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ABSTRACT 

Two-step thermochemical water splitting is a promising technology for the hydrogen production of 

solar energy. This process possesses the advantages of utilizing the full solar spectrum, producing 

flexible fuels, and requiring no precious metal catalysts. It furthermore temporally separates the 

oxygen release and hydrogen production steps, eliminating the possibility of O2 and H2 

recombination. Ceria, which undergoes non-stoichiometric changes in oxygen content, has been 

demonstrated as an effective material for solar-driven thermochemical fuel production, but the 

process requires extremely high temperatures (~ 1600 oC), leading to efficiency penalties and 

challenges in reactor design and construction. Accordingly, the objective of this work is the 

development of new thermochemical reaction substrate materials which enable operation at lower 

temperatures and ideally increase fuel productivity and efficiency. Here we explore perovskite 

systems, specifically La1-xSrxMnO3-δ, La0.8Sr0.2Mn1-yFeyO3-δ, and La0.8Sr0.2Mn1-yAlyO3-δ. The link 

between the solid-state chemistry, redox properties, hydrogen production, and reaction kinetic 

limitations will be discussed. This study aims to learn how to design and tailor the good catalytic 

oxides for solar-driven thermochemical water splitting application. 
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C h a p t e r  1  

INTRODUCTION 

1.1 Energy Crisis 

World energy demand in the past two decades has increased at a rate of 1.9 percent per year 
[1]. The U.S. Energy Information Administration projects that of world energy demand from 

2010 to 2040 will grow at a total average growth rate of around 1.4 percent per year (Figure 

1-1). Strong and fast economic growth and population expansion in the developing nations 

largely drive this increase in global energy demand. The peak oil prediction from Hubbert 

Peak Theory [2] forecasts a potential shortage of oil. Although many factors make the model 

and therefore the time of which oil production will peak uncertain, it is clear that society is 

consuming the finite fossil fuel resource base at an alarming rate [3], the general trend of the 

shortage of fossil fuels is still alarming. Therefore, the exploration of new energy resources 

is crucial. 

 

Figure 1-1 Current and projected world energy demand from 1990 to 2040 from ref. [1]. 

The percentage corresponds to the average annual growth rate. 
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Furthermore, the energy crisis people are facing is not only the quantity of energy but also 

its quality. From the world energy demand among various sources shown in Figure 1-1, 

liquids, coal, and natural gas supply around 80% of the total demand. These carbon based 

fuels generate a large amount of greenhouse gas such as CO2 and CH4. The most recent 

report from the IPCC (Intergovernmental Panel on Climate Change) [4] shows a high 

correlation between global warming and the rise in CO2 emission. In this report, various 

emission scenarios and their corresponding temperature increase trends are proposed 

(Figure 1-2). Since we are currently on the high CO2 emission path, the average predicted 

temperature increase would be around 0.3oC per decade. Global warming causes climate 

changes that have tremendous impacts on the environment.  For example, melting of the ice 

caps and glaciers cause the rise of sea levels because of thermal expansion of water and this 

changes endanger the ecosystem. Furthermore, in the recent past few decades, global 

warming has been implicated in the dramatic weather changes such as strong storms, 

torrential floods, and droughts. Although these impacts from global warming have been 

foreseen for a long time, the speed and ubiquity of these consequences have been 

unprecedented. In the Third National Climate Assessment report released by the White 

House in 2014 [5], the scientists declared that“Climate change, once considered an issue 

for a distant future, has moved firmly into the present.” Therefore, the discovery of 

alternative, renewable, and clean energy resources is necessary right now in order to 

combat the energy crisis, palliate the dependence on carbon-based fuels, and slow down the 

global warming effects. 
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Figure 1-2 Projected temperature changes for various CO2 emission scenarios [4]. 

 

1.2 Solar Hydrogen 

Fuel produced by renewable resources is one of the promising solutions for the energy and 

climate crises. Renewable energy production is around 11% of the total United States 

primary energy productions[6], Figure1-3. Primary renewable resources include 

hydroelectric power, geothermal energy, solar/ photovoltaics (PV) energy, wind energy, 

and biomass energy. Solar energy is a particularly attractive resource due to the abundance 

of sunlight. A recent analysis shows that the energy from the Sun striking on the earth’s 

surface in one and a half hours can provide more energy than worldwide energy 

consumption in a year (based on the all sources combined data of from 2001).[7] However, 

solar accounts for only 0.33% of all primary energy sources utilized in the US. Thus huge 

gap between solar energy availability and solar energy utilization presents a tremendous 

opportunity to address world energy needs. Thus, this dissertation focuses on solar energy 

utilization, specifically, fuel production from water splitting driven by solar energy. Solar-

driven water splitting utilizes the abundance of water and the unlimited solar resource for 

fuel production. Because the reactant, the product, and the whole reaction are carbon-lean, 

the climate and environment would not be sacrificed for fuel production and consumption.   
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Figure 1-3 Role of renewable energy production in the United States, 2013. [6] 

Various approaches to solar-driven water splitting have been widely studied, such as the 

combined operation of photovoltaics (PV) and electrolyzer[8], and photocatalytic water 

splitting.[9] Most recently, solar-driven thermochemical water splitting has attracted 

significant  attention due to its potential for large scale hydrogen production.[10-14] 

At a first glance, the direct thermochemical hydrogen production from water is the simplest 

pathway to convert solar energy to fuel. However, from the thermodynamic properties of 

water, this single-step thermolysis reaction is not practical due to its extremely high 

operation temperature. [12, 15] Water and carbon dioxide thermolysis reactions are shown in 

Figure 1-4. In order to get the reaction thermodynamically favorable, the operating 

temperature has to be higher than 4,330 oK and 3,330 oK for water and carbon dioxide 

splitting, respectively. Many problems can arise with such high operating temperatures, and 

the following factors must be addressed [16]: 

1. A complicated reactor design or secondary solar concentrator is necessary for 

achieving such high temperatures. 

2.  High stability of reactor materials is critical.  

3. Recombination of products (H2 and O2) or generation of intermediates (e.g., OH) 

can occur and need to be avoided. 
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Figure 1-4 Temperature variations of ΔHo, TΔSo, and ΔGo for water and carbon dioxide.[12] 

The partial pressure of each gas species is 1 bar. 

1.3 Two-Step Thermochemical Splitting of Water 

In order to lower the operating temperature of thermally-driven hydrogen production, 

multi-step reactions have been considered [17]. In particular, the effectiveness of metal 

oxides for two-step thermochemical water splitting cycles has been examined for around 

four decades [20-21]. The main concept is depicted by the following equations: 

1 2
1

2n nMO MO O−→ +   (1.1) 

1 2 2
1

2n nMO H O MO H− + → +  (1.2) 

 2 2 2
1

2H O H O→ +  (1.3)  

Here, M represents a metal and MOn is its corresponding metal oxide. In a typical two-step 

thermochemical water splitting cycle, a metal oxide is reduced at very high temperature 

(~2000 K) by concentrated solar energy in the first step. During this reduction reaction, 

oxygen molecules will be released, as shown in Equation 1.1. In the second step, the 

reduced metal oxide (or metal, if it’s fully reduced to the metal phase) is quenched to a 

lower temperature and H2O steam is simultaneously injected into the reactor. The reduced 

metal oxide will be reoxidized by H2O and release H2, Equation 1.2. The first step is called 

the thermal reduction (TR) step and the second step is called the water splitting (WS) step. 

After the reduced metal oxide is reoxidized (at the end of the WS step), solar energy is used 

to ramp the temperature back up to perform the reduction reaction again. Upon cycling the 

metal oxide between the thermal reduction (TR) step and the water splitting (WS) step, 

water can be dissociated and fuel (hydrogen) can be produced. Equation 1.3 is the sum of 

Equation 1.1 and 1.2 and describes the net reaction of a two-step thermochemical water 

splitting cycle.  Figure 1-5 shows the concept of two-step thermochemical water splitting 

cycle and its combination with a fuel cell system. The mechanism of a two-step 
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thermochemical water splitting cycle can also be used for CO2 splitting application, as 

shown in the Figure 1-5. 

Figure 1-5 Concept diagram of two-step thermochemical water splitting and fuel cell 

combined system. 

The very first demonstration of a two–step thermochemical water splitting cycle used a 

Fe3O4/ FeO redox pair [22] and the cycle proceeded as follows: 

3 4 2
13 2Fe O FeO O→ +  (1.4) 

2 3 4 23FeO H O Fe O H+ → +  (1.5) 

Equation 1.4 represents the thermal reduction step. It is a highly endothermic reaction 

(ΔHo=316.6 kJ/mol). At 1 bar of oxygen partial pressure, the temperature to reduce the 

magnetite (Fe3O4) to wustite (FeO) is above 3,000 K (shown in Figure 1-6).[12] For the 

second step of the cycle, the reaction shown in Equation 1.5 is exothermic (ΔHo=-33.6 

kJ/mol ) and can proceed below 1000 K, as shown in Figure 1-6(b). In comparison to 

Fe3O4/ FeO redox pair, Mn3O4/ MnO and Co3O4/ CoO show the lower temperatures when 

the reduction reaction free energy goes to zero at, suggesting it is easier to perform the 

thermal reduction step with these oxides (Figure 1-6(a)). However, for the water splitting 

step shown in Figure 1-6 (b), the temperature range needs to be widened in order to 

extrapolate their intersection with the zero free energy dashed line. At the given 
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temperature located in the negative free energy region, the distance between the curve to 

the zero free energy line can be considered as the thermodynamics driving force for the 

reaction. Therefore, Mn3O4/ MnO and Co3O4/ CoO pairs possess a larger driving force for 

the thermal reduction reaction as compared to the Fe3O4/ FeO redox pair, but their driving 

forces for being re-oxidized by water are much less. 

 

Figure 1-6 Temperature variations of ΔGo (with 1 bar of each gas species partial pressure) 

for thermal reduction reaction (a) and water dissociation reaction (b) of three different 

metal oxides pairs. [12] Free energy curves are calculated with HSC database.[15] 

Another potential candidate is the ZnO/Zn redox pair for the two-step thermochemical 

water splitting cycle [22], and the corresponding reactions for each step are described with 

Equation 1.6 and 1.7. 

2
1( ) 2ZnO Zn g O→ +  (1.6) 

2 2( )Zn g H O ZnO H+ → +  (1.7) 

ΔHo for Equation (1.6) is 489 kJ and the temperature for which ΔGo=0 is around 2,235 oK. 

For the second step, the reaction proceeds thermodynamically below about 1,400 oK at 1 

bar.[23] In contrast to the hydrolysis reaction with FeO shown in Equation 1.5, the reactant 

here is metallic Zn. This re-oxidation reaction is a heterogeneous reaction and Zn (g) and 

(a) (b) 
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O2 can coexist in a meta-stable state if the nucleation sites are insufficient [24].  In order to 

prevent reoxidation, the Zn has to been quenched from the gaseous state. Therefore, the 

kinetics of Zn conversion is mainly controlled by diffusion of Zn (g) and O2 to the reactor 

walls [23, 25], and the Zn nanoparticle in the water splitting step is required in order to have 

sufficient kinetics. These constraints make the ZnO recovery and reactor design difficult. 

From the cases mentioned above, we can see that the water dissociation temperature can be 

lowered by a two-step cycle as compared to direct water splitting. Since oxygen release and 

hydrogen production occur in separate steps, this two-step cycle eliminates O2 and H2 

recombination and simplifies their isolation and purification. However, when utilizing these 

oxides for two-step cycle, phase transitions are involved and these cause the new challenges. 

For example, within the case of Zn/ZnO cycling, the recombination of Zn(g) and O2(g) 

block the reaction shown in Equation 1.7. Also, with the phase transition involvement, bulk 

diffusion limits the reaction kinetics. 

1.4 Nonstoichiometric Two-Step Thermochemical Splitting of Water 

The operation temperature of the two-step thermochemical water splitting cycle is redox 

materials dependent. Although the reduction temperature of the Fe3O4/FeO and ZnO/Zn 

pairs is much lower than that of direct water thermolysis, it is still too high for practical and 

long-term operation. And, the bulk diffusion is the rate limiting step when phase transition 

is involved in the two-step cycling. Therefore, a potential mechanism that can lower the 

reduction temperature is desirable. Recently, a new approach called nonstoichiometric two-

step thermochemical water splitting cycle was proposed and demonstrated by our group [14].  

This strategy utilizes the ability of selected non-stoichiometric metal oxides to release and 

uptake oxygen in response to temperature changes. The redox material we used is cerium 

oxide (ceria) and its two-step thermochemical water splitting cycle is presented in the 

following: 

2 2 2
1 1 1 ( )2CeO CeO O gδδ δ −→ +   (1.8) 

2 2 2 2
1 1( ) ( )H O g CeO CeO H gδδ δ−+ → +   (1.9) 
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The sum of the two equations above is the pure water dissociation reaction. In comparison 

to the metal oxide redox pairs mentioned before, this approach performs the reduction 

reaction partially at the thermal reduction step rather than a stoichiometric phase change. 

For cerium oxide reduced from 800 oC to 1600 oC under an atmosphere of 10 ppm oxygen 

balanced with inert gas, the oxygen release amount is around 5.9 mL (STP) per gram CeO2, 

corresponding to the oxygen nonstoichiometric change (δ of CeO2-δ) of ~0.09. After 

quenching and steam injection, the water splitting step is conducted. When the 

reoxidization reaction temperature is 800 oC, meaning the cycling temperature window is 

800 oC to 1600 oC, the hydrogen productivity is around 11.8 mL (STP) per gram CeO2. The 

ratio of hydrogen produced to oxygen released was found to be around 2, as expected from 

the pure water dissociation reaction shown in Equation 1.3. Furthermore, since the oxygen 

nonstoichiometric changes between cycles matched the thermodynamic properties of 

cerium oxide (to be discussed later), this means both the thermal reduction and 

reoxidization reactions are produced to completion under the given experimental conditions. 

Even though the fuel productivity per cycle of this approach is less than the stoichiometric 

phase change method, the high diffusivity of oxygen through nonstoichiometric ceria leads 

to rapid fuel production kinetics. 

The redox (reduction and oxidization) properties of the metal oxide govern its behavior 

within the two-step thermochemical water splitting cycle. Taking CeO2 as an example, the 

mechanism behind the thermal reduction reaction is the valence change of cerium cation, 

and the corresponding equation shown in Equation 1.8 can be rewritten as 

 /
2

12 2 ( )2Ce O Ce OCe O Ce V O g× × ••+ → + +  (1.10) 

The equation is written with Kröger–Vink notation [28], where CeCe× , /
CeCe , and OV ••  

represent the ions of Ce4+, Ce3+, and oxygen vacancy, respectively. Kröger–Vink notation is 

widely used in describing defect reactions. When a defect is notated as C
SM , it represents 

the species M (atom, “V” for vacancy, “i” for interstitial (if it is not a regular site), “e” for 

electron, and “h” for electron hole) site on the host lattice site S, and possesses the effective 

charge C (“/” for single negative charge, “••” for double positive charge, and “X” for 

neutral charge). Therefore, Equation 1.10 describes the reduction reaction of CeO2 where 
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Ce cations are reduced from Ce4+ to Ce3+, the neutral oxygen molecular is released, and the 

double positive charged oxygen vacancies are created due to charge conservation. 

For the second step, the reoxidization reaction can be obtained by reversing the Equation 

1.10. In Equation 1.10, /
CeCe  can be considered as a small polaron the equation can be 

expressed the reaction with infinitesimal change in non-stoichiometry. 

2 2 20

1 1 1lim ( )
2

O g CeO CeOδ α δα α α− − −→
+ ↔  (1.11) 

Within the range where the oxygen nonstoichiometric change possesses ideal solution 

behavior, the equilibrium constant for this oxidization reaction is given by [14] 

0 0 0

exp( ) exp( )oxd oxd oxd
oxd

G H T SK
RT RT
∆ ∆ − ∆

= − = −  (1.12) 

where 0
oxdG∆ , 0

oxdH∆ , and 0
oxdS∆  are the standard Gibbs free energy, enthalpy, and 

entropy of oxidation reaction, respectively. In an ideal solution, the oxidation enthalpy is 

independent of defect concentration, and the configurational entropy is used to describe the 

solution with non-interacting defects that distribute randomly.  

The equilibrium constant for this oxidization reaction can be linked to the defect species as 

follows:  

2 2

22

1 1* / 2 * 22 2

(1 2 ) (1 )[ ] [ ] 2
( ) [ ] [ ] ( ) 4 ( )2

Ce O
oxd

O Ce O O

Ce OK
p Ce V p

δδ

δδ

× ×

••

− −
= =  (1.13) 

where 
2

*
Op  represents the oxygen partial pressure relative to the standard state (1 atm), and 

[] stands for the concentration of defect species. The finial expression is achieved by 

applying electroneutrality ( /2 [ ] 4[ ]Ce OCe Vδ ••= = ) and conservation of crystal site 

( /1 [ ] [ ]Ce CeCe Ce×= + ). 
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For understanding how to select the redox medium for thermochemical water splitting 

application on thermodynamics grounds, the comparison between the chemical potential of 

the nonstoichiometric oxide ( 0
oxdG∆ ) and 0

_rxn waterG∆  of the water oxidation reaction under 

the same reoxidization conditions is the straightforward method. Figure 1-7 shows this 

comparison with ceria oxidation with different nonstoichiometric values. Since this 

describes the oxidation reaction, meaning the half-cycle operated at the relatively lower 

temperature (TL) of water splitting, we assume the ceria possesses certain nonstoichiometric 

value after the thermal reduction reaction. For a given nonstoichiometric value at a specific 

reaction temperature, the reaction can proceed only if the free energy curve of the reduced 

oxide is lower than the curve of water oxidation reaction, meaning 0 0
_oxd rxn waterG G∆ < ∆ , as 

shown by the red line in the figure. Although actual operating conditions are not at standard 

state, this kind of comparison still provides the valuable insights for screening redox 

materials.  
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Figure 1-7 Temperature variations of Gibbs free energy of the gas-phase water oxidation 

reaction (with the gas species at 1 atm), ceria oxidation with different nonstoichiometric 

values (the oxygen partial pressure at 1 atm). [14] 

On Figure 1-7, the red virtual line in the figure represents the difference between two free 

energy curves of reduced oxide and water, and can be considered as the thermodynamics 

driving force of water splitting reaction. Therefore, if the red line is shifted left at lower 

water splitting reaction temperature, the thermodynamics driving force becomes larger. 

However, the low reaction temperature would also limit the reaction kinetics. In addition, 

with the fixed thermal reduction temperature, the lower water splitting reaction temperature 

means a larger temperature window and can potentially introduce thermal shock concerns. 

The change in 0
oxdG∆  with different nonstoichiometric values results from the cerium–

oxygen bond enthalpy change and the configurational entropy change from defect 

concentration variations. This dependence of 0
oxdG∆  on nonstoichiometric values shows 

that the thermodynamics driving force for water splitting changes with the differing extent 

of the reoxidation reaction. In Figure 1-7, the slope of the curve is determined by 0
oxdS∆ , the 

y-intercept on is 0
oxdH∆ ( 0 0 0

oxd oxd oxdG H T S∆ = ∆ − ∆ ). Therefore, from the thermodynamics 

properties ( 0
_rxn waterH∆ and 0

_rxn waterS∆ ) of water thermolysis, the prerequisite for 

thermochemical water splitting on materials’ redox properties can be set as  

0 0
_

0 0
_

( 241 / )

( 44.4 / )
oxd rxn water

oxd rxn water

H H kJ mol O

S S J k mol O

∆ < ∆ = − ⋅

∆ < ∆ = − ⋅ ⋅
 (1.14) 

These conditions will ensure that the half cycle of thermochemical water splitting (Equation 

1.11) is thermodynamically favorable and its corresponding reduction reaction temperature 

is lower than the temperature for direct water dissociation. 

1.5 Discovery of Perovskites materials for Thermochemical Water Splitting  
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Figure 1-8 The perovskite-type structure. Red balls represent the A atoms of ABO3, blue 

balls represent the oxygen atoms, and yellow balls located inside the blue octahedral 

represent the B atoms. 

The perovskite structure was first named by the mineralogist Lev Perovski after the ideal 

composition CaTiO3 found by Gustav Rose (1839) [30].  Many mixed metal oxides with 

formula ABO3, for which A and B cations differ in their ionic radius or charge valence, are 

classified in the perovskite structure family [29].  Some non-oxide compounds with similar 

structure (ABX3, X is anion) are also classified as perovskites.  The crystal structure is 

shown in Figure 1-8. For the perovskite oxides, A is coordinated by 12 other atoms. Site B 

is surrounded by oxygen atoms octahedrally and builds the corner-sharing BO6 octahedra 

(blue).   

Table 1-1 lists example compounds with perovskite and related structures used for different 

applications. The table shows that perovskite and its derivatives have been widely studied 

for different properties and applied in various science and engineering fields. For the two-

step thermochemical water splitting cycle, the redox properties of metal oxide govern the 

feasibility and performance of the reactions. These properties are also studied for solid 

oxide fuel cell (SOFC) and in other solid state chemistry fields. Thus, the tunability of 

perovskites and the large body of literature in this area motivate further exploration of 

perovskites for thermochemical water splitting. 

Table 1-1 Properties and applications of compounds with perovskite and related structure 
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Property Compounds Application References 

Super Conductivity SrTiO3, BaxLa5-xCu5O5 Super conductors [33] [34] 

Optical YAlO3 Laser [35] 

Proton conductivity BaCeO3, BaZrO3, 

SrCeO3 

SOFC electrolyte / Hydrogen 

sensor 

[36] [37] 

[38] [39] 

Ironic conductivity (La,Sr)(Ga,Mg)O3 SOFC electrolyte [40] 

Mixed conductivity (Ba,Sr)(Co,Fe)O3 

Sr(Ti,Fe)O3 

SOFC electrode [41] [42] 

Electrical/ 

Dielectric 

BaTiO3, Ba(Zn,Ta)O3 dielectric resonator, thin file 

resistor 

[43] [44] 

Ferroelectric/ 

Piezoelectric 

Pb(Zn,Nb)O3,  

Pb(Zr,Ti)O3 

ferroelectric tunable capacitance/ 

Piezoelectric transducer 

[45] [46] 

 

1.6 Literature Review and Problem Statement 

After the concept of oxygen nonstoichiometric cycle is demonstrated [14, 27], the interest in 

two-step thermochemical water splitting cycles was renewed due to the lower operation 

temperature (as compared to direct water splitting), and ease of operation relative to cycles 

involving stoichiometric phase changes. Two classes of non-stoichiometric (variable 

valence) oxides have been studied: fluorites based on ceria (CeO2-δ) [14, 27, 47-48] and 

perovskites based on lanthanum manganite (LaMnO3-δ, in which δ may be < 0) [49, 50] or 

lanthanum aluminate (LaAlO3-δ) [51]. For the ceria-based class of compounds, extensive 

studies have revealed that this group of materials generally requires rather high 

temperatures (> 1500 °C) [14, 27] to reduce the oxide to an extent that the cycling yields non-



- 15 - 
 

trivial amounts of fuel and appreciable oxygen nonstoichiometric change for the first step 

of the cycle. Although proof of principle has been successfully demonstrated with CeO2 

installed in a solar reactor [27], such high temperatures (>1500oC) nevertheless create 

significant challenges for reactor design and operation. 

In 2012, several systems of perovskites were demonstrated for two-step thermochemical 

water splitting cycles by our group [49]. Almost simultaneously, two other laboratories 

reported experimental results from lanthanum manganite based perovskites. Scheffe et al.[51] 

evaluated the potential of La1-xSrxMnO3-δ compounds (x = 0.2, 0.3, 0.4) for thermochemical 

fuel production on the basis of literature data for the bulk thermodynamic redox properties 

and supplemented the analysis with an experimental study of the reduction behavior of the 

composition with x = 0.35. Although the fuel production half-cycle was not directly probed, 

the authors were able to show greater oxygen release from the perovskite than from ceria at 

moderate temperatures, indicating the potential for greater fuel productivity under reduced 

temperature cycling conditions. McDaniel et al. [51] evaluated the La0.6Sr0.4Mn1-xAlxO3-δ 

system and demonstrated high levels of fuel productivity for a high temperature reduction 

step of just 1350oC. These authors suggested, however, that obtaining high hydrogen yields 

would require large quantities of excess steam to drive the reaction to completion. 

