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Abstract

While some of the deepest results in nature are those that give explicit bounds between important

physical quantities, some of the most intriguing and celebrated of such bounds come from fields

where there is still a great deal of disagreement and confusion regarding even the most fundamental

aspects of the theories. For example, in quantum mechanics, there is still no complete consensus as

to whether the limitations associated with Heisenberg’s Uncertainty Principle derive from an inher-

ent randomness in physics, or rather from limitations in the measurement process itself, resulting

from phenomena like back action. Likewise, the second law of thermodynamics makes a statement

regarding the increase in entropy of closed systems, yet the theory itself has neither a universally-

accepted definition of equilibrium, nor an adequate explanation of how a system with underlying

microscopically Hamiltonian dynamics (reversible) settles into a fixed distribution.

Motivated by these physical theories, and perhaps their inconsistencies, in this thesis we use

dynamical systems theory to investigate how the very simplest of systems, even with no physical

constraints, are characterized by bounds that give limits to the ability to make measurements on

them. Using an existing interpretation, we start by examining how dissipative systems can be viewed

as high-dimensional lossless systems, and how taking this view necessarily implies the existence of a

noise process that results from the uncertainty in the initial system state. This fluctuation-dissipation

result plays a central role in a measurement model that we examine, in particular describing how noise

is inevitably injected into a system during a measurement, noise that can be viewed as originating

either from the randomness of the many degrees of freedom of the measurement device, or of the

environment. This noise constitutes one component of measurement back action, and ultimately

imposes limits on measurement uncertainty. Depending on the assumptions we make about active

devices, and their limitations, this back action can be offset to varying degrees via control. It turns

out that using active devices to reduce measurement back action leads to estimation problems that

have non-zero uncertainty lower bounds, the most interesting of which arise when the observed

system is lossless. One such lower bound, a main contribution of this work, can be viewed as a

classical version of a Heisenberg uncertainty relation between the system’s position and momentum.

We finally also revisit the murky question of how macroscopic dissipation appears from lossless

dynamics, and propose alternative approaches for framing the question using existing systematic
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methods of model reduction.
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Chapter 1

Introduction

Despite the now well-developed state of the theories of both quantum mechanics and statistical

physics, with confirmation having come from countless physical experiments over the last century,

there is surprisingly still a great deal of disagreement and confusion over some of the most fundamen-

tal aspects of the theories. In statistical mechanics, how to reconcile a microscopic world, described

by time-reversible lossless dynamics, with a macroscopic one in which there is energy dissipation and

in which processes seem to have a preferred direction in time, is still an open problem. Statistical

mechanics is hugely successful in that it can make statements about the behavior of inconceivably

large ensembles of particles through simple relations between just a handful of macroscopic vari-

ables. That there is such a ‘reduction’ in the description of very large systems is truly remarkable.

However, much of this theory is predicated on the concept of a ’thermodynamic equilibrium,’ and a

consistent microscopic explanation of how such an equilibrium is reached, or even of how to properly

define it, has been out of reach. Microscopically, if one assumes an ensemble of particles undergoing

Hamiltonian dynamics, with a probability density on every particle’s position and momentum, this

probability distribution never reaches a steady state distribution by the mere fact that the dynamics

are time-reversible. So, this naturally opens the question of how to properly define thermodynamic

steady state from a microscopic perspective. One approach might be to define thermodynamic

equilibrium as one in which the density of the system is close to a stationary distribution most of

the time as in [1], and using arguments from ergodic theory, but it turns out that the recurrence

times grow exponentially with the number of particles, so time averaging arguments would only

hold on scales much longer than those over which physical observations are actually made. Other

proposed explanations for increasing entropy include the argument that physical constants cannot

be known to arbitrary precision, and entropy increase in time comes from this ‘fuzzy’ knowledge of

the Hamiltonian [2].

The research outlined in this thesis is not so ambitious as to try to explain these sorts of deep gaps

in the theory, but to perhaps get a better understanding of simpler problems from a purely dynamical

systems perspective and examine similar questions like, under what conditions dissipative systems
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can be approximated by lossless systems, and under what conditions very large ‘random’ lossless

systems can be approximated by low order dissipative ones? The answer to the first question, in the

case of linear systems, is answered by Sandberg, Delvenne and Doyle [3, 4]. The second question is

still an active area of our research, and is examined in Chapter 3 of this thesis.

Examining the connection between high-dimensional lossless systems and lower-dimensional dis-

sipative ones from a purely dynamical systems point of view gives rise to a chain of results that, at

their end, make statements about the ability to be able to ‘measure’ one dynamical system via an

interconnection with another. Although at first glance these results, presented in Chapter 2, might

seem to represent too much of an abstraction, or to be based on assumptions in a measurement model

that are too far removed from physical reality, it is precisely the fact that the assumptions made

for these results are so minimalistic that makes them interesting. What we find is that even after

stripping away all the constraints of physical laws, and looking at the measurement problem on its

own as a dynamical systems problem, the interaction between ‘measurement device’ and ‘observed

system’ is such that there is a back action effect during measurement which yields non zero lower

bounds on the ability to make arbitrarily precise measurements. This sort of interaction, where the

system under observation is influenced during measurement, is one that is very often given as an

explanation for one interpretation of the Heisenberg Uncertainty Principle in quantum mechanics.

In many axiomatic formulations of quantum mechanics, the measurement process is addressed

as an independent axiom, considered to be associated with an instantaneous "collapse" of the wave

function to an eigenstate of the operator corresponding to whatever physical quantity is being

measured [5]. Measurement of observables with operators that happen not to commute with the

operator associated with the measurement in turn is not compatible with this process. An inherent

problem with treating wavefunction collapse as an independent axiom is that doing so represents a

sort of contradiction of another necessary axiom in any formulation of quantum mechanics, namely

that the time evolution of closed systems is represented as an application of a unitary operator

(without dissipation of energy). Of course, instantaneous wavefunction collapse is not a unitary

operation, and the inclusion of an external observer means that the system is no longer closed. In

more general theories of quantum measurement, such as those presented in [6, 7], uncertainty arises

as a result of a phenomenon known as "decoherence," which is a byproduct of the entanglement

between the observed system, its environment, and the measurement device (observer). While in

this thesis we do not use quantum mechanics, we do adopt this decomposition of measurement into

the three components above, albeit conceptually.

The theme of this thesis is one that has been repeated many times in the dynamical systems

research literature, namely to take a physical idea and define mathematical objects that can be

viewed as more general versions of the motivating physical concept. For instance, the physical

notion of energy can be thought of as motivating Hamiltonian dynamical systems, or more generally,
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lossless dynamical systems. In [8, 9], an entire rich general theory based on energy conservation is

built up from merely two definitions, which gives a precise meaning to the characterization of a

system as ‘dissipative.’ We give an overview of this general theory later in this introduction, as it

is a foundation for the rest of our work, but now briefly outline the logical interconnection between

all the topics covered in this thesis.

1.1 Outline of Topics

Because the original motivation for our research was to connect ideas from a broad range of fields,

in this introduction, we will very briefly touch on elements from statistical mechanics, quantum

mechanics, systems theory, estimation and stochastic control that are relevant to the problem for-

mulation in Chapter 2.

Starting with tools from dissipative dynamical systems theory presented later in this introduction,

we introduce results from [3] concerning how large lossless systems can arbitrarily well approximate

any dissipative system when viewed on any finite time horizon, before any recurrences. From this, we

show the implications of assuming that any dissipative system has underlying microscopically lossless

dynamics, the most important of which is the celebrated Fluctuation-Dissipation Theorem (FDT)

known in statistical mechanics. A short summary of the derivation and implications of the FDT is

given later in this introduction. The FDT imposes a noise source that is unavoidably associated with

any dissipative element in a measurement model based on [4], which we analyze in Chapter 2 using

basic estimation tools. We find that for this abstract measurement model, the observer inevitably

perturbs the system being measured in such a way that there is a trade-off between the information

extracted about the state of the observed system and the amount that the system is affected by

the measurement. We analyze various methods of minimizing the effects of the measurement on the

system of interest. In Chapter 3, we look at the approximations between microscopically lossless and

macroscopically dissipative systems from a viewpoint that is in a sense is different from the result

in [10].

The figure below summarizes the logical interconnection between the concepts treated in the rest

of this thesis. Subjects in red boxes represent topics pertaining to the physical world, while those

in blue are general mathematical abstractions. Solid lines connecting topics indicate that there is

a direct mathematical connection between the subjects, made clear in this work, while dotted lines

are used to show connections that are more motivating in nature.
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1.2 Dissipative Dynamical Systems

The notions of dissipation and losslessness have been treated extensively in dynamical systems

research, and varying definitions of these ideas have been given that heuristically coincide with the

behavior of damped systems in nature. One approach, which is well-summarized in [11], is to look at

closed systems and characterize whether a system is dissipative according to the flows of the system

Φt(x). With this view, systems can be considered dissipative if there exists a bounded set Ω such

that Φt(Ω) ⊆ Ω, and for which any trajectory eventually enters Ω. Another, which is particularly

interesting from the viewpoint of analyzing the time evolution of probability densities over the states

of the system, is to consider what happens to phase space volume as the system evolves, in particular,

looking at whether the Jacobian of the vector field is negative, positive or zero to describe whether

a system is dissipative, non-dissipative or lossless. We will briefly comment on this matter in section

1.5 of this introduction.

The view of dissipation that we will take in most of this thesis is that outlined in the seminal work
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[8], [9]. Readers will see that this manner of defining dissipative systems has a great deal in common

with Lyapunov stability theory, and perhaps philosophically speaking, the theory that results could

be considered more important, as it is used to make statements about the input-output properties of

systems, rather than just addressing their behavior in isolation. Any physical experiment compares

inputs to outputs, so not only is the theory introduced in this section necessary for the mathematical

derivations of our work, it is also motivational in that it provides generalizations of physical concepts

like energy and power input, in the same way that we hope to examine generalizations of the

measurement process. We start with a series of definitions (stated for completeness) for treating

input-output systems with dynamics that can be expressed in the state space form

ẋ(t) =f(x, u, t) x(t) ∈ Rn, u(t) ∈ Rm (1.2.1)

y(t) =h(x, u, t) y(t) ∈ Rp (1.2.2)

where u(t) and y(t) are the input and output functions, respectively. We assume a general locally-

integrable work rate function associated with the system, which is a function of both the input and

output functions,

w(t) = w(u(t), y(t), t) ∈ R. (1.2.3)

With respect to this work rate function a dissipative system can be generally defined as follows,

Definition 1.2.1. A system is said to be dissipative with respect to w(t) if there exists some

function S(x, t) ≥ 0 such that

S(x0, t0) +

∫ t1

t0

w(t)dt ≥ S(x1, t1) (1.2.4)

for all t0, t1, x0, x1 and u(t), which takes the system from x0 → x1.

Similarly, a general lossless system can be defined as follows,

Definition 1.2.2. A system is said to be lossless with respect to w(t) if there exists some function

S(x, t) ≥ 0 such that

S(x0, t0) +

∫ t1

t0

w(t)dt = S(x1, t1) (1.2.5)

for all t0, t1, x0, x1 and u(t), which takes the system from x0 → x1.

Note the sign convention is such that w(t) > 0 represents work being done on the system. An

important point to keep in mind is that, in general, storage functions are not unique for a given



7

system and work rate function.

Two additional important definitions that define the maximum amount of ‘work’ that can be

extracted from a system, or the minimum amount of work needed to be done on a system to change

its state, are the available storage and the required supply functions,which are defined as follows,

Definition 1.2.3. The available storage function and required supply function Savail, Sreq :

Rn → R are defined by the relations

Savail(x) = sup
u(t) s.t. x(0)=x→x(tf )=0

∫ tf

0

−w(t)dt (1.2.6)

Sreq(x) = inf
u(t) s.t. x(0)=0→x(tf )=x

∫ tf

0

w(t)dt. (1.2.7)

An immediate result is that,

Theorem 1.2.4. A system is dissipative iff Savail(x) <∞.

This statement follows from the observation that Savail(x) is a possible storage function itself,

satisfying the inequality in Eq.(1.2.4). That it satisfies Eq.(1.2.4) is seen by considering the process of

taking the state x0 to some state x1 with total work done
∫ t1
t0
w(t)dt and then extracting the available

storage from state x1, which by definition applied to the combined process, extracts less work than

Savail(x0). A similar argument can be used to prove that a bounded Sreq implies dissipativity, which

can be argued in the same manner to also be a storage function.

Rather remarkably, these simple and physically-intuitive definitions are enough of a starting point

to allow for an entire theory of deep but easily described results, particularly in the case of linear

time-invariant systems (LTI). Applied to linear systems, research in dissipative systems has given

rise or been closely related to extremely important results in control theory; in particular, the theory

of linear matrix inequalities (LMIs) and the Kalman-Yakubovich-Popov Lemma. Readers who are

interested in these connections are encouraged to read [12] and [13]. Since a majority of the analysis

in this thesis will be done on LTI systems in order to take advantage of all the tools of systems

theory, we will rather pedagogically state that by linear time-invariant dynamical systems, we are

to mean systems that can be described by a single transfer function g(t) which entirely describes

the mapping from all inputs u(t) → outputs y(t) via a convolution integral, with the input-output

relationship having the form

ẋ(t) =Ax(t) +Bu(t) x(t) ∈ Rn, u(t) ∈ Rm

y(t) =Cx(t) +Du(t) y(t) ∈ Rp
(1.2.8)

where A,B,C,D are time-invariant matrices of appropriate dimension. For the rest of this work,
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we will also assume that the work rate function is always quadratic,

w(t) =
(
uT yT

) Q S

ST R

u
y

 . (1.2.9)

Under these conditions, and assuming the system is controllable, the optimization problem associated

with finding the optimal u(t) in Definition 1.2.3 is one in which the objective function is quadratic and

the dynamics constraint is linear, so we would expect the optimal values to be quadratic functions.

