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CHAPTER 3 

 Conjugate Addition/in situ Reduction for the Synthesis of Indolines* 

3.1 Introduction 

In addition to the pyrroloindolines discussed in Chapters 1 and 2, there are a great 

number of structurally distinct natural products that incorporate an indoline moiety. 

These compounds feature diverse substitution about the heterocyclic core, and several 

exhibit promising biological activities (see Figure 1 for representative examples).1 Many 

groups have developed methods for the stereoselective preparation of non-

pyrroloindoline indolines, including transformations starting from tryptophan, as well as 

catalytic asymmetric reactions using organo- or transition metal catalysts. 

Mechanistic studies on the formal (3 + 2) cycloaddition to prepare 

enantioenriched pyrroloindolines (described in Chapter 2) revealed that the initial product 

of this reaction is an indolinium ion (119), and that cyclization to form the 

pyrroloindoline (121) does not occur until aqueous work-up. Thus, we proposed that 

these intermediates could be trapped with an external hydride source (Figure 2). This 

chapter describes the development of this approach for the preparation of indoline-
                                                
* Portions of this chapter have been reproduced from a published study (see reference 13) and the 
supporting information found therein. The research presented in this chapter was completed in 
collaboration with Haoxuan Wang, a graduate student in the Reisman group. 
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containing amino acid derivatives bearing an all-carbon quaternary stereocenter at the C3 

position (120). 

 

Figure 1. Selected indoline natural products. 

 

 

Figure 2. Proposed in situ reduction of an iminium ion intermediate to generate 
indolines. 
 

 
 

3.1.1 Methods for the Enantioselective Preparation of Indolines 

Several methods to access enantioenriched indolines have been developed. One 

such approach is to effect a kinetic resolution of racemic indolines. Fu and coworkers 
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achieved this goal using a planar-chiral PPY derivative (124) as the catalyst (Figure 3).2 

High selectivity factors were achieved by employing a catalyst possessing a highly 

sterically-demanding C5Ar5 group. 

 

Figure 3. Kinetic resolution of indolines 

 

 

Besides resolutions, there are also several catalytic, asymmetric methods to 

prepare indolines; these can be divided into two classes: (a) those that start from a related 

nitrogen-containing heterocycle, such as indoles or oxindoles, and (b) those that directly 

form the indoline framework.  In the first class, a common approach to prepare indolines 

from indoles or oxindoles is via asymmetric reduction. For example, Zhang and 

coworkers achieved the asymmetric hydrogenation of unprotected indoles (e.g., 128) with 

a palladium catalyst and chiral phosphine ligand (Figure 4).3 Protonation of the indole by 

a Brønsted acid forms an indolinium ion (130), which is more readily reduced. A 

dynamic kinetic resolution occurs to afford 2,3-disubstituted indolines (131) with high 

enantiomeric excess. An organocatalyzed version of this reaction was developed by Chen 

and coworkers (Figure 4).4 In this transformation, in situ-generated HCl effects C3 
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protonation to give the indolinium followed by chiral Lewis base mediated 

enantioselective hydrosilylation. 

 

Figure 4. Enantioselective indoline synthesis by hydrogenation of indoles. 
 

 

 

Figure 5. Enantioselective indoline synthesis by reduction of oxindoles. 

 

 

The Lu laboratory reported the enantioselective preparation of indolines with an 
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the C3 stereocenter. While direct reduction of oxindole 136 led to the formation of retro-

Michael side products, one aryl sulfone group can be selectively removed with SmI2 to 

allow subsequent reduction with BH3 to afford the corresponding indoline (138). 

In contrast to methods to access indolines by the reduction of indoles, Wang and 

coworkers developed an asymmetric inverse-electron-demand aza-Diels–Alder reaction 

of indoles and azoalkenes.6 This reaction is catalyzed by a CuI/tBu-Phosferrox complex 

to give [2,3]-fused indoline tetrahydropyridazine heterocycles (Figure 6). The azoalkenes 

are formed in situ from α-halogeno hydrazones in the presence of a base; coordination to 

a copper complex enhances its reactivity compared to the uncatalyzed background 

reaction. 

 

Figure 6. Indoline synthesis via Diels–Alder cycloaddition. 
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The Chemler laboratory disclosed an enantioselective, intramolecular copper-

catalyzed alkene hydroamination to afford indolines (Figure 7).8 This reaction is thought 

to occur via initial cis aminocupration, resulting in an unstable organocopper(II) 

intermediate (146) that undergoes homolysis to generate a primary organic radical (147) 

and copper(I). Hydrogen atom abstraction from 1,4-cyclohexadiene provides the net 

hydroamination product.  

Bandini and coworkers reported a gold-catalyzed cascade reaction of 

functionalized propargylic alcohols (e.g. 149) yielding indoline products (Figure 7).9 The 

authors propose that this reaction involves hydroindolination of the triple bond and 

subsequent iminium trapping. 5-exo-dig cyclization was observed exclusively when a 

carbon-based tether between the indole and alkyne was utilized. 