Prior to these studies of thermally driven CO2 and H2O dissociation with lanthanum 

manganite based perovskite, a handful of researchers have demonstrated CH4 to syngas 

conversion over La1-xSrxMnO3-δ
 [52-54]. This process also relies on the oxygen uptake and 

release of the oxide, but the materials redox properties were not explicitly considered in 

these studies. In sum, this previous work indicates that perovskite-structured materials have 

significant promise as reactive media for solar-driven thermochemical fuel production, but 

direct evaluation of this class of materials for this application is extremely limited.  

The main goals and the approaches of the present work are: 

1. To provide a greater understanding of perovskite-structured oxides for solar fuels 

generation.  

• Among several perovskite-structured oxides found and demonstrated by 

our group[50], we examined the La1-xSrxMnO3-δ
 system in particular because 
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of the availability of thermogravimetric data. We complement an 

analytical evaluation of these materials with extensive thermochemical 

cycling experiments. 

2. To tailor the redox properties of the La1-xSrxMnO3-δ
 system via B site cation doping. 

• We varied the chemical nature of the BO6 polyhedral unit within the La1-

xSrxMnO3-δ
 system and examined the fuel production capacity and kinetics. 

Although the thermogravimetric data and other redox properties of these 

new compositions are limited, the composition dependent features of 

oxygen release and fuel production provide insight into the role of 

materials chemistry. 

3. To explore new approaches for improving the reaction kinetics. 

• In order to achieve maximum efficiency, it is essential to ensure rapid 

reaction kinetics and minimize reaction periods. We provide potential 

approaches for enhancing the reaction kinetics without introducing noble 

metal catalysts. 

4. To evaluate the advantages and dis advantages of using perovskite-structured 

materials for solar-driven thermochemical water splitting. 

• Many perovskite-structured materials that provide very high fuel 

productivity are examined to demonstrate the advantages of perovskite-

structured materials for solar-driven thermochemical water splitting. An 

efficiency analysis will also be conducted to examine the strengths and 

weaknesses.  
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C h a p t e r  2  

EXPERIMENTAL APPROACHES AND TECHNIQUES 

2.1 Introduction 

Methods of sample preparations and experimental techniques for materials characterization are 

described in this chapter. The method of screening the potential oxides from the thermodynamic 

perspective is also included. The related concepts will also be used for the solar to fuel efficiency 

calculations in a later chapter.  

2.2 Materials Preparation 

While there are many synthesis routes available for the preparation of ceramic oxides, the solid state 

reaction (SSR) method is used in this work. In comparison with chemical solution routes, such as 

the Pechini process [1], or sol-gel methods [2], solid state reaction is simple, fast, and low cost. In this 

method, oxide and carbonate starting materials are simply allowed to react at high temperature to 

yield the desired compound. However, accurate control of the composition and its uniformity are 

major challenges in SSR. Therefore, high purity starting materials and the meticulous prevention of 

contamination during the process are required for good desired composition control. And the 

sufficient mixing by long period ball milling for minimizing the inhomogeneity within the oxides is 

also important. For example, when we prepared the La1-xSrxMnO3-δ powders with the solid-state 

reaction, stoichiometric quantities of La2O3 (Alfa Aesar, REacton®, 99.99%), SrCO3 (Sigma-

Aldrich®, 99.9%), and MnCO3 (Sigma-Aldrich®, 99.9%) were mixed and attritor-milled in 

isopropanol for 6 hours at 500 rpm. After drying within the oven at 90 oC, the powder was calcined 

at 1000 °C for 3 hours under air. Before the powder mixing, the La2O3 powder was annealed at 

1200oC for 10 hours in order to minimize its hydration with the moisture in air. 

For the two-step thermochemical water splitting cycle, the gas access is crucial to the reaction 

kinetics. In order to maximize the sample surface area for reaction, the porous form of the sample is 

required. Porous monoliths were fabricated from calcined powders by mixing these powders with 

isopropanol (3 mL liquid per gram of powder) to obtain a thick paste. This paste was then placed 

(without application of pressure) into an alumina cylindrical mold with an inner diameter of 10 mm 



- 21 - 
 

and fired at 1500 °C for 6 hours under air. The result was a loosely sintered, but mechanically rigid, 

porous body. Figure 2-1 is the flow chart of the overall fabrication process. The example shown in 

the inserted picture in Figure 2-1 is La0.8Sr0.2MnO3-δ with a diameter of 7 mm and a length of 4.5 

mm. However, the size is composition dependent, the thermal stability and sinterability of the metal 

oxide will affect the monolith porosity and size.   

 

Figure 2-1 Flow chart of the porous pellets preparations. The insect presents the porous 

La0.8Sr0.2MnO3-δ prepared with this flow chart. 

 

2.3 Powder X-ray Diffraction 

Since the thermochemical water splitting cycle is conducted at high temperature, the thermal 

stability of the test oxide is essential. In order to check that there is no crystal structure change or 

decomposition during the cycles, X-ray powder diffraction is used. The X-ray is generated from a 

high power applied X-ray tube and its wavelength depends on the anode material (copper, in this 

case) and the applied accelerating voltage. The incident X-ray will interact with the sample (interact 

with the electron clouds of the atoms in compound). When the Bragg's Law (2d sin𝜃 = 𝑛𝜆) is 
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satisfied with the incident X-ray geometry, the sample produces constructive interference and the 

diffracted ray.  The pattern from the collected diffracted ray reveals information on the interspacing 

between the atomic planes. The crystal structure can be determined by comparing the pattern with a 

pattern of the same material composition in the database or the refinement analysis. 

All phase characterizations are performed by X-ray powder diffraction (Panalytical, PW3040-PRO, 

Cu Kα radiation), for which the material was lightly hand-milled. The settings of the measurements 

are listed in Table 2-1. PANalytical X’Pert HighScore Plus (Panalytical®) is used for Rietveld 

refinement analysis in this work. 

Table 2-1. The diffractometer settings used. 
Diffractometer Panalytical, PW3040-PRO 
Setting  
Target Cu 

Cu Kα radiation: Kα1=1.5406 Å 
                             Kα2=1.5444 Å 
                             Kβ=1.3922 Å 

Current 40 mA 
Voltage 45kV 
Step size 0.0334225 degree 
Dwell time 0.69986 degree/sec 
Scan range of 2Θ 20-90o 
 

2.4 Mercury Porosimetry [3] 

Mercury does not wet most substances and cannot penetrate pores by capillary action unless an 

external force applied. Due to this characteristic, mercury can be used for porosity measurements. 

When the surface of a material comes into contact with mercury, the surface tension acts 

tangentially to the solid-liquid interface. When performing the porosity measurement with Mercury 

porosimetry, an external pressure is applied to push mercury into the pores of the sample (as shown 

in Figure 2-2). For the pore with the diameter D, the relation between the pore diameter and the 

applied pressure can be derived as in Equation 2.1: 

4 cos /D Pγ θ= −  (2.1) 

where γ is the surface tension of  mercury, θ is the contact angle (angle between the material surface 

and the tension force vector), and P is the applied pressure. For a given liquid-solid system, the term 
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of 4 cosγ θ−  is constant, and the size of the pore into which mercury will be intruded is inversely 

proportional to the applied pressure. The intrusion process involves moving a mass of mercury into 

a confined pore space, and Hagen–Poiseuille equation[4] shown with Equation 2.2 shows the relation 

between the pore volume and the applied pressure.  

4

2
8

D
PdV

dt L

π

η

 
  ∆ Φ = =  (2.2) 

where Φ is the volumetric flow rate, V represents the volume of fluid (mercury) intruded into the 

pore, L is the length of the pore space, and η is the viscosity of fluid (mercury). 
P

L
∆

 represents the 

pressure drop per unit length of the pore (deepness of mercury intrusion).  

By measuring the volume of mercury that intrudes into the pores of sample with various applied 

pressures, the volume of pores (decided by D and L) in the corresponding size class can be obtained.  

 

Figure 2-2. Scheme of mercury pushed into an open pore of sample. 

AutoPore IV, micromeritics was used for Mercury porosimetry. Its resolution of the mercury 

volume change is around 0.1 μL. Closed pores cannot be detected with this method and will be one 

of the error sources. However, closed pore would not contribute heavily to water splitting due to the 

limited gas access. As compared to the conventional porosity measurement performed by measuring 

the sample dimensions and volume, Mercury porosimetry can minimize the measurement errors 
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from the irregular sample shape, also it provides the information of the average pores size 

distribution. 

2.5 Scanning Electron Microscopy (SEM) [5] 

Scanning Electron Microscopy (SEM) is a type of electron microscopy which allows imaging of 

morphology of a sample. Here a focused electron beam strikes a specimen, and the electrons 

interact with the atoms of specimen in various ways generating a variety of signals (shown in Figure 

2-3). Backscattered electrons (BSEs) and secondary electrons (SEs) are primarily used for SEM 

image formation. The SEM images provide the specimen features such as grain size and pore size, 

which helps us understand the thermal stability properties of the specimen after the sintering 

process or after the thermochemical cycles. The morphology of the samples within this work was 

examined by ZEISS 1550VP Field Emission SEM with the applied voltage 10-15 kV and current 

25 nA.   

 

Figure 2-3. Various useful signals generated when the focused electron beam strikes on a specimen 
[4]. 

2.6 Thermogravimetric Analysis (TGA) 

Thermogravimetric Analysis (TGA) is a technique used for monitoring the specimen mass change 

from the reduction and oxidization reactions under a controlled-temperature and gas atmosphere-

controlled environment.  Figure 2-4 shows one example of thermogravimetric measurement with 
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the sample La0.7Sr0.3MnO3-δ
 [6]. By flowing different mixed gases through the thermogravimetric 

furnace, the oxygen partial pressure around the sample can be controlled. We assume that all the 

weight changes are only from the oxygen release and incorporation due to the thermal reduction and 

oxidation reactions. Under the given gas atmosphere and programed temperature, enough 

equilibration time is necessary. When mass stops changing with time, we can consider that the 

oxygen migration between the sample and the gas atmosphere around it have reached the 

equilibrium. 

  

Figure 2-4. Nonstoichiometry of  La0.7Sr0.3MnO3-δ. (Data are taken from ref. [6]) 

As it is mentioned in Chapter 1, the redox properties of metal oxide are important to the 

thermochemical water splitting reactions. These properties can be extracted from the oxygen 

nonstoichiometry, δ, dependence of p (O2) and temperatures [7]. 

Under equilibrium conditions, oxygen in the gas phase and in the metal oxides have the same 

chemical potential. This equilibrium can be expressed with Equation 2.2: 
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( ) 2

( ) ( ) 0 *ln ( )2O O

s g
O O

RT p Oµ µ µ µ= ≡ = +   (2.3) 

where 0
Oµ  represents chemical potential of oxygen at standard state. 

The quantity ( )
O

sµ is equivalent to the partial molar gibbs energy of oxygen which can be 

decomposed into the partial molar enthalpy ( Oh ) and entropy ( Os ) according to  

O O Oh Tsµ = −  (2.4) 

With Equation 2.3, 2.4, and the Gibbs-Helmholtz relation (
( )

1( )
P

G
T H
T

∂
≡

∂
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 
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), the new relations can 

be generated: 
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p ORh h h

T

∂
∆ = − =

∂
 (2.5) 

( )0 2( ln ( ))1 [ ]2O O O
RT p Os s s

T
∂−∆ = − =

∂
 (2.6) 

where 0
Oh  and 0

Os are standard enthalpy and entropy of oxygen (which means at 1 atm). Oh∆  and 

Os∆  here are oxidization enthalpy and entropy, respectively. For reduction reaction, the values are 

negative of the values extracted by the equations above. 

 

(a) (b) 
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Figure 2-5. Schemes of Oh∆  and Os∆  extraction from the oxygen non-stoichiometry dependence of 

temperature and oxygen partial pressure. (a) Nonstoichiometry of La0.7Sr0.3MnO3-δ.[6] (b) Oh∆  and 

Os∆  extraction with δ  =0.05. The extracted values of Oh∆ and Os∆  within this example are -584.4 

kJ/mol-O2 and -270.8 J/mol-O2-K, respectively. 

Figure 2-5 shows how we can extract the Oh∆  and Os∆  based on the oxygen nonstoichiometry, δ , 

dependence of p(O2) and temperatures measured by thermogravimetry. With the fixed δ value, the 

data points of different temperatures are taken and used for plotting ln p (O2) vs. 1/T as shown in the 

left of the figure. From the relations described with Equation (2.2) to (2.5), the Oh∆  and Os∆  can 

be extracted from the slope and intercept of the ln p (O2) vs. 1/T plot, respectively. Repeating this 

procedure for a different δ value, we get the Oh∆ and Os∆ values corresponding to different oxygen 

nonstoichiometry. 

The straight line shown in the plot implies that Oh∆  is essentially independent of temperature. If 

the oxide behaves as the ideal solution, its Oh∆ should be without dependence of δ. The Os∆  with 

the nonstoichiometry values are due to the configurational entropy variance. 

In this work, thermogravimetric analysis was performed for La0.8Sr0.2Mn1-xFexO3-δ with the 

thermogravimetric analyzer (Netzsch STA 449C Jupiter). The measurements were conducted under 

controlled temperature and atmosphere, with temperature capability up to 1400 °C. Oxygen partial 

pressure in the system with values above 10-5 atm was controlled by using premixed ultra-high 

purity (UHP) O2 in UHP argon. The gas carrier with lower oxygen partial pressures was generated 

by passing the premixed UHP H2 in UHP argon through a room-temperature water bubbler. The 

measurement atmosphere spanned from 0.20 atm O2 to 0.03 atm humidified H2. An online oxygen 

sensor (MicroPoas) was used for monitoring the actual p(O2) in the system. 

For a given measurement program (the settings of the controlled temperatures, temperature ramp 

rates, gas atmospheres, and duration periods for the measurement), baseline measurements (system 

without sample) were performed for buoyancy effects correction before the measurements with 

sample put in system. The samples for TGA measurements were prepared with the same method 

used for the porous pellets for thermochemical cycling.  The sample mass used for the measurement 
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was around 1.0 grams. Such large mass of sample benefits the precision in the measurement of 

relatively small mass changes from oxygen release and incorporation. 

 

2.7 Quadrupole Mass Spectrometry[8] 

The mass spectrometry is an instrument which can be used to measure the mass to charge ratio, of 

ionized atoms or other electrically charged particles. Quadrupole Mass Spectrometry (QMS) is a 

type of mass spectrometry that uses a quadrupole as the mass analyzer. The scheme of the analyzer 

of a quadrupole mass spectrometry is illustrated in Figure 2-6. The actual analyzer is located in 

vacuum (with working pressure less than 10-5 torr). When detecting, the gas molecules to be 

analyzed enter the analyzer vacuum chamber via a capillary which ends with the leak valve. After 

passing the ionizer (hot filament), the natural gas molecules will be ionized. Then, the ionized 

molecules will be sorted in the quadrupole mass filter. The quadrupole is set by four cylindrical 

electrodes parallel to each other. Two opposite rods are applied a electric potential of (U+Vcos(ωt)) 

and the other two rods have a potential of -(U+Vcos(ωt)), where U is a dc voltage and Vcos(ωt) is 

an ac voltage. The applied potentials affect the trajectory of the ionized molecules traveling through 

the filter. With the given dc and ac voltages, only the ionized molecules with certain mass-to-charge 

ratio can pass through the quadrupole filter and other ions will be thrown out of their original path. 

After the sorted ionized molecules leave the mass filter, they will be collected by the detector 

(Faraday detector or a secondary electron multiplier (SEM)) and the ion currents will be generated.    

By oscillating the electric field (varying ω and holding V and U) applied to the quadrupole, it can 

monitor the ions passing through the quadrupole filter and generate the mass spectrum.  

 

Figure 2-6 Schemes of the analyzer of a quadrupole mass spectrometry. 
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A quadrupole mass spectrometer (QMS, OMNI Star, Pfeiffer-vacuum) is connected to our 

thermochemical cycle station. The evolved gases (inert gas for thermal reduction step and steam for 

water splitting step) that exit the reactor are sampled by QMS. Therefore, the oxygen release and 

fuel (hydrogen or carbon monoxide) production will change their corresponding ion concentrations 

within the reaction gases and can be detected based on the ion current changes. Gas calibration 

measurement is required to convert the ion current to gas species concentrations. Then, the amount 

of fuel generated from the thermochemical cycles can be calculated from the mass spectrometry 

measurements. 

2.8 Thermochemical Water Splitting Cycle 

Thermochemical water splitting cycle was carried out with our in-house thermochemical fuel 

production test station shown in Figure 2-7. The station consists of a set of gas mass flow 

controllers (MFCs), an infrared furnace (Ulvac-Riko VHT-E44), a water trap, and a quadrupole 

mass spectrometer. The sample is loaded into a horizontal alumina tube reactor (9.5 mm diameter), 

which is placed in the infrared furnace, which has rapid heating and cooling capability (up to 1000 

K min-1). Temperature was measured with an S-type thermocouple placed in the axial center of the 

reactor and in contact with the porous pellet sample. Thermal reduction was carried out in all cases 

using 10 ppm oxygen balanced with argon (termed “dry gas”). The purpose of using a gas of known 

oxygen content rather than pure inert gas is that it provides a thermodynamically defined oxygen 

chemical potential, essential for analyzing and understanding material behavior.  

 

 

(a) 
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Figure 2-7. (a) Schemes of the thermochemical station setup. (b) Mass spectrometry results of one 

thermochemical water splitting cycle.  

After the thermal reduction half-cycle is complete, the sample is rapidly quenched to water-splitting 

temperature. When the desired temperature is reached, the steam is introduced. The steam is 

generated by flowing ultrahigh purity (UHP) argon through a sealed water bottle set within a 

controlled temperature oven. With the oven temperature set at 60 oC, the UHP Ar gas which flows 

through it will be saturated with the purified water and acts as the reaction carrier gas with p(H2O) = 

0.20 atm, corresponding to p(O2) = 1.6×10-7 atm. The water trapper is set at the downstream of the 

reactor for collecting the excess steam. Evolved oxygen and hydrogen gases were detected using 

mass spectroscopy (OMNI Star, Pfeiffer-vacuum). For a quantitative determination of gas content, 

the mass spectroscopy was calibrated daily using 6 different hydrogen partial pressures ranging 

from 0 to 5.05×10-3 atm, and seven different oxygen partial pressures ranging from 1×10-5 to 

3.83×10-3 atm. 

Figure 2-7 (b) shows the typical result of one thermochemical water splitting cycle which includes 

one thermal reduction and one water splitting reaction. The example was performed with the 

La0.8Sr0.2MnO3±δ as the test sample and 1400 oC and 800 oC as the thermal reduction and water 

splitting reaction temperatures, respectively.  

(b) 
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C h a p t e r  3  

THERMOCHEMICAL WATER SPLITTING WITH LANTHANUM STRONTIUM 

MANGANITE 

3.1 Solid Solution Oxide La1-xSrxMO3-δ  

The compositional flexibility perovskites provides a high possibility of identifying a suitable 

material for efficient thermochemical fuel production. First, we need to decide the type of 

perovskites among the classes of A(3+)B(3+)O3, A(2+)B(4+)O3, and A(1+)B(5+)O3. Then, the multi-valent 

element must be selected since this element plays a major role in the redox properties of the 

perovskite. In this study, the  solid solution oxides La1-xSrxMO3-δ  (M  =  3d transition metals  such  

as Cr,  Mn,  Fe,  Co,  etc.) are considered first because their redox properties have been widely 

studied for various applications such as the electrode, electrolyte, and interconnect for SOFC [1-3].   

 

Figure 3-1. Hydrogen productions from two-step thermochemical water splitting of La0.8Sr0.2CrO3-δ, 

La0.8Sr0.2MnO3-δ, and La0.8Sr0.2FeO3-δ.(Oxides were thermally reduced at 1400oC under  p(O2)=10-5 

atm for 40 mins, and the water splitting reaction were performed at 800oC under the steam with 

p(H2O)=0.2 atm for 40 mins.) 
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At a first step, preliminary thermochemical water splitting measurements were conducted using 

La0.8Sr0.2MO3-δ (M=Cr, Mn, Fe, Co); the cycling conditions were 1400 oC under 10 ppm oxygen 

(p(O2)=10-5 atm) balanced with Ar for the TR step, and 800 oC under the steam with p(H2O)=0.2 

atm for the WS step. The reaction duration for both steps was 40 minutes. The cobaltite of this 

group melted during the thermal reduction reaction, and was not considered further. Figure 3-1 

shows the preliminary results for hydrogen production of other three oxides. Of these three, 

La0.8Sr0.2MnO3-δ produced the most hydrogen. Therefore, strontium-doped lanthanum manganite 

(La1-xSrxMnO3-δ) was selected to be the candidate oxide for further investigation. 

3.2 Lanthanum Strontium Manganite (La1-xSrxMnO3-δ) 

La1-xSrxMnO3±δ is one of the most common materials used in the cathode of solid oxide fuel cells 

(SOFC) cathodes for O2 reduction reactions. It is a very good electronic conductor with a electronic 

conductivity of around 200–300 S/cm (La0.8Sr0.2MnO3±δ at 900 oC) [4-5]. Since our purpose aims at 

thermochemical cycle applications, the properties of oxygen non-stoichiometry, defect equilibrium, 

surface activity, and diffusivity of La1-xSrxMnO3±δ are critical for this study. 

 

(a) 



 

- 34 - 
 

 

Figure 3-2. (a) Non-stoichiometry of La0.9Sr0.1MnO3-δ , (b) Schematic profile of oxygen content vs 

log p(O2) for La1-xSrxMnO3-δ. TGA data are obtained from ref. [3]. 

The relationship between oxygen content (3-δ) change and oxygen partial pressure (p(O2)) reflects 

the redox properties of La1-xSrxMnO3-δ, as shown in Figure 3-2. It is interesting that both the oxygen 

deficient (3-δ < 3) and the oxygen excess (3-δ > 3) are found in a wide range of p(O2). The region 

of oxygen excess is attributed to the formation of metal vacancies, and this region is less apparent 

when the Sr content increases [3]. At high p(O2), the oxygen excess reaches a saturation value which 

decreases with increasing the Sr content[5]. The oxygen deficient region, occurs due to the charge 

compensation via oxygen vacancy creation for the transition metal ion valence change that results 

from the reduction reaction. When the reduction reaction is extreme, La1-xSrxMnO3-δ decomposes 

and produces the material (La1-xSrx)2MnO4 [6]. 

Figure 3-3 shows the ΔhO) and ΔsO of La0.9Sr0.1MnO3-δ extracted from the thermogravimetric 

measurements shown in Figure 3-2 (a); the extraction method has been described in Chapter 2.6. 

From the extracted values, the difference between the values across the oxygen excess and deficient 

regions might be a result of the different governing defect reactions in each domain.   

(b) 

| 
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Figure 3-3. Thermodynamic characteristics of La0.9Sr0.1MnO3±δ (a) enthalpy and (b) entropy of 

reduction as functions of oxygen non-stoichiometry. The TGA data of La0.9Sr0.1MnO3±δ are taken 

from ref. [3]. 

(a) 

(b) 
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At first impression, the oxygen excess region is attractive for the thermochemical cycles because it 

expands the range of oxygen non-stoichiometry change. Also, the smaller reduction enthalpy within 

the oxygen excess region implies the weaker bonding between oxygen and metal ions that may lead 

to a more facile oxygen release. Unfortunately, thermodynamic limitations prevent the realization of 

these advantages for thermochemical water splitting. The thermodynamic prerequisite for redox 

medium has been described with Equation (1.14) and it shows that the enthalpy of reduction (ΔhO) 

of La0.9Sr0.1MnO3±δ within the oxygen excess region (3+δ>3) is smaller than the values of water 

(241 kJ/mol-O). 

Because the oxygen excess region of La1-xSrxMnO3±δ cannot contribute to the two-step 

thermochemical cycle and the oxygen excess region will disappear with increasing Sr content, the 

focus of our studies will mainly be on the oxygen deficient region of La1-xSrxMnO3±δ. Also, the 

thermogravimetric measurements from the reference [3] (vide infra) show the different behaviors of 

the curves which reflect the distinctness of their redox properties. The impacts of Sr content 

substituted La on A site on the performance of the two-step thermochemical water splitting cycle 

will be targeted here. 

3.3 Sr Content Impacts on Redox Properties of  La1-xSrxMnO3-δ  

The multi-valent element within the active oxide is the expected element which governs the redox 

properties applied for thermochemical cycling. Since for La1-xSrxMnO3-δ, the multi-valent element, 

Mn, is located on the B site, the impact from the A site composition on the redox properties of the 

material should be minimal. However, the thermogravimetric measurements in the literature [3]show 

distinct behaviors of oxygen non-stoichiometry changed by varying p(O2) among La1-xSrxMnO3-δ 

with different Sr contents.  

