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Abstract

This work quantifies the nature of delays in genetic regulatory networks and their effect on system

dynamics. It is known that a time lag can emerge from a sequence of biochemical reactions. Applying

this modeling framework to the protein production processes, delay distributions are derived in a

stochastic (probability density function) and deterministic setting (impulse function), whilst being

shown to be equivalent under different assumptions. The dependence of the distribution properties on

rate constants, gene length, and time-varying temperatures is investigated. Overall, the distribution

of the delay in the context of protein production processes is shown to be highly dependent on the

size of the genes and mRNA strands as well as the reaction rates. Results suggest longer genes have

delay distributions with a smaller relative variance, and hence, less uncertainty in the completion

times, however, they lead to larger delays. On the other hand large uncertainties may actually play

a positive role, as broader distributions can lead to larger stability regions when this formalization

of the protein production delays is incorporated into a feedback system.

Furthermore, evidence suggests that delays may play a role as an explicit design into existing

controlling mechanisms. Accordingly, the reccurring dual-feedback motif is also investigated with

delays incorporated into the feedback channels. The dual-delayed feedback is shown to have stabiliz-

ing effects through a control theoretic approach. Lastly, a distributed delay based controller design

method is proposed as a potential design tool. In a preliminary study, the dual-delayed feedback

system re-emerges as an effective controller design.
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Chapter 1

Introduction

Delay plays a significant role in the self-regulation of genetic regulatory networks. Even though

delay imparts unpredictable behavior and is a notorious force of destabilization in man-made control

systems, research suggests that delay can play a positive role in the smooth functioning of genetic

regulatory networks. This work explores this concept further, which requires an understanding

of the nature of the delays. Heretofore scientists have overlooked quantifying delay distributions

in protein production, where delay distributions refers to the existing time delays in the process

and the quantified uncertainties in those delays. Additionally, reduced state space models can be

achieved with delays. In modeling, there is a need to find a balance between accuracy (complexity)

and capturing essential qualitative behavior, which involves identifying important system properties.

Significant delays can arise in regulatory networks from large sequences of chemical reactions [50] such

as those involved in transcription [75] and protein folding [55]. There has been more recent interest

in capturing delays in models, for example in Danino et al. [11] and Hussain et al. [32]. Delays have

played a detrimental role in control efforts of man-made systems; however, performance of genetic

regulatory networks seems to not only be unhindered by delays but also appears to incorporate

delays as part of their controller design. Thus, delays are important to consider in reduced models;

even if translation rates and protein folding times seem negligible, intermediate chemical reactions

omitted can impart effective delays on the system as well.

This work focuses on biological systems at the cellular level, namely protein regulatory net-

works. On the cellular level, uncertainty complicates robustness, so extensive efforts have been

made to quantify uncertainties such as stochasticity in protein production and cell-to-cell variabil-

ity [16,35,69,76]. This work quantifies the uncertainties in transcriptional and translational delays.

The delays to be characterized are those that arise from the various reactions involved in protein

production, namely transcription and translation [2]. Activation of protein production is initiated

1



Gene X

X

X

X

Y

Promoter

DNA

Figure 1.1: Protein production process.

when a transcription factor protein binds to the promoter site of the target gene. This allows RNA

polymerase to begin transcription of the target gene, the process of copying the sequence through

production of a complementary mRNA strand. If the transcription factor protein is an inhibitor,

then binding to the promoter site inhibits the RNA polymerase from transcribing the target gene,

thereby inhibiting protein production. The second step in the protein production process is trans-

lation, which is similar from a modeling perspective to the transcription process. Each triplet of

nucleotides in the mRNA sequence is translated into an amino acid. A string of amino acids is

generated as the ribosome traverses the mRNA. This string of amino acids then undergoes folding

into a steady state structure, which is the resulting final product, that is, the protein.

Chapter 2 focuses on characterizing transcriptional and translational delays with constant and

time-varying rate coefficients. Chapters 3 and 4 focus on understanding the influence of the delays

on dynamics of autoregulatory networks in a stochastic and deterministic modeling framework,

respectively. Chapter 5 investigates control mechanisms of feedback systems with large delays. This

is expanded on below.

Chapter 2 investigates the nature of delays in genetic regulatory networks and the different

modeling frameworks. Incorporating delays in models of biological systems has allowed scientists to

simplify models, while maintaining qualitative similarities to experimental data [11,67]. This has

allowed researchers to identify key functional components of larger networks. To date this has been

done in a very ad hoc fashion. There is a need for a more systematic method of deriving predictable

delay-based models of systems. To do this the nature of the delays needs to be understood and

correctly modeled. Focusing on transcriptional delays, the delay distribution is shown to be an

Erlang distribution through a stochastic and deterministic approach. The Erlang distribution is a
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special case of the Gamma probability density function and given by

p(τ ;N,a) = aNτN−1

(N − 1)!
e−aτ ∀τ ≥ 0 and N ∈ N+. (1.1)

The Erlang distribution can be interepreted as the probability distribution on the waiting times in

queue for N occurences of an event, where the waiting times between occurrences are exponentially

distributed with common rate a and mutually independent. The mean time through the queue is

then given by N/a, which is the first moment of the Erlang distribution. In the stochastic approach,

this becomes a good description of transcriptional elongation. In the deterministic approach, the

impulse function from the input to the output of the system is found to have the exact form of the

Erlang distribution. Furthermore, expressing the output state as an explicit function of the input and

the impulse function leads to a distributed-delay differential equation, also sometimes known as an

integro-differentiable equation. From here on out the impulse function and the probabillity density

function characterizing the delays are both referred to as delay distributions. In this case they are

thought to be synonymous in the sense that the deterministic dynamics are thought of as the average

of the stochastic dynamics, hence, the convolution of the delayed state over the probability density

function of the delays. In the thermodynamic limit, it is shown that the stochastic system does

indeed aproach a deterministic system, whose impulse function is the probability density function

of the delay. Last, the distribution is evaluated for time-varying rate coefficients. The resulting

time-varying distribution reduces to the Erlang distribution for a constant rate coefficient. This

new result provides a method of analyzing delay-based models under time-varying conditions. For

example, the result is applied when time-varying temperatures are considered in Chapter 4.

Chapter 3 investigates the effect of stochastic delays on stability of a feedback system. Delays

often lead to instabilities in dynamic systems which can make control design a challenging task. In

addition, in systems where delays vary stochastically, the difficulty of ensuring stability increases

significantly. Much investigation has been done on linear systems with a stochastic state matrix [68]

but little has been done on analysis of systems with stochastically varying delays and even less

analyzing the effects of stochastic delay variations. Most methods have applied Lyapunov-type

analysis to derive sufficient conditions for stability of equilibria. For linear systems, this leads to

matrix inequalities [19,59,80], which typically provide conservative results. Similarly, taking the

worst case scenario (e.g., largest delay) can lead to unnecessary conservativeness or may simply give

erroneous results. Finally, calculating stability for each delay and taking the intersection of the

stable regimes in parameter space do not necessarily give the stability of the stochastic system [20].
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However, in a recent paper [34], it was shown that stochastic delay variations can have a positive

impact on stability in genetic regulatory networks. Consequently, there is demand for a method

that allows the derivation of exact stability bounds for these types of problems. Additionally, there

are different notions of stability for stochastic systems, which must be addressed when discussing

stability. This chapter presents a derivation of conditions for pointwise asymptotic convergence of

a state for a discrete-time linear system with a stochastically time-varying delay in feedback. The

results hinge on the selected delays at each time step being mutually exclusive and selcted from the

same distribution with finite support. We argue these are reasonable assumptions in the context of

genetic regulatory networks. The method is applied to a scalar system with delays selected from

simplified probability density functions. This illustrates the noninutitive effect of stochastic delays

on stability. Lastly, the method is applied to an autoregulatory network where the effect of the

Erlang distribution parameters on system stability is investigated. For the case studies included, a

larger relative variance (more uncertainty) leads to to a larger stability region.

Chapter 4 investigates the effect of the Erlang distribution parameters on dynamics in a deter-

ministic modeling framework via applications of existing control theoretic tools. First, the chapter

looks at stability bounds for varying values of the mean and relative variance. Similar to what was

found in Chapter 3, a larger relative variance leads to a larger stability region. This is less surpis-

ing in a deterministic model. Similar results have been found for different distribution functions

[4,5,6,73]. Heretofore, only stability has been considered and robustness properties have been over-

looked. Here, robustness properties of the distributed-delay feedback system is investigated through

computation of the gain margin. The gain margin is found to increase with the relative variance.

This means a system with a larger delay distribution can permit larger fluctuations or uncertain-

ties in protein concentrations before being rendered unstable. This is crucial since exact protein

concentrations cannot be achieved in genetic regulatory networks due to environmental variabilities

and uncertainties. Next, the case of instability is considered. It is shown that feedback systems of

the type used up until now (e.g., the autoregulatory network) exhibit stable limit cycles when the

equilibrium point goes unstable. These autoregulatory networks fall into the category of the broadly

used term Goodwin oscillator [25]. The original model was developed as the first description of a

genetic osicllator and its variants have been used for other models of oscillatory networks such as

circadian clocks [63] and physiological control systems [52]. Hence, the study of the influence of

delays on such limit cycles is broadly useful. We look at the relationship between the distributed

delay parameters and the period of the induced limit cycle in an unstable autoregulatory network
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through an application of harmonic balancing. Last, we look at the effects of time-varying temper-

atures on the oscillators. The limit cycle of the oscillator for a constant delay distribution with a

small relative variance is found to be dependent on the mean of the distribution. In the case of

periodically time-varying temperature, the fluctuations become negligible when the period is close

to the value of the delay in the feedback.

Chapter 5 investigates control mechanisms for feedback systems with large delays. The ability of

the networks to perform well in the presence of large delays is remarkable and the control mechanisms

less understood. A dual-delayed feedback system is studied and a method of delay-based controller

design is proposed, in which the distribution is treated as the design variable.

Delay-based feedback designs are considered as control architectures since they can be more

easily implemented than an arbitrary controller. It has been shown that in some biological sys-

tems, feedback loops exhibit a time delay through the involved chemical reactions that take time

to synthesize the proteins that regulate or activate gene expression. Furthermore, additional delays

can be artificially implemented in transcription and translation through placement of the gene with

respect to the promotor region and secondary structure design, respectively. For example, one way

the delays can be implemented is by adding “junk” DNA (non-coding DNA sequence) in-between

the promotor site and the gene to delay the initiation of transcription. The RNA polymerase would

be forced to transcribe this sequence before beginning transcription of the target gene.

Adding delays to a system is, in some cases, known to have stabilizing effects [1,56]. However,

the method of adding delays has not been well formulated as a general control mechanism. Some

preliminary work can be found in Kharitonov et al. [37] and Michiels et al. [54]. In the first section the

stabilizing effects of an added delayed pathway is investigated, motivated by the robust properties

of dual-feedback systems. Authors Longo et al. [47] investigate the role of a secondary feedback

channel in the production of NF-κB, a protein complex that plays a role in regulating the immune

response to infection. The secondary feedback path is shown numerically to improve the stability

region. Bhartiya et al. [7] demonstrate robust behavior of genetic regulatory networks with multiple

delayed feedbacks, where they show increased response time and robustness to variations in system

parameters. In Venturelli et al. [74], the authors show that dual positive feedback loops work to

increase the range of parameters that induce a bimodal response. Here, we derive an expression

relating the phase margin of a single-input single-output system with dual-delayed feedback to the

difference between the two delays. This allows us to demonstrate not just the potential stabilizing

effect of an added delay to an already delayed system but the robustness of the system with respect
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to perturbations in any of the two delays.

In the second section (collaborative work with Seungil You) we explore the possibility of imple-

menting simple proportional feedback where the time delayed output signal is the only component

used in the controller design. In Javad et al. [43], a controller is designed using traditional control

theory tools and then approximated with delays. Alternatively and preferably, one can directly

design a controller with delays. This is motivated by biological systems, where arbitrary controllers

cannot be easiy synthesized as in a digital system. In biological systems, the tools for controller

design are limited [60]. If we choose delays as our building blocks for controllers, controllers may

be easier to implement in a wet lab through added transcriptional pathways. We start with a

continuous-time distributed-delay feedback system which is discretized in time. The delay distribu-

tion then reduces to a sum of weighted delayed states. The optimal weights for the added feedback

channels are found using optimization techniques. In particular, we reduce the H∞ norm of the

closed loop transfer function with multiple delayed feedback using techniques from static output

feedback design and imposed constraints on the feedback gain. The method is then applied to a

scalar genetic autoregulatory network where additional constraints are imposed on the gain for a

feasible implementation of the feedback controller in an experimental setting. Suprisingly, we get

back a dual-feedback type controller. In addition to improved performance, we find added delayed

feedbacks channels can increase the stability regime of a delayed system.

Finally, Chapter 6 summarizes the results and discusses future research directions. Future work

includes extending current results to more general cases and incorporating experimental work.
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Chapter 2

Characterization of Delays

For a high order system and comparably high reaction rates, one can approximate a large sequence

of reactions in a model with a delay, which can be interpreted as the time needed to go through the

“queue”. Such types of delays can arise in protein production, for example. This modeling framework

is used and the case is considered where the number of chain chemical reactions approach infinity as

the reaction rates also approach infinity. In essence, this provides a model for a system with a large

number of consecutive chemical reactions happening almost instantaneously. For example, one may

consider this a good model for the process of transcription. In the limit of infinite instantaneous

reactions it is shown that a discrete delay emerges. Additionally, time varying rate coefficients are

considered as well as their effects on the found delay distributions. In the same limits, it is shown

that a time-varying rate constant leads to a time-varying discrete delay.

2.1 Delays as a sequence of chemical reactions

2.1.1 Stochastic delays

Here, delays are characterized based on an abstract understanding of transcriptional elongation.

Consider the steps following the moment transcription is initiated. Upon transcription initiation

the RNA polymerase binds to the gene and begins to build an mRNA strand through a collection

of nucleotides complementary to the template strand on the unraveled double stranded DNA.

Consider the case of a single transcription on a single gene. The elongation dynamics are de-
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Figure 2.1: Transcriptional enlongation.

scribed by the following set of reaction equations:

X0
aÐ→X1

X1
aÐ→X2

⋮

XN−1
aÐ→XN , (2.1)

where a is the reaction rate, N is the length of the gene being transcribed, and X0 represents the

first nucleotide in the mRNA sequence to be constructed. In each subsequent reaction the mRNA

strand grows in length and XN is the final completed mRNA strand.

In Gillespie [21], the author derives an algorithm for an exact stochastic simulation of a system

modeled as a set of reaction equations. The time at which a reaction occurs is random and dependent

on the propensity function of each state. Furthermore, the reaction channel that fires is also random

and dependent on all propensity functions. In a simplistic sense for a small enough time step, the

propensity function for the reaction rates above can be approximated as the reaction rate times the

concentration of the reactant. The reaction probability density function for a system driven by a

set of chemical reactions given in Gillespie [21] is

P (λ,µ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

aµe
−a0λ if 0 ≤ τ < ∞ and µ = 1, . . . ,N,

0 otherwise
. (2.2)
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where P (λ,µ)dλ is the probability that given the state of the system at time t, the next reaction

will occur in an infinitesimal time interval (t + λ, t + λ + dλ) and that the reaction that fires will be

the µ-th reaction channel. Therefore, λ is the time of the next reaction and µ is the reaction channel

that fires. The state dependent variable aµ is the propensity function for the reaction channel µ. In

this example, the propensity function is defined as

aµ ≐ a [Xµ]

and

a0 ≐
N

∑
ν=1

aν .