 

Figure 7. Enantioselective indoline synthesis by transition metal catalyzed (a) C–H 
activation, (b) hydroamination, and (c) alkyne cyclization. 
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In contrast to these transition-metal-catalyzed transformations, several 

organocatalytic methods for the direct prepartion of indolines have been reported. The 

Smith laboratory employed a chiral phase transfer catalyst to promote a cyclization 

reaction to prepare indolines (Figure 8).10 The authors propose two possible mechanisms 

for this reaction: an intramolecular Mannich reaction, or an electrocyclization. These 

possibilities could not be distinguished by the stereochemical outcome of the reaction, 

because the substrates reported did not include the appropriate substituents to probe the 

stereospecificity that is diagnostic of pericyclic processes.  

 

Figure 8. Organocatalytic indoline syntheses: (a) electrocyclization, (b) cascade for 
total syntheses of indoline natural products, and (c) Fischer indolization. 
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 On the other hand, the MacMillan laboratory utilized an organocatalyst to 

promote a [4+2] cycloaddition: exposure of tryptamine derivative 155 to an 

imidazolidinone catalyst (157) results in a Diels–Alder reaction with propynal (Figure 

8).11 Incorporation of an organoselenide facilitates further cascade reactions to afford 

indolines 159 and 160 in excellent yield and enantioselectivity. This functionalized 

intermediate was further elaborated to complete highly efficient total syntheses of six 

structurally diverse natural products. 

Another organocatalytic approach was developed by List and coworkers, in which  

a chiral phosphoric acid catalyzed an asymmetric Fischer indolization (Figure 8).12 Upon 

condensation of α-substituted cyclic ketone 162 with phenylhydrazine (161), the 

Brønsted acid promotes the [3,3]-sigmatropic rearrangement, leading to enantioenriched 

fused indolines.  

3.2 Development of the Indoline Synthesis 

To assess the feasibility of our proposed indoline synthesis, indole 89 and acrylate 

67 were exposed to the optimized conditions for the formal (3 + 2) cycloaddition 

(Chapter 2), along with a reductant (Table 1). Whereas weaker reductants such as 

triethylsilane and sodium triacetoxy borohydride proved ineffective, we were pleased to 

find that use of Hantzsch ester 166 did provide the indoline product, albeit in low yield 

(entry 3). Alternatively, use of sodium borohydride furnished 165a in good yield, 15:1 dr, 

92% ee (entry 5). The more soluble reducing agent lithium borohydride provided a lower 

yield of the desired product along with a greater amount of byproducts. The limited 

solubility of NaBH4 and LiBH4 in methylene chloride likely contributes to the 

compatibility of all the reagents, allowing the reaction to be carried out in one pot. 
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Table 1. Screen of reducing agents. 
 

 
Entry Reducing Agent Yield (%) 

1 Et3SiH 0 
2 NaBH(OAc)3 0 
3 Hantzsch ester 25 3 
4 LiBH4 85 
5 NaBH4 93 
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Figure 9. In situ reduction for the synthesis of indolines. 

 

a Determined by 1H NMR of crude reaction mixture. b Determined by SFC using chiral stationary phase.      
c Isolated yield of exo-diastereomer. d 1.6 equiv. SnCl4 was employed.  
 

Figure 10.  Re-exposure of pyrroloindoline exo-94  to SnCl4 and NaBH4. 
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The reduced products 165 are formed with the same diastereomeric and enantiomeric 

ratios as the corresponding pyrroloindolines, suggesting that iminium reduction does not 

affect the selectivities of the other steps. When a methylene chloride solution of 

pyrroloindoline exo-94 and SnCl4 was re-exposed to NaBH4, the pyrroloindoline was 

reduced to indoline 165a in quantitative yield (Figure 10). This is consistent with amide 

cyclization being reversible in the presence of the Lewis acid. 

3.3 Concluding Remarks 

Mechanistic insight into the (R)-BINOL•SnCl4-catalyzed formal (3 + 2) 

cycloaddition (Chapter 1) has led to the development of a method for the preparation of 

enantioenriched indoline-containing amino acid derivatives with all-carbon quaternary 

centers at C3. It was determined that the intially-formed product of the formal (3 + 2) 

cycloaddition is an iminium ion, and that cyclization by the pendant amide to provide the 

pyrroloindoline does not occur until aqeous work-up. Thus, we proposed that the addition 

of external nucleophiles will allow access to a variety of indoline structures. This chapter 

explores the use of reducing agents to effect the in situ reduction of this iminium 

intermediate. Of the reagents screened, sodium borohydride was found to be optimal. 