The thermogravimetric data reported by Misuzaki and coworkers[3] were selected for analysis from 

the variety of datasets available in the literature because they span the widest range of temperatures 

(600-1000 °C) and widest number of compositions. However, the highest temperature of the 

datasets is still lower than the thermal reduction temperature we are applying (1400 oC). The 

oxygen content in La1-xSrxMnO3-δ for temperature out of the datasets measurement temperature 

range can be extrapolated with the analysis method for ΔhO and ΔsO extraction demonstrated and 

shown in Figure 2-5 (b).  Take the example shown in Figure 2-5, to extend the red fitted line in (b), 
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the Ln(p(O2)) values of La0.7Sr0.3MnO3-δ with δ=0.05 for any temperature of interest can be obtained. 

To repeat this extrapolation for different oxygen content (δ), the thermogravimetric data at 

temperature of interest can be interpolated/ extrapolated. Figure 3-5 shows oxygen content in La1-

xSrxMnO3-δ for several different values of x. The high temperature thermogravimetric data (1000-

1400 °C) shown in the figure were extrapolated. The same analysis method was also applied for 

computing the thermogravimetric data with the measurement temperatures in order to check the 

quality of analysis.  
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Figure 3-5. Oxygen content in La1-xSrxMnO3-δ for several different values of x, as indicated. Solid 

blue lines are the experimental data for Mizusaki and co-workers[3] collected for the temperature 

range from 600 to 1000 °C. High temperature experimental data for the x = 0.35 composition [7] are 

shown on the x = 0.4 plot as solid black dots. Dotted lines are fit and/or extrapolated values, derived 

as described in the text. Red dotted lines refer to extrapolated behavior at 1400°C, at which 

reduction was carried in the present thermochemical cycling experiments. Green dotted lines refer 

to fit data at 800°C, at which oxidation was performed. Open red and green circles indicate, 

respectively, expected values of oxygen content upon reduction under 10 ppm O2 and oxidation 

under 20% H2O. The difference in oxygen content between these open circles corresponds to the 

oxygen non-stoichiometry change within the thermochemical cycling, Δδmax. 

 

From Figure 3-5, the oxygen stoichiometry in La1-xSrxMnO3-δ is highly dependent on Sr content. In 

the absence of Sr, the material has a high concentration of excess oxygen (δ < 0), believed to be 

charge and site balanced by cation vacancies (on both the A and B sites).[3] With increasing Sr 

content, this oxygen excess region diminishes and, simultaneously, the oxygen deficient region 

enlarges. In the presence of Sr, charge balance is achieved either by an enhanced Mn4+ 

concentration or the presence of oxygen vacancies, the balance of which depends on T and p(O2).[3] 

Most significant for this discussion is the observation that the computed values of oxygen content 

(dotted lines) are in good agreement with the experimental values (solid lines). This agreement 

provides confidence in the extrapolation of the oxygen nonstoichiometry values to high temperature. 

Overlain on the data plots in Figure 3-5 are vertical lines corresponding to the values of oxygen 

partial pressure for the reduction and oxidation half-cycles employed in this work, 10-5 and 1.6× 

10-7 atm, respectively. Oxidation (water splitting) was performed at 800 °C using a gas stream of 

20% H2O in Ar. The equivalent oxygen chemical potential is computed assuming equilibrium for 

the thermolysis reaction, 2 2 2H O( ) H ( ) 1 / 2O ( )g g g↔ + , and mass balance in the product 

generation (moles of H2 = twice the moles of O2). The equilibrium change in oxygen content, 

Δδ=δi- δf, is indicated on these plots as the difference between oxygen content at the intersection of 

these respective vertical lines with the non-stoichiometry curves at 800 and 1400 °C. Excluding the 

undoped composition, it is evident that the greater the Sr content, the greater the expected change in 
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oxygen content and hence fuel production. In the case of LaMnO3-δ, a contribution to Δδ appears 

due to the possibility of entering the oxygen excess region. Because accessing this nonstoichiometry 

would require significant atomic level structural rearrangements (cyclic generation and annihilation 

of cation vacancies), the undoped composition is not evaluated in this study. 

 

  

(a) 

(b) 
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Figure 3-6. Thermodynamic characteristics of the reduction of La1-xSrxMnO3-δ: a) enthalpy and b) 

entropy of reduction as functions of oxygen non-stoichiometry; data for undoped ceria[17] shown for 

comparison. 

 

The redox properties of La1-xSrxMnO3-δ (enthalpy (ΔhO) and entropy (ΔsO) of reduction) were 

extracted with the same method mentioned above (see in Figure 2-5) and illustrated in Figure 3-6. 

The extracted thermodynamic functions shown in Figure 3-6 reveal important trends. Ignoring for 

the moment the oxygen excess region, a monotonic decrease in the enthalpy of reduction is evident 

with increasing Sr content, falling from ~ 350 kJ/mol-O for the undoped composition to ~ 230 

kJ/mol-O for x = 0.5. In contrast, the entropy is relatively constant. This behavior directly reflects 

the fact that the material attains a higher oxygen deficiency with increasing Sr content at any given 

experimental condition of temperature and oxygen partial pressure and further reveals that the 

greater reducibility is due to a decrease in the enthalpy penalty of reduction rather than due to an 

increase in the entropy gain. A rough metric of reducibility is given by Teq = ΔhO(δ0)/ΔsO(δ0), which 

specifies the temperature at which a nonstoichiometry value of δ0 would occur under a standard 

oxygen pressure of 1 atm. Again, the monotonic decrease in ΔhO with minimal change in ΔsO 

implies the reduction temperature monotonically decreases with Sr content. A second important 

observation from the results in Figure 3-6 is the relative insensitivity, within the oxygen deficient 

region, of ΔhO to oxygen content. This is a feature of ideal solution behavior, in which the enthalpy 

of the reaction is independent of the number of defects. In such case, there is no apparent tendency 

towards either clustering or ordering of defects. Mizusaki et al. drew the same conclusion, that 

strontium-doped lanthanum manganite displays ideal solution behavior, from a more detailed 

analysis of the defect chemistry.[3] Within the oxygen deficient region one also sees that the 

enthalpy and entropy values of the manganite are substantially smaller than those of ceria,[17] 

considered a benchmark material for thermochemical fuel production. Because the enthalpy is 

particularly high for ceria, the temperatures required for reduction are higher than they are for 

strontium-doped lanthanum manganite. Indeed, the high enthalpy is the fundamental reason that 

thermochemical cycling with ceria must be carried out at extremely high temperatures.[16]  

Both the enthalpy and entropy of reduction of La1-xSrxMnO3-δ undergo abrupt changes at the 

boundary between the oxygen deficient and oxygen excess regions, where the latter region is 
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observed only in low Sr content compositions (undoped or 10 at% Sr). Given the substantially 

different means by which the structure accommodates excess oxygen from that in which it 

accommodates oxygen vacancies, such a result is not surprising. The enthalpy of reduction 

undergoes a particularly strong decrease in value, indicating that reduction occurs relatively easily 

for a material that has an excess of oxygen. Conversely, it implies that oxidizing the material with 

steam to utilize the oxygen excess capacity will be difficult. Anticipation of such behavior is 

another reason that the undoped material has not been experimentally evaluated in this study. 

 

3.4 Thermal Stability Characterization  of  La1-xSrxMnO3-δ  

Thermal stability is an important feature of the active oxide for thermochemical water splitting 

cycles since the operation is under harsh reducing environments (very high reduction temperature 

and low oxygen partial pressure). There are many possible effects of the low thermal stability such 

as (1) evaporation of cations, (2) phase decomposition /transformation, and (3) pores shrinkage, etc. 

The above phenomenon can result in materials failure or reaction kinetics degradation. To evaluate 

the thermal stability of La1-xSrxMnO3-δ, X-ray powder diffraction (XRD) and scanning electron 

microscopy (SEM) measurements are applied. 

Several structural distortions of the parent cubic perovskite structure have been reported for La1-

xSrxMnO3-δ, based on the Sr concentration, oxygen partial pressure, and temperature, as determined 

most reliably by neutron powder diffraction [11-12]. Near-stoichiometric (δ≈0) LaMnO3±0, in which 

the Mn has an average 3+ oxidation state, displays a Jahn-Teller distortion, and adopts an 

orthorhombic structure. Under typical processing conditions, the undoped composition (LaMnO3±0) 

contains oxygen excess (3-δ>3) and the accompanying high concentration of Mn4+ eliminates the 

distortion, resulting in a rhombohedral structure with space group 𝑅3�𝑐. Introduction of Sr similarly 

generates a high concentration of Mn4+ under ambient conditions (rather than oxygen vacancies), 

resulting in the same rhombohedral structure. Very high concentrations of Sr (x ≧ 0.47) lead to a 

tetragonal structure (I4/mcm) and ultimately a cubic structure (P𝑚3�𝑚) beyond 0.7 Sr [11-12]. The Sr 

content of the materials examined in the present studies is limited at x=0.4, at which, under ambient 

conditions, the cubic phase is not expected. Extreme reduction and the concomitant generation of a 

high concentration of vacancies can lead to the vacancy ordered Brownmillerite phase. This ordered 
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phase readily occurs in cobaltite and ferrite perovskites, but for strontium-doped lanthanum 

manganite it has been observed only upon reduction with hydrides or upon exposure to 50% 

hydrogen gas [11-12]. Such extreme reducing conditions are not encountered under typical 

thermochemical cycling conditions, and accordingly the Brownmillerite phase is not anticipated to 

form as part of the fuel generation process. 

Figure 3-7 shows the results of X-ray powder diffraction patterns taken under ambient conditions  at 

room temperature of La1-xSrxMnO3-δ (x = 0.1, 0.2, 0.3, and 0.4) before and after thermochemical 

cycling between 800-1400 oC. The synthesis culminated with a 6 hours sintering step at 1500 oC 

and the thermochemical cycling culminated with oxidization under 20% H2O at 800 oC. The pellets 

before and after the thermochemical cycling were gently ground to powder for XRD measurements. 

Lattice parameters for La1-xSrxMnO3-δ determined by Rietveld analysis of these patterns are 

summarized in Table 3-1. All of the as-synthesized materials display a rhombohedral structure 

(𝑅3�𝑐), consistent with literature [9-10] reports. No structural changes were observed in cycling of the 

working oxides with Sr content of 20 at% (x=0.2 of La1-xSrxMnO3-δ) or higher. A phase 

transformation from rhombohedral to orthorhombic was detected in the case of the 0.1 Sr sample, as 

revealed by the splitting of the peak at around 47° 2θ. This behavior reflects the fact that the water 

splitting step under 20 % steam at 800 °C presents a less oxidizing atmosphere, p(O2)≈1.6×10-7 atm, 

than the original synthesis condition of laboratory air (p(O2)≈0.2 atm). Slight reduction of 

La0.9Sr0.1MnO3-δ has been shown by Mitchell et al [9] to induce transformation to the orthorhombic 

phase, as a result of the previously described Jahn-Teller distortion. The other compositions display 

slight increases in cell volume, also consistent with slight reduction relative to the as-synthesized 

condition. 
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Figure 3-7. X-ray powder diffraction patterns of La1-xSrxMnO3-δ before and after thermochemical 

cycling between 800-1400 °C: (a) wider range and (b) narrower range showing phase change from 

rhombohedral (𝑅3�𝑐) to orthorhombic (Pbnm) in La0.9Sr0.1MnO3-δ after cycling. Dashed lines in (a) 

indicate the region shown in (b). 

The porosities were measured by two kinds of methods. One is the volumetric method, which is to 

compare the calculated/ theorical density of samples (with the lattice parameters and molecular 

weight) and the apparent density of porous samples. So, the porosity is calculated by the 

relation 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = �1 − �𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑜𝑟𝑜𝑢𝑠 𝑝𝑒𝑙𝑙𝑒𝑡
Theorical density

��× 100%. With this method, the non-perfect 

(b) (a) La1-xSrxMnO3-δ 
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cylinder shape of the pellets would cause the error within the calculations. The other method is to 

use the mercury porosimetry, and the results are listed in Table 3-1 with the column title “PorosityM.”  

For each composition, three porous pellets were put into the sealed sample cup of mercury 

porosimetry. As mentioned in Chapter 2, mercury is only able to be intruded into the open pores of 

the pellets, the porosity values listed (PorosityM) are accounted for the open pore contribution.   

From the porosity values shown in Table 3-1, there is no systematic trend with composition shown 

in the table. Samples after cycling show a decrease in porosity. These average porosity decreases 

mainly resulted from the sintering effects (grain growth). Enhancing the refractory property of the 

materials by doping to slow diffusion of cations might mitigate this degradation.  

 

Table 3-1. Room-temperature structural parameters for La1-xSrxMnO3-δ :(I) as-synthesized and (II) 

after thermochemical cycling. Within the column title, x represents the Sr content of La1-xSrxMnO3-δ. 

For the crystal structure, R and O are used as abbreviations for rhombohedral and orthorhombic 

structure, respectively. PorosityM represents the open pore porosities measured by mercury 

porosimetry and “×” means the lost measurements. The Rietveld refinements are calculated by the 

software X'Pert Plus with Kα2 subtraction. For the samples with the space group of 𝑅3�𝑐 , the 

Rietveld refinements were carried out using the hexagonal setting of this space group. 

(I)  

x  a (Å) b (Å) c (Å) Crystal 
structure  

(space group) 

Molar 
volume 

Å3 

Porosity 
(%) 

PorosityM 
(%) 

0.1 5.5325(2) 5.5325(2) 13.3585(6) R (𝑅3�𝑐) 354.1 54.6 52.0 
0.2 5.5276(2) 5.5276(2) 13.3664(4) R (𝑅3�𝑐) 353.7 58.8 63.8 
0.3 5.5084(2) 5.5084(2) 13.3625(6) R (𝑅3�𝑐) 351.1 49.7 56.4 
0.4   5.4875(3) 5.4875(3) 13.3533(9) R (𝑅3�𝑐) 348.2 56.6 56.6 

 

(II) 

x  a (Å) b (Å) c (Å) Crystal 
structure  

(space group) 

Molar 
volume 

Å3 

Porosity 
(%) 

PorosityM 
(%) 
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0.1 5.5494(4) 7.7549(6) 5.5854(4) O (𝑃𝑏𝑛𝑚) 240.4 45.6 × 
0.2 5.5357(1) 5.5357(1) 13.3737(3) R (𝑅3�𝑐) 354.9 54.4 × 
0.3 5.5090(2) 5.5090(2) 13.3635(4) R (𝑅3�𝑐) 351.2 45.2 × 
0.4   5.4890(2) 5.4890(2) 13.3612(6) R (𝑅3�𝑐) 348.6 48.9 × 

 

Secondary electron microscopy (SEM) images of La1-xSrxMnO3-δ are shown in Figure 3-9. The 

grain size decreases with increasing Sr content, from ~5 µm for 0.1 and 0.2 Sr to ~1 µm for 0.3 and 

0.4 Sr. The finer structure of the high Sr content materials suggests enhanced kinetics may be 

observed for these materials due to the presumably higher specific surface area and the shorter 

solid-state diffusion length. 

 

Figure 3-8. Microstructure of La1-xSrxMnO3-δ before thermochemical cycle between 800-1400 °C 

 

3.5 Thermochemical Water Splitting Cycles of  La1-xSrxMnO3-δ  
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Figure 3-9. Thermochemical cycling behavior of 1400 – 800 °C using La0.8Sr0.2MnO3-δ between 

TTR=1400 oC (under p(O2)=10-5 atm) and TWS=800 oC(under p(H2O)=0.2 atm): a) Evolved gas 

profiles for a typical cycle using thermal reduction for 40 min and water splitting for 30 min. b) 

(a)  

(b)  
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Profiles for 21 continuous cycles for thermochemical water splitting. Red and blue colors 

correspond to oxygen and hydrogen evolution, respectively. The high-temperature reduction and 

low-temperature oxidation steps were held for 47 and 16 min, respectively.  
 

Typical oxygen release and hydrogen production profiles for La0.8Sr0.2MnO3-𝛿 are presented in 

Figure 3-9 (a) (TH = 1400 °C, atmosphere = 10 ppm O2 balanced with Ar; TL = 800 °C, atmosphere 

= 20% H2O balanced with Ar). In this example, reduction and oxidation were carried out for 40 and 

30 min, respectively. For the thermal reduction reaction, the working oxide was heated from 800 °C 

to 1400 °C. Three minutes after the initiation of heating from 800 oC, the oxygen peak appears when 

the temperature reaches around 1300 °C. This kind of delay of oxygen release is because the 

thermal reduction reaction is not a isothermal process and its reaction driving force increases 

steadily as the target temperature is reached (1400 °C). Since the driving force during the 

temperature ramp up is mainly changed by the term  "TΔ𝑠𝑂" in the Gibbs free energy equation, both 

the ramp rate and the reduction entropy of the working oxides would affect the initial peak rise 

behavior. 

For the water splitting step (shown with a blue curve in Figure 3-9 (a)) hydrogen is immediately 

produced upon introduction of steam at the low temperature step. The observation that strontium-

doped lanthanum manganite can dissociate H2O through a thermochemical process is fully 

consistent with the thermodynamic expectations. The data further reveal that the reduction reaches 

90% completion after 46 min, as determined from an evaluation of the peak decay behavior, 

whereas the oxidation reaches the same extent of completion after just 6.2 min. Based on these 

observations, cycling experiments were performed using reduction and oxidation periods of 45 and 

16 min, respectively. The results, as shown in Figure 3-9 (b), show relatively stable yields of both 

oxygen and hydrogen over 21 cycles. 

Figure 3-10, 3-11, and 3-12 show the influence of Sr content on the thermochemical cycling 

behavior. The raw oxygen and hydrogen evolution profiles, Figure 3-10, reveal that the oxygen 

release and hydrogen production per cycle increase, on a per gram basis, with increasing Sr content,   

which is also in general agreement with thermodynamic expectations (the extrapolated Δδ values 

shown in Figure 3-5). Furthermore, the oxygen release kinetics, as roughly characterized by how 

quickly the gas evolution decays from its peak value, are largely unaffected by Sr content. In 
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contrast, the fuel production kinetics, as measured by the same metric, are strongly affected by Sr 

doping level, and, even with a 65 min oxidation period, fuel production is clearly incomplete for the 

x = 0.4 composition. The difference in reduction and oxidation kinetics is further evident from an 

examination of the time required for the gas concentration to decrease to a value of 10% of the peak 

(Figure 3-11). In the case of oxygen release, the required time for the peak to decay from its apex to 

10% of the apex is just 1-2 minutes, irrespective of oxide composition, whereas for hydrogen 

production it increases from about 1 min at x = 0.1 to almost an hour at x = 0.4. Possible origins of 

this kinetic behavior are considered below. The cycling profiles presented in Figure 3-10(b) reflect 

oxidation half-cycle times that correspond to approximately 90% of reaction completion for the 

‘slow’ compositions, for 0.3 and 0.4 Sr, as determined from the evaluation of the profile decay 

behavior. While the reduction behavior appears, at first glance, to be rapid, particularly in 

comparison to these oxidation reactions, it is noteworthy that the oxygen release profiles are 

characterized by extremely long tails, not easily visible in Figure 3-10(a). 
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Figure 3-10. Impact of strontium substitution in La1-xSrxMnO3-δ on thermochemical water splitting 

during 1400 – 800 °C cycle: a) oxygen evolution at 1400 °C, b) hydrogen evolution at 800 °C. The 

reduction time for 0.1, 0.2, 0.3,and 0.4 Sr at 1400 °C were 12, 47, 60,and 70 min, respectively, 

while the oxidation time at 800 °C were 8, 16, 36,and 65 min, respectively. 

 

The cycling conditions of Figure 3-10 were repeated over multiple cycles as a means of evaluating 

stability and of gaining statistically averaged fuel production data. The per cycle oxygen and 

hydrogen yields for the x = 0.2 and 0.4 compositions (obtained from an integration of the area of the 

(a)  O2 evolution 

(b)  H2 evolution 
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peak profiles) are presented in Figure 3-12. The error bars reflect the uncertainty in the integrated 

values due to background drift. Both materials show rather stable fuel productivity, indicating that, 

at least for thermal exposure periods of 22 and 15 hours, respectively, mass losses from the material 

are negligible. Although the porosity La0.8Sr0.2MnO3-δ and La0.6Sr0.4MnO3-δ decreased around 4% 

and 7% after the cycling, respectively, the impacts from these porosity loss on the stability of gas 

evolutions are not obvious.  Direct measurement of the sample mass after the completion of the 

cycling experiments showed no more than 0.5% loss for all compositions. Accordingly, fuel 

productivity numbers quoted below are the averaged values over the multiple cycles. The cycling 

data further reveal that the H2:O2 molar ratio is within experimental error of the theoretical value of 

2, for 0.2 Sr, indicating that all oxygen vacancies created during reduction are consumed for fuel 

production during oxidation. In contrast, for 0.4 Sr, the ratio is consistently slightly less than 2, a 

result also obtained for the remaining two compositions. Such behavior may reflect incomplete 

oxidation by steam at 800 °C, which is followed by oxidation by Ar/O2 at 800 °C prior to high 

temperature reduction. In this way, the oxygen released on heating can exceed the corresponding 

production of hydrogen from reaction with steam. In addition, loss of hydrogen due to leaks is a 

ubiquitous challenge and can also account for some of the deviation. Loss of hydrogen relative to 

oxygen due to inherent material behavior, for example, inaccessibility of vacancies due to ordering, 

would be expected to be cumulative (with a declining per cycle hydrogen and oxygen productivity), 

and the stable behavior argues against any such interpretation. 
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Figure 3-11. Characteristic hydrogen production and oxygen release times as functions of Sr 

content. Characteristic time is defined as that required for the off-gas detection to fall to 10% of the 

peak value. 

 

 

(a)  La0.8Sr0.2MnO3-δ 

(b)  La0.8Sr0.2MnO3-δ 
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Figure 3-12. Hydrogen and oxygen yield in La1-xSrxMnO3-δ: a) x = 0.2 and b) x = 0.4. Reproducible 

hydrogen (blue) and oxygen (red) evolution over 21 and 8 cycles was observed in 0.2 and 0.4 Sr 

pellets, respectively. The reduction and oxidation times for 0.2 Sr were 47 and 16 min, respectively, 

whereas those for 0.4 Sr were 70 and 65 min, respectively. Uncertainty is estimated from the signal 

drift as observed during calibration. Where omitted, error bars lie within the data symbol.  

 
Table 3-2 summarizes the fuel production capacity of La1-xSrxMnO3-δ tested in the present study. 

Reported are the cycle-averaged measured values of oxygen and hydrogen production. The 

projected quantity of oxygen release corresponding to the amount estimated to result if long 

reduction times, sufficient to reach equilibrium, had been employed. These projections are 

computed on the basis of the profile decay behavior and are provided along with estimates of the 

time required to reach equilibrium, again based on the profile decay behavior. The projected values 

are useful for comparison against the values estimated from an analysis of the thermogravimetric 

data, as the latter are also representative of equilibrium behavior. Beyond the monotonic increase in 

fuel productivity with increasing Sr content already revealed in the raw profiles, it is evident from 

Table 3-2 that the projected oxygen release (and hence fuel productivity) is in excellent agreement 

with the thermodynamic predictions. The finite timescale of the measurements implies only a small 

penalty of about 10% on the fuel productivity. However, accessing that final 10% would require 

substantial increases in the total cycle time, as much as a factor of three in the case of 

La0.6Sr0.4MnO3-δ. The experimental hydrogen yields are 0.91, 2.89, 5.68, and 8.91 mL/g, 

respectively, for the four compositions. The latter two values are favorable in comparison to ceria, 

which has a hydrogen production capacity of 3.6 mL/g under comparable cycling conditions [16].  

