21(1)
C(16)	8848(1)	-1024(1)	5219(1)	20(1)

0	0 17		
F(1)-C(15)	1.3386(10)	C(2)-C(1)-N(1)	128.22(8)
F(2)-C(15)	1.3259(11)	C(6)-C(1)-N(1)	110.78(7)
F(3)-C(15)	1.3442(11)	C(1)-C(2)-C(3)	117.64(9)
O(1)-C(12)	1.2063(10)	C(1)-C(2)-H(2)	121.0(6)
O(2)-C(12)	1.3275(10)	C(3)-C(2)-H(2)	121.3(6)
O(2)-C(13)	1.4557(11)	C(4)-C(3)-C(2)	121.76(9)
O(3)-C(14)	1.2180(10)	C(4)-C(3)-H(3)	121.1(6)
N(1)-C(1)	1.4053(11)	C(2)-C(3)-H(3)	117.2(6)
N(1)-C(16)	1.4596(11)	C(3)-C(4)-C(5)	120.00(9)
N(1)-C(10)	1.4714(11)	C(3)-C(4)-H(4)	119.5(6)
N(2)-C(14)	1.3578(10)	C(5)-C(4)-H(4)	120.5(6)
N(2)-C(10)	1.4767(11)	C(6)-C(5)-C(4)	118.94(8)
N(2)-C(9)	1.4803(10)	C(6)-C(5)-H(5)	120.8(6)
C(1)-C(2)	1.3925(12)	C(4)-C(5)-H(5)	120.2(6)
C(1)-C(6)	1.4000(12)	C(5)-C(6)-C(1)	120.66(8)
C(2)-C(3)	1.3987(13)	C(5)-C(6)-C(7)	130.64(8)
C(2)-H(2)	0.967(11)	C(1)-C(6)-C(7)	108.71(7)
C(3)-C(4)	1.3852(14)	C(6)-C(7)-C(11)	114.12(7)
C(3)-H(3)	0.983(11)	C(6)-C(7)-C(10)	101.47(6)
C(4)-C(5)	1.4010(13)	C(11)-C(7)-C(10)	113.12(7)
C(4)-H(4)	0.987(11)	C(6)-C(7)-C(8)	112.45(7)
C(5)-C(6)	1.3827(12)	C(11)-C(7)-C(8)	113.18(7)
C(5)-H(5)	0.981(10)	C(10)-C(7)-C(8)	101.18(6)
C(6)-C(7)	1.5128(11)	C(9)-C(8)-C(7)	104.77(7)
C(7)-C(11)	1.5244(12)	C(9)-C(8)-H(8A)	107.3(5)
C(7)-C(10)	1.5431(12)	C(7)-C(8)-H(8A)	109.5(5)
C(7)-C(8)	1.5486(12)	C(9)-C(8)-H(8B)	113.3(5)
C(8)-C(9)	1.5351(12)	C(7)-C(8)-H(8B)	112.1(5)
C(8)-H(8A)	0.983(9)	H(8A)-C(8)-H(8B)	109.7(7)
C(8)-H(8B)	0.978(10)	N(2)-C(9)-C(12)	109.94(7)
C(9)-C(12)	1.5300(12)	N(2)-C(9)-C(8)	103.30(6)
C(9)-H(9)	0.988(10)	C(12)-C(9)-C(8)	113.04(7)
C(10)-H(10)	0.995(10)	N(2)-C(9)-H(9)	110.8(5)
C(11)-H(11A)	0.965(10)	C(12)-C(9)-H(9)	109.1(6)
C(11)-H(11B)	1.003(11)	C(8)-C(9)-H(9)	110.5(5)
C(11)-H(11C)	0.999(10)	N(1)-C(10)-N(2)	112.31(7)
C(13)-H(13A)	0.977(13)	N(1)-C(10)-C(7)	104.68(6)
C(13)-H(13B)	0.981(13)	N(2)-C(10)-C(7)	105.96(6)
C(13)-H(13C)	0.993(10)	N(1)-C(10)-H(10)	111.1(6)
C(14)-C(15)	1.5425(13)	N(2)-C(10)-H(10)	108.2(6)
C(16)-H(16A)	0.981(11)	C(7)-C(10)-H(10)	114.6(6)
C(16)-H(16B)	0.995(11)	C(7)-C(11)-H(11A)	110.1(6)
C(16)-H(16C)	1.032(11)	C(7)-C(11)-H(11B)	112.0(6)
		H(11A)-C(11)-H(11B)	109.4(8)
C(12)-O(2)-C(13)	115.50(7)	C(7)-C(11)-H(11C)	109.9(6)
C(1)-N(1)-C(16)	119.27(7)	H(11A)-C(11)-H(11C)	109.3(8)
C(1)-N(1)-C(10)	106.79(6)	H(11B)-C(11)-H(11C)	106.0(8)
C(16)-N(1)-C(10)	117.85(7)	O(1)-C(12)-O(2)	125.21(8)
C(14)-N(2)-C(10)	117.43(7)	O(1)-C(12)-C(9)	124.32(8)
C(14)-N(2)-C(9)	127.57(7)	O(2)-C(12)-C(9)	110.47(7)
C(10)-N(2)-C(9)	110.89(6)	O(2)-C(13)-H(13A)	110.9(7)
C(2)-C(1)-C(6)	120.99(8)	O(2)-C(13)-H(13B)	104.4(7)

Table A2.8. Bond lengths [Å] and angles [°] for pyrroloindoline **100c** (CCDC 788553).

H(13A)-C(13)-H(13B)	111.2(10)	F(2)-C(15)-C(14)	110.93(7)
O(2)-C(13)-H(13C)	109.8(6)	F(1)-C(15)-C(14)	116.56(7)
H(13A)-C(13)-H(13C)	108.9(9)	F(3)-C(15)-C(14)	107.73(7)
H(13B)-C(13)-H(13C)	111.6(9)	N(1)-C(16)-H(16A)	113.7(6)
O(3)-C(14)-N(2)	124.68(8)	N(1)-C(16)-H(16B)	111.6(6)
O(3)-C(14)-C(15)	114.65(8)	H(16A)-C(16)-H(16B)	106.5(9)
N(2)-C(14)-C(15)	120.31(8)	N(1)-C(16)-H(16C)	109.4(6)
F(2)-C(15)-F(1)	107.73(7)	H(16A)-C(16)-H(16C)	109.0(9)
F(2)-C(15)-F(3)	107.33(7)	H(16B)-C(16)-H(16C)	106.3(8)
F(1)-C(15)-F(3)	106.10(7)		

Table A2.9. Anisotropic displacement parameters (\mathring{A}^2x 10⁴) for pyrroloindoline **100c** (CCDC 788553). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	397(4)	154(3)	284(3)	2(2)	184(3)	4(2)
F(2)	300(3)	299(3)	515(4)	-18(3)	244(3)	84(3)
F(3)	471(4)	268(3)	219(3)	-85(2)	112(3)	-48(3)
O(1)	161(3)	278(4)	279(4)	49(3)	99(3)	37(3)
O(2)	172(3)	254(3)	144(3)	40(3)	36(2)	56(3)
O(3)	311(4)	215(3)	224(4)	15(3)	169(3)	-8(3)
N(1)	153(4)	168(3)	124(4)	14(3)	38(3)	26(3)
N(2)	160(3)	125(3)	145(4)	17(3)	73(3)	6(3)
C(1)	144(4)	129(4)	173(4)	14(3)	58(3)	-15(3)
C(2)	166(4)	189(4)	191(5)	35(4)	37(4)	16(3)
C(3)	165(4)	164(4)	273(5)	33(4)	83(4)	31(4)
C(4)	187(4)	152(4)	244(5)	2(4)	123(4)	4(3)
C(5)	163(4)	159(4)	173(4)	12(3)	79(4)	-18(3)
C(6)	126(4)	127(4)	168(4)	18(3)	64(3)	-10(3)
C(7)	123(4)	136(4)	135(4)	9(3)	51(3)	5(3)
C(8)	135(4)	160(4)	149(4)	18(3)	62(3)	16(3)
C(9)	141(4)	135(4)	142(4)	32(3)	60(3)	2(3)
C(10)	138(4)	119(4)	153(4)	8(3)	59(3)	3(3)
C(11)	145(4)	200(5)	173(5)	-17(4)	40(3)	-2(4)
C(12)	166(4)	124(4)	174(4)	-13(3)	59(3)	5(3)
C(13)	189(5)	314(6)	181(5)	4(4)	-9(4)	86(4)
C(14)	157(4)	184(4)	157(4)	-8(3)	55(3)	-4(3)
C(15)	236(5)	199(5)	217(5)	-8(4)	119(4)	2(4)
C(16)	227(5)	211(5)	140(4)	12(4)	38(4)	0(4)

	Х	У	Z	U _{iso}
H(2)	10204(8)	-3288(14)	4688(7)	29(3)
H(3)	10564(8)	-5250(15)	3671(7)	31(3)
H(4)	9580(8)	-5150(15)	2193(7)	25(3)
H(5)	8186(7)	-3046(13)	1739(6)	18(2)
H(8A)	8709(7)	1622(12)	2888(6)	13(2)
H(8B)	7792(7)	1733(12)	2008(6)	14(2)
H(9)	7912(7)	4029(14)	3258(6)	18(2)
H(10)	7123(7)	-838(13)	3953(6)	21(3)
H(11A)	6614(7)	-1149(14)	1668(7)	23(3)
H(11B)	6061(8)	-1(16)	2237(7)	30(3)
H(11C)	6357(7)	-2128(15)	2457(6)	25(3)
H(13A)	5013(9)	3673(18)	1051(8)	44(3)
H(13B)	5601(9)	5341(17)	748(8)	43(3)
H(13C)	5121(8)	5635(14)	1533(6)	23(3)
H(16A)	8501(8)	-2125(16)	5340(7)	36(3)
H(16B)	8625(7)	39(15)	5504(7)	25(3)
H(16C)	9612(8)	-1168(14)	5520(7)	27(3)

CHAPTER 3

Conjugate Addition/in situ Reduction for the Synthesis of Indolines^{*}

3.1 Introduction

In addition to the pyrroloindolines discussed in Chapters 1 and 2, there are a great number of structurally distinct natural products that incorporate an indoline moiety. These compounds feature diverse substitution about the heterocyclic core, and several exhibit promising biological activities (see Figure 1 for representative examples).¹ Many groups have developed methods for the stereoselective preparation of nonpyrroloindoline indolines, including transformations starting from tryptophan, as well as catalytic asymmetric reactions using organo- or transition metal catalysts.

Mechanistic studies on the formal (3 + 2) cycloaddition to prepare enantioenriched pyrroloindolines (described in Chapter 2) revealed that the initial product of this reaction is an indolinium ion (**119**), and that cyclization to form the pyrroloindoline (**121**) does not occur until aqueous work-up. Thus, we proposed that these intermediates could be trapped with an external hydride source (Figure 2). This chapter describes the development of this approach for the preparation of indoline-

^{*} Portions of this chapter have been reproduced from a published study (see reference 13) and the supporting information found therein. The research presented in this chapter was completed in collaboration with Haoxuan Wang, a graduate student in the Reisman group.

containing amino acid derivatives bearing an all-carbon quaternary stereocenter at the C3 position (**120**).

Figure 1. Selected indoline natural products.

Figure 2. Proposed in situ reduction of an iminium ion intermediate to generate indolines.

3.1.1 Methods for the Enantioselective Preparation of Indolines

Several methods to access enantioenriched indolines have been developed. One such approach is to effect a kinetic resolution of racemic indolines. Fu and coworkers

achieved this goal using a planar-chiral PPY derivative (**124**) as the catalyst (Figure 3).² High selectivity factors were achieved by employing a catalyst possessing a highly sterically-demanding C_5Ar_5 group.

Figure 3. Kinetic resolution of indolines

Besides resolutions, there are also several catalytic, asymmetric methods to prepare indolines; these can be divided into two classes: (a) those that start from a related nitrogen-containing heterocycle, such as indoles or oxindoles, and (b) those that directly form the indoline framework. In the first class, a common approach to prepare indolines from indoles or oxindoles is *via* asymmetric reduction. For example, Zhang and coworkers achieved the asymmetric hydrogenation of unprotected indoles (e.g., **128**) with a palladium catalyst and chiral phosphine ligand (Figure 4).³ Protonation of the indole by a Brønsted acid forms an indolinium ion (**130**), which is more readily reduced. A dynamic kinetic resolution occurs to afford 2,3-disubstituted indolines (**131**) with high enantiomeric excess. An organocatalyzed version of this reaction was developed by Chen and coworkers (Figure 4).⁴ In this transformation, in situ-generated HCl effects C3

protonation to give the indolinium followed by chiral Lewis base mediated enantioselective hydrosilylation.

Figure 4. Enantioselective indoline synthesis by hydrogenation of indoles.

Figure 5. Enantioselective indoline synthesis by reduction of oxindoles.

The Lu laboratory reported the enantioselective preparation of indolines with an all-carbon quaternary center by reduction of the corresponding oxindole (Figure 5).⁵ Thiourea-catalyzed asymmetric conjugate of oxindole **133** to vinyl sulfone **134** generates

the C3 stereocenter. While direct reduction of oxindole **136** led to the formation of retro-Michael side products, one aryl sulfone group can be selectively removed with SmI_2 to allow subsequent reduction with BH₃ to afford the corresponding indoline (**138**).

In contrast to methods to access indolines by the reduction of indoles, Wang and coworkers developed an asymmetric inverse-electron-demand aza-Diels–Alder reaction of indoles and azoalkenes.⁶ This reaction is catalyzed by a Cu^I/*t*Bu-Phosferrox complex to give [2,3]-fused indoline tetrahydropyridazine heterocycles (Figure 6). The azoalkenes are formed in situ from α -halogeno hydrazones in the presence of a base; coordination to a copper complex enhances its reactivity compared to the uncatalyzed background reaction.

Figure 6. Indoline synthesis via Diels-Alder cycloaddition.

The second class of methods to access indolines involves direct preparation of the heterocyclic framework. Of these methods, several transition metal-catalyzed cyclization reactions have been developed. Kündig and coworkers prepared enantioenriched, *trans*-fused indolines by palladium-catalyzed activation of enantiotopic methylene C–H bonds (Figure 7).⁷ This reaction utilizes NHC ligands derived from chiral *o*-substituted α -alkylphenethyl amines.

The Chemler laboratory disclosed an enantioselective, intramolecular coppercatalyzed alkene hydroamination to afford indolines (Figure 7).⁸ This reaction is thought to occur *via* initial *cis* aminocupration, resulting in an unstable organocopper(II) intermediate (**146**) that undergoes homolysis to generate a primary organic radical (**147**) and copper(I). Hydrogen atom abstraction from 1,4-cyclohexadiene provides the net hydroamination product.

Bandini and coworkers reported a gold-catalyzed cascade reaction of functionalized propargylic alcohols (e.g. **149**) yielding indoline products (Figure 7).⁹ The authors propose that this reaction involves hydroindolination of the triple bond and subsequent iminium trapping. *5-exo-dig* cyclization was observed exclusively when a carbon-based tether between the indole and alkyne was utilized.

Figure 7. Enantioselective indoline synthesis by transition metal catalyzed (a) C–H activation, (b) hydroamination, and (c) alkyne cyclization.

In contrast to these transition-metal-catalyzed transformations, several organocatalytic methods for the direct prepartion of indolines have been reported. The Smith laboratory employed a chiral phase transfer catalyst to promote a cyclization reaction to prepare indolines (Figure 8).¹⁰ The authors propose two possible mechanisms for this reaction: an intramolecular Mannich reaction, or an electrocyclization. These possibilities could not be distinguished by the stereochemical outcome of the reaction, because the substrates reported did not include the appropriate substituents to probe the stereospecificity that is diagnostic of pericyclic processes.

Figure 8. Organocatalytic indoline syntheses: (a) electrocyclization, (b) cascade for total syntheses of indoline natural products, and (c) Fischer indolization.

On the other hand, the MacMillan laboratory utilized an organocatalyst to promote a [4+2] cycloaddition: exposure of tryptamine derivative **155** to an imidazolidinone catalyst (**157**) results in a Diels–Alder reaction with propynal (Figure 8).¹¹ Incorporation of an organoselenide facilitates further cascade reactions to afford indolines **159** and **160** in excellent yield and enantioselectivity. This functionalized intermediate was further elaborated to complete highly efficient total syntheses of six structurally diverse natural products.

Another organocatalytic approach was developed by List and coworkers, in which a chiral phosphoric acid catalyzed an asymmetric Fischer indolization (Figure 8).¹² Upon condensation of α -substituted cyclic ketone **162** with phenylhydrazine (**161**), the Brønsted acid promotes the [3,3]-sigmatropic rearrangement, leading to enantioenriched fused indolines.

3.2 Development of the Indoline Synthesis

To assess the feasibility of our proposed indoline synthesis, indole **89** and acrylate **67** were exposed to the optimized conditions for the formal (3 + 2) cycloaddition (Chapter 2), along with a reductant (Table 1). Whereas weaker reductants such as triethylsilane and sodium triacetoxy borohydride proved ineffective, we were pleased to find that use of Hantzsch ester **166** did provide the indoline product, albeit in low yield (entry 3). Alternatively, use of sodium borohydride furnished **165a** in good yield, 15:1 dr, 92% ee (entry 5). The more soluble reducing agent lithium borohydride provided a lower yield of the desired product along with a greater amount of byproducts. The limited solubility of NaBH₄ and LiBH₄ in methylene chloride likely contributes to the compatibility of all the reagents, allowing the reaction to be carried out in one pot.

LiBH₄

NaBH₄

Table 1. Screen of reducing agents.

3.2.1 Substrate Scope of Indoline Synthesis

4

5

Having identified the optimal reducing agent, a survey of indole substrates was conducted (Figure 9). ¹³ Indoles with either electron-donating or –withdrawing substituents are good substrates for the reaction. At the 3-position, *n*-butyl and phenylethyl groups are tolerated, but reactivity decreases with increasing steric bulk and 1.6 equivalents of $SnCl_4$ are required to achieve good reactivity with the phenylethyl substrate. Whereas the cleavage of the protecting group was observed when TBS-protected tryptophol was employed, use of the TIPS-protected tryptophol furnished **165k** in good yield. The indole nitrogen can also be protected with an allyl group, which would be useful when an *N*-Me functionality is not desired in the product.

166

CO₂Me

NHTFA

85

93

^{*a*} Determined by ¹H NMR of crude reaction mixture. ^{*b*} Determined by SFC using chiral stationary phase. ^{*c*} Isolated yield of *exo*-diastereomer. ^{*d*} 1.6 equiv. SnCl₄ was employed.

Figure 10. Re-exposure of pyrroloindoline **exo-94** to $SnCl_4$ and $NaBH_4$.

The reduced products **165** are formed with the same diastereomeric and enantiomeric ratios as the corresponding pyrroloindolines, suggesting that iminium reduction does not affect the selectivities of the other steps. When a methylene chloride solution of pyrroloindoline *exo-94* and SnCl₄ was re-exposed to NaBH₄, the pyrroloindoline was reduced to indoline **165a** in quantitative yield (Figure 10). This is consistent with amide cyclization being reversible in the presence of the Lewis acid.

3.3 Concluding Remarks

Mechanistic insight into the (*R*)-BINOL•SnCl₄-catalyzed formal (3 + 2) cycloaddition (Chapter 1) has led to the development of a method for the preparation of enantioenriched indoline-containing amino acid derivatives with all-carbon quaternary centers at C3. It was determined that the intially-formed product of the formal (3 + 2) cycloaddition is an iminium ion, and that cyclization by the pendant amide to provide the pyrroloindoline does not occur until aqeous work-up. Thus, we proposed that the addition of external nucleophiles will allow access to a variety of indoline structures. This chapter explores the use of reducing agents to effect the in situ reduction of this iminium intermediate. Of the reagents screened, sodium borohydride was found to be optimal. This one-pot procedure tolerates a variety of substitution on the backbone or at C3 of the indole substrate.

3.4 Experimental Section

3.4.1 *Materials and Methods*

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene chloride (CH₂Cl₂), and toluene were dried by passing through activated alumina columns. Deuterated methylene chloride (CD₂Cl₂) was dried by passing through a plug of activated alumina in a glovebox. Dimethylformamide (DMF) was dried over activated molecular sieves, and dichloroethane (DCE) was distilled over calcium hydride. All other commercially obtained reagents were used as received unless specifically indicated. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm). Flash column chromatography was performed either as described by Still et al. (Still, W. C., Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.) using silica gel (partical size 0.032-0.063) purchased from Silicycle or using pre-packaged RediSep[®]Rf columns on a CombiFlash Rf system (Teledyne ISCO Inc.). Diastereomeric ratios were determined by integration of NMR spectra or HPLC or SFC analysis. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz and 75 MHz, respectively), a Varian 400 (at 400 MHz and 100 MHz, respectively) or a Varian Inova 500 (at 500 MHz and 125 MHz respectively), and are reported relative to internal chloroform (¹H, $\delta = 7.26$, ¹³C, $\delta = 77.0$). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm⁻¹). Preparatory HPLC was performed with either an Agilent 1100 or 1200 Series HPLC utilizing an Agilent Zorbax RX-SIL 5µm column (9.4 x 250 mm). Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing Chiralcel AD or OD-H columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd, with visualization at 254 nm. Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system with Chiralcel AD-H, OJ-H columns (4.6 mm x 25 cm). Melting points were determined using a Büchi B-545 capillary melting point apparatus and the values reported are uncorrected. HRMS were acquired using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) or mixed (MM) ionization mode, or obtained from the Caltech Mass Spectral Facility.