The brackets around Xµ denote the total concentration of species Xµ. A main assumption made in

the derivation of the algorithm is that the system is well-mixed (the temperature is constant and

diffusion is fast) in a fixed volume.

First, consider a model of an isolated system consisting only of transcription with no feedback or

additional dynamics. Also, assume that a subsequent transcription cannot initiate until completion

of the current one. When an RNA polymerase binds to the DNA, transcription begins. In this case,

in a Gillespie simulation, after initiation the probability density function reduces to

P (λ,µ) = aµe−aµλ,

where

aµ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a for Xµ ≠ 0

0 otherwise.

Recall that under the given assumptions only one state can have a nonzero value and that value will

be one. With these assumptions, the process reduces to a Poisson process which describes the time

at which the RNA polymerase moves forward at each nucleotide. Note that the inter-arrival time

between complements to each subsequent nucleotide on the gene is identically, independently, and

exponentially distributed. The transcriptional delay τ is then the sum of the inter-arrival times of

the nucleotides. Given this model, the distribution on the transcriptional delay is then given by the

Erlang distribution

h(τ) = aNτN−1

(N − 1)!
e−aτ , (2.3)

which can be shown by an induction proof. Consider the probability density function for the elon-

9



gation time S2 of an mRNA strand that is two nucleotides in length with S2 = τ1 + τ2:

p(S2) = ∫
τ

0
p(τ2∣τ1)p(τ1)dτ1

= ∫
τ

0
p(τ2)p(τ1)dτ1, (2.4)

where τ1 and τ2 are the inter-arrival times of the two independent nucleotides respectively. The

constraint τ1 ≤ S2 is in the integral range. Substituting the exponential distribution p(τi) = ae−aτi

and τ2 = S2 − τ1 into equation (2.4) gives

p(S2) = ∫
S2

0
ae−aτ1 ae−a (S2−τ1) dτ1

= ∫
S2

0
a2 e−aS2 dτ1

= a2 e−aS2 S2. (2.5)

Consider the probability density function for the elongation time S3 of an mRNA strand that is

three nucleotides in length and τ3 = S3 − S2:

p(S3) = ∫
S3

0
p(τ3∣S2)p(S2)dS2

= ∫
S3

0
p(τ3)p(S2)dS2

= ∫
S3

0
(ae−a(S3−S2)) (a2 e−aS2 S2)dS2

= ∫
S3

0
a3 e−aS3 S2 dS2

= a3 e−aS3
S2

3

2
. (2.6)

Following the same iterative procedure, it can be shown that the probability density function for the

elongation time SN of an mRNA strand N nucleotides in length is given by the following equation:

p(SN) = aN
sN−1
N

(N − 1)!
e−aSN . (2.7)

Replacing SN with τ in (2.7) gives back equation (2.3).

This derivation of the delay distribution requires many strong assumptions for the reason that

all the propensity functions are accounted for in the exponential of the probability density function.

Any additional dynamics or simultaneously occurring transcriptions will result in a large coefficient

in the exponential, meaning the time between events will decrease. However, given that no two
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reactions are allowed to occur in a single time step, one can imagine that the distribution may

continue to hold as an approximation. In the next section, the same distribution is found to emerge

from a deterministic system through the impulse function with very different assumptions held. For

now, it is suggested through simulation that the distribution can remain a good approximation.

The following auto-regulatory network is simulated:

Y + gene
r+Ð→ gene (bound)

gene (bound) r−Ð→ Y + gene

gene
βÐ→X0

X0
aÐ→X1

⋮

XN−1
aÐ→ gene +X

X
γÐ→ ∅

X +X k+Ð→ Y

Y
k−Ð→X +X. (2.8)

The third reaction represents the initiation of transcription through binding of an RNAp to a gene

without a repressor bound. It is assumed that RNAp cannot skip over each other. This is a single

gene system and only a maximum of 10 transcriptions can occur simultaneously on a single gene.

This averages roughly to a maximum of 20 transcripts/min which is within reasonable range [45].

The binding of the RNAp to the gene is not explicitly modeled since RNAp does not appear to be a

limiting factor [38]. Instead, a constant rate of initiation is assumed for unbound genes. Figure 2.2

shows a histogram of the measured delays in the simulation. The predicted Erlang distribution is

shown in black for comparison. The approximation breaks down a bit for this particular system with

the indicated parameters but it is still not a bad fit. In the next section, it will be shown that the

Erlang distribution can remain a good fit for system (2.8) under some very different assumptions.

In fact, the same exact distribution will re-emerge.
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2.1.2 Distributed delays

The delay distribution can also be found by looking at the generalized mass action (GMA) equations,

a set of ordinary differential equations (ODEs) derived from the same set of reaction equations;

X0
aÐ→X1

X1
aÐ→X2

⋮

XN−1
aÐ→XN .

(2.9)

In the generalized mass action approach it is assumed that the number of molecules of each species

can be represented by a continuous, single-valued function and the reactions are treated as continuous

rate processes. In essence, the differential equations represent the average dynamics. From this, one

would expect the dynamics to include an averaging over the delay distribution found in the previous

section. First, a more rigorous derivation of the generalized mass action equations is considered.

Consider the descriptive chemical Langevin equation, an approximation to the chemical master

equation [22]. The chemical master equation is an exact description of the time evolution of the

probability function, which characterizes the stochastic state of the system. Typically, the equation

cannot easily be solved. The following conditions must hold in order for the Langevin method to

hold as a good approximation:

Condition (i) : The time step in the evolution of the state must be small enough that the propen-

sity functions remain fairly constant.

Condition (ii) : The time step in the evolution of the state must be large enough that the expected

number of times each reaction channel fires is much larger than one.

The two conditions seem to counter each other, however, an easy way to satisfy the conditions

for the Langevin equations to hold is to have large molecular populations of the reactant species.

This of course includes a large number of promoter and repressor sites on genes, which are also

considered reactants. In [29], the authors derive the chemical Langevin equation for a system of

chemical reactions with delays. The method is applied to the open loop system (2.9) with an added

reaction

XN
aÐ→ Y

13



and degradation term

Y
γÐ→ ∅.

However, the intermediate steps in the sequence of chemical reactions are ignored and only the total

delay is considered. The reduced order system becomes

X0

h(τ)
− →XN

XN
aÐ→ Y

Y
γÐ→ ∅, (2.10)

where the dashed line indicates a stochastic process delay with probability density function h(τ).

Note that after the initiation of the reaction, the involved molecule X0 is no longer available. The

corresponding Langevin equation is

dy = (∫
∞

0
ax0(t − τ)h(τ)dτ − γ y)dt + 1√

Ω

√
(∫

∞

0
ax0(t − τ)h(τ)dτ + γ y)dW, (2.11)

Ω is the volume size of the system and W represents Gaussian white noise. Additionally, the states

y = [Y ]/Ω and x0 = [X0]/Ω are concentrations. The system above can be rewritten as

dy = (axN − γ y)dt + 1√
Ω

√
(axN + γ y)dW

xN(t) = ∫
∞

0
x0(t − τ)h(τ)dτ, (2.12)

where the second expression is actually the mean of concentration xN(t) with respect to the uncertain

time delay τ . For now, the distribution is taken to be the Erlang distribution

h(τ) = aNτN−1

(N − 1)!
e−aτ

found in the previous section. However, it will be shown that this same distribution emerges through

a direct application of the generalized mass action approach through the impulse function.

Next, consider the system in the thermodynamic limit as the volume goes to infinity while the

density remains constant. The assumptions imply an infinite number of all species, including gene

copy numbers if the density is to remain constant. In the thermodynamic limit (N → ∞), the

second term goes to zero and the system approaches the generalized mass action equations, as will
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be shown next. The stochastic component of the system becomes negligible in the thermodynamic

limit. Additionally, in [22], the fluctuations in the species populations are shown to scale as one over

the square root of the reactant populations.

The assumptions held in the generalized mass action approach have now been clearly laid out.

Applying the more direct method to the original system (2.9) with the added reaction and degra-

dation term, the generalized mass action equations are given by

ẋj = −a(xj − xj−1) for j = 1, ...,N,

ẏ = −γ y + axN (2.13)

with xj = [Xj], where the bracket indicates the concentration of species Xj . The frequency response

of the first N linear differential equations with input x0 and output xN [61] is

Hx0→xN = aN

(s + a)N
. (2.14)

In general, system (2.13) can be represented as a differential distributed-delayed system [50]

ẏ = −γ y + ax∗N

x∗N = ∫
∞

0
h(τ)x0(t − τ)dτ, (2.15)

where

h(τ) = aNτN−1

(N − 1)!
e−aτ (2.16)

and ∫
∞

0 h(τ)dτ = 1. The distribution was found by taking the Laplace inverse of equation (2.14).

The same distribution from the stochastic approach emerges, however, in the deterministic model,

where the state is convolved with the distribution function as expected. In the stochastic case, it

was shown that the Erlang distribution was an accurate description of the delay distribution under

some unrealistic assumptions, namely, in an isolated environment. Based on a Gillespie simulation,

it was hypothesized that the distribution may hold under some more general assumptions. In this

section it is shown that, the distribution indeed holds under assumptions on the opposite extreme

in the thermodynamic limit as the molecular populations get really large.

The distribution can be characterized using descriptive statistics. The relative variance of the
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distribution function is defined as

R = V

E2
,

where E is the expected value defined by the first moment of the distribution function f(τ),

E = ∫
∞

0
τf(τ)dτ

and V is the variance defined by the second moment of the distribution function around E,

V = ∫
∞

0
(τ −E)2f(τ)dτ.

The resulting relative variance and expectation are

R = 1

N

and

E = N
a
.

The mean of the distribution E = N/a is referred to as the effective delay. Figure 2.3 shows the

distribution in equation (2.16) for different values of N with a constant mean.

Note that the relative variance of transcriptional delays is a linear function of the size of the gene,

where N represents the number of nucleotides in a gene. One can imagine two genes of different

lengths but with the same transcription rate. The longer gene will take longer to transcribe but the

relative variance of the distribution will be smaller. It is well known that as the complexity of an

organism increases in eukaryotes, the fraction of introns in the genome also increases [3]. In Table 2.1,

transcriptional delays are estimated for different organisms. Note significant differences in delays.

The average transcription rate for E. coli was taken from Bremer et al. [10], the transcription rate

for the fruit fly was found in Swinburne et al. [70], and the average transcription rate for humans

was found in Singh et al. [66]. The genome size for E. coli can be found in Rogozin et al. [62].

Furthermore, the number of genes in each of the genomes is found in Lynch et al. [49]. It is clear

that the presence of introns introduces significant delays to transcription but significantly decreases

the relative variance. The existence of significant delays in humans is not surprising given the slow

response of the endocrine system.

Often delay-based models of systems incorporate discrete delays, but one may wonder under
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E = N/a R = V ar/E2

(mean) (relative variance)

Escherichia
coli

19.3 sec 9.43 × 10−4

Drosophila
melanogaster

4.3 min 1.68 × 10−4

Homo
Sapiens

12.4 min 2.14 × 10−5

Table 2.1: The mean and relative variance of transcriptional delays for various organisms. Values
are based on average gene size and introns are assumed to be evenly distributed among all genes.

what assumptions will a discrete delay hold as a good approximation. Consider the limit as N →∞

such that N
a

remains constant, in which case equation (2.14) gives

lim
N→∞

Hx0→xN = lim
N→∞

aN

(s + a)N
= lim
N→∞

1

( sE
N
+ 1)N

= 1

esE
= e−sE , (2.17)

where the substitution E = N/a was applied. The term in the last equality is exactly the frequency

response for a delta function δ(t −E) in the time domain. Therefore, the distribution function will

approach a delta function centered at E as N →∞. In the limit as N →∞, system (2.13) becomes

xN = x0(t −E), (2.18)

where E is the mean of the distribution function (2.16). Figure 2.4 shows simulations for a unit

step input into the open loop system (2.13) for different effective delays. It is worth noting that

this specific limit only exists in this framework where all the reaction rates are the same but this

simplification helps us to gain insight. In addition, in the limit as N → ∞ the rates must also

approach infinity for the distribution to approach a delta function.
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2.2 Time-varying delays

We investigate the effects of time-varying rate coefficients on delay distributions. Time-varying rate

constants may, for example, arise from temperature fluctuations. We begin by considering the open

loop system

ẋ0 = −a(t)x0 + a(t)u(t),

ẋj(t) = −a(t)(xj(t) − xj−1(t)) for j = 1, ...,N, (2.19)

with input u(t) and the time-varying rate coefficient a(t).