 
 
 
Table 3-2. Cycle-averaged fuel productivity of La1-xSrxMnO3-δ. Also reported are the 

(experimental) measurement time, the measured H2/O2 ratio, the projected gas production based on 

the profile characteristics and a presumed sufficiently long equilibration time, and the estimated 

time to reach the projected value. In addition, the predicted O2 release on the basis of the 

thermodynamic analysis is provided for comparison. 

x of 
La1-xSrxMnO3-δ 

Measured Gas Production 
(ml/g) 

Measurement 
time (min) 

H2/O2 
(unitless) 

Gas species O2 H2 O2 H2  
0.1 0.55 ± 0.09 0.91 ± 0.04 12 8 1.64 ± 0.02 
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0.2 1.45 ± 0.05 2.89 ± 0.07 45 16 2.00 ± 0.04 
0.3 3.4 ± 0.30 5.68 ± 0 .07 60 31 1.68 ± 0.05 
0.4 4.9 ± 0.4 8.91 ± 0.23 70 60 1.84 ± 0.03 

 
x of 
La1-xSrxMnO3-δ 

Projected Gas Production 
(ml/g) 

Projection time 
(min) 

Predicted O2 
Release  

Gas species O2 H2 O2 H2 (ml/g) 

0.1 0.65 ± 0.12 0.91 ± 0 .04 46 8 0.5±0.4 
0.2 1.53 ± 0.04 2.89 ± 0.07 91 22 0.9±0.3 
0.3 3.8 ± 0.3 6.26 ± 0.09 177 92 3.3±0.2 
0.4 5.3 ± 0.5 10.3 ± 0.4 192 210 6.1±0.8 

 
 
3.6 Reaction Kinetics Discussion 

Turning from thermodynamic behavior to kinetic characteristics, the ideal reaction substrate for 

thermochemical cycling will display both rapid bulk diffusion and high surface reaction rates. 

Diffusion here refers to chemical (or ambipolar) diffusion of neutral oxygen species, a combination 

of ionic and electronic transport contributions. In the La1-xSrxMnO3-δ system, several studies have 

been carried out using isotope exchange methods to probe oxygen self-diffusion coefficient, D*, 

and isotopic surface exchange rate, k*[13-17]. Surprisingly, few have targeted direct measurements of 

chemical diffusivity, Dchem (or Dδ), and chemical surface exchange constant, kS (or kδ), under the 

driving force of a chemical potential gradient [18-19], the kinetic parameters of relevance to 

thermochemical cycling. While, it is possible, in principle, to transform between D* and Dchem and 

analogously between k* and kS using the knowledge of the thermodynamic behavior of the material 
[21], the discussion here focuses on the direct measurements of Dchem and kS, because of the 

substantial uncertainty evident in the thermodynamic properties. 

Yasuda et al.[19] determined Dchem for compositions in the range of x = 0.05 to 0.2 using the 

conductivity relaxation method, whereas Belzner et al.[18] determined Dchem for compositions with x 

= 0.2 and 0.5 using the potentiostatic step method. Yasuda’s studies showed that at the low p(O2) 

values that could be probed by conductivity relaxation (10-10-10-17 atm, depending on temperature, 

over the range 850 to 1000 °C), the chemical diffusivity falls between 10-5 and 4×10-4 cm2s-1, 

decreases with increasing p(O2)  (a linear dependence was observed on a double-logarithmic plot) 

and is insensitive to Sr content. More oxidizing conditions could not be examined because of the 

insensitivity of conductivity to changes in oxygen partial pressure above ~ 10-9 atm. Belzner et al. 
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measured Dchem under somewhat more oxidizing conditions and at slightly lower temperatures. The 

two sets of results are in general, though not complete, agreement and indicate that the oxygen 

chemical diffusion at 800 °C during the oxidation half-cycle (water splitting step) of 

thermochemical fuel production will likely be at least 10-8 cm2s-1. For a typical diffusion length, l, of 

~ 3 µm (from the SEM images), this diffusion coefficient implies a characteristic time 

( 2
chem4diff l Dτ = ) of approximately 2 sec, suggesting that diffusion is unlikely to be rate-limiting 

for the overall fuel production process. 

An important difference between the conclusions of Belzner relative to those of Yasuda concerns 

the role of Sr content on the chemical diffusivity. As discussed by Belzner, Dchem can, under select 

conditions, have a significant dependence on partial pressure. The dependence is expressed by the 

equation 

o o

*
2

chem V el V el
O

ln (O )1
2 ln[V ]

pD D t D t Λ••

 ∂
= − = ∂ 

  (3.1) 

where 
oVD  is the diffusivity of oxygen vacancies, elt is the transference number of electronic 

species, and O[V ]••  is the fractional oxygen vacancy concentration. At the relatively low oxygen 

vacancy concentrations present in La1-xSrxMnO3-δ under moderately oxidizing conditions, both 
oVD   

and elt  are largely independent of O[V ]•• , the latter being close to 1 throughout the experimental 

conditions, and both are effectively independent of p(O2). The term in parenthesis in Equation 3.4, 

named hereΛ , is clearly dependent on p(O2). This quantity is related, but not identical, to the 

thermodynamic factor, Γ , defined formally as O Oln lnd a d c , where aO and cO are, respectively, 

the activity and concentration of oxygen in the solid. Because the specific manner in which oxygen 

stoichiometry in La1-xSrxMnO3-δ depends on p(O2) is sensitive to Sr content (Figure 3-5), one can 

anticipate that Dchem will, in turn, also be sensitive to Sr content. Indeed, Belzner directly measured 

the thermodynamic factor and found that, at close to 1 atm p(O2), Γ  was about an order of 

magnitude higher for La0.8Sr0.2MnO3-δ than for La0.5Sr0.5MnO3-δ. The authors concluded that this 

enhancement was responsible for the observed order of magnitude difference in the diffusion 

coefficients between the two compositions. In the more limited compositional range examined by 
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Yasuda, Sr = 5 to 20 at %, no significant dependence on doping level was observed. Although the 

Belzner result suggests the possibility of a systematic variation of Dchem with Sr content, particularly 

beyond Sr = 20 at %, even an order of magnitude reduction of the diffusivity, resulting in diffτ  ~ 20 

sec, is unlikely to render diffusion the rate-limiting step in thermochemical fuel production. 

Turning to the experimental results of the present study, figure 3-11 shows that in contrast to 

oxygen release, fuel production is not only sluggish, but also sensitive to Sr content. Possible 

explanations for this include a systematic variation in morphological features, a decrease in 

chemical diffusivity, or a decrease in the surface reaction constant with increasing Sr doping level. 

From the SEM images (Figure 3-9) the decreasing grain size with increasing Sr content suggests a 

morphology that favors rapid reaction at large x. However, given the observation of a characteristic 

time that increases with increasing Sr doping level, the morphological variations can be ruled out as 

the source of the differing kinetic responses. The chemical diffusivity, as noted, above can be 

expected to be dependent on Sr content as a result of the differing δ(p(O2),T) functional forms for 

the different compositions. As given in Equation 3.4, Dchem is directly proportional to the quantityΛ , 

defined as 

*
2

O

ln (O )1
2 ln[V ]

pΛ ••

∂
= −

∂
  (3.2) 

The computed values at 800 °C (Figure 3-13) show that Λ  indeed varies with doping level. The 

value of this parameter at an internal oxygen chemical potential corresponding to a quench from 

1400 °C is shown. Although Λ  varies with Sr content, as with the morphological variations, the 

trend is the opposite of that required to explain the trend in hydrogen production kinetics. 

Furthermore, as already discussed, the absolute value of Dchem reported by both Yasuda et al. and by 

Belzner et al. implies a characteristic time that is far shorter than the times represented in Figure 3-

11. Thus, diffusion (within the bulk) can be ruled out as either the rate-limiting step or the source of 

the differing fuel production kinetics. 
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Figure 3-13. Λ  plotted as function of oxygen partial pressure and Sr content in La1-xSrxMnO3-δ. 

Open circles indicate the value of Λ  after quenching from 1400 °C to 800 °C (under p(O2)=10-5 

atm). 

 

With morphology and bulk diffusivity eliminated as possible explanations for the composition 

dependent kinetic response, we turn to the surface reaction step. It is common to express the flux, 

specifically in this case the oxygen flux, OJ , across a surface at which a reaction occurs as 

O surf OJ k C= − ∆   (3.3) 

where ksurf  is the surface reaction rate constant, OC∆ is the difference in oxygen concentration 

across the solid-gas interface, and the reaction is taken to be first order with a rate constant that is 

independent of concentration. This expression takes the driving force for the reaction to be the 

difference in concentration, but thermodynamic principles dictate that the driving force is, in fact, 

the difference in oxygen chemical potential O O,solid O,gasinterface interface( ) ( )µ µ µ∆ = − . At the 

initiation of the hydrogen production step, these differences, OC∆ and Oµ∆ , can be obtained directly 
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from the oxygen non-stoichiometry curves, Figure 3-5. The OC∆ values are essentially given by the 

δ∆  values indicated between oxidizing and reducing conditions (also corresponding to maxδ∆  

described in Figure 3-5).  

The thermodynamic driving force (chemical potential difference, Oµ∆ ) of water splitting reaction 

can, in fact, be derived from the oxygen non-stoichiometry curves, Figure 3-5. The connection is 

shown schematically in Figure 3-14. The right and left curves represent respectively high and low 

temperature isothermal measurements; here, for example, the right curve is for 1400 °C and the left 

curve is for 800 °C. Thermal reduction reaction corresponds to a chemical potential change from 

point A on the 800 °C curve to point B on the 1400 °C curve. The reduction is performed under the 

oxygen partial pressure p(O2)_B  and the oxygen nonstoichiometry change is ∆𝛿 = 𝛿(𝑝𝑜𝑖𝑛𝑡 𝐵) −

𝛿(𝑝𝑜𝑖𝑛𝑡 𝐴). Upon quenching from 1400 °C to 800 °C, the chemical potential of the working oxide 

changes from point B on the 1400 °C curve to point C on the 800 °C curve. That is to say that the 

oxygen content is unchanged (initially) and the internal chemical potential of oxygen in the solid 

corresponds to that of p(O2)_C.  When steam is introduced at 800 °C curve, the oxygen chemical 

potential in the gas phase is given by p(O2)_A , resulting from the thermolysis of water (for example, 

for the oxidation at 800 °C under 20% H2O, p(O2)_A is around 1.6×10-7 atm). The oxide is 

reoxidized by the steam, following the isothermal curve at 800 °C up to point A.  

The working oxide status can be corresponded to the effective oxygen partial pressure via the 

relation 0
O O 2ln (O )RT pµ µ= + . For example, after quenching to 800 °C, the initial status 

represented by the point C corresponds to the effective oxygen partial pressure p(O2)_C.  Therefore, 

length of 𝐶𝐴�����⃑  corresponds to the initial (maximum) thermodynamic driving force which drives the 

water splitting reaction, and it can be expressed as the oxide inner chemical difference 

( )O O O 2 2

1
(  ) (  )= RT ln( ( ) _ ) ln( ( ) _ )

2
state C state A p O C p O Aµ µ µ∆ = − − . The Oµ∆ values 

correspond to the difference in effective oxygen partial pressures between the quenched state at 800 

°C and the oxidized state at the same temperature.  
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Figure 3-14. Scheme of simplified thermogravimetric measurements. Two curves represent two 

isothermal thermogravimetric measurements and the measurement temperature decreases from the 

right curve to left curve. p(O2)_B is the oxygen partial pressure for thermal reduction reaction and 

p(O2)_C is the effective oxygen partial pressure corresponding to the inner chemical potential of the 

working oxide after quenching to the water splitting temperature. 

The correlation between the peak in the hydrogen evolution and two parameters, δ∆ (directly 

proportional to OC∆ ) and Oµ∆ , is shown in Figure 3-16. In the case of OC∆ , an anticorrelation is 

observed, with the peak decreasing in intensity with increasing concentration difference. In contrast, 

the peak height appears to be positively correlated with the magnitude of Oµ∆ . This result (in 

combination with the conclusion that diffusion cannot be rate-limiting) suggests that the hydrogen 

production half-cycle is surface reaction limited, and that the rate limitation arises from differences 

in the thermodynamic driving force for the reaction. It is of some value to note that, because the 

magnitude of O,gas (interface)µ  is fixed by the reactor conditions (irrespective of the nature of the 

reactive oxide), Oµ∆  directly scales with O,solid (interface)µ . The latter is a measure of the oxygen 

chemical potential in the material upon quenching and, in turn, directly scales with ΔHred, 

suggesting that materials with small enthalpies of oxidation will be at a kinetic disadvantage relative 

to those with large enthalpies. On the other hand, in the absence of direct measurements of the 
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surface reaction constant, it is premature to rule out a possible dependence of ksurf on Sr doping level 

as the cause of the depression in kinetics with increasing Sr content. Such behavior could arise 

indirectly from a dependence of ksurf on the (initial) bulk oxygen vacancy concentration, which 

increases monotonically with Sr content for the cycling conditions explored (Figure 3-5). 

Regardless of these possibilities (reduction of the driving force or inherent variation in ksurf), the 

elimination of diffusion as the rate-limiting step points towards a surface reaction limited process. 

 

Figure 3-15. Peak flux of hydrogen plotted against (a) change in oxygen content, and (b) change in 

chemical potential over the course of the oxidation by 0.2 atm steam (balance inert) at 800 °C after 

quenching from reduction under 10 ppm O2 (balance inert) at chemical potential of oxide quenched 

from 1400  °C to 800 °C.  
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C h a p t e r  4  

SOLAR TO FUEL PRODUCTIVITY AND EFFICIENCY 

4.1 Introduction 

Strontium doped lanthanum manganite (La1-xSrxMnO3-δ) has been discovered, demonstrated, and 

investigated for two-step thermochemical water splitting. Its large oxygen nonstoichiometry change 

during cycling and moderate thermal reduction reaction temperature have attracted significant 

attention. [1-3] While equilibrium fuel productivity provides one measure of the suitability of a 

material for thermochemical cycling, such a metric has the potential to be misleading because it 

does not account for the steam-to-hydrogen conversion efficiency. The solar to fuel conversion 

efficiency calculation and the effects of redox properties of active oxides on this efficiency are 

discussed here. 

4.2 Fuel Production Reaction Extent 

The oxygen nonstoichiometry change (Δδ) within a given thermochemical cycle is a function of 

p(O2) and temperature and is governed by the redox properties, reduction enthalpy and entropy, of 

the active oxide. Figure 4-1 shows the thermogravimetric curves of La0.9Sr0.1MnO3-δ and 

La0.6Sr0.4MnO3-δ at temperatures for thermal reduction (1400 oC) and water splitting (800 oC). The 

inset shows schematically the reaction cycle path on the thermogravimetric curves (ABCA). 

𝐵𝐶�����⃑  on the inset corresponds to the dot-dash arrow lines connecting the curves of 800 °C and 1400 

°C (𝐵′𝐶′��������⃑ and 𝐵"𝐶"���������⃑ ). As mentioned in Chapter 3, the length of 𝐶𝐴�����⃑  can be considered the 

thermodynamic driving force for reoxidization. It is apparent from the plot that La0.6Sr0.4MnO3-δ has 

a larger oxygen nonstoichiometry change (Δδ) than does La0.9Sr0.1MnO3-δ, and hence higher fuel 

productivity, but it possesses a smaller thermodynamic driving force (the length of 𝐶"𝐴"���������⃑  is shorter 

than it of  𝐶′𝐴′��������⃑  ). 

Based on the experimental observations reported in Chapter 3, oxides with a smaller 

thermodynamic driving force generally have a smaller initial hydrogen production flux (lower peak 

height). Here we further show that a smaller thermodynamic driving force for water splitting results 
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in a lower steam-to-hydrogen conversion efficacy, meaning a larger amount of steam is required to 

reach full reoxidation.  

 

 

Figure 4-1. Thermogravimetric curves of La0.9Sr0.1MnO3-δ and La0.6Sr0.4MnO3-δ. The curves of 800 

°C are from the TGA data of the ref. [6], and the 1400 °C curves are calculated curves based on the 

redox properties of oxides.. Figure 3-15 is replotted in the insert plot as an explanation aid. It is 

worth noting that, in the inserted plot, the p(O2) of point B is the reduction reaction oxygen partial 

pressure and the p(O2) of point A is determined by the p(H2O) of the steam. For the steam with 

p(H2O)=0.2atm, the p(O2) of point A is around 1.6×10-7 atm. 

The amount of steam required to achieve the water splitting reaction can be determined from the 

thermodynamic redox properties. Here we apply an equilibrium calculation, implying kinetic 

factors are irrelevant. Figure 4-2 shows the reactants (steam) entering the reactor at the moment 

right after quenching from the thermal reduction temperature (TTR) to the water splitting temperature 
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(TWS). This condition corresponds to the point C in the insert in Figure 4-1. The working oxide 

located in the reactor exists at this initial point in the reduced state. Its composition is represented as 

3 i
ABO δ−  with an oxygen nonstoichiometry of δi. The water splitting reaction is initiated when 

steam in the amount of 
2 ,H O in  moles, is introduced to the reactor. Upon equilibrium with the oxide, a 

fraction of the steam is converted to hydrogen, leasing
2 ,H O fn moles unreacted. We define the 

reaction extent, ψ, as the extent of steam to hydrogen conversion. The initial and final quantities of 

steam are thus related according to: 

2 2, ,(1 )H O f H O in nψ= −   (4.1) 

 

 

 

Figure 4-2. Scheme of moles of reactant species involved in water splitting reaction. Within the 

notation of the reactant species, “i” means the value at the initiation of the reaction (initial state) and 

“f” describes the value at the completion of the reaction (final state). 
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Mass conservation of hydrogen implies 

2 2, ,H f H O in nψ=   (4.2)  

Equation 4.2 clearly shows that ψ is precisely the steam to hydrogen conversion ratio. Mass 

conservation of oxygen implies 

2 2 2, , ,( ) 2H O i H O f i f oxide O fn n n nδ δ= + − +   (4.3) 

The quantity ( )i f oxidenδ δ−  represents the amount of oxygen consumed by the oxide that results in 

the change of oxygen nonstoichiometry from δi to δf. The final term 
2 ,O fn is non-zero due to the 

thermolysis reaction, as described below. Inserting the Equation 4.1 into 4.3, yields: 

2 2 2, , ,(1 ) ( ) 2H O i H O i i f oxide O fn n n nψ δ δ= − + − +   (4.4)  

Then, we get 
2 ,O fn  by rearranging Equation 4.4: 

2 2, ,
1 ( )

2 2O f H O i i f oxiden n nψ δ δ= − −   (4.5)  

where 
2 ,O fn can be calculated from the water dissociation (thermolysis) reaction: 

2 ( ) 2( ) 2( )
1

2g g gH O H O→ +   (4.6) 

with its corresponding equilibrium constant 

2 2

2

2

11 22
H

H

( ) O sys
H O

O ref

x x P
K T

x P
 

=   
 

  (4.7) 

for which temperature (TWS) dependent equilibrium constants are tabulated using HSC [4]. In 

Equation 4.7, where sysP and refP  are the pressure of the reactor and the reference status, 

respectively (both set to 1 atm), and gasx is the mole fraction of gas species x defined as:  
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gas
gas

Total

n
x

n
=   (4.8) 

where  Totaln  is the total reactants mole amount 

2 2 2Total O H O H Arn n n n n= + + +   (4.9) 

Arn is included in Equation 4.9 because it is used as a carrier gas to bring steam into the reactor. 

Because argon does not participate in the reaction, , ,Ar i Ar f Arn n n= = . As we are interested here in 

2 ,O fn , at which point the system has reached equilibrium, we apply Equation 4.7 to the final gas 

concentrations. The value of the temperature dependent equilibrium constant is obtained from 

HSC[4].  

Assuming ideal gas behavior, we have 

2

2

,
,

O f
O f

sys

P
x

P
=  (4.10)  

Equation 4.7 can then be expressed as 

2

2 2 2

2

2 2
H ,2

, ,
H ,

( )
1

f
H O O f O f

O f

x
K T P P

x
ψ
ψ

   
= =     −  

  (4.11) 

implying 

2 2

2

,
1( )H O O fK T Pψ
ψ

 −
= 

 
  (4.12) 

At first glance, the quantities in Equation 4.12 appear independent of the oxide material properties. 

In fact, however, because the solid and gas are in equilibrium at the conclusion of the reaction, and 

for the reaction equilibrium, the O,gasµ  is equal to O,solidµ (
2 ( ) 22

0
( ) ,ln( )

O gO g O fRT Pµ µ= + ). Thus, 
2 ,O fP  

defines the oxygen content of the oxide in the final state. The connection between ψ and material 
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properties is shown in the following example. Consider ceria that is reduced at TTR=1400 oC under 

10-5 atm p(O2). The resulting δi is then 0.0313 (shown in Figure 4-3). For the water splitting step, 

the material is quenched to 800 oC and 0.2 atm p(H2O) is introduced into the reactor. We take the 

subsequent reaction of the oxide with the supplied steam to occur infinitely quickly and evaluate the 

oxygen partial pressure of the exhaust gas, defined above as 
2 ,O fP . This 

2 ,O fP  specifies the δf of the 

oxide and hence the Δδ (=δi- δf). It also specifies the steam-to-hydrogen conversion extent, ψ 

(Equation 4.12). In addition, the fact that the oxygen partial pressure attained a particular value 

implies a given oxiden was allowed to react with the input 
2 ,iH On . Mass balance shows this amount to 

be 

2 2, ,
1

oxide H f H O in n nψ
δ δ

≈ ≈
∆ ∆

 (4.13) 

Equation 4.13 is with the assumption that 
2 ,O fn is negligibly small, and this approximation will be 

adjusted later. 

Let 
2 ,O fP in our example be 10-19 atm. This corresponds to Δδ=0.022 and δf=0.0095 (point D on the 

blue curve in Figure 4-3). At this point, the oxygen chemical potential is -390.34 kJ/(mole-O2). 

From Equation 4.12, ψ is around 0.67 (point P on the red curve in Figure 4-3), implying that the 

molar ratio between the oxide and the input steam must have been 
2 ,

oxide

H O i

n
n

ψ
δ

≈
∆

=30.45. The 

maximum possible 
2 ,O fP at 800 oC with p(H2O)i=0.2 atm is 1.6×10-7 atm, which gives a minimum 

δf=0.00003 (maximum Δδ of 0.0313). This condition corresponds to the situation in which an 

infinite supply of steam is provided and ψ falls to zero. 
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Figure 4-3. Reaction extent of water splitting reaction, ψ, plotted together with the change of the 

chemical potential corresponding effective oxygen partial pressure among the reaction performed 

with CeO2. The thermochemical cycling conditions are set with 1400 oC under p(O2)=10ppm for the 

thermal reduction step and 800 oC with the steam p(H2O) = 0.2 atm for the water splitting step. 

4.3 Temperature Effect on Reaction Extent 

Equation 4.12 shows that the reaction extent, ψ, is a function of temperature. Here, the impact of 

temperature on reaction extent and the selection of cycling temperatures will be discussed. 

Again, CeO2 is taken as the example for temperature effects. Figure 4-4 (a) shows the reaction 

extent calculations with fixed water splitting reaction temperature (TWS) and the impact of the 

thermal reduction temperature (TTR). Thermal reduction temperature determines the maximum 

oxygen nonstoichiometry change (𝛿𝑖_𝑚𝑎𝑥). Therefore, after quenching to TWS, the position of point 

C in the insert plot of Figure 4-1 is also fixed.  In other words, changing TTR will move the point C 

along the thermogravimetric curve of water splitting temperature and correspondingly vary the 
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value right before the water splitting reaction begins at
2 , ,O f initialP (initial value of the ). 

Therefore, the reaction with higher TTR, for example, TTR=1600 oC, starts with the relatively low 

2 , ,O f initialP and a high ψ due to a higher initial reaction driving force. 

 

2 ,O fP
2 ,O fP

(a) 



- 70 - 
 

 

Figure 4-4. Fixed water splitting reaction temperature (TWS) reaction extent computed with the 

redox properties of CeO2. Gas conditions are same as previously mentioned in Figure 4-3. (a) 

reaction extent and change with  𝛥𝛿, (b-Top) the  impact on reaction extent, (b-Bottom) 

CeO2’s thermogravimetric curve at 800 oC[5]. The bold red arrows in (b-Top and Bottom) are the 

conceptual paths of the reaction. 

2 ,O fP
2 ,O fP

(b) 
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Figure 4-4 (b) describes the same story in a different way. The relations between ψ and for 

CeO2 reduced by different temperatures are shown on the top plot. The water splitting reaction 

proceeding can be considered as the movement of the point C toward the point A along the 

thermogravimetric curve of TWS, as shown with the bottom plot. In Figure 4-4, the water splitting 

temperature is fixed. Hence, the relations between
2

( )H O wsK T , , and ψ are also settled. 

Therefore, as long as the water splitting reaction is conducted at the same temperature, the changes 

of ψ with should be the same, and the different TTR only changes the initial partial pressure 

(
2 , ,O f initialP ). This explains why the curves with different TTR shown in Figure 4-4 (b-Top) overlap. 