3.4.2 General Procedure: Formal (3 + 2) Cycloaddition/in situ Reduction.

To a flame-dried flask was added indole (0.20 mmol, 1.00 equiv), acrylate (0.20 mmol, 1.00 equiv), and (*R*)-3,3'-dichloro-BINOL (0.04 mmol, 0.20 equiv). The flask was charged with CH_2Cl_2 (1.5 mL), followed by addition of $SnCl_4$ (0.24 mmol, 1.20 equiv unless specifically indicated, 1 M in CH_2Cl_2). NaBH₄ (0.30 mmol, 1.50 equiv) was then added, and the reaction was stirred at room temperature for 24 h (unless specifically indicated). The reaction was quenched by diluting with 1 mL MeCN and 1 mL 1 M HCl, followed by addition of 5 mL H₂O. The aqueous layer was extracted with ethyl acetate (3 x 15 mL) and the combined organic layers were washed with saturated NaHCO_{3(aq)} (10 mL). The aqueous layer was extracted with ethyl acetate (10 mL). The combined organic

layers were dried (Na_2SO_4) , filtered and concentrated. The crude residue was purified by flash chromatography.

3.4.3 Indoline Products

Indoline 165a.

1,3-dimethyl-1*H*-indole¹⁴ from Prepared and methvl 2trifluoroacetamidoacrylate using the general procedure. NHTFA The diastereomeric ratio was determined to be 15:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography $(5\rightarrow 25\%)$ ethyl acetate/hexanes) to yield 64.1 mg (93% yield) of 165a, a pale yellow oil. The enantiomeric excess of the major diastereomer was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 9.9 min $t_{\rm R}$ (minor) = 5.9 min. The major diastereomer was separated by flash chromatography (5% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.23 (br d, J = 5.9 Hz, 1H), 7.14 (td, J =7.7, 1.2 Hz, 1H), 6.99 (dd, J = 7.3, 0.8 Hz, 1H), 6.76 (td, J = 7.4, 0.8 Hz, 1H), 6.54 (d, J = 7.4, 0.8 Hz, 1H), 6.99 (dd, J = 7.3, 0.8 Hz, 1H), 6.76 (td, J = 7.4, 0.8 Hz, 1H), 6.99 (dd, J = 7.3, 0. 7.9 Hz, 1H), 4.27 (br td, J = 7.7, 4.7 Hz, 1H), 3.65 (s, 3H), 3.31 (d, J = 9.1 Hz, 1H), 2.98 (d, J = 9.1 Hz, 1H), 2.74 (s, 3H), 2.21 (dd, J = 14.7, 4.7 Hz, 1H), 2.15 (dd, J = 14.7, 8.2 Hz)Hz, 1H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 156.6 (q, $J_{C-F} = 37.5$ Hz), 152.1, 153.3, 128.5, 122.4, 119.0, 115.6 (q, $J_{C-F} = 287.9 \text{ Hz}$), 108.4, 68.3, 52.7, 51.2, 42.8, 42.1, 35.8, 26.1; IR (NaCl/thin film): 3319, 2956, 2858, 2811, 1751, 1718, 1607, 1559, 1491, 1452, 1209, 1179, 744 cm⁻¹; $[\alpha]_{D}^{25} = +79.6$ (c = 1.32, CH₂Cl₂). HRMS (MM) calc'd for [M+H]⁺ 345.1421, found 345.1423.

Indoline 165b.

Prepared from 1,3,4-trimethyl-1*H*-indole 2and methvl trifluoroacetamidoacrylate using the general procedure. NHTFA The diastereomeric ratio was determined to be 11:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography $(5 \rightarrow 25\%)$ ethyl acetate/hexanes) to yield 56.8 mg (79% yield, yellow oil) of **165b** as a single diastereomer. The enantiomeric excess of the major diastereomer was determined to be 93% by chiral SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) $= 3.9 \min t_{\rm p}({\rm minor}) = 3.5 \min {}^{1}{\rm H} \,{\rm NMR} \,(500 \,{\rm MHz}, {\rm CDCl}_{3}) \,\delta \,7.64 \,({\rm br} \,{\rm d}, J = 4.9 \,{\rm Hz}, 1{\rm H}),$ 7.06 (t, J = 7.7 Hz, 1H), 6.54 (d, J = 7.6 Hz, 1H), 6.42 (d, J = 7.9 Hz), 4.10 (ddd, J = 9.0, 6.5, 4.2 Hz, 1H), 3.65 (s, 3H), 3.32 (d, J = 9.3 Hz, 1H), 2.95 (d, J = 9.2 Hz, 1H), 2.71 (s, 3H), 2.45 (dd, J = 15.0, 4.0 Hz, 1H), 2.30 (s, 3H), 2.13 (dd, J = 14.8, 8.9 Hz, 1H), 1.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 156.7 (q, J_{C-F} = 37.5 Hz), 152.8, 134.5, 131.5, 128.8, 122.4, 115.6 (q, $J_{C-F} = 287.9$ Hz), 106.7, 68.6, 52.7, 51.7, 43.7, 40.9, 35.9, 26.6, 18.7; IR (NaCl/thin film): 3315, 2956, 2812, 1750, 1710, 1593, 1559, 1484, 1457, 1209, 1179, 774 cm⁻¹; $[\alpha]_D^{25} = +66.0$ (c = 1.04, CH₂Cl₂). HRMS (MM) calc'd for [M+H]⁺ 359.1577, found 359.1591.

Indoline 165c.

Prepared from 1,3,5-trimethyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using the general procedure. The diastereomeric ratio was determined to be 17:1 by ¹H NMR

analysis of the crude reaction mixture. The crude residue was purified by flash chromatography ($10\rightarrow 25\%$ ethyl acetate/hexanes) to yield 52.6 mg (73\% yield) of **165c**,
a yellow oil. The enantiomeric excess of the major diastereomer was determined to be 89% by chiral SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 4.8 min $t_{\rm R}$ (minor) = 3.4 min. The major diastereomer was separated by flash chromatography (7% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (br d, *J* = 4.8 Hz, 1H), 6.95 (d, *J* = 7.9 Hz, 1H), 6.81 (s, 1H), 6.47 (d, *J* = 7.9 Hz, 1H), 4.16 (q, *J* = 6.5 Hz, 1H), 3.67 (s, 3H), 3.27 (d, *J* = 9.1 Hz, 1H), 2.91 (d, *J* = 9.1 Hz, 1H), 2.70 (s, 3H), 2.25 (s, 3H), 2.17 (d, *J* = 6.5 Hz, 2H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 156.7 (q, *J*_{C-F} = 37.5 Hz), 150.0, 135.5, 128.9, 128.8, 123.3, 115.6 (q, *J*_{C-F} = 287.9 Hz), 108.7, 69.0, 52.7, 51.5, 42.7, 42.1, 36.4, 26.07, 20.7; IR (NaCl/thin film): 3326, 2955, 2922, 2863, 2806, 1752, 1719, 1555, 1499, 1452, 1209, 1163, 806 cm⁻¹; $[\alpha]_{\rm D}^{25} = -$ +42.3 (*c* = 0.87, CH₂Cl₂). HRMS (MM) calc'd for [M+H]⁺ 359.1577, found 359.1565. **Indoline 165d.**

Prepared from 1,3,6-trimethyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using the general procedure. The diastereomeric ratio was determined to be 17:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography (5 \rightarrow 30% ethyl acetate/hexanes) to yield 65.0 mg (91% yield) of **165d**, a yellow oil. The enantiomeric excess of the major diastereomer was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 11.1 min $t_{\rm R}$ (minor) = 5.0 min. The major diastereomer was separated by flash chromatography (5% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 5.7 Hz, 1H), 6.88 (d, J = 7.5Hz, 1H), 6.58 (d, J = 7.5 Hz, 1H), 6.37 (s, 1H), 4.22 (td, J = 7.5, 4.9 Hz), 3.66 (s, 3H), 3.29 (d, J = 9.1 Hz, 1H), 2.96 (d, J = 9.1 Hz, 1H), 2.72 (s, 3H), 2.30 (s, 3H), 2.20-2.11 (m, 2H), 1.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 156.6 (q, $J_{C-F} = 37.5$ Hz), 152.3, 138.6, 132.5, 122.2, 119.8, 115.6 (q, $J_{C-F} = 287.8$ Hz), 109.3, 68.6, 52.7, 51.4, 42.5, 42.2, 35.8, 26.2, 21.6; IR (NaCl/thin film): 3321, 2956, 2923, 2870, 2804, 1750, 1716, 1615, 1557, 1497, 1455, 1208, 1179, 802 cm⁻¹; $[\alpha]_D^{25} = +76.0$ (c = 1.56, CH₂Cl₂). HRMS (MM) calc'd for [M+H]⁺ 359.1577, found 359.1577.

Indoline 165e.

from 1,3,7-trimethyl-1*H*-indole 2-Prepared and methyl NHTFA trifluoroacetamidoacrylate using the general procedure. The diastereomeric ratio was determined to be 17:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography $(5 \rightarrow 30\%)$ ethyl acetate/hexanes) to yield 58 mg (81% yield) of **165e**, a pale yellow oil. The enantiomeric excess of the major diastereomer was determined to be 94% by chiral SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO₂, $\lambda = 254$ nm): t_{R} (major) = 4.3 min t_{R} (minor) = 3.3 min. The major diastereomer was separated by flash chromatography (5% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 4.7 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 6.86 (d, J = 7.4 Hz, 1H), 6.73 (t, J = 7.4 Hz, 1H), 4.14-4.08 (m, 1H), 3.66 (s, 3H), 3.29 (d, J = 9.6 Hz, 1H), 2.97 (d, J = 9.6 Hz, 1H), 2.93 (s, 3H), 2.37 (s, 3H), 2.17-2.06 (m, 2H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 156.7 (q, J_{C-F} = 37.5 Hz), 149.9, 136.1, 131.8, 121.2, 120.4, 120.3, 115.6 (q, $J_{C-F} = 287.8$ Hz), 69.7, 52.7, 51.3, 42.8, 42.3, 39.5, 26.6, 19.5; IR (NaCl/thin film): 3322, 2959, 2924, 1750, 1713, 1557, 1480, 1456, 1412, 1208, 1180, 1071, 750 cm⁻¹; $[\alpha]_{D}^{25} = +84.9$ (*c* = 1.20, CH₂Cl₂). HRMS (APCI) calc'd for [M+H]⁺ 359.1577, found 359.1595.

Indoline 165f.

of the crude reaction mixture. The crude residue was purified by flash chromatography $(10 \rightarrow 30\% \text{ ethyl acetate/hexanes})$ to yield 57.0 mg (79% yield) of **165f**, a pale yellow oil. The enantiomeric excess of the major diastereomer was determined to be 90% by chiral SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 3.9 min $t_{\rm R}$ (minor) = 2.9 min. The major diastereomer was separated by preparatory TLC (40%) CH₂Cl₂/hexanes then 50% CH₂Cl₂/hexanes). ¹H NMR (300 MHz, CDCl₃) δ 7.31 (br d, J_{C} - $_{\rm H}$ = 5.8 Hz, 1H), 6.83 (td, $J_{\rm C-H}$ = 8.8, 2.6 Hz, 1H), 6.72 (dd, $J_{\rm C-H}$ = 8.2, 2.6 Hz, 1H), 6.44 $(dd, J_{C-H} = 8.5, 4.1 Hz, 1H), 4.25 (td, J_{C-H} = 7.7, 4.8 Hz, 1H), 3.68 (s, 3H), 3.31 (d, J_{C-H} = 7.7, 4.8 Hz, 1H)$ 9.2 Hz, 1H), 2.97 (d, $J_{C-H} = 9.2$ Hz, 1H), 2.70 (s, 3H), 2.21 (dd, $J_{C-H} = 14.7, 4.8$ Hz, 1H), 2.12 (dd, $J_{C-H} = 14.7$, 8.1 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 157.2 (d, J_{C-F} = 237.2 Hz), 156.6 (q, J_{C-F} = 37.8 Hz), 148.4, 137.1 (d, J_{C-F} = 7.1 Hz), 116.7, 114.5 (d, $J_{C-F} = 23.3$ Hz), 110.1 (d, $J_{C-F} = 24.0$ Hz), 108.8 (d, $J_{C-F} = 8.1$ Hz), 68.6, 52.8, 51.1, 42.8, 42.0, 36.4, 26.1; IR (NaCl/thin film): 3319, 2958, 2866, 2811, 1745, 1711, 1552, 1494, 1468, 1267, 1210, 1179, 808 cm⁻¹; $[\alpha]_D^{25} = +63.7$ (*c* = 0.62, CH₂Cl₂). HRMS (ESI) calc'd for [M+H]⁺ 363.1326, found 363.1334.

Indoline 165g.

 $\underset{Me}{\overset{Me}{\underset{Me}{}}} \overset{Me}{\underset{Me}{}} \overset{CO_2Me}{\underset{Me}{}}$ Prepared from 5-methoxy-1,3-dimethyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using the general procedure. The reaction was allowed to run for 18.5 h. The diastereomeric ratio was determined to be 14:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography (10→30% ethyl acetate/hexanes) to yield 68.5 mg (91% yield) of **XX**, a yellow oil. The enantiomeric excess of the major diastereomer was determined to be 88% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, λ = 254 nm): $t_{\rm R}$ (major) = 7.1 min $t_{\rm R}$ (minor) = 3.6 min. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (br d, $J_{\rm C-H}$ = 5.0 Hz, 1H), 6.70 (dd, $J_{\rm C-H}$ = 8.4, 1.9 Hz, 1H), 6.62 (d, $J_{\rm C-H}$ = 1.8 Hz, 1H), 6.50 (d, $J_{\rm C-H}$ = 8.3 Hz, 1H), 4.01 (dd, $J_{\rm C-H}$ = 13.1, 6.3 Hz, 1H), 3.74 (s, 3H), 3.67 (s, 3H), 3.28 (d, $J_{\rm C-H}$ = 8.6 Hz, 1H), 2.89 (d, $J_{\rm C-H}$ = 9.1 Hz, 1H), 2.68 (s, 3H), 2.23-2.08 (m, 2H), 1.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 156.8 (q, $J_{\rm C-F}$ = 37.5 Hz), 154.1, 146.1, 137.0, 115.6 (q, $J_{\rm C-F}$ = 287.8 Hz), 113.1, 110.8, 109.6, 69.0, 55.8, 52.7, 51.5, 43.0, 42.0, 36.9, 26.2; IR (NaCl/thin film): 3319, 2955, 2804, 1751, 1718, 1555, 1496, 1468, 1214, 1179, 1031 cm⁻¹; [α]_D²⁵ = +26.3 (*c* = 1.24, CH₂Cl₂). HRMS (APCI) calc'd for [M+H]⁺ 375.1526, found 375.1542.

Indoline 165h.

Prepared from 1-allyl-3-methyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using the general procedure, except the formal (3 + 2) cycloaddition was allowed to run for 24 h before adding NaBH₄. After adding NaBH₄, the reaction was allowed to run for another 24 h. The diastereomeric ratio was determined to be 5:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography (5→20% ethyl acetate/hexanes) to yield 60.0 mg (81% yield) of **XX**, a yellow oil. The enantiomeric excess of the major diastereomer was determined to be 90% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.2 min $t_{\rm R}$ (minor) = 6.2 min. Isolated as a 5:1 mixture of diastereomers; the major diastereomer is denoted by *, minor diastereomer denoted by §. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (br d, J = 8.5 Hz, 1H[§]), 7.16-7.05 (m, $2H^{\$}$, $1H^{\$}$), 6.98 (ddd, J = 7.4, 1.2, 0.5 Hz, $1H^{\$}$, $1H^{\$}$), 6.78 (td, J = 7.4, 1.0 Hz, $1H^{\$}$), 6.72 $(td, J = 7.4, 1.0 \text{ Hz}, 1\text{H}^*), 6.64 (d, J = 7.9 \text{ Hz}, 1\text{H}^{\$}), 6.56 (d, J = 7.9 \text{ Hz}, 1\text{H}^*), 5.93-5.83$ $(m, 1H^*, 1H^{\$}), 5.32-5.20 \ (m, 1H^*, 1H^{\$}), 4.81-4.75 \ (m, 1H^{\$}), 4.40 \ (td, J = 7.6, 5.0, 1H^{*}),$ $3.79 \text{ (ddt, } J = 15.0, 5.9, 1.4 \text{ Hz}, 1\text{H}^{\$}, 1\text{H}^{\$}, 3.73-3.70 \text{ (m, 1H}^{\$}), 3.65-3.59 \text{ (m, 1H}^{\$}), 3.63$ $(s, 3H^*), 3.42 (s, 3H^{\$}), 3.31 (d, J = 9.3 Hz, 1H^*), 3.28 (d, J = 9.6 Hz, 1H^{\$}), 3.07 (d, J =$ 9.6 Hz, $1H^{\$}$), 3.05 (d, J = 9.3 Hz, $1H^{\$}$), 2.35 (ddd, J = 14.8, 5.9, 0.6 Hz, $1H^{\$}$), 2.23 (dd, J= 14.6, 4.9 Hz, 1H^{*}), 2.18 (dd, J = 14.9, 4.6 Hz, 1H[§]), 2.13 (dd, J = 14.7, 7.8 Hz, 1H^{*}), 1.41 (s, 3H[§]), 1.38 (s, 3H^{*}); ¹³C NMR (100 MHz, CDCl₃) δ 171.2^{*}, 170.1[§], 156.6^{*} (q, J_C) $_{\rm F} = 37.6$ Hz), 150.8*, 135.4*, 133.3*, 132.4[§], 128.6[§], 128.4*, 123.3[§], 122.5*, 119.4[§], $118.9^{\$}$, 118.7^{*} , 118.1^{*} , 115.5^{*} (q, $J_{C-F} = 287.9$ Hz), $109.9^{\$}$, 108.4^{*} , $65.2^{\$}$, 65.1^{*} , 52.7^{*} , 52.5[§], 52.1[§], 51.8^{*}, 50.9^{*}, 50.5[§], 42.7[§], 42.6^{*}, 42.5[§], 42.1^{*}, 27.8[§], 26.1^{*}; IR (NaCl/thin film): 3316, 2957, 2923, 1750, 1718, 1605, 1554, 1487, 1460, 1437, 1209, 1165, 744 cm⁻ ¹; $[\alpha]_{D}^{25} = +33.412$ (c = 1.62, CH₂Cl₂). HRMS (MM) calc'd for [M+H]⁺ 371.1577, found 371.1582.

Indoline 165i.

Prepared from 3-butyl-1-methyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using the general procedure. The diastereomeric ratio was determined to be >20:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography (5 \rightarrow 20% ethyl acetate/hexanes) to yield 63.4 mg (82% yield) of **XX**, a pale yellow oil. The enantiomeric excess of the major diastereomer was determined to be 92% by chiral SFC analysis (AD- H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.2 min $t_{\rm R}$ (minor) = 5.3 min. The major diastereomer was separated by flash chromatography (5% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.30 (br d, $J_{\rm C-H} = 5.5$ Hz, 1H), 7.13 (td, $J_{\rm C-H} = 7.7, 1.2$ Hz, 1H), 6.96 (dd, $J_{\rm C-H} = 7.3, 0.7$ Hz, 1H), 6.75 (t, $J_{\rm C-H} = 7.3$ Hz, 1H), 6.53 (d, $J_{\rm C-H} = 7.8$ Hz, 1H), 4.22-4.15 (m, 1H), 3.64 (s, 3H), 3.24 (d, $J_{\rm C-H} = 9.3$ Hz, 1H), 3.08 (d, $J_{\rm C-H} = 9.3$ Hz, 1H), 2.74 (s, 3H), 2.23 (dd, $J_{\rm C-H} = 14.7, 8.4$ Hz, 1H), 2.17 (dd, $J_{\rm C-H} = 14.7, 4.7$ Hz, 1H), 1.86-1.77 (m, 1H), 1.69-1.57 (m, 1H), 1.40-1.24 (m, 3H), 1.19-1.08 (m, 1H), 0.89 (t, $J_{\rm C-H} = 7.2$ Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 156.6 (q, $J_{\rm C-F} = 37.5$ Hz), 152.3, 134.3, 128.6, 123.0, 119.0, 115.5 (q, $J_{\rm C-F} = 287.8$ Hz), 108.4, 66.4, 52.7, 51.2, 46.2, 40.6, 39.3, 35.9, 26.5, 23.2, 14.0; IR (NaCl/thin film): 3319, 2956, 2932, 2860, 2809, 1751, 1718, 1606, 1559, 1491, 1465, 1207, 1178, 743 cm⁻¹; [α]_D²⁵ = +62.0 (c = 1.15, CH₂Cl₂). HRMS (ESI) calc'd for [M+H]⁺ 387.1890, found 387.1902.

Indoline 165j.

Prepared from 1-methyl-3-phenethyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using the general procedure, except the formal (3 + 2) cycloaddition was allowed to run for 24 h before adding NaBH₄. After adding NaBH₄, the reaction was allowed to run for another 24 h. The diastereomeric ratio was determined to be 12:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography (5→20% ethyl acetate/hexanes) to yield 77.6 mg (89% yield) of **XX**. The enantiomeric excess of the major diastereomer was determined to be 89% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, λ = 254 nm): $t_{\rm R}$ (major) = 9.5 min $t_{\rm R}$ (minor) = 8.1 min. The major diastereomer was separated by flash chromatography (10% ethyl acetate/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.22 (m, 3H), 7.21-7.11 (m, 4H), 6.99 (dd, $J_{C-H} = 7.4$, 1.0 Hz, 1H), 6.75 (td, $J_{C-H} = 7.4$, 0.7 Hz, 1H), 6.55 (d, $J_{C-H} = 7.9$ Hz, 1H), 4.27 (dt, $J_{C-H} = 12.6$, 6.4 Hz, 1H), 3.63 (s, 3H), 3.30 (d, $J_{C-H} = 9.3$ Hz, 1H), 3.17 (d, $J_{C-H} = 9.3$ Hz, 1H), 2.76 (s, 3H), 2.68 (td, $J_{C-H} = 13.0, 5.0$ Hz, 1H), 2.47 (td, $J_{C-H} = 12.9, 4.7$ Hz, 1H), 2.34-2.22 (m, 2H), 2.13 (ddd, $J_{C-H} = 13.7, 12.3, 5.1$ Hz, 1H), 1.97 (ddd, $J_{C-H} = 13.8, 12.6, 4.8$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 156.6 (q, $J_{C-F} = 37.5$ Hz), 152.4, 141.7, 133.5, 128.7, 128.5, 128.2, 126.0, 122.9, 119.0, 115.5 (q, $J_{C-F} = 287.8$ Hz), 108.4, 66.0, 52.7, 51.1, 46.3, 41.5, 40.7, 35.8, 30.8; IR (NaCl/thin film): 3317, 2951, 2858, 2812, 1749, 1716, 1606, 1555, 1494, 1453, 1208, 1178, 745 cm⁻¹; $[\alpha]_D^{26} = +23.1$ (c = 0.87, CH₂Cl₂). HRMS (MM) calc'd for [M+H]⁺ 435.1890, found 435.1882.