This one-pot procedure tolerates a variety of substitution on the backbone or at C3 of the 

indole substrate.  
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3.4 Experimental Section 

3.4.1 Materials and Methods 

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using 

freshly dried solvents. Tetrahydrofuran (THF), methylene chloride (CH2Cl2), and toluene 

were dried by passing through activated alumina columns. Deuterated methylene chloride 

(CD2Cl2) was dried by passing through a plug of activated alumina in a glovebox. 

Dimethylformamide (DMF) was dried over activated molecular sieves, and 

dichloroethane (DCE) was distilled over calcium hydride. All other commercially 

obtained reagents were used as received unless specifically indicated. All reactions were 

monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated 

plates (0.25 mm). Flash column chromatography was performed either as described by 

Still et al. (Still, W. C., Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.) using 

silica gel (partical size 0.032-0.063) purchased from Silicycle or using pre-packaged 

RediSep®Rf columns on a CombiFlash Rf system (Teledyne ISCO Inc.). Diastereomeric 

ratios were determined by integration of NMR spectra or HPLC or SFC analysis. Optical 

rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell 

at 589 nm. 1H and 13C NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz 

and 75 MHz, respectively), a Varian 400 (at 400 MHz and 100 MHz, respectively) or a 

Varian Inova 500 (at 500 MHz and 125 MHz respectively), and are reported relative to 

internal chloroform (1H, δ = 7.26, 13C, δ = 77.0). Data for 1H NMR spectra are reported 

as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). 

Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, 

q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a 
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Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption 

(cm–1). Preparatory HPLC was performed with either an Agilent 1100 or 1200 Series 

HPLC utilizing an Agilent Zorbax RX-SIL 5µm column (9.4 x 250 mm). Analytical 

chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing Chiralcel AD or 

OD-H columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd, with 

visualization at 254 nm. Analytical SFC was performed with a Mettler SFC supercritical 

CO2 analytical chromatography system with Chiralcel AD-H, OJ-H columns (4.6 mm x 

25 cm). Melting points were determined using a Büchi B-545 capillary melting point 

apparatus and the values reported are uncorrected. HRMS were acquired using either an 

Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray 

ionization (ESI), atmospheric pressure chemical ionization (APCI) or mixed (MM) 

ionization mode, or obtained from the Caltech Mass Spectral Facility. 

3.4.2 General Procedure: Formal (3 + 2) Cycloaddition/in situ Reduction. 

To a flame-dried flask was added indole (0.20 mmol, 1.00 equiv), acrylate (0.20 mmol, 

1.00 equiv), and (R)-3,3’-dichloro-BINOL (0.04 mmol, 0.20 equiv).  The flask was 

charged with CH2Cl2 (1.5 mL), followed by addition of SnCl4 (0.24 mmol, 1.20 equiv 

unless specifically indicated, 1 M in CH2Cl2). NaBH4 (0.30 mmol, 1.50 equiv) was then 

added, and the reaction was stirred at room temperature for 24 h (unless specifically 

indicated). The reaction was quenched by diluting with 1 mL MeCN and 1 mL 1 M HCl, 

followed by addition of 5 mL H2O.  The aqueous layer was extracted with ethyl acetate (3 

x 15 mL) and the combined organic layers were washed with saturated NaHCO3(aq) (10 

mL). The aqueous layer was extracted with ethyl acetate (10 mL). The combined organic 
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layers were dried (Na2SO4), filtered and concentrated.  The crude residue was purified by 

flash chromatography. 

3.4.3 Indoline Products 

Indoline 165a. 

Prepared from 1,3-dimethyl-1H-indole 14  and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

diastereomeric ratio was determined to be 15:1 by 1H NMR analysis of the crude reaction 

mixture. The crude residue was purified by flash chromatography (5→25% ethyl 

acetate/hexanes) to yield 64.1 mg (93% yield) of 165a, a pale yellow oil. The 

enantiomeric excess of the major diastereomer was determined to be 92% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(major) = 9.9 min tR(minor) 

= 5.9 min. The major diastereomer was separated by flash chromatography (5% ethyl 

acetate/hexanes). 1H NMR (500 MHz, CDCl3) δ 7.23 (br d, J = 5.9 Hz, 1H), 7.14 (td, J = 

7.7, 1.2 Hz, 1H), 6.99 (dd, J = 7.3, 0.8 Hz, 1H), 6.76 (td, J = 7.4, 0.8 Hz, 1H), 6.54 (d, J = 

7.9 Hz, 1H), 4.27 (br td, J = 7.7, 4.7 Hz, 1H), 3.65 (s, 3H), 3.31 (d, J = 9.1 Hz, 1H), 2.98 

(d, J = 9.1 Hz, 1H), 2.74 (s, 3H), 2.21 (dd, J = 14.7, 4.7 Hz, 1H), 2.15 (dd, J = 14.7, 8.2 

Hz, 1H), 1.40 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.1, 156.6 (q, JC-F = 37.5 Hz), 

152.1, 153.3, 128.5, 122.4, 119.0, 115.6 (q, JC-F = 287.9 Hz), 108.4, 68.3, 52.7, 51.2, 42.8, 

42.1, 35.8, 26.1; IR (NaCl/thin film): 3319, 2956, 2858, 2811, 1751, 1718, 1607, 1559, 

1491, 1452, 1209, 1179, 744 cm-1; [α]D
25 = +79.6 (c = 1.32, CH2Cl2). HRMS (MM) calc’d 

for [M+H]+ 345.1421, found 345.1423. 
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Indoline 165b. 