2.2.1 Time-varying delay distribution

Now we proceed to find the distribution function in continuous time. We can put system (2.19) into

state space form

Ẋ(t) = A(t)X(t) +B(t)u(t), (2.20)

where

X(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xN

xN−1

⋮

x0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

and with matrices

A(t) = a(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0

0 −1 1

⋮ ⋱ ⋱

−1 1

0 . . . 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮

0

a(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.22)

The general solution to system (2.20) is

X(t) = φ(t, t0)X(t0) + ∫
t

t0
φ(t, σ)B(σ)u(σ)dσ, (2.23)
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where φ is the state-transition matrix [77]. For A(t1)A(t2) = A(t2)A(t1) for any t1 and t2, the

state-transition matrix can be gives as

φ(t, ζ) = exp(∫
t

ζ
A(s)ds) . (2.24)

Accordingly, we can write the solution as

X(t) = exp(∫
t

t0
A(s)ds)X(t0) + ∫

t

t0
exp(∫

t

σ
A(s)ds)B(σ)u(σ)dσ. (2.25)

Without loss of generality we set t0 = 0 and substituting σ = t − τ , we rewrite this expression into

the distributed delay format

X(t) = exp(∫
t

0
A(s)ds)X(0) + ∫

t

0
exp(∫

t

t−τ
A(s)ds)B(t − τ)u(t − τ)dτ. (2.26)

The structure of the system allows for further simplification. Note the Jordan block-like structure

of the system. With this we find

exp(∫
t

t−τ
A(s)ds) = exp(∫

t

t−τ
a(s)dsJ−1,N+1) , (2.27)

where J−1,N+1 is the N + 1 Jordan matrix with eigenvalues −1. Defining

α(t, τ) ≐ ∫
t

t−τ
a(s)ds, (2.28)

the exponential can be computed and is given by

eα(t,τ)J−1,N+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−α(t,τ) α(t, τ)e−α(t,τ) . . . α(t,τ)N−1

(N−1)!
e−α(t,τ) α(t,τ)N

N !
e−α(t,τ)

α(t,τ)N−1

(N−1)!
e−α(t,τ)

⋆ ⋮

α(t, τ)e−α(t,τ)

e−α(t,τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.29)

where ⋆ denotes non-zero entries that are irrelevant due to the structure of B(t) and our desired

output. In order to extract the expression relating the input u(t) to the measured output xN(t), we

multiply equation (2.26) by C = [1,0, . . . ,0] on the left-hand side. Then for X(t0) = 0, the output
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Figure 2.5: Distribution as a function of time with a(t) = a0 δp sin(ω t) + a0, (N + 1)/a0 = 15, δp = .5,
and ω = 2π/10. The dashed line indicates the nominal time-invariant distribution with a(t) = a0.

xN(t) is related to the input u(t) by

xN(t) = ∫
t

0
h(t, τ)u(t − τ)dτ, (2.30)

where

h(t, τ) = C eα(t,τ)J−1,N+1B(t − τ). (2.31)

Only the top right element of the exponential matrix is needed. The function h(t, τ) is the impulse

response function relating the output to the input of the system which, as in the case of the general-

ized mass action dynamics in Section, 2.1 can be thought of as the delay distribution and is referred

to here as such. This gives the delay distribution function

h(t, τ) = a(t − τ)α(t, τ)
N

N !
e−α(t,τ). (2.32)

This solution holds for a general a(t). Note for a(t) ≡ const. and N → N −1, equation (2.32) reduces

to the familiar Erlang distribution in Section 2.1. Figures 2.5 and 2.6 show how this time-varying

distribution changes with N and with time for a given a(t).
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2.2.2 Time-varying discrete delay

Similarly, as was done for a constant rate coefficient a, the limit as the sequence of reactions tends to

infinity is investigated. In the analysis to follow, t is treated as a constant variable. The distribution

found in the limit as N → ∞ is at a single point in time. This requires some necessary conditions

on the function a(t). It must hold that the integral over the distribution for all time t equals 1:

∫
∞

0
h(t, τ)dτ = 1. (2.33)

This can be shown by expressing the integral as a path integral:

∫
∞

0
h(t, τ)dτ = ∫

∞

0
a(t − τ)α(t, τ)

N

(N)!
e−α(t,τ)dτ

= ∫
∞

0

α(t, τ)N

(N)!
e−α(t,τ) ∣ ∂

∂τ
(α(t, τ))∣dτ

= ∫
C

sN

N !
e−sds, (2.34)

where the curve C is the domain of integration that is defined by α(t, τ) for t held fixed. Note that

the expression in the last line is an integral over the Erlang distribution, which is known to equal one,

when integrated along the curve C ≡ aτ . For the path integral in equation (2.34) to equal 1, α(t, τ)

must be an injective function in τ (dα(t, τ)/dτ = a(t − τ) > 0) with α(t,0) = 0 and α(t,∞) = ∞.

Additionally, some structure on the rate coefficient a(t) is assumed. Previously the limit as

N →∞ was taken such that N/a = E. It is assumed that the rate coefficient takes the form

a(t) = a0 f(t) <M, (2.35)

where a0,M ∈ R are finite and the limit as N →∞ is taken such that

lim
N→∞

N

a0
≡ const. (2.36)

By definition of α(t, τ) in equation (2.28), this implies

lim
N→∞

N

α(t, τ)
< ∞. (2.37)

The time-varying distribution is now investigated in the limit of an infinite sequence of instan-
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taneous chemical reactions. Applying Stirling’s formula for large N , namely

N ! ≈
√

2πN (N
e
)
N

, (2.38)

the distribution (2.32) is approximated by

h(t, τ) = a(t − τ)α(t, τ)
N

N !
e−α(t,τ) (2.39)

≈ a(t − τ)√
2πN

(eα(t, τ)
N

)
N

e−α(t,τ) (2.40)

and asymptotically converges to equation (2.32) in the limit as N → ∞. Rearranging terms in

equation (2.40) and making use of the substitution (2.35) gives

h(t, τ) ≈ a(t − τ)√
2πN

(α(t, τ)
N

e1−α(t,τ)/N)
N

= a0 f(t − τ)√
2πN

(α(t, τ)
N

e1−α(t,τ)/N)
N

= ( N
E0

) f(t − τ)√
2πN

(α(t, τ)
N

e1−α(t,τ)/N)
N

= f(t − τ)
E0

√
2π

(α(t, τ)
N

e1−α(t,τ)/N)
N

N
1
2 . (2.41)

Note that if we set a(t) = a0 in equation (2.32) the mean of the distribution is E = (N + 1)/a0, but

for ease of notation we define E0 = N/a0, which approaches a constant in the limit.

We define

K(τ) ≐ α(τ)
N

e1−α(τ)/N (2.42)

and investigate the limit for different ranges of K. Applying l’Hôptial’s rule for K < 1

lim
N→∞

N
1
2

1/KN
= lim
N→∞

1
2
N− 1

2

N/KN+1
= lim
N→∞

KN+1

2N3/2
= 0, (2.43)

and for K ≥ 1

lim
N→∞

N
1
2

1/KN
= ∞. (2.44)

It remains to show that K ≤ 1 for all τ . We would like to determine when K reaches its maximum
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value. As a necessary condition for an extremum we must have

d

dτ
(K) = d

dτ
(α(t, τ)

N
) e1−

α(t,τ)
N (1 − α(t, τ)

N
) = 0. (2.45)

Since the first two terms are always strictly positive, we find that an extremum occurs at τeff , where

1 − α(t, τeff)
N

= 0. (2.46)

Plugging equation (2.46) back into equation (2.42),

K(τ) = 1 ⋅ e0 = 1 (2.47)

we find K = 1 at the extremum. It can be easily shown that

d2

d2τ
(K) > 0, (2.48)

therefore, the extremum is a maximum, hence, K ≤ 1 for all τ . We see that in the limit as N →∞,

h(t, τ) is zero everywhere for all τ except for at τeff , where K(τ) = 1 and h(t, τ) = ∞. Furthermore,

since α(t, τ) is an injective function in τ , equation (2.46) has a single solution, hence, τeff provides

a global maximum at a given time t. In the limit as N →∞ such that N/a0 = E0 the distribution

lim
N→∞

h(t, τ) = δ(t − τeff(t)) (2.49)

approaches a delta function centered at τeff , which is necessarily a function of a(t), and therefore

time-varying. As an example we choose a(t) = a0 δp sin(ω t + φ) + a0 and plot τeff(t) in Fig. 2.7. In

order to characterize the time-dependent delay as a function of the parameters of a(t), the average

value and peak-to-peak amplitude of τeff is plotted against parameters δp, E, and w(Hz) in Fig. 2.8.
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δp = .5

27



Chapter 3

Stochastic Delay-Based Model

In this chapter the effects of delays on system dynamics are investigated through a stochastic mod-

eling framework. On the cellular level, uncertainty complicates robustness, so extensive efforts have

been made to quantify uncertainties such as stochasticity in protein production and cell-to-cell vari-

ability [16,35,69,76]. Less work has focused on the effects of stochasticity in protein production delays

and few delay-based models consider these variable delays. A hybrid model may prove advantageous

in predicting system behavior. In a system with large molecular populations but a bounded number

of genes, it may be reasonable to assume fluctuations are negligible in processes such as degradation,

association, and dissociation. However, assuming fluctuations in delay are negligible may lead to

erroneous results. A discrete-time system with stochastically varying delays can provide a potential

modeling framework for single cell dynamics in genetic regulatory networks. We consider a heuristic

argument to support this modeling framework.

Consider the following description for the dynamics of protein production:

X(t +∆t) =X(t) − γ∆tX(t) +∆tf(Y (t − τ(t))), (3.1)

where Y is a transcription factor protein that activates the production of protein X, γ > 0 is the

degradation rate, and f() is the nonlinear production rate often described by a Hill function. The

concentration of X at time t +∆ t is the concentration of X at time t, minus the degraded proteins

and plus the newly produced proteins in the time interval ∆ t for time t < T < t +∆ t. For a small

enough ∆t, one can assume that the production rate at an incremental time step ∆t depends on the

concentration of Y some τ(t) time ago, since any protein assuming its final state in that incremental

time step would have been initiated at time t − τ(t) where τ(t) is a random variable. We are

interested in stability analysis, so we would like to examine the dynamics of the system near the
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equilibrium point.

Nonlinear analysis in controls is typically performed through system linearization, because lin-

earization often supplies sufficient conditions for nonlinear system stability. Performance analysis of

linearized systems often provides useful information about the full nonlinear system, even though

the time varying delays are difficult to deal with: on the one hand, delays in continuous time lead

to infinite dimensional systems [39]; on the other hand, delays in discrete-time are generally easier

to work with and may provide a good approximation [33].

We consider the linear approximation

X(t +∆t) =X(t) − γ∆tX(t) +∆tκY (t − τ(t)), (3.2)

where κ is the linearization of the protein production rate evaluated at the equilibrium point

κ = ∂f

∂Y
∣
Y =Y ∗

.

A discrete-time map can be given by

X((k + 1)∆t) =X(k∆t) − γ∆tX(k∆t) +∆tκY (k∆t − τ(k∆t)), (3.3)

where τ(k∆t) is assumed to be i.i.d. and selected from a discrete-distribution. The discrete-

distribution can be found by allocating a continuous distribution into a finite number of bins.

There are various notions of stability for stochastic systems which must be considered. For

example X(k) rÐ→ X denotes that the sequence X(k) converges to a constant X in rth order, for

r ≥ 1, which holds if E[∣X(k)∣r] < ∞ for all k and

E[∣X(k) −X ∣r] → 0 as k →∞.

Convergence of the second moment E[X(k)2] is then equivalent to convergence in 2nd order since

X(k)2 is positive definite. Additionally, X(k) PÐ→X and X(k) DÐ→X denote convergence in probabil-

ity and distribution [27] . Notice that convergence in rth order guarantees convergence in probability

and distribution. Finally, X(k) w.p.1ÐÐÐ→ X denotes convergence with probability one (w.p.1), that is,

for every ε > 0, ∣X(k) −X ∣ ≥ ε occurs only finitely often. Consequently, for each path ω, there is a

number k(ω) so that ∣X(k) −X ∣ ≥ ε, for all k > k(ω) (see [40]). Each sequence of possible values of

(X(0),X(1), . . . ) is equivalent to a point ω in a sample space. We may say that, with the exception
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of a finite set of sequences, all sequences {X(k)} converge pointwise towards X. The latter notion of

the stability is the one most analogous to point wise asymptotic stability in a deterministic system.

Based on this problem formulation necessary and sufficient conditions are derived for point-wise

asymptotic stability of a discrete-time system with i.i.d. stochastically varying delays in feedback

for an auto-regulatory network.

3.1 Discrete-time model

Consider the system

X(k + 1) = AX(k) +BX(k − τ(k)), (3.4)

where X(k) ∈ Rn is a vector-valued stochastic variable and τ(k) is a family of mutually independent

integer-valued random variables. At each k, the present delay τ(k) is selected from an identical

distribution and can take positive integer values τ(k) ∈ [1, . . . ,N] where N denotes the maximum

delay. The density function pτ(k) for the delay is

pτ(k)(σ) =
N

∑
i=1

wi δ(σ − i) (3.5)

and is subject to the condition
N

∑
i=1

wi = 1, (3.6)

where δ is the Dirac delta (i.e. τ(k) = i with probability wi). The initial condition includes the state

values in the past N time steps and it may contain uncertainty when X(0),X(−1), . . .X(−N) are

selected from known distributions.

Define the augmented vector as

X̂(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(k)

X(k − 1)

X(k − 2)

⋮

X(k −N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

Then, the discrete-time Markov process

X̂(k + 1) = Â(k)X̂(k) (3.8)
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is equivalent to system (3.4), where Â(k) takes the values

Λ̂i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A I1(i)B I2(i)B ⋯ IN(i)B

I 0 0 ⋯ 0

0 I 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

with probabilities wi (cf. equation (3.5)) for i = 1, . . . ,N . Here, Ij(i) is the indicator function such

that

Ij(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i = j,

0 if i ≠ j,
(3.10)

and I ∈ Rn×n and 0 ∈ Rn×n denote the n-dimensional identity and zero matrices, respectively. The

matrix Â(k) ∈ Rn (N+1)×n (N+1) is a stochastic variable whose probability distribution is independent

of X̂(k). So we have

pX̂(k),Â(k)(X̂, Â) = pÂ(k)∣X̂(k)(Â∣X̂)pX̂(k)(X̂)

= pÂ(k)(Â)pX̂(k)(X̂). (3.11)

Notice that the sequence {X̂(k)} is a Markov chain and the sequence {Â(k)} is mutually indepen-

dent. The matrix Â(k) can only take on a finite set of values, each of which corresponds to one of

the possible delays, henceforth, its probability distribution becomes

pÂ(k)(Â) =
N

∑
i=1

wi δ(Â − Λ̂i), (3.12)

cf. equation (3.5).

We will apply probability principles to derive expressions for the evolution of the mean and

second moment dynamics of system (3.8)-(3.9), which is equivalent to equation (3.4). The mean

provides necessary conditions for stability of the trivial solution, while the second moment provides

necessary and sufficient conditions.
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3.2 Notions of Stability for Stochastic Systems

We will derive deterministic discrete time equations whose stability determine the stability of the

mean and second moment for the non-deterministic system (3.8,3.9). However, the first and second

moments converging to zero does not guarantee that the state converges to zero with probability

one (w.p.1) in all circumstances. We restate a theorem that can be found in [27]:

Theorem 3.2.1 The following implications hold

(X(k) w.p.1ÐÐÐ→X)

⇓

(X(k) PÐ→X) ⇒ (X(k) DÐ→X)

⇑

(X(k) rÐ→X)

for any r ≥ 1. Also, if r > s ≥ 1 then

(X(k) rÐ→X) ⇒ (X(k) sÐ→X).

No other implications hold in general.

Given some conditions on a system, one can derive another useful implication. Given the general

vector case X⃗(k + 1) = A(k)X⃗(k), where {A(k)} are mutually independent random matrices, [40]

provides the following theorem, using a Lyapunov function of the form X⃗TQX⃗, where Q is positive

definite (denoted as Q > 0).

Theorem 3.2.1 Let Q > 0, C ≥ 0 and

E[A(k)TQA(k)] −Q = −C. (3.13)

Then E[X⃗(k)TCX⃗(k)] → 0 and X⃗(k)TCX⃗(k) → 0 w.p.1. Let the A(k) be identically distributed.

If {X⃗(k)} is mean square stable (that is, E[X⃗(k)T X⃗(k)] → 0), then for any C > 0, there is a Q > 0

satisfying (3.13).

Given this theorem, if {A(k)} are identically distributed and mutually independent in (3.4), there

exists a solution Q for (3.13) if we choose C = I. According to the theorem, the existence of

the solution implies X⃗(k)T X⃗(k) → 0 w.p.1. This is a sufficient condition for w.p.1 stability when
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{A(k)} are chosen independently of each other and from the same distribution at each k in equations

(3.8)-(3.9).

3.3 Stability Conditions

First, we find the expression for the evolution of the mean dynamics by taking the expected value

of system (3.8):

E[X̂(k + 1)] = E[Â(k)X̂(k)]

= ∫
Rn(N+1)×n(N+1) ∫Rn(N+1)

ÂX̂ pX̂(k),Â(k)(X̂, Â)dX̂dÂ

=
N

∑
i=1

wi ∫
Rn(N+1)

Λ̂iX̂ pX̂(k)(X̂)dX̂

=
N

∑
i=1

wiΛ̂iE[X̂(k)], (3.14)

where we exploited the property in equation (3.11). Define the deterministic variable Ŷ = E[X̂].