Indoline 165k.

Prepared from 1-methyl-3-(2-((triisopropylsilyl)oxy)ethyl)-1*H*-indole and methyl 2-trifluoroacetamidoacrylate using the general procedure, except the formal (3 + 2) cycloaddition was allowed to run for 20.5 h before adding NaBH₄. After adding NaBH₄, the reaction was allowed to run for another 24 h. The diastereomeric ratio was determined to be >20:1 by ¹H NMR analysis of the crude reaction mixture. The crude residue was purified by flash chromatography (5→30% ethyl acetate/hexanes) to yield 68.3 mg (64% yield) of **XX**, a yellow oil. The enantiomeric excess of the major diastereomer was determined to be 85% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): $t_R(major) = 8.7$ min $t_R(minor) = 7.5$ min. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (br s, 1H), 7.15 (t, $J_{C:H} = 7.6$ Hz, 1H), 7.00 (d, $J_{C:H} = 7.2$ Hz, 1H), 6.75 (t, $J_{C:H} = 7.1$ Hz, 1H), 6.54 (d, $J_{C:H} = 7.3$ Hz, 1H), 4.22-4.15 (m, 1H), 3.81 (dd, $J_{C:H} = 6.96$, 5.35 Hz, 2H), 3.64 (s, 3H), 3.34-3.26 (m, 1H), 3.26-3.18 (m, 1H), 2.74 (s, 3H), 2.46-2.36 (m, 1H), 2.24 (dd, $J_{C-H} = 14.7$, 3.7 Hz, 1H), 2.11-1.94 (m, 2H), 1.08-1.03 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 156.7 (q, $J_{C-F} = 37.6$ Hz), 152.1, 134.3, 128.7, 123.0, 118.9, 115.6 (q, $J_{C-F} = 287.8$ Hz), 108.5, 67.6, 60.0, 52.6, 51.2, 45.3, 41.2, 39.5, 18.0, 18.0, 11.9; IR (NaCl/thin film): 3323, 2943, 2866, 1719, 1606, 1552, 1491, 1463, 1207, 1175, 1104, 882, 742 cm⁻¹; $[\alpha]_D^{25} = +27.4$ (c = 0.85, CH₂Cl₂). HRMS (APCI) calc'd for [M+H]⁺ 531.2860, found 531.2883.

3.4.4 SFC Traces for Racemic and Enantioenriched Products

165a (Figure 9): racemic

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.852	MM	0.2132	289.59744	22.63515	4.1173
2	9.857	MM		6744.11035	152.46228	95.8827

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.555	MM	0.1704	734.64594	71.86649	49.8078
2	3.960	MM	0.1899	740.31531	64.97649	50.1922

165b (Figure 9): 93% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.510	MM	0.1343	157.58659	19.55832	3.3148
2	3.886	MM	0.1745	4596.41699	439.04443	96.6852

fear #	[min]	туре	[min]	[mAU*s]	[mAU]	Area %
1	3.242	MM	0.2216	1.63623e4	1230.56165	49.1373
2	4.723	vv	0.3066	1.69368e4	842.43842	50.8627

165c (Figure 9): 89% ee

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.356	MM	0.1880	165.73442	14.69443	5.2675
2	4.826	MM	0.2787	2980.60571	178.23856	94.7325

#	[min]	туре	[min]	[mAU*s]	[mAU]	& ALEA
1	4.791	MM	0.2372	2506.63574	176.10995	49.9313
2	10.862	BV	0.5828	2513.53687	64.75647	50.0687

165c (Figure 9): 92% ee

1

5.005 MM

2 11.122 MM

0.2320 401.20471

28.82077

0.8212 9288.23340 188.50002 95.8594

4.1406

0	2	7
4	3	1

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.241	MM	0.1566	2264.17603	241.04764	49.9161
2	4.280	MM	0.2428	2271.78613	155.94717	50.0839

165e (Figure 9): 94% ee

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.261	MM	0.1428	146.65776	17.12008	3.2426
2	4.322	MM	0.2272	4376.23779	321.00308	96.7574

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	2.894	MM	0.1228	448.15573	60.80370	5.1645
2	3.917	MM	0.2592	8229.47559	529.13312	94.8355

49.5827

Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.585	MM	0.1218	162.89281	22.29179	5.8845
2	7.127	MM	0.3462	2605.29150	125.42136	94.1155

165h (Figure 9): racemic

#	[min]		[min]	[mAU*s]	[mAU]	8	
							l
1	6.054	vv	0.3527	1.26647e4	491.32587	49.9094	
2	7.251	vv	0.4860	1.27107e4	344.87524	50.0906	

165h (Figure 9): 90% ee

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.163	MM	0.3375	391.71039	19.34439	4.8587
2	7.244	MM	0.5670	7670.36182	225.47943	95.1413

Ŧ	[min]		[min]	[mAU^s]	[mau]	8
1	5.038	MM	0.2964	1306.92871	73.49715	49.8219
2	7.100	BB	0.4502	1316.27185	46.51159	50.1781

165i (Figure 9): 92% ee

Peak 1 #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	5.257	MM	0.2145	347.62573	27.00829	3.9125
2	7.226	MM	0.4818	8537.27539	295.33777	96.0875

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.978	MM	0.2644	1668.11194	105.15713	49.8706
2	9.552	MM	0.3123	1676.76514	89.49041	50.1294

9.505 MM

0.4177 1.01528e4

405.11353 94.5375

γA	2
24	-3

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.535	MM	0.3798	145.43784	6.38237	7.5191
2	8.729	MM	0.4271	1788.81250	69.80029	92.4809

3.5 Notes and References

- Selected indoline natural products: (a) Kapakahines, A-D: Yeung, B. K.; Nakao, Y.; Kinnel, R. B.; Carney, J. R.; Yoshida, W. Y.; Scheuer, P. J.; Kelly-Borges, M. J. Org. Chem. **1996**, 61, 7168–7173; (b) Strychnine: Creasey, W. A. In Monoterpenoid Indole Alkaloids; Saxton, J. E. Ed.; In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Ed; Wiley: New York, NY, 1994; Supplement to Vol. 25, Part 4, pp 715–754; (c) Ajmaline: Siddiqui, S.; Siddiqui, R. H. J. Indian Chem. Soc. **1931**, 8, 667; (d) Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T.-S. J. Nat. Prod. **2007**, 70, 1783–1789.
- (2) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 14264–14265.
- (3) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909–8911.
- (4) Xiao, Y.-C.; Wang, C.; Yao, Y.; Sun, J.; Chen, Y.-C. Angew. Chem. Int. Ed. Engl. 2011, 50, 10661–10664.
- (5) Zhu, Q.; Lu, Y. Angew. Chem. Int. Ed. Engl. 2010, 49, 7753–7756.
- (6) Tong, M.-C.; Chen, X.; Li, J.; Huang, R.; Tao, H.; Wang, C.-J. Angew. Chem. Int. Ed. 2014, 53, 4680–4684.
- (7) Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Angew. Chem. Int. Ed. Engl. 2011, 50, 7438–7441.
- (8) Turnpenny, B. W.; Hyman, K. L.; Chemler, S. R. Organometallics 2012, 31, 7819– 7822.
- (9) Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350–1353.
- (10) Maciver, E. E.; Thompson, S.; Smith, M. D. Angew. Chem. Int. Ed. 48, 9979–9982.
- (11) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. *Nature* **2011**, *475*, 183–188.
- (12) Martínez, A.; Webber, M. J.; Müller, S.; List, B. Angew. Chem. Int. Ed. 2013, 52, 9486–9490.
- (13) Ni, J.; Wang, H.; Reisman, S. E. Tetrahedron 2013, 69, 5622–5633.
- (14) Rodriguez, J. G.; Lafuente, A.; Garcia-Almaraz, P. J. Heterocycl. Chem. 2000, 37, 1281.

APPENDIX 3

Spectra Relevant to Chapter 3:

Conjugate Addition/in situ Reduction for the Synthesis of Indolines

to tof pwr

sw df df df df df df df df df

Appendix 3—Spectra Relevant to Chapter 3

JN-2-267b-col2

mqq

Appendix 3—Spectra Relevant to Chapter 3

Appendix 3—Spectra Relevant to Chapter 3

CO₂Me NHTFA 165g

Me

MeO

FLAGS

ACQUISITION

31446.5 1.042 65536 not used

64 7000 7000 7000

at the sw

TRANSMITTER

not used 30 20 8.100 10.000

temp gain spin hst pw/90 alita

Ite Jan 5 2012 Nort deta /data/indyfaneni/ vmmrsys/data/JN-3-093-co I-again/CAPBON01.fid

date solvent file

C13 125.669 1913.4 56 4.050

tin slrq tpwr pw

DECOUPLER

H 11900 0 11900

dn dof decwar dpwr dmf

- -

satmode wet

PRESATURATION

mqq

40

E 20

-

JN-3-093-col-again

SAMPLE

SPECIAL

Sample Name JN-3-093-col-again Date collected 2012-01-05

JN-3-093-col-again

262

265

Appendix 3—Spectra Relevant to Chapter 3

CHAPTER 4

Development of a Tandem Conjugate Addition/Prins Cyclization

4.1 Introduction

Mechanistic studies of the formal (3 + 2) cycloaddition between 3-substituted indoles and 2-amidoacrylates revealed that the initial product is an iminium ion, and cyclization by the pendant amide to afford the pyrroloindoline occurs upon aqueous work-up (Chapter 2). As a result, we hypothesized that novel indoline structures could be accessed by intercepting the iminium ion with alternate nucleophiles. Chapter 3 described the use of reducing agents for this purpose; this chapter will discuss our investigation of carbon nucleophiles (Figure 1a).

Our initial goal was the development of an intramolecular cascade reaction. We envisioned that upon Lewis acid promoted conjugate addition of the indole to the acrylate, a tethered alkene would add into the iminium intermediate. The resulting carbocation would then be quenched by a nucleophile such as chloride. Overall, such a reaction would constitute a tandem conjugate addition/asymmetric protonation/Prins cyclization (Figure 1b).

Figure 1. a) Previously developed pyrroloindoline and indoline syntheses. b) Proposed conjugate addition/Prins cyclization.

a. Trapping of indolinium ion with amide and hydride nucleophiles

4.1.1 Cascade Reactions Incorporating Prins Cyclizations

Cascade reactions have long attracted the attention of organic chemists with their ability to rapidly build up molecular complexity. Several groups have reported examples of cascades either initiated by or terminated with a Prins cyclization. Heathcock and coworkers' one-step synthesis of dihydro-*proto*-daphniphylline involves an incredible cascade of iminium ion intermediates, including a formal hetero-Diels–Alder reaction (which likely proceeds in a stepwise manner), followed by an aza-Prins cyclization to generate carbocation **178** (Figure 2).¹

Figure 2. Iminium cascade with a Prins cyclization by Heathcock.

Another cascade of iminium ions was utilized by Corey and coworkers to enable an efficient synthesis of aspidophytine (Figure 3).² Cyclization of iminium ion **184** forms the C3 quaternary stereocenter and generates indolinium ion **185**. The stereoselectivity observed in this reaction may result from an interaction between the iminium ion carbon and the ester carbonyl oxygen of **184**, leading to preferential attack by the indole from the opposite face. The stereochemistry of spirocyclic intermediate **185** determines the facial selectivity of allylsilane attack in the subsequent aza-Prins cyclization.

The pinacol-terminated Prins cyclization was developed by the Overman group and has facilitated the total syntheses of several natural products. One such application is found in their synthesis of sclerophytin A, part of the cladiellin family of diterpene metabolites (Figure 4).³ Lewis acid catalyzed condensation of diol **191** with aldehyde **190** forms oxocarbenium **192**. While either hydroxyl group can participate in this step, the condensation is reversible and only product **192** can carry on in the subsequent Prins cyclization. The bulky isopropyl substituent controls the stereoselectivity of this Prins cyclization, which generates allylic carbocation **193**. The cascade is terminated by a pinacol rearrangement to afford bicycle **194**. Figure 4. Prins-pinacol in synthesis of sclerophytin A.

Rychnovsky and coworkers developed a Mukaiyama aldol-Prins cyclization cascade, and demonstrated the utility of this transformation in a formal synthesis of leucascandrolide A (Figure 5).⁴ Chiral aldehyde **196** and enol ether **197** underwent aldol-Prins coupling in the presence of 2.5 equivalents of BF₃•OEt₂ and 1.5 equivalents of 2,6di-*tert*-butylpyridine to produce most of the leucascandrolide A skeleton in a single step.

In 2007, the Rychnovsky laboratory reported a streamlined synthesis of leucascandrolide A using an improved variant of the Mukaiyama aldol-Prins coupling.⁵ The second generation methodology utilizes more accessible cyclization precursors (**201** and **202**) rather than an enol ether allylsilane, and yields a more highly functionalized product (**203**) with three new stereocenters (Figure 5).

Figure 5. Mukaiyama aldol-Prins in formal synthesis of leucascandrolide A.

Reddy and coworkers developed a Prins/Friedel–Crafts cyclization to access fused tricyclic systems (Figure 6).⁶ The stereochemistry of the product is determined by the olefin geometry in the starting material. However, a small amount of the minor, *cis* diastereomer is formed through a stepwise mechanism in the case shown in Figure 6.

Figure 6. Prins-Friedel–Crafts by Reddy.

4.2 Development of a Conjugate Addition/Prins Cyclization

Although many examples exist in the literature of cascade reactions involving Prins cyclizations, a Prins cyclization triggered by a conjugate addition/asymmetric enolate protonation was not known at the outset of this project.

Preliminary studies showed that exposure of 3-homoallyl indole **168** and acrylate **67** to SnCl_4 and (*R*)-BINOL yields indoline **169** with a highly promising 88% ee, but low yield due to the formation of side products (Figure 7). A chloride ion from the Lewis acid serves to quench the carbocationic intermediate. While the reaction conditions are similar to the formal (3 + 2) cycloaddition, pyrroloindoline formation is precluded by addition of the tethered alkene to the indolinium ion during the course of the reaction.

Figure 7. Preliminary result for conjugate addition/Prins cyclization.

4.2.1 Catalyst Optimization

In order to improve the yield of this reaction, a screen of Lewis acids was conducted (Table 1). While tin tetracholoride provided us with our initial hit (entry 1), tin tetrabromide failed to give any of the desired Prins product (entry 2). Titanium tetrachloride provided the desired product in 27% yield and 6:1 dr, but as a racemic mixture (entry 3). Titanium isopropoxide, which would afford the product of isopropoxide-trapping of the intermediate carbocation, failed to promote this reaction

(entry 4). On the other hand, zirconium tetrachloride provided the product in 30% yield, 9:1 dr, and 40% ee (entry 5). Zirconium tert-butoxide was not an effective Lewis acid for this reaction (entry 6), while antimony pentachloride proved to be too reactive, and only indole decomposition was observed, even at -78 °C (entry 7).

While the enantioselectivity observed with zirconium tetrachloride was lower than with tin tetrachloride, the reaction was qualitatively much cleaner, with fewer side products. Thus, subsequent optimization was performed with zirconium tetrachloride.

N Me 168	+ F_3c H H O H H O H O H H H O H H H O H H H O H	Lewis acid (1.2 equiv) (<i>R</i>)-BINOL (20 mol%) CH ₂ Cl ₂ , 23 °C	MeO ₂ C NHTFA	169: X = Cl 208: X = Br 209: X = O <i>i</i> -Pr 210: X = O <i>t</i> -Bu
Entry	Lewis acid	Product	Yield (%)	ee (%) ^a
1	SnCl ₄	169	19	88
2	SnBr₄	208	0	
3	TiCl ₄	169	27	0
4	Ti(O′Pr)₄	209	0	
5	ZrCl ₄	169	30	40
6	Zr(O ^r Bu) ₄	210	0	
7	SbCl ₅	169	0	

7	- I I.	. 1	1		
1	anie	ן נ	Tewis	s acid	screen
	avic		201112	acia	sercern.

Next, a ligand screen was performed (Table 2). While electronic perturbation of the BINOL backbone with bromine substituents at the 6 and 6' positions failed to improve yield and ee, bromine substituents at the 3 and 3' positions, which would have both an electronic and steric influence, resulted in greatly improved ee. (*S*)-VANOL gave a similarly high levels of enantioinduction, but its high cost and difficulty in preparation make it less desirable than 3,3'-Br₂-BINOL. (*S*)-VAPOL did not yield any product, presumably due to steric hindrance, while no enantioselectivity was observed with

hydrobenzoin. TADDOL appeared initially promising, providing indoline **169** in 37% yield and 66% ee, but subsequent screening revealed decomposition under the reaction conditions. Thus (R)-3,3'-Br₂-BINOL was determined to be the optimal ligand for this transformation.

Table 2. Ligand screen.

				MeO ₂ C	
	\bigcirc		ZrCl ₄ (1.2 equiv) chiral diol (20 mol%)	NHTFA	
	N Me	F ₃ C° N ∏ H O	CH ₂ Cl ₂ , 23 °C	N STORE	
	168	67		Й́Н Ме 169	
	Entry	Chiral Diol	Yield (%)	ee (%) ^a	
	1	(R)-BINOL	30	40	
	2	(<i>R</i>)-6,6'-Br ₂ -BINC	DL 38	30	
	3	(<i>R</i>)-3,3'-Br ₂ -BINC	DL 40	76	
	4	(<i>S</i>)-VANOL	33	74	
	5	(<i>S</i>)-VAPOL	0		
	6	(R,R)-hydrobenzo	oin 35	0	
-	7	(4 <i>R</i> ,5 <i>R</i>)-TADDC	DL 37	66	
Chira	l diols:		\sim		
۴				Ph、/ _F	'n
	ОН			Ph Ph	h
ŕ	ぐ┥╲┙		\downarrow \land		
• لر	3	T C		он н ₃ с сн ₃	
	(R)-BINOL	(S)-VANOL (S)-	VAPOL (<i>R</i> , <i>R</i>)-hydr	obenzoin (4 <i>R</i> ,5 <i>R</i>)-TADDO	ЪГ

4.2.2 Reactions Promoted by Zirconium•BINOL Complexes

Chiral complexes of BINOL and zirconium have been used as Lewis acids to promote a variety of asymmetric reactions. These catalysts are generally prepared in situ from a zirconium alkoxide, resulting in a BINOLate complex. In contrast, the active catalyst in our conjugate addition/Prins cyclization contains a protonated BINOL ligand, allowing it to effect an asymmetric enolate protonation. Chiral zirconium Lewis acids are most commonly used to activate carbonyls or imines in Strecker, ⁷ Mannich, ⁸ aldol, ⁹ aldehyde allylation, ¹⁰ and cycloaddition reactions.¹¹ The Kobayashi laboratory has developed an isolable zirconium catalyst for asymmetric Mannich reactions.^{8e} Addition of hexanes to a dichloromethane solution of a zirconium alkoxide, (*R*)-6,6'-dibromo-BINOL, and *N*-methylimidazole (NMI) causes precipitation of a white powder that is a stable (over at least 6 months) but highly active catalyst (Figure 8).

Figure 8. Asymmetric Mannich reaction promoted by isolable Zr catalyst.

Recrystallization with *N*-benzylimidazole instead of NMI yielded single crystals suitable for X-ray crystallographic analysis. The X-ray structure showed a $Zr_4(\mu$ -BINOLate)₆(μ_3 -OH)₄ complex (**214**), with four hexa-coordinated zirconium atoms and six BINOL ligands. This represents the first X-ray crystallographic structure of a chiral zirconium-BINOL complex that is catalytically competent in Mannich-type reactions. To the best of our knowledge, there are no examples of zirconium complexes acting as chiral protonation catalysts prior to the development of our conjugate addition-Prins cyclization.

4.2.3 Investigation of Additives

Unfortunately, our initial efforts to improve the yield of the conjugate addition/asymmetric protonation/Prins cyclization by modifying the catalyst structure proved unfruitful. At this point, it was observed that the yield was correlated to catalyst loading, suggesting poor turnover of the deprotonated BINOLate.

Figure 9. Stoichiometric proton source.

One potential problem was the lack of a stoichiometric proton source to turn over the deprotonated BINOLate. In our previously studied pyrroloindoline formation, the stoichiometric proton is likely provided by the pendant amide (Figure 9). While the full mechanistic picture of the formal (3 + 2) cycloaddition is likely more complicated than direct proton transfer from the amide to the BINOLate (as cyclization and thus amide deprotonation does not occur until work-up), we nonetheless hypothesized that a stoichiometric proton source might improve the yield of the Prins cyclization.

With this hypothesis in mind, the Prins reaction was performed with 1.6 equivalents of (*R*)-BINOL and 1.6 equivalents of $ZrCl_4$. Unfortunately, the product was isolated in only 36% yield (Figure 10). Tentatively, this result can be explained by the fact that the (*R*)-BINOL•ZrCl₄ complex (Figure 10, inset) is too sterically hindered to effectively activate the acrylate substrate. It may be crucial to have free $ZrCl_4$ in solution to coordinate to the acrylate, in addition to (*R*)-BINOL•ZrCl₄, which effects enolate protonation. Therefore, our next strategy to improve the yield of this transformation was to incorporate an external achiral, stoichiometric proton source to regenerate the BINOL catalyst.

Figure 10. Stoichiometric ligand.

Figure 11 shows the desired reprotonation of the BINOLate by an external proton source (complex $219 \rightarrow 218$). The rate of this reaction must be high enough to generate an adequate concentration of the active catalyst for protonation of the enolate. However,

this reagent may also participate in the nonselective direct protonation of enolate **215**, which would lower the ee of the product.

Figure 11. Incorporation of stoichiometric, achiral proton source.