We could solve this optimization explicitly, but since the actual solution is of no use to us, we omit

it but mention that the methodology to solving it is almost identical to the optimization done in

Section (3.1). This observation, along with Theorem 1.2.4, implies that the system is dissipative

if and only if there exists a storage function of the form S(x) = xTΣx where Σ = ΣT . A simple

criterion for checking whether a system is dissipative immediately follows.

Theorem 1.2.5. A dynamical system of the form 1.2.8, for which the pair (A,B) is reachable, with

an associated work rate function given by 1.2.9, is dissipative iff the LMI in Σ given by 0 BTΣ

ΣB ATΣ+ ΣA

 ≤

I DT

0 CT

 Q S

ST R

 I 0

D C

 (1.2.10)

is feasible.

Proof. If the system is dissipative, Eq.(1.2.4) implies that in particular Ṡ(x) ≤ w(t), so that

Ṡ(x) = (Ax+Bu)TΣx+ xTΣ(Ax+Bu) =
(
uT xT

) 0 BTΣ

ΣB ATΣ+ ΣA

u
x

 (1.2.11)

≤
(
uT yT

) Q S

ST R

u
y

 (1.2.12)

for all (x, u, y). The right-hand side can be rewritten by eliminating y = Ax+Du,

(
uT yT

) Q S

ST R

u
y

 =
(
uT xT

)I DT

0 CT

 Q S

ST R

 I 0

D C

u
x

 . (1.2.13)

Combining this with 1.2.11 gives the desired result. The converse is immediate, as the feasibility of

the given LMI implies Ṡ(t) ≤ 0, which implies the dissipation inequality 1.2.4.

Example 1.2.6. Among quadratic work rate functions, an illustrative form to look at is the product

w(t) = uT (t)y(t), where u(t)y(t) ∈ Rm. This quantity might, for instance, represent the power going

into a circuit network where u(t) is the vector of input currents and y(t) are the output voltages.
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For such a w(t), the LMI from theorem 1.2.5 simplifies to (Q = R = 0 and S = I/2)

−D −DT BTΣ− C

ΣB − CT ATΣ+ ΣA

 ≤ 0, (1.2.14)

which is a well known LMI in the controls systems literature known as the positive-real lemma.

If we assume D + DT > 0, this inequality can additionally be transformed by taking the Schur

complement of the block −D −DT to give

ATΣ+ ΣA+ (ΣB − CT )(D +DT )−1(BTΣ− C) ≤ 0. (1.2.15)

The above matrix inequalities can be directly related to frequency domain conditions for a system

to be dissipative via the Kalman-Yakubovich-Popov Lemma, which the interested reader can find

the details of in [13]. Since going into this would be too far of an aside for an introduction, we

will state that the LMI conditions stated in Theorem(1.2.5) can be shown to be equivalent to the

condition (
I GT (−jω)

) Q S

ST R

 I

G(jω)

 ≥ 0. (1.2.16)

For the specific work rate function given by w(t) = uT (t)y(t), this becomes the well-known condition

from the theory of electrical networks that states that a system is necessarily dissipative (passive) if

and only if

G(iω) +GT (−iω) ≥0 dissipative system. (1.2.17)

Rather expectedly, lossless systems can be treated in an almost identical manner, where the only

changes in the theory involve substituting the set of aforementioned LMIs and frequency domain

inequalities, to equalities. For lossless systems with above work rate function, the frequency domain

condition for a system to be lossless is

G(iω) +GT (−iω) =0 lossless system. (1.2.18)

We will make use of these properties throughout the rest of this thesis, specifically in our exam-

ples. Before concluding this section, we highlight one additional result regarding systems that do

not have a direct term (D = 0 in 1.2.8). For such systems, the LMI given in Eq.(1.2.5) is equivalent

to the conditions
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ATΣ+ ΣA ≤ 0 (1.2.19)

Σ = ΣT > 0 (1.2.20)

ΣB = CT . (1.2.21)

Factoring Σ = QQT , where Q is invertible, and applying a state transformation x̃ = Qx yields

a system with system matrices (Ã = QAQ−1, B̃ = QB, C̃ = CQ−1) and storage function Σ̃ =

I. Conditions 1.2.19, 1.2.21 then imply that a dissipative LTI system without a direct term can

necessarily be written in the form

ẋ(t) = (J −K)x(t) +Bu(t)

y(t) = BTx(t) (1.2.22)

where J,D are skew-symmetric J = −JT , D = −DT , K > 0, (J,B) is a controllable pair, and where

the storage function is given by Σ̃(x) = xTx.

Similarly, under the same conditions, a lossless system without a direct term can be represented

in the form

ẋ(t) = Jx(t) +Bu(t)

y(t) = BTx(t) (1.2.23)

and the energy function is given by Σ̃(x) = xTx.

While these conditions and definitions are sufficient to pose and solve the types of problems we

examine in this thesis, an in-depth continued introduction to dissipative systems can be found both

in the earlier mentioned references, as well as [14].

1.3 Lossless Approximations of Dissipative Systems on Finite

Time Horizons

With a formal characterization of dissipation and losslessness in hand, we can begin to formulate

and (hopefully) begin to answer how macroscopic dissipation appears. What we will find is that

as a byproduct of assuming systems to be microscopically lossless, that uncertainty about the state

of these lossless systems has implications on the ability to extract information about the states of

dynamical systems via interconnections with other dynamical systems. Before stating the result

in [3], we present an additional result that gives a time domain condition on the input-output
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relationship of dissipative systems. In some literature, this condition is actually the starting point

as a definition of a system being passive, and it is equivalent to the definition given earlier in this

introduction. For a proof, see [8].

Theorem 1.3.1. If the LTI dynamical system is reachable, the system is dissipative with respect to

the work rate function w(t) = uT (t)y(t) if and only if for all u(t), tf ≥ 0

∫ tf

0

uT (t)y(t)dt ≥ 0. (1.3.1)

An immediate observation deduced from 1.3 is that ‘resistors,’ by which we mean systems with

input-output relationships y(t) = ku(t), are dissipative if and only if k > 0. One way in which

macroscopic ‘resistors’ can appear from lossless dynamics, is given in the following theorem, which

is also a justification for the measurement model introduced in Chapter 2.

Theorem 1.3.2. If the LTI system described by the input-output relation y(t) =
∫ t

0
g(t−s)u(s)ds is

dissipative, for a given fixed time interval [0, τ ] there exist lossless approximations of it, yN (t) =∫ t

0
gN (t− s)u(s)ds, of state dimension N , such that

∫ τ

0

||g(s)− gN (s)||2ds ≤ ϵ(N, τ) (1.3.2)

such that ϵ can be made arbitrarily small for sufficiently large N .

Simply stated, the proof of this result in [4] makes use of the fact that any impulse response

g(t) can be approximated arbitrarily well over a fixed time interval by a Fourier series expansion in

sinusoids with base frequency π
T . While in Chapter 3 we give an alternative view on how systems

approximating ideal resistors can arise from lossless elements, to demonstrate the type of construction

used in the proof of Theorem (1.3.2), we present the following example.

Example 1.3.3. Lossless Approximation of a Resistor

The approximation of the resistor transfer function can be done by approximating an impulse train

by the truncated series

gN (t) =

(
k

2τ
+

N∑
l=1

k

τ
cos(lω0t)

)+

ω0 =
π

τ
(1.3.3)

with realization

ẋ(t) =JNx(t) +BNu(t) JN = −JT
N (1.3.4)

y(t) =BT
Nx(t) (1.3.5)
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where

JN =


0 0 0

0 0 ΩN

0 −ΩN 0

 (1.3.6)

ΩN =diag(ω0, 2ω0, . . . , Nω0) (1.3.7)

BT
N =

√
k

τ

(
1√
2

0 . . . 0 1 . . . 1
)
. (1.3.8)

This example represents a very extreme situation where a high-dimensional lossless system ap-

proximates a memoryless one of zero state dimension, and as such might give us insight into the

microscopically lossless → macroscopically dissipative transition. What we can extract from this

example, at least heuristically, is that the lossless system should be able to be directly excited across

a wider and wider range of frequencies.

1.4 Separation of System and Environment in Quantum Me-

chanics

Motivated by the previous section, we outline how quantum and statistical physics theories treat

the appearance of dissipation in a system embedded as part of a larger lossless system (with its

environment). For the quantum mechanics perspective, the density matrix formalism is introduced

and it is explained how the dynamics of open systems are obtained by ‘tracing out’ states of the

environment. A thorough introduction to this approach can be found in [5] and [15]. As a completely

classical analogue of this, we also very briefly discuss the time evolution of probability density

functions from given trajectory dynamics, and how closed systems with Hamiltonian dynamics do

not converge to a stationary distribution, a point that is somewhat of a thorn in equilibrium statistical

mechanics. Finally, we contrast these two ‘distributions’ views of dissipation from the ’trajectories’

view presented in the previous section. While treating the topics in this section is somewhat removed

from the main results in Chapter 2 and 3, it does serve a purpose of giving another view of how

dissipation is accounted for when viewing subsystems of larger lossless systems.

Quantum mechanics postulates that a quantum system in a pure state is described by a normal-

ized state vector in a Hilbert space denoted |ψ⟩. In addition, it postulates that the time evolution

of this vector |ψ(t)⟩ is simply given by a unitary transformation U(t, t0) on that state, the trans-

formation being an element of a semigroup with infinitesimal generator 1
ih̄H, where H is a Hermi-

tian operator. Two obvious observations from this is that the norm, denoted in this notation as

(⟨ψ(t)|ψ(t)⟩)1/2, is preserved, and that H|ψ(t)⟩ = U(t, t0)H|ψ(t0)⟩. If we associate ⟨ψ(t)|H|ψ(t)⟩)
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as the total energy of the system and ⟨ψ(t)|ψ(t)⟩)1/2 as a total probability, we can just see this

postulate as specifying conservation of energy and probability.

The problem of measurement of quantum mechanics remains unsolved according to most standard

interpretations, which take as a postulate the following statement: that any physical observable

quantity of the system has a corresponding operator on the Hilbert space of quantum states, and that

the result of any measurement yields an outcome that is necessarily an eigenvalue of the operator,

and takes the system from | ψ⟩ to an eigenstate of that operator. Part of the motivation for our

later work is taking a classical view of the measurement process and seeing how the resulting

limitations parallel those that arise from the quantum mechanical formulation. This view is explained

in more detail later.

If we look at the density operator formed as the outer product

ρi := |ψi⟩⟨ψi| (1.4.1)

that obviously has all the information content of |ψi⟩, we can consider more general quantum states

that are statistical mixtures of pure states formed from the weighted sum of outer products of pure

states

ρ =
N∑
i=1

piρi where
N∑
i=1

pi = 1. (1.4.2)

Remark 1.4.1. At this point, it is important to avoid any confusion and note that the statistical

nature of this weighted sum is different from that of the probabilistic nature of the measurement

outcome on given |ψ⟩.

The time evolution of the density operator ρ(t) is derived immediately from the unitary time

evolution postulate on the individual states |ψi⟩, which states that

ρi(t) = U(t, t0)|ψi(t0)⟩⟨ψi(t0)|U−1(t, t0). (1.4.3)

Consequently,

(1.4.4)

ρ̇i(t) = U̇(t, t0)|ψi(t0)⟩⟨ψi(t0)|U−1(t, t0) + U(t, t0)|ψi(t0)⟩⟨ψi(t0)U̇
−1(t, t0)

=
1

ih̄
HU(t, t0)|ψi(t0)⟩⟨ψi(t0)|U−1(t, t0)−

1

ih̄
U(t, t0)|ψi(t0)

=
1

ih̄
[H, ρ(t)]

where the commutator [H, ρ(t)] = Hρ(t)− ρ(t)H. Since for any function f , d
dtTr[f(H)ρ(t)] = 0, we

see the ‘losslessness’ in the dynamics in the density operator picture simply translates to the trace



14

conservations Tr[Hρ(t)] = constant and Tr[ρ(t)] = 1.

While 1.4.4 represents the dynamics of a closed system, the dynamics of open systems are neces-

sarily treated with an additional postulate. Specifically, quantum mechanics assumes that a compos-

ite system made up of two subsystems A and B is an element of the Hilbert space that is the tensor

product of the Hilbert space in which the states of A and B individually lie, HAB = HA ⊗HB , the

feature that is responsible for quantum entanglement. Linear operators OAB on HAB are identically

formed as a product of the operators OAB = OA ⊗ OB , and the trace operator is then defined as

the sum, as it normally would be,

tr[OAB] =
∑
m,n

⟨mA, nB |OAB |mA, nB⟩ (1.4.5)

where |mA⟩, |nB⟩ form an orthonormal basis. For the case of the density operator of the composite

system ρAB, the density operator associated with either subsystem ρA,B can then be obtained as a

‘partial trace" on ρAB where all the basis states not in that subsystem are integrated out

ρA = TrB[ρAB ] =
∑
n

⟨⟨mA, nB |ρAB |mA, nB⟩. (1.4.6)

The question now is, what are the dynamics of ρA(t) individually? We can be virtually certain

that the dynamics will usually no longer be unitary with a trace energy conservation law, but how

will the ‘dissipative’ terms show up in the dynamics? The question has the completely classical

analogue of the question of what do the dynamics of the probability distribution of a system look

like when projected onto a subspace that corresponds to the states of the subsystem of interest? In

the previous section, we looked at dissipation from a trajectories viewpoint, but we would like to

know how the two pictures relate. In the special case in which the subsystem of interest interacts

with a much larger composite system that has already reached an equilibrium state, that is, has

evolved to reach a stationary probability distribution, the fluctuation dissipation theorem will

tell us exactly that.