Then, the mean dynamics are given by

Ŷ (k + 1) = Λ̂ Ŷ (k), (3.15)

where

Λ̂ =
N

∑
i=1

wi Λ̂i

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A w1B w2B . . . wNB

I 0 . . . 0

0 I 0 . . . 0

⋮ ⋱ ⋱ ⋱ ⋮

0 . . . 0 I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.16)

By exploiting the structure of matrix (3.16), one may show that the characteristic equation can be

simplified as

0 = det(sÎ − Λ̂) = det (sN+1I − sNA −
N

∑
i=1

sN−iwiB). (3.17)

If all the n(N + 1) roots s of this equation lie inside the unit circle in the complex plane, the mean

dynamics (5.12, 3.16) are asymptotically stable. We later show conditions under which the mean
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dynamics provide a good deterministic approximation for the stochastic system.

Now, we determine the stability of the second moment, which implies point-wise asymptotic

stability of the system (3.8)-(3.9). We remark that such an implication does not hold in general [27],

but holds for system (3.8)-(3.9), for the case when Â is identically independently distributed [40].

The governing equations for the second moment of X̂(k) can be obtained from system (3.8) by

calculating

X̂(k + 1)X̂T(k + 1) = Â(k)X̂(k)X̂T(k)ÂT(k), (3.18)

and then taking the expected value on both sides

E[X̂(k + 1)X̂T(k + 1)] = E[Â(k)X̂(k)X̂T(k)ÂT(k)], (3.19)

where the expectation operator is taken element-wise and the right hand side can be evaluated as

E [Â(k)X̂(k)X̂T(k)ÂT(k)] = ∫
Rn (N+1)×n (N+1) ∫Rn (N+1)

ÂX̂X̂TÂT pX̂(k),Â(k)(X̂, Â)dX̂dÂ

=
N

∑
i=1

wi ∫
Rn (N+1)

Λ̂iX̂X̂
TΛ̂T

i pX̂(k)(X̂)dX̂

=
N

∑
i=1

wiΛ̂i ∫
Rn (N+1)

X̂X̂TpX̂(k)(X̂)dX̂Λ̂T
i

=
N

∑
i=1

wiΛ̂iE[X̂(k)X̂T(k)]Λ̂T
i , (3.20)

where, again, we used property (3.11). Defining the deterministic matrix-valued variable

Ĝ(k) = E[X̂(k)X̂T(k)], (3.21)

and substituting this into equations (3.19) and (5.15) we obtain the deterministic system

Ĝ(k + 1) =
N

∑
i=1

wiΛ̂iĜ(k)Λ̂T
i . (3.22)

Note that Ĝ is symmetric. The equation for the second moment is linear, but it is not trivial to

determine stability as both sides are matrix valued. To resolve this problem we transform sys-

tem (3.22) into state space form where the state vector is composed of only the first n columns of Ĝ

stacked on top of each other and their delayed versions. We show that no other elements of Ĝ need

be considered. Then, by exploiting the structure of Λ̂i, we obtain a state matrix whose eigenvalues

can be calculated to determine stability. The following notation is used throughout the rest of the
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paper:

[Ĝ(k)]i,j ∈ R the element of the Ĝ(k) matrix in the i-throw and j-th column

[Ĝ(k)]∶,j ∈ Rn(N+1) the j-th column of the matrix Ĝ(k)

[Ĝ(k)]l∶m,p∶q∈ R(m−l+1)×(q−p+1) the submatrix containedin rows l through m and columns p through q

We also define

Gim(k) = [Ĝ(k)]in+1∶(i+1)n,m ∈ Rn. (3.23)

With this we define

Ĝj(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0
j(k)

G1
j(k)

G2
j(k)

⋮

GNj (k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G̃(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĝ1(k)

Ĝ2(k)

⋮

Ĝn(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.24)

where Ĝj(k) ∈ Rn(N+1) is the j-th column vector of the second moment matrix Ĝ(k) and the vector

G̃(k) ∈ Rn
2
(N+1) stacks the first n columns of Ĝj(k) under each other.

Using index notation for system (3.22), we find an expression for each element of the second

moment matrix in the form

[Ĝ(k + 1)]p,j =
N

∑
i=1

wi [Λ̂i Ĝ(k)Λ̂T
i ]p,j

=
N

∑
i=1

wi

n(N+1)

∑
m=1

[Λ̂i]p,m
n(N+1)

∑
k=1

[Λ̂i]j,k [Ĝ(k)]k,m. (3.25)

The expression of each element can be simplified by looking at special cases for index values, given

that we know the structure of Λ̂i; cf. matrix (3.9).

For example, notice that for l > n the elements of {Λ̂i} are such that

[Λ̂i]l,m = δ(l − (m + n)),
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where δ is the Dirac delta. Applying this property for j, p > n, equation (3.25) implies that

[Ĝ(k + 1)]p,j =
N

∑
i=1

wi

n(N+1)

∑
m=1

δ(p−(m+n))
n(N+1)

∑
k=1

δ(j−(k+n)) [Ĝ(k)]k,m

=
N

∑
i=1

wi [Ĝ(k)]j−n,p−n = [Ĝ(k)]j−n,p−n

= [Ĝ(k)]p−n,j−n, (3.26)

which yields

Gij(k + 1) = Gi−1
j−n(k) for i ≥ 1, j > n. (3.27)

Similarly, considering p ≤ n and j > n we obtain

[Ĝ(k + 1)]p,j =
N

∑
i=1

wi

n(N+1)

∑
m=1

[Λ̂i]p,m
n(N+1)

∑
k=1

δ(j − (k + n)) [Ĝ(k)]k,m

=
N

∑
i=1

wi

n(N+1)

∑
m=1

[Λ̂i]p,m [Ĝ(k)]j−n,m, (3.28)

which gives

G0
j(k + 1) = AG0

j−n(k) +
N

∑
i=1

wiBGij−n(k). (3.29)

We combine equations (3.27) and (3.29) to describe the column vector update

Ĝj(k + 1) = Λ̂Ĝj−n(k), (3.30)

where Λ̂ is given by matrix (3.16) and Ĝj(k) is defined by the first of vectors (3.24).

For p, j ≤ n, equation (3.25) yields

[Ĝ(k + 1)]p,j =
N

∑
i=1

wi

n(N+1)

∑
m=1

[Λ̂i]p,m (Λ̂i Ĝm(k))
j

=
N

∑
i=1

wi

n(N+1)

∑
m=1

[Λ̂i]p,meT
j Λ̂i Ĝm(k),

=
n

∑
m=1

[A]p,meT
j Λ̂i Ĝm(k)

+
N

∑
i=1

wi

n(i+1)

∑
m=in+1

[Λ̂i]p,meT
j Λ̂i Ĝm(k),

=
n

∑
m=1

[A]p,meT
j Λ̂i Ĝm(k)

+
N

∑
i=1

wi
n

∑
m=1

[B]p,meT
j Λ̂i Λ̂

i Ĝm(k − i), (3.31)
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where the last equality follows from the column vector update (3.30), ej ∈ Rn(N+1), with all elements

equal to 0 except the j-th element equal to 1 and Λ̂i denotes taking the matrix Λ̂ to the i-th power.

Utilizing vectors (3.24), equation (3.31) implies

G0
j(k + 1) = (A⊗ (eT

j Λ̂)) G̃(k) +
N

∑
i=1

wi (B⊗ (eT
j Λ̂i Λ̂

i))G̃(k − i), (3.32)

for j ∈ [1,2, . . . , n], where ⊗ denotes the Kronecker product.

Last, we consider the case p > n and j ≤ n in equation (3.25):

[Ĝ(k + 1)]p,j =
N

∑
i=1

wi

n(N+1)

∑
k=1

[Λ̂i]j,k [Ĝ(k)]k,p−n

=
N

∑
i=1

wi e
T
j Λ̂i Ĝp−n(k) = eT

j Λ̂ Ĝp−n(k), (3.33)

which implies

Gij(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Ĝ(k + 1)]in+1,j

[Ĝ(k + 1)]in+2,j

⋮

[Ĝ(k + 1)](i+1)n,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (I⊗ (eT
j Λ̂i))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĝ1(k − i + 1)

Ĝ2(k − i + 1)

⋮

Ĝn(k − i + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.34)

Now we have an expression for every element of the vector Ĝj(k) in (3.24) for j ∈ [1, . . . , n] given by

equations (3.32)-(3.34) and we can, therefore, find an expression for the time evolution of the vector

G̃(k) in (3.24) as a function of itself and its delayed values. That is, we can write an expression

for the evolution of the first n columns of the second moment matrix. Some algebraic manipulation

leads to

ˆ̂
G(k + 1) = ˆ̂

A
ˆ̂
G(k), (3.35)
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where

ˆ̂
G(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G̃(k)

G̃(k − 1)

⋮

G̃(k −N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.36)

so that
ˆ̂
G(k) ∈ Rn

2
(N+1)2 (cf. equation (3.24)) and

ˆ̂
A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã B̃1 B̃2 ⋯ B̃N

¯̃I 0 0 ⋯ 0

0 Ĩ 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 Ĩ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.37)
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Here we used the identity matrix Ĩ ∈ Rn
2
(N+1)×n2

(N+1) and

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A⊗ (eT
1 Λ̂)

I⊗ (eT
1 Λ̂)

0

⋮

0

A⊗ (eT
2 Λ̂)

I⊗ (eT
2 Λ̂)

0

⋮

0

⋮

A⊗ (eT
n Λ̂)

I⊗ (eT
n Λ̂)

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̃i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wi (B⊗ (eT
1 Λ̂i Λ̂

i))

0

⋮

0

I⊗ (eT
1 Λ̂i+1)

0

⋮

0

wi (B⊗ (eT
2 Λ̂i Λ̂

i))

0

⋮

0

I⊗ (eT
2 Λ̂i+1)

0

⋮

0

⋮

wi (B⊗ (eT
n Λ̂i Λ̂

i))

0

⋮

0

I⊗ (eT
n Λ̂i+1)

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.38)
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for i = 1, . . . ,N − 1 and

B̃N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wN (B⊗ (eT
1 Λ̂N Λ̂N))

0

⋮

0

wN (B⊗ (eT
2 Λ̂N Λ̂N))

0

⋮

0

⋮

wN (B⊗ (eT
n Λ̂N Λ̂N))

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.39)

The matrix I ⊗ (eT
j Λ̂i) ∈ Rn×n

2
(N+1) contains eT

j Λ̂i ∈ R1×n(N+1) along the “diagonal”. Each block

delimitated by the dashed line is of dimension n2(N+1)×n2(N+1) and for B̃i the matrix I⊗(eT
j Λ̂i+1)

begins in the ((i + 1)n + 1)-th row of each block. Notice that the structure of the matrix (3.37)

resembles the structure of matrix (3.16). Thus, similarly to equation (3.17), the characteristic

equation can be written as

0 = det(sˆ̂I − ˆ̂
A) = det (sN+1Ĩ − sNÃ −

N

∑
m=1

sN−mB̃m). (3.40)

We are now ready to state the following theorem.

Theorem 3.3.1 The stochastically delayed system (3.4) is point wise asymptotically stable if all

n2(N + 1)2 roots of equation (3.40) lie within the unit circle in the complex plane.

Proof 1 The eigenvalues being within the unit circle imply stability of system (3.35) [28,41], which

in turn implies second moment stability of system (3.22). Finally, stability of the second moment

implies point-wise asymptotic stability of the stochastic system (3.4).
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3.4 Examples

Here we apply the stability conditions derived for mean and second moment to scalar examples with

different delay distributions pτ(k)(σ). System (3.4) reduces to

x(k + 1) = ax(k) + bx(k − τ(k)). (3.41)

Figure 3.1 shows uniform delay distributions (left) and distributions with two equally probable

delays (right), which we refer to as toggle distributions. E and V refer to the expected value and

the variance of the delay distributions.

0 2 4 6
0

0.5

1

1.5

P

σ

V = 0

0 2 4 6
0

0.5

1

1.5

P

σ

V = 0

0 2 4 6
0

0.5

1

1.5

P

σ

V = 2
3

0 2 4 6
0

0.5

1

1.5

P

σ

V = 1

0 2 4 6
0

0.5

1

1.5

P

σ

V = 2

0 2 4 6
0

0.5

1

1.5

P

σ

V = 4

Figure 3.1: Left: Discrete uniform delay distribution with expected value E = 3. Right: Discrete
toggle distribution with E = 3. The variance V is listed in each panel.

Although stability of the second moment implies stability of the mean, it is interesting to take
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a look at the region of stability for the mean since it provides necessary conditions for stability.

In [23] we showed that introducing additional delays to an already delayed continuous-time system

may stabilize an unstable system. It is interesting to see that a similar result can be obtained for a

discrete-time system.

Figure 3.2 shows the stability region for the mean dynamics

y(k + 1) = a(k) + b
N

∑
i=1

wi y(k − i). (3.42)

with uniform delay distribution (of expected value E and variance V ). The black (dash-dot) and

red (dotted) curves indicate an eigenvalue crossings of the unit circle on the complex plane at 1 and

−1. The green (solid) curves indicate a pair complex conjugate eigenvalues crossing the unit circle.

One can see that as the variance is increased, the region of stability (shaded region) increases. It is

important to point out the regions of stability for a single delay is not contained in the regions of

stability for the distributed delays.

Next, we look at w.p.1 stability region. Recall that a system with identically independently

distributed delays is stable w.p.1. if the second moment is stable. We first consider such systems

with uniform delay distribution, then look at systems where the delay toggles between two values,

each with equal probability.

The left panels in Fig. 3.3 show the stability boundaries of the non-deterministic system with

uniform delay distribution. The curves indicate the stability losses of the mean as in Fig. 3.2, but here

the shaded region indicates the region of w.p.1 stability (i.e., stability of the second moment). The

shaded region was found by sweeping across the parameter space (a, b) and checking the eigenvalues

of the corresponding Markovian representation in equation (3.35).

The right panels in Fig. 3.3 show stability charts for the toggle distribution. Again, we plot the

mean stability curves and indicate the second moment stability regions, that imply w.p.1 stability,

by shading. Here, the w.p.1 stability region is dominated by the region of stability for the mean of

the system.

The introduction of stochasticity in the delay distorts the stability region when compared to the

case of a single deterministic delay, as can be seen in Fig. 3.4. Since some of the w.p.1 stability

regions extend outside the stability bounds for the deterministic system, we can stabilize the system

by introducing uncertainty in the delay. We demonstrate this by numerical simulation in Fig. 3.4

where the parameters correspond to the mark “×” in the left panel.