We now consider the impact of changing TWS with the case shown in Figure 4-5. In this case, the 

reduction temperature is fixed at 1400 oC and the water splitting reactions are calculated at five 

different temperatures. Because TTR is fixed, the initial oxygen nonstoichiometry (δi) values are all 

the same (fixed at δi=0.0313). The oxygen nonstoichiometry changes due to reaction with steam 

(𝛥𝛿 = 𝛿𝑖 − 𝛿𝑓) vary with TWS (𝛿𝑓is determined by TWS).  The different curves behaviors in the plot 

show that the water splitting reactor is more favorable at lower temperature, and a lower TWS gives a 

higher reaction extent. For example, for 1 mole of defective CeO2 that is fully reduced at 1400 oC 

under 10ppm p(O2),  the reaction extents during to achieve Δδ=0.02 are  0.999, 0.976, 0.744, 0.267, 

and 0.057, respectively, for the five values of TWS considered. This decrease in reaction extent is 

because when quenching from TTR to various TWS at the same oxygen nonstoichiometry ( 𝛿𝑖_𝑚𝑎𝑥, 

determined by TTR), the lower TWS gives the smaller 
2 , ,O f initialP (higher reaction driving force). Figure 

4-5(b) links the changes of ψ with and the thermogravimetric curves of CeO2 based on the 

reaction equilibrium assumption. This figure explicitly shows that lowering the water splitting 

temperature can be considered as a shift in the change of oxygen nonstoichiometry to lower  

range (higher reaction driving force) and this benefits the water to hydrogen conversion ratio 

(higher ψ). 

 

2 ,O fP

2 ,O fP

2 ,O fP

2 ,O fP

2 ,O fP
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(a) 
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Figure 4-5. Fixed thermal reduction reaction temperature (TTR) reaction extent computed with the 

redox properties of CeO2. Gas conditions are same as those previously mentioned in Figure 4-3. (a) 

reaction extent and change with  𝛥𝛿, (b-Top) the  impact on reaction extent, and (b-
2 ,O fP

2 ,O fP

(b) 
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Bottom) CeO2 thermogravimetric curves of the temperatures concerned [5]. The bold light blue 

arrows in (b-Top and Bottom) are the conceptual paths of the reaction. 

In summary, increasing TTR and decreasing TWS benefits the water splitting reaction extent.  That is, 

to enlarge the operation temperature window toward both directions boosts the conversion from 

water to hydrogen. However, within the practical implementations, increasing TTR will bring 

challenges to the thermostabilities of the oxides.  Lowering TWS can improve ψ only when the 

reaction equilibrium is satisfied. Figure 4-6 shows the water splitting cycling with La0.8Sr0.2MnO3-δ 

reduced under the same conditions. We can consider the hydrogen production flux as the reaction 

extent (water to hydrogen conversion ratio) within a unit time interval. Therefore, the high 

hydrogen production flux implies a large ψ. In Figure 4-6, the hydrogen production flux increases 

with TWS decreasing from 1000 oC to 800 oC and this can be explained with the mechanism 

mentioned above. However, the hydrogen evolution peaks show the lower initial peak heights and 

sluggish decay profiles for the reactions performed at TWS lower than 800 oC, even though the 

operation temperature windows are broader. The slow surface kinetics (ks) could be one of the 

reasons for this discrepancy. The reaction may be limited by the large surface reaction barrier and 

could not reach equilibrium.  
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Figure 4-6. Water splitting reactions with La0.8Sr0.2MnO3-δ conducted at different temperatures. For 

all cases, La0.8Sr0.2MnO3-δ was thermally reduced at 1400oC under p(O2)=10ppm. For all 

reoxidization reaction, 20% steam was used.  

 

4.4 Materials-Related Impacts on Reaction Extent 

Focusing on Equation 4.12 again, under the assumption of reaction equilibrium, the gas phase 

oxygen partial pressure, , is synchronized with the chemical potential corresponding oxygen 

partial pressure of the reactive oxide, 
2 ,O solidP (the oxygen partial pressure shown on the 

thermogravimetric curves ). Therefore,  in the equation is the only materials-related factor 

which controls the water splitting reaction extent (ψ). Figure 4-7 shows a comparison of the reaction 

extent with three different reactive oxides, CeO2-δ, La0.7Sr0.3MnO3-δ, and La0.6Sr0.4MnO3-δ. As 

mentioned above, when TWS is fixed, 
2

( )H O wsK T  is decided and how ψ change with (as well as

2 ,O fP

2 ,O fP

2 ,O fP
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2 ,O solidP , when equilibrium) is settled.  The top plot shows a very similar impact of TTR as in Figure 

4.4.  Figure 4.4 shows that, when TWS is fixed, varying TTR means changing 
2 , ,O f initialP  (oxygen 

chemical potential of the reaction initially). Since the finial equilibrium oxygen partial pressure is 

fixed and determined by p(H2O) of the steam, changing 
2 , ,O f initialP places the reoxidization reaction 

on a different region of the reaction extent curve.  

Similar effects can be found in the top plot of Figure 4.7. Three reactive oxides possess distinct 

redox natures and have different
2 , ,O f initialP . From the results we can see that for CeO2-δ, most 

reoxidization reactions proceed with high reaction extent. On the contrary, the ψ values of 

La0.7Sr0.3MnO3-δ, and La0.6Sr0.4MnO3-δ are lower than 3% and 2% among the water splitting 

reactions, respectively. Examining the corresponding thermogravimetric curves shown with the 

bottom plot, we find that even through both lanthanum strontium manganites give 2 to 3 times fuel 

productivity (after full reoxidization) as compared to CeO2-δ, their low steam to hydrogen 

conversion ratio has to be compensated by a larger amount of water in order to complete  

reoxidization. 

The larger reaction extent of La0.7Sr0.3MnO3-δ as compared to that of La0.6Sr0.4MnO3-δ suggests 

La0.7Sr0.3MnO3-δ has a higher activity for water splitting reaction under such cycling conditions. This 

also supports the impacts of the Sr content on the hydrogen production kinetics mentioned in 

Chapter 3: the higher Sr content, the slower hydrogen evolution. To consider the practical 

experimental settings, the reaction which proceeds under lower ψ will generate less hydrogen within 

the unit time interval since the steam flow rate is fixed for all measurements. Again, this viewpoint 

holds only when the reaction equilibrium is reached; otherwise, the impacts from surface reaction 

energy barrier need to be considered.  
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Figure 4-7. (Top) Reaction extent of CeO2 
[5], La0.7Sr0.3Mn3-δ, and La0.6Sr0.4Mn3-δ 

[6] tested under the 

same cycling conditions shown on the plot. (Bottom) The corresponding thermogravimetric curves 

of three considered oxides. The grey spots indicate the oxygen nonstoichiometry right after the 

thermal reduction reaction was completed. 
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Figure 4-8. Comparisons of (a) reaction extent change with oxygen nonstoichiometry and (b) with 

2 ,O solidP [5-6]. 

(a) 

(b) 
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Reaction extent calculation is applied to the strontium-doped lanthanum manganite tested for 

thermochemical cycling in this study and the results are shown in Figure 4-8. Like Figure 4-4 (a), 

the ψ values of different locate along the same “path” of the evolution of ψ with since this path 

is governed by Equation 4.12 and changes with reaction temperature. The La0.8Sr0.2MnO3-δ curve 

calculated with Kuo’s TGA data[7] looks jagged and it is due to the limited resolution for 

extrapolation within  low oxygen nonstoichiometry range (shown in Figure 3-5(c)). As compared to 

ψ of CeO2-δ, all La1-xSrxMnO3-δ (x = 0.1, 0.2, 0.3, and 0.4) oxides possess lower ψ among the 

reoxidization. Also, the Sr content helps the fuel productivity (higher Δδ) but lowers the steam-to-

hydrogen conversion ratio.  

The impacts from the low steam-to-hydrogen conversion ratio are to be discussed. From Equations 

4.1, 4.2, 4.5 and 4.9 derived from mass conservation principle; we can arrange it and obtain the 

relation:  

2 2 2 2, , , , ,
1(1 ) ( )

2 2Total f O f H O f H f H O i i f oxiden n n n n nψ δ δ= + + = + − −                      (4.14) 

The total oxygen release amount for n moles of oxide is ( )i f oxidenδ δ−  can be expressed as 

2

2 2 2

2 2 2

,
, , , ,

, , , ,

( ) 2 2

12 1 ( )
2 2

O f
i f oxide H O i O f H O i Total f

sys

H O i O f H O i i f oxide Ar i f

P
n n n n n

P

n P n n n

δ δ ψ ψ

ψψ δ δ =

 
− = − = −   

 
  = − + − − +    

                     (4.15) 

where 2

2

,
,

O f
O f

sys

P
x

P
=  and 2

2 2

,
, , , ,

O f
O f O f Total f Total f

sys

P
n x n n

P
=
 

=   
 

 

Rearranging  Equation 4.15, we get 

( ) 2

2 2 2 2

,
, , , , ,( ) (1 ) 1 2 ( )O f

i f oxide O f H O i O f H O i Ar i f
sys

P
n P n P n n

P
δ δ ψ =

 
− − = − − +  

 
                (4.16) 

Finally, the evolution of oxygen nonstoichiometry among the reoxidization can be described as 

2 ,O fP
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If the amount of Ar flowed into the water bottle is F (mole), then we have 2
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is the saturated water partial pressure controlled by the 

water bottle temperature.   

In Equation 4.17, oxiden  and iδ  are constants after the thermal reduction reaction is completed, and 

others variables are linked to each other closely. As shown with Equation 4.12, the reaction extent ψ 

is a function of 
2 ,O fP and 

2 ,O fP is controlled by the reaction equilibrium of water dissociation with 

2 ,H O in . When part of 
2 ,H O in  is dissociated, the new equilibrium will be created, and 

2 ,O fP will be 

changed. Simultaneously, ψ will be affected by the new
2 ,O fP , and when ψ varies, the ratio of split 

2 ,H O in will be different. These interactions among these three parameters will proceed during the 

reoxidization till the final equilibrium is reached. The conditions of final equilibrium are determined 

by the water splitting temperature, TWS, and the introduced steam concentration, p(H2O). For 

example, with p(H2O) = 0.2 atm at 800 oC, the final equilibrium of water splitting reaction will be 

attained when 
2 ,O fP = 1.6×10-7 atm. 

With Equation 4.17, the recursion among
2 ,O fP , ψ, and 

2 ,H O in from initiation of reoxidization to 

reaction equilibrium can provide the required water introduced amount for different degree of 

reoxidization. An estimate of the number of moles of water required to induce a given change in 
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oxygen content in the oxides studied here is presented in Figure 4-9. The reduction is taken to reach 

equilibrium under an oxygen partial pressure of 10-5 atm and temperature of 1400 °C. This 

condition fixes the δi for each composition. The subsequent oxidation is taken to occur in a closed 

volume of variable size that allows equilibration between the oxide and the gas phase under an 

initial condition of 0.2 atm of H2O partial pressure (p(O2) = 1.6 × 10-7 atm) and a temperature of 800 

°C. The amount of fuel produced corresponds to Δδ and must, on thermodynamic grounds, increase 

with increasing steam input. The maximum Δδ possible occurs when δf reaches the equilibrium 

non-stoichiometry under p(O2) = 1.6 × 10-7 atm, a value close to 0, and thus Δδmax is just less than δi. 

The results show that the steam requirement for fuel production from strontium-doped lanthanum 

manganite is rather high. For example, achieving a Δδ of 0.02, which is possible only when x in 

La1-xSrxMnO3-δ is 0.3 or higher, requires a steam input ranging from about 66 to 93 moles H2O per 

mole of oxygen vacancies (per mole of hydrogen production). This steam input requirement in turn 

implies a steam-to-hydrogen conversion rate of less than 2%. While this calculation corresponds to 

a worst case scenario and in a real, flowing system the influx of fresh reactant with high oxidizing 

power will decrease the steam requirement, the results show a clear composition trend. Specifically, 

the steam requirement increases with Sr content for a given Δδ, yet, conversely, as already 

discussed, the fuel production capacity also increases. The fuel production capacity is alternatively 

defined with Δδmax=δi(TTR, p(O2)_TR)- δf(TWS, p(H2O)_WS), where δi(TTR, p(O2)_TR) represents the 

oxygen nonstoichiometry change from the thermal reduction performed at TTR under p(O2)_TR; and 

δf(TWS, p(H2O)_WS) stands for the oxygen nonstoichiometry change from the reoxidization 

performed at TWS under p(H2O)_WS. The steam requirement for lanthanum strontium manganite, 

irrespective of specific composition, is also substantially greater than that when ceria is employed, 

computed here for comparison. For example, δi for ceria is 0.031, and obtaining a Δδ of 0.02 from 

this material would require introduction of 1.15 moles of H2O per mole of oxygen vacancies, 

corresponding to an 86% steam-to-hydrogen conversion ratio.  
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Figure 4-9.  Moles of water vapor required to induce the indicated stoichiometry change per mole 

of oxide at 800 °C using an input gas stream with p(H2O) = 0.2 atm (balance inert), after reduction 

at 1400 °C under 10 ppm oxygen (balance inert). Results for La1-xSrxMnO3-δ are computed based on 

the thermogravimetric data reported by Misuzaki et al. [6] Behavior is compared to that of CeO2-δ, 

computed based on the thermodynamic data reported by Panlener et al.[5] The computation has large 

uncertainty due to the absence of data in the raw thermogravimetric plots in the vicinity of δ= 0, 

therefore, the computed curves within the last 0.5% of δi- δf are calculated with approximation. 

 

In general, the amount of steam required to achieve a target amount of hydrogen production 

approaches infinity as Δδ approaches Δδmax, indicating that efficient fuel production strategies may 

not be those that attain maximum fuel output per cycle. Instead, cycling that forgoes the final stages 

of oxidation and hence limits the steam input may be preferable. For example, doubling the fuel 

output from La0.6Sr0.4MnO3-δ  from a Δδ of 0.05 to 0.1 would require more than an order of 

magnitude increase in steam input. While it is impossible to achieve such high levels of fuel 

productivity from ceria (under the specified cycling atmospheres the maximum Δδ is 0.031), one 

must carefully weigh the tradeoffs between increased fuel production per formula unit of oxide 

versus the anticipated efficiency penalties of decreased conversion values before concluding which 

is the superior choice. Scheffe et al. recognized the need to operate strontium-doped lanthanum 
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manganites under high steam input conditions and computed favorable solar-to-fuel conversion 

efficiencies from these perovskites under the assumption of 100% heat recovery from this large 

excess of steam [7]. 

From the analysis above, it is evident to see how different redox properties affect the reaction extent 

and the water amount required for reoxidization. To understand the individual effects from the 

changes of enthalpy (ΔhO) and entropy (ΔsO) of reduction, we consider hypothetical materials of 

arbitrary ΔhO and ΔsO, and calculate the resulting ψ and Δδ for a range if cycling conditions. Two 

examples are shown in Figure 4-10 and 4-11. Impacts from changes in ΔhO are shown in Figure 4-

10 taking the ΔsO values of two virtual oxides to be the same as those of CeO2-δ. Analogously, 

Figure 4-11 shows the effects due to changes in ΔsO relative to CeO2-δ.  Two things we can learn 

from this experiment: (1) the oxygen vacancy concentration generated from the thermal reduction 

reactions can be enhanced by either decreasing ΔhO or increasing ΔsO. (2) Both ways used for 

improving fuel productivity, however shift the reaction extent toward lower values. 

It must be noted that the reaction extent is not the only factor we need to consider within the 

thermochemical cycling implementation. From the cases discussed above, high conversion ratio 

gives the less required steam amount but also reduce the fuel production per formula unit of oxide 

per cycle. Therefore, a figure of merit for determining which oxide is the superior choice for 

thermochemical cycling by balancing these factors is necessary. The indicator used for weighing the 

tradeoffs between the fuel productivity and other energy demanding factors is solar to fuel 

efficiency, η solar-fuel.  
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Figure 4-10.  Enthalpy of reduction impacts on reaction extent. Two virtual oxides are simulated 

with 110% and 90% ΔhO and same ΔsO of CeO2-δ. δi is calculated as the oxygen nonstoichiometry 

after reduction at 1400 °C under 10 ppm oxygen, and the reoxidizations are simulated as the 

reaction conducted at 800 °C using an input gas stream with p(H2O) = 0.2 atm. 
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Figure 4-11.  Entropy of reduction impacts on reaction extent. Two virtual oxides are simulated 

with 110% and 90% ΔsO and same ΔhO of CeO2-δ. δi is calculated as the oxygen nonstoichiometry 

after reduction at 1400 °C under 10 ppm oxygen and the reoxidizations are simulated as the reaction 

conducted at 800 °C using an input gas stream with p(H2O) = 0.2 atm. 
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4.5 Approaches to Designing New Materials from Solar to Fuel Efficiency Aspects  

When talking about the figure of merit for materials applied for thermochemical cycling, HHV solar 

to fuel efficiency (η solar-fuel) is often applied [8].  This methodology of efficiency analysis has been 

described and applied for CeO2-δ in ref. [8]. We first reproduce the CeO2-δ results to explain the 

process then apply the analysis to strontium-doped lanthanum manganite.  

The definition of HHV solar to fuel efficiency is 

2 2H H
solar fuel

solar

HHV n
Q

η − =   (4.18) 

where 
2HHHV is the higher heating value (HHV) of one mole of hydrogen and solarQ represents the 

sum of required heat inputs. Simply speaking, the term in the numerator stands for energy gain from 

fuel production and the denominator includes all required energy inputs. Here, the solar to fuel 

efficiency is mainly defined by materials properties and the factors about reactor design are 

excluded.  solarQ is specifically defined as all heats required to produce one mole of hydrogen and 

includes three contributions : (1) heat required to heat water from 298 K to TWS, (2)  heat required to 

reduce the reactive oxides from 3 f
ABO δ− to 3 i

ABO δ− at TTR, and (3) heat required to heat the 

reactive oxides from TWS to TTR. Together, solarQ  can be described as 

( )2 2 3

298 373
2 ( ) ( ) , ( ) ,373

1 1 1, ( )WS TR

WS

T TK K
solar H O l g p H O g p ABO red TRK T

abs

Q nH O i H C dT C dT H T
η δ δ

→
→

 = ∆ + + + ∆ ∆ ∆ ∫ ∫
 (4.19) 

where 2 ,nH O i  is the moles of water required for one mole of hydrogen production, ,p jC  

represents the molar heat capacity of species j at constant pressure, and absη is the absorption 

efficiency calculated under the blackbody cavity assumption and the cavity is absorbing the 

radiation flux of 5 MW-2 m.  Equation 4.19 can be alternately described as 

( )1
solar water oxide

abs

Q Q Q
η

= +  (4.20) 
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and the heat for the re-radiation loss is defined as 

( ) ( ) 1( 1)re radiation solar water oxide water oxide
abs

Q Q Q Q Q Q
η− = − + = + −  (4.21) 

In this calculation, reaction thermodynamic equilibrium is assumed. The first water-related term 

within the bracket of  solarQ  is the required heat for water splitting reaction step. The quantities of 

the other two required heat are closely related to both the thermal reduction and reoxidization steps, 

since Δδ relies highly on the strategies of cycling operation.  The Δδ is noted as the changes of 

oxygen non-stoichiometry of the reactive oxides, defined as δi- δf, and it directly represents the 

quantity of hydrogen. For the thermal reduction reaction, with the given TTR, the δi,max is set. After 

quenching from TTR to TWS and then introducing steam into the reactor, the oxygen non-

stoichiometry value, δ, starts to decrease due to refill of oxygen vacancies generated by thermal 

reduction. As mentioned above, when reoxidization begins, the reaction extent (ψ) decreases 

simultaneously. In other words, it is getting more and more difficult to dissociate the introduced 

steam and it requires more and more water for further reoxidization, as shown in Figure 4-9. 

Although the full reoxidization (Δδ=Δδmax) gives the highest fuel productivity and benefits the 

efficiency, the high amount of injected steam will decrease the efficiency simultaneously. 

Furthermore, since Δδ affects 2 ,nH O i  directly, we can say Δδ is greatly related to all three required 

heat inputs and can be considered as the key role which governs the efficiency. Therefore, utilizing 

all oxygen vacancies for water splitting might not be advantageous for efficiency optimization and 

partial reoxidization is necessary for the tradeoff between all required heat inputs. 

Here, one new parameter is defined for describing the molar quantity of steam injected into the 

system at the initiation of the water splitting half-cycle for one mole of hydrogen: 

2 2

2

2

, ,

,

1H O i H O i
H O

H f oxide

n n
r

n nψ δ
= = ≈

∆
  (4.22) 

where the approximation is based on the assumption that 
2 ,O fn  is negligibly small. Figure 4-12 

takes the CeO2-δ as the example for demonstrating the impacts from 
2H Or on solar fuelη − . The higher 

values of 
2H Or mean a higher amount of steam is injected. In this case, the δf at the highest 
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efficiency is around 0.002 (Δδ = 0.0646-0.002 = 0.0626); more water needs to be introduced in 

order to further utilize the rest of oxygen nonstoichiometry for more fuel production, and 

accordingly, 
2H Or increases. However, this further reoxidization degrades the efficiency. This means 

that the additional fuel production can’t compensate the required energy penalty from the excess 

injected water. Besides, the 
2H Or  value which gives the highest efficiency can be considered another 

indirect indicator of the water to fuel conversion capability of the reactive oxide.  

As mentioned, solar fuelη −  is one of the figures of merit for materials applied for thermochemical 

cycling and it is related not only to the redox properties of reactive oxides but also to the cycling 

operation conditions. Therefore, for a given reactive oxide, scanning the operation conditions for 

targeting the highest efficiency can help to find the optimized operation strategies.  

 

Figure 4-12.  Relation between calculated efficiency and 
2H Or  for CeO2-δ with the simulated 

cycling conditions of thermal reduction water splitting reactions performed at TTR=1500 oC under 

p(O2)=10ppm and TWS=800 oC under p(H2O)=0.2 atm, respectively.  The maximum available 
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oxygen nonstoichiometry is δi=0.0646. The inputs for calculation are the redox nature of CeO2-δ
[5] 

and the molar heat capacity of species of water and oxides are from HSC[4]. 

The operation conditions screening is performed with three levels optimization. The first level is to 

look for the optimized 
2H Or  (or δf) which shows the highest HHV efficiency with the given TTR and 

TWS and is demonstrated in Figure 4-12. Then, TTR is fixed in the second level of optimization, and 

the best reoxidization condition (
2H Or ) is searched for various TWS. Finally, the third level is to 

repeat the searching loops of previous levels for different TTR. 

As example of the second level HHV efficiency optimization is illustrated in Figure 4-13. The same 

computation shown in Figure 4-12 is repeated for various TWS. The aim is to look for the 

reoxidization conditions which give the highest efficiency. The peak of the efficiency curve is at 

880 oC (±20 oC) as the water splitting temperature. Therefore, when applying CeO2-δ for 

thermochemical cycling, the cycling temperature windows of TTR=1500oC and TWS=880oC give the 

highest efficiency.  
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Figure 4-13.  Second level HHV efficiency optimization of water splitting cycling with CeO2-δ. 

Thermal reduction temperature is fixed (TTR) and the optimized reoxidization conditions which give 

the highest efficiency are pursued. The calculation temperature step here is 20 oC. 

The third level HHV efficiency optimization is to perform the calculations of the earlier levels for 

various TTR and an example is shown with Figure 4-14. Since all the analysis procedures here follow 

the method described in ref. [9] and the same TGA data for redox properties extraction are used [5], 

the analyzed results are similar to the results in in ref. [9]. 

Figure 4-14(a) shows the efficiency as the function of TWS and the higher TTR gives the higher 

efficiency. With the given TWS, the higher reduction temperature operations contribute to more fuel 

productivity and less oxide material is needed for producing one mole of fuel. The benefit of lower 

oxide amount is that less heat is needed for bringing the material to temperature. For every fixed TTR 

curve, the volcanic shape mainly comes from the energy input for heating oxide 

(
3_ ,

TR

WS

T

oxide heating oxide p ABOT
Q n C dT= ∫ ). For the low TWS region, the large temperature window cycling 

makes the _oxide heatingQ  large. At the other end when TWS is high, since the optimized Δδ is small and 

the required oxide amounts ( oxiden ) are high, the heating oxide required energy inputs are also high.   