For the purpose of completeness, we will look at the form of the dynamics of ρA, but will be

unsatisfied in the general difficulty in actually integrating the expression. If we take

HAB = HA ⊗ IB + IA ⊗B +HABcross (1.4.7)

where IA,B is the identity operator on the respective subsystem, and HABcross is the portion of the

Hamiltonian corresponding to the subsystem interactions, then
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ρ̇A(t) = TrB [ρ̇AB(t)]

=
1

ih̄
[HAB , ρAB(t)]

=
1

ih̄
T rB [[(HA, ρA(t)]⊗ ρB(t)] +

1

ih̄
T rB [ρA(t)⊗ [IB, ρB(t)]] +

1

ih̄
T rB [[HABcross, ρAB(t)]]

=
1

ih̄
[HA, ρA(t)]︸ ︷︷ ︸

unitary dynamics

+
1

ih̄
T rB [[HABcross, ρAB(t)]]︸ ︷︷ ︸

dissipative term

.

(1.4.8)

Solving the above master equation is generally done with major simplifying assumptions, as those

taken in [6] and [7], the most important being the Markov property that ρA(t + dt), given ρA(t),

is independent of past values of ρA(s), in which case the master equation can be shown to reduce

to a ‘dissipative’ Lindblad master equation. This same simplification is also used in deriving the

fluctuation-dissipation theorem that is the focus of the next section, and typically involves assuming

that system B is much ‘larger’ than A.

1.5 Time Evolution of Probability Densities

As a classical analogue of the density matrix dynamics, at this point we introduce the Perron-

Frobenius operator P associated with a given mapping y = h(x) of some random variable ‘x.’ which

maps Ph : ρx → ρy, where ρx, ρy are the density measures for the random variables x and y [16].

For example, in the simple special case in which h is one-to-one and continuously differentiable,

Phρx(y) =
1

|Jh|ρx(h
−1(y)) where |Jh| is the determinant of the Jacobian of h.

If the variable x0 is evolved according to the deterministic dynamics

ẋ = f(x), (1.5.1)

then it is a standard result that the dynamics of the density ρx(t) = Pρx0 evolve according to the

advection PDE

∂ρ(x, t)

dt
= −

N∑
i=1

∂(ρ(x)fi(x))

∂xi
. (1.5.2)

[17]. Suppose now that we are looking specifically at the time evolution of a closed Hamiltonian

system and considering how the probability density on the entire system evolves. The deterministic

dynamics are given by

ẋ =

q̇
ṗ

 =

 ∂H
∂p

−∂H
∂q

 . (1.5.3)
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Using 1.5.2,

∂ρ(q, p, t)

dt
=−

[
N∑
i=1

∂ρ

∂qi

∂H

∂pi
− ρ

∂2H

∂pi∂qi
− ∂ρ

∂pi

∂H

∂qi
+ ρ

∂2H

∂qi∂pi

]
(1.5.4)

=−

[
N∑
i=1

∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

]
(1.5.5)

:=−
N∑
i=1

{ρ,H}i (1.5.6)

which is the classical Liouville equation, where the object in Eq.(1.5.6) is the well-known Poisson

bracket for canonical coordinates, the classical analogue for the commutator in Eq.(1.4.4). In order,

then, for a density ρ∗ to be a stationary distribution (a fixed point of the Perron-Frobenius operator

for these dynamics), it must necessarily satisfy

{ρ∗,H} = 0, (1.5.7)

or in other words, ρ∗ must be a function of the Hamiltonian itself.

At this point, perhaps the most troubling issue in statistical mechanics becomes abundantly

clear. Since the microscopic dynamics are Hamiltonian, they are time-reversible. That is, the

dynamics are time reversed by the mapping (q, p) → (q,−p). So, while Eq.(1.5.7) characterizes all

the stationary distributions, 1.5.5 does not explain how a system evolves from an arbitrary non-

stationary distribution to one that is stationary. Stationary distributions are not attractors. The

fundamental assumption of equilibrium thermodynamics itself is that the system distribution is

stationary (in particular, the Boltzman distribution). Since this is not related to our work, we will

say that readers interested in this paradox are encouraged to read [18], [19], [20]. A systems theory

attempt to explain this discrepancy can be found in [1].

One feature that we can take from Eq. (1.5.2) is the suggestion, at least, that dissipative/lossless

systems can be characterized by how phase-space is transformed under the given dynamics. What

allowed the simplification from 1.5.4 to 1.5.5 is the fact that areas of phase space regions remain the

same for all time. We can see this more generally as the case where the term in Eq.(1.5.2) given by

ρ(x)

N∑
i=1

∂fi(x)

∂xi
= 0. (1.5.8)

i.e., the divergence of the vector field of the dynamical system is zero, or det(Jh:x(t)→x(t+τ)) = 1,

where Jh:x(t)→x(t+τ) is the Jacobian of the system dynamics mapping. While it would be nice

to broadly identify systems as lossless/dissipative based on the Jacobian of the system dynamics,

unfortunately this is not the case (see [11]). Nevertheless, for LTI systems, this viewpoint applies

trivially for lossless systems, as the divergence condition in Eq.(1.5.8) implies Tr(A) = 0, or for
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dissipative dynamical systems, that they are lossless, and can be written in the form given in

Eq.(1.2.23).

1.6 Fluctuation-Dissipation Theorem

The basic tools and results presented so far in this introduction are sufficient to rather generally

explain a fundamental result in physics that relates the linearized response of a dissipative system to

statistical properties of the variables of that system. The outline of a mathematical derivation of this

statement, the fluctuation-dissipation theorem, is included here both because it is easily accessible

and because a simplified version of it, for linear time-invariant systems, is a fundamental component

of our analysis in Chapter 2.

The root of the theorem is directly connected to a subject covered in the previous sections,

that is, how to analyze open systems. Applying a method similar to the separation of system and

environment as done in the quantum master equation, we want to be able to better understand,

classically, how dissipation arises and manifests itself in the density evolution of subsystems that

have been projected out from the dynamics of a larger closed system.

The fluctuation dissipation theorem partially addresses this by considering a Hamiltonian system

with Hamiltonian H0, which is assumed at the outset to be in an equilibrium distribution (fixed

point of the Liouville equation) that could be of the particular form of the Boltzman distribution

ρ0 =
e−kBTH0

Z
, (1.6.1)

where Z is a normalization factor [20]. Justification for this particular (of the infinitely many) fixed

point of the Liouville equation comes from ‘canonical ensemble’ arguments (in which the entropy of

a composite system composed of the system of interest and a much larger reservoir, is expanded to

first order).

If at time t0 the system is perturbed by an external force Fext(t), and G is its general conjugate

quantity, then

H0 → H0 −GF (t) := H0 +Hext(t) (1.6.2)

where Hext(t) ≪ H0. Expanding ρsys(t) to first order around ρ0

ρsys(t) = ρ0 + ρ∆(t) (1.6.3)
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and using the Liouville equation, we find that

ρ̇∆(t) =− [H0, ρ∆(t)]− [Hext(t), ρ0]− [H0, ρ0]− [Hext(t), ρ∆(t)] (1.6.4)

=− [H0, ρ∆(t)]− [Hext(t), ρ0] (1.6.5)

:=C0ρ∆(t) + Cext(t)ρ0 (1.6.6)

where Ck : ρ → [Hk, ρ] is skew-Hermitian, where the third term in 1.6.4 is identically zero (by

assumption on ρ0), and where the fourth term is of second order and neglected. After integrating

the above equation, we get

ρ∆(t) =

∫ t

t0

eC0(t−s)Cext(s)ρ0ds. (1.6.7)

(1.6.8)

If we wanted to calculate the expected value of some arbitrary function of the internal variables

V (q, p), the mean value of V due to the application of the perturbing force would in this approxi-

mation be

EV∆(t) =Tr[V ρ∆(t)] =
∫ t

t0

ds

∫
{q,p}

V (q, p)eC0(t−s)Cext(s)ρ0dqdp (1.6.9)

=

∫ t

t0

ds

∫
{q,p}

ρ0C
∗
exte

C0(s−t)V (q, p)dqdp (1.6.10)

since the trace operation is invariant under the transpose operation, and C0 is skew-Hermitian.

Repeating our assumption that the applied force is small enough to not affect the conjugate quantity’s

value, we can say G(t) = G(t0) and

EV∆(t) =
∫ t

t0

ds

∫
{q,p}

ρ0C
∗
ext(s)V (s− t)dqdp (1.6.11)

=

∫ t

t0

F (s)ds

∫
{q,p}

ρ0[G(t0), V (s− t)]dqdp (1.6.12)

=

∫ t

t0

F (s)ϕV G(t− s)ds (1.6.13)

where [G(t0), V (s − t)] is the commutator as used before, F (s) was removed from the integration

over the system variables since it is an external force, and the following function definitions were

made

V (t) ≡eC0tV (1.6.14)

ϕV G(t) ≡E [G(t0), V (t)]. (1.6.15)
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This is a form of the fluctuation-dissipation theorem that shows the direct relationship between two

quantities

1. The time evolution of the the mean difference in the value of any function of the internal vari-

ables of the composite system from its steady mean value had the system not been perturbed.

2. The correlation function ϕV G(t), which is the correlation between the variables conjugate to

the force at the time when the external force was applied, G0, and the function V (t).

Specifically, the linear response of the mean of V (q, p) with respect to the applied external force has

impulse response ϕV G(t).

This particular presentation and derivation of the fluctuation-dissipation theorem is due to Kubo

[21], and is actually a more general statement about a phenomenon first observed in the 19th

century by Robert Brown, who noticed the random motion of pollen particles floating in water

[22]. Various mathematical descriptions given separately by Einstein, Smoluchowski and Langevin

derived the squared mean of the displacements of these particles in time, and specifically gave a

relationship between the resistive properties (drag due to the viscosity of the liquid) of the motion,

the temperature of the liquid and the magnitude of the fluctuations. Similarly, in 1927, John Johnson

at Bell Labs observed white noise voltage across an open resistor, with magnitude proportional to

the temperature and resistance, an ingenious explanation of which was given by Harry Nyquist

using arguments involving the modes of a transmission line terminated by resistors on each end [23].

Other early explanations can be found, including those due to Callen [24]. More modern, general

versions of the fluctuation-dissipation theorem than those presented here apply to systems that are

not assumed to be in thermodynamic equilibrium [25], but we end our discussion of the subject here,

as our use of fluctuation-dissipation relation in the next chapter will be limited to the special case

of LTI systems in thermodynamic equilibrium.
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Chapter 2

Measurement Across a Medium
Satisfying a Fluctuation-Dissipation
Relation

2.1 Introduction

That the very process of extracting information about a system must necessarily influence the

system’s behavior is an idea generally not considered in controls-systems problems formulations.

Such measurement back action effects might be considered negligible or perhaps too specific to the

physical aspects of a given problem to address using any general theory. Nevertheless, motivated by

some of the theory mentioned earlier in the introduction, in this chapter we look at various ways

to abstractly think about the measurement process. Our approach is to initially strip away any

physical constraints and think about measurement from a purely dynamical systems perspective

using systems tools for simplicity. Surely, if we happen to encounter any measurement limits using

even these simplest of models, adding any more realistic constraints can only make for measurement

bounds that are worse.

In the current chapter, we will look at both passive and active approaches to measurement. By

active, we mean that we cast the measurement in such a way that we actively try to preserve the

observed state in some fashion. To start, we analyze a passive measurement model based on [3],

which takes elements from statistical mechanics, in particular implicitly adding a heat bath as a

component in the measurement. While there have been numerous prior investigations looking at the

estimation process in a statistical mechanics setting, among them [26], [27], [10], the measurement

model in [3] is most closely tied in with our interest in Chapter 3, as it stems from examining the

transition from lossless to dissipative systems.
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2.2 Fluctuation-Dissipation Theorem for LTI Systems

From Theorem (1.3.2), we know that any dissipative system can be arbitrarily well-approximated

over an arbitrarily long time horizon by a sufficiently high-dimensional lossless system in the norm

L2(0, T ), and in Section 1.3, we saw how this approximation can be explicitly constructed. The fact

that these approximations have a very specific, perhaps contrived, construction may not be entirely

satisfying to some. This is a matter that we address in Chapter 3. However, in taking the view

that all dissipative systems are truly microscopically lossless, either using Theorem (1.2.3) or the

results of Chapter 3, the arguments used in the linear-response theory based proof of the fluctuation

dissipation theorem in Section 1.6 can be directly appled for LTI systems, almost trivially.