We looked at two different types of delay distributions and found they had very different effects on
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the region of stability. In the case of the uniformly distributed delays, a worst case scenario would

certainly be conservative. However, for the cases with two equally probable delays, the stability

region of the mean seemed to provide a good approximation of the w.p.1 stability region. We also

demonstrated that introducing stochasticity in the delay may stabilize the system. This shows how

the inclusion of stochastic delays can result in counterintuitive behavior.
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Figure 3.2: Stability charts for the mean for uniform delay distributions. Shading indicates stability.
When crossing a black (dash-dot) curve (from stable to unstable) an eigenvalue crosses the unit circle
at 1 (outward), while crossing a red (dotted) curve indicates that an eigenvalue crosses the unit circle
at −1. Crossing a green (solid) curve indicates that a pair of complex conjugate eigenvalues crosses
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44



−1 0 1−5

0

5

−1 0 1−5

0

5

−1 0 1−5

0

5

−1 0 1−5

0

5

bb

bb

a a

a a

E=3
V=2/3

E=3
V=1

E=3
V=2

E=3
V=4

Figure 3.3: Left: Stability boundaries for a uniform delay distribution. Right: Stability boundaries
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3.5 Application to an Autoregulatory network with stochas-

tic delays

In this section the method derived in Chapter 3 is applied to an autoregulatory network with

stochastically-varying delayed feedback. Consider the following model of an autoregulatory network

ẋ(t) = −γ x(t) + α 1

1 + (x(t − τt)/Kx)2
, (3.43)

where the delay τt varies stochastically and is selected from a distribution g(τ). Applying the zero

order hold method with a sampling time of T , an equivalent discrete time system is given by,

x(k + 1) = d2 x(k) + d1 κx(k − τk), (3.44)

where d2 = e−Tγ , d1 = 1
γ
(1 − e−Tγ). The distribution from which the delay is selected is discretized

using a rectangular approximation:

P(n∆t < τt < (n + 1)∆t) = ∫
(n+1)∆t

n∆t
g(τ)dτ

≈ ∫
(n+1)∆t

n∆t
g((n + 1/2)∆t)dτ

= g((n + 1/2)∆t)∫
(n+1)∆t

n∆t
dτ

= g((n + 1/2)∆t)∆t. (3.45)

In order to apply the methods in Chapter 3, the distribution needs to have finite support. Therefore

the distribution g(τ) is truncated such that g(τ) = 0 for τ > E + 3 ∗ σ, where σ is the standard

deviation. For the gamma distribution,

σ =
√
E/a.

The discrete delay τk will be selected from a discretized distribution such that

P(τk = n) = g((n + 1/2)∆t)∆t. (3.46)

Figure 3.5 shows stability plots for system (3.44) with different distribution parameters. The dis-

tribution is an Erlang distribution with mean E = 3. The mean is held constant and the relative

variance is varied through N . Recall that R = 1/N . Furthermore, the stability curves of the stochas-
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Figure 3.5: Stability plots for system (3.44) for the Erlang with E = 3 and various values of N .
Stability curves for the stochastic system are compared to those of the mean dynamics.

tic system are compared to those of the mean dynamics. The stability region increases as the relative

variance increases. This may be in line with intuition for the deterministic case, since the distribu-

tion approaches a discrete delay as N → 0 and delays are known to destabilize systems. However,

this is a bit more surprising in the stochastic case since the upper bound on the possible delays is

being increased with an increased distribution. Also, note that the stability bounds for the stochas-

tic system and the mean dynamics approach each other as the distribution gets tighter, just as one

would expect.
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Chapter 4

Deterministic Delay-Based Model

In this chapter the effects of delays on system dynamics are investigated through a deterministic

delay-based modeling framework. Using the discretized, heuristically derived description in equation

(3.3) we can rearrange terms and as ∆t→ 0 we get the following differential equation:

dX

dt
= −γ X(t) + f(Y (t − τ(t))). (4.1)

We note that the average dynamics in the limit as ∆t→ 0 are given by the more familiar form

dX̂

dt
= −γ X̂(t) + ∫

∞

0
f(Ŷ (t − τ))g(τ)dτ, (4.2)

where X̂ ≐ E[X] and Ŷ ≐ E[Y ]. In the discretized system, the probability density function of the

delay was also discretized such that τ(k∆t) = i with probability wi. In the the continuous limit the

distribution from which τ is selected converges to a continuous probability density function g(τ),

which for transcription was shown to be the Erlang distribution. This is the form of the system that

emerges in the thermodynamic limit of the Langevin equation for the stochastic system. Distributed-

delay systems provide a model for the average dynamics which may hold as an appropriate model for

systems with intercellular signaling or high plasmid copy numbers. Previous work has shown how

stability regions of a system with delays greatly depend upon the shape of the distribution g(τ) of the

delays [5,6,73]. Assuming the Erlang distribution derived previously captures well the distribution

on protein production delays, system stability and robustness are investigated for systems with an

Erlang distributed delay in feedback. Discrete delays are also considered, as the Erlang distribution

was shown to approach a delta function in the appropriate limits.

First, a brief overview of delay differential equations is provided. Then, the dynamics of a system

with an Erlang distributed-delay feedback is investigated. The stable parameter space and induced
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limit cycles (in the case of instability) are analyzed as a functions of the mean and variance of the

distribution function.

4.1 Review of DDEs

An brief overview of delay differential equations is given. More detailed information can be found

in Hale et al. [30] and Lunel et al. [48]. Consider the simplest nonlinear delay differential equation

with a single delay:

dx

dt
(t) = F (x(t), x(t − τ)). (4.3)

For a unique solution one must specify an initial condition, which in this case is a continuous function

x(t) = ϕ(t) for −r ≤ t ≤ 0. Note that this is an infinite dimensional system. The solution x(t) for

0 ≤ t ≤ τ satisfies

dx

dt
(t) = F (x(t), ϕ(t − τ)) for 0 ≤ t ≤ τ, x(0) = ϕ(0), (4.4)

which can be shown to have a unique solution. Using the solution on the time interval 0 ≤ t ≤ τ ,

one can proceed to find the solution x(t) for τ ≤ t ≤ 2τ by repeating the same procedure. There

exists methods to stability analysis for nonlinear delay differential equations through the method of

Liapunov functionals. However, this is beyond the scope of the thesis. We reduce our attention to

linear delay differential equations of the form

dx

dt
(t) = Ax(t) +Bx(t − τ). (4.5)

This system has more familiar methods of stability analysis. Stability can be determined by the roots

of the characteristic equation in much the same way as is done for differential equations without

delays. The characteristic equation can be derived by substituting the exponential solution x(t) = eλt

into system 4.5:

detp(z) = 0 with p(z) = λI −A −Be−λτ . (4.6)

Note that there are infinitely many roots. In the scalar case this reduces to solving

λ − a − b e−λτ = 0, (4.7)

from which one can derive bifurcation curves through the substitution λ = jω.

We have not discussed distributed delay differential equations, better known as integro-differential
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equations. For the purpose of analysis, in this thesis, the differential equations with distributed delay

take the following form:

dX

dt
= −aX(t) + b ∫

∞

0
X(t − τ)g(τ)dτ. (4.8)

These are generally difficult systems to deal with. In this work, we focus on the case where g(τ)

is either the Erlang distribution, which we have shown to have a finite dimensional representation,

or where g(τ) = δ(c), where c is a constant, which reduces the system to a simple delay differential

equation.

4.2 Distributed-delay feedback system

Using a different choice of state variable and closing the system by setting Y =X, system (4.2) can

be represented as

ẋ = −γ x + f(x̃)

x̃ = ∫
∞

0
x(t − τ) g(τ)dτ. (4.9)

Here, the state variable is the first state in the sequence of chemical reactions leading to a distributed

delay, whereas in system (4.2) the state variable modeled was the last state in the sequence of

chemical reactions or the concentration of the protein being measured. For stability analysis, the

choice of the state variable is irrelevant, so we choose to work with the more tractable form in

equation (4.9). We investigate a Goodwin-type negative feedback system where the nonlinearity

f(x) is a positive definite Hill-type function. Furthermore,

ẋ(t, x)∣x=0 > 0

for any time t, initial condition or time history, so x ≥ 0 for all t.

4.2.1 Stability

Here we investigate point wise asymptotic stability as a function of mean and variance of the delay

distributions. We can do a bifurcation analysis on the nonlinear integro-differential equation [6].

The linearized system is

dx′

dt
= −γ x′ − βx̃′, (4.10)
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where

x′ = x − x∗

and

x̃′ = ∫
∞

0
x′(t − τ)g(τ)dτ.

The subscript * refers to the equilibrium point of the system. Here g(τ) is the Erlang distribution

function, and hence represents a finite sequence of chemical reactions which impart an effective delay.

Furthermore,

β = −∂f
∂x̃

∣
x̃=x∗

> 0, (4.11)

since the Hill function f(x) is monotonically decreasing for x ≥ 0. Now we take the Laplace transform

of the linearized system, which gives

sX ′(s) = −γX ′(s) − βG(s)X ′(s),

assuming x′(0) = 0. G(s) is the Laplace transform of the impulse function g(τ), which was shown

previously to be

G(s) = aN

(s + a)N
.

The resulting characteristic equation is

s + γ + βG(s) = 0,

which can be rewritten as a function of the mean E and the relative variance R of the distribution

s + γ + β ( 1

sRE + 1
)

1
R

= 0, where
1

R
∈ Z+. (4.12)

Stability is lost when an eigenvalue crosses to the left hand plane of the complex plane. The

bifurcation boundary can be found by substituting s = 0 and s = iω in equation (4.12). Substituting

s = 0 gives

γ = −β
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and substituting s = iω gives the following system of equations:

[i Im(P (iω)) +Re(P (iω))](iω + γ) + β = 0

i[γ Im(P (iω)) + ωRe(P (iω))] + [−ω Im(P (iω)) + γRe(P (iω)) + β] = 0, (4.13)

which is equivalent to the following parametric equations:

γ = −ωRe(P (iω))
Im(P (iω))

β = ω Im(P (iω)) − γRe(P (iω))

= Im(P (iω))(ω + γ
2

ω
) , (4.14)

where P (s) = (sRE + 1) 1
R .

It was shown in Chapter 2 that as R → 0 with E held constant the distribution approaches a

delta function. For comparison purposes we find the bifurcation boundary for the discrete delayed

system with characteristic equation

s + γ + β e−sE = 0. (4.15)

Substituting s = 0 gives the same delay-independent boundary γ = −β. Substituting s = iω gives

iω + γ + β [cos(ωE) − i sin(ωE)] = 0

i[ω − β sin(ωE)] + [γ + β cos(ωE)] = 0, (4.16)

which gives

β = ω

sin(ωE)

γ = −β cos(ωE). (4.17)

We expect the stability bounds in equation (4.14) to approach those in equation (4.17) in the same

limit. Applying the trigonometric identity sin2 + cos2 = 1 to equation (4.17) gives the additional

relation

ω2 + γ2 = β2. (4.18)

In this case we only wish to consider (γ, β) ≥ 0. Figure 4.1 shows selected bifurcation curves for
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Figure 4.1: Stability bounds for E = 3 and different values of N where R = 1/N . The black dashed
line indicates the stability bound for the discrete delay system.

the distributed and discrete delay systems. We show only the first curve that indicates crossing of

the first pair of eigenvalues across the imaginary axis to the right half plane. As N increases the

stability bound approaches that of the system with a single discrete delay. Figure 4.2 shows similar

bifurcation curves for the same distribution (N constant) with varying mean E. We see that as the

delay increases the stability bound approaches a delay independent stability bound. The discrete

delay system is always stable for β ≤ γ [4].

To relate this back to the primary motivating example of the autoregulatory network, recall that

N relates to the length of the gene and a to the rate of transcription. In this case, it would make

sense to look at stability as the transcription rate remains fixes and the length of the gene increases.

Recall that the mean is directly proportional to the length N and the relative variance is inversely

proportional to the length N . Increasing N with a fixed rate a would increase the mean and decrease

the relative variance of the distribution, both of which have been shown to decrease the stability

region. Figure 4.3 shows bifurcation curves for a constant rate a and varying gene length N . Note

that the bifurcation curves approach each other relatively quickly as N increases. Of course, an

average gene is well on the order of 103 if not more. It is clear that trying to change the gene length

alone is not an effective method of increasing the region of stability. However, there may exist other

methods of arriving at a desirable delay distribution, which is to be investigated in future work.
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Figure 4.2: Stability bounds for N = 100 and different values of E.
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4.2.2 Frequency Response

Consider the open loop system

F (s) = βG(s)
s + γ

(4.19)

and the frequency response of the system. To find the frequency response plot we substitute s = iω

and evaluate the magnitude and phase of the system as a function of the frequency ω. Note that

any complex scalar function f can be expressed as

f = ∣f ∣ei f = ∣f ∣ (cos ( f) + i sin ( f)) ,

where

∣f ∣ =
√

Im(f)2 +Re(f)2

and

f = atan2( Im(f)
Re(f)

) .

Correspondingly the product of two complex scalar functions can be expressed as

fg = ∣f ∣∣g∣e f+ g,

which lends to the properties

∣fg∣ = ∣f ∣∣g∣ and fg = f + g. (4.20)

The phase for a delay is

e−iωE = −ωE (4.21)

and ∣e−iωE ∣ = 1. For the distribution G(s) first consider the phase and gain

( a
iω+a

) = −atan(ω
a
)

∣ a

iω + a
∣ = a√

ω2 + a2
. (4.22)
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Applying the properties (4.20) gives

G(iω) = −N atan(ω
a
)

∣G(iω)∣ = ( a√
ω2 + a2

)
N

. (4.23)

The frequency response of a delay distribution is essentially a low-pass filter with the bandwidth

dependent on a and N as expected. These results will become useful in subsequent sections. Addi-

tionally, we can investigate how the frequency response compares to that of a discrete delay. It was

previously shown that the distribution approaches a delta function in the limit as N →∞ with N/a

held constant. We verify here, that there is convergence in the frequency response as well.

At ω = 0, we have

e−i0E = G(i0) = 0

Let us compare the change in phase of the distribution with the discrete delay, namely,

d

dω
[−ωE] = −E (4.24)

and

d

dω
[−N atan(ω

a
)] = −E 1

1 + (ω/a)2
≥ −E. (4.25)

For both the phase is negative, monotonically decreasing and for all ω, ∠e−iωE ≤ ∠G(iω) with

equality holding at ω = 0. Notice if one takes the limit as N,a → ∞ such that N/a ≡ constant, the

inequality remains close to equality for large ω.

Now let us analyze the relation between the gain and the variance of the distribution. To do this

we first express the gain in terms of N and E:

∣G(iω)∣ =
⎛
⎝

N√
(Eω)2 +N2

⎞
⎠

N

. (4.26)

Also, note that

∣G(i0)∣ =
⎛
⎝

N√
(E 0)2 +N2

⎞
⎠

N

= 1.

As N →∞ equation (4.26) approaches 1 for all frequencies, which is the gain for a discrete delay.
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4.2.3 Gain margin

The gain margin is defined here as the minimum gain in feedback permissible before stability is lost.