Prepared from 1,3,4-trimethyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

diastereomeric ratio was determined to be 11:1 by 1H NMR analysis of the crude reaction 

mixture. The crude residue was purified by flash chromatography (5→25% ethyl 

acetate/hexanes) to yield 56.8 mg (79% yield, yellow oil) of 165b as a single 

diastereomer. The enantiomeric excess of the major diastereomer was determined to be 

93% by chiral SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO2, λ = 254 nm): tR(major) 

= 3.9 min tR(minor) = 3.5 min. 1H NMR (500 MHz, CDCl3) δ 7.64 (br d, J = 4.9 Hz, 1H), 

7.06 (t, J = 7.7 Hz, 1H), 6.54 (d, J = 7.6 Hz, 1H), 6.42 (d, J = 7.9 Hz), 4.10 (ddd, J = 9.0, 

6.5, 4.2 Hz, 1H), 3.65 (s, 3H), 3.32 (d, J = 9.3 Hz, 1H), 2.95 (d, J = 9.2 Hz, 1H), 2.71 (s, 

3H), 2.45 (dd, J = 15.0, 4.0 Hz, 1H), 2.30 (s, 3H), 2.13 (dd, J = 14.8, 8.9 Hz, 1H), 1.50 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 171.0, 156.7 (q, JC-F = 37.5 Hz), 152.8, 134.5, 131.5, 

128.8, 122.4, 115.6 (q, JC-F = 287.9 Hz), 106.7, 68.6, 52.7, 51.7, 43.7, 40.9, 35.9, 26.6, 

18.7; IR (NaCl/thin film): 3315, 2956, 2812, 1750, 1710, 1593, 1559, 1484, 1457, 1209, 

1179, 774 cm-1; [α]D
25 = +66.0 (c = 1.04, CH2Cl2). HRMS (MM) calc’d for [M+H]+ 

359.1577, found 359.1591. 

Indoline 165c. 

Prepared from 1,3,5-trimethyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

diastereomeric ratio was determined to be 17:1 by 1H NMR 

analysis of the crude reaction mixture. The crude residue was purified by flash 

chromatography (10→25% ethyl acetate/hexanes) to yield 52.6 mg (73% yield) of 165c, 
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a yellow oil. The enantiomeric excess of the major diastereomer was determined to be 

89% by chiral SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO2, λ = 254 nm): tR(major) 

= 4.8 min tR(minor) = 3.4 min. The major diastereomer was separated by flash 

chromatography (7% ethyl acetate/hexanes). 1H NMR (500 MHz, CDCl3) δ 7.43 (br d, J 

= 4.8 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.81 (s, 1H), 6.47 (d, J = 7.9 Hz, 1H), 4.16 (q, J 

= 6.5 Hz, 1H), 3.67 (s, 3H), 3.27 (d, J = 9.1 Hz, 1H), 2.91 (d, J = 9.1 Hz, 1H), 2.70 (s, 

3H), 2.25 (s, 3H), 2.17 (d, J = 6.5 Hz, 2H), 1.39 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 

171.0, 156.7 (q, JC-F = 37.5 Hz), 150.0, 135.5, 128.9, 128.8, 123.3, 115.6 (q, JC-F = 287.9 

Hz), 108.7, 69.0, 52.7, 51.5, 42.7, 42.1, 36.4, 26.07, 20.7; IR (NaCl/thin film): 3326, 

2955, 2922, 2863, 2806, 1752, 1719, 1555, 1499, 1452, 1209, 1163, 806 cm-1; [α]D
25 = -

+42.3 (c = 0.87, CH2Cl2). HRMS (MM) calc’d for [M+H]+ 359.1577, found 359.1565. 

Indoline 165d. 

Prepared from 1,3,6-trimethyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

diastereomeric ratio was determined to be 17:1 by 1H NMR analysis of the crude reaction 

mixture. The crude residue was purified by flash chromatography (5→30% ethyl 

acetate/hexanes) to yield 65.0 mg (91% yield) of 165d, a yellow oil. The enantiomeric 

excess of the major diastereomer was determined to be 92% by chiral SFC analysis (AD-

H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(major) = 11.1 min tR(minor) = 5.0 min. 