Beginning with a lossless system that is an approximation to a dissipative system, the input-

output relation is given from Eq.(1.2.23) as

y(t) = BT eJtx0 +

∫ t

0

BT eJ(t−s)Bu(s)ds x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, (2.2.1)

with the energy function of the form,

Σ(x) =
xTx

2
. (2.2.2)

Taking the initial state x0 of the system to be a random variable with initial variance X0 the

autocovariance of y(t) can be written as

Ry(t, s) = E[y(t)− E(y(t))][y(s)− E(y(s))]T = BT eJtX0e
−JsB. (2.2.3)

The only assumption that we will make to be able to exactly follow the arguments in Section 1.6

is that the lossless system has somehow reached an equilibrium distribution that maximizes the

entropy for the given total expected energy. This density is the Boltzman distribution, and is a

fixed point of the Liouville equation. We might question how the system reached an equilibrium

in the first place, a concern that was mentioned in the introduction, but we can assume that it

did so through interactions with another large heat bath. Nevertheless, in this case, the entropy-

maximizing probability is the Boltzman distribution given in Eq.(1.6.1), and is a Gaussian with the

energy evenly distributed across the degrees of freedom,

X0 =
E[Σ(x0)]

n
In. (2.2.4)

In this case the autocovariance in Eq. (2.2.3) becomes

Ry(t, s) = 2
E(Σ(x0))

n
BT eJ(t−s)B. (2.2.5)
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Reiterating, for the purposes of any experiment based on observing inputs and outputs, linear

time-invariant systems that are dissipative with respect to the scalar work-rate function w.r.(t) =

yT (t)u(t) can be viewed from the standpoint of actually being lossless LTI systems of very high

order, with long recurrence times and in thermal equilibrium. Such systems satisfy a fluctuation

theorem, namely that their input-output relation takes the form

y(t) =

∫ t

0

g(t− s)u(s)ds+ n(t) where En(t) = 0 (2.2.6)

and En(t)n(s) =

2kTg(t− s) t− s ≥ 0

2kTgT (s− t) t− s < 0

(2.2.7)

where y(t), u(t), n(t) ∈ Rp , g(t) ∈ Rp×p.

For the case where the lossless system approximates a resistor, y(t) = kmu(t), we have

Ry(t, s) = 2
E(H(x0))

n
δ(t− s). (2.2.8)

That is, the uncertainty in the initial condition of the large lossless system underlying the resistor

manifests itself in the input-output relationship of the resistor as an additional white noise term w(t)

with autocovarianceRy(t, s) being added to the output. The resulting input-output relationship 2.2.6

can then be written as the Langevin equation,

y(t) = kmu(t) +

√
km

E(H(x0))

n
w(t), (2.2.9)

which is a relation that is exactly as specified by more general versions of the fluctuation dissipation

theorem, as in Section 1.6.

2.3 A Measurement Model

The fluctuation-dissipation theorem tells us that a dissipative system is necessarily accompanied with

noise derived from the unknown initial state of the underlying high dimensional lossless system, with

the form of the time correlation of the noise being directly related to the linear response of its mean

to the external perturbation. The view of measurement taken in this chapter, and for which we

derive our results, is taken from [4], in which the following assumptions are made:

1. A system’s output cannot be directly measured, but rather information about it can be ob-

tained by interaction through an intermediate system.

2. This intermediate medium, if it is dissipative, satisfies a fluctuation-dissipation relation.
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Figure 2.1: Passive Measurement Structure

3. The output of the system being measured is scalar, and the intermediate system is a simple

generalized resistor y(t) = ku(t) with k > 0.

We intentionally did not combine assumptions 1 and 3 for the purpose of a commentary that we

make at the end of this chapter. The measurement structure is illustrated in Figure 2.1, in which

the intent is to measure an output potential by observing its conjugate flow across a generalized

resistor of the type given in Section 1.3.3 . As such, the components of the measurement are the

observed system, denoted S, with identical input/output ports and of the form

ẋ(t) = Fx(t) +Bu(t) x(t) ∈ Rn, u(t) ∈ R (2.3.1)

y(t) = BTx(t) y(t) ∈ R (2.3.2)

interconnected with a measurement device we denote by M, consisting of a resistor satisfying the

fluctuation-dissipation theorem, along with an ideal flow meter. As a notational change, we will make

the defining substitution E[H(x0)] =
n
2 kBT in the Langevin equation 2.2.9 where we introduce Tm,

which we will call "temperature," along with the constant kb. The rationale for making this change

is to connect the average energy per degree of freedom of the underlying high state dimension resistor

with the term kBT
2 , which is the well-known average energy per degree of freedom of physical systems

with quadtratic Hamiltonians in thermodynamic equilibrium. With this notation, the dynamics of

the measurement device are taken to be

zm(t) = kmum(t) +
√
2kmkBTmw(t) (2.3.3)

where the idealized sensor sees the signal ym(t) = zm(t)
km

.
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Interconnecting these two components such that um(t) = y(t) and u(t) = −zm(t), the dynamics

during measurement of the interconnected system become

ẋ(t) = (F − kmBB
T )x(t)−B

√
2kmkBTmw(t) (2.3.4)

ym(t) = BTx(t) +

√
2kBTm
km

w(t). (2.3.5)

This is the linear measurement model that we will use throughout the rest of this chapter.

What is immediate from this form is that during measurement, the dynamics have been changed

deterministically such that the system matrix is now F − kmBB
T . We will refer to this change as

the deterministic back action. We will call the unavoidable input noise term into the system as the

stochastic back action.

2.4 Estimation and Passive Measurement

As a first step, let’s look at the estimation problem associated with the given measurement model.

As the system is linear, and the noise process Gaussian noise, we know that a Kalman filter estimator

will give us the absolute minimum mean square estimation error [28]. Because of the correlation

(perfect) between the process and observation noise, we can rewrite Eq. (2.3.4) by adding to it the

term

−Bkmym(t) + kmBB
Tx(t) + km

√
2kBTm
km

Bw(t) = 0

so that we have

ẋ(t) = Fx(t)− kmBym(t)

ym(t) = BTx(t) +

√
2kBTm
km

w(t).
(2.4.1)

The estimation problem associated with this measurement model is thus one that is equivalent to

one with no process noise. As such, we can directly write the error-covariance and estimator filter

using the standard Kalman filter equations (with no process noise),

Ṗ (t) = FP (t) + P (t)FT − km
2kBTm

P (t)BBTP (t) (2.4.2)

K(t) =
km

2kBTm
(P (t)B − 2kBTmB) (2.4.3)
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where P (t) is the estimation error covariance E||x(t) − x̂(t)||2, and K(t) is the multiplicative term

in the filter evolution equation

˙̂x(t) =
(
F − kmBB

T
)
x̂(t) +K(t)[y(t)−BT x̂(t)]. (2.4.4)

If we define M(t) := P−1(t) and note that Ṗ−1(t) = −P−1(t)Ṗ (t)P−1(t), we find that the

dynamics of M(t) are described by the Lyapunov differential equation

Ṁ(t) =
km

2kBTm
BBT −M(t)F − FTM(t) (2.4.5)

with solution

M(t) =
km

2kBTm

∫ t

0

e−FT sBBT e−Fsds+ e−FtM(0)e−Ft. (2.4.6)

This form of P−1(t) will ultimately allow us to gain some insight into the passive measurement

problem for some simple examples, as well as to immediately notice that

• If F is Hurwitz, and (F,BT ) is observable, then all eigenvalues of M(t) → ∞ as t → ∞, and

hence P (t) → 0.

• If the system is lossless F = J = −JT , then M(t) can be viewed as the variance of the state of

a lossless system (J,B,BT ) injected with white noise, and also grows indefinitely, albeit much

more slowly with eigenvalues growing as order t. So, in this case, P (t) → 0 as well.

• If F is unstable, the non-zero steady state estimation error covariance is just the solution of

the Lyapunov Equation

km
2kBTm

BBT − P−1
∞ F − FTP−1

∞ = 0 (2.4.7)

given by

P−1
∞ =

km
2kBTm

∫ ∞

0

e−FT sBBT e−Fsds. (2.4.8)

Remark 2.4.1 In the case where F unstable, the integral on the right side of Eq. (2.4.8) is the

controllability gramian of the pair (−FT , B) [29], and specifically the cross-Gramian for the system

(−FT , B,BT ). Among results concerning this integral, it happens that it can be used as the basis for

an approach to finding reduced order models of systems, and it would be interesting to investigate

if the object P∞, that is, the steady state estimation error for an unstable system with observation

noise, is an interpretation of this integral that might be used in model reduction methods for unsta-

ble systems on finite time horizons. A similar reduction technique, balanced truncation applied to
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unstable systems, has been atempted in [30] and [31]. We will mention this topic again in Chapter

3.

While for lossless or dissipative systems that are observable we know that in this model we can even-

tually estimate the state of the observed system arbitrarily well, the critical point is that this state

is one that has been disturbed by the measurement process itself. We will make the differentiation

between the measured state and unmeasured state by the labeling xmeas and xunmeas, and using

Eq.(2.3.4), find that

(2.4.9)xmeas(t)−xunmeas(t) = eFtx0−e(F−kmBBT )tx0︸ ︷︷ ︸
βD(t)

+
√
2kmkBTm

∫ t

0

e(F−kmBBT )(t−s)Bw(s)ds︸ ︷︷ ︸
βS(t)

where we have defined βD(t) and βS(t) as the deterministic and stochastic back action, respectively,

mentioned earlier. The stochastic back action effectively ‘heats up’ the observed system by increasing

the variance of the state during measurement by the amount

(2.4.10)E[βSβT
S ](t) = 2kmkBTm

∫ t

0

e(F−kmBBT )sBBT e(F
T−kmBBT )sds.

Example 2.4.1. Measurement of an LC Circuit

In this example, we consider measuring the voltage and current in an LC circuit with transfer

function given by jωL|| 1
jωC where L = C = 1

ω . In this case,

B =
√
ω

 1

0

 , F =

 0 ω

−ω 0

 . (2.4.11)

Using our expression for P−1(t),

M(t) =
1

2kBRTm

∫ t

0

eFsBBT eF
T sds+ eF

T tM(0)eFt, (2.4.12)

and writing out

eFt =

 cosωt sinωt

− sinωt cosωt


eFsBBT eF

T s = ω ·

 cos2 ωt − cosωt sinωt

− cosωt sinωt sin2 ωt


∫ t

0

eFsBBT eF
T sds =

1

2
·

ωt+ cosωt sinωt − sin2 ωt

− sin2 ωt ωt− cosωt sinωt

 .

Now, if we assume that we initially have M(0) = 0, we can write
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P (t) =4kBRTm
1

ω2t2 − sin2 ωt

ωt− cosωt sinωt +sin2 ωt

+sin2 ωt ωt+ cosωt sinωt

 . (2.4.13)

We see that P (t) decays to 0 as t → ∞, algebraically in t. What this simple example illustrates

nicely, and which we can deduce more generally from 2.4.10 and 2.4.6, is that the initial very fast

decrease of P (t) in some sense makes it advantageous to take very short measurements before the

effects of back action, which vary exponentially, become more significant.

2.4.1 Smoothed Estimate of x0

In the previous section, we saw an explicit tradeoff between the decrease in the state estimation error

P (t) over the measurement time interval, and the increase of the measurement back action, βS(t)

and βD(t) in that same time period. Perhaps it is not important that the state of the measurement

system gets destroyed in the measurement process, and the only objective is to measure x0. With

this objective in mind, in this section, we examine how the smoothed estimate of x0 evolves over

time. Although formulas for smoothing estimates are standard and directly applicable, since we are

interested in an estimate of the state at a fixed point in time, we can easily address the estimation

problem on x0 by forming the system ˙x(t)

ξ̇(t)

 =

 F − kmBB
T 0

0 0

 x

ξ

+

 B

0

 [u(t)−
√

2kmkBTw(t))] (2.4.14)

y(t) =
[
BT 0

] x

ξ

+

√
2kBTm
km

w(t) (2.4.15)

where x(0) = ξ(0), and looking at the error covariance of the MMSE of

 x(t)

ξ(t)

 by solving the

homogeneous Riccati equation 2.4.2 given by

Ṗ (t) =

 Ṗ11 Ṗ12

ṖT
12 Ṗ22

 =

 F 0

0 0

 P11 P12

PT
12 P22

+

 P11 P12

PT
12 P22

 FT 0

0 0

−

km
2kBTm

 P11BB
TP11 P11BB

TP12

PT
12BB

TP11 PT
12BB

TP12

 ,
P (0) =

 P11(0) P12(0)

PT
12(0) P22(0)

 =

 P (0) P (0)

P (0) P (0)

 ,
(2.4.16)
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which we can solve in sequence P11 → P12 → P22,

Ṗ11(t) =FP11 + P11F
T − km

2kBTm
P11BB

TP11

Ṗ12(t) =(F − km
2kBTm

P11BB
T )P12

Ṗ22(t) =− km
2kBTm

PT
12BB

TP12.

(2.4.17)

While we have already analyzed the the matrix differential equation for P11(t) in the previous section,

and concluded that for a lossless measured system the state uncertainty goes to zero in time, it is not

clear from the coupled matrix ODEs of Eq.(2.4.17) exactly how P22(t), the smoothed estimate of the

measured system before onset of the mesurement process, evolves. Without resorting to analyzing

this ODE, though, we can deduce the limiting form of the smoothed estimate of x0 from simple

arguments.

Lemma 2.4.1 For measurement of a lossless system, the error in the smoothed estimate of x0 goes

to zero as t→ ∞. In particular, P2(t) → 0 in Eq. (2.4.17).