Consider the modification to system (4.9)

ẋ = −γ x + f(k x̃)

x̃ = ∫
∞

0
x(t − τ) g(τ)dτ. (4.27)

Note that an added gain changes the equilibrium point of the system, namely, the equilibrium point

is given by the solution x∗ to the following system

γ x∗ = f(k x∗). (4.28)

Also, note that the equilibrium point is independent of the delay distribution. The linearized system

becomes

dx′

dt
= −γ x′ − β(k)x̃′, (4.29)

where x′ and x̃′ are as defined previously. Furthermore,

β(k) = −k∂f(ỹ)
∂ỹ

∣
ỹ=kx∗

> 0.

The gain margin defined here can be implicitly found by determining the gain margin k̂ for a closed

loop system whose open loop system is given by

H(s) = G(s)
s + γ

. (4.30)

Subsequently, the corresponding gain k is found through the relation

k̂ = 1

∣H(iωk)∣
= β(k),

where ωk is the gain crossover frequency for system (4.30). Figure 4.5 shows stability bounds on

the (k,R) parameter space for different effective delays. Note that the stable range of k, or the gain

margin, increases with an increased variance R. Additionally, the gain margin becomes infinite for

a large enough relative variance, depending on the effective delay.
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Figure 4.4: Diagram of the linearized system in the presence of gain-variations in the feedback path.
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Figure 4.5: Plot showing the gain margin as a function of the relative variance R = 1/N with γ = 1.
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4.2.4 Limit cycles

Here we investigate limit cycles for the Goodwin-type oscillator as a function of mean and variance

of the delay distributions. In order to simplify the results for some added insight, we set γ = a in

system (4.9):

ẋ = −ax + f(x̃)

x̃ = ∫
∞

0
x(t − τ) g(τ)dτ, (4.31)

where g(τ) is still defined by the Erlang distribution. We consider a positive-definite, continuous,

and time-invariant nonlinearity

f(x) > 0 (4.32)

for which system (4.31) has a single positive solution x∗. Note that system (4.31) is a monotone

cycle feedback system. If the integral over the state is expanded back out into a finite set of ordinary

differential equations, the system can be shown to have the following structure:

xi = fi(xi, xi−1) for i = 1, . . . ,N + 1. (4.33)

Moreover, for some δi ∈ {−1,+1},

δi
∂fi(xi, xi−1)

∂xi−1
> 0. (4.34)

Therefore, system (4.31) is a monotone system since each state xi forces the subsequent state xi+1

monotonically. Given the stated assumptions, system (4.31) can be shown to have a stable limit

cycle through an extension of the Poincaré-Bendixson Theorem when the single positive solution

is unstable and the state trajectory is bounded for any initial condition [58]. One can show that

system (4.9) is always bounded through the Lyapunov function

V (x) = x2.
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The time derivative of V (x) is given by

V̇ (x) = 2x ẋ

= 2x (−γ x + ∫
∞

0
f(x(t − τ))g(τ)dτ)

= −2γ x2

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
<0

+2x∫
∞

0
f(x(t − τ))g(τ)dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

. (4.35)

Since x ≥ 0,

V̇ (x) = −2γ x2

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
<0

+2x ∫
∞

0
f(x(t − τ))g(τ)dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

< −2γ x2 + 2xfmax (4.36)

and V̇ (x) < 0 for x ≫ 0. Consequently, the state remains bounded for all time and system (4.31)

admits a limit cycle when the equilibrium point is unstable.

First we introduce some background information on the describing function method. For single-

input single output (SISO) oscillatory systems one can apply the describing function method to

derive constraints for an appropriate approximating function. This method ensures (under suitable

conditions [51]) that the approximating system will have a limit cycle of the same amplitude and

frequency of the original system.

The describing function method is derived from the method of harmonic balance. A brief outline

of the method will be given below. See [51] for a more detailed description on harmonic balancing

and the describing function method.

u y
LTI

f(y)

Figure 4.6: Nonlinear feedback system.

The method of harmonic balance is a general method of finding periodic solutions, given a system

of the form in Figure 4.6. The input of the LTI and the output of the nonlinearity can be expanded
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in a complex Fourier series:

y =
∞

∑
k=−∞

cie
ikwt,

f(y) =
∞

∑
k=−∞

aie
ikwt.

With zero input into the system, the input into the LTI is the negative of the output of the

nonlinearity. We apply the harmonic balance method by combining like terms. The harmonic

balance method gives the following constraint for all values of k:

G(ikw)ck + ak = 0, k = −∞, . . . ,−1,0,1, . . . ,∞.

This is an infinite dimensional problem, so the solution is approximated with a finite set of terms

such that the error is minimized to a desired bound. We only need to look at solutions for k ≥ 0.

Assuming a SISO system and considering k = {0,1}, the solution is reduced to solving

G(0)c0(a0, a1) + a0 = 0,

G(iw)c1(a0, a1) + a1 = 0.

This method is justified by the assumption that the LTI is an adequate low pass filter, so that

higher harmonics in the steady state solution are damped out, leaving the first harmonic as a good

approximation.

Notice the dependence of c0 and c1 on the coefficients a1 and a0. Each coefficient in the expansion

of y depends on all the terms included in the approximation of f(y). Since the dependence of y on

f(y) is known, the explicit relationship between the coefficients can be found using the principle of

orthogonality.

Defining the first order describing function as

N(a1) = c1(a0(a1), a1)/a1

for the simplified case in which c0 = 0, the condition for potential stable limit cycles reduces to

G(jw) = −1

N(a1)
. (4.37)

The describing function method does not prove the existence of a stable limit cycle but can ap-
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proximate the solution if one exists [36]. There must exist a solution to (4.37), and furthermore

there must be an acute angle between G(jw) and the describing function at their intersection. The

condition in equation (4.37) is equivalent to

1 +N(a1)Re[G(jw)] = 0

Im[G(jw)] = 0. (4.38)

It can be verified through simulations that system (4.9) oscillates when the equilibrium point is

unstable. In the oscillating regime the describing function method helps to approximate the peri-

odic response where the approximated frequency and amplitude is found by solving the system of

equations in (4.38). It is worth noting that the frequency depends only on the linear part of the

system and provides a good approximation. The assumptions made to arrive at equations (4.38) do

not necessarily result in a good approximation of the amplitude when looking at the Goodwin os-

cillator, which is asymmetric across its mean. Nonetheless, we make the argument that maintaining

robustness in the frequency of the oscillations is the most crucial in the context of biological systems.

Past research has suggested that certain sensory systems depend on changes in input concentrations

rather than absolute values [65].

We apply this method to predict the frequency of a limit cycle arising in the closed loop system

ẋ0 = ax0 + a
1

1 + (x̃0/Kx)2

x̃0 = ∫
∞

0
g(τ)x0(t − τ)dτ, (4.39)

where

g(τ) = aNτN−1

(N − 1)!
e−aτ .

Given the form of the nonlinearity, it can be shown through Descartes’ rule of signs that only one

real solution exists to equation (4.28) and it is a positive solution. Now, we need only turn to the

linear portion of the system to predict the frequency of the resulting limit cycle in the case of an

unstable equilibrium point. The second condition in equation (4.38) is equivalent to the condition,

in this case, to

∠G(iω) = −π, (4.40)
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Figure 4.7: Plot showing predicted period of limit cycle as a function on N with E = (N + 1)/a = 5.

which gives

ωc = a tan( π

N + 1
) , (4.41)

where the period T = 2π/ωc. Figure 4.7 shows the predicted period of the limit cycle as a function

of the relative variance. For N ≫ 1 we have the approximation

ω ≈ a π

N + 1
, (4.42)

which gives

T ≈ 2E. (4.43)

Equality holds in the limit as the distribution function approaches a delta function. The period

approaches twice the value of the mean of the distribution. Furthermore, Fig. 4.7 indicates a quick

convergence of the limit cycle to a periodic signal with frequency 2E as N increases. For a system

with a tight distribution (N ≫ 1), the mean of the distribution becomes a good predictor for the

induced limit cycle.
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4.3 Temperature dependent oscillators

Studying temperature dependence in biochemical networks remains important, and yet is less under-

stood in oscillators. Much related research has come about through the study of circadian rhythms.

It is well known that circadian clocks robustly maintain a 24 hr period, typically thought to be en-

trained by light, as can be seen in a detailed model of the mammalian circadian clock proposed in [44]

by Leloup and Goldbeter. Temperature dependence in circadian clocks has been slowly emerging

as a topic of interest. Lahiri et al. [42] present a compelling argument to consider temperature de-

pendence as a strong driving factor in the zebrafish circadian clock, but past work on time-varying

Arrhenius scaled rate constants in oscillators has mainly been seen in the study of temperature

compensation of circadian clocks. Current theoretical work utilizes mathematical conditions that

minimize sensitivity of the period to changes in temperature to reverse engineer a temperature com-

pensating model. For example, Hong et al. [31] provide a theory for how temperature compensation

might work in circadian oscillators that depends on a balance of temperature dependent effects.

Takeuchi et al. [72] use a similar concept to determine rate constants in a more detailed model taken

from Gonze et al. [26], which is then modified to include temperature dependence. Ruoff et al. [63]

use the same method to determine rate constants, as they consider the Goodwin model to study

temperature effects.

With the methods derived in section 2.2 we can investigate models with delays under time-

varying temperature conditions. We study the limit cycle of the resulting Goodwin model as we

close the open loop delay system with a nonlinearity in feedback. Assuming that the rate coefficient’s

dependence on temperature can be described by the Arrhenius equation of the form

a(t) = Ae−Ea/(RT (t)),

oscillations in temperature T (t) will result in oscillations in the rate coefficient a(t). Furthermore,

increasing temperature increases the rate coefficient a as expected. We simplify the model by

assuming a(t) is a sinusoidal function with a given period, amplitude, and mean value.

a(t) = a0 δp sin(wt + φ) + a0. (4.44)

From equation (2.46) in Section 2.2, the effective delay reduces to solving

∫
t

t−τeff

δp

E
sin(ws + φ) + 1

E
ds = 1, (4.45)
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where E is the expected or nominal delay. Note that a larger E leads to larger τeff and vice versa.

In addition, for increasing E and frequency w, one can make the approximation,

τeff ≈ E

alternatively, as w → 0,

τeff ≈ E

δp sinφ + 1
.

In Fig. 2.8, Section 2.2, there is an interesting phenomenon in the peak-to-peak amplitude of the

effective delay as a function of the frequency for the time-varying rate coefficient in equation (4.44).

The peak-to-peak amplitude appears to be zero when w = 2π/E. This is investigated further. Taking

the integral in equation (4.45), the solution can be shown to be the intersection of the line

f1 = 1 − 1

E
τ +

δp

wE
cos(w t + φ) (4.46)

and the cosine function

f2 =
δp

wE
cos(w(t − τ) + φ). (4.47)

Substituting w = 2π/E and τ = E gives

f1 = 1 − 1

E
E +

δp

2π
cos((2π/E)t + φ)

=
δp

2π
cos((2π/E)t + φ) (4.48)

and

f2 =
δp

2π
cos((2π/E)t − 2π + φ)

=
δp

2π
cos((2π/E)t + φ). (4.49)

Therefore, f1 = f2, making τ = E (i.e., the expected time delay equal to one period of the sinusoidal

a(t)) a solution to equation (4.45) when w = 2π/E. This suggests that a limit cycle emerging from a

dynamical system with a single delay may be minimally affected by time-varying temperature when

the period is comparable to the delay.

Indeed, after closing the loop, it is demonstrate through simulation that the frequency of the limit

cycle is robust with respect to changes in the frequency or phase of the periodically time-varying
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rate coefficients. Simulations suggest the frequency of the limit cycle is dominated by the mean of

the time-varying rate coefficient. The method is then applied to a temperature compensating circuit

where the effects on the limit cycle of a multiple-input multiple-output system with multiple delays

are investigated.

4.3.1 Goodwin oscillator

We now close the open loop system presented in Chapter 2

ẋi(t) = a(t) (xi−1 − xi) for i = 1 ∶ N (4.50)

with a nonlinearity in negative feedback

u = 1

1 + (xN /Kx)2
, (4.51)

where we choose Kx = 0.1 to ensure oscillations. The closed loop system is then given by

ẋ0 = a(t)x0 + a(t)
1

1 + (x̃0/Kx)2

x̃0 = ∫
∞

0
h(τ)x0(t − τ)dτ. (4.52)

As N →∞ with N/a0 constant in the limit we have

ẋ0 = a(t)x0 + a(t)
1

1 + (x0(t−τ(t))
Kx

)
2
, (4.53)

where τ(t) is periodically time-varying delay given by equation 4.44.

Let us return to the Goodwin model with a constant rate coefficient. As was seen in section

4.2.4, the describing function method allows us to approximate the frequency and amplitude of the

resulting limit cycle, should a limit cycle exist. Recall that using the describing function method

the predicted frequency of the presumed limit cycle is

ω = a0 tan( π

N + 1
) , (4.54)
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Figure 4.8: Simulations for different w with constants δp = .5, E = 15, and φ = 0.

with the period T = 2π
ω

, and for N ≫ 1 we have the approximation

ω ≈ a0
π

N + 1
, (4.55)

which gives

T ≈ 2E. (4.56)

The period approaches twice the value of the mean of the distribution.

For the time-varying a(t) it is interesting to note that we still obtain a delta function in the

limit; however, it is no longer necessarily centered at E = N+1
a0

but oscillates around it with a

frequency determined by the frequency of the temperature fluctuations and amplitude determined

by the relative size of the perturbation and possibly frequency, as indicated in Fig. 2.8. For small

perturbations, one would expect the limit cycle to have a frequency close to that of the nominal

system with a(t) = a0. We choose a relatively large perturbation of δp = .5 and investigate how

the limit cycle changes as the period of a(t) increases. Figure 4.8 shows simulations of the closed

loop system for N = 10,000 and E = 15 for varying periods of a(t). It is apparent that the period

of the limit cycle is robust to oscillatory fluctuations in a(t). The period remains close to 2E for

a large range of frequencies w. In Fig. 2.8 in Section 2.2 it was clear that when the mean delay

had the same value as the period of oscillation of the temperature, the peak-to-peak amplitude of
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the delay was reduced to zero. The delay was essentially constant and thus we would expect the

behavior deduced from the application of harmonic balancing as witnessed above. In addition, the

peak-to-peak amplitude in general remained small for fast temperature variations. However, as the

period gets really large there is an apparent change in the frequency of the limit cycle over time.

There is a higher frequency at high temperatures and a lower frequency at decreasing temperatures.

This gives a limit cycle whose frequency appears to also be periodically changing with time.

This is further investigated in Fig. 4.9. The time span of the last simulation in Fig. 4.8 is extended

and analyzed further. The middle plot in Fig. 4.9 shows τeff as a function of time for T = 400s and

the bottom plot shows the single-sided amplitude spectrum of xN(t) obtained by taking the fast

Fourier transform of the signal. The vertical lines indicate the frequencies corresponding to the

period of the limit cycle we would expect given a constant delay at the minimum and maximum

values achieved by τeff

Next, we investigate whether entrainment occurs with a change in phase. Different phases φ for

a(t) lead to changes in the effective delay. The effective delay changes with φ in much the same way

as it changes with time. We investigate the effects on the phase of the output xN of the closed loop

system. Just as circadian clocks experience a phase shift when we overcome jet lag, we investigate

whether there is a similar effect with temperature, namely, is there entrainment? If the period

changes even slightly, there is a phase shift that changes linearly as a function of time; however,

there is also an initial phase shift due to the change in τeff . As the reactions approach a delta

function, we can imagine that if we go from a(t) = a0 to time-varying a(t) at t = 0, we essentially

change the delay in the loop, effectively adding

e−s(τeff(0)−E)

with associated phase −w(τeff(0)−E) in radians, which we expect to be the phase change. A positive

term in the exponential does not make sense on its own since that would assume we have information

of future states (no longer a delay), but in this case it is reasonable because when added to e−sE

it remains a delay, just a smaller delay. Figure 4.10 shows simulations for different phase shifts φ.