The major diastereomer was separated by flash chromatography (5% ethyl 

acetate/hexanes). 1H NMR (500 MHz, CDCl3) δ 7.29 (d, J = 5.7 Hz, 1H), 6.88 (d, J = 7.5 

Hz, 1H), 6.58 (d, J = 7.5 Hz, 1H), 6.37 (s, 1H), 4.22 (td, J = 7.5, 4.9 Hz), 3.66 (s, 3H), 

3.29 (d, J = 9.1 Hz, 1H), 2.96 (d, J = 9.1 Hz, 1H), 2.72 (s, 3H), 2.30 (s, 3H), 2.20-2.11 
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(m, 2H), 1.38 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.1, 156.6 (q, JC-F = 37.5 Hz), 

152.3, 138.6, 132.5, 122.2, 119.8, 115.6 (q, JC-F = 287.8 Hz), 109.3, 68.6, 52.7, 51.4, 42.5, 

42.2, 35.8, 26.2, 21.6; IR (NaCl/thin film): 3321, 2956, 2923, 2870, 2804, 1750, 1716, 

1615, 1557, 1497, 1455, 1208, 1179, 802 cm-1; [α]D
25 = +76.0 (c = 1.56, CH2Cl2). HRMS 

(MM) calc’d for [M+H]+ 359.1577, found 359.1577. 

Indoline 165e. 

Prepared from 1,3,7-trimethyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

diastereomeric ratio was determined to be 17:1 by 1H NMR analysis of the crude reaction 

mixture. The crude residue was purified by flash chromatography (5→30% ethyl 

acetate/hexanes) to yield 58 mg (81% yield) of 165e, a pale yellow oil. The enantiomeric 

excess of the major diastereomer was determined to be 94% by chiral SFC analysis (AD-

H, 2.5 mL/min, 6% IPA in CO2, λ = 254 nm): tR(major) = 4.3 min tR(minor) = 3.3 min. 

The major diastereomer was separated by flash chromatography (5% ethyl 

acetate/hexanes). 1H NMR (500 MHz, CDCl3) δ 7.44 (d, J = 4.7 Hz, 1H), 6.90 (d, J = 7.5 

Hz, 1H), 6.86 (d, J = 7.4 Hz, 1H), 6.73 (t, J = 7.4 Hz, 1H), 4.14-4.08 (m, 1H), 3.66 (s, 

3H), 3.29 (d, J = 9.6 Hz, 1H), 2.97 (d, J = 9.6 Hz, 1H), 2.93 (s, 3H), 2.37 (s, 3H), 2.17-

2.06 (m, 2H), 1.40 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.1, 156.7 (q, JC-F = 37.5 

Hz), 149.9, 136.1, 131.8, 121.2, 120.4, 120.3, 115.6 (q, JC-F = 287.8 Hz), 69.7, 52.7, 51.3, 

42.8, 42.3, 39.5, 26.6, 19.5; IR (NaCl/thin film): 3322, 2959, 2924, 1750, 1713, 1557, 

1480, 1456, 1412, 1208, 1180, 1071, 750 cm-1; [α]D
25 = +84.9 (c = 1.20, CH2Cl2). HRMS 

(APCI) calc’d for [M+H]+ 359.1577, found 359.1595. 
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Indoline 165f. 

Prepared from 5-fluoro-1,3-dimethyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

diastereomeric ratio was determined to be 13:1 by 1H NMR analysis 

of the crude reaction mixture. The crude residue was purified by flash chromatography 

(10→30% ethyl acetate/hexanes) to yield 57.0 mg (79% yield) of 165f, a pale yellow oil. 

The enantiomeric excess of the major diastereomer was determined to be 90% by chiral 

SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO2, λ = 254 nm): tR(major) = 3.9 min 

tR(minor) = 2.9 min. The major diastereomer was separated by preparatory TLC (40% 

CH2Cl2/hexanes then 50% CH2Cl2/hexanes). 1H NMR (300 MHz, CDCl3) δ 7.31 (br d, JC-

H = 5.8 Hz, 1H), 6.83 (td, JC-H = 8.8, 2.6 Hz, 1H), 6.72 (dd, JC-H = 8.2, 2.6 Hz, 1H), 6.44 

(dd, JC-H = 8.5, 4.1 Hz, 1H), 4.25 (td, JC-H = 7.7, 4.8 Hz, 1H), 3.68 (s, 3H), 3.31 (d, JC-H = 

9.2 Hz, 1H), 2.97 (d, JC-H = 9.2 Hz, 1H), 2.70 (s, 3H), 2.21 (dd, JC-H = 14.7, 4.8 Hz, 1H), 

2.12 (dd, JC-H = 14.7, 8.1 Hz, 1H), 1.38 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.0, 

157.2 (d, JC-F = 237.2 Hz), 156.6 (q, JC-F = 37.8 Hz), 148.4, 137.1 (d, JC-F = 7.1 Hz), 116.7, 

114.5 (d, JC-F = 23.3 Hz), 110.1 (d, JC-F = 24.0 Hz), 108.8 (d, JC-F = 8.1 Hz), 68.6, 52.8, 

51.1, 42.8, 42.0, 36.4, 26.1; IR (NaCl/thin film): 3319, 2958, 2866, 2811, 1745, 1711, 

1552, 1494, 1468, 1267, 1210, 1179, 808 cm-1; [α]D
25 = +63.7 (c = 0.62, CH2Cl2). HRMS 

(ESI) calc’d for [M+H]+ 363.1326, found 363.1334. 