Several strategies have been employed to turn over a chiral acid catalyst with a stoichiometric achiral proton source. Yamamoto and coworkers effected the enantioselective protonation of silyl enol ethers with the Lewis acid-assisted Brønsted acid (*R*)-BINOL-Me•SnCl₄ (Figure 12). The catalytic variant of this reaction utilizes 2,6-dimethylphenol as the stoichiometric proton source.¹² In this case, the silyl enol ether (**222**) was added slowly to the reaction in order to minimize its concentration in solution and ensure that it reacts with the catalyst rather than the phenol•SnCl₄ complex. The

achiral proton source was also carefully optimized after screening of several substituted phenols.

Figure 12. Catalytic enantioselective protonation of silyl enol ethers.

An early example of a catalytic enantioselective protonation of enolates was reported by Fehr and coworkers (Figure 13).¹³ In this transformation, the aromatic thiol serves as both nucleophile and stoichiometric proton source in the presence of a catalytic amount of lithiated *N*-isopropylephedrine (**226**). The thiol is added slowly to the reaction to avoid accumulation. It is then deprotonated by the ephedrine-derived base to generate thiophenoxide and the chiral proton source *N*-isopropylephedrine (**224**). Addition of the thiophenoxide to ketene **227** forms enolate **223**, which is rapidly and irreversibly protonated by *N*-isopropylephedrine (**224**) to give thioester **225** and regenerate the lithium base **226**. Thus, high enantioselectivity is achieved in this reaction by slowly

generating the enolate substrate in situ. The concentration of the stoichiometric proton source is also minimized by slow addition.

Figure 13. Catalytic enantioselective protonation of enolates.

Vedejs and Kruger undertook a systematic optimization of the pK_a of the stoichiometric proton source in a catalytic, enantioselective protonation reaction (Table 3).¹⁴ The enantioselective protonation of the amide enolate derived from **228** was effected by chiral acid **229**. Their investigation utilized a series of substituted ethyl phenylacetate derivatives (**230**) with pK_a values spanning 22-28 (DMSO). The enantioselectivities were found to increase with the electron-donating ability of the substituent X. As the acidity of the achiral proton source increases, nonselective protonation becomes competitive, leading to lower ee's. While this reaction was performed in THF as the solvent, the literature pK_a values were determined in DMSO, so further comparisons between the pK_a values of the substrate and achiral acid should be regarded with caution.

Vedejs, 1998	1 Me 2N(<i>i</i> Pr) ₂	1. sec-BuLi (1.5 equiv) 2. 229 (0.1 equiv) CH ₂ CO ₂ Et (2 equiv, slow adddition)		Me H CON(<i>i</i> Pr) ₂ 231 chira	H'NHMe al proton source (229)
E	ntry	X	σρ	ee (%)	
	1	CI	0.23	40	
	2	Н	0.00	77	
	3	CH₃	-0.17	85	
	4	CH₃O	-0.27	87	
	5	(CH ₃) ₂ n	-0.83	92	

Table 3. pK_a of achiral acid vs. enantioselectivity.

Based on these precedents, the use of additives in the conjugate addition/Prins cyclization was investigated. Initially, various substituted phenols were added as stoichiometric proton sources. The phenol would need to be carefully optimized to minimize the rate of nonselective protonation of the enolate. While 2,6-dimethylphenol provided a boost in yield, the ee was also lower (Table 4, entry 2), indicating that nonselective enolate protonation by the achiral phenol is occurring. On the other hand, use of the more hindered 2,6-*t*-Bu₂-phenol failed to improve the yield (entry 3), i.e., the rate of proton transfer from the phenol to the BINOLate is too low.

In an attempt to reduce nonselective enolate protonation by 2,6-dimethylphenol, the indole substrate was added slowly over the course of the reaction to reduce the concentration of enolate (entry 4). Unfortunately, this only served to reduce the rate of reaction; the product was isolated in only 34% yield. As an alternative strategy to reduce the rate of nonselective protonation, various phenols were then added slowly over the course of reaction. Use of 2,6-dimethylphenol did not aid in catalyst turnover (entry 5). The less sterically hindered unsubstituted phenol and more acidic 4-bromophenol also failed to improve the yield of **169** (entries 6, 7).

N Me	+ $F_3C \xrightarrow{O}_{H} OMe $ (a	ZrCl₄ (1.6 equiv) <i>R</i>)-BINOL (20 mol%) chiral proton source (1.0 equiv)	MeO ₂ C, ,H NHTFA
168	67		Me 169
Entry	Achiral H ⁺ Source	Yield (%)	ee (%)
1		30	40
2	2,6-dimethylphenol	66	19
3	2,6-di- <i>t</i> -butylphenol	34	45
4 ^{<i>a</i>}	2,6-dimethylphenol	23	26
5 ^{<i>b</i>}	2,6-dimethylphenol	27	37
6 ^b	phenol	33	35
7 ^b	4-bromophenol	35	24

Table 4. Screen of achiral proton sources.

^{*a*} slow addition of indole. ^{*b*} slow addition of achiral proton source.

NMR studies of Yamamoto's asymmetric protonation of silyl enol ethers promoted by *stoichiometric* (*R*)-BINOL-Me•SnCl₄ revealed formation of a tin-aryloxide species (**233**) and TMSCl (Figure 14a).¹² On the other hand, reaction with the unmethylated (*R*)-BINOL resulted in formation of the inactive silylated diol **236**. The former complex was found to be a more effective catalyst. They proposed that in the catalytic reaction employing 2,6-dimethylphenol as the stoichiometric proton source, the tin complex receives a proton and chloride from the phenol and TMSCl, respectively, and TMS-2,6-dimethylphenol is formed as a byproduct (Figure 14b). It was hypothesized in our Prins cyclization, a Lewis acid complex such as **239** is formed after donation of a proton to the enolate and a chloride to quench the carbocation. Proton transfer from a phenol to complex **239** may be unfavorable, but further addition of a chloride source such as TMSCl may aid in regenerating the active BINOL•ZrCl₄ complex (**241**, Figure 14c). Figure 14. (a) Yamamoto's NMR studies of LBA-promoted enantioselective silyl enol ether protonation. (b) Yamamoto's catalytic enantioselective silyl enol ether protonation. (c) Hypothesis for promoting catalyst turnover in the conjugate addition/Prins cyclization.

With this hypothesis in mind, the Prins reaction was performed in the presence of 1.0 equivalent of TMSCl and 1.0 equivalent of 2,6-dimethylphenol. Gratifyingly, the product **169** was isolated in 71% yield (Table 5, entry 1). Methylation of the catalyst resulted in a slight improvement in yield and ee (entry 2). Functionalization of the diol

with a benzoyl group, which is capable of coordinating to the Lewis acid, was highly detrimental to enantioselectivity (entry 4). Catalysts substituted with bromines at the 3 and 3' positions were also screened. Surprisingly, the relationship between ee and the alkyl group (entries 5-7) was inconsistent with the analogous trend for backbone-unsubstituted catalysts (entries 1-3).

N Me 168	+ F_3C H O H O Me Me Me H O Me H M O Me H M O Me H M	I₄ (1.6 equiv) yst (20 mol%) CI (1.0 equiv) DH Me (1.0 equiv)	MeO ₂ C, H NHTFA
Entry	Catalyst	Yield (%)	ee (%)
1	(R)-BINOL	71	28
2	(R)-BINOL-Me	81	46
3	(R)-BINOL-Bn	90	31
4	(R)-BINOL-Bz	84	2
5	(<i>R</i>)-3,3'-Br ₂ -BINOL	72	50
6	(<i>R</i>)-3,3'-Br ₂ -BINOL-Me	70	12
7	(<i>R</i>)-3,3'-Br ₂ -BINOL-Bn	80	60

Table 5. Screen of alkylated BINOL derivatives incorporating TMSCI.

Since (R)-3,3'-Br₂-BINOL-Bn did not provide a significant increase in enantioselectivity compared to (R)-3,3'-Br₂-BINOL, most of the subsequent screening was performed with the unalkylated catalyst due to ease of preparation.

To investigate the possibility of cooperative effects between the chiral diol and the achiral, stoichiometric proton donor, a variety of phenol derivatives were screened. The rate of nonselective enolate protonation was expected to be related to the electronic and steric profile of the achiral proton source (Table 6). 3,5-Dimethoxyphenol was found to give unexpectedly high ee, albeit in only 40% yield (entry 7), while 2,6dimethoxyphenol was less successful (entry 6). Table 6. Screen of phenol derivatives.

N Me 168	$F_{3C} \xrightarrow[H]{O} OMe \qquad \frac{CrCl_{2}}{(R)-3,3'-Br_{2}} OMe \qquad \frac{(R)-3,3'-Br_{2}}{TMSC} OHe^{CR} O$	(1.6 equiv) -BINOL (20 mol%) (1.0 equiv) , 25 °C, 0.13 M H (1.0 equiv)	MeO ₂ C NHTFA NHTFA NHTFA NHTFA NHTFA NHTFA NHTFA
Entry	Phenol Substitution	Yield (%)	ee (%)
1	2-Me	72	21
2	2,6-Me ₂	72	50
3	2-OMe	52	7
4	3-OMe	47	21
5	4-OMe	66	20
6	2,6-(OMe) ₂	36	16
7	3,5-(OMe) ₂	40	86
8	2-F	63	52
9	2-Cl	78	80
10 ^a	2-CI	72	17
11 ^b	2-CI	71	65
12	2-Br	79	66
13	3-Cl	76	50
14	4-Cl	67	26
15	2,6-F ₂	70	67
16	2,4-Cl ₂	80	63
17	2,6-Cl ₂	71	87
18 ^c	2,6-Cl ₂	66	86
19 ^{<i>a</i>}	2,6-Cl ₂	74	83
20 ^{<i>e</i>}	2,6-Cl ₂	68	87
21 [†]	2,6-Cl ₂	67	87
22 ^g	2,6-Cl ₂	77	87
23	2,6-Cl ₂ -4-Me	84	87
24	2,4,6-Cl ₃	77	86
25	2,6-Br ₂	56	86

^{*a*} (*R*)-3,3'-Br₂-BINOL-Me was used as the catalyst. ^{*b*} (*R*)-3,3'-Br₂-BINOL-Bn was used as the catalyst. ^{*c*} TESCl (1.0 equiv) instead of TMSCl. ^{*d*} [indole] = 0.2 M. ^{*e*} [indole] = 0.1 M. ^{*f*} Reaction run at 40 °C. ^{*g*} Reaction run in DCE.

Keeping in mind that the methoxy group is electron-withdrawing in the *meta* position (as reflected by its Hammett substituent constant σ_m), halogenated phenols were screened next. Of the *ortho*-monosubstituted phenols, 2-chlorophenol gave the best results. Interestingly, the alkylated catalysts (*R*)-3,3'-Br₂-BINOL-Me (entry 10) and (*R*)-3,3'-Br₂-BINOL-Bn (entry 11) in conjunction with 2-chlorophenol resulted in lower ee, in contrast to the trend observed with 2,6-dimethylphenol. Finally, *ortho*-dichlorinated

phenols were found to provide both good yields and ee's (entries 16-24); the optimal phenol also incorporates a slightly electron-donating *para*-methyl group (entry 23).

Indole substrates protected with either allyl or benzyl groups were then investigated (Table 7). Unfortunately, the optimal stoichiometric proton source (2,6-dichloro-4-methylphenol) for the reaction with *N*-methylindoles was not optimal for these alternative substrates, reflecting the delicate balance of reaction rates required to achieve good yield and enantioselectivity in this transformation. For both *N*-allyl- and *N*-benzylindoles, 2-6-dibromophenol was chosen as the optimal proton source because it is commercially available and also provides good yields and ee's.

243: 244:	$F_{3}C$ H	ZrCl ₄ (1.6 equiv) (<i>R</i>)-3,3'-Br ₂ -BINOL (20 mol%) TMSCl (1.0 equiv) CH ₂ Cl ₂ , 25 °C, 0.13 M	MeO ₂ C H NH NH P H 2/	1TFA '''Cl 45: R = allyl 46: R = Bn
Entry	Protecting Group	Phenol Substitution	Yield (%)	ee (%)
1	allyl	2,6-Cl ₂	70	87
2	allyl	2,6-Cl ₂ -4-Me	75	86
3	allyl	2,4,6-Cl ₃	79	83
4	allyl	2,6-Br ₂	70	90
5	allyl	2,6-Br ₂ -4-Me	71	87
6	allyl	2,4,6-Br ₃	52	84
7	Bn	2,6-Cl ₂ -4-Me	74	85
8	Bn	2,6-Br ₂	82	91
9	Bn	2,6-Br ₂ -4-Me	67	91
10	Bn	2,6-Br ₂ -4-OMe	77	84
11	Bn	2,6-Br ₂ -4- <i>t</i> Bu	78	90
12	Bn	2,4,6-Br ₃	76	86

4.2.4 Substrate Scope of the Conjugate Addition/Prins Cyclization

Table 8. Substrate scope.

^{*a*} Determined by ¹H NMR of crude reaction mixture. ^{*b*} Determined by SFC using chiral stationary phase. ^{*c*} 1.1 equiv. ZrCl₄ was employed. ^{*d*} 2,6-dichloro-4-methylphenol was employed. ^{*e*} 2,6-dibromo-4-*t*-butylphenol was employed.

Having identified optimal reaction parameters, a screen of indole substrates was conducted. For the 5-bromoindole substrate, the *N*-Me protecting group (to yield **247**) gave improved enantioselectivity over *N*-Bn. The benzyl group was utilized for the other substrates with indole backbone substitution. Surprisingly, both 5-methoxy- and 6-methyl-substituted substrates, when exposed to the standard reaction conditions, yielded a significant quantity of the corresponding pyrroloindoline. It is possible that the electron-

unreacted indolinium ion is attacked by the pendant amide to give the pyrroloindoline. It is unclear why Prins cyclization is disfavored in the case of the 6-methyl-substituted substrate. Fortunately, yields of both Prins products (**246b** and **246e**) were improved by reducing the amount of $ZrCl_4$ to 1.1 equivalents.

We were pleased to find that *N*-homoallylindole smoothly underwent conjugate addition and Prins cyclization. However, under the standard reaction conditions, the product (**248**) was isolated in only 86% ee (Table 9). A screen of substituted phenols revealed 2,6-dibromo-4-*t*butylphenol to be optimal, giving the product in 89% ee and 80% yield (entry 6).

× +	$F_{3}C \xrightarrow[H]{N} OMe = O$	I ₄ (1.6 equiv) '2-BINOL (20 mol%) CI (1.0 equiv) 2, 25 °C, 0.13 M PH (1.0 equiv)	MeO2 H Me H 248
Entry	Phenol Substitution	Yield (%) ^a	ee (%)
1	2,6-Cl ₂	82	86
2	2,4,6-Cl ₃	(62)	85
3	2,6-Cl ₂ -4-Me	(76)	84
4	2,6-Br ₂	80	86
5	2,4,6-Br ₃	84	87
6	2 6-Br₀-4- <i>t</i> Bu	80	89

Table 9. Screen of phenol additives to N-tethered substrate.

4.2.5 Unsuccessful Substrates

Several substrates with alternative tether structures were synthesized. When exposed to the conditions for the conjugate addition/Prins cyclization, many formed

^{*a*} Yields in parentheses are determined by integration of crude ¹H NMR with respect to (R)-3,3'- Br_2 -BINOL. Other yields are isolated.

complex mixtures of products (Figure 15a). However, some substrates underwent competing reaction mechanisms. For example, the allylsilane moiety of indole **255** facilitates cyclization such that it occurs at a faster rate than conjugate addition, and the observed product results from protonation of the indole followed by cyclization. On the other hand, a small amount of the desired product was formed from allylsilane substrate **257**, likely because cyclization to form the seven-membered ring is slower than the sixmembered ring analogue (**258** vs. **256**). Friedel–Crafts substrate **259** failed to undergo cyclization by the aryl ring, forming the pyrroloindoline instead.

^a reaction performed with 1.6 equiv. ZrCl₄, 1.0 equiv (R)-3,3'-Br₂-BINOL

4.2.6 Mechanistic Considerations

The relative stereochemistry of the major diastereomer of conjugate addition/Prins cyclization product **169** was determined by single crystal X-ray crystallography (Figure 16, crystal structure shows enantiomer). Aza-Prins cyclizations which form six-membered rings favor transition states with an antiperiplanar alignment of the iminium ion and alkene, rather than a synclinal arrangement, because overlap between the alkenyl π -system and the developing lone pair on nitrogen is maximized.¹⁵ In this case, the observed chloride stereochemistry results from axial attack, which is generally disfavored in intermolecular cases. Alternatively, chloride delivery may occur in an intramolecular fashion from a zirconium species coordinated to the ester or amide carbonyl, or the carbocation intermediate can chair flip prior to chloride attack.

Figure 16. Relative stereochemistry of conjugate addition/Prins products.

The major product of the conjugate addition/Prins cyclization is the (S,S) diastereomer (absolute stereochemistry determined by analogy to the pyrroloindoline synthesis). Epimerization of diastereomerically pure Prins product (S,S)-**246a** returns a mixture of (S,S)-**246a** and (R,S)-**246a**, where (R,S)-**246a** is the enantiomer of the minor diastereomer formed in the Prins reaction (Figure 17). Thus, the originally-formed diastereomers (S,S)-**246a** and (S,R)-**246a** have opposite configurations at the quaternary center, which is consistent with the (R)-3,3'-dibromo-BINOL•ZrCl₄ complex acting as an asymmetric protonation catalyst in an analogous fashion to the (R)-BINOL•SnCl₄ complex. Furthermore, the configuration of the chloride is linked to the stereochemistry of the C3 quaternary center.

Figure 17. Epimerization study.

A possible mechanism of the conjugate addition/Prins cyclization is proposed in Figure 18. Activation of the acrylate (67) by a zirconium Lewis acid facilitates conjugate addition by the indole (168) to afford enantiomeric enolate intermediates (215 and *ent-*215). Next, catalyst-controlled, face-selective enolate protonation occurs to yield iminium ions 216. These first steps are analogous to the formal (3 + 2) cycloaddition to prepare pyrroloindolines. However, in the Prins reaction, the presence of a tethered alkene leads to intramolecular cyclization (to give 217) followed by chloride quenching of the

resulting carbocation (to yield **169**). The (*R*)-3,3'-Br₂-BINOLate•ZrCl₄ complex (**262**) receives a chloride from TMSCl and a proton from the achiral phenol (**263**) to regenerate the active protonation catalyst (**261**).

In this proposed mechanism, the initial conjugate addition step may be catalyzed by $ZrCl_4$ rather than (*R*)-3,3'-Br₂-BINOL•ZrCl₄, and thus is not stereoselective. However, the reversability of conjugate addition, coupled with the difference in protonation rates arising from matching/mismatching of the enantiomeric enolates with the chiral catalyst, leads to the observed diastereoselectivity. To probe the reversability of the conjugate addition step, a stereodefined deuterated acrylate (**67**-*d*₁) was synthesized (Figure 19a). Stereochemical information about the acrylate alkene is lost upon conjugate addition; if this step is reversible, then the deuterium label should undergo scrambling. However, if conjugate addition is not reversible, no scrambling would be expected. When this acrylate was subjected to the Prins reaction conditions (run to low conversion), significant scrambling of the deuterium label was observed in the reisolated acrylate (Figure 19b, 41% had opposite alkene stereochemistry compared to starting acrylate). A control reaction performed in the absence of the indole substrate showed no deuterium scrambling. This result is consistent with a reversible conjugate addition step.

Figure 19. Stereochemical probe of reversability of conjugate addition.

4.2.7 Extension to Intermolecular Nucleophiles

Preliminary investigations into extending this methodology to intermolecular carbon nucleophiles have been performed (Figure 20). When 3-homoallyl indole **244** was exposed to the conjugate addition/Prins cyclization conditions with TMSCN as an external nucleophile, the intermolecular trapping product was not formed. Instead, the major product observed was the Prins cyclization product. However, using SnCl₄ as the

Lewis acid and allyltrimethylsilane as the nucleophile gave a small amount of the C2allylated product (**267**). Development of this methodology will likely require further screening of Lewis acids.

Figure 20. Preliminary investigation of intermolecular nucleophiles.

4.3 Concluding Remarks

We have developed a novel conjugate addition/Prins cyclization for the synthesis of enantioenriched fused indolines. This reaction is based on the observation that the formal (3 + 2) cycloaddition to prepare pyrroloindolines from 3-substituted indoles and 2-amidoacrylates forms an iminium ion as the initial product, and cyclization to the pyrroloindoline does not occur until aqueous work-up. Attempts to trap this iminium ion with alternative nucleophiles led us to design an indole substrate with a tethered alkene. This alkene undergoes an intramolecular Prins cyclization, while a chloride ion from the Lewis acid traps the resulting carbocation.
A screen of Lewis acids revealed ZrCl_4 to be optimal, while (*R*)-3,3'-dibromo-BINOL gave the best combination of yield and enantioselectivity. The (*R*)-3,3'-Br₂-BINOL•ZrCl₄ complex acts as an asymmetric protonation catalyst in an analogous fashion to the (*R*)-BINOL•SnCl₄ catalyst utilized in the pyrroloindoline synthesis. Additives were found to be necessary to achieve catalyst turnover in this transformation. After the (*R*)-3,3'-Br₂-BINOL•ZrCl₄ complex effects enolate protonation and donates a chloride ion, it receives a proton from an achiral phenol and a chloride from TMSCl.

A stereodefined, deuterium-labelled acrylate substrate was designed as a probe for the reversability of the conjugate addition step. Results from this experiment are consistent with conjugate addition being reversible.