To facillitate showing this, let’s first ask a similar question, which itself can be viewed as another

type of inquiry in this measurement problem formulation. What levels of uncertainty could we

achieve if we attempted to estimate the state to which the system would have evolved had the

measurement not been made? The answer to this is can be seen from Eq. (2.4.1), which if we

integrate, gives us the relationship

xmeas(t) = eFtx(0)− km

∫ t

0

eF (t−s)By(s)ds. (2.4.18)

That is, the difference between the measured state xmeas(t) and state of the unmeasured system

xunmeas(t) = eFtx(0) is simply a deterministic function of the observations y(t). As such, the

minimum mean squared error of the estimate xunmeas(t) must be the same as for xmeas(t). This

point can also be seen by modifying the composite equations in Eq.(2.4.1), changing the composite

system state matrix from F − kmBB
T 0

0 0

→

 F − kmBB
T 0

0 F

 , (2.4.19)
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in which case the coupled covariance equations would become,

Ṗ11(t) =FP11 + P11F
T − km

2kBTm
P11BB

TP11

Ṗ12(t) =FP12 + P12F
T − km

2kBTm
P11BB

TP12

Ṗ22(t) =FP22 + P22F
T − km

2kBTm
PT
12BB

TP12,

(2.4.20)

and from which we see the trivial result that P11(t) = P12(t) = P22(t). That is, all of our analysis

for the estimation error of the measured system is the same as that we would encounter if we were

interested in the time evolution of the unmeasured system. In the special case where the system is

lossless, this means that we can measure the state to which the system would have evolved arbitrarily

well. What does this tell us about our first question regarding the behavior of P22(t) in Eq.(2.4.17),

i.e., the error in the smoothed estimate of x0? For a lossless sytem, we have just shown that the

estimation error, x̃unmeas(t), defined as

x̃unmeas(t) = xunmeas(t)− x̂unmeas(t), (2.4.21)

satisfies

E
(
x̃unmeas(t)x̃unmeas(t)

T
)
→ 0 as t→ ∞. (2.4.22)

So, taking x̂0(t) = e−Jtx̂unmeas(t) as an estimator of the system initial condition, we find that for

this estimator

x̃0(t) = x0 − x̂0(t) = e−Jt
(
eJtx0 − x̂unmeas(t)

)
= e−Jtx̃unmeas(t). (2.4.23)

In particular,

E
(
x̃0(t)x̃0(t)

T
)
= e−Jt E

(
x̃unmeas(t)x̃unmeas(t)

T
)
eJt, (2.4.24)

which from Eq. (2.4.22) goes to zero as t→ ∞. Thus, we also find that we can determine the initial

state of a lossless sytem arbitrarily well with sufficiently long measurements. Looking back at our

simple LC example Ex.(2.4), we can integrate 2.4.17 and see the exact decay of P22(t) that we would

expect from Eq. (2.4.22) and Eq.(2.4.24) in Figure (2.2).
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Figure 2.2: Minimum mean-squared estimation error for measured state and initial condition of LC

circuit with L = C = 5 ,B = (1, 1)T , R = 1, 2kT = 1, P0 = (10, 2; 2, 10).

2.5 Active Measurement

In the last section, we completely characterized the estimation problem for the given measurement

model, and for lossless systems found that we can measure a state arbitrarily well if we are willing

to destroy it and wait long enough. In this section, we examine possible ways to measure a state

while preserving it in some way. We might want to ask the question of what would be considered a

‘minimally disturbing’ measurement? Defining this is open to a great deal of freedom, but intuitively,

we would want to keep the state of the system ‘close’ to its unperturbed value either throughout the

measurement or after the measurement process is complete. Given the form of the back action in

the measurement model in the last section, and its decomposition into deterministic and stochastic

components, if we allow ourselves the ability to apply an external signal to offset a portion of this

back action, then we have a measurement problem that involves both estimation and control. This

is an issue that traditionally is not addressed in controls, where the measurement process is usually

taken for granted. In the following section, we look at multiple approaches to reducing the effects

of measurement back action, with their own idealized assumptions, and emphasize the limitations

of each.



31

..

Observed System

.

D

.

km

.

noise

.

√
2kmkBTmw(t)

.

Sensor

.

Controller

.....
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ym(t)
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Figure 2.3: Active Measurement Structure

2.5.1 Impulsive Control

In some active measurement schemes, we will refer to an actual controller placed in the original

measurement model, as shown in Figure 2.2. From 2.4.18, we know that we can measure the given

system, and at the end of the measurement apply an impulsive control

u(t) =

(
km

∫ tf

0

eF (tf−s)Bym(s)ds

)
δ(t− tf ) (2.5.1)

to ‘place’ the system back to where it would have been had the measurement not taken place.

This sort of trivial solution to our ‘minimally disturbing’ measurement problem illustrates the point

that in order to get bounds of any meaning, we have to impose constraints on our controller that

correspond, in some way, to reality, restricting the types of abstract dynamical systems that we

can employ as ‘controllers.’ For instance, we might want to see what limits to measurement we

end up with if we restrict our control effort to have finite power. There are also more subtle issues

to consider, such as the implementation of the Kalman filter in the previous section. Since the

dynamics of the filter are those of the measured system during measurement, the filter must itself

consist of a resistor which would, through the fluctuation-dissipation theorem, be accompanied by

another independent noise source. Maybe this filter could be run at a lower temperature, or maybe

it could be implemented ‘digitally’ with underlying non-linear dynamical systems. All sorts of issues

can be imagined that complicate this picture, so we will try to avoid them in the next section by

employing very simple active dynamical systems as components in an active measurement device.

2.5.2 Deterministic Back Action Cancellation

In this formulation, we will assume that an active device can be inserted in parallel with the mea-

surement device such that the deterministic portion of the back action is eliminated, and examine
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Figure 2.4: Deterministic Back Action Cancellation

the limitations imposed by the stochastic back action. This ‘negative resistor’ is inserted as shown

in Figure 2.3. While it would be easy to initially dismiss the admission of such a device in our mea-

surement problem as allowing us too much freedom, in fact, simple non-linear dynamical systems

can be made that arbitrarily well approximate such devices. We again emphasize the point that

active devices must necessarily be nonlinear. An easy construction found in [3] is given by

ẋ(t) =
k√
2E

u(t)2, x(0) =
√
2E (2.5.2)

y(t) =
k√
2E

x(t)u(t), (2.5.3)

where k can be negative and where E represents the initial energy of the system, which will be

assumed large. The input-output relationship for this system is given by

y(t) = kx(t) +
k2

2E
u(t)

∫ t

0

u(s)2ds, (2.5.4)

which can arbitrarily well approximate a negative resistor in the limiting case where the available

energy in the initial condition of the system goes infinity. Generalizing this construction to include

noise on the initial system state can also be handled easily, and is explicitly given in, [3], but we

don’t need to include it in the subsequent analysis, as we will shortly find estimation error lower

bounds even for the case where this ‘negative resistor’ is assumed noiseless.

With the inclusion of the system in Eq.(2.5.4), in the large E limit, into the measurement

structure shown in Figure 2.3, the state and output equations become
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ẋ(t) = Fx(t)−B
√

2kmkBTmw(t) (2.5.5)

ym(t) = BTx(t) +

√
2kBTm
km

w(t). (2.5.6)

The resulting Kalman filter equations become

Ṗ (t) = FP (t) + P (t)F + 2kmkBTmBB
T − 2kBTm

km
K(t)KT (t) (2.5.7)

K(t) =
km

2kBTm
(P (t)B − 2kBTmB) , (2.5.8)

which, almost identically to before,

Ṗ (t) =FP (t) + P (t)F + 2kmkBTmBB
T − km

2kBTm
P (t)BBTP (t) (2.5.9)

−2kbkmTmBB
T + km(P (t)BBT +BBTP (t)) (2.5.10)

so that

Ṗ (t) =(F + kmBB
T )P (t) + P (t)(FT + kmBB

T ) (2.5.11)

− km
2kBTm

P (t)BBTP (t). (2.5.12)

Again, the equation for P−1(t) is a Lyapunov differential equation

(2.5.13)Ṁ(t) =
km

2kBTm
BBT −M(t)(F + kmBB

T )− (FT + kmBB
T )M(t).

of which we get the solution

(2.5.14)M(t) =
km

2kBTm

∫ t

0

e−(FT+kmBBT )sBBT e−(F+kmBBT )sds

+ e−(FT+kmBBT )tM(0)e−(F+kmBBT )t.

A noteworthy feature of this approach to measurement is that it does not require computation

of the active control signal, so analysis of this type of measurement does not burden us with the

analysis of limits that would arise from computation . As such, since the stochastic back action is not

accounted for, the measured system is simply ‘heated up’ during measurement. The consequences

of this fact are manifested in our ability to estimate the state of a system measured in this manner,

and are explicitly stated in the following theorem.

Theorem 2.5.1 (Uncertainty Lower Bound for Lossless Systems Measured with Can-

cellation of Deterministic Back Action). For any measurement of an 2-dimensional lossless
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system concurrent with active cancellation of the deterministic component of back action,

Tr[P−1(t)] ≤ 1

2kBTm

for all t provided that the initial uncertainty satisfies

P (0) ≥ 4kBTmI.

A specific consequence of this statement is that:

Corollary 2.5.1 If (q, p) are the state variables of the system transformed so that the energy function

is given by Σ(p, q) = p2 + q2, then both

E[∆q2] ≥ 4kBTm and E[∆p2] ≥ 4kBTm, (2.5.15)

for all t, where ∆q2 and ∆p2 are the mean squared errors of the estimates of q, p.

Proof. From Eq.(2.5.13) and the results in Section 1.2, we know that F = J , and since (J,B) is

controllable that the inverse of the state estimation error covariance in the limit as t → ∞ is the

unique solution of

(2.5.16)
km

2kBTm
BBT −M∞(J + kmBB

T )− (JT + kmBB
T )M∞ = 0,

which can be easily verified to be
(2.5.17)M∞ =

I

4kBTm
.

Taking the trace of Eq.(2.5.13), we get

(2.5.18)
Tr[Ṁ(t)] =

km
2kBTm

∥B∥2 − Tr[M(t)J + JTM(t)]− kmTr[M(t)BBT +BBTM(t)]

=
km

2kBTm
∥B∥2 − kmTr[M(t)BBT +BBTM(t)],

where the last equality comes from the fact that the trace of the product of a symmetric and

skew-symmetric matrix is zero. Also, since M(t) is positive semidefinite, we have that

Tr[M(t)BBT ] ≤ λmax[M(t)]∥B∥2≤ Tr[M(t)]∥B∥2. (2.5.19)

Thus, we get

(2.5.20)Tr[Ṁ(t)] ≥ km∥B∥2
(

1

2kBTm
− Tr[M(t)]

)
.

By assumption,

0 < M(0) ≤ I

4kBTm
=⇒ Tr[M(0)] ≤ 1

2kBTm
.
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From Eq.(2.5.17) and the fact that the trace is a continuous function, we also have that

lim
t→∞

Tr[M(t)] = Tr[M∞] =
1

2kBTm
.

Given Eq.(2.5.20), we deduce that for all t,

Tr[Ṁ(t)] ≥ 0 and Tr[M(t)] ≤ Tr[M∞] =
1

2kBTm
.

That is, Tr[M(t)] increases monotonically to its limit, which is the desired result.

Corollary 2.5.1 can be immediately seen by observing that

λmin (P (t)) ≥
2

Tr[M(t)]

.

and since P (t) ≥ 0, that P11(t), P22(t) ≥ λmin (P (t)).

Example 2.5.2. Measurement of an LC Circuit with Cancellation of Deterministic Back Action

To demonstrate the tightness of this bound, we can go back to the LC circuit example in the previous

section, although this time analyze it numerically in the case where

E

 I2L(0) IL(0)VC(0)

IL(0)VC(0) V 2
C(0)

 = 2kbT

10 7.9

7.9 10

 . (2.5.21)

The time evolution of the error covariances are shown in Figure 2.4.
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Figure 2.5: Mean squared estimation error for Vc and IL in Example 2.5.2
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We can also extract additional information about this sort of measurement by explicitly solving

for the error covariances using the formulas given in the previous section. For instance, if we were

to take B = [0, 1]T and assume that the initial error covariance is infinite, we would find that the

minimum-mean squared error estimate of the state of the LC circuit would be given by

P−1 =M(t) =

m11(t) m12(t)

m21(t) m22(t)

 , (2.5.22)

where

m11(t) =
km

2kBTm
·
(

1

2km
· (1− e−kmt)− 1

4ω2
d

· e−kmt
(
km sin2 ωdt− 2ωd · cosωdt sinωdt

))
m12(t) =

km
2kBTm

·
(
−ω
2ω2

d

· e−kmt sin2 ωdt

)
m22(t) =

km
2kBTm

·
(

1

2km
·
(
1− e−kmt

)
− 1

4ω2
d

· e−kmt
(
km sin2 ωdt+ 2ωd · cosωdt sinωdt

))
,

expressions that allow us to directly read off the entries of P (t) by noting the simplification,

detM(t) =

(
km

2kBTm

)2

·

((
1

2km

)2 (
1− e−kmt

)2 − e−kmt

4ω2
d

sin2 ωdt

)
. (2.5.23)

We have to be mindful of that fact that with this sort of measurement, the system is heated up, and

in particular

xmeas(t) = xunmeas(t) + βS(t)

where the stochastic back action βS(t) is a normal random variable with covariance given by

(2.5.24)

E[βSβT
S ](t) = 2kmkBTm

∫ t

0

eFsBBT eF
T sds

= kmkbTm ·

t+ 1
ω cosωt sinωt − 1

ω sin2 ωt

− 1
ω sin2 ωt t− 1

ω cosωt sinωt

 .