Indoline 165g. 

Prepared from 5-methoxy-1,3-dimethyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

reaction was allowed to run for 18.5 h. The diastereomeric ratio was determined to be 
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14:1 by 1H NMR analysis of the crude reaction mixture. The crude residue was purified 

by flash chromatography (10→30% ethyl acetate/hexanes) to yield 68.5 mg (91% yield) 

of XX, a yellow oil. The enantiomeric excess of the major diastereomer was determined 

to be 88% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO2, λ = 254 nm): 

tR(major) = 7.1 min tR(minor) = 3.6 min. 1H NMR (500 MHz, CDCl3) δ 7.81 (br d, JC-H = 

5.0 Hz, 1H), 6.70 (dd, JC-H = 8.4, 1.9 Hz, 1H), 6.62 (d, JC-H = 1.8 Hz, 1H), 6.50 (d, JC-H = 

8.3 Hz, 1H), 4.01 (dd, JC-H = 13.1, 6.3 Hz, 1H), 3.74 (s, 3H), 3.67 (s, 3H), 3.28 (d, JC-H = 

8.6 Hz, 1H), 2.89 (d, JC-H = 9.1 Hz, 1H), 2.68 (s, 3H), 2.23-2.08 (m, 2H), 1.30 (s, 3H); 13C 

NMR (125 MHz, CDCl3) δ 171.0, 156.8 (q, JC-F = 37.5 Hz), 154.1, 146.1, 137.0, 115.6 

(q, JC-F = 287.8 Hz), 113.1, 110.8, 109.6, 69.0, 55.8, 52.7, 51.5, 43.0, 42.0, 36.9, 26.2; IR 

(NaCl/thin film): 3319, 2955, 2804, 1751, 1718, 1555, 1496, 1468, 1214, 1179, 1031 cm-

1; [α]D
25 = +26.3 (c = 1.24, CH2Cl2). HRMS (APCI) calc’d for [M+H]+ 375.1526, found 

375.1542. 

Indoline 165h. 

Prepared from 1-allyl-3-methyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure, except the 

formal (3 + 2) cycloaddition was allowed to run for 24 h before adding NaBH4. After 

adding NaBH4, the reaction was allowed to run for another 24 h. The diastereomeric ratio 

was determined to be 5:1 by 1H NMR analysis of the crude reaction mixture. The crude 

residue was purified by flash chromatography (5→20% ethyl acetate/hexanes) to yield 

60.0 mg (81% yield) of XX, a yellow oil. The enantiomeric excess of the major 

diastereomer was determined to be 90% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% 

IPA in CO2, λ = 254 nm): tR(major) = 7.2 min tR(minor) = 6.2 min. Isolated as a 5:1 
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mixture of diastereomers; the major diastereomer is denoted by *, minor diastereomer 

denoted by §. 1H NMR (500 MHz, CDCl3) δ 8.26 (br d, J = 8.5 Hz, 1H§), 7.16-7.05 (m, 

2H*, 1H§), 6.98 (ddd, J = 7.4, 1.2, 0.5 Hz, 1H*, 1H§), 6.78 (td, J = 7.4, 1.0 Hz, 1H§), 6.72 

(td, J = 7.4, 1.0 Hz, 1H*), 6.64 (d, J = 7.9 Hz, 1H§), 6.56 (d, J = 7.9 Hz, 1H*), 5.93-5.83 

(m, 1H*, 1H§), 5.32-5.20 (m, 1H*, 1H§), 4.81-4.75 (m, 1H§), 4.40 (td, J = 7.6, 5.0, 1H*), 

3.79 (ddt, J = 15.0, 5.9, 1.4 Hz, 1H*, 1H§), 3.73-3.70 (m, 1H§), 3.65-3.59 (m, 1H*), 3.63 

(s, 3H*), 3.42 (s, 3H§), 3.31 (d, J = 9.3 Hz, 1H*), 3.28 (d, J = 9.6 Hz, 1H§), 3.07 (d, J = 