4.4 Experimental Section

4.4.1 Materials and Methods

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran, methylene chloride, toluene, and hexanes were dried by passing through activated alumina columns. Dimethylformamide was dried over activated molecular sieves, and dichloroethane was distilled over calcium hydride. Deuterated methylene chloride (CD₂Cl₂) for the experiments resubjecting the pyrroloindoline products to reaction conditions was dried by passing through a plug of activated alumina. All other commercially obtained reagents were used as received unless specifically indicated. EtAlCl₂ (neat) and 1 M SnCl₄ in DCM were purchased from Aldrich and (R)-BINOL was obtained from Alfa Aesar. Reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by UV, p-anisaldehyde, or KMnO₄ staining. Flash column chromatography was performed either as described by Still et al. using silica gel (particle size 0.032-0.063) purchased from Silicycle, or pre-packaged RediSep[®]Rf columns on a CombiFlash Rf system (Teledyne ISCO Inc.). Diastereomeric ratios were determined by integration of NMR spectra or HPLC or SFC analysis. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz and 75 MHz, respectively), a Varian 400 (at 400 MHz and 100 MHz, respectively) or a Varian Inova 500 (at 500 MHz and 125 MHz, respectively), and are reported relative to internal chloroform (¹H, $\delta = 7.26$, ¹³C, $\delta = 77.0$). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration).

Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm⁻¹). Preparative HPLC was performed with either an Agilent 1100 or 1200 Series HPLC utilizing an Agilent Zorbax RX-SIL 5 μ m column (9.4 x 250 mm). Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing Chiralcel AD or OD-H columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd with visualization at 254 nm. Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system with Chiralcel AD-H and OJ-H columns (4.6 mm x 25 cm). Melting points were determined using a Büchi B-545 capillary melting point apparatus and the values reported are uncorrected. HRMS were acquired using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) or mixed (MM) ionization mode, or obtained from the Caltech Mass Spectral Facility.

4.4.2 General Procedure A. Conjugate Addition/Asymmetric Protonation/Prins Cyclization Cascade

To a flame-dried flask was added indole (0.20 mmol, 1.00 equiv), acrylate (0.24 mmol, 1.20 equiv), and (*R*)-3,3'-dibromo-BINOL (0.04 mmol, 0.20 equiv), and phenol (0.20 mmol, 1.00 equiv). The flask was charged with DCM (1.5 mL), followed by addition of TMSCI (0.2 mmol, 1.00 equiv), $ZrCl_4$ (0.32 mmol, 1.60 equiv unless specifically indicated), then stirred at room temperature for 24 h. The reaction was quenched by diluting with 1 mL MeCN and 1 mL 1 M HCl, followed by addition of 5 mL H₂O. The aqueous layer was extracted with ethyl acetate (3 x 5 mL) and the combined organic layers were washed with either saturated NaHCO_{3(aq)} (10 mL). The aqueous layer was back extracted with EtOAc (10 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The crude residue was purified by flash chromatography.

4.4.3 Indoline Products from Conjugate Addition/Asymmetric Protonation/Prins Cyclization Cascade

Indoline 169.

Prepared from 1-methyl-3-homoallyl-1*H*-indole and methyl 2-trifluoroacetamidoacrylate using General Procedure A to yield **169** in 84% yield. The diastereomeric ratio was determined to be 7:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 87% by chiral SFC

analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 4.9 min; $t_{\rm R}$ (minor) = 6.0 min. The major diastereomer was separated by flash chromatography (10% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.14 (td, J = 7.7, 1.3 Hz, 1H), 6.95 (dd, J = 7.3, 0.8 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 6.75 (td, J = 7.4, 0.9 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 4.55 (td, J = 7.6, 5.8 Hz, 1H), 4.28 – 4.21 (m, 1H), 3.50 (s, 3H), 3.45 (t, J = 5.1 Hz, 1H), 2.72 (s, 3H), 2.41 (dd, J = 14.9, 7.4 Hz, 1H), 2.24 (dd, J = 14.9, 5.7 Hz, 1H), 2.13 – 1.99 (m, 2H), 1.91 – 1.76 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 156.5 (q, $J_{\rm C-F} = 37.7$ Hz), 150.9, 133.0, 128.5, 121.7, 118.8, 115.5 (q, $J_{\rm C-F} = 287.6$ Hz), 108.8, 68.7, 55.8, 52.6, 50.2, 44.5, 37.8, 32.9, 32.8, 32.0, 31.0; IR (NaCl/thin film) 3312, 2954, 2864, 1711, 1607, 1482, 1209, 1178 cm⁻¹; $[\alpha]_{\rm D}^{25} = +55.6$ (c = 2.06, CH₂Cl₂). HRMS (MM) calc'd for C₁₉H₂₂ClF₃N₂O₃ [M+H]⁺ 419.1344, found 419.1358.

Indoline 245.

Prepared from 1-allyl-3-homoallyl-1*H*-indole and methyl 2-trifluoroacetamidoacrylate using General Procedure A to yield **245** in 70% yield. The diastereomeric ratio was determined to be 4:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 89% by chiral SFC analysis (OD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.3 min; $t_{\rm R}$ (minor) = 4.9 min. The major diastereomer was separated by recrystallization (10% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.11 (td, J = 7.7, 1.3 Hz, 1H), 6.94 (dd, J = 7.3, 0.8 Hz, 1H), 6.73 (td, J = 7.4, 0.9 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 6.57 (d, J = 7.8 Hz, 1H), 5.87 (dddd, J = 17.2, 10.2, 7.0, 4.8 Hz, 1H), 5.31 (ddd, J = 17.2, 3.1, 1.6 Hz, 1H), 5.25 (ddd, J = 10.2, 2.8, 1.4 Hz, 1H), 4.62 (dd, J = 13.8, 7.5 Hz, 1H), 4.23 (qd, J = 7.6, 3.7 Hz, 1H), 3.91 (ddt, J = 15.9, 4.8, 1.6 Hz, 1H), 3.68 (t, J = 4.9 Hz, 1H), 3.64 – 3.56 (m, 1H), 3.47 (s, J = 2.1 Hz, 3H), 2.41 (dd, J = 14.8, 7.3 Hz, 1H), 2.27 (dd, J = 14.8, 6.0 Hz, 1H), 2.11 (dt, J = 13.5, 4.1 Hz, 1H), 2.03 – 1.94 (m, 1H), 1.93 – 1.73 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 156.4 (q, $J_{C-F} = 37.8$ Hz), 149.6, 133.2, 133.0, 128.4, 121.8, 118.6, 117.9, 115.4 (q, $J_{C-F} = 288.0$ Hz), 109.0, 65.8, 55.7, 52.6, 50.1, 48.2, 44.4, 37.33, 32.9, 32.2, 31.0; IR (NaCl/thin film) 3310, 2951, 1711, 1606, 1553, 1479, 1462, 1441, 1209, 1174 cm⁻¹; $[\alpha]_D^{25} = 78.1$ (c = 1.39, CH₂Cl₂). HRMS (MM) calc'd for C₂₁H₂₃ClF₃N₂O₃ [M+H]⁺ 445.1500, found 445.1496.

Indoline 247a.

Prepared from 1-benzyl-3-homoallyl-5-bromo-1*H*-indole and methyl 2trifluoroacetamidoacrylate using General Procedure A to yield **247a** in 70% yield. The diastereomeric ratio was determined to be 5:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 85% by chiral SFC analysis (OD-H, 2.5 mL/min, 10% EtOH in CO₂, $\lambda = 254$ nm): t_R (major) = 9.5 min; t_R (minor) = 7.7 min. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 7.15 (dd, J = 8.3, 2.0 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.68 (d, J = 8.1 Hz, 1H), 6.36 (d, J =8.4 Hz, 1H), 4.62 (dd, J = 14.6, 6.6 Hz, 1H), 4.38 (d, J = 15.6 Hz, 1H), 4.22 – 4.09 (m, 2H), 3.66 (t, J = 4.8 Hz, 1H), 3.49 (s, 3H), 2.38 (dd, J = 14.9, 6.8 Hz, 1H), 2.28 (dd, J = 14.9, 6.2 Hz, 1H), 2.01 – 1.75 (m, 5H); ¹³C NMR (126 MHz, cdcl₃) δ 171.2, 156.5 (q, J_{C-F} = 38.1 Hz), 149.3, 137.3, 135.5, 131.0, 128.8 (×2), 127.5, 127.4 (×2), 125.0, 115.4 (q, J_{C-F} = 287.9 Hz), 110.4, 110.2, 66.6, 60.4, 55.3, 52.8, 50.2, 49.9, 44.7, 37.1, 33.0, 32.1, 30.9. IR (NaCl/thin film) 3308, 2951, 2864, 1713, 1475, 1210, 1175 cm⁻¹; [α]_D²⁵ = +41.4 (c = 0.90, CH₂Cl₂).

Indoline 247b.

Prepared from 1-benzyl-3-homoallyl-5-methoxy-1*H*-indole and methyl 2trifluoroacetamidoacrylate using General Procedure A (but with 1.1 equiv ZrCl₄) to yield **246b** in 93% yield. The diastereomeric ratio was determined to be 6:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 91% by chiral SFC analysis (AD-H, 2.5 mL/min, 12% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 4.5 min; t_R (minor) = 4.1 min. The major diastereomer was separated by flash chromatography (15→20% ethyl acetate/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 5H), 6.63 – 6.57 (m, 2H), 6.53 (d, *J* = 7.7 Hz, 1H), 6.39 (d, *J* = 8.0 Hz, 1H), 4.60 (dd, *J* = 13.8, 6.8 Hz, 1H), 4.34 (d, *J* = 15.4 Hz, 1H), 4.23 (dd, *J* = 9.8, 6.4 Hz, 1H), 4.07 (d, *J* = 15.4 Hz, 1H), 3.72 (s, 3H), 3.55 (t, *J* = 4.6 Hz, 1H), 3.47 (s, 3H), 2.44 (dd, *J* = 14.9, 7.0 Hz, 1H), 2.28 (dd, *J* = 14.9, 5.8 Hz, 1H), 2.16 – 2.09 (m, 1H), 1.99 – 1.72 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 156.4 (q, *J*_{C-F} = 37.7 Hz), 153.4, 144.2, 138.0, 134.7, 128.6 (×2), 127.5 (×2), 127.3, 115.4 (q, *J*_{C-F} = 288.0), 112.7, 109.8, 109.2, 67.0, 55.8, 52.7, 51.2, 50.1, 44.7, 36.9, 33.0, 32.3, 31.1, 29.7; IR (NaCl/thin film) 3315, 2925, 1716, 1555, 1490, 1215, 1176 cm⁻¹; $[\alpha]_D^{25} = +40.4$ (c = 0.96, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₄ [M+H]⁺ 525.1762, found 525.1749.

Indoline 247c.

Prepared 1-benzyl-3-homoallyl-4-methyl-1*H*-indole from methyl 2and trifluoroacetamidoacrylate using General Procedure A to yield 246c in 90% yield. The diastereomeric ratio was determined to be 4:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 90% by chiral SFC analysis (OD-H, 2.5 mL/min, 10% EtOH in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.5 min; $t_{\rm R}({\rm minor}) = 6.7$ min. The major diastereomer was separated by flash chromatography (5 \rightarrow 10% ethyl acetate/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.96 (t, J = 7.7 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 6.48 (d, J = 7.6 Hz, 1H), 6.37 (d, J = 7.9 Hz, 1H), 4.64 (q, J = 7.0 Hz, 1H), 4.40 (d, J = 15.8 Hz, 1H), 4.21 - 4.12(m, 2H), 3.60 (t, J = 4.3 Hz, 1H), 3.38 (s, 3H), 2.51 (dd, J = 15.0, 6.6 Hz, 1H), 2.40 (dd, J)= 15.0, 7.0 Hz, 1H), 2.29 (s, 3H), 2.21 (dt, J = 14.6, 4.3 Hz, 1H), 2.03 - 1.88 (m, 4H), 1.88 – 1.75 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 156.5 (q, J_{C-F} = 37.8 Hz), 150.9, 138.0, 133.9, 129.7, 128.7 (×2), 128.3, 127.4 (×2), 127.3, 122.2, 115.4 (q, $J_{C-F} =$ 287.9 Hz), 107.0, 65.8, 55.5, 52.6, 50.6, 50.4, 46.2, 36.6, 33.1, 31.3, 31.1, 19.1; IR

(NaCl/thin film) 3311, 2953, 1711, 1589, 1452, 1212, 1177 cm⁻¹; $[\alpha]_D^{25} = 79.4$ (c = 0.81, CH₂Cl₂).

Indoline 247d.

Prepared from 1-benzyl-3-homoallyl-5-methyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using General Procedure A to yield **246d** in quantitative yield. The diastereomeric ratio was determined to be 6:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 90% by chiral SFC analysis (OJ-H, 2.5 mL/min, 8% EtOH in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.0 min; $t_{\rm R}$ (minor) = 5.1 min. The major diastereomer was separated by flash chromatography. ¹H NMR (500 MHz, CDCl₃) δ .39 – 7.27 (m, 5H), 6.87 (ddd, J = 7.9, 1.7, 0.7 Hz, 1H), 6.78 (d, J = 1.7 Hz, 1H), 6.50 (d, J = 7.7 Hz, 1H), 6.39 (d, J = 7.9 Hz, 1H), 4.62 (td, J = 7.6, 5.5 Hz, 1H), 4.37 (d, J = 15.4 Hz, 1H), 4.24 (dt, J = 11.3, 3.7 Hz, 1H), 4.10 (d, J = 15.4 Hz, 1H), 3.56 (t, J = 5.2 Hz, 1H), 3.49 (s, J = 2.3 Hz, 3H), 2.44 (dd, J) = 0.000 Hz, 0.0000 Hz, 0.000 Hz, J = 14.8, 7.5 Hz, 1H), 2.30 – 2.21 (m, 4H), 2.09 – 1.78 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 156.4 (q, J_{C-F} = 37.8 Hz), 147.9, 138.0, 133.0, 128.7, 128.6 (×2), 128.0, 127.5 (×2), 127.3, 122.8, 116.6 (q, J_{C-F} = 287.8 Hz), 109.0, 66.9, 56.1, 52.6, 50.4, 50.1, 44.6, 37.3, 32.8, 31.1, 30.8, 20.7; IR (NaCl/thin film) 3314, 2951, 2868, 1715, 1552, 1490, 1440, 1210, 1177 cm⁻¹; $[\alpha]_D^{25} = +55.3$ (c = 0.85, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₃ [M+H]⁺ 509.1813, found 509.1831.

Indoline 247e.

Prepared from 1-benzyl-3-homoallyl-6-methyl-1*H*-indole and methyl 2trifluoroacetamidoacrylate using General Procedure A (but with 1.1 equiv ZrCl₄) to yield 246e in 74% yield. The diastereomeric ratio was determined to be 3:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 92% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 2.6 min; $t_{\rm R}$ (minor) = 2.1 min. The major diastereomer was separated by flash chromatography $(5 \rightarrow 10\% \text{ ethyl acetate/hexanes})$. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.84 (d, J = 7.4 Hz, 1H), 6.54 (d, J = 7.4 Hz, 1H) Hz, 1H), 6.49 (d, J = 7.7 Hz, 1H), 6.33 (s, 1H), 4.60 (td, J = 7.7, 5.4 Hz, 1H), 4.38 (d, J = 15.6 Hz, 1H), 4.21 (dq, J = 11.0, 3.7 Hz, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.58 (t, J = 5.3Hz, 1H), 3.49 (s, J = 2.4 Hz, 3H), 2.39 (dd, J = 14.8, 7.6 Hz, 1H), 2.27 - 2.21 (m, 4H), 2.06 – 1.77 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 156.5 (q, J_{C-F} = 37.8 Hz), 287.8 Hz), 109.8, 66.7, 56.0, 52.7, 50.1, 50.0, 44.37, 37.6, 33.0, 31.0, 30.8, 21.7; IR (NaCl/thin film) 3312, 2950, 1712, 1612, 1551, 1493, 1452, 1210, 1176 cm⁻¹; $[\alpha]_D^{25} =$ +65.8 (c = 0.89, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₃ [M+H]⁺ 509.1813, found 509.1823.

Indoline 247f.

Prepared from 1-benzyl-3-homoallyl-7-methyl-1H-indole and methyl 2trifluoroacetamidoacrylate using General Procedure A to yield 246f in 89% yield. The diastereomeric ratio was determined to be 6:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 89% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 2.7 min; $t_{\rm R}({\rm minor}) = 2.2$ min. The major diastereomer was separated by flash chromatography (5 \rightarrow 10% ethyl acetate/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.91 (d, J = 7.5 Hz, 1H), 6.82 (d, J = 7.3 Hz, 1H), 6.70 (t, J = 7.4 Hz, 1H), 6.46 (d, J = 7.8 Hz, 1H), 4.71 (d, J = 16.5 Hz, 1H), 4.62 - 4.49 (m, 2H), 4.19 (td, J = 7.9), 4.19 (td, J = 7.9)3.8 Hz, 1H, 3.51 (s, 3H), 3.45 (t, J = 4.9 Hz, 1H), 2.35 (s, 3H), 2.24 (d, J = 6.3 Hz, 2H),2.04 (dt, J = 15.0, 4.4 Hz, 1H), 1.96 – 1.69 (m, 5H).; ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 156.4 (q, J_{C-F} = 37.7 Hz), 148.0, 139.3, 133.7, 132.3, 128.7 (×2), 127.3, 127.2 (×2), 120.4, 120.0, 119.3, 115.4 (q, $J_{C-F} = 287.8$ Hz), 66.4, 55.9, 52.7, 52.3, 50.0, 44.6, 37.9, 33.9, 32.0, 30.8, 19.6; IR (NaCl/thin film) 3314, 2952, 1715, 1558, 1452, 1208, 1176 cm⁻ ¹; $[\alpha]_D^{25} = +57.2$ (c = 0.94, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₃ [M-H]⁻ 507.1668, found 507.1681.

5-Bromo-N-methyl Indoline.

Prepared from 1-methyl-3-homoallyl-5-bromo-1H-indole and methyl 2trifluoroacetamidoacrylate using General Procedure A to yield 247 in 77% yield. The diastereomeric ratio was determined to be 5:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 88%by chiral SFC analysis (AD-H, 2.5 mL/min, 20% MeOH in CO₂, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 1.9 min; $t_{\rm R}$ (minor) = 5.3 min. The major diastereomer was separated by flash chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.23 (dd, J = 8.3, 2.0 Hz, 1H), 7.02 (d, J= 2.0 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.41 (d, J = 8.3 Hz, 1H), 4.56 (dd, J = 14.4, 6.7 Hz, 1H), 4.25 - 4.17 (m, 1H), 3.54 (s, J = 2.4 Hz, 3H), 3.47 (t, J = 4.9 Hz, 1H), 2.70 (s, 3H), 2.36 (dd, J = 15.0, 7.0 Hz, 1H), 2.23 (ddd, J = 15.0, 5.9, 2.7 Hz, 1H), 2.15 – 2.07 (m, 1H), 2.03 - 1.96 (m, 1H), 1.93 - 1.74 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 156.5 (q, $J_{C-F} = 37.9$ Hz), 150.1, 135.6, 131.1, 124.9, 115.5 (q, $J_{C-F} = 287.5$ Hz), 110.4, 110.1, 68.7, 55.2, 52.7, 50.1, 44.7, 37.7, 32.9, 32.8, 32.4, 31.0.; IR (NaCl/thin film) 3309, 2953, 2863, 1709, 1555, 1478, 1210, 1178 cm⁻¹; $[\alpha]_{D}^{25} = +23.7$ (c = 0.88, CH₂Cl₂). HRMS (MM) calc'd for $C_{19}H_{21}BrClF_{3}N_{2}O_{3}$ [M+H]⁺ 497.0449, found 497.0452.

Indoline 248.

Prepared from 1-homoallyl-3-methyl-1*H*-indole and methyl 2-trifluoroacetamidoacrylate using General Procedure A to yield **248** in 80% yield. The diastereomeric ratio was determined to be 6:1 by 1 H NMR analysis of the crude reaction mixture. The

enantiomeric excess of the major diastereomer was determined to be 89% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): $t_R(major) = 2.7$ min; $t_R(minor) = 8.7$ min. The major diastereomer was separated by flash chromatography (12 \rightarrow 15% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.12 (td, J = 7.7, 1.2 Hz, 1H), 6.99 (dd, J = 7.7, 1.3 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.74 (td, J = 7.4, 0.9 Hz, 1H), 6.50 (d, J = 7.9 Hz, 1H), 4.58 (td, J = 7.8, 4.6 Hz, 1H), 3.98 (tt, J = 11.8, 4.0 Hz, 1H), 3.72 (ddd, J = 13.3, 4.7, 2.1 Hz, 1H), 3.59 (s, J = 3.5 Hz, 3H), 3.16 (dd, J = 11.8, 2.7 Hz, 1H), 2.82 (tt, J = 18.4, 9.2 Hz, 1H), 2.30 (dd, J = 14.9, 4.7 Hz, 1H), 2.21 – 2.07 (m, 3H), 1.89 – 1.77 (m, 1H), 1.72 (q, J = 11.9 Hz, 1H), 1.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 156.6 (q, $J_{C-F} = 37.7$ Hz), 148.8, 134.4, 128.5, 122.7, 118.8, 115.5 (q, $J_{C-F} = 287.7$ Hz), 107.3, 70.1, 57.1, 52.7, 50.3, 45.7, 43.9, 40.4, 35.9, 34.6, 21.0; IR (NaCl/thin film) 3314, 2958, 1711, 1606, 1482, 1454, 1211, 1173 cm⁻¹. HRMS (MM) calc'd for C₁₉H₂, CIF₄N₂O₃ [M+H]⁺ 419.1344, found 419.1342.

4.4.4 SFC Traces for Racemic and Enantioenriched Products

246 (Table 7, Entry 8): racemic

247a (Table 8): racemic

247a (Table 8, major diastereomer only): 85% ee

247b (Table 8): racemic

247b (Table 8): 91% ee

eak? #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	4.219	MM MM	0.1233	56.35015 1166.02209	7.61557	4.6099	

247c (Table 8): racemic

247c (Table 8, major diastereomer only): 88% ee

247d (Table 8): racemic

247d (Table 8): 92% ee

247e (Table 8): racemic

247e (Table 8): 93% ee

247f (Table 8): racemic

247f (Table 8): 89% ee

248 (Table 8): racemic

248 (Table 8): 89% ee

245 (Table 8): racemic

245 (Table 8): 89% ee

#	[min]	Type	[min]	[mAU*s]	[mAU]	8
1	5.028	MM	0.1861	202.56195	18.14186	5.3255
2	8.024	MM	0.3085	3601.03638	194.54140	94.6745

I

169 (Table 8): racemic

169 (Table 8): 87% ee

4.4.5 Synthesis of deuterated acrylate 67-d₁

Acrylate **67** (10 mmol, 1.97g, 1.0 equiv) was dissolved in 50 mL CH₂Cl₂ and cooled to -78 °C. Molecular bromine (10 mmol, 0.51 mL, 1.0 equiv) was added dropwise, and the reaction was stirred for 10 minutes before moving to an ice bath, where it was stirred for 40 minutes. DABCO (10 mmol, 1.1 g, 1.0 equiv) was added as a solution in 15 mL CH₂Cl₂. The reaction was stirred for 1.5 h, then filtered through celite, and concentrated. The crude mixture was purified by flash chromatography (30% Et₂O/pentane) to yield 2.03 g (74% yield) of bromoacrylate **285**.