If we want to compare decay of the error covariance matrix to the stochastic back action with

increasingly large km, we note that for km ≫ ω,

ωd =
1

2

√
k2m − 4ω2 ∼ km

2
− ω2

km
(2.5.25)



37

and that in this limiting condition, that the right side of Eq. (2.5.23) is approximately

=

(
km

2kBTm

)2

·

((
1

2km

)2 (
1− e−kmt

)2
+
e−kmt

4ω2
d

sinh2 ωdt

)

∼
(

km
2kBTm

)2

·
(

1

2km

)2

·
((

1− e−kmt
)2

+
(
e−2kmt + e−

ω2

km
t − 2e−kmt

))
=

(
1

4kBTm

)2

·
((

1− e−kmt
)2

+
(
e−2kmt + e−

ω2

km
t − 2e−kmt

))
.

We can directly use Eq. 2.5.23 to get the small t expansion of the determinant as

detM(t) ∼
(

km
2kBTm

)2

·

((
1

2km

)2 (
k2mt

2 − k3mt
3 + o1(t

4)
)
− 1

4ω2
d

·
(
ω2
dt

2 − kmω
2
dt

3 + o2(t
5)
))

=

(
km

2kBTm

)2

·

((
1

2km

)2 (
o1(t

4)
)
− 1

4ω2
d

·
(
o2(t

4)
))

,

as all the terms up to order t3 vanish. The resulting order t4 terms end up being

o1(t
4) =

7

12
k4mt

4

o2(t
4) =

(
k2mω

2
d

2
− ω4

d

3

)
t4,

which gives us, making the substitution 4ω2 = 4ω2
d + k2m,

detM(t) ∼
(

km
2kBTm

)2

· ω
2

12
· t4.

Using this, the short measurement time expansions of the individual entries of P (t) can be read off

taking the lowest-order expansions of the entries given for M(t) earlier, to give

p11(t) ∼
2kBTm
km

· 4
t

p12(t) ∼
2kBTm
km

·
(

6

ωt2

)
p22(t) ∼

2kBTm
km

·
(

12

ω2t3

)
.

From these expressions, we can directly deduce two non-obvious features specific to measurement

of a harmonic oscillator. Firstly, for short t, the magnitude of the resistance used only appears

as a multiplicative constant in the error covariance. Secondly, for each individual state, we get a

relationship between the back action and error covariance such that

E[βSβT
S ]ii(t) · Pii(t) =

(
2kBTm
km

)2

· ci, (2.5.26)

where c1 = 4 and c2 = 12. That is, for short time, this product relationship between back action
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and estimation error is independent of the resistance of the measurement medium, and does not

change with respect to time.

2.5.3 LQG Control to Meausure and Preserve Pre-Measurement State

The advantage to analyzing active measurement with only deterministic back action is two-fold.

As already mentioned, when we cancel the deterministic back action, the Kalman filter itself does

not have a resistor in it, so we are not introducing additional noise sources in the realization of

the estimator. Additionally, the implementation of the negative resistor can be accomplished using

a simple dynamical system with a large stored internal energy. Of course, the non-optimality of

this technique is that input to the measured system from the active advice does not make use of

information about the time history of the noise process.

In this section, we consider a measurement which, unlike the deterministic-back action cancel-

lation approach of the last section, utilizes information about the noise process injected into the

system, and attempts to offset it. To accomplish this end, we must take a leap in both the freedom

to perform computation, and the ability to generate arbitrary control signals without the introduc-

tion of additional noise. However, what makes this measurement approach worth examining is that

it is not so extreme an idealization as the impulsive control technique of Section 2.5, but rather,

depending on the cost we choose to place on control effort, is characterized by having finite power

and bandwidth requirements.

We will assume that we have an infinite-resistance device that can generate arbitrary inputs

according to a control law, and consider a measurement method where the objective is to maintain the

state of a measured lossless system as close to its original value over the course of the measurement.

By close, we will mean in a mean-squared sense, so we pose this problem as a standard LQG control

tracking problem. For the rest of this section, we will examine the minimization of

J =E
∫ tf

0

(xm(t)− x0)
T
Q (xm(t)− x0) + ||u(t)||2dt, (2.5.27)

where xm(t) and x0 denote the state of the measured system and pre-measurement state, respectively.

The main question we want to answer is, in the case where the measured system is lossless, how

does the cost we put on control effort prevent the LQG controller from squeezing the state of the

measured system to the pre-measurement state?

The minimization in 2.5.27 would proceed just as in Section 2.41, by introducing the state

v(t) =

 xm(t)

x0

 . (2.5.28)
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Defining quantities as in Section 2.41, we write

F̃ =

 J − kmBB
T 0

0 0

 , B̃ =

 B

0

 , Q̃ =

 Q −Q

−Q Q

 (2.5.29)

P (t) =

 P11(t) P12(t)

PT
12(t) P22(t)

 . (2.5.30)

From Eq. (2.4.1), we know how to solve for P (t). The state feedback control law for the LQG

minimization follows (see [28] or [32]) by partitioning the matrix

S(t) =

 S11(t) S12(t)

ST
12(t) S22(t)

 (2.5.31)

and solving the Riccati differential equation

−Ṡ(t) = F̃TS + SF̃ − SB̃B̃TS + Q̃, (2.5.32)

which yields the coupled matrix ODEs

−Ṡ11(t) =(J − kmBB
T )TS11 + S11(J − kmBB

T )− S11BB
TS11 +Q

−Ṡ12(t) =(J − kmBB
T )TS12 − S11BB

TS12 −Q

−Ṡ22(t) =− ST
12BB

TS12 +Q.

(2.5.33)

The LQG control law then is u(t) = −B̃TS(t)v̂(t). So, how does the LQG-controlled state x(t)

evolve in time? How well does the LQG controller keep x(t) near x0 when there is non-zero cost on

control, in the t→ ∞ limit?

We argue that since P (t) → 0, and specifically, we eventually know x0 arbitrarily well, that in

the limit as t → ∞ that the analysis for this question is the same as asking how well the controller

can squeeze the state x(t) to zero. This is the avenue we take. So, how does the LQG-controlled

state x(t) evolve in time? Writing the estimate error as x̃ = x− x̂, we have that

E
(
x(t)xT (t)

)
= P11(t) + E

(
x̂(t)x̂T (t)

)
, (2.5.34)
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since the state estimate and estimate error are independent. We also have that

B̃u(t) =

 −BBT 0

0 0

 S11(t) S12(t)

ST
12(t) S22(t)

 v̂(t) =
 −BBTS11(t) −BBTS12(t)

0 0

 v̂(t) (2.5.35)

so that in closed loop,

˙̂x(t) =
(
J − kmBB

T −BBTS11(t)
)
x̂(t) +K(t)e(t)−BBTS12x̂0(t) (2.5.36)

where e(t) is the innovations process of the estimation problem, and K(t) is as given in Eq.(2.4.2).

We reiterate, that since our concern in this analysis is the ability of the infinite-horizon controller

to account for the process and observation noise, we will assume that x0 = 0. Also, since we know

that the error covariance of the smoothed estimate of the initial state of a lossless system goes to

zero for large t, that for steady state analysis of the infinite-horizon problem, the limiting behavior

of the controller can be deduced by analyzing the limiting form of the equation,

˙̂x(t) =
(
J − kmBB

T −BBTS11(t)
)
x̂(t) +K(t)e(t) (2.5.37)

rather than Eq.(2.5.36). From this, we can immediately derive (since e(t) is a white noise process)

˙̂
X(t) :=

dE(x̂(t)x̂T (t))
dt

=(J −G(t)) X̂ + X̂ (J −G(t))
T
+

2kbTm
km

K(t)KT (t),

(2.5.38)

where we have defined

G(t) := kmBB
T +BBTS11(t). (2.5.39)

Again, since this analysis is for the limit as t→ ∞, we use the infinite horizon LQG solution with

B̃u(t) = −BTS∞
11x(t), (2.5.40)

where S∞
11 is the limit of the backwards integrated equation 2.5.33. Since P (t) → 0 for large t,

K(t) → −kmB (from 2.4.2), we can use Eq. (2.5.34) along with Eq. (2.5.38) to show that (see for

example [33], [34])

lim
t→∞

E(x(t)xT (t)) = X∞, (2.5.41)
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where X∞ satisfies

0 = (F −G∞)X∞ +X∞(F −G∞)T + 2kbTmkmBB
T . (2.5.42)

This is the same Lyapunov equation that we would obtain for the mean squared value of the con-

trolled state at large time in the case where we had complete state feedback with process noise

of magnitude
√
2kbTmkm. We illustrate the performance of the LQG controller for an LC circuit,

but again emphasize that the process of computing the steady state value of E∥x(t)∥2 under control

simply involves solving the ARE in S11,

0 = (F − kmBB
T )TS∞

11 + S∞
11(F − kmBB

T )− S∞
11BB

TS∞
11 +Q (2.5.43)

and the Lyapunov equation 2.5.42 where

G∞ = kmBB
T +BBTS∞

11 . (2.5.44)

Example 2.5.3 (LC Circuit Revisited). We numerically look at the tradeoff between state weighting

and the ability of the LQG controller to squeeze the steady state in the case where the measured

system is our LC circuit. Again, the motivation in this is to see how imposing cost on control affects

our ability to minimally disturb the system being measured while extracting information. Note that

in this example the state is being squeezed to zero, but the steady state result would be the same

as in the case where we were attempting to squeeze the state to x0, i.e., the pre-measurement state.

In this example, we have chosen parameters such that 2kBT = 1, Q = q · I, P = 10 · I, km = 0.1 and

2kBT = 1.

The diagonal entries of P11(t) and the LQG-controlled E[̂iL(t)]2(t) and E[v̂C(t)]2 are shown in

Figures 2.5 and 2.6, respectively. From Eq. (2.5.34), the sum of the individual values from the two

figures is how the mean squared value of the state evolves in time under the LQG control. Although

P11(t) goes to zero, the mean squared estimate of the state never reaches zero as the controller fights

to offset the effects of the process noise, so the tradeoff between control cost (in this formulation,

penalty on state) and steady state mean squared value is shown in Figures 2.7 and 2.8 for various

levels of process noise amplitude. Notice that in this example, with the form of B, that the state x1

is directly subject to the process noise, so the steady state mean squared is larger than that of the

controlled x2. This holds no matter what the relative state weighting we might apply in Q.
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Figure 2.6: Mean squared estimation error for iL(t) (blue) and vC(t) (green)
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Figure 2.7: Mean squared estimate of controlled iL(t) (blue) and vC(t) (green) with E[iL(0)]2 =

E[vC(0)]2 = 10

.
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Figure 2.8: Steady state mean squared value of LQG-controlled iL(t) versus weighting placed on

iL(t) in LQG cost functional. Plots cover range of 2kbTmkm from values 1 to 10.
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Figure 2.9: Steady state mean squared value of LQG-controlled vC(t) versus weighting placed on

vC(t) in LQG cost functional. Plots cover range of 2kbTmkm from values 1 to 10.

2.5.4 LQG Control to Meausure and Preserve Pre-Measurement State

In this section, we address another measurement problem similar to the one posed in the previous

section, in which we attempt to use LQG control to maintain the lossless system’s state close to the

state it would have evolved to without the measurement taking place. In attempting to avoid being

repetitive, we refer back to Eq. (2.4.18), and note that for a given control input u(t),
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xmeas(t) = eFtx(0)− km

∫ t

0

e(J−kmBBT )(t−s)By(s)ds := xunmeas(t) + η(t), (2.5.45)

where η(t) satisfies the ODE

η̇(t) = (J−kmBBT )η(t)−kmBy(t) = (J−kmBBT )η(t)+B

(
BTx(t) +

√
2kBTm
km

w(t)

)
. (2.5.46)

For the objective of keeping xunmeas(t) close to xmeas(t), we form the cost functional

J =E
∫ tf

0

(xmeas(t)− xunmeas(t))
T
Q (xmeas(t)− xunmeas(t)) + ||u(t)||2dt,

=E
∫ tf

0

η(t)TQη(t) + ||u(t)||2dt

and recall by the separation principle that the optimal control is obtained by separating the esti-

mation and deterministic control problems. We can solve this proceeding in a similar fashion to the

last, where we introduce the composite state,

v(t) =

 xmeas(t)

η(t)

 . (2.5.47)

Now, technically speaking, η(t) is always known exactly, since it is a deterministic function of both

y(t) and u(t), but we will nevertheless still write out an equation for the estimator of η(t), using Eq.

(2.5.46) as

(2.5.48)
˙̂η(t) = η̇(t)

= (J − kmBB
T )η̂(t)− kmBy(t)

= (J − kmBB
T )η̂(t) + kmBB

T x̂meas(t)− kmBe(t)

where again we use the innovations process e(t) = y(t)−BT x̂meas(t). Put together, we get

(2.5.49)

˙̂v(t) =

 ˙̂xmeas(t)

˙̂η(t)


=

 J − kmBB
T 0

kmBB
T J − kmBB

T

 x̂meas(t)

η̂(t)

+

 B

0

u(t) +
 K(t)

−kmB

 e(t).
where K(t) is given just as in Eq.(2.5.7). Looking now at the controls aspect of this problem, we

consider the controller associated with minimizing,

Jdet =

∫ tf

0

v(t)TRv(t) + ||u(t)||2dt,
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where now Q is given by

(2.5.50)R =

 0 0

0 Q

 ,
and where the dynamics of v(t) are given by

(2.5.51)

v̇(t) =

 ẋmeas(t)

η̇(t)


=

 J − kmBB
T 0

kmBB
T J − kmBB

T

 x̂meas(t)

η̂(t)

+

 B

0

u(t).
Recast in this form, the solution to the original problem of minimizing the cost functional in Eq.