The shift in the fall of the signal corresponds to the predicted phase shift, but because the width of

oscillations change the actual change in phase is much smaller. In this case, the phase shift seems to

be cut by half of what is predicted, and the frequency of oscillations remain fairly robust to phase

shifts.
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Figure 4.9: Top: Extended simulation from Fig. 4.8 with T = 400. Middle: τeff as a function of time.
Bottom: Single-sided amplitude spectrum of xN(t).
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4.3.2 Temperature compensating circuit

Here, the methods derived in Section 2.2 are applied to the delay-based model of the temperature

compensator designed in [32]. The effect of the temperature compensating mechanism in the tem-

perature sensitive LacI is investigated with respect to entrainment. As was seen in the previous

section, a phase shift in time-varying temperature does not effectively entrain the limit cycle of the

oscillator. In the case of the temperature compensator, the time-varying temperature not only af-

fects the reaction rates but also changes the binding efficiency of LacI to the corresponding promoter

sites. The model for the temperature compensator is given by

A(T ) ⋅ dr

dt
=

αr (f−1 + a(t−A(T )⋅τr
Ca

)

(1 + a(t−A(T )⋅τr)
Ca

) (1 + r(t−A(T )⋅τr)
Cr(T )

)
N
− β r(t) − γr r(t)

R0 + r(t) + a(t)
, (4.57)

A(T ) ⋅ da

dt
=

αa (f−1 + a(t−A(T )⋅τa
Ca

)

(1 + a(t−A(T )⋅τa)
Ca

) (1 + r(t−A(T )⋅τa)
Cr(T )

)
N
− β a(t) − γa a(t)

R0 + r(t) + a(t)
, (4.58)

where

A(T ) = exp{θ [ 1

T + 273
− 1

Tref + 273
]} (4.59)

and

Cr(T ) = (Cr,max −Cr,min)
(T /T0)b

1 + (T /T0)b
+Cr,min. (4.60)

The system parameters are taken directly from the paper [32] (see Table 4.1). Note that in sys-

tem (4.58), the delay is linearly scaled by the Arrhenius factor A(T ), however, from the analysis in

Section 2.2, it is clear that this is an incorrect assumption for a time-varying rate coefficient A(T ).

Therefore, A(T ) ⋅ τr and A(T ) ⋅ τa will be replaced by appropriate time-varying delay values using

the method derived. The temperature is chosen to vary according to

T = 6 sin(ωt + φ) + 36, (4.61)

where ω = 2π/50. To investigate entrainment, the period of the time-varying temperature is chosen

to be close to that of the limit cycle. Subsequently A(T ) also varies periodically with the same

frequency and is fit to a sinusoidal function

A(T ) = δp a0 sin(ω t + φ) + a0. (4.62)
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The variables τr and τa are chosen as the effective delays Er and Ea for each of the genes. To

investigate the effects of the temperature compensation mechanism on entrainment the system is

simulated under different conditions. Figure 4.11 shows simulations of system (4.58) with and

without a phase shift in the temperature. Figure 4.12 shows simulations of system (4.58) without

temperature compensation (i.e., Cr(T )=const.). Both systems demonstrate entrainment, however,

the transients in the phase shift are longer in the system without temperature compensation.

Parameter Value

τr 13.5 min.
τa 15 min.
β .0275 min−1

γr 76 (mol./cell)min−1

γa 76 (mol./cell)min−1

R0 1.8 mol./cell
f 2 (unitless)
Ca 5 mol./cell
αr 265 (mol./cell)min−1

αa 92.75 (mol./cell)min−1

θ 4500 K
Tref 36○C
Cr,max 830 mol./cell
Cr,min 50 mol./cell
T0 38○C
b 20 (unitless)
N 4

Table 4.1: System parameter values.
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Figure 4.11: This plot shows simulations of the model in system (4.58) for the time-varying temper-
ature indicated in equation (4.61). The blue line indicates a simulation with a phase shift applied
to the temperature function at time t = 200s.
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Figure 4.12: This plot shows simulations of the model in system (4.58) without temperature com-
pensation (Cr = Cr(Tref)) for the time-varying temperature indicated in equation (4.61). The red
line indicates a simulation with a phase shift applied to the temperature function at time t = 200s.
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Chapter 5

Delay-Based Controllers

Consider the following linear system:

ẋ = Ax +Bu (5.1)

where the feedback controller output u is a function of the delayed state

u = ∫
t

0
x(t − τ)g(τ)dτ. (5.2)

We investigate system stability and performance with respect to the distribution g(τ). In Section 5.1

we investgiate the case where

g(τ) = 1

2
δ(t − τ1) +

1

2
δ(t − τ2) (5.3)

and draw a relation between the delay margin of the system and the variance of the distribution

function

V = (τ1 − τ2)2

4
.

In Section 5.2, we consider a method of designing g(τ) to maximize H∞ performance, which is

defined and discussed in detail. This is done in collaboration with Seungil You using optimization

techniques. The positive role of the dual-feedback path is then supported through an application of

the results to an autoregulatory network.
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Figure 5.1: (a) Single delay feedback system. (b) Two delay feedback system.

5.1 Dual-delayed feedback system

Suppose we have a system such as that shown in Figure 5.1 (a) with a single delayed feedback. The

delay e−sτ is replaced with the distributed delay

G(s) = 1

2
e−sσ + 1

2
e−sτ ,

which has the corresponding distribution function

g(t) = 1

2
δ(t − σ) + 1

2
δ(t − τ).

We put equal weights on both delays. The factor of 1
2

is necessary in order to keep from adding a

gain to the signal in the feedback. With ∫
∞

0 g(t)dt = 1 we get unity gain. Convolving the output

y(t) with the distribution function gives y(t−σ)+y(t−τ)
2

, so the input is the average of the feedbacks

and not the sum.

The system dynamics are deterministic, but we use the properties of the distribution functions as

parameters. In Anderson [5], the author shows that stability of a delayed system can be investigated

using only the properties of the time delay distribution. Accordingly, we expect that the mean and

variance for a symmetric distribution will directly influence the stability of a system. From now on

we will refer to the mean of the distribution as the effective delay. The effective delay of the new

distribution function is

T = σ + τ
2
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and the variance, V , of the new distribution function is

V = (σ − τ)2

4
.

We have chosen, without loss of generality, σ ≥ τ . This new system is shown in Figure 5.1 (b).

Furthermore, the distribution is symmetric so that higher moments of the distribution are zero. In

Bernard et al. [6] there has been evidence to suggest that higher moments, when not zero, may play

a role in stability in addition to mean and variance.

We assume that H(s) is a stable linear system. By the Nyquist criterion, any encirclement of

−1 by the Nyquist plot of the loop transfer function will indicate an unstable system [61].

Hcl =
H(s)

1 +H(s)(e−sσ + e−sτ)/2
(5.4)

and, by the Nyquist criterion, at the boundary of instability we have that the loop transfer function

H(jw)(e−jwσ + e−jwτ)/2 = −1, (5.5)

for some ω,σ and τ . With some algebraic manipulation we will show the loop transfer function to

take the form

G(s)e−sT ,

where G is a complex function. In this form the permissable effective delays of the distributed

system is determined by the plot of G(s) on the complex plane.

The loop transfer function is

L(s) =H(s)(e−sσ + e−sτ)/2

=H(s)(1 + e−s(σ−τ))e−sτ /2

=H(s)(e
sσ−τ2 + e−sσ−τ2 )

2
e−s

σ−τ
2 e−sτ

=H(s)(e
sσ−τ2 + e−sσ−τ2 )

2
e−s

σ+τ
2 . (5.6)
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If we evaluate the transfer function at s = jω we can further simplify the equation to

L(s)∣s=jω =H(jω)(e
jω σ−τ2 + e−jω σ−τ2 )

2
e−jω

σ+τ
2

=H(jω) cos(ωσ − τ
2

) e−jω
(σ+τ)

2 (5.7)

=H(jω) cos(ωσ − τ
2

) e−jωT . (5.8)

Note that this resembles a loop transfer function for a SISO system with a single delayed feedback

e−sT and will be treated as such. One can now deduce gain and phase margins using the general

methods involving the Nyquist plot of the open loop system. In this case one can determine the

permissible effective delay for the new distributed delay system by finding the phase margin from

the plot of the “open loop” system

G =H(jω) cos(ωσ − τ
2

)

=H(jω) cos(ω
√
V ) (5.9)

on the complex plane. If the permissible time delay is larger that the effective delay T , then the

system is stable, moreover, the disparity gives a measure of robustness. One can also isolate the

effects of the variance V on the stability and robustness of the system. Although both G(jω)

and e−jωT are functions of σ and τ , they can be isolated in such a way that T can be varied

while keeping G constant and vice versa, since V and T can be varied independently; however, the

maximum variance is necessarily limited by the effective delay (
√
V ≤ T ).

We can define a utility function as

JV =
θβ

ωβ
− T, (5.10)

where θβ and ωβ are the phase margin and gain-crossover frequency of the newly defined open loop

function G for the double feedback system as defined in equation (5.9). T is the expected or average

value of the two delays. JV gives the difference between the permissible delay,

TPM =
θβ

ωβ
, (5.11)

due to the new increased phase margin and the new effective delay,

T =
√
V + σ, (5.12)
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as a result of the second feedback. For the system to be stable we require JV > 0.

Solving for the gain-crossover frequency ωβ or the frequency at which the magnitude of the loop

transfer function is equal to 1 gives

∣cos(ωβ
√
V )H(jωβ)∣ = ∣cos(ωβ

√
V )∣∣H(jωβ)∣ = 1 (5.13)

∣cos(ωβ
√
V )∣ = 1

∣H(jωβ)∣
. (5.14)

The first equality in equation (5.13) holds, since one can factor out the cosine term in calculating

the magnitude. This gives the constraint ∣H(jωβ)∣ ≥ 1. Solutions to equation (5.14) are given by

√
V = 1

ωβ
cos−1 (± 1

∣H(jωβ)∣
) . (5.15)

We consider a feedback system described by

Hcl(s) =
H(s)

1 +H(s)e−sτ1
, (5.16)

where H(s) is the open loop system

H(s) = 0.2

(s + 1)(s + 0.1)
. (5.17)

Applying equation (5.15) we can find the region of stability as an implicit function of the delay

added via a second feedback channel. We use T +PM and T −PM to refer to the solutions corresponding

to the plus and minus term in equation (5.15), respectively. Figure 5.2 shows the solution curves

to equations (5.11) and (5.12) as functions of the variance for the system. The minimum delay σ

was calculated from the phase margin of the original system, therefore, the unmodified system is

unstable. Positive values of JV correspond to the region where the TPM curve lies above the T

curve. The plot shows that a minimum variance of 4.42 is required to stabilize the system. This

corresponds to a second delay value of τ = 20.19 s. Maximizing the utility function is not necessarily

the best choice when designing the added feedback. This occurs at approximately
√
V = 17.7 s and it

is obvious that the system is not robust to uncertainty or variance in the delay. It can easily perturb

into the unstable region. Figure 5.3 shows the Nyquist plots and corresponding simulations for step

inputs into the single feedback system with delay Tmin = 12 s and the double feedback system with

two different values for the second delay. We see that the system can indeed be stabilized by adding

a longer delay to the feedback path.
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instability. (B) Simulation of dual-delayed feedback system.
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5.2 Delay-based controller design

This section contains collaborative work with colleague Seungil You. Consider the auto regulatory

network

ẋ = f(x(t − τ)) − γ x + η, (5.18)

where x is the observed protein concentration, γ is the protein degradation rate, f is a repressive Hill

function, and η is an unknown disturbance. We propose designing a delay based controller through

design of the delay distribution function g(τ) in

ẋ = ∫
N

τ
f(x(t − σ))g(σ)dσ − γ x + η (5.19)

that minimizes the sensitivity to the disturbance η. Directly designing a continuous distribution

g(τ) and in continuous time is a difficult task. We propose to do this through linearization and

discretization in time. First we constrain the distribution to the form

g(σ) =
N

∑
k=τ

wk δ(σ − kT ), (5.20)

then the linearized system becomes

ẋ − γ x(t) + β
N

∑
k=τ

wk δ(t − kT ) + η, (5.21)

and the time discretization gives

x(k + 1) = d2 x(k) + d1 β
N

∑
i=τ

wi x(k − i) + η. (5.22)

The controller design problem deduces to a design on the weights in (5.22). The optimization is over

H∞ of the transfer function from the disturbance η to the output x.
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5.2.1 Problem Formulation

Consider the following single-input single-output discrete-time system with a delayed state feedback:

xk+1 = Axk +Buk−τ +Dηk

yk = Cxk

uk = yk, (5.23)

where xk ∈ Rn, uk ∈ R, τ ∈ Z+, and ηk ∈ R represents an input disturbance. Note, we restrict our

attention to the case limk→∞(A −BC)k < ∞. Previous work has shown the stabilizing effects of

added delays to unstable systems, but here we are interested in characterizing performance. We

propose a delay-based controller such that

uk =
N

∑
i=τ

wi yk−i, (5.24)

where N ≥ τ is a positive integer.

We look to the frequency response of the system to the input disturbance nk to design the optimal

weights {wi}. The transfer function from nk to the feedback state yk is given by

Hη→x(z) = (zI −A −BC
N

∑
i=τ

wi z
−i)

−1

D. (5.25)

Futhermore, assuming unwanted disturbances reside in the higher frequency regime, we apply a

weighting function [13], namely, a pre-determined filter F to ensure signals at higher frequencies are

more greatly penalized. This is achieved with a first order high-pass filter

F (z) = (1 + α)z
z − α

, (5.26)

where 0 ≤ α < 1. Accordingly, the optimal weights can be found by solving the optimization problem

minimize
wτ ,⋯,wN

∣∣FHη→x∣∣∞

subject to {wτ ,⋯,wN} ∈ W, (5.27)
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where W is a convex set of {wτ ,⋯,wN}, and the objective function

∣∣FHη→x∣∣∞ = sup
∣∣η∣∣2≤1

∣∣x∣∣2
∣∣η∣∣2

(5.28)

is the H∞ norm of the transfer function. In the example to follow we will enforce the additional

constraint ∑Ni=τ wi = 1 due to physical constraints. This also makes sense if one considers the

distribution to come from a probability density function. In the general setup we only require

convex constraints. For ∑Ni=τ wi > 1 the feedback can be thought to have an added overall gain in

addition to the distribution of the delayed feedback. Although the H∞ norm is the L2 gain of the

system, it can be shown that it is equivalent to consider the power norm [12], where we can include

non-vanishing disturbances and, in fact, the supremum is achieved by a periodic disturbance with

constant amplitude.