The square dots in Figure 4-14(b) represent the Δδ (δi-δf). The lower TWS gives the higher optimized 

Δδ. This means the utilization of oxygen vacancies for water splitting is more complete. Since the 

reaction extent (ψ) is low with high water splitting temperature, the complete reoxidization requires 

huge amounts of energy for heating water. This is because that the injected steam needs to be heated 

to a higher temperature and the required injected steam amount is very large due to the low ψ. 

Figure 4-14(c) and (d) show the best scenario for cycling temperatures in order to get maximum 

HHV efficiencies.  The required heat inputs for the optimized individual processes shown in (d) 

reveal that thermochemical cycling HHV efficiency is a multi-factors determined target and this 

analysis gives the optimal tradeoff balance. Further, the efficiency analysis also provides the 

suggestions for cycling operation and reactor design. For example, the reactor with the 

improvements of heat recovery can reduce the inputs for heating oxide and water and this will 

benefit the efficiency, especially for the low reduction temperature case, like TTR =1300oC shown in 

(d).   
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(a) 

(b) 
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(d) 
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Figure 4-14. Example of third level HHV efficiency optimization for CeO2-δ. (a) Water splitting 

temperature optimization for various thermal reduction temperatures. (b) Equilibrium hydrogen 

productivity expressed as the function of TWS. (c) Maximum HHV efficiency as a function of TTR. (d) 

Required heat inputs for individual processes of maximum HHV efficiency. 

The results of the second level calculation for strontium-doped lanthanum manganite (LSM) are 

shown in Figure 4-15. The 
2H Or changes have a similar composition (Sr content) trend as the ψ 

change shown in Figure 4-8 (b); that is, the higher the ψ is the less injected steam is required. Figure 

4-15 (b) shows the optimized oxygen nonstoichiometry change (Δδ) of LSM and for all 

compositions, the utilizations are more complete at low TWS. This is because the reaction extents are 

higher at lower TWS and the heat penalties from energy for heating water are less. The oxides 

possess large oxygen nonstoichiometry change within the thermochemical cycling such as x=0.3 

and 0.4 do not show the highly efficient utilization of Δδ for maximum HHV efficiency due to their 

low water to fuel conversion ratio (reaction extent, ψ). Even though the ψ of the oxides with x=0.3 

and 0.4 is low at low TWS regions, the differences in fuel productivities as compared to other higher 

ψ oxides are increasing. Therefore, the HHV efficiency of La0.7Sr0.3MnO3-δ and La0.6Sr0.4MnO3-δ 

monotonically increases with decreasing of water splitting temperatures because the high fuel 

productivities are higher. Thus, for the reactive oxides whose redox nature show a low water to fuel 

conversion ratio, extending the cycling temperature windows to include lower water splitting 

temperatures is necessary for achieving high HHV efficiency. However, for the practical 

implementation, the barriers of reaction kinetics when TWS is too low may become a concern (see 

the case of real measurements shown in Figure 4-6). 

Figure 4-16 shows the optimized heat inputs for individual processes of maximum HHV efficiency 

for all compositions, and the computed settings are applied with the real experimental cycling 

conditions shown in Chapter 3. For the inputs for heating water, it is mainly governed by their 

corresponding ψ. Because the Δδ at TWS = 800 oC of La0.7Sr0.3MnO3-δ and La0.6Sr0.4MnO3-δ are higher 

than that of others, their inputs for heating oxides are less due to the lower amount of required 

moles of oxides to produce the same amount of fuel.   
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(a) 

(b) 
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Figure 4-15. (a) Efficiency analysis of La1-xSrxMnO3-δ (x=0.1, 0.2, 0.3, and 0.4) with 1400 oC as the 

thermal reduction temperature as the function of water splitting temperature. The atmospheres of 

thermal reduction and water splitting reactions are p(O2)=10ppm and p(H2O) = 0.2 atm, 

respectively. The redox natures of oxides are from reference 6 and 7. The solids lines represent the 

HHV efficiency and the empty cross dots with the corresponding colors represent their
2H Or . (b)  

Equilibrium hydrogen productivity expressed as the function of TWS. 

 

Figure 4-16. Required heat inputs for individual processes of maximum HHV efficiency. 

Thermochemical cycling conditions are the same as the experimental measurements shown in 

Chapter 3 (TTR=1400 oC, p(O2)red=10ppm, TWS=800 oC, and  p(H2O)WS=0.2 atm). 

 

For all compositions shown in Figure 4-15, their HHV efficiencies are lower than that of CeO2-δ 

under comparable cycling conditions shown in Figure 4-14.  The reason is not only due to the lower 

ψ of LSM which results in a higher amount of required injected water and lower utilization of the 
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optimized Δδ, but also due to the higher molar specific heat. For example, based on the information 

from the database HSC 5.2[4], the Cp of CeO2 and LaMnO3 at 1400 oC are 80.132 and 144.375 

J/mol/K, respectively. Therefore, when using oxides with high heat capacities, the reactor designs 

for high solid phase heat recovery are more demanding as compared to using oxide with lower heat 

capacities. 

As described above, HHV efficiency provides a guide for designing a reactor for specific reactive 

oxides in the thermochemical cycling. For example, the large fuel production potential (Δδ) of 

La0.6Sr0.4MnO3-δ is eclipsed by the large amount of required heat for the introduced steam, as shown 

in Figure 4-16. Hence an injected steam heat recovery design is expected to improve the operation 

efficiency. Two different degrees of injected steam heat recovery are considered and expressed with 

Figure 4-17. It is expected that the HHV efficiency will increase with the improved heat recovery 

design because more water can be injected as a result of the energy for heating steam being lowered 

by the heat recovery. Therefore, the optimal 
2H Or increases with more efficient heat recovery 

designs. In the plot (b), we can see the growth of the optimized equilibrium hydrogen productivity 

and this is because more injected water is beneficial for a higher degree of reoxidization. 
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Figure 4-17.  HHV efficiency improved by the injected steam heat recovery. (a) Two different 

degrees of heat recovery (HR) are assumed for the HHV efficiency analysis of La0.6Sr0.4MnO3-δ. (b) 

The effects of the injected steam heat recovery on the optimized equilibrium hydrogen productivity. 

(b) 

(a) 
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C h a p t e r  5  

B SITE DOPING EFFECTS ON THERMOCHEMICAL CYCLING  

5.1 Introduction 

Strontium (Sr) substituted lanthanum (La) manganese (La1-xSrxMnO3-δ, x=0.1, 0.2, 0.3, and 0.4) 

compounds have been investigated for thermochemical water splitting to determine the effect of A 

site doping. Strontium (Sr) doping improves fuel productivity, which is consistent with the decrease 

of reduction reaction enthalpy with increasing Sr contents. Since structure flexibility is one of the 

beneficial characteristics of perovskites, the impacts from B site cation substitution on the redox 

natures of reactive oxides attracted our interest.  

In the present study, two kinds of cations are substituted for the Manganese (Mn) cation at the 

perovskites’ B site. One is a multi-valence cation and the other is a fixed trivalent cation. When 

considering the choices, the impacts on thermostability and doping solubility are crucial. For the 

mutil-valent cation, first column transition metals have similar ionic radii to Mn so high doping 

solubility is expected. Additionally, when considering the thermostability under the harsh reducing 

operation conditions, Co and Ni are excluded due to their poor thermostability based on the 

preliminary cycling tests shown in Chapter 3. From the same preliminary measurements, 

La0.8Sr0.2FeO3-δ showed the higher fuel productivity from thermochemical cycling than 

La0.8Sr0.2CrO3-δ, hence, La0.8Sr0.2Mn1-xFexO3-δ will be studied.  Regarding the fixed valence 

selections, Al and Ga are considered because of their close ionic radii. Of these, Al is selected for 

evaluation due to its high natural abundance, suggesting low cost, and its light atomic mass, 

suggesting a high mass normalized fuel productivity.   

 

5.2 New Oxides Structure Characterizations 

Five different iron concentrations of La0.8Sr0.2Mn1-xFexO3-δ spanning x=0 to x=1 were studied. 

Porous samples were made with the solid state reaction method described in Chapter 2, and their 

crystal structures were identified with X-ray powder diffraction (XRD).  The XRD patterns are 

shown in Figure 5-1, and the analysis results are listed in Table 5-1. All of the as-synthesized 
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materials are single-phase perovskites of rhombohedral structure (𝑅3�𝑐 ) indicating complete 

miscibility between La0.8Sr0.2MnO3 and La0.8Sr0.2FeO3. The unit cell volume increases with Fe 

doping. However, the ionic radii of Mn and Fe in trivalent state[1] are very close; this expansion 

requires more detailed structural studies. (The radii mentioned above are high spin radii. Since the 

prepared powders are ferromagnetic, the hypothesis of high spin is made. For the low spin radii, Mn 

is larger than Fe.) 

Scanning electron microscopy (SEM) images of La0.8Sr0.2Mn1-xFexO3-δ before and after 

thermochemical cycling between 800-1400 °C are shown in Figure 5-2. From the low to high Fe 

content images, it’s obvious to see that the grain size increases with increasing Fe content and the 

grain size is around 2 µm for 0% Fe and 6 µm for 100% Fe. This implies that Fe doping makes 

La0.8Sr0.2MnO3-δ less refractory. The porosities of the as-synthesized porous monoliths, Table 5-1, 

decreased with increasing Fe, but only weakly. After thermochemical cycling between 800-1400 °C, 

the porosity of all the monoliths decreased slightly. 

Figure 5-1. X-ray powder diffraction patterns of La0.8Sr0.2Mn1-xFexO3-δ as-synthesized samples. The 

sintering conditions are 1500oC for 6 hours under air.  
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Table 5-1. Refined room-temperature structural parameters for La0.8Sr0.2Mn1-xFexO3-δ as-

synthesized samples and the porosity of the porous monolith before and after the thermochemical 

cycle (10 continuous cycles) between 800-1400 °C. The porosities are estimated from a direct 

measurement of sample dimensions and mass.  

[Fe] (x) a (Å) b (Å) c (Å) Crystal structure (space group) 
0 5.5264(1) 5.5264(1) 13.3659(3) R (𝑅3�𝑐) 

0.30 5.5375(1) 5.5375(1) 13.3893(4) R (𝑅3�𝑐) 
0.5 5.5384(2) 5.5384(2) 13.4875(5) R (𝑅3�𝑐) 
0.75 5.5389(2) 5.5389(2) 13.5001(4) R (𝑅3�𝑐) 

1 5.5421(2) 5.5421(2) 13.5269(8) R (𝑅3�𝑐) 
  

x Porosity (%) 
before cycle 

Porosity (%)  
after cycle 

Porosity 
change % 

0 58 54 4 
0.30 57 45 12 
0.5 57 49 8 
0.75 48 48 0 

1 48 47 1 
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Figure 5-2. Microstructure of La0.8Sr0.2Mn1-xFexO3-δ before (left column) and after (right column) 

thermochemical cycle (10 continuous cycles) between 800-1400 °C.  

The different Al doping concentrations of La0.8Sr0.2Mn1-xAlxO3-δ porous samples are made with solid 

state reaction method. The XRD patterns and their analysis results are shown in Figure 5-3 and 

Table 5-2, respectively. The rhombohedral structure (𝑅3�𝑐) is maintained with the Al doping. Unlike 

the solid solution of La0.8Sr0.2Mn1-xFexO3-δ, Al doping introduces a second phase into La0.8Sr0.2Mn1-

xAlxO3-δ and it is La2O3 with hexagonal space group (𝑃3�𝑚1). The sample’s second phase content 

does not show a trend with Al concentration and is less than 3 wt%. The ionic radius of Al (67.5 pm) 

is much smaller than that of trivalent Mn ions (for high spin, 78.5 pm) and the formation of the 

additional phase might be due to the octahedra (BO6) distortion of perovskites from doping. The 

porosities listed in Table 5-2 were calculated by comparing the theoretical densities and the porous 

monolith densities. Unlike Fe doping, Al substitution largely increases the porosities and this might 

be beneficial to the reaction kinetics due to the higher gas flow accessibility. 

The microstructure of La0.8Sr0.2Mn1-xAlxO3-δ as-synthesized porous monoliths was characterized by 

SEM and is shown in Figure 5-4. The grain size decreases with increasing Al concentration and this 

reflects that Al doping makes the oxides more refractory. Not only the grain size but also the grain 

morphology is changed by Al substitution. The shape of the grains evolve from the irregular grain 

for x=0% to the rectangular pyramid shape for x=0.75%. 
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Figure 5-3. X-ray powder diffraction patterns of La0.8Sr0.2Mn1-xAlxO3-δ as-synthesized samples. The 

sintering conditions are 1500oC for 6 hours under air.  

 
Table 5-2. Refined room-temperature structural parameters for La0.8Sr0.2Mn1-xAlxO3-δ as-

synthesized samples and the porosity of the porous monolith before and after the thermochemical 

cycle between 800-1400 °C. The porosities are estimated from a direct measurement of sample 

dimensions and mass.  

x  a (Å) b (Å) c (Å) Crystal structure 
(space group) 

Perovskites 
 (%) 

La2O3 
(%) 

0 5.52614(4) 5.52614(4) 13.3698(1) R (𝑅3�𝑐) 100 0 
0.25 5.49014(9) 5.49014(9) 13.3227 (3) R (𝑅3�𝑐) 97.8(4) 2.2(2) 
0.50 5.43590(1) 5.43590(1) 13.2478(4) R (𝑅3�𝑐) 98.5(3) 1.5(2) 
0.75 5.39110(3) 5.39110(3) 13.1930(1) R (𝑅3�𝑐) 98.7(4) 1.3(1) 

 
x  Porosity (%) 

before cycle 
Porosity (%)  
after cycle 

0 58 54 
0.25 71 69 
0.50 76 74 
0.75 80 79 
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Figure 5-4. Microstructure of La0.8Sr0.2Mn1-xAlxO3-δ as-synthesized porous monoliths. 



- 106 - 
 

5.3 Thermochemical Cycling of La0.8Sr0.2Mn1-xFexO3-δ 

Thermochemical cycles were carried out with six different iron doping concentrations of 

La0.8Sr0.2Mn1-xFexO3-δ (x=0, 0.3, 0.5, 0.75, 0.85, and 1) porous samples. The thermal reduction 

reactions were conducted at 1400 °C under flowing 10 ppm oxygen premixed with ultra-high purity 

(UPH) Ar for 30 minutes. For the subsequent water splitting step, after the oxides were quenched to 

800 °C, the UHP Ar gas saturated with purified water at 60 °C (p(H2O) = 0.20 atm) was injected 

and the reaction allowed to proceed for 40 minutes. The continuous cycling results for each 

composition and each step are illustrated in Figure 5-5. Throughout the experiment, the oxygen and 

hydrogen evolutions are fairly stable. From the cycling results, oxygen release and hydrogen 

production increase with Fe substitution till x=0.75, then decrease with further Fe doping. With 

75% Fe substitution, the hydrogen productivity increase from around 3 mlg-1 (x=0) to 5 mlg-1. After 

this peak value, the hydrogen productivity decays with increasing Fe content, and the amount of 

hydrogen produced from La0.8Sr0.2FeO3-δ is around 0.8 mlg-1. 

Figure 5-6 presents the oxygen release and hydrogen production gas evolution profiles of a single 

cycle of each composition. The initial gas fluxes (peak heights) of both reactions increase with 

increasing Fe doping till [Fe] equal to 0.75. Recall that we observed a correlation between the initial 

fuel production fluxes and the initial water splitting driving force (chemical potential) in previous 

chapters. The different peak profiles reflect the changes in redox natures from Fe substitution. 

Unlike the case of A site substitutions with Sr (La1-xSrxMnO3-δ), the B site substitutions with Fe 

increase the fuel productivity without introducing a penalty in kinetics. This suggests that Fe doped 

La0.8Sr0.2MnO3-δ samples may have high water splitting reaction extents (ψ). Hence, these increases 

in fuel productivity may not come with a large energy penalty for heating the huge amounts of 

injected steam. Furthermore, although the microstructure images and porosities show the less gas 

flow accessibility from the Fe doped samples (larger grain size and lower porosity), the differences 

of reaction kinetic feature from the microstructures are not obvious (except the sample with x=1 

which shows large grains, dense microstructure, and lower gas evolution fluxes). 

The accessible oxygen non-stoichiometry change (Δδ) within the thermochemical cycle can be 

calculated from the gas generation amounts, and the values for all tested compositions are plotted in 

Figure 5-7. Ideally, the values computed from the amount of oxygen release and hydrogen 

production should be same. Therefore, if the blue and the orange dots match together well, this 

means the measurement errors are small.  Good agreement is from the figure, the Δδ calculated 
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from both kinds of gas generation amounts shows an intermediate maximum at composition with 

75% Fe substitution.  

 
 

 

 
 

Figure 5-5. Thermochemical cycles between 800-1400 °C performed with La0.8Sr0.2Mn1-xFexO3-δ 

(x=0, 0.3, 0.5, 0.75, 0.85, and 1) porous samples. (a) Oxygen release amounts per cycle and per 

(a) 

(b) 
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gram of oxide.  (b) Hydrogen productivities from water splitting reaction per cycle and per gram of 

oxide.  

 
 

 

(a) 

(b) 
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Figure 5-6. 5th thermochemical cycle of La0.8Sr0.2Mn1-xFexO3-δ (x=0, 0.3, 0.5, 0.75, 0.85, and 1) 

porous samples. (a) Oxygen release (TTR=1400 oC, p(O2)=10-5 atm) and (b) hydrogen generation 

profiles (TWS=800 oC, p(H2O)=0.2  atm) as the function of time. 

 
 
Figure 5-7. Oxygen non-stoichiometry changes within the thermochemical cycle of La0.8Sr0.2Mn1-

xFexO3-δ (x=0, 0.3, 0.5, 0.75, 0.85, and 1). The Δδ values are converted from the averages of the 

oxygen release and hydrogen generation amounts shown in Figure 5-5. 

 

5.4 Fe Substitution Impacts on Redox Natures of La0.8Sr0.2Mn1-xFexO3-δ 

From the tiny fuel production from La0.8Sr0.2FeO3-δ shown in Figure 5-5, it seems that it has a lower 

capacity for water splitting. Unexpectedly, the fuel productivity of La0.8Sr0.2MnO3-δ is improved by 

mixing this less capable oxide. Here, we discuss the cause of this improvements introduced by Fe 

doping from the changes of redox properties resulted from Fe doping.  At first, the redox natures of 

La0.8Sr0.2FeO3-δ are to be discussed. It’s surprising that the high quality redox properties 
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measurements for La0.8Sr0.2FeO3-δ can’t be found from literature. Fortunately, the careful 

thermogravimetric measurements of similar compositions, in particular, La0.75Sr0.25FeO3-δ, are 

available and the results are reprinted in Figure 5-8 (a)[2]. Like the case of La1-xSrxMnO3-δ shown in 

Figure 3-2, the oxygen non-stoichiometry of La1-xSrxFeO3-δ as a function of oxygen partial pressure 

can be divided to three regions. Within the high oxygen partial pressure region, the dominant 

reduction reaction related defect species is [𝐹𝑒𝐹𝑒∙ ]  (or Fe4+) and it will be reduced to [𝐹𝑒𝐹𝑒× ]  (or 

Fe3+) when decreasing p(O2). As the p(O2) is lowered further, a plateau region in which 

∂δ
∂log (𝑝(𝑂2))�   is very small is  encountered. This occurs when the defect relation [𝐹𝑒𝐹𝑒∙ ] =

[𝐹𝑒𝐹𝑒′ ] (or [Fe4+]=[Fe2+]) is satisfied. Under very reducing atmospheres, most of the Fe ions are 

reduced to [𝐹𝑒𝐹𝑒′ ] and the ∂δ ∂log (𝑝(𝑂2))�  is very different here as compared to the other two 

regions [2]. 

The reduction enthalpy (ΔhO) and entropy (ΔsO) of La0.75Sr0.25FeO3-δ were and shown in Figure 5-8 

(b). To consider the same thermochemical cycling conditions applied in the measurements of 

La0.8Sr0.2Mn1-xFexO3-δ (TTR=1400 oC, p(O2)=10-5 atm for thermal reduction and TWS=800 oC, 

p(H2O)=0.2  atm for water splitting), with the extracted ΔhO and ΔsO of La0.75Sr0.25FeO3-δ, the Δδ 

accessible for the thermochemical cycling can be estimated and it is around 0.006. This accessible 

Δδ is within the third region mentioned above. The changes of oxygen non-stoichiometry, within 

the first region (δ < 0.3), resulted from the reduction of [𝐹𝑒𝐹𝑒∙ ] ions, could not be utilized for water 

splitting due to the small reduction enthalpy (ΔhO) and entropy (ΔsO) within this δ range (the 

requirement shown in Equation 1.14). 
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Figure 5-8. (a) Oxygen non-stoichiometry of La0.75Sr0.25FeO3-δ in (3-δ)-vs-log (p(O2)) plots from 

reference [2] measured by thermogravimetric analyzer. (b) Extracted reduction enthalpy and 

entropy of La0.75Sr0.25FeO3-δ . 

La0.75Sr0.25FeO3-δ 

(a) 

(b) 
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Compared with the redox properties of La0.8Sr0.2MnO3-δ (shown in Figure 3-6), La0.75Sr0.25FeO3-δ 

possesses a higher reduction enthalpy and a lower reduction entropy. Both changes increase the 

difficulties of reduction; therefore, its Δδ value is much smaller than it of La0.8Sr0.2MnO3-δ. Based on 

what we learned from the impacts of A site content on the redox nature of La1-xSrxMnO3-δ, the Δδ 

value under the thermochemical cycling condition mentioned about decreases with Sr decrease. 

Hence, La0.8Sr0.2FeO3-δ is expected to have less fuel productivity compared with it of 

La0.75Sr0.25FeO3-δ and La0.8Sr0.2MnO3-δ. 

In order to learn the Fe substitution effects on the redox properties of La0.8Sr0.2Mn1-xFexO3-δ, 

thermogravimetric analysis was performed. Three compositions of this solid solution were 

synthesized with the solid state reaction method and they are x=0.25, x=0.5, and x=0.75. The test 

samples are porous and were prepared under the same conditions as the porous pellets used for 

thermochemical cycling. The most challenging part within this measurement is the determination of 

the “stoichiometric (δ=0)” or “reference δ” status of the oxides. In order to determine the absolute δ 

value of the test oxides, the known status should be set as the reference point when conducting the 

thermogravimetric measurements. For the oxide systems with more than one kind of 

nonstoichiometry  behavior with changing p(O2), such as La1-xCaxCrO3-δ
[3]

,  La1-xSrxMnO3-δ
[4], and 

La1-xSrxFeO3-δ
[2], the reference states are usually set at the plateau region where ∂δ ∂log (𝑝(𝑂2))� ~0. 

Due to the different redox properties of the oxides, the oxygen partial pressure ranges which 

correspond to the plateau region are different.  For example, the saturated plateau (δ~0) of 

La0.8Ca0.2CrO3-δ can be identified for within 10-5atm < p(O2) < 1atm, but for La0.8Sr0.2MnO3-δ and the 

La0.75Sr0.25FeO3-δ, oxygen excess (3-δ>3) and oxygen deficient (3-δ<3) are shown in this p(O2) 

range, respectively.  Furthermore, the plateau of La0.8Sr0.2MnO3-δ is assigned as (δ~0) and can be 

found with the conditions of 800 oC under p(O2)~ 10-5atm, but the plateau of La0.75Sr0.25FeO3-δ is 

assigned as (δ= [Sr]/2) and is located at a more reducing atmosphere. Therefore, we can expect that 

the plateau of La0.8Sr0.2MnO3-δ might be distorted by Fe substitutions, and how the reference status 

can be set is unclear. 

One fair standard is proposed here: first, we set one temporary reference state with assigned 

temperature and p(O2), then this reference state is fixed and applied for every measurement 

conducted with various gas atmospheres. Therefore, all measurements will have same standard state 

point. In order to obtain the absolute δ value of the temporary reference state, the additional full 

reduction measurements are required. After reaching the temporary reference state, the conditions 
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of high concentration reducing gas and high temperature are applied to the thermogravimetric 

experiments. When the oxides are decomposed to the corresponding more stable compounds, the 

absolute oxygen content of the temporary reference state can be calculated from the weight loss of 

this measurement. For example, La0.8Sr0.2Mn1-xFexO3-δ would be reduced to the compounds of 

La2O3, SrO, MnO, and Fe. The weight difference between the temporary reference status and the 

full reduced status is attributed to the oxygen release from the reduction reaction; hence, the 

absolute δ values of the temporary reference state can be obtained. 