9.6 Hz, 1H§), 3.05 (d, J = 9.3 Hz, 1H*), 2.35 (ddd, J = 14.8, 5.9, 0.6 Hz, 1H§), 2.23 (dd, J 

= 14.6, 4.9 Hz, 1H*), 2.18 (dd, J = 14.9, 4.6 Hz, 1H§), 2.13 (dd, J = 14.7, 7.8 Hz, 1H*), 

1.41 (s, 3H§), 1.38 (s, 3H*); 13C NMR (100 MHz, CDCl3) δ 171.2*, 170.1§, 156.6* (q, JC-

F = 37.6 Hz), 150.8*, 135.4*, 133.3*, 132.4§, 128.6§, 128.4*, 123.3§, 122.5*, 119.4§, 

118.9§, 118.7*, 118.1*, 115.5* (q, JC-F = 287.9 Hz), 109.9§, 108.4*, 65.2§, 65.1*, 52.7*, 

52.5§, 52.1§, 51.8*, 50.9*, 50.5§, 42.7§, 42.6*, 42.5§, 42.1*, 27.8§, 26.1*; IR (NaCl/thin 

film): 3316, 2957, 2923, 1750, 1718, 1605, 1554, 1487, 1460, 1437, 1209, 1165, 744 cm-

1; [α]D
25 = +33.412 (c = 1.62, CH2Cl2). HRMS (MM) calc’d for [M+H]+ 371.1577, found 

371.1582. 

Indoline 165i. 

Prepared from 3-butyl-1-methyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure. The 

diastereomeric ratio was determined to be >20:1 by 1H NMR analysis of the crude 

reaction mixture. The crude residue was purified by flash chromatography (5→20% ethyl 

acetate/hexanes) to yield 63.4 mg (82% yield) of XX, a pale yellow oil. The enantiomeric 

excess of the major diastereomer was determined to be 92% by chiral SFC analysis (AD-
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H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(major) = 7.2 min tR(minor) = 5.3 min. 

The major diastereomer was separated by flash chromatography (5% ethyl 

acetate/hexanes). 1H NMR (500 MHz, CDCl3) δ 7.30 (br d, JC-H = 5.5 Hz, 1H), 7.13 (td, 

JC-H = 7.7, 1.2 Hz, 1H), 6.96 (dd, JC-H = 7.3, 0.7 Hz, 1H), 6.75 (t, JC-H = 7.3 Hz, 1H), 6.53 

(d, JC-H = 7.8 Hz, 1H), 4.22-4.15 (m, 1H), 3.64 (s, 3H), 3.24 (d, JC-H = 9.3 Hz, 1H), 3.08 

(d, JC-H = 9.3 Hz, 1H), 2.74 (s, 3H), 2.23 (dd, JC-H = 14.7, 8.4 Hz, 1H), 2.17 (dd, JC-H = 

14.7, 4.7 Hz, 1H), 1.86-1.77 (m, 1H), 1.69-1.57 (m, 1H), 1.40-1.24 (m, 3H), 1.19-1.08 

(m, 1H), 0.89 (t, JC-H = 7.2 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 171.2, 156.6 (q, JC-F = 

37.5 Hz), 152.3, 134.3, 128.6, 123.0, 119.0, 115.5 (q, JC-F = 287.8 Hz), 108.4, 66.4, 52.7, 

51.2, 46.2, 40.6, 39.3, 35.9, 26.5, 23.2, 14.0; IR (NaCl/thin film): 3319, 2956, 2932, 

2860, 2809, 1751, 1718, 1606, 1559, 1491, 1465, 1207, 1178, 743 cm-1; [α]D
25 = +62.0 (c 

= 1.15, CH2Cl2). HRMS (ESI) calc’d for [M+H]+ 387.1890, found 387.1902. 

Indoline 165j. 

Prepared from 1-methyl-3-phenethyl-1H-indole and methyl 2-

trifluoroacetamidoacrylate using the general procedure, except the 

formal (3 + 2) cycloaddition was allowed to run for 24 h before adding NaBH4. After 

adding NaBH4, the reaction was allowed to run for another 24 h. The diastereomeric ratio 

was determined to be 12:1 by 1H NMR analysis of the crude reaction mixture. The crude 

residue was purified by flash chromatography (5→20% ethyl acetate/hexanes) to yield 

77.6 mg (89% yield) of XX. The enantiomeric excess of the major diastereomer was 

determined to be 89% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO2, λ = 

254 nm): tR(major) = 9.5 min tR(minor) = 8.1 min. The major diastereomer was separated 

by flash chromatography (10% ethyl acetate/hexanes). 1H NMR (400 MHz, CDCl3) δ 
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7.30-7.22 (m, 3H), 7.21-7.11 (m, 4H), 6.99 (dd, JC-H = 7.4, 1.0 Hz, 1H), 6.75 (td, JC-H = 

7.4, 0.7 Hz, 1H), 6.55 (d, JC-H = 7.9 Hz, 1H), 4.27 (dt, JC-H = 12.6, 6.4 Hz, 1H), 3.63 (s, 