(2.5.27) is a rather straightforward application of the equations used in the last section. Defining

F̃ =

 J − kmBB
T 0

kmBB
T J − kmBB

T

 , B̃ =

 B

0

 (2.5.52)

and solving

−Ṡ(t) = F̃TS + SF̃ − SB̃B̃TS +R (2.5.53)

and partitioning S(t) as in Eq. (2.5.31), we get the optimal deterministic control law, again, as

u(t) =
[
−BTS11(t) −BTS12(t)

]
v(t), (2.5.54)

where the individual sub-matrices of S(t) satisfy

−Ṡ11(t) =(J − kmBB
T )TS11 + S11(J − kmBB

T )− S11BB
TS11 + kmBB

TST
12 + kmS12BB

T

−Ṡ12(t) =(J − kmBB
T )TS12 + S12(J − kmBB

T ) + kmBB
TS22 − S11BB

TS12

−Ṡ22(t) =(J − kmBB
T )TS22 + S22(J − kmBB

T )− ST
12BB

TS12 +Q.

(2.5.55)

While these equations taken in their entirety are not amenable to analytic solution, and are not

particularly insightful regarding the controller’s behavior, they do in fact represent the complete

solution of the measurement problem in the case where the intention is to preserve the lossless

system’s unperturbed trajectory. We could do the sort of analysis on these equations that we did in

the previous section to determine the controller’s ability to squeeze the individual conjugate variables

of the lossless system, but we omit it since the arguments would be nearly identical, and the end

result is the same. As we would expect given the sort of ideal control strategy given by Eq.(2.5.1)
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and the observations in Section 2.5.1, with sufficiently low cost on control effort, the LQG controller

can squeeze states arbitrarily well.

2.6 Concluding Remarks

Summarizing what we have shown, in the studied measurement model, the correlation between the

process and observation noise allows for eventual perfect measurement of the state as long as (F,B)

is controllable and F ≤ kmI. This state is of course one of a system that has been disturbed by

the measurement process itself, so this property of the estimation problem may not be of benefit,

depending on the intention of the experiment. However, in the case where F is skew-Hermitian,

the smoothed estimate of the initial state also goes to zero, so an observer could measure a state

to arbitrary precision if she were to accept destroying the state and waiting an arbitrarily long

time. To address measurement scenarios where it would be desirable to preserve the state while

extracting information about it, we must envision adding active elements to the measurement model

to account for the effects of measurement back action. Whereas the passive measurement model and

associated estimation problem were formulated with very basic assumptions, with pretext coming

from physical theory, an analysis of active measurement is much more susceptible to the allowance

of unrealistic idealized devices. In most cases, the mere addition of an active device is accompanied

by additional noise sources [35], annulling the special properties of the estimation problem and the

perfect measurement scenarios associated with it. In addition, proper bookkeeping of uncertainty

must also account for the error in computation that comes with calculating any sort of optimal control

signal, as is in the case of the LQG measurement problem that we examined, and we do not know how

to quantify this in any general sense. In light of this, by far the most realistic approach to actively

measuring back action that we have looked at is the cancelling of the deterministic component of

the measurement back action using a non-linear system, as this does not require any computation

beyond the estimation filter. For this type of measurement, in the case where the system being

measured is lossless, there is a non-zero temperature dependent lower bound on estimation errors

of the conjugate variables. Stepping into the realm of active measurement with highly idealized

active devices, we looked at measurement with LQG control to offset the measurement back action,

without reference to how control signals would be generated or what noise they might have. Rather

unsurprisingly, in the limit of no cost on control, this controller can eventually hold the state to its

pre-measured value or to the state to which it would have evolved to if the measurement had not

been done.
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Chapter 3

Physical Constraints and Low-Order
Approximations of Random
High-Dimensional Lossless Systems

In the previous chapter, we derived results on measurements with components including dissipative

elements satisfying a fluctuation-dissipation relation, with our justification for doing so coming from

Theorem 1.3.2. While that theorem states that in the topology induced by the L2[0,T ] norm that

the lossless systems are dense in the set of dissipative systems, the construction of these lossless

approximations have properties that are very different from what how we would expect dissipative

structures like macroscopic resistors to look like in nature. The lossless approximations constructed

in [3] are such that the system frequencies are perfectly-spaced integer multiples of each other in a

Fourier series expansion of the dissipative impulse response, and with the recurrence manifesting itself

as a perfect copy of the original output at a period T later. By contrast, most macroscopic models

[36], [37] of real resistors involve elements like the random motion of thermally excited electrons in

a lattice, which heuristically seems very far removed from the exactly ‘designed’ abstract resistor

presented in Example 1.3.3. That circuits can, and often are, intentionally designed so that they

nearly appear as resistors is well-known. For instance, early supercomputers were designed for signal

balance, with even individual wire lengths being chosen so as to minimize switching noise, to the

point where power supplies for these devices usually did not need be regulated at all.

In this chapter, we will focus on the question of: what are the properties of large lossless systems

such that they admit low dimensional dissipative approximations on finite time horizons? We will

first introduce a well-known approach for finding reduced-order models for which there are error

bounds for the approximation. Next, we will look at the most extreme case of model order reduction;

that is whether pure resistors (zero order systems) approximate any class of random lossless LTI

systems. The answer in the linear case seems to be in the negative. Before doing so, we will first

introduce concepts in model reduction techniques to be able to pose problems that might answer
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these questions.

3.1 Finite Time Horizon Model Reduction by Balanced Trun-

cation

We will briefly outline one method for obtaining reduced-order models of linear systems. Our

intention for introducing this procedure is to be able to pose a problem concerning the reduction

of random lossless systems in the next section. Given an LTI system of the form 1.2.8, in the case

where A is stable, and the pairs (A,B) and (A,C) are controllable and observable respectively, the

objects

G∞
c =

∫ ∞

0

eAtBBT eA
T tdt (3.1.1)

G∞
o =

∫ ∞

0

eA
T tCTCeAtdt, (3.1.2)

denoted the controllability and observability gramians respectively, are well-defined and satisfy the

algebraic Lyapunov equations

AG∞
c +G∞

c A
T +BBT = 0 (3.1.3)

ATG∞
o +G∞

o + CTC = 0. (3.1.4)

This is seen immediately by differentiating the ’finite time’ gramian

Go(t) =

∫ t

0

eA
T sCTCeAsds (3.1.5)

(in the case of G∞
0 ) under the integral sign, taking t→ ∞ and observing that A is stable. Recall we

encountered these objects in Section 2.4, and in the case of our estimation problem found that for A

unstable that the Gramian of (−A,C) represented the inverse of the steady state minimum estimation

error when the system was observed with additive white noise. Likewise, the controllability and

observability gramians themselves have simple interpretations. For an arbitrary initial state x0, the

quadratic form

xT0Go(t)x0 = Go(t) =

∫ t

0

xT0 e
AT sCTCestx0ds =

∫ t

0

∥CeAsx0∥2ds =
∫ t

0

∥y(s)∥2ds (3.1.6)

so that the eigenvalues of G0(t) can be interpreted as the 2-norm of the system output integrated

over time [0, t] when the system initial condition is the corresponding eigenvector of G0. The dual
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of this scenario can be seen by asking the question: given a state x(0) = x0, and given a finite time

period to work with [−t, 0], among all inputs u(t) restricted to be nonzero on [−t, 0] what is the

minimum value of ∫ 0

−t

∥u(s)∥2ds (3.1.7)

such that u(t) takes the system from state x(−t) = 0 to x(0) = x0? To answer this, consider the

two operators K : x→ f(t) and L : f(t) → x, where f(t) are functions in L2[−t, 0] given by

K(x) =

 BT e−AT sx −t ≤ s ≤ 0

0 otherwise
(3.1.8)

and

L : f(s) →
∫ 0

−t

e−AsBf(s)ds. (3.1.9)

These operators are adjoints of each other, since for any given pair x, f(s)

xT (Lf(s)) =

∫ 0

−t

xT e−AsBf(s)ds =

∫ 0

−t

fT (s)BT e−AT sxds =

∫ 0

−t

fTK(x)ds (3.1.10)

Noticing

L ◦K =

∫ 0

−t

e−AsBBT e−AT sds = Gc(t), (3.1.11)

we make the assertion that the minimizing u(s) is given by

umin(s) = KG−1
c (t)x0. (3.1.12)

Clearly, this input u(t) takes the state of the system from x(−t) = 0 to x(0) = x0, since

x(t) =

∫ 0

−t

e−AsBBT e−AT sG−1
c x0ds =

∫ 0

−t

e−AsBBT e−AT sdsG−1
c x0 = x0. (3.1.13)

To show that this is the L2[−t, 0] minimizing u(t), consider the operator P = K ◦G−1
c ◦L, and notice

using Eq. (3.1.11) that P 2 = P and that Pumin(t) = umin(t). Thus, the operators P and I −P can

be used to decompose a given function on [−t, 0] into components that are orthogonal with respect

to the inner product ∫ 0

−t

vT (s)w(s)ds. (3.1.14)
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So, take any other function u(t) satisfying Lu(t) = x0, and decompose it as u(t) = Pu(t)+(I−P )u(t).

Then,

∫ 0

−t

∥u(s)∥2ds ≥
∫ 0

−t

∥Pu(s)∥2ds =
∫ 0

−t

∥KG−1
c (t)x0∥2=

∫ 0

−t

∥umin(s)∥2ds

=

∫ 0

−t

uTmin(s)KG
−1
c (t)x0ds = xT0G

−1
c Lumin = xT0G

−1
c x0,

(3.1.15)

where the second to the last equality follows from Eq. (3.1.10). Thus, an interpretation of the

controllability gramian is that through quadratic forms of its inverse, it tells us the minimum effort

required, expressed as the L2[−t, 0] energy of the input function, that it takes to ’create’ a state at

time t = 0 starting with x(−t) = 0. This sort of minimization is the same procedure one would use

to prove that linear systems have quadratic available storage functions, as asserted in Section 1.2.

It turns out that the states of the system can be transformed such that in this new representation

the gramians satisfy Gc(t) = Go(t) = D where D is a diagonal matrix that has as entries the

eigenvalues of Gc(t) · Go(t). For an explicit formula of the transformation, see [38]. In this form,

there is a ‘balance’ in the weighting placed on control effort and output energy. One approach to

obtaining a reduced-order model involves, in essence, ‘throwing away’ those states that take a great

deal of energy to control, and those for which their effect on the output energy of the system is low.

The singular values of the aforementioned gramians give a measure of exactly those two quantities

for individual states, so it is not unreasonable to presume that the input-output properties of a

reduced-order system obtained in this manner will approximate those of the original [39]. Indeed,

this is the case, and we will very briefly outline this ‘balanced truncation’ method.

Assuming G(s) is stable and that we have a minimal state space realization (i.e., there are no

unobservable or uncontrollable states) with state dimension n, and assuming the states have been

transformed such that G∞
c = G∞

o = D, a reduced-order system Gr(s) obtained by eliminating the

n−m states corresponding to the n−m smallest singular values of D, will necessarily satisfy

2 · dm+1 ≤ ∥G−Gr∥∞≤ 2 ·
n∑

i=m+1

di (3.1.16)

where we are labeling the diagonal elements of D such that d1 ≥ d2 ≥ . . . dn.

Unfortunately, the bounds above only hold for reduction on an infinite time-horizon, and is based

on the infinite-time Gramians, which precludes a direct application of this technique to unstable

systems. However, there are avenues to circumvent this issue. In [40], it is shown that by starting

with an unstable system, by shifting the state matrix A → A − aI, where ‘a’ is a constant such

that Aa = A− aI is stable, performing balanced truncation on this stable system, and shifting the

resulting Ar from reduction back Ar → Ar + aI, that the resulting model approximates the original
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such that

∥G−Gr,a∥L2[0,t],ind≤ 2eat
n∑

i=m+1

di (3.1.17)

where again, the di are obtained from the infinite-time-horizon balanced gramians of the shifted

system, and where ∥ ∥L2[0,t],ind is the L2[0, t] induced norm.

For the purposes of computation, this result is useful; however, for generalizing how large lossless

systems admit low-order dissipative approximations, the numerous steps in the construction of the

reduced model makes its use in a theoretical investigation difficult. Another approach for reducing

unstable systems is to directly perform the balanced truncation technique using the finite time

gramians Go(t), Gc(t) [41], [31]. Yet another, for discrete time systems, is outlined in [42]. In

practice, if the input and output dimensions are much smaller than the state dimension, this approach

generally has two salient features that have yet to be proven. First, the resulting lower-order model

usually very well approximates the original over the time horizon (0, t), after which the approximation

abruptly becomes very poor. Second, in practice the spectrum of the singular values di usually have

a sharp cutoff after the first few largest values. We illustrate these features in the following example

of a single-input single output lossless system with C = BT .