The temporary reference state we set within our experiments is the oxygen content of the oxides 

equilibrated at 800oC under p(O2)=0.02 atm. So far, only measurements with two kinds of gas 

atmospheres are completed and the results are illustrated in Figure 5-9. To get better resolution in 

Δp(O2) of the measurements, more gas mixtures are required. The results so far can only express the 

Δδ from one fixed chemical potential difference (Δp(O2)) among oxides with different Fe contents.  

 

 
Figure 5-9. Oxygen non-stoichiometry of La0.8Sr0.2Mn1-xFexO3-δ measured by thermogravimetric 

analyzer. The reference point is set at 800 oC under p(O2)=0.02 atm. Gas mixtures of 1% CO/CO2 
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and 0.3% H2 balanced with Ar are applied for the measurements. Here, δ* is representing the 

oxygen non-stoichiometry temporarily set with the temporary reference status. 

 

The lines linking two states under different p(O2) can approximately show how δ changes with 

p(O2). Within the fixed chemical potential difference (Δp(O2)), the δ change decreases (∆δ ∆ 𝑝(𝑂2)� ) 

with increasing Fe contents. If these lines consider δ as a function of p(O2) (like the general 

thermogravimetric measurement curves but with very low resolution in Δp(O2)) and the values of 

corresponding p(O2) are extracted on the lines with fixed δ* for each temperature and each 

composition, the reduction  enthalpy and entropy for this δ* can be computed. Figure 5-10 shows 

the values of reduction enthalpy and entropy of La0.8Sr0.2Mn1-xFexO3-δ at the fixed δ* (0.04 for 

x≤0.75, and 0.09 for x=1) value. It's worth noting that, since the δ* is temporarily unified for all 

compositions, the real absolute δ might be shifted. For example, for the TGA results of La1-

ySryFeO3-δ shown in ref. [2], the δ values at 800oC under p(O2)=0.02 atm is much less than zero. 

Also, since the TG curve resolutions are insufficient, better accuracy for this analysis is required.  
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Figure 5-10. Extracted reduction enthalpy (ΔhO) and entropy (ΔsO) of La0.8Sr0.2Mn1-xFexO3-δ and 

La0.75Sr0.25FeO3-δ with δ=0.31 (shown in Figure 5-9). δ* represents the oxygen non-stoichiometry set 

with the temporary reference state. 

 

The reduction enthalpy and entropy of La0.8Sr0.2MnO3-δ extracted from the reported TGA results [4] 

and Figure 5-9 at δ equal to 0.04  are 285 (Mizusaki) and 308 (this work) kJ(mol-1O-1) for ΔhO and 

113 (Mizusaki) and 136 (this work) J(mol-1O-1K-1) for ΔsO. The discrepancy in values of ΔhO and 

ΔsO from our work might be due to the lower δ resolution and the inaccurate assignment of the 

temporary δ* for this work. For the La0.8Sr0.2Mn1-xFexO3-δ samples with x≤0.75, both reduction 

enthalpy and entropy increase as Fe substitution increases.  As mentioned above, the increase of 

reduction ΔhO will act against the oxygen release due to the stronger bonding with oxygen. On the 

other hand, the increase of reduction ΔsO favors thermal reduction, especially when the reaction 

temperature is high. It appears, the higher fuel productivities of Fe substituted samples result from 

the change of ΔsO. Figure 5-10 furthermore shows that ΔhO and ΔsO drop sharply when the B site 

cation site is fully occupied by Fe (La0.8Sr0.2FeO3-δ). The distinct behavior of La0.8Sr0.2FeO3-δ is, in 

fact, directly evident in the raw TGA results. In contrast to the other compositions, La0.8Sr0.2FeO3-δ 

appears to be in the isoelectronic region over the temperature and p(O2) measurement range. It is 

appropriate, therefore, to compare the extracted ΔhO and ΔsO values with those of La0.75Sr0.25FeO3-δ 

also in the isoelectronic region known to occur at δ~0.3. As discussed in Chapter 3, Sr doping in 

La1-xSrxMnO3-δ lowers the reduction enthalpy. It was anticipated, therefore, that La0.8Sr0.2FeO3-δ 

(with a smaller Sr content) would have a higher ΔhO than La0.75Sr0.25FeO3-δ. Surprisingly, the ΔhO 

and ΔsO values determined here for La0.8Sr0.2FeO3-δ are much smaller than those of La0.75Sr0.25FeO3-δ 

(also plotted in Figure 5-10). The unexpected result casts some doubts on our preliminary results. If 

La0.8Sr0.2FeO3-δ is instead taken to be similar to be La0.75Sr0.25FeO3-δ, the monotonic increases in 

reduction ΔhO and ΔsO of La0.8Sr0.2Mn1-xFexO3-δ with Fe content (shown in Figure 5-10) can be 

plausibly attributed to the solid solution formation.  

 
 
 
5.5 Thermochemical Cycling of La0.8Sr0.2Mn1-xAlxO3-δ 

Another dopant, Al, is substituted into La0.8Sr0.2MnO3-δ. Samples with three different Al contents 

(25%, 50%, and 75%) were prepared with the same solid state reaction method. La0.8Sr0.2AlO3-δ is 

ruled out because it contains no multi-valence element. The thermochemical water splitting cycling 
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is performed with the same test conditions applied on La0.8Sr0.2Mn1-xFexO3-δ described above. Figure 

5-11 shows the cycling results and an intermediate maximum of the fuel productivity at the 

composition with 50% Al substitution, similar to the Fe substitution.  

However, it is worth noting that the profiles are normalized by the test oxide mass, since Al atomic 

weight is much smaller than that of Mn and Fe, with the same δ change created from one mole of 

the reactive oxides the gas evolution amount might be amplified if it is normalized by mass. 

Therefore, to have a fair comparison between samples, the gas evolution amounts should be 

converted to δ per unit cell of oxide, as is illustrated in Figure 5-12.  

There are certain mismatches between the δ values converted from oxygen release and from the 

hydrogen production. However, from both calculation sources the increases of the δ change due to 

Al substitutions are clearly evident. Therefore, intermediate Al doping enhances the fuel 

productivity from thermochemical water splitting. 

 

 

(a) 
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Figure 5-11. 5th thermochemical cycle of La0.8Sr0.2Mn1-xAlxO3-δ (x=0, 0.25, 0.5, and 0.75) porous 

samples. (a) Oxygen release and (b) hydrogen generation profiles as the function of time. The 

corresponding average gas evolution amounts are overlapped on the plots. 

(b) 
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Figure 5-12. Oxygen non-stoichiometry changes within the thermochemical cycle of La0.8Sr0.2Mn1-

xAlxO3-δ (x=0, 0.25, 0.5, and 0.75). The Δδ values are converted from the average oxygen release 

and hydrogen generation amounts over eight continuous cycles. 

Although the Al doping affects the thermochemical cycling performance (see Figure 5-12), the Δδ  

differences between samples is less than 0.01. Hence, the improvement is not as obvious as Fe 

substitution. But, since the La0.8Sr0.2Mn1-xAlxO3-δ sample of x=0.25 and x=0.5 expresses the higher 

Δδ within the cycling and they posses less multi-valence element within the oxides, this suggests 

that when desiging the new reactive oxides for thermochemical water splitting cycling, the multi-

valence element does not have to comprise the majority of the compound. For example, Sr(Ti1-

xMnx)O3-δ is another new material designed for thermochemical water splitting and it is based on 

earth-abundant elements. With only 20% Mn content, the Δδ within the cycling between 1400 oC 

and 800 oC is around 0.06 [6] and this amount of change is double that of La0.8Sr0.2MnO3-δ. This 

implies that a higher structure flexibility exists than we originally envisioned for the tailoring of 

oxides. 
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The mass normalized gas evolution profiles plotted in Figure 5-11 are redrawn with the oxygen 

non-stoichiometry change fluxes and illustrated in Figure 5-13. There is no systematic trend from 

the oxygen release peaks shown in Figure 5-11(a). When plotting the δ fluxes, with the exception of 

the none Al substituted sample, the δ fluxes from oxygen release reaction decrease with increasing 

Al contents. Regarding the water splitting reaction, the peak profiles, specifically their initial peak 

heights, show the opposite trend as compared with thermal reduction reaction. In order to learn the 

surface reaction behaviors among samples, we try to correlate the gas evolution with the sample 

microstructure. From the SEM images and porosity shown in Figure 5-2 and Table 2, respectively, 

Al substitution reduces the grain size and increases the sample porosity. Both effects from Al 

doping imply the increase of reaction surface. The higher reaction surface area might support the 

higher δ fluxes from water splitting reaction shown in Figure 5-2(b). However, the reverse order of 

the δ fluxes from thermal reduction reactions displays that the high reaction surface area benefit is 

not evident with reduction. 

Another possibility is that the δ fluxes are affected by the redox nature of the oxides, similar to  the 

correlation we tried to make for the initial hydrogen production flux and the initial oxidization 

reaction chemical potential of the oxides (Figure 3-16(b)). It could be based on the high reaction 

extent (ψ) resulting from the large reaction driving force. However, due to the limited knowledge of 

the redox natures of La0.8Sr0.2Mn1-xAlxO3-δ, the evidence to support this is still insufficient. 

Al doped La1-ySryMnO3-δ for solar thermochemical H2 production has been also reported by 

McDaniel et al.[7] and the reported hydrogen productivities are listed in Table 5-3. The reactive 

oxides were thermally reduced at 1350oC in He and the water splitting reactions were conducted at 

1000oC in steam with p(H2O)=0.4 atm. Because the oxygen partial pressure of the reduction 

reaction environment is unclear, it is impossible to estimate the oxygen non-stoichiometry changes 

(Δδ) within the thermochemical cycling by the redox properties of the reactive oxides. For example, 

if the He gas flow provides the gas atmosphere for the reduction reaction around p(O2)=10ppm, the 

expected Δδ value of CeO2-δ should be 0.0194 and it is more than three times higher than the value 

converted from the reported H2 productivity (shown in Table 5-3). If this divergence is attributed to 

the leakage of the reactor, the oxygen partial pressure under this unknown leakage level can be 

calculated by the Δδ listed in table and it is around p(O2)=0.0032 atm. If we assume that the thermal 

reduction reaction is performed under the oxygen partial pressure p(O2)=0.0032 atm, and apply the 

same cycling conditions on La0.6Sr0.4MnO3-δ, with its redox properties we reported in Chapter 3, the 
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Δδ within the thermochemical cycling can be expected around 0.032. As compared to the Δδ values 

of La0.6Sr0.4Mn0.6Al0.4O3-δ and La0.6Sr0.4Mn0.4Al0.6O3-δ listed in table, we can conclude that Al doping 

increase the fuel productivity of La0.6Sr0.4MnO3-δ. The fuel productivity improvements from Al 

substitution have been observed in both our and McDaniel’s work. The fuel productivity of 

La0.6Sr0.4MnO3-δ is doubled by 40% Al substitution for Mn. This improvement is much great than 

what we observed from the samples of La0.8Sr0.2Mn1-xAlxO3-δ. In the present study, replacing 50% 

Mn of La0.8Sr0.2MnO3-δ by Al increases Δδ by around 15%. 

 

Table 5-3. Fuel productivities of La1-ySryMn1-xAlxO3-δ reported by ref. [8]. Thermal reduction and 

water splitting temperature are 1350oC and 1000oC, respectively. The water splitting reactions were 

performed under p(H2O)=0.4 atm (the corresponding p(O2) is around 4.77×10-6 atm). 

Composition  H2 productivity 
(μmole/g) 

H2 productivity 
(ml/g) 

Δδ within cycling 

CeO2 32 0.7168 0.0055 
La0.6Sr0.4Mn0.6Al0.4O3-δ 307 6.8768 0.0645 
La0.4Sr0.6Mn0.6Al0.4O3-δ 277 6.2048 0.0554 
La0.6Sr0.4Mn0.4Al0.6O3-δ 220 4.9280 0.0450 
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Figure 5-13. Redrawing the thermochemical cycle of La0.8Sr0.2Mn1-xAlxO3-δ (x=0, 0.25, 0.5, and 

0.75) as the flux of δ. (a) Oxygen release and (b) hydrogen generation profiles as the function of 

time. 

(a) 

(b) 
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C h a p t e r  6  

REACTION KINETICIS ASPECTS STUDIES  

6.1 Introduction 

A preliminary kinetic assessment of strontium-doped lanthanum manganite (LSM) perovskites for 

two-step thermochemical water splitting has been discussed in Chapter 3. However, due to the 

limited surface kinetics information from the literature, the only assured conclusion we can draw so 

far is that the sluggish water splitting reaction kinetics is not because of the bulk diffusion process. 

Furthermore, the information on kinetics provided by electrical conductivity relaxation (ECR) 

measurement is from measurements under small chemical potential (p(O2)) perturbations, [1] 

whereas the water splitting reaction is performed using a relatively large chemical potential 

difference. The impact from this large driving force on reaction kinetics needs further study. In the 

first half of this chapter, we studied the reaction kinetic limitations for both thermal reduction and 

water splitting steps. Under the assumption of thermodynamic equilibrium, we examine how the 

thermodynamic driving force (redox nature of the reactive oxide) affects the reaction progress.  

In the second half of this chapter, the A site non-stoichiometry of LSM is investigated. When 

applying LSM for SOFC applications, cation segregation at the surface has been a commonly 

observed phenomenon and it directly affects the cathode reactivity and stability in oxygen reduction 

reactions (ORR)[2-4]. Since SrO segregation has been identified as the reason for activity degradation 

of the ORR, the idea of A site deficiency in LSM, (La1-xSrx)1-yMnO3-δ (y>0), has been investigated 

for thermochemical water splitting. The purpose is to suppress the SrO segregation, hence, to 

improve the water splitting reaction kinetics. However, the experimental results reveal the opposite 

trend with A-site excess materials demonstrating enhance kinetics. The data suggest that the boost 

in kinetics drive from new hetero-structure composites involving A-site excess phase. 

 

6.2 Thermodynamic Influences on Kinetics 

When we perform the thermochemical cycling, the information the mass spectrometer provides is 

the oxygen release and hydrogen production flux profiles. To put it in another way, the flux profile 
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can be considered as the oxygen non-stoichiometry (δ) changes within unit time, 𝜕𝛿 𝜕𝑡� . As 

mentioned in Chapter 4, the Δδ is driven by the chemical potential differences and for the water 

splitting reaction it can be described with Equation 4.17. 
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Therefore, the flux of oxygen (vacancy) can be expressed as 
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 (6.1) 

where F is the flux of Ar (mole/minute) flowed into the steam generator (water bottle). 

Therefore, the equilibrium reaction kinetics is linked by the thermodynamic nature of oxides via the 

time information embedded in the steam flow rate. 

We turn now to the thermal reduction reaction. The derivation is similar to that of water splitting 

reaction, but it is simpler because the only relevant gas species is oxygen. To unify the notation for 

the two half-reactions, the initial and final state designations for both reactions follow those for 

water splitting. Hence, “i” here represents the reduced state and “f” represents the state before 

thermal reduction. By this convention, thermal reduction reaction of a given oxide is expressed as 

2

( )
2f i

i f
x xMO MO Oδ δ

δ δ
− −

−
→ +   (6.2) 

Mass conservation of oxygen before and after the reduction, implies 
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  (6.3) 

The index of the bracket stands for the states of the oxygen originally stored within the oxides. The 

bracket with index of solid represent the oxygen atoms are located within the lattices of the oxide 

before thermal reduction and bracket with index of gas represents the same amount of oxygen 

released from the oxide after thermal reduction.    

For the practical implementation, we performed the thermal reduction with the carrier gas with an 

oxygen partial pressure of 10-5 atm and balanced with argon. The oxygen partial pressure of the 

reduction reaction environment should be specified and fixed in order to explicitly analyze the 

oxygen non-stoichiometry change resulted from the reduction. We index it as 2 ,O inlet

sys

P

P
 
  
 

. Therefore, 

for the injected oxygen partial pressure controlled carrier gas, the mass of gases can be expressed as 
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  (6.4) 

After the reduction, the total moles of gases becomes 
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  (6.5) 

Clearly, after the reduction reaction, shown in Equation 6.5, the amount of oxygen in the gas phase 

increases as a result of the oxygen release from the reactive oxide. Accordingly, the total amount of 

gas also increases and is given by 

, ,
1 ( )
2Total i Total f i f oxiden n nδ δ= + −   (6.6) 
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Figure 6-1 illustrates the reactor scheme of thermal reduction reaction.  The involved reactant gas 

species are shown in the scheme in term of mole. The total gas evolution in term of mole amount 

from the reactor inlet (right of the reactor shown in the figure) to the outlet can be expressed as 
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 (6.7) 

 

 

Figure 6-1. Scheme of moles of reactant species involved in thermal reduction reaction. Within the 

notation of the reactant species, “i” describes the reduced status of the reaction and “f” describes the 

status before the reaction. 

Recall the previous definition of the mole fraction of oxygen mentioned in Chapter 4,  
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. To prevent confusion about 

cycling between the reduced and oxidized states of oxides during the two half reactions, we will 
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always refer the variables with the notations “f” for oxidized state (
2 2,  ,, ,O f O f fn P δ , and etc.) and the 

variables with the notations “i” for reduced state (
2 2,  ,, ,O i O i in P δ , and etc.). With applying the ideal 

gas and Dalton's law, at the reactor outlet, the total moles of oxygen can be expressed as 
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 (6.8) 

To insert Equation 6.8 into Equation 6.7,  

2 2

2

, ,
, , ,

1 ( )
2

O inlet O i
O i Total f i f oxide Total i

sys sys

P P
n n n n

P P
δ δ

   
= + − =      

   
 (6.9) 

Therefore, we can get 
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To rearrange Equation 6.10,  
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For thermal reduction reaction, the oxide is in oxidized state at the start of the reaction (
fnMO δ− ). 

Within Equation 6.12, the variables with notations “f” ( fδ and fn  ) are fixed and the variables with 
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notations “i” ( iδ  and
2 ,O iP ) evolve with the reaction progress. 

2 ,O iP  represents the oxygen partial 

pressure of the gas atmosphere after passing the reactive oxide. The chemical potential change of 

the oxide is driven by gas carrier flow.  After the oxygen release from the oxide during thermal 

reduction, the chemical potential of the oxide would be changed due to the change of state (value of 

iδ ). Since we assume that the reaction kinetic barrier is very small and the new equilibrium will be 

rebuilt immediately, 
2 ,O iP  will be varied by the new chemical potential of the oxide. We can 

consider the term on the right hand side of Equation 6.12, 2 2, ,O i O inlet

sys sys

P P

P P
   

−      
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, as the driving force 

for the thermal reduction reaction, and the oxygen nonstoichiometry evolution will cease when 

2 2, ,O i O inletP P= . 

Similar to our treatment of Equation 6.1 for the water splitting reaction, we apply the flow rate of 

the carrier gas ( F (mole/minute)) for the reduction reaction into Equation 6.12. Then, the oxygen 

nonstoichiometry evolution flux can be illustrated as 
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where F is the gas flux for total gas species and it is equal to the flux of ,Total fn . 

Equation 6.13 implies that 2 ,O i
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P

P
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is the driving force, which drives the oxygen non-stoichiometry 

change, and when  2 ,O i
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 is equal to 2 ,O inlet
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, the equilibrium status of the thermal reduction 

reaction is achieved and the changes of δ cease.  
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6.3 Concrete Examples: Thermal Reduction Kinetics 

In order to learn how the equilibrium reaction kinetics changes with the redox nature of reactive 

oxides, Equation 6.14 is applied to simulate the reaction evolutions. When applying the equation, 

the parameters of the real thermochemical cycling are employed. In particular, the system pressure 

is assumed as 1 atmosphere and 2 ,O inlet

sys

P

P
 
  
 

 is set to 10-5, which is the oxygen partial pressure of the 

gas carrier for thermal reduction reaction.  Then Equation 6.13 becomes 
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where F  is the gas carrier (Ar with 10ppm as p(O2)) flux, 1000 cc/min. For every time interval, a 

fixed amount of Ar will be introduced into the reactor and will flush out the oxygen released from 

the thermally reduced oxides. Since we are assuming the material is always in equilibrium, any 

potential kinetic barrier is ignored. Therefore, after every reaction with the pulse of steam, the 

chemical potential of oxides change (
2 ,O iP ) and this change triggers the new equilibrium 

immediately. This kind of reaction equilibrium loop will continue until 
2 ,O iP equals 10ppm. 

The simulation is executed with a homemade Matlab® code, and the Runge–Kutta numerical 

method is employed [5]. The inputs for this calculation are the redox properties (reduction enthalpy 

(ΔhO) and entropy (ΔsO)) of the relevant oxides. Thus, the quality of the extraction of ΔhO and ΔsO 

affects the accuracy of the computed results. In particular, within the thermogravimetric 

experiments, it is very challenging to obtain highly accurate weight loss for tiny oxygen release. 

Therefore, the extractions of ΔhO and ΔsO with small δ values have more uncertainty (at which δi is 

very close to δf). Hence, this decreased accuracy would happen on the initial section of thermal 

reduction reaction calculation and the final section of water splitting reaction calculation, 

respectively.  

Figure 6-2 shows a typical δ evolution during thermal reduction as simulated with Equation 6.13. At 

first glance, the very long reaction time appears incompatible with practical implementation. 

Nevertheless, the long reaction time is a thermodynamic reality, and results from the large chemical 
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potential difference between the solid oxide phase and the carrier gas (p(O2)=10ppm). From the 

figure, within the first 64 of the total 1170 minute half-cycle, 96% reduction reaction is completed; 

only approximates 0.005 of 0.125 of δ can be obtained from the remaining 18.4 hours of reaction. 

This implies that fully completed thermal reduction is not the practical scenario because the time 

required is long and the process is inefficient. Also, the long evolution tail and small δ value change 

(tiny oxygen release) would mislead us into thinking that the reaction is complete because the 

detection of such low oxygen concentration change might not be possible due to the detection limit 

of the gas phase mass spectrometer. The values of the completed reaction times of La1-xSrxMnO3-δ 

are 204 (x=0.1), 289 (x=0.2), 829 (x=0.3), and 1170 (x=0.4) minutes, respectively.  

 

Figure 6-2. Simulation of oxygen non-stoichiometry (δ) evolution of La0.6Sr0.4MnO3-δ during 

thermal reduction reaction at 1400 oC under a p(O2) of 10 ppm. The initial state is 800 oC and the 

temperature ramping rate is 500 oC/min. The redox natures from reference [6] are applied for this 

calculation. Simulated conditions are set with gas carrier flux at 1000 sccm Ar and the sample mass 

is 0.514 gram, which is the same as the real experiment environments. 
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To link this simulation to the real thermochemical cycling, the flux of δ evolution is converted to 

the flux of oxygen release (mlg-1min-1). The simulated oxygen release fluxes are illustrated in Figure 

6-3 and the real experiment results shown in Chapter 3 have been overlaid for comparisons. From 

the simulated oxygen release fluxes, the gas evolution behaviors are very distinguishable between 

samples and these differences result from the different redox natures of oxides. Unlike the water 

splitting reaction, thermal reduction is activated during the temperature ramping and is not an 

isothermal reaction.  From the calculation results, the peak height occurs during the temperature 

ramping.  The thermogravimetric analysis results [6]
 can help to explain the order of the peak heights 

shown in Figure 6-3. With the fixed p(O2), the oxides with higher Sr content possess higher 

 �∆𝛿 ∆𝑇� �(can be checked by drawing a vertical line across different isothermal TGA curves). Since 

we are neglecting the reaction kinetics barriers for current discussions, new equilibrium will be 

obtained when new temperature (thermodynamic status) is reached. Since the ramping rate of the 

thermal reduction steps is the same for all samples, within the same time interval, the oxides with 

more Sr will release more oxygen (same ΔT, but higher Δδ). Therefore, high Sr content samples 

show high oxygen release flux.  

When comparing the simulations with the real thermal reduction gas evolutions, it is surprising to 

see the very similar trends of the gas evolutions with samples compositions shown in two plots. 