285: ¹H NMR (300 MHz, acetone) δ 7.89 (s, 1H), 3.80 (s, 3H)

Bromoacrylate **285** (3 mmol, 830 mg) was dissolved in 6 mL ethyl acetate (not dried), and Pd/BaSO₄ (reduced, 29 mg) was added. The reaction was sparged with D_2 , then sealed and stirred until the reaction no longer progressed by TLC (approximately four days). The reaction was filtered through celite, concentrated, and purified by flash chromatography (20% Et₂O/pentane) to yield 180.5 mg (30% yield) of deuterium labelled acrylate **67-***d*₁.

67-*d***1**: ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 6.13 (d, *J* = 1.4 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 155.1 (q, *J*_{C-F} = 38.2 Hz), 129.4, 115.2 (q, *J*_{C-F} = 288.3 Hz), 112.1 (t, *J*_{C-D} = 26 Hz), 53.47; HRMS (MM) calc'd for C₆H₅DF₃N₂O₃ [M–H]⁻ 197.0290, found 197.0295.

4.5 Notes and References

- (1) (a) Heathcock, C. H. Proceedings of the National Academy of Sciences 1996, 93, 14323–14327. (b) Heathcock, C. H.; Hansen, M. M.; Ruggeri, R. B.; Kath, J. C. J. Org. Chem. 1992, 57, 2544–2553. (c) Heathcock, C. H.; Piettre, S.; Ruggeri, R. B.; Ragan, J. A.; Kath, J. C. J. Org. Chem. 1992, 57, 2554–2566. (d) Heathcock, C. H. Angew. Chem. Int. Ed. Engl. 1992, 31, 665–681.
- (2) He, F.; Bo, Y.; Altom, J. D.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 6771–6772.
- (3) (a) MacMillan, D. W.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2001, 123, 9033–9044; (b) Overman, L. E.; Pennington, L. D. Org. Lett. 2000, 2, 2683–2686; (c) Gallou, F.; MacMillan, D. W.; Overman, L. E.; Paquette, L. A.; Pennington, L. D.; Yang, J. Org. Lett. 2001, 3, 135–137.
- (4) Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420–8421.
- (5) Van Orden, L. J.; Patterson, B. D.; Rychnovsky, S. D. J. Org. Chem. 2007, 72, 5784–5793.
- (6) Reddy, B. V. S.; Borkar, P.; Yadav, J. S.; Sridhar, B.; Grée, R. J. Org. Chem. 2011, 76, 7677–7690.
- (7) (a) Ishitani, H.; Komiyama, S.; Kobayashi, S. Angew. Chem. Int. Ed. Engl. 1998, 37, 3186–3188; (b) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762–766; (c) Kobayashi, S.; Ishitani, H. Chirality 2000, 12, 540–543.
- (8) (a) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153–7154;
 (b) Ishitani, H.; Kitazawa, T.; Kobayashi, S. Tetrahedron Letters 1999, 40, 2161–2164;
 (c) Kobayashi, S.; Ishitani, H.; Yamashita, Y.; Ueno, M.; Shimizu, H. Tetrahedron 2001, 57, 861–866;
 (d) Ihori, Y.; Yamashita, Y.; Ishitani, H.; Kobayashi, S. J. Am. Chem. Soc. 2005, 127, 15528–15535;
 (e) Saruhashi, K.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 11232–11235;
 (f) Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. Angew. Chem. Int. Ed. Engl. 2001, 40, 2271–2274. (g) Mouhtady, O.; Gaspard-Iloughmane, H.; Laporterie, A.; Roux, C. L. Tetrahedron Letters 2006, 47, 4125–4128.
- (9) (a) Yamashita, Y.; Ishitani, H.; Shimizu, H.; Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 3292–3302; (b) Kobayashi, J.; Nakamura, M.; Mori, Y.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 9192–9193; (c) Yao, W.; Wang, J. Org. Lett. 2003, 5, 1527–1530; (d) Schneider, C.; Hansch, M. Synlett 2003, 2003, 0837–0840; (e) Schneider, C.; Hansch, M.; Sreekumar, P. Tetrahedron: Asymmetry 2006, 17, 2738–2742.
- (10) Casolari, S.; Cozzi, P. G.; Orioli, P. Chem. Commun. 1997, 2123–2124.

- (11) (a) Kobayashi, S.; Kusakabe, K.-I.; Komiyama, S.; Ishitani, H. J. Org. Chem. 1999, 64, 4220–4221; (b) Kobayashi, S.; Shimizu, H.; Yamashita, Y.; Ishitani, H.; Kobayashi, J. J. Am. Chem. Soc. 2002, 124, 13678–13679; (c) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3793–3798.
- (12) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. **1996**, *118*, 12854–12855.
- (13) Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem. Int. Ed. Engl. 1993, 32, 1044–1046.
- (14) Vedejs, E.; Kruger, A. W. J. Org. Chem. 1998, 63, 2792–2793.
- (15) Hanessian, S.; Tremblay, M.; Petersen, J. F. W. J. Am. Chem. Soc. 2004, 126, 6064-6071.

APPENDIX 4

Spectra Relevant to Chapter 4:

Development of a Tandem Conjugate Addition/Prins Cyclization

JN-5-049a-co12

exp1 CARBON

c t di b b b c t c

JN-5-049b-co12

exp1 PROTON

solvent date

file /siena/jni/vn~ mrsys/data/JN-5-04~ temp 9b-col2/PROTON01.f~ gain spin hst pw90 alfa wet sp wp rfl rfp ii dp dp sd fn rp 1p MC decwave W40_OneNMR dpwr 34 dmf 29412 iđ 4000 3.950 cdc13 ACQUISITION 6410.3 2.556 32768 1.000 œ C13 œ H1 399.8 32 399.797 63 0 uuu TRANSMITTER

sw fb di di di ct

DECOUPLER

đa đa

tn sfrq tof tpwr pw

332

334

APPENDIX 5

X-Ray Crystallography Reports Relevant to Chapter 4:

Development of a Tandem Conjugate Addition/Prins Cyclization⁺

[†] The work disclosed in this appendix for the x-ray crystallographic analysis of **169** was completed entirely by Larry Henling in the Caltech X-ray crystallography lab.

CRYSTAL STRUCTURE ANALYSIS OF INDOLINE 169

Figure A5.1. Indoline ent-**169** is shown with 50% probability ellipsoids. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 1024262.

Table A5.1. Crystal data and structure refinement indoline 169.

Empirical formula	$C_{19}H_{22}ClF_{3}N_{2}O_{3} \\$
Formula weight	418.84
Crystallization solvent	Hexanes/ethanol
Crystal size	0.41 x 0.36 x 0.16 mm ³

Data Collection

Wavelength	0.71073 Å	
Data Collection Temperature	100 K	
Unit cell dimensions	a = 25.1712(14) Å b = 6.5924(4) Å c = 22.8692(13) Å	$\alpha = 90^{\circ}$ $\beta = 91.144(3)^{\circ}$ $\gamma = 90^{\circ}$
Volume	3794.1(4) Å ³	
Z	8	
Crystal system	Monoclinic	
Space group	C 1 2/c 1	
Density (calculated)	1.466 Mg/m ³	
F(000)	1744	
θ range for data collection	2.383 to 46.276°	
Completeness to $\theta = 25.000^{\circ}$	99.9 %	
Index ranges	$-49 \le h \le 51, -13 \le k \le 1$	$1, -45 \le l \le 46$
Reflections collected	124617	
Independent reflections	16624 [$R_{int} = 0.0540$]	
Absorption coefficient	0.253 mm ⁻¹	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	1.0000 and 0.9131	
Table A5.1 (continued)		

Structure solution and Refinement

Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	16624 / 10 / 368
Goodness-of-fit on F ²	1.025
Final R indices [I> 2σ (I), 4601 reflections]	R1 = 0.0424, <i>w</i> R2 = 0.1076
R indices (all data)	R1 = 0.0654, wR2 = 0.1204
Extinction coefficient	n/a
Largest diff. peak and hole	0.898 and -0.650 e.Å ⁻³

	X	У	Z	U_{eq}
Cl(1)	81494(2)	86530(3)	41318(2)	191(1)
F(1)	55909(4)	121930(11)	55313(3)	350(2)
F(2)	61581(3)	105543(17)	60353(3)	375(2)
F(3)	53671(4)	93585(14)	59017(4)	492(3)
F(1B)	60520(40)	114280(160)	59070(50)	390(20)
F(2B)	57010(30)	85750(110)	60750(30)	272(14)
F(3B)	53660(40)	113060(150)	56070(40)	353(18)
F(1A)	58200(30)	121770(120)	56890(40)	283(15)
F(2A)	60010(30)	95880(120)	60850(30)	251(14)
F(3A)	52150(30)	102150(120)	56800(30)	251(14)
O(1)	63065(2)	101787(7)	48267(2)	152(1)
O(2)	51942(2)	62921(8)	35600(2)	161(1)
O(3)	51164(2)	43717(8)	43673(2)	171(1)
N(1)	68410(2)	55635(8)	28749(2)	126(1)
N(2)	56778(2)	77005(8)	48939(2)	126(1)
C(1)	66036(2)	48427(8)	38471(2)	103(1)
C(2)	71284(2)	37744(9)	40410(2)	130(1)
C(3)	75492(2)	52373(10)	42907(2)	149(1)
C(4)	76701(2)	68459(10)	38361(2)	144(1)
C(5)	71755(2)	80169(9)	36510(2)	141(1)
C(6)	67331(2)	66243(8)	34310(2)	112(1)
C(7)	68878(3)	68370(11)	23594(3)	189(1)
C(8)	64758(2)	39553(9)	28541(2)	121(1)
C(9)	62818(2)	28861(10)	23700(2)	154(1)
C(10)	59133(3)	13364(10)	24637(3)	170(1)
C(11)	57431(3)	8583(9)	30217(3)	160(1)
C(12)	59472(2)	19294(9)	35063(2)	133(1)
C(13)	63085(2)	34720(8)	34201(2)	112(1)
C(14)	63080(2)	54493(8)	44004(2)	112(1)
C(15)	58192(2)	68288(8)	43281(2)	107(1)
C(16)	59462(2)	93368(8)	50808(2)	122(1)
C(17)	57594(2)	103040(10)	56528(3)	164(1)
C(18)	53377(2)	56824(9)	40940(2)	118(1)
C(19)	47517(3)	52059(13)	32938(3)	226(1)

Table A5.2. Atomic coordinates ($x \ 10^5$) and equivalent isotropic displacement parameters (Å² $x \ 10^4$) for indoline **169**. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

Table A5.3. Bond lengths [Å] and angles [°] for indoline 169.