3H), 3.30 (d, JC-H = 9.3 Hz, 1H), 3.17 (d, JC-H = 9.3 Hz, 1H), 2.76 (s, 3H), 2.68 (td, JC-H = 

13.0, 5.0 Hz, 1H), 2.47 (td, JC-H = 12.9, 4.7 Hz, 1H), 2.34-2.22 (m, 2H), 2.13 (ddd, JC-H = 

13.7, 12.3, 5.1 Hz, 1H), 1.97 (ddd, JC-H = 13.8, 12.6, 4.8 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 171.1, 156.6 (q, JC-F = 37.5 Hz), 152.4, 141.7, 133.5, 128.7, 128.5, 128.2, 

126.0, 122.9, 119.0, 115.5 (q, JC-F = 287.8 Hz), 108.4, 66.0, 52.7, 51.1, 46.3, 41.5, 40.7, 

35.8, 30.8; IR (NaCl/thin film): 3317, 2951, 2858, 2812, 1749, 1716, 1606, 1555, 1494, 

1453, 1208, 1178, 745 cm-1; [α]D
26 = +23.1 (c = 0.87, CH2Cl2). HRMS (MM) calc’d for 

[M+H]+ 435.1890, found 435.1882. 

Indoline 165k. 

Prepared from 1-methyl-3-(2-((triisopropylsilyl)oxy)ethyl)-1H-indole 

and methyl 2-trifluoroacetamidoacrylate using the general procedure, 

except the formal (3 + 2) cycloaddition was allowed to run for 20.5 h before adding 

NaBH4. After adding NaBH4, the reaction was allowed to run for another 24 h. The 

diastereomeric ratio was determined to be >20:1 by 1H NMR analysis of the crude 

reaction mixture. The crude residue was purified by flash chromatography (5→30% ethyl 

acetate/hexanes) to yield 68.3 mg (64% yield) of XX, a yellow oil. The enantiomeric 

excess of the major diastereomer was determined to be 85% by chiral SFC analysis (AD-

H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(major) = 8.7 min tR(minor) = 7.5 min. 1H 

NMR (500 MHz, CDCl3) δ 7.51 (br s, 1H), 7.15 (t, JC-H = 7.6 Hz, 1H), 7.00 (d, JC-H = 7.2 

Hz, 1H), 6.75 (t, JC-H = 7.1 Hz, 1H), 6.54 (d, JC-H = 7.3 Hz, 1H), 4.22-4.15 (m, 1H), 3.81 

(dd, JC-H = 6.96, 5.35 Hz, 2H), 3.64 (s, 3H), 3.34-3.26 (m, 1H), 3.26-3.18 (m, 1H), 2.74 

NHTFA

CO2Me

N
Me

OTIPS



Chapter 3–Conjugate Addition/in situ Reduction for the Synthesis of Indolines 233 

(s, 3H), 2.46-2.36 (m, 1H), 2.24 (dd, JC-H = 14.7, 3.7 Hz, 1H), 2.11-1.94 (m, 2H), 1.08-

1.03 (m, 21H); 13C NMR (125 MHz, CDCl3) δ 171.1, 156.7 (q, JC-F = 37.6 Hz), 152.1, 

134.3, 128.7, 123.0, 118.9, 115.6 (q, JC-F = 287.8 Hz), 108.5, 67.6, 60.0, 52.6, 51.2, 45.3, 

41.2, 39.5, 18.0, 18.0, 11.9; IR (NaCl/thin film): 3323, 2943, 2866, 1719, 1606, 1552, 

1491, 1463, 1207, 1175, 1104, 882, 742 cm-1; [α]D
25 = +27.4 (c = 0.85, CH2Cl2). HRMS 

(APCI) calc’d for [M+H]+ 531.2860, found 531.2883. 
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3.4.4 SFC Traces for Racemic and Enantioenriched Products 

165a (Figure 9): racemic 

 

 

 

165a (Figure 9): 92% ee 
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165b (Figure 9): racemic 

 

 

165b (Figure 9): 93% ee 
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165c (Figure 9): racemic 

 

 

165c (Figure 9): 89% ee 
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165d (Figure 9): racemic 

 

 

165c (Figure 9): 92% ee 
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165e (Figure 9): racemic 

 

 

165e (Figure 9): 94% ee 
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165f (Figure 9): racemic 

 

 

165f (Figure 9): 90% ee 
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165g (Figure 9): racemic 

 

 

165g (Figure 9): 88% ee 
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165h (Figure 9): racemic 

 

 

165h (Figure 9): 90% ee 
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165i (Figure 9): racemic 

 

 

165i (Figure 9): 92% ee 
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165j (Figure 9): racemic 

 

 

165j (Figure 9): 89% ee 
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165k (Figure 9): racemic 

 

 

165k (Figure 9): 85% ee 
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