However, the absolute values of simulation results are different and higher (except x=0.2 of La1-

xSrxMnO3-δ) as compared to the values from experiments. The differences are larger for the high Sr 

content oxides, and the values are very close for the La1-xSrxMnO3-δ with x=0.1 and 0.3. Since the 

gas evolution flux can be described as  𝐽 = 𝑘∆𝜇 and only the chemical potential changes within 

reaction (∆𝜇 ) are considered for current simulations, the differences between simulation and 

experimental fluxes can be attributed to the effects of 𝑘, surface reaction coefficient.  Therefore, we 

can conclude that the reduction reactions are limited by surface reaction kinetics barriers. For the 

sample which shows agreement between calculated and measurement profiles, such as 

La0.9Sr0.1MnO3-δ, there is also the possibility that the reaction kinetics are limited by the gas carrier 

flow rate since the ratio of the gas carrier flux to mass (𝐹̇ 𝑛𝑜𝑥𝑖𝑑𝑒� ) also affects the δ evolution as 

shown in Equation 6.13. The impacts of the gas carrier flow rate on the δ evolution can be observed 
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with the example shown in Figure 6-4. The example reveals that higher gas carrier flow rate 

accelerates the δ evolution and this trend is expected from the description of Equation 6.13. 

Also, the differences between calculated and measurement profiles can be also due to 

approximation of the simulation. Most significantly, δsolid(x) is assumed constant along length of gas 

flow direction. The quality of the TGA measurements also affects the simulated profiles. 

 

(a) 
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Figure 6-3. (a) Simulation of oxygen release fluxes of La1-xSrxMnO3-δ (x=0.1, 0.2, 0.3, and 0.4) 

during thermal reduction reaction at 1400 oC under p(O2) as 10 ppm. The inputs of materials redox 

natures are from reference [6] and [7]. The curves are cut and plotted with the experimental 

thermochemical cycling time frames. (b) Reprint of Figure 3-11(a) for comparison. 

(b) 
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Figure 6-4. Gas carrier flow rate impact on reduction reaction equilibrium kinetics. The redox 

properties of La0.6Sr0.4MnO3-δ from reference [6] are applied to this calculation. Solid lines are the 

simulated oxygen release fluxes with different gas carrier flow rates and the dash lines stand for the 

corresponding computed δ evolutions. 

 

6.4 Concrete Examples: on Water Splitting Kinetics 

For the equilibrium reaction kinetics of water splitting reactions, Equation 6.1 is applied to simulate 

the reaction evolutions.  The system pressure is assumed as 1 atmosphere, and the equation can be 

simplified as following:  
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where F can is the injected steam flux and is set with the same flow rate applied in experiments, 

200 ml/min. For every time interval, a fixed amount of steam will be introduced into the reactor 

where it interacts with the reduced oxide. Without considering kinetic limitations from the pulse of 

steam, the chemical potential of oxides change (
2 ,O fP ) and this change triggers both the new 

reaction extent (ψ) and reaction equilibrium immediately.  

The typical oxygen non-stoichiometry (δ) evolution for water splitting looks like it does for thermal 

reduction, in Figure 6-2, except that it is shown with the “opposite” variable on the y axis (δf- δi) as 

it describes the reverse process. However, the calculated reaction equilibrium time in this case is 

likely to be overestimated (simulated time for complete reaction  is too long) because, at the final 

equilibrium state, the oxide has a very small δ and this region the uncertainty in the relationship 

between p(O2) and δ is large. Again, this depends on the quality of thermogravimetric experiments. 

For example, among the available thermogravimetric experiments for CeO2-δ, the redox properties 

extracted for δ=0.001 are still reliable. But for the case of La1-xSrxMnO3-δ, because the location of 

the plateau region varies with temperature and because of the scarcity of accurate measurements in 

the literature, the dependence of δ on p(O2) is unclear even up to δ=0.01.  

Figure 6-5 shows simulations of the water splitting reaction for La1-xSrxMnO3-δ (x=0.1, 0.2, 0.3, and 

0.4) in comparison with experimental results. Similar to the correlation of hydrogen production flux 

peak heights and the oxygen chemical potential difference between the oxide and the injected steam 

discussed in Chapter 3 and shown in Figure 3-15 (b), the peak higher hydrogen production flux 

increases with increasing chemical potential difference between the gas and the oxide. The behavior 

can be understood as follows. A higher deriving force leads to a higher steam-to-hydrogen 

conversion ratio (ψ), Figure 4-8 (b), and, as shown in Equation 6.1, a larger ψ leads to a 

larger ∂δ 𝜕𝑡⁄ . Comparing the simulations for two half reactions, Figure 6-3 and 6-5, the opposite 

trends of the gas evolution fluxes over compositions can be found. High Sr content sample shows 

high flux for oxygen release but low flux for hydrogen production. It is almost inevitable that a 

material with high driving force for reduction and have a high O2 evolution flux, will have a small 

driving force for oxidization and have a low H2 generation flux, and vice versa. 

Comparing the simulations with the experimental results, it is evident the simulations give higher 

hydrogen production fluxes. As mentioned, the hydrogen production flux is proportional to 𝑘∆𝜇 

and the simulations only consider the effects from ∆𝜇. Therefore, the flux differences between 
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simulation and experimental results can likely be attributed to the surface reaction barriers ( 𝑘) (or 

the assumption of constant δsolid(x)). Furthermore, we can observe an important trend with 

composition. For thermal reduction, the difference between the simulations and measurements is 

roughly constant with Sr content. In contrast, for hydrogen production, the difference is most severe 

at low Sr content. Thus, even though low Sr content oxides have a larger oxygen chemical potential 

difference and hence promise high steam-to-fuel conversion effectiveness, the surface reaction 

barriers limit the water splitting progress. 
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Figure 6-5. (a) Simulation of hydrogen release fluxes of La1-xSrxMnO3-δ (x=0.1, 0.2, 0.3, and 0.4) 

during water splitting reaction at 800 oC under p(H2O) as 0.2 atm. The inputs of materials redox 

properties are from reference [6]. The curves are cut and plotted with the experimental 

thermochemical cycling time frames. (b) Reprint of Figure 3-11(b) for comparisons. 

Predicting the impacts from different thermochemical cycling conditions on reaction kinetics can 

help us to optimize thermochemical cycling operations and improve reactor designs. Based on 

Equation 6-1, for the water splitting reaction, varying the injected steam flux (𝐹̇) will affect the 

hydrogen evolution. Figure 6-6 expresses an example of how steam flux affects the water splitting 

reaction (under fixed p(H2O)). The higher steam flux means the higher amount of steam is 

introduced within unite time and this can also be achieved by varying the p(H2O). Therefore, the 

impacts of varying steam flux and varying p(H2O) are similar (since the value of (
2 ,O fP ) shown in 

Equation 6-15 is relatively small as compared to p(H2O), the first term in the equation mainly 

governs the 𝜕𝛿 𝜕𝑡�  ). 
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Figure 6-6. Inject steam flow rate impacts on water splitting reaction. The redox natures of 

La0.6Sr0.4MnO3-δ from reference [6] are applied to this calculation. Solid lines are the simulated 

hydrogen production fluxes under different steam flow rate and the dash lines stand for the 

corresponding computed δ evolutions. All calculations are cut off at the computed reaction time of 

60 minutes for saving the calculating resources since the main feature of the impacts have been 

shown.  

 

6.5 Enhancing Reaction Kinetics through Materials Modification 

The experimental and analytical results suggest that, when applying La1-xSrxMnO3-δ to 

thermochemical cycling, the reaction kinetics are limited by the surface reaction rate. Sluggish 

reactions carry an energy penalty not captured in the efficiency analysis presented in Chapter 4. 

These additional energy costs include the consumption of inert gas, the electricity for reactor 



- 140 - 
 

operation, pumping work for improving the chemical reaction, etc. The sum of these extra energy 

costs can be presented as systemE  and combined into the efficiency calculation 

2 2
. .

H H
solar fuel r o

solar system

HHV n
Q E

η − − =
+

 (6.16) 

where “r.o.” stands for real operation. 

Clearly, systemE increases with reaction time. Therefore, improving the reaction kinetics to lower

systemE  is critical for high solar-to-fuel conversion efficiency. 

As mentioned in the introduction, for the system of La1-xSrxMnO3-δ, SrO segregation is often 

suggested to be the source of sluggish surface reaction rates. Therefore, the approach for promoting 

the thermochemical process is to reduce the possibility of SrO segregation. Introduction A site 

deficiency to LSM, (La1-xSrx)1-yMnO3-δ (y>0), is hence pursued to achieve this target. For this study, 

we choose La0.5Sr0.5MnO3-δ as the reactive oxide. Since this composition has a high potential for 

SrO segregation due to its high Sr content, the changes resulting from A site deficiency can be 

expected to be obvious. Six different compositions were prepared by solid state reaction methods 

with 1500 oC as the sintering temperature. The composition of the samples in this study are denoted 

by the ratio and they are A/B=0.9 (La0.45Sr0.45MnO3-δ), A/B=0.94 (La0.47Sr0.47MnO3-δ), A/B=1 

(La0.50Sr0.50MnO3-δ), A/B=1.04 (La0.52Sr0.52MnO3-δ), A/B=1.08 (La0.54Sr0.54MnO3-δ), and A/B=1.16 

(La0.58Sr0.58MnO3-δ). From what we learned from both the Sr doping effects on fuel productivity and 

kinetics simulations, for such high Sr content oxides, completion of the thermal reduction and 

reoxidization steps is an impractical strategy because the reaction times become excessive. In this 

study, the thermochemical cycling is carried out with the fixed reaction times; of 40 minutes for 

each half-cycle. This consistent approach reveals whether the modified compositions display the 

higher fuel productivity within the same and fixed reaction time framework.  

The results of the thermochemical cycling of each sample are illustrated in Figure 6-7 and the 

corresponding oxygen release and fuel productivity results are plotted in Figure 6-8 as the function 

of A/B ratio.  
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Figure 6-7. Thermochemical cycle of 1400 – 800 °C of (La0.50Sr0.50)xMnO3-δ (x=0.9, 0.94, 1, 1.04, 

1.08, and 1.16). (a) Oxygen evolution fluxes of the thermal reduction reactions performed at 1400 

°C under p(O2)=10-5 atm with gas flow rate of 1000 sccm   (b) Hydrogen production fluxes of the 

(a) 

(b) 
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water splitting performed at 800 °C under p(H2O)=0.2 atm with gas flow rate of 200 sccm. The 

tested samples are with similar mass for the measurements (0.33 to 0.37 gram). 

 

 

(a) 

(b) 
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Figure 6-8. Gas evolution amounts of (La0.50Sr0.50)xMnO3-δ generated from the thermochemical 
cycle of 1400 – 800 °C. (a) Oxygen releases and (b) hydrogen productions plotted as the function of 
A/B ratio. 
 
Surprisingly, the samples with A site deficiency exhibit worse gas evolution kinetics and 

productivities in both thermal reduction and water splitting than the stoichiometric sample, 

(La0.50Sr0.50)xMnO3-δ. Another unanticipated finding is that the A site cations excess samples provide 

better performance from both steps. Due to the potential segregation on the surface, the 

microstructures of the reactive oxides are sensitive to oxide compositions and would affect the 

reaction kinetic. Secondary electron microscopy was applied to examine the oxide morphologies. 

Figure 6-9 shows the different microstructures between A site cation deficient (A/B<1) samples and 

other compositions. Apparently, A site cation deficiency promotes grain growth during the sintering 

process. This A-site-cation-deficiency-enhanced grain growth is also found in Sr1-xFeO3-δ
 [7] and it is 

explained by the enhanced diffusion of Sr cations resulting from A site vacancies. Also, the 

densification of Sr1-xFeO3-δ
 caused by Sr deficiency is also found in the (La0.50Sr0.50)xMnO3-δ samples 

with x<1 and the lower porosity shown on their SEM images also shows evidence of higher 

densification. Therefore, from a microstructural standpoint, A site cation deficient samples possess 

morphologies which might be harmful to the reaction kinetics. Regarding the A site cation excess 

samples (x>1 of (La0.50Sr0.50)xMnO3-δ), there is no obvious, systematic microstructural trend with the 

composition stoichiometry.  

To summarize the information given above, results of present study suggest that A-site deficiency 

alters the thermodynamic redox properties in a detrimental way. This is convoluted with an obvious 

lose in surface area which has a negative influence on kinetics and due to the fixed cycling time, 

may also contribute to decreased fuel productivity. The results also indicate that A-site excess 

leaves thermodynamic properties unchanged, but a positive influence on surface reaction kinetics. 
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Figure 6-9. Microstructure of as-synthesized porous (La0.50Sr0.50)xMnO3-δ (x=0.9, 0.94, 1, 1.04, 1.08, 

and 1.16) pellets. 

Since A site cation excess compositions do not show obvious microstructure change, more 

information is necessary for discussing the improvements from (La0.50Sr0.50)xMnO3-δ (x>1) shown in 

thermochemical cycles. The surface segregation is expected, due to the additional cations, and X-

ray powder diffraction is performed for the structural investigations. Five A/B ratios of porous 

(La0.50Sr0.50)xMnO3-δ (x=0.9, 0.94, 1, 1.16, and 1.24) pellets were prepared by solid state reaction 

with same sintering conditions (1500 oC under laboratory air for 6 hours), and their XRD patterns 
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are illustrated in Figure 6-10. Additional diffraction peaks with the strongest appearing at 32 o in 2θ 

are clearly evident in the A-site excess compositions. The structural parameters are summarized in 

Table 6-1. As expected based on prior literature, the stoichiometric sample, (La0.50Sr0.50)MnO3-δ, has 

a tetragonal structure which differs from the rhombohedral phase of oxides with less Sr content 

(La1-xSrxMnO3-δ, x=0.1 to 0.4). Phase behavior of lanthanum strontium manganites with ratio A/B 

has been studied [8] and it has been reported that (La0.50Sr0.50)xMnO3-δ remains in the tetragonal 

structure for a non-stoichiometric ratio from 0.9 to 1.1. However, from our results, the 

(La0.45Sr0.45)MnO3-δ sample has the rhombohedral phase with the space group of  R (𝑅3�𝑐 ). 

Compared to the sample prepared in literature, our sample was prepared with 50oC higher (1500oC 

vs 1450oC) and four hours (2 vs 6 hours) longer for sintering temperature and time, respectively.  

To learn whether this different preparation conditions cause the different phase for 

(La0.45Sr0.45)MnO3-δ, more investigations are necessary. 

The additional peaks in the A-site excess compositions are attributed to the existence of a secondary 

phase is identified as (La1-ySry)3Mn2O7-δ which is also called Ruddlesden-Popper phase. This phase 

belongs to a class of materials of general stoichiometry An+1BnO3n+1 shown in Figure 6-11 known as 

Ruddlesden-Popper phase.  Ruddlesden-Popper phase have structures in which rock-salt AO (here 

is LaO) layers alternate with single (n=1), double (n=2), or triple (n=3) perovskite (ABO3)n layers 

along the c-axis. When n goes to infinite, the structure becomes perovskite. The candidate applied 

for the structure analysis is (La0.5Sr0.5)3Mn2O7-δ, however, the precise La:Sr ratio is unknown, and 

the secondary phase is more correctly described as (La1-ySry)3Mn2O7-δ. 
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Figure 6-10. X-ray powder diffraction patterns of as-synthesized porous (La0.50Sr0.50)xMnO3-δ 

(x=0.9, 0.94, 1, 1.04, 1.08, 1.16, and 1.24) pellets.  Final processing step was sintering at 1500 oC 

under laboratory air for 6 hours. 

 

Table 6-1. Room-temperature structural parameters for as-synthesized (La0.50Sr0.50)xMnO3-δ (x=0.9, 

0.94, 1, 1.04, 1.08, 1.16, and 1.24) samples. The additional phase is temporarily assigned with the 

compositions of (La0.5Sr0.5)3Mn2O7-δ and the evidence for supporting this assumption is still missing. 

The input structure file for 2nd phase was created by modifying the crystal structure data of (La1.4 

Sr1.6) Mn2O7 reported in Inorganic Crystal Structure Database with collection code 89382. 

A/B a (Å) b (Å) c (Å) Crystal structure 
(space group) 

0.90 5.4567(3) 5.4567(3) 13.291(2) R (𝑅3�𝑐) (167) 
0.94 5.44129(8) 5.44129(8) 7.7620(1) I4/mcm (140) 
1.00 5.4523(1) 5.4523(1) 7.7404(3) I4/mcm (140) 
1.04 5.4689(3) 5.4689(3) 7.7059(6) I4/mcm (140) 
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1.08 5.4684(6) 5.4684(6) 7.729(2) I4/mcm (140) 
1.16 5.4721(4) 5.4721(4) 7.739(1) I4/mcm (140) 

2nd  phase 3.8694(2) 3.8694(2) 20.005(2) I4/mcm (139) 
1.24 5.4762(2) 5.4762(2) 7.7779(7) I4/mcm (140) 

2nd  phase 3.87292(8) 3.87292(8) 20.1579(7) I4/mcm (139) 
 

 

Figure 6-11. Crystal structures of Ruddlesden-Popper phase (An+1BnO3n+1 ) materials of general 

stoichiometry.  Crystals were drawn via VESTA[14] and the corresponding crystal structure data are 

from Inorganic Crystal Structure Database with collection code 157402 (Sr2TiO4, n=1), 63704 

(Sr3Ti2O7, n=2), 34630 (Sr4Ti3O10, n=3), and 80874 (SrTiO3, n=� ). 

 
 
Therefore, the samples that possess A site cations excess can be considered to be composites of 

(La0.50Sr0.50)MnO3-δ and  (La1-ySry)3Mn2O7-δ. The system with the combinations of perovskites and  

Ruddlesden-Popper phases have been studied for SOFC cathode materials such as (La,Sr)CoO3-δ- 

(La,Sr)2CoO4+ δ
[11, 12] and Lan+1NinO3n+1(n=1, 2, and 3)-YSZ[13], and the presence of Ruddlesden-

Popper phase has been found to enhance the oxygen reduction reaction (ORR) kinetics at 600 to 

800 oC.  It has been proposed that the Ruddlesden-Popper phase is electronically activated through 
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an interface coupling with the perovskite, facilitates the charge transfer from the oxide surface to the 

oxygen near the interface. It is unclear whether a similar mechanism is operative here. First, 

(La,Sr)2CoO4+ δ and Lan+1NinO3n+1 have different electronic structures than that of (La1-ySry)3Mn2O7-δ. 

Second, this active interface only explains the enhanced ORR kinetics which is an explicit 

electrochemical reaction, but thermal reduction and oxidization by steam are nominally only 

chemical reactions. Furthermore, the thermochemical cycling temperature and oxygen partial 

pressure conditions are different from the operation conditions usually applied for cathode materials, 

therefore, whether the high activity exists under the environments of thermochemical cycling needs 

to be confirmed. To answer the questions above, careful interface properties studies are necessary.  

In summary, the introduction of excess A site cations into (La0.50Sr0.50)MnO3-δ enhances both 

thermal reduction and water splitting, an apparent result of the presence of additional Ruddlesden-

Popper phase. This finding indicates that (La0.50Sr0.50)MnO3-δ can produce more hydrogen by 

thermochemical cycling for a fixed cycling time. It is mentioned above that  𝐽 = 𝑘∆𝜇  can be used 

to describe the gas evolution flux and  samples with A-site excess, in present study, be considered to 

be composites of La0.50Sr0.50MnO3-δ and  (La1-ySry)3Mn2O7-δ. Since the A-site excess is so small, the 

chemical potential (∆𝜇) of samples for both half-reaction can be viewed as the same (∆𝜇  of 

La0.50Sr0.50MnO3-δ). The enhancements shown in present study, therefore, can be attributed to the 

enhanced surface reaction coefficient (k). 
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C h a p t e r  7  

CONCLUSIONS AND FUTURE OUTLOOK 

7.1 Conclusions 

Strontium-doped lanthanum manganite perovskites, La1-xSrxMnO3-δ (x=0.1, 0.2, 0.3, and 0.4), were 

assessed for two-step thermochemical water splitting. Oxides with different Sr contents exhibit 

distinct redox and thermochemical cycling behavior. Increasing Sr substitution for the A site cation 

mainly reduces the oxidization reaction enthalpy, which enhances the reducibility and increases the 

fuel productivity. However, particularly for high Sr content oxides, in order to produce such large 

quantities of fuel, large amounts of reactant steam are required. This is reflected in the fact that the 

steam to hydrogen conversion or reaction extent (ψ) is small.  

In order to predict how changes in material redox properties affect the water splitting reaction extent, 

ψ was calculated using hypothetical values for the reduction enthalpy and entropy values of oxygen 

in the oxide phase. The results reveal that increasing of the reduction enthalpy and decreasing of the 

reduction entropy relative to the values in ceria each results in higher reaction extents (ψ).  This 

occurs because such changes favor the oxidization reaction. On the other hand, thermal reduction, 

which largely fixes the fuel productivity by setting δi, is favored when the magnitude of Oh∆

decrease and that of Os∆  increase (i.e. reduction is favored). Thus, the thermodynamic 

considerations that favor reaction extent are exactly opposite those that favor fuel productivity. 

In order to balance the goals of high fuel productivity and high reaction extent, solar to fuel 

efficiency ( solar fuelη − ) has been established as the figure of merit for assessing candidate oxides for 

two-step thermochemical cycling.  

Besides the thermodynamic considerations for material characteristics in selecting the optimal 

material, models for equilibrium reaction kinetics simulations have been developed. The 

simulations reflect the impacts from redox properties on the optimized reaction kinetics. Since the 

possibility of bulk diffusion limited has been ruled out, the comparisons of the simulations and 

experimental results for La1-xSrxMnO3-δ up to x=0.4 reveal that the surface reactions are the rate 

determining steps of the thermochemical cycling. 



- 151 - 
 

For actual thermochemical cycle implementations, when considering the lengthy reaction time due 

to the sluggish surface reaction, how to obtain the most fuel productivity with the unit time interval 

is crucial for obtaining the high actual solar to fuel efficiency. Within the study of A site cation 

stoichiometry modifications for La0.5Sr0.5MnO3-δ, excess A site cation doping promotes the reaction 

kinetics on both thermochemical cycle steps. It is believed that this enhancement is related to the 

presence of the additional Ruddlesden-Popper phase that resulted from the excess A site cation 

doping. The actual mechanism for explaining this kinetics improvement is still unclear and future 

work for understanding is necessary. 

7.2 Future Work 

Efficiency analysis helps us to look for the subtle trade-off between material characteristics in 

selecting the optimal material for solar-driven thermochemical fuel production. Like the ψ 

simulations of hypothetical materials we did for learning the individual effects from varying 

reduction enthalpy and entropy, we can also apply the efficiency analysis on the hypothetical 

materials for efficiency optimization.  Since the reduction enthalpy can be viewed as the bonding 

strength between oxygen ions and cations, prediction of the optimal reduction enthalpy values can 

guide efforts on how to best use doping strategies to tune the bonding.  

We again take CeO2-δ as a base and evaluate the influence of modifying the properties of the oxide. 

In particular, we consider the impact of changing the reduction enthalpy of CeO2-δ, while taking the 

reduction entropy to be fixed. The HHV efficiency analysis results of these hypothetical materials 

under fixed thermochemical cycling conditions are shown in Figure 7-1. From Figure 7-1(a), we 

can see that if we can lower the reduction enthalpy of CeO2-δ by 5-10% without alternating 

(significantly) the reduction entropy the HHV efficiency would improve from 11.5% to 16.7% 

(95% of ΔhO). Figure 7-1(b) shows that the energy input required for heating steam increases as the 

reduction enthalpy decreases, consistent with the concomitant decrease in ψ discussed previously 

(Figure 4-10). However, as expected, the fuel productivity increases with decreasing reduction 

enthalpy, Figure 7-1(c), and generally leads to a lowering of the energy input required for heating 

the oxide. For the hypothetical materials with 90-95% reduction enthalpy of CeO2-δ, the benefits 

from their increased Δδ (δi-δf) outweigh the penalties the decrease of ψ, and such materials provide 

maximum efficiency. Significantly, even at optimal Δδ (the value rgar maximizes efficiency rather 

than fuel productivity) also shown in Figure 7-1(c), a hypothetical materials with 90% reduction 
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enthalpy of CeO2-δ will possess high fuel productivity as compared to others. Based on these results, 

we can try to design the new oxide for thermochemical water splitting by lowering the reduction 

enthalpy of CeO2-δ for 10% via doping. Therefore, with the given operation conditions of 

thermochemical cycling, HHV efficiency analysis can help us to look for the optimal redox 

properties of the reactive oxide and this guides us how to screen or modify the material 

characteristics. 
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Figure 7-1. HHV efficiency optimization for hypothetical materials. (a) HHV efficiency. (b) 

Required heat inputs for individual processes of maximum HHV efficiency. (c) Oxygen non-

stoichiometry change from thermal reduction and the optimized Δδ (δi-δf) of maximum HHV 

efficiency. 
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