Cl(1)-C(4)	1.8164(6)	F(3B)-C(17)	1.194(9)
F(1)-C(17)	1.3428(9)	F(1A)-C(17)	1.247(8)
F(2)-C(17)	1.3284(9)	F(2A)-C(17)	1.243(7)
F(3)-C(17)	1.3077(9)	F(3A)-C(17)	1.376(7)
F(1B)-C(17)	1.188(10)	O(1)-C(16)	1.2204(7)
F(2B)-C(17)	1.502(7)	O(2)-C(18)	1.3288(7)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)-C(19)	1.4481(8)	C(13)-C(1)-C(6)	99.37(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3)-C(18)	1.2088(7)	C(13)-C(1)-C(14)	116.60(4)
$\begin{array}{ccccc} \mathbf{N}(1) - \mathbf{C}(7) & 1.4540(8) & \mathbf{C}(1) - \mathbf{C}(6) & 114.85(.\\ \mathbf{N}(1) - \mathbf{C}(8) & 1.4034(8) & \mathbf{C}(1) - \mathbf{C}(2) + \mathbf{H}(2B) & 108.2(8) \\ \mathbf{N}(2) - \mathbf{C}(15) & 1.4662(7) & \mathbf{H}(2A) - \mathbf{C}(2) + \mathbf{H}(2B) & 106.2(10) \\ \mathbf{N}(2) - \mathbf{C}(15) & 1.4662(7) & \mathbf{H}(2A) - \mathbf{C}(2) - \mathbf{H}(2B) & 106.2(10) \\ \mathbf{N}(2) - \mathbf{C}(15) & 1.4662(7) & \mathbf{H}(2A) - \mathbf{C}(2) - \mathbf{H}(2B) & 109.5(7) \\ \mathbf{C}(1) - \mathbf{C}(2) & 1.5538(7) & \mathbf{C}(3) - \mathbf{C}(2) - \mathbf{H}(2A) & 109.5(7) \\ \mathbf{C}(1) - \mathbf{C}(2) & 1.5538(7) & \mathbf{C}(3) - \mathbf{C}(2) - \mathbf{H}(2B) & 109.5(7) \\ \mathbf{C}(1) - \mathbf{C}(16) & 1.5503(7) & \mathbf{C}(3) - \mathbf{C}(2) - \mathbf{H}(2B) & 109.5(7) \\ \mathbf{C}(1) - \mathbf{C}(14) & 1.5337(7) & \mathbf{C}(2) - \mathbf{C}(3) + \mathbf{H}(3B) & 109.5(7) \\ \mathbf{C}(1) - \mathbf{C}(14) & 1.5337(7) & \mathbf{C}(2) - \mathbf{C}(3) + \mathbf{H}(3B) & 109.5(7) \\ \mathbf{C}(2) - \mathbf{H}(2B) & 0.949(12) & \mathbf{C}(4) - \mathbf{C}(3) + \mathbf{H}(3B) & 107.4(11) \\ \mathbf{C}(2) - \mathbf{H}(2B) & 0.949(12) & \mathbf{C}(4) - \mathbf{C}(3) + \mathbf{H}(3B) & 107.4(11) \\ \mathbf{C}(2) - \mathbf{H}(2B) & 0.949(12) & \mathbf{C}(4) - \mathbf{C}(3) + \mathbf{H}(3B) & 109.7(7) \\ \mathbf{C}(3) - \mathbf{H}(3B) & 0.965(12) & \mathbf{C}(1) - \mathbf{C}(4) - \mathbf{C}(3) + \mathbf{H}(3B) & 110.7(7) \\ \mathbf{C}(3) - \mathbf{H}(3B) & 0.965(12) & \mathbf{C}(1) - \mathbf{C}(1) - \mathbf{H}(10) & 109.8(7) \\ \mathbf{C}(3) - \mathbf{H}(3B) & 0.965(12) & \mathbf{C}(1) - \mathbf{C}(1) + \mathbf{H}(4) & 104.0(7) \\ \mathbf{C}(3) - \mathbf{H}(3B) & 0.965(12) & \mathbf{C}(1) - \mathbf{C}(1) + \mathbf{H}(4) & 100.7(7) \\ \mathbf{C}(4) - \mathbf{C}(5) & 1.5180(8) & \mathbf{C}(5) - \mathbf{C}(4) - \mathbf{C}(1) & 110.096(10) \\ \mathbf{C}(4) - \mathbf{H}(4) & 0.974(12) & \mathbf{C}(3) - \mathbf{C}(4) - \mathbf{C}(3) & 111.79(1) \\ \mathbf{C}(5) - \mathbf{H}(5B) & 0.948(12) & \mathbf{C}(5) - \mathbf{C}(4) - \mathbf{H}(4) & 112.2(7) \\ \mathbf{C}(5) - \mathbf{H}(5B) & 0.948(12) & \mathbf{C}(5) - \mathbf{C}(4) - \mathbf{H}(4) & 112.2(7) \\ \mathbf{C}(5) - \mathbf{H}(5B) & 0.961(14) & \mathbf{H}(5A) - \mathbf{C}(5) - \mathbf{H}(5B) & 108.5(7) \\ \mathbf{C}(7) - \mathbf{H}(7C) & 0.970(14) & \mathbf{C}(6) - \mathbf{C}(5) + \mathbf{H}(5B) & 108.5(7) \\ \mathbf{C}(7) - \mathbf{H}(7C) & 0.970(14) & \mathbf{C}(6) - \mathbf{C}(5) + \mathbf{H}(5B) & 108.5(7) \\ \mathbf{C}(7) - \mathbf{H}(7C) & 0.970(14) & \mathbf{C}(6) - \mathbf{C}(5) + \mathbf{H}(5B) & 108.5(7) \\ \mathbf{C}(1) - \mathbf{H}(10) & 0.950(13) & \mathbf{C}(1) - \mathbf{C}(6) - \mathbf{H}(5) & 112.20(7) \\ \mathbf{C}(1) - \mathbf{H}(10) & 0.950(13) & \mathbf{C}(1) - \mathbf{C}(6) + \mathbf{H}(6) & 109.93(7) \\ \mathbf{C}(1) - $	N(1)-C(6)	1.4812(7)	C(14)-C(1)-C(2)	107.84(4)
$\begin{array}{ccccc} N(1)-C(8) & 1.4034(8) & C(1)-C(2)-H(2A) & 109.7(7)\\ N(2)-H(2) & 0.846(13) & C(1)-C(2)-H(2B) & 108.2(8)\\ N(2)-C(15) & 1.4662(7) & H(2A)-C(2)-H(2B) & 108.2(8)\\ N(2)-C(15) & 1.4562(7) & H(2A)-C(2)-H(2B) & 109.5(7)\\ C(1)-C(6) & 1.5538(7) & C(3)-C(2)-H(2B) & 109.5(7)\\ C(1)-C(6) & 1.5538(7) & C(3)-C(2)-H(2B) & 109.5(7)\\ C(1)-C(13) & 1.5142(7) & C(2)-C(3)-H(3A) & 110.1(7)\\ C(1)-C(14) & 1.5337(7) & C(2)-C(3)-H(3B) & 107.4(14)\\ C(2)-H(2A) & 0.992(12) & H(3A)-C(3)-H(3B) & 107.4(14)\\ C(2)-H(2B) & 0.949(12) & C(4)-C(3)-H(3B) & 110.7(7)\\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7)\\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7)\\ C(3)-H(3B) & 0.965(12) & C(1)-C(4)-H(4) & 104.0(7)\\ C(3)-H(3B) & 0.965(12) & C(1)-C(4)-H(4) & 110.996(7)\\ C(3)-H(3A) & 1.5180(8) & C(5)-C(4)-C(11) & 107.77(7)\\ C(4)-H(4) & 0.974(12) & C(3)-C(4)-C(11) & 107.77(7)\\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-C(1) & 107.77(7)\\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-C(3) & 111.790(7)\\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-H(4) & 112.2(7)\\ C(5)-H(5B) & 0.961(14) & H(5A)-C(5)-H(5B) & 108.5(7)\\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.5(7)\\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.8(7)\\ C(7)-H(7B) & 0.961(14) & H(5A)-C(5)-H(5B) & 108.8(7)\\ C(3)-H(5B) & 0.961(14) & H(5A)-C(5)-H(5B) & 108.8(7)\\ C(3)-H(3) & 1.4059(7) & N(1)-C(6)-C(1) & 102.346\\ C(9)-H(0) & 0.970(14) & C(6)-C(5)-H(5B) & 108.8(7)\\ C(3)-H(7B) & 0.961(14) & H(5A)-C(5)-H(5B) & 108.8(7)\\ C(3)-H(7B) & 0.961(14) & H(5A)-C(5)-H(5B) & 108.8(7)\\ C(3)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 108.9(7)\\ C(10)-C(11) & 1.3904(9) & C(5)-C(6)-H(6) & 108.8(7)\\ C(3)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 108.8(7)\\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(7B) & 110.3(1)\\ C(1)-H(10) & 0.950(13) & C(1)-C(6)-H(7B) & 110.3(1)\\ C(1)-H(10) & 0.950(13) & C(1)-C(6)-H(7B) & 110.3(1)\\ C(1)-H(10) & 0.950(13) & C(1)-C(7)-H(7B) & 110.3(1)\\ C(1)-H(10) & 0.950($	N(1)-C(7)	1.4540(8)	C(14)-C(1)-C(6)	114.85(4)
$\begin{array}{cccccc} N(2)-H(2) & 0.846(13) & C(1)-C(2)-H(2B) & 108.2(8) \\ N(2)-C(15) & 1.4662(7) & H(2A)-C(2)-H(2B) & 106.2(1) \\ N(2)-C(16) & 1.3383(7) & C(3)-C(2)-H(2A) & 109.5(7) \\ C(1)-C(2) & 1.5538(7) & C(3)-C(2)-H(2A) & 109.5(7) \\ C(1)-C(13) & 1.5142(7) & C(2)-C(3)-H(3B) & 109.5(7) \\ C(1)-C(14) & 1.5337(7) & C(2)-C(3)-H(3B) & 109.6(8) \\ C(2)-H(2A) & 0.992(12) & H(3A)-C(3)-H(3B) & 109.6(8) \\ C(2)-H(2A) & 0.992(12) & H(3A)-C(3)-H(3B) & 109.6(8) \\ C(2)-H(2A) & 0.992(12) & H(3A)-C(3)-H(3B) & 109.7(7) \\ C(3)-C(4) & 1.5342(8) & C(4)-C(3)-H(3B) & 109.7(7) \\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7) \\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7) \\ C(3)-H(3B) & 0.965(12) & C(1)-C(4)-H(4) & 110.7(7) \\ C(3)-H(4) & 0.974(12) & C(3)-C(4)-C(1) & 110.096 \\ C(4)-H(4) & 0.974(12) & C(3)-C(4)-C(1) & 110.096 \\ C(4)-H(4) & 0.974(12) & C(3)-C(4)-C(1) & 110.096 \\ C(5)-H(5A) & 1.001(13) & C(5)-C(4)-H(4) & 112.2(7) \\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-H(4) & 112.2(7) \\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-H(4) & 112.2(7) \\ C(5)-H(5B) & 0.948(12) & C(5)-C(5)-H(5B) & 108.5(7) \\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.5(7) \\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.8(7) \\ C(3)-C(6) & 1.3927(8) & C(6)-C(5)-H(5B) & 108.8(7) \\ C(8)-C(9) & 1.3993(10) & N(1)-C(6)-H(6) & 108.5(7) \\ C(10)-C(11) & 1.3904(9) & C(5)-C(6)-H(1) & 114.566 \\ C(11)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 108.5(7) \\ C(10)-C(11) & 1.3993(10) & N(1)-C(7)-H(7B) & 109.9(8) \\ C(12)-H(12) & 0.937(13) & N(1)-C(7)-H(7B) & 109.6(8) \\ C(12)-H(12) & 0.937(13) & N(1)-C(7)-H(7B) & 109.6(8) \\ C(12)-H(12) & 0.937(13) & N(1)-C(7)-H(7B) & 109.6(8) \\ C(11)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 108.5(7) \\ C(10)-C(11) & 1.3809(8) & N(1)-C(7)-H(7B) & 109.6(8) \\ C(11)-H(14B) & 0.967(12) & H(7A)-C(7)-H(7B) & 109.6(8) \\ C(11)-H(14B) & 0.967(12) & H(7A)-C(7)-H(7B) & 109.6(8) \\ C(12)-H(12) & 0.936(14) & C(8)-C(9)-H(9) & 121.6(7) \\ C(19)-H(19A) & 0.968(14) & C(8)-C(9)-H(9) & 121.6(7) \\ C(7)-N(1)-C(6) & 116.28(5) & C(11)-C(10)-H(10) & 118.868 \\ C(18)-O(2)-C(19) & 115.43(5) & C($	N(1)-C(8)	1.4034(8)	C(1)-C(2)-H(2A)	109.7(7)
$\begin{array}{ccccc} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N(2)-H(2)	0.846(13)	C(1)-C(2)-H(2B)	108.2(8)
$\begin{array}{cccc} (1) & (1,2) & (1,3) & (1,2) $	$N(2) - \Gamma(2)$ $N(2) - \Gamma(15)$	1 4662(7)	H(2A)-C(2)-H(2B)	106.2(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2) = C(16)	1.1002(7) 1.3383(7)	C(3)-C(2)-C(1)	113 45(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)- $C(2)$	1.5538(7)	C(3)-C(2)-U(1)	109 5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)-C(2)	1.5503(7)	C(3)-C(2)-H(2R)	109.5(7) 109 5(7)
$\begin{array}{c} C(1)-C(14) & 1.5137(7) & C(2)-C(3)-H(3B) & 110147, \\ C(2)-H(2A) & 0.992(12) & H(3A)-C(3)-H(3B) & 109.6(8) \\ C(2)-H(2B) & 0.949(12) & C(4)-C(3)-H(3B) & 110.7(7, \\ C(2)-C(3) & 1.5342(8) & C(4)-C(3)-H(3A) & 109.8(7, \\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7, \\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7, \\ C(3)-H(3B) & 0.965(12) & C(1)-C(4)-H(4) & 104.0(7, \\ C(3)-C(4) & 1.5201(9) & C(3)-C(4)-H(4) & 110.07(7, \\ C(4)-C(5) & 1.5180(8) & C(5)-C(4)-C(1) & 110.096, \\ C(4)-H(4) & 0.974(12) & C(3)-C(4)-H(4) & 110.7(7, \\ C(5)-H(5A) & 1.001(13) & C(5)-C(4)-H(4) & 112.2(7, \\ C(5)-H(5A) & 1.001(13) & C(5)-C(4)-H(4) & 112.2(7, \\ C(5)-H(5A) & 1.001(13) & C(5)-C(4)-H(5A) & 112.6(7, \\ C(5)-H(5B) & 0.948(12) & C(4)-C(5)-H(5A) & 112.6(7, \\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.5(7, \\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.8(7, \\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.8(7, \\ C(7)-H(7C) & 0.970(14) & C(6)-C(5) + H(5B) & 108.8(7, \\ C(8)-C(9) & 1.3927(8) & C(6)-C(5) + H(5B) & 108.8(7, \\ C(8)-C(13) & 1.4059(7) & N(1)-C(6)-C(5) & 115.056, \\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 108.5(7, \\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 108.5(7, \\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 108.5(7, \\ C(10)-H(10) & 0.970(14) & L(5)-C(6)-H(6) & 108.8(7, \\ C(11)-H(11) & 0.976(13) & C(5)-C(6)-H(6) & 108.8(7, \\ C(11)-H(11) & 0.976(13) & C(5)-C(6)-H(6) & 106.8(7, \\ C(11)-H(14) & 1.004(12) & H(7A)-C(7)-H(7A) & 109.9(8, \\ C(12)-H(12) & 0.937(13) & N(1)-C(7)-H(7A) & 109.9(8, \\ C(12)-H(12) & 0.937(13) & N(1)-C(7)-H(7B) & 110.3(1, \\ C(14)-H(14B) & 0.967(12) & H(7A)-C(7)-H(7C) & 112.7(8, \\ C(14)-H(14B) & 0.967(12) & H(7A)-C(7)-H(7C) & 112.8(8, \\ C(14)-H(14B) & 0.967(12) & H(7A)-C(7)-H(7C) & 112.8(8, \\ C(14)-H(14B) & 0.966(14) & C(8)-C(9)-C(10) & 118.8(8, \\ C(16)-C(17) & 1.5373(8) & C(9)-C(8)-C(10) & 118.8(8, \\ C(18)-O(2)-C(19) & 115.43(5) & C(11)-C(10)-H(10) & 119.6(8, \\ C(18)-O(2)-C(19) & 115.43(5) & C(11)-C(10)-H(10) & 119.6(8, \\ C(18)-O(2)-C(19) & 115.43(5) & C(11)-C(10)-H(10) & 119.6(8, \\ C(18)-O($	C(1)-C(13)	1.5505(7) 1.5142(7)	C(2)-C(2)-H(2A)	109.5(7) 110 1(7)
$\begin{array}{c} C(2) + (C(2) + (C(2)) + (C(2) + (C(3)) + (C(2) + (C(3)) + (C(2) + (C(3)) + (C(3) + (C(3$	C(1)- $C(13)$	1.5172(7) 1.5337(7)	C(2)-C(3)-H(3R)	109.6(8)
$\begin{array}{c} C(2) + R(2R) & 0.949(12) & R(3R) + C(3) + R(3R) & 0.9(3R) \\ C(2) + R(2R) & 0.949(12) & C(4) - C(3) + R(3R) & 109, R(7) \\ C(3) + R(3R) & 0.993(11) & C(4) - C(3) + R(3R) & 110, 7(7) \\ C(3) - R(3R) & 0.995(12) & C(1) - C(4) + R(4) & 104, 0(7) \\ C(3) - C(4) & 1.5201(9) & C(3) - C(4) + R(4) & 110, 7(7) \\ C(3) - C(4) & 1.5201(9) & C(3) - C(4) + R(4) & 110, 7(7) \\ C(4) - R(4) & 0.974(12) & C(3) - C(4) + R(4) & 110, 7(7) \\ C(4) - R(5) & 1.5180(8) & C(5) - C(4) - C(1) & 110, 096 \\ C(5) + R(5R) & 1.001(13) & C(5) - C(4) - C(1) & 107, 776 \\ C(5) - R(5R) & 0.948(12) & C(5) - C(4) - R(4) & 112, 2(7) \\ C(5) - R(5R) & 0.948(12) & C(5) - C(4) - R(4) & 112, 2(7) \\ C(5) - R(5R) & 0.973(13) & C(4) - C(5) - R(5R) & 108, 5(7) \\ C(7) - R(7A) & 0.973(13) & C(4) - C(5) - R(5R) & 108, 9(7) \\ C(7) - R(7A) & 0.973(13) & C(4) - C(5) - R(5R) & 108, 9(7) \\ C(8) - C(13) & 1.4059(7) & N(1) - C(6) - C(1) & 102, 346 \\ C(7) - R(7C) & 0.970(14) & C(6) - C(5) - R(5R) & 108, 8(7) \\ C(8) - C(13) & 1.3927(8) & C(6) - C(5) - R(5R) & 108, 8(7) \\ C(8) - C(13) & 1.3993(10) & N(1) - C(6) - R(6) & 108, 8(7) \\ C(10) - R(10) & 0.950(13) & C(1) - C(6) - R(6) & 108, 8(7) \\ C(10) - R(10) & 0.950(13) & C(1) - C(6) - R(6) & 108, 8(7) \\ C(10) - R(10) & 0.973(12) & N(1) - C(6) - C(5) & 115, 056 \\ C(9) - C(10) & 1.3993(10) & N(1) - C(6) - R(6) & 108, 8(7) \\ C(10) - R(10) & 0.950(13) & C(5) - C(6) - R(6) & 108, 8(7) \\ C(10) - R(10) & 0.950(13) & C(5) - C(6) - R(6) & 108, 8(7) \\ C(10) - R(10) & 0.950(13) & C(5) - C(6) - R(6) & 108, 8(7) \\ C(10) - R(10) & 0.950(13) & C(5) - C(6) - R(6) & 106, 8(7) \\ C(11) - R(12) & 1.3993(10) & N(1) - C(7) - R(7R) & 109, 9(8) \\ C(12) - R(12) & 0.937(13) & N(1) - C(7) - R(7R) & 109, 9(8) \\ C(12) - R(12) & 0.937(13) & N(1) - C(7) - R(7R) & 110, 3(1) \\ C(14) - R(14A) & 1.004(12) & R(7A) - C(7) - R(7R) & 110, 3(1) \\ C(14) - R(14A) & 1.004(12) & R(7A) - C(7) - R(7R) & 110, 3(1) \\ C(14) - R(14A) & 1.004(12) & R(7A) - C(7) - R(7R) & 110, 3(1) \\ C(14) - R(14A) & 1.094(8) & N(1) - C(7) - R(7R) & 110, 3(1) \\ C(14) - R(14A) & 1.094(8) & N($	C(1) - C(1+) C(2) - H(2A)	0.992(12)	H(3A) C(3) H(3B)	107.0(0)
$\begin{array}{c} C(2)-C(3) & (1.5) & (2.4)-C(3)-C(2) & (1.0)-2.6(3) \\ C(2)-C(3) & (1.5)342(8) & C(4)-C(3)-H(3A) & 109.8(7) \\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7) \\ C(3)-H(3B) & 0.965(12) & C(1)-C(4)-H(4) & 110.09(6) \\ C(3)-C(4) & (1.5)201(9) & C(3)-C(4)-H(4) & 110.7(7) \\ C(4)-C(5) & (1.5)180(8) & C(5)-C(4)-H(4) & 110.7(7) \\ C(5)-H(5A) & 1.001(13) & C(5)-C(4)-H(4) & 112.2(7) \\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-H(4) & 112.2(7) \\ C(5)-H(5B) & 0.948(12) & C(4)-C(5)-H(5A) & 112.6(7) \\ C(5)-H(6) & 0.987(12) & C(4)-C(5)-H(5B) & 108.5(7) \\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 100.8(7) \\ C(7)-H(7A) & 0.970(14) & C(6)-C(5)-H(5B) & 100.8(7) \\ C(8)-C(9) & 1.3927(8) & C(6)-C(5)-H(5B) & 100.8(7) \\ C(8)-C(9) & 1.3927(8) & C(6)-C(5)-H(5B) & 100.8(7) \\ C(8)-C(9) & 1.3927(8) & C(6)-C(5)-H(5B) & 100.8(7) \\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 109.3(7) \\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 109.3(7) \\ C(10)-C(11) & 1.3904(9) & C(5)-C(6)-H(6) & 109.3(7) \\ C(10)-C(11) & 1.3904(9) & C(5)-C(6)-H(6) & 109.3(7) \\ C(11)-H(11) & 0.976(13) & C(5)-C(6)-H(6) & 109.3(7) \\ C(11)-H(12) & 0.937(13) & N(1)-C(7)-H(7A) & 109.9(8) \\ C(12)-C(13) & 1.3809(8) & N(1)-C(7)-H(7B) & 110.3(1) \\ C(14)-H(14B) & 0.967(12) & H(7A)-C(7)-H(7B) & 110.3(1) \\ C(14)-H(14B) & 0.966(13) & C(8)-C(13) & 120.700 \\ C(19)-H(19A) & 0.986(14) & C(8)-C(9)-H(9) & 121.6(7) \\ C(19)-H(19B) & 0.966(13) & C(8)-C(9)-H(9) & 121.6(7) \\ C(19)-H(19C) & 0.986(14) & C(10)-C(10)-H(10) & 118.8(8) \\ C(18)-O(2)-C(19) & 115.43(5) & C(11)-C(10)-H(10) & 118.8(8) \\ C(18)-O(2)-C(19) & 115.43(5) & C(11)-C(10)-H(10) & 119.6(8) \\ C(11)-$	C(2) - H(2R)	0.992(12)	C(4) C(3) C(2)	100.28(5)
$\begin{array}{c} C(2)-C(2) & 1.254(0) & C(4)-C(5)-H(5A) & 102.60', \\ C(3)-H(3A) & 0.993(11) & C(4)-C(3)-H(3B) & 110.7(7) \\ C(3)-H(3B) & 0.965(12) & C(1)-C(4)-H(4) & 104.0(7) \\ C(3)-C(4) & 1.5201(9) & C(3)-C(4)-C(1) & 110.7(7) \\ C(4)-C(5) & 1.5180(8) & C(5)-C(4)-C(1) & 107.77(6) \\ C(4)-C(5) & 1.5180(8) & C(5)-C(4)-C(1) & 107.77(6) \\ C(5)-H(5A) & 1.001(13) & C(5)-C(4)-C(1) & 107.77(6) \\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-H(4) & 112.2(7) \\ C(5)-H(5B) & 0.948(12) & C(5)-C(4)-H(4) & 112.2(7) \\ C(5)-H(6) & 0.987(12) & C(4)-C(5)-H(5B) & 108.5(7) \\ C(7)-H(7A) & 0.973(13) & C(4)-C(5)-H(5B) & 108.5(7) \\ C(7)-H(7A) & 0.970(14) & C(6)-C(5)-H(5B) & 108.5(7) \\ C(7)-H(7C) & 0.970(14) & C(6)-C(5)-H(5B) & 108.8(7) \\ C(8)-C(9) & 1.3927(8) & C(6)-C(5)-H(5B) & 108.8(7) \\ C(8)-C(9) & 1.3927(8) & C(6)-C(5)-H(5B) & 108.8(7) \\ C(8)-C(9) & 1.3993(10) & N(1)-C(6)-H(6) & 109.3(7) \\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 109.3(7) \\ C(10)-H(10) & 0.950(13) & C(1)-C(6)-H(6) & 109.3(7) \\ C(10)-H(10) & 0.957(13) & N(1)-C(7)-H(7A) & 109.9(8) \\ C(11)-H(11) & 0.976(13) & C(5)-C(6)-C(1) & 114.56(0) \\ C(11)-H(11) & 0.976(13) & C(5)-C(6)-H(6) & 106.8(7) \\ C(11)-H(12) & 1.3809(8) & N(1)-C(7)-H(7B) & 110.3(1) \\ C(14)-H(14A) & 1.004(12) & H(7A)-C(7)-H(7B) & 110.3(1) \\ C(14)-H(14B) & 0.967(12) & H(7A)-C(7)-H(7B) & 110.3(1) \\ C(15)-C(18) & 1.5169(7) & C(9)-C(10) & 118.8(8) \\ C(19)-H(19C) & 0.986(14) & C(8)-C(9)-H(9) & 121.6(7) \\ C(9)-H(19C) & 0.986(15) & C(11)-C(10)-H(10) & 118.6(8) \\ C(18)-O(2)-C(19) & 115.43(5) & C(11)-C(10)-H(10) & 119.6(8) \\ C(18)-O(2)$	$C(2) - \Pi(2D)$ $C(2) - \Gamma(3)$	1.5342(8)	C(4) - C(3) - C(2) C(4) - C(3) - H(3A)	109.28(3) 109.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)-C(3) C(3) $H(3A)$	1.5342(8) 0.003(11)	C(4) - C(3) - H(3R)	109.8(7) 110 7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) H(3R)	0.995(11)	$C_{(4)} - C_{(5)} - H_{(5B)}$	101.7(7) 104.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) C(4)	1 5201(0)	C(3) C(4) C(1)	104.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)-C(4) $C(4) \amalg(4)$	0.074(12)	C(3) - C(4) - C(1)	110.09(4) 110.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(4) - \Pi(4)$ C(4) C(5)	1.5180(8)	$C(5) - C(4) - \Pi(4)$	110.7(7) 107.77(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - C(5) C(5) = H(5A)	1.001(12)	C(5) - C(4) - C(1)	107.77(4) 111.70(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) = H(5R)	0.048(12)	C(5) - C(4) - C(5)	111.79(3) 112.2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(5) - \Pi(5B)$	0.948(12) 1 5211(8)	$C(3)-C(4)-\Pi(4)$	112.2(7) 112.6(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)-C(0)	1.3211(8) 0.087(12)	C(4) - C(5) - H(5R)	112.0(7) 108 5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(0) - H(0) C(7) H(7A)	0.987(12) 0.072(12)	C(4) - C(5) - H(5B)	100.3(7) 112 10(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7) = H(7R)	0.973(13)	U(5A) C(5) U(5B)	112.10(3) 105 6(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7) = H(7C)	0.901(14)	$\Gamma(5A) - C(5) - \Pi(5B)$	103.0(10) 108.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(7) - \Pi(7C)$ C(8) C(0)	1.3027(8)	C(6) - C(5) - H(5R)	108.9(7) 108.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8) - C(3)	1.3927(8)	N(1) C(6) C(1)	100.0(7) 102.34(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(0) - C(13)	0.974(12)	N(1) - C(0) - C(1) N(1) - C(6) - C(5)	102.34(4) 115.05(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(9) - \Pi(9)$ C(9) - C(10)	1.3093(10)	N(1) - C(0) - C(0)	108.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) H(10)	0.950(13)	C(1) C(6) H(6)	100.3(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(10)$ - $\Gamma(10)$	1 3904(9)	C(5)-C(6)-C(1)	109.5(7) 114 56(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-C(11) C(11)-H(11)	0.976(13)	C(5)-C(6)-H(6)	106.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(11)$ - $\Pi(11)$ C(11)- $C(12)$	1 4029(8)	N(1)-C(7)-H(7A)	100.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-H(12)	0.937(13)	N(1) - C(7) - H(7B)	109.5(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12) - C(13)	1 3809(8)	N(1) - C(7) - H(7C)	112 7(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-C(13) C(14)-H(14A)	1.000(0)	H(7A) - C(7) - H(7B)	112.7(0) 110 3(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)-H(14B)	0.967(12)	H(7A)-C(7)-H(7C)	105.6(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)- $C(15)$	15364(7)	H(7R) - C(7) - H(7C)	108.6(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)-H(15)	0.951(11)	N(1)-C(8)-C(13)	110 37(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)- $C(18)$	1 5169(7)	C(9)- $C(8)$ - $N(1)$	128 93(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)- $C(17)$	1 5373(8)	C(9) - C(8) - C(13)	120.99(5) 120.70(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19) - H(19A)	0.986(14)	C(8)-C(9)-H(9)	121.6(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-H(19R)	0.966(13)	C(8) - C(9) - C(10)	118.08(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-H(19C)	0.986(16)	C(10)-C(9)-H(9)	120.2(7)
$\begin{array}{cccc} C(18)-O(2)-C(19) & 115.43(5) & C(11)-C(10)-C(9) & 121.56(5) \\ C(7)-N(1)-C(6) & 116.28(5) & C(11)-C(10)-H(10) & 119.6(8) \\ \end{array}$		0.000(10)	C(9)- $C(10)$ - $H(10)$	118 8(8)
C(7)-N(1)-C(6) 116.28(5) $C(11)-C(10)-H(10)$ 119.6(8)	C(18)-O(2)-C(19)	115.43(5)	C(11)-C(10)-C(9)	121.56(5)
(11) (0)	C(7)-N(1)-C(6)	116.28(5)	C(11)-C(10)-H(10)	119 6(8)
C(8)-N(1)-C(6) 104.75(4) C(10)-C(11)-H(11) 119.9(8)	C(8)-N(1)-C(6)	104.75(4)	C(10) - C(11) - H(11)	119.9(8)
C(8)-N(1)-C(7) 118.19(5) $C(10)-C(11)-C(12)$ 119.76(6)	C(8)-N(1)-C(7)	118.19(5)	C(10)-C(11)-C(12)	119.76(6)
C(15)-N(2)-H(2) 119.5(9) $C(12)-C(11)-H(11)$ 120.3(8)	C(15)-N(2)-H(2)	119.5(9)	C(12)-C(11)-H(11)	120.3(8)
C(16)-N(2)-H(2) 122.5(9) $C(11)-C(12)-H(12)$ 119.8(8)	C(16)-N(2)-H(2)	122.5(9)	C(11)-C(12)-H(12)	119.8(8)
C(16)-N(2)-C(15) 117.90(4) $C(13)-C(12)-C(11)$ 119.32(2)	C(16)-N(2)-C(15)	117.90(4)	C(13)-C(12)-C(11)	119.32(5)
C(6)-C(1)-C(2) 109.31(4) $C(13)-C(12)-H(12)$ 120.9(8)	C(6)-C(1)-C(2)	109.31(4)	C(13)-C(12)-H(12)	120.9(8)
C(13)-C(1)-C(2) 108.48(4) C(8)-C(13)-C(1) 107.83(2)	C(13)-C(1)-C(2)	108.48(4)	C(8)-C(13)-C(1)	107.83(5)

Appendix 5–X-Ray Crystallography Reports Relevant to Chapter 4

C(12)-C(13)-C(1)	131.56(5)	F(1B)-C(17)-F(2B)	103.1(6)
C(12)-C(13)-C(8)	120.57(5)	F(1B)-C(17)-F(3B)	101.8(7)
C(1)-C(14)-H(14A)	109.5(7)	F(1B)-C(17)-C(16)	118.5(5)
C(1)-C(14)-H(14B)	108.7(7)	F(2B)-C(17)-C(16)	105.5(3)
C(1)-C(14)-C(15)	117.79(4)	F(3B)-C(17)-F(2B)	112.6(6)
H(14A)-C(14)-H(14B)	106.0(10)	F(3B)-C(17)-C(16)	114.9(4)
C(15)-C(14)-H(14A)	105.3(7)	F(1A)-C(17)-F(3A)	99.2(5)
C(15)-C(14)-H(14B)	108.9(7)	F(1A)-C(17)-C(16)	115.4(4)
N(2)-C(15)-C(14)	110.18(4)	F(2A)-C(17)-F(1A)	105.4(5)
N(2)-C(15)-H(15)	107.2(7)	F(2A)-C(17)-F(3A)	114.8(5)
N(2)-C(15)-C(18)	107.49(4)	F(2A)-C(17)-C(16)	111.5(3)
C(14)-C(15)-H(15)	111.2(7)	F(3A)-C(17)-C(16)	110.1(3)
C(18)-C(15)-C(14)	112.07(4)	O(2)-C(18)-C(15)	111.98(5)
C(18)-C(15)-H(15)	108.5(7)	O(3)-C(18)-O(2)	124.88(5)
O(1)-C(16)-N(2)	126.14(5)	O(3)-C(18)-C(15)	123.14(5)
O(1)-C(16)-C(17)	117.34(5)	O(2)-C(19)-H(19A)	104.3(8)
N(2)-C(16)-C(17)	116.43(5)	O(2)-C(19)-H(19B)	110.6(8)
F(1)-C(17)-C(16)	108.01(5)	O(2)-C(19)-H(19C)	108.7(9)
F(2)-C(17)-F(1)	104.62(8)	H(19A)-C(19)-H(19B)	114.9(11)
F(2)-C(17)-C(16)	111.85(5)	H(19A)-C(19)-H(19C)	106.3(12)
F(3)-C(17)-F(1)	107.10(8)	H(19B)-C(19)-H(19C)	111.7(12)
F(3)-C(17)-F(2)	109.85(8)		
F(3)-C(17)-C(16)	114.78(5)		

Table A5.4. Anisotropic displacement parameters ($Å^2 x \ 10^4$) for indoline **169**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$.