Example 3.1.1 (Circularly Coupled Oscillators). We will consider a chain of N identical masses

and springs such that the chain closes in on itself and for which the input and output are the input

velocity and output position of just one of the masses. That is, the dynamics are simply

kẍn = m(xn+1 + xn−1 − 2xn), (3.1.18)

for which it is simple to show that the impulse response is given by the expression

1

N

N−1∑
l=0

cos(t

√
2
k

m
(1− cos(

2lπ

N
))) → J0(2t

√
k/m) as n→ ∞. (3.1.19)

Rather remarkably, performing balanced truncation model reduction on this system, regardless of

how large a number of oscillators are introduced, yields excellent approximations using only two-

dimensional dissipative systems. The singular values of the gramians in this case drop off precipi-

tously.

What this suggests is that to gain some understanding of the lossless → dissipative transition,

it might be beneficial to attempt to generalize the behavior of the eigenvalue spectrum of integrals

of the form, ∫ t

0

eJsBBT e−Jsds, (3.1.20)

where J = −JT and B is a vector, to see if there is a structure on J that leads to fast eigenvalue

decay of the above integral. Unfortunately, we have not been able to make any such characterization.
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3.2 Resistors from Random Lossless Systems

In this section, we take a glimpse at a rather extreme notion of model reduction, that is, whether

perhaps ‘resistors’ derive as approximations to some class of large lossless random systems. We will

first focus on how the frequencies of A impact the ability to make such an approximation. As a first

step, let’s consider a SISO lossless system with random frequencies and an impulse response of the

form

g+N (t) =

(
N∑
l=1

cosωlt

)+

, (3.2.1)

where ωl are i.i.d. random variables with probability density ϕ(ω), and where as before, ()+ refers

to the causal portion of the argument. The characteristic function of the random variable cos(ωlt)

defined as [43]

Fl(x) = E
ωl

[eix cos(ωlt)]

can be calculated immediately using the identity

eix cos(θ) =
∞∑

n=−∞
inJn(x)e

inθ,

where Jn(x) are Bessel functions of the first kind, and the convergence is uniform in x. Using this

identity, and taking expectation with respect to θ = ωt, we get

E
θ
[eix cos(θ)] =

∞∑
n=−∞

inJn(x)E
θ
[einθ] =⇒

Fl(x) =
∞∑

n=−∞
inJn(x)E

ω
[einωt] =

∞∑
n=−∞

inJn(x)Φl(nt),

where we have defined Φl(v) = Eωl
[evyωl ]. Since the ωl are assumed to have the same density ϕ(ω),

Φl(v) = Φ(v) = F(ϕ(ω)), where F is the Fourier transform operator. So we have the characteristic

function for each term in the sum 3.2.1, and since the characteristic function for a sum of independent

random variables is the product of the characteristic functions of those random variables, we get

E
{ωl}

[eixgN (t)] =

( ∞∑
n=−∞

inJn(x)Φl(nt)

)N

:= L(x). (3.2.2)

From this expression, we can easily calculate all the moments of g(t) by the relation

E[gkN (t)] = (−i)k d
kL

dxk

∣∣∣∣
x=0

(3.2.3)
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using the identity

J ′(x) =
(Jn−1(x)− Jn+1(x))

2
n ̸= 0, J ′

0(x) = −J1(x) (3.2.4)

and the fact that J0(0) = 1, Jn(0) = 0 for n ̸= 0. We can immediately calculate the mean since

ϕ(ω) is a real pdf, and so

E[gN (t)] = N (Φ(0))
N−1 ΦN (t) + ΦN (−t)

2
= NΦN (t) (3.2.5)

Now, if we are at least heuristically motivated by the approximations referenced throughout this

thesis, where we saw that lossless approximations of dissipative systems required systems with ever

increasing frequencies, we might try to examine the case where the random frequencies are distributed

uniformly over a support that increases linearly with N . That is, taking

ϕN (ω) =
1

2N
χ[−N,N ](ω)

F−−−−−→ ΦN (v) =
sinNv

Nv
(3.2.6)

where χ[−N,N ] is the characteristic function over the interval [−N,N ], and using Eq. (3.2.5), we get

E[gN (t)] =

(
sinNt

t

)
, (3.2.7)

so that for a smooth L1 integrable u(t),

E
{ωl}

y(t) =

∫ t

−∞
E[g+N (t− τ)]u(τ)dτ =

∫ t

−∞

(
sinN(t− τ)

(t− τ)

)+

u(τ)dτ. (3.2.8)

In the limit as N → ∞, it is well-known that this integral converges in L1 to πu(t)/2. So while this

random system appears as a resistor in the mean as N → ∞, what can we say about the second-order

moment? We can calculate E[gN (t)]2 from the moment-generating function already given.

E[g2N (t)] = − dkL

dxk

∣∣∣∣
x=0

=

(
N(N − 1)Φ2

N (t) +
N

2
(1 + ΦN (2t))

)
(3.2.9)

So, the variance of gN (t) is

E[g2N (t)]− (E[gN (t)])
2
=
N

2
(ΦN (2t)− 2Φ2(t) + 1), (3.2.10)

which cannot go to zero as N → ∞.
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3.2.1 Random Lossless Systems Approximating Band-Limited Resistors

What we have gathered from the previous example is that it is too much of a leap to take the

simultaneous limits of a large number of oscillators, and a corresponding increase in the support of

the density of the i.i.d frequencies in the random cosine system. As a simple illustrative example

of what we would more generally like to show for random lossless sytems, let’s look instead at the

same problem, but this time fixing the distribution on the system frequencies as

ϕ(ωl) =
1

2M
χ[−M,M ](ωl), (3.2.11)

where again χ[−M,M ] is the characteristic funcition over the interval [−M,M ], and taking

g+N (t) =
M

N

(
N∑
l=1

cosωlt

)+

. (3.2.12)

By the L2 Weak Law of Large Numbers [43] we have that

(3.2.13)

1

N

(
N∑
l=1

cosωlt

)
L2

−−−−−→ E (cos (ωlt)) =

∫ ∞

−∞
ϕ(ωl)e

jωltdωl

= F .T .
(

1

2M
χ[−M,M ](ωl)

)
=

sinMt

Mt
,

for any finite t. That is, g+N (t) approximates the causal portion of an ideal low-pass filter with cutoff

frequency M given by

g+N (t) =

(
sinMt

t

)+

. (3.2.14)

In fact, we can immediately determine just how gN (t) converges in L2 as a function of t:

(3.2.15)

E

(
M

N

N∑
l=1

cos(ωlt)− E gN (t)

)2

=

(
M

N

N∑
l=1

(cos(ωlt)− E cos(ωlt))

)2

=
M2

N2
·N · E (cos(ωlt)− E cos(ωlt))

2

=
M2

N

(
E cos2(ωlt)− (E cos(ωlt))

2
)

=
M2

N

(
1

2
− E cos(2ωlt)

2
− sin2(Mt)

M2t2

)
=
M2

N

(
1

2
+

sin(2Mt)

8Mt
− sin2(Mt)

M2t2

)
,

where the second inequality follows from the independence of the ωl.
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As a simple illustration, the impulse response of a random cosine system with cutoff frequency

M = 10 rad/s and N = 2× 104 is shown in Figure (3.1). The response of a random cosine system,

with M = 10 rad/s and N = 2500, to the band-limited function sinc(t) is shown overlaid with the

system input in Figure (3.2).

What this simple example shows is that for linear systems with state space representation of the

form (A,B,BT ), it should be possible to characterize the distributions on random A,B such that the

input-ouput relationship of the system is that of a band-limited resistor for sufficiently high state

dimension. For instance, replacing the coefficients in the sum in 3.2.12 by identical independent

random variables bl, giving the form

g+N (t) =
M

N

(
N∑
l=1

bl cosωlt

)+

, (3.2.16)

does not change the result as long as the distribution on bl is such that E bl = 1. We have at

least a hint of an answer to the question we asked in the beginning of the chapter: namely, what

statistical properties of random linear systems are necessary to admit low-dimensional dissipative

approximations? This is an open question that we hope would be a topic of future research. What

we are also left with from this simple construction is additional justification for the measurement

model in Chapter 2, an explanation that goes beyond the rationale of [3] and the theorem on lossless

approximations of dissipative systems stated in Theorem (1.3.2).
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Figure 3.1: Impulse response of random cosine system with M = 10 rad/s and N = 2e4
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Figure 3.2: Overlaid input and output with u(t) = sinc(t) and M = 10, N = 2500

3.2.2 Extension to Arbitrary Dissipative Systems and Connections with

Model Reduction

The types of random lossless systems treated in the previous sections, and the form of the under-

lying distributions of the parameters of these systems, demonstrate one straightforward manner in

which an arbitrary dissipative system can appear from lossless dynamics; the distributions on the

frequencies of the random cosine system can simply be chosen as the Fourier transform of the im-

pulse response of the dissipative realization. What we have attempted to investigate, but still do

not have a grasp on, is how the techniques of model reduction from Section 3.1 might tie into these

types of realizations. More specifically, if we a priori choose the distribution of the frequencies of

a lossless system such that the impulse response approximates a low-order dissipative system, how

do the singular values of the finite-horizon Gramians, as in Eq. (3.1.20), behave with a fixed time

interval and increasing N? Is the distribution of singular values such that there is a clear cutoff that

corresponds to the dimension of the dissipative system? These are open questions that we would

propose for future investigation.
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Chapter 4

Conclusion and Future Research

What we have found is that from a purely mathematical view, characterizing dissipation in open

systems and the limits of even idealized measurements, at least for the simple case of linear systems,

can be well-understood. However, an important limitation of our research is that we still need

to better understand how the dynamics of those mathematical models that have the input-output

relationships of common physical devices, like the generalized resistors, can be matched to the

underlying physical processes that are responsible for the macroscopic responses of these real devices.

It is important to note that the generalized resistor example given in [3] is not realized in the form of a

repeating LC ladder; rather, its realization would take a more complicated interconnection structure

of inductances and capacitances. Solid-state physics models of electronic devices abound, each with

varying assumptions about their structure and operating regimes, and it would be interesting to be

able to see whether some of these models themselves can be approximated by lossless systems with

energy sources. This is not an avenue we investigated deeply enough, but is an important topic for

us, as it would give the results presented in this thesis more practical, physical relevance.

An obvious extension of our work would be to consider nonlinear systems, but of course by doing

so, we would lose most of our more elementary tools from estimation theory, tools that allowed

us to draw the conclusions that we ultimately did on measurement with back action. The special

structure of the measurement model we used, which allowed for a type of ‘cancellation’ of the process

and observations noises in the linear case, would no longer be present in the non-linear case, and

generally we would not be able to estimate the measured system arbitrarily well, as we showed was

possible under certain conditions where the observation was taken over a long enough time period.

The measurement problem we analyzed in this thesis represents the most lax possible, affording

the most freedom in measurement precision. Despite this, we found that adding even the slightest

constraint on control to offset measurement back action ruins the ability to estimate perfectly. Back

action ultimately does lead to measurement uncertainty, uncertainty that in any practical sense

cannot be reduced beyond a certain amount, a bound which we were able to explicitly calculate for

certain cases.
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We would have liked to explain how the types of model reduction methods presented in Chapter

4 almost invariably yield very low-order accurate approximations to the dynamics of subsystems of

much larger systems on finite time horizons. While heuristically we would expect this to be the

case, showing this systematically has proven to be difficult, and doing so for the balanced truncation

approach to reduction would entail proving a result on the decay of the singular values of the finite

time gramians over a class of ‘typical’ dynamical systems, however that concept is to be properly

defined. Perhaps an approach using random matrix theory, where a probability measure is defined

on some class of system matrices would be a first step, but so far this has been untractable for

us. Conceptually, this reduction problem is essentially the same as ‘tracing out’ the states in the

quantum Liouville equation presented in Section (1.4), but the similarity does not end there. While

Eq. (1.4.8) neatly gives an expression for the dynamics of an open subsystem, actually calculating the

operators in that equation that are associated with dissipation is generally not possible. Developing

any theory towards the end of some more general formulas for some class of systems would not only

be interesting from a dynamical systems theory view, but could be extremely useful in some physics

problems.

The areas in which we were able to make progress include providing a complete characterization

of the solutions of the estimation problem arising from the measurement model in [3], and providing

an alternative explanation for the transition from microscopically lossless to macroscopically dissi-

pative systems, using a class of random linear systems. With regards to the latter contribution, it

could be argued that the random systems interpretation has properties that are more desirable for

making connections to the features of dissipative physical systems than does the fixed-time horizon

deterministic Fourier series expansion outlined in Section 1.3.2. This interpretation is more robust,

in that small changes in frequencies to any individual oscillator do not ‘ruin’ any particular realiza-

tion, and the realizations are not dependent on the time horizon of interest, with no fixed recurrence

times. In addition, this alternative view lends additional justification to the assumptions made in

forming the measurement model in Chapter 2.

Concerning the estimation problem arising this measurement model, we were able to show gen-

erally that a system can be measured arbitrarily well, even in the presence of a single environmental

thermal noise source. Even though the inclusion of the environment as a component of the measure-

ment process requires that the measured system is affected, we can eventually perfectly estimate

the state of a lossless system, at any given time, even before measurement, albeit with delay. One

possible alternative way to interpret the measurement dynamics in the case where the deterministic

back action in our measurement model is offset is to think of measurement as not necessarily in-

cluding a dissipative element at all, but simply assuming that the system is heated up during any

measurement, as it must be coupled to the environment in some way for any experiment to be done

on it. As our results showed, taking this interpretation would of course imply non-zero lower bounds
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on measurement error, but these bounds would not include a product tradeoff in uncertainty on

conjugate variables, as in the case of measurement of quantum systems.
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