	T T 1 1	x x22	T T 22	x x 22	x x12	x x12
	U^{11}	U^{22}	033	U^{23}	U^{13}	U^{12}
$\overline{\text{Cl}(1)}$	179(1)	262(1)	132(1)	-11(1)	6(1)	-79(1)
F(1)	537(5)	242(3)	276(3)	-11(2)	110(3)	213(3)
F(2)	280(3)	650(6)	191(2)	-216(3)	-83(2)	147(4)
F(3)	676(6)	429(5)	387(4)	-276(4)	424(4)	-380(5)
O(1)	169(2)	154(2)	135(2)	-3(1)	24(1)	-44(1)
O(2)	162(2)	191(2)	129(2)	-11(1)	-24(1)	-23(1)
O(3)	168(2)	183(2)	164(2)	-10(1)	45(1)	-61(1)
N(1)	144(2)	147(2)	88(1)	7(1)	29(1)	13(1)
N(2)	134(2)	135(2)	110(2)	-32(1)	45(1)	-28(1)
C(1)	118(2)	108(2)	83(2)	0(1)	10(1)	10(1)
C(2)	134(2)	130(2)	127(2)	6(2)	2(1)	23(2)
C(3)	131(2)	187(2)	130(2)	11(2)	-6(1)	4(2)
C(4)	129(2)	187(2)	118(2)	-11(2)	16(1)	-22(2)
C(5)	155(2)	138(2)	130(2)	4(2)	18(2)	-13(2)
C(6)	124(2)	120(2)	93(2)	9(1)	20(1)	14(1)
C(7)	248(3)	207(3)	114(2)	33(2)	54(2)	9(2)
C(8)	137(2)	136(2)	91(2)	-6(1)	11(1)	28(1)
C(9)	183(2)	180(2)	98(2)	-22(2)	-4(2)	36(2)
C(10)	213(2)	161(2)	134(2)	-36(2)	-37(2)	27(2)
C(11)	197(2)	127(2)	153(2)	-15(2)	-25(2)	-1(2)
C(12)	168(2)	111(2)	119(2)	-1(1)	-2(1)	4(2)
C(13)	135(2)	114(2)	89(2)	-4(1)	4(1)	16(1)
C(14)	126(2)	128(2)	82(2)	-4(1)	14(1)	2(1)

Appendix 5-X-Ray Crystallography Reports Relevant to Chapter 4

C(15)	110(2)	117(2)	93(2)	-14(1)	22(1)	-12(1)
C(16)	139(2)	120(2)	108(2)	-20(1)	17(1)	-7(1)
C(17)	178(2)	175(2)	140(2)	-50(2)	28(2)	-6(2)
C(18)	110(2)	132(2)	113(2)	-26(1)	22(1)	-10(1)
C(19)	190(2)	282(3)	204(3)	-63(2)	-58(2)	-28(2)

Table A5.5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($\mathring{A}^2 x \ 10^3$) for indoline **169**.

	X	У	Z	U _{eq}
H(2)	5444(5)	7130(20)	5096(6)	24(3)
H(2A)	7051(4)	2713(18)	4335(5)	16(2)
H(2B)	7266(5)	3087(19)	3713(5)	20(3)
H(3A)	7418(5)	5894(18)	4651(5)	16(2)
H(3B)	7866(5)	4491(19)	4398(5)	20(3)
H(4)	7849(5)	6249(18)	3504(5)	21(3)
H(5A)	7248(5)	9060(20)	3344(6)	23(3)
H(5B)	7053(5)	8753(18)	3978(5)	18(3)
H(6)	6413(5)	7476(19)	3374(5)	19(3)
H(7A)	6928(5)	5990(20)	2014(6)	26(3)
H(7B)	7188(5)	7730(20)	2408(6)	34(3)
H(7C)	6573(5)	7650(20)	2283(6)	31(3)
H(9)	6384(5)	3238(19)	1974(5)	21(3)
H(10)	5770(5)	620(20)	2135(6)	24(3)
H(11)	5478(5)	-200(20)	3074(6)	25(3)
H(12)	5834(5)	1603(19)	3883(6)	21(3)
H(14A)	6556(5)	6198(18)	4673(5)	18(3)
H(14B)	6206(4)	4232(18)	4605(5)	16(2)
H(15)	5888(4)	7929(17)	4072(5)	14(2)
H(19A)	4679(5)	5930(20)	2924(6)	29(3)
H(19B)	4457(5)	5150(20)	3557(6)	29(3)
H(19C)	4873(6)	3840(20)	3184(7)	41(4)

Table A5.6. Torsion angles [°] for indoline **169**.

Cl(1)-C(4)-C(5)-C(6)	-176.40(4)
O(1)-C(16)-C(17)-F(1)	59.58(8)
O(1)-C(16)-C(17)-F(2)	-55.02(9)
O(1)-C(16)-C(17)-F(3)	178.96(8)
O(1)-C(16)-C(17)-F(1B)	-20.8(6)
O(1)-C(16)-C(17)-F(2B)	-135.5(3)
O(1)-C(16)-C(17)-F(3B)	99.8(5)
O(1)-C(16)-C(17)-F(1A)	28.3(5)
O(1)-C(16)-C(17)-F(2A)	-91.8(4)
O(1)-C(16)-C(17)-F(3A)	139.5(4)
N(1)-C(8)-C(9)-C(10)	-179.58(6)
N(1)-C(8)-C(13)-C(1)	-1.89(6)
N(1)-C(8)-C(13)-C(12)	179.97(5)

N(2)-C(15)-C(18)-O(2)
N(2)-C(15)-C(18)-O(3)
N(2)-C(16)-C(17)-F(1)
N(2)-C(16)-C(17)-F(2)
N(2) = C(16) = C(17) = C(2)
N(2)-C(10)-C(17)-F(3)
N(2)-C(16)-C(17)-F(1B)
N(2)-C(16)-C(17)-F(2B)
N(2)-C(16)-C(17)-F(3B)
N(2)-C(16)-C(17)-F(1A)
N(2)-C(16)-C(17)-F(2A)
N(2) C(16) C(17) F(3A)
R(2) - C(10) - C(17) - R(3R)
C(1)-C(2)-C(3)-C(4)
C(1)-C(14)-C(15)-N(2)
C(1)-C(14)-C(15)-C(18)
C(2)-C(1)-C(6)-N(1)
C(2)-C(1)-C(6)-C(5)
C(2) - C(1) - C(13) - C(8)
C(2) - C(1) - C(12) - C(12)
C(2)-C(1)-C(13)-C(12)
C(2)-C(1)-C(14)-C(15)
C(2)-C(3)-C(4)-Cl(1)
C(2)-C(3)-C(4)-C(5)
C(3)-C(4)-C(5)-C(6)
C(4)-C(5)-C(6)-N(1)
C(4) C(5) C(6) C(1)
C(4)-C(3)-C(0)-C(1)
C(6)-N(1)-C(8)-C(9)
C(6)-N(1)-C(8)-C(13)
C(6)-C(1)-C(2)-C(3)
C(6)-C(1)-C(13)-C(8)
C(6)-C(1)-C(13)-C(12)
C(6)-C(1)-C(14)-C(15)
C(7) N(1) C(6) C(1)
C(7) - N(1) - C(0) - C(1)
C(7)-N(1)- $C(6)$ - $C(5)$
C(7)-N(1)-C(8)-C(9)
C(7)-N(1)-C(8)-C(13)
C(8)-N(1)-C(6)-C(1)
C(8)-N(1)-C(6)-C(5)
C(8)-C(9)-C(10)-C(11)
C(9) - C(8) - C(13) - C(1)
C(0) C(0) C(13) C(12)
C(9)-C(8)-C(13)-C(12)
C(9)-C(10)-C(11)-C(12)
C(10)-C(11)-C(12)-C(13)
C(11)-C(12)-C(13)-C(1)
C(11)-C(12)-C(13)-C(8)
C(13)-C(1)-C(2)-C(3)
C(13)-C(1)-C(6)-N(1)
C(12) C(1) C(6) C(5)
C(13)-C(1)-C(0)-C(3)
C(13)-C(1)-C(14)-C(15)
C(13)-C(1)-C(14)-C(15) C(13)-C(8)-C(9)-C(10)
C(13)-C(1)-C(14)-C(15) C(13)-C(8)-C(9)-C(10) C(14)-C(1)-C(2)-C(3)
C(13)-C(1)-C(14)-C(15) C(13)-C(8)-C(9)-C(10) C(14)-C(1)-C(2)-C(3) C(14)-C(1)-C(6)-N(1)
$C(13)-C(1)-C(14)-C(15) \\ C(13)-C(8)-C(9)-C(10) \\ C(14)-C(1)-C(2)-C(3) \\ C(14)-C(1)-C(6)-N(1) \\ C(14)-C(1)-C(6)-C(5) \\ \end{array}$
$C(13)-C(1)-C(14)-C(15) \\ C(13)-C(8)-C(9)-C(10) \\ C(14)-C(1)-C(2)-C(3) \\ C(14)-C(1)-C(6)-N(1) \\ C(14)-C(1)-C(6)-C(5) \\ C(14)-C(1)-C(13)-C(8) \\ C(14)-C(1)-C(13)-C(13)-C(13)-C(13) \\ C(14)-C(1)-C(13)-C(13)-C(13)-C(13) \\ C(14)-C(1)-C(13)-C(13)-C(13)-C(13)-C(13)-C(13) \\ C(14)-C(1)-C(13$
$C(13)-C(1)-C(14)-C(15) \\ C(13)-C(8)-C(9)-C(10) \\ C(14)-C(1)-C(2)-C(3) \\ C(14)-C(1)-C(6)-N(1) \\ C(14)-C(1)-C(6)-C(5) \\ C(14)-C(1)-C(13)-C(8) \\ C(14)-C(1)-C(13)-C(8) \\ C(14)-C(1)-C(13)-C(12) \\ C(14)-C(1)-C(13)-C(12) \\ C(14)-C(1)-C(13)-C(13) \\ C(1$
$C(13)-C(1)-C(14)-C(15) \\ C(13)-C(8)-C(9)-C(10) \\ C(14)-C(1)-C(2)-C(3) \\ C(14)-C(1)-C(6)-N(1) \\ C(14)-C(1)-C(6)-C(5) \\ C(14)-C(1)-C(13)-C(8) \\ C(14)-C(1)-C(13)-C(12) \\ C(14)-C(1)-C(13)-C(12) \\ C(14)-C(15)-C(12) \\ C(15)-C(15)-C(12) \\ C(15)-C(15)-C(15) \\ C(15)-C(15)-C(15)-C(15) \\ C(15)-$
$C(13)-C(1)-C(14)-C(15) \\ C(13)-C(8)-C(9)-C(10) \\ C(14)-C(1)-C(2)-C(3) \\ C(14)-C(1)-C(6)-N(1) \\ C(14)-C(1)-C(6)-C(5) \\ C(14)-C(1)-C(13)-C(8) \\ C(14)-C(1)-C(13)-C(12) \\ C(14)-C(1)-C(13)-C(12) \\ C(14)-C(15)-C(18)-O(2) \\ C($
$\begin{array}{c} C(13)-C(1)-C(14)-C(15)\\ C(13)-C(8)-C(9)-C(10)\\ C(14)-C(1)-C(2)-C(3)\\ C(14)-C(1)-C(6)-N(1)\\ C(14)-C(1)-C(6)-C(5)\\ C(14)-C(1)-C(13)-C(8)\\ C(14)-C(1)-C(13)-C(12)\\ C(14)-C(15)-C(18)-O(2)\\ C(14)-C(15)-C(18)-O(3)\\ \end{array}$

105 50(5)
123.32(3)
-54.58(7)
117 14(7)
-11/.14(/)
128.26(8)
2.24(10)
2.24(10)
162.5(6)
17 7(3)
+7.7(3)
-77.0(5)
-1484(5)
-1+0.+(3)
91.4(4)
-37.2(4)
57.2(1)
-57.74(6)
-16441(4)
75.0((())
75.96(6)
76.90(5)
10.20(5)
-48.30(6)
-89.99(5)
07 07(7)
87.87(7)
170.56(4)
177.9((1))
1//.86(4)
58.11(6)
55 20(()
-55.30(6)
-67.33(6)
50.90(6)
30.89(0)
157.32(6)
22 82(6)
-22.82(0)
52.13(6)
24 12(5)
24.13(3)
-158.01(6)
100.01(0)
18 12(6)
48.42(6)
48.42(6) 169.74(5)
48.42(6) 169.74(5) 65.38(6)
48.42(6) 169.74(5) -65.38(6)
48.42(6) 169.74(5) -65.38(6) 25.98(9)
48.42(6) 169.74(5) -65.38(6) 25.98(9)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8)
$\begin{array}{c} 48.42(6) \\ 169.74(5) \\ -65.38(6) \\ 25.98(9) \\ -154.15(5) \\ 37.30(5) \\ 162.18(5) \\ -0.14(9) \\ 177.99(5) \\ -0.15(8) \\ -0.71(9) \end{array}$
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4)
$\begin{array}{c} 48.42(6)\\ 169.74(5)\\ -65.38(6)\\ 25.98(9)\\ -154.15(5)\\ 37.30(5)\\ 162.18(5)\\ -0.14(9)\\ 177.99(5)\\ -0.15(8)\\ -0.71(9)\\ 1.12(9)\\ -178.34(5)\\ -0.70(8)\\ 159.53(4)\\ 26.57(5)\end{array}$
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4) -67.20(6)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4) -67.20(6) 0.57(8)
$\begin{array}{c} 48.42(6)\\ 169.74(5)\\ -65.38(6)\\ 25.98(9)\\ -154.15(5)\\ 37.30(5)\\ 162.18(5)\\ -0.14(9)\\ 177.99(5)\\ -0.15(8)\\ -0.71(9)\\ 1.12(9)\\ -178.34(5)\\ -0.70(8)\\ 159.53(4)\\ -36.57(5)\\ -161.77(4)\\ -67.20(6)\\ 0.57(8)\\ 72.25(6)\end{array}$
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4) -67.20(6) 0.57(8) -73.35(6)
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4) -67.20(6) 0.57(8) -73.35(6) -161.77(4)
$\begin{array}{c} 48.42(6)\\ 169.74(5)\\ -65.38(6)\\ 25.98(9)\\ -154.15(5)\\ 37.30(5)\\ 162.18(5)\\ -0.14(9)\\ 177.99(5)\\ -0.15(8)\\ -0.71(9)\\ 1.12(9)\\ -178.34(5)\\ -0.70(8)\\ 159.53(4)\\ -36.57(5)\\ -161.77(4)\\ -67.20(6)\\ 0.57(8)\\ -73.35(6)\\ -161.77(4)\\ 73.02(6)\\ \end{array}$
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4) -67.20(6) 0.57(8) -73.35(6) -161.77(4) 73.03(6)
$\begin{array}{c} 48.42(6)\\ 169.74(5)\\ -65.38(6)\\ 25.98(9)\\ -154.15(5)\\ 37.30(5)\\ 162.18(5)\\ -0.14(9)\\ 177.99(5)\\ -0.15(8)\\ -0.71(9)\\ 1.12(9)\\ -178.34(5)\\ -0.70(8)\\ 159.53(4)\\ -36.57(5)\\ -161.77(4)\\ -67.20(6)\\ 0.57(8)\\ -73.35(6)\\ -161.77(4)\\ 73.03(6)\\ 148.10(5)\end{array}$
$\begin{array}{c} 48.42(6)\\ 169.74(5)\\ -65.38(6)\\ 25.98(9)\\ -154.15(5)\\ 37.30(5)\\ 162.18(5)\\ -0.14(9)\\ 177.99(5)\\ -0.15(8)\\ -0.71(9)\\ 1.12(9)\\ -178.34(5)\\ -0.70(8)\\ 159.53(4)\\ -36.57(5)\\ -161.77(4)\\ -67.20(6)\\ 0.57(8)\\ -73.35(6)\\ -161.77(4)\\ 73.03(6)\\ 148.10(5)\\ 34.04(8)\\ \end{array}$
$\begin{array}{c} 48.42(6)\\ 169.74(5)\\ -65.38(6)\\ 25.98(9)\\ -154.15(5)\\ 37.30(5)\\ 162.18(5)\\ -0.14(9)\\ 177.99(5)\\ -0.15(8)\\ -0.71(9)\\ 1.12(9)\\ -178.34(5)\\ -0.70(8)\\ 159.53(4)\\ -36.57(5)\\ -161.77(4)\\ -67.20(6)\\ 0.57(8)\\ -73.35(6)\\ -161.77(4)\\ 73.03(6)\\ 148.10(5)\\ -34.04(8)\\ \end{array}$
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4) -67.20(6) 0.57(8) -73.35(6) -161.77(4) 73.03(6) 148.10(5) -34.04(8) -113.28(5)
$\begin{array}{c} 48.42(6)\\ 169.74(5)\\ -65.38(6)\\ 25.98(9)\\ -154.15(5)\\ 37.30(5)\\ 162.18(5)\\ -0.14(9)\\ 177.99(5)\\ -0.15(8)\\ -0.71(9)\\ 1.12(9)\\ -178.34(5)\\ -0.70(8)\\ 159.53(4)\\ -36.57(5)\\ -161.77(4)\\ -67.20(6)\\ 0.57(8)\\ -73.35(6)\\ -161.77(4)\\ 73.03(6)\\ 148.10(5)\\ -34.04(8)\\ -113.28(5)\\ 66.62(7)\\ \end{array}$
48.42(6) 169.74(5) -65.38(6) 25.98(9) -154.15(5) 37.30(5) 162.18(5) -0.14(9) 177.99(5) -0.15(8) -0.71(9) 1.12(9) -178.34(5) -0.70(8) 159.53(4) -36.57(5) -161.77(4) -67.20(6) 0.57(8) -73.35(6) -161.77(4) 73.03(6) 148.10(5) -34.04(8) -113.28(5) 66.62(7) -2.56(2)

C(15)-N(2)-C(16)-C(17)	175.55(5)
C(16)-N(2)-C(15)-C(14)	81.91(6)
C(16)-N(2)-C(15)-C(18)	-155.71(5)
C(19)-O(2)-C(18)-O(3)	-2.63(9)
C(19)-O(2)-C(18)-C(15)	177.28(5)

Table A5.7. Hydrogen bonds for indoline **169** [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2)O(3)#1	0.846(13)	2.131(13)	2.9754(6)	177.2(13)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

ABOUT THE AUTHOR

Jane Ni was born on December 17th, 1987 in Shanghai, China to Kang Mei Wang and Wei Hua Ni. She moved to Montreal, Canada at age 3, and then to Toronto during the third grade, where her parents currently reside. She has loved swimming from a very young age, and continues to do so today. During high school, she also enjoyed sailing, especially in the beautiful lakes of Northern Ontario, and learning karate.

At the University of Toronto, she had the good fortune of having amazing chemistry professors, including Profs. Ronald Kluger and Robert Batey, and learned that chemistry actually is not a collection of foreign-looking symbols. During her second year, she had the opportunity to conduct research in the laboratory of Prof. Andrew Woolley. Later, after a developing an interest in organic chemistry, she decided to conduct research in the lab of Prof. Vy Dong, where she investigated transition metal-catalyzed C–H activation reactions. It was this experience that inspired Jane to apply to graduate school.

Upon obtaining her undergraduate degree in 2009, she decided to venture to sunnier climates to conduct doctoral research in the lab of Professor Sarah E. Reisman at the California Institute of Technology. Her graduate work focused on the development of asymmetric protonation methods for the synthesis of indoline alkaloids. In October 2014, Jane will commence a postdoctoral fellowship with Prof. Martin F. Semmelhack in the Chemistry Department at Princeton University.