Using the generalized plant model, we can convert the optimization (5.27) to a static output

feedback H∞ problem with additional affine constraints on the gain in order to apply more traditional

methods. The static output feedback H∞ design is well studied in the literature (see [18,71]). Let

us first define the vectors

x̃k =
⎡⎢⎢⎢⎢⎢⎣

xk

vk

⎤⎥⎥⎥⎥⎥⎦
, x̂k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃k

x̃k−1

⋮

x̃k−N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.29)

where x̃k ∈ Rn+1 and x̂k ∈ R(N+1)(n+1). Accordingly, the state dynamics can be re-written as

x̂k+1 = Â x̂k + B̂1 ηk + B̂2 uk

zk = Ĉ1 x̂k + D̂11 ηk + D̂12 uk

yk = Ĉ2 x̂k

uk = wTyk, (5.30)
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where

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 0 ⋯ 0

I 0

0 I 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A0 =
⎡⎢⎢⎢⎢⎢⎣

A 0

(1 − α)CA α

⎤⎥⎥⎥⎥⎥⎦

B̂1 = [ DT 01×N(n+1)+1 ]
T

,

B̂2 = [ BT (1 − α)(CB)T 01×N(n+1) ]
T

,

Ĉ1 = 0, D̂11 = 0, D̂12 = 0,

Ĉ2 = (Id ⊗ [C 0 ])C̃

C̃ = [ 0d×τ Id×d ] ,

w = [ wτ wτ+1 ⋯ wN ]
T

, (5.31)

and d = N − τ + 1.

Utilizing the state space representation, the discrete-time KYP lemma [14] converts the H∞

norm minimization problem (5.27) into the following optimization problem with linear matrix in-

equalities (LMI):

minimize
w,X,Y,γ

γ

subject to w ∈ W,

XY = I,X ≻ 0,

P ≺ 0, P = PT, (5.32)

where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Y A0 +B2wC2 B1 0

∗ −X 0 (C1 +D12wC2)T

∗ ∗ −γ DT
11

∗ ∗ ∗ −γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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For a review of LMI and convex optimization, see [9]. This problem is known to be non-convex

because of the non-affine equality XY = I, and an NP-hard problem can be formulated in this

form [8]. Therefore a global optimum of (5.32) cannot be obtained by a computationally tractable

method. However, in practice there exist good solvers which give reasonable solutions in many

cases. Sometimes one can convert the non-convex problem (5.32) to a convex one through a change

of variables [64]; however, (5.32) does not satisfy the necessary assumptions in [64]. Therefore, a cone

complementarity linearization algorithm [15] is used to handle the bilinear matrix equality. This is

based on collaborative work. Please refer to [24] for more details on the optimization technique used

to find the controller.

5.2.2 A Cone Complementarity Linearization Algorithm

Since the optimization (5.32) is not convex, we present an approximate semidefinite program which

gives us a suboptimal solution of the problem (5.32). Let us start with following observation.

Proposition 5.2.1 The optimal solution of following problem, (X⋆,Y⋆), satisfies X⋆Y⋆ = I.

minimize
X,Y

Tr(XY)

subject to

⎡⎢⎢⎢⎢⎢⎣

X I

I Y

⎤⎥⎥⎥⎥⎥⎦
⪰ 0

X ≻ 0, Y ≻ 0.

Proof 2 By taking Schur complement to the first LMI, we have, Y −X−1 ⪰ 0. This is equivalent to

X1/2YX1/2 ⪰ I. Since Tr(X1/2YX1/2) = Tr(XY), the minimum is achieved when X1/2YX1/2 = I.

This implies XY = I.

Now for a given γ, consider the following optimization problem:

minimize
w,X,Y

Tr(XY)

subject to w ∈ W,

⎡⎢⎢⎢⎢⎢⎣

X I

I Y

⎤⎥⎥⎥⎥⎥⎦
⪰ 0

X,Y ⪰ 0, P ≺ 0, P = PT
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where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Y A0 +B2wC2 B1 0

∗ −X 0 (C1 +D12wC2)T

∗ ∗ −γ DT
11

∗ ∗ ∗ −γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If there exists a triplet (w,X,Y) that satisfies all the constraints and XY = I, then the above

optimization problem recovers this triplet. Therefore, we can successfully construct a w such that

the H∞ norm of the transfer function is less than γ. However, since the objective function is not

convex, we use a linearization technique to solve this problem, namely:

minimize
w,X,Y

Tr(XkY +XYk)

subject to w ∈ W
⎡⎢⎢⎢⎢⎢⎣

X I

I Y

⎤⎥⎥⎥⎥⎥⎦
⪰ 0

X,Y ⪰ 0, P ≺ 0. (5.33)

Cone complementary solver:

1. Set k = 0, and X0 = Y0 = I.

2. Solve the optimization problem (5.33) to generate Xk+1, Yk+1.

3. Set k = k + 1, and do step 2 until Xk converges.

Note that if iterative procedure above finds (w,X,Y) where XY = I, then this weight w guarantees

the stability of the closed loop system and the H∞ norm is less than γ. However, since the above

procedure uses a linearized version of the true objective function, the procedure may fail to recover

the solution (w,X,X−1) in some cases. In this sense, this procedure is only an approximate solver

for the original problem. In practice, this approach works well.

Finally, since we can approximately solve the problem given γ, we now apply a bisection search

to obtain the minimum γ.

Bisection search:

1. Set l = 0, and γ = 1.

2. Solve the optimization problem (5.33) for γ.
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3. If (5.33) recovers XY = I, then set u = γ, otherwise l = γ.

4. Set γ = 1
2
(l + u). Go to step 2 until γ converges.

Again, since (5.33) is an approximate solver, the above bisection search can converge to a point

which is not a true minimum.

5.3 Application to a genetic auto-regulatory network

5.3.1 Model

Gene X

X
X

X

X

Promoter

DNA

Figure 5.4: Self regulating protein production.

In this section we apply the numerical method to the design of a scalar auto-regulatory genetic

system, an example is shown in Fig. 5.4, where protein x inhibits further production of itself by not

allowing the RNA polymerase to bind, therefore inhibiting initiation of transcription. Consider the

modified scalar example from Section 2.1:

dy = (∫
∞

0
ax0(t − τ)g(τ)dτ − γ y)dt

+ 1√
Ω

√
(∫

∞

0
ax0(t − τ)g(τ)dτ + γ y)dW. (5.34)

A feedback path is implemented by making the input x0 a function of the measured protein y,

dy = (∫
∞

0
af(y(t − τ))h(τ)dτ − γ y)dt

+ 1√
Ω

√
(∫

∞

0
af(y(t − τ))h(τ)dτ + γ y)dW, (5.35)
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where

f(y) = d

1 +Ky2

is a Hill function representing the rate of transcription initiation. The variable d represents the total

number of genes and K is the ratio of the association rate to the dissociation rate of the transcription

factor proteins with the genes. The variables are set to γ = 0.01, d = 10, a = 0.1, and K = 0.1. From

the example, it can be seen that a source of noise on protein production can come from the stochastic

nature of the system and is state dependent. In addition, there can be other sources of noise, such

as temperature fluctuations, cell division, and crosstalk, which are not modeled. The nature of the

noise is oversimplified and lumped into a non-state dependent term η assumed to be bounded for

sake of simplicity:

dy = (∫
∞

0
af(y(t − τ))h(τ)dτ − γ y)dt + η. (5.36)

The noise rejection properties of the deterministic system will be investigated.

The distribution g(τ) is no longer assumed to be an Erlang distribution. Now it is taken to be

a design variable such that ∫
∞

0 g(τ)dτ = 1, and g(t) ≥ 0 for all t. More generally we would like to

design the optimal distribution g(t). In the discretization of the system, g(t) takes on the form

g(σ) =
N

∑
k=τ

wk δ(σ − kT ), (5.37)

where T is the sampling period, and δ is the Dirac delta function. Note that we inherently place

the additional constraints on the weights wi ≥ 0 and ∑Ni=τ wi = 1. Therefore our convex set W = {w ∶

wi ≥ 0,∑Ni=τ wi = 1}.

In this example we ignore the possibility of negative weights, which requires a different nonlinear-

ity and will be addressed in future work. The constraint on the sum ensures that we do not require

a change in the overall effective feedback gain, which is important in order to avoid a need to change

production rates. One can imagine implementing such a controller simply by changing the ratio of

plasmids with respective delays or applying competitive binding so that the weights correspond to

the probability of each particular delayed state binding to the promotor site.

System (5.36) is linearized around the equilibrium point xe = 1
2
(
√

(1/K)2 + 4ad/(K γ) − 1/K)

of the non-perturbed system, which gives

ẋ = −δ x(t) + κ
N

∑
k=τ

wk x(t − kT ) + η, (5.38)
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where κ = −a dK
(xeK+1)2

. Applying the zero order hold method with a sampling time of T , an equivalent

discrete time system is given by

x(k + 1) = d2 x(k) + d1 κ
N

∑
i=τ

wi x(k − i) + η, (5.39)

where d2 = e−Tγ and d1 = 1
γ
(1 − e−Tγ) . We optimize over the weights and implement into the full

nonlinear system.

5.3.2 Design Results

For the discretization, we use T = 60s (1 minute) as a sampling period, and assume the minimum

time delay τ = 10, which corresponds to 10 minutes. For maximum delays, we test N = 10,15,20,25,

and 30 as an example, and set the filter parameter α = 0.99. The resulting delay distribution vectors

are shown in the first panel of Fig. 5.5. Notice that the first and the last delay channels are most

important, and other channels have similar weights to each other. The second panel of Figure 5.5

shows the Bode magnitude plot of the transfer function

Hη→x(z) =
1

z − d2 − d1κ∑Ni=τ wi z−i
(5.40)

corresponding to system (5.39) for the various weight vectors. To draw a bode plot in s-domain

from the data in the z-domain, we substitute z = ejwT to obtain a complex valued function H(ejwT )

and plot ∣H(ejwT )∣ as a Bode magnitude plot by varying w ∈ [0, π
T
]. For details, see [57].

A larger maximum delay N results in more degrees of freedom in the design stage, hence, we

should expect better performance in the result. As we can see, when N = 30 the transfer function

H(z) shows better attenuation. Notice that we optimized the filtered version of the H∞ norm,

∣∣FH ∣∣∞, and not the unweighted one, so a direct numerical comparison of Bode magnitude plots

should be considered carefully.

We apply the results obtained to the original nonlinear system (5.36). The final model repre-

senting the modified network is described by

ẏ(t) = a d

K [∑Nk=τ wk x(t − kT )] + 1
− γ y(t) + η. (5.41)

The nonlinear system with multiple delayed feedback is simulated in Fig. 5.6. The noise is modeled

as a sum of periodic functions at various equally spaced frequencies beginning at 10−3Hz. The
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Figure 5.5: Top: Resulting delay distribution for multiple maximum delays N . Bottom: Frequency
response plot of transfer function (5.40) for multiple maximum delays N .

initial condition is chosen away from the equilibrium point to demonstrate the effect on transients

as well. Notice that in Fig. 5.6, our designed multiple delayed feedback channels help to decrease

the fluctuations in protein production.
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Figure 5.6: Simulations of nonlinear system with distributed delays.

5.3.3 Implementation

The final discrete-time systems resembles an autoregressive system but cannot be implemented in

the same way. In the motivating example, the controller is to be implemented in live cells versus

hardware. There is no known method to store past state values. Instead the delay-based controller is

implemented through added dynamical components. As was seen before, when modeling dynamics

for average protein expression (protein expression in the thermodynamics limit), the stochastic

nature of transcriptional delays leads to a distributed delay differential equation. To some extent, we

are addressing a synthesis problem for these genetic regulatory systems utilizing the mean dynamics,

where we design an optimal distribution function for the stochastic delays. We can consider adding

pathways that will give us desirable delay distributions. In a cellular network, it would be near

impossible to implement the exact controller found in the previous section. Fine tuning the weights

for each of the delayed states would be challenging. However, we consider the results as guides

to robust network motifs in genetic regulatory networks as we look for control architectures that

will exploit the stochasticity in the system. A distribution similar to the resulting controller can

be achieved with two different transcriptional pathways of different lengths and with relatively

tight distributions. We now know we can achieve tight distributions with large gene sequences.

The weights on each of the pathways could be tuned by manipulating the binding affinities of the

94



transcription factor proteins resulting from each pathway.

5.3.4 Discussion

We have designed a system robust to system input disturbances, however, we have no guarantees

on robustness of the system with respect to changes in parameters. We now investigate the stability

regions of the system. Furthermore, we investigate the unexpected design results. It is curious to

see that the majority of the weight is distributed among the first and last delay even as the second

delay continuous to increase. We investigate this with a purely dual-delayed feedback system.

Stability regions for the different sets of delays and their respective weights are considered. The

stability region for the general system (5.24) is determined by the characteristic equation

z − a − b
N

∑
i=τ

wi z
−i = 0 (5.42)

given by the denominator of the transfer function (5.40). For discrete-time systems, a system is

unstable when ∣z∣ ≥ 1, therefore, the characteristic equation is evaluated at ∣z∣ = 1 to map out the

curves on the (a, b) parameter space when an eigenvalue crosses the unit circle. These curves can be

obtained by evaluating the characteristic equation at z = 1, z = −1, and z = eiθ [28,41]. It is worth

noting that z = 1 (black curve) gives a delay independent stability condition b = 1 − a.

Fig. 5.7 shows the stability region for the original system with a single delay. If the system

parameters (a, b) are in the shaded region, then the system is stable. From our nominal parameter

values, we obtain (a, b) = (0.5488,−0.3293), which is indicated by a circle marker in Fig. 5.7.

Fig. 5.8 shows the stability regions for the various distributed delayed systems. The overlaying

green shaded region and grey curves correspond to the stability region for the original system shown

in Fig. 5.7. One can see that the area of the stability region increases as the maximum delay N

increases. There is also a notable difference in the robustness to uncertainty in parameter values.

Now, we consider the system (5.39) with a purely dual-delayed feedback. The transfer function

is given by

Hn1→x(z) =
1

z − d2 − d1κ (w1 z−τ1 +w2 z−τ2)
, (5.43)

where τ2 ≥ τ1. The mean and the standard deviation of the distribution of the delays is given by

E = τ2 + τ1
2

, S = τ2 − τ1
2

, (5.44)
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Figure 5.7: Stability plot for the system with a single delay τ = 10. The black circle indicates the
parameter values corresponding to the simulations.

respectively. Figure 5.9 shows how the H∞ norm changes as the second delay is increased. For

system parameters (a, b) = (0.5488,−0.3293) the system does not lose stability. This can be verified

by applying the Nyquist criterion, similar to the method presented in Section 5.1.

We see evidence to support that distributing the weights to the ends can improve the system.

For a large enough primary delay, as the second delay increases, the system improves until a critical

value is reached, after which the system performance begins to degrade again. This was observed

in Section 5.1 as well. However, for a small enough delay, any added delay will make the system

worse. Therefore, this method is only applicable to systems with relatively large delays, which is a

reasonable assumption in some genetic regulatory networks, as shown in more recent models fitted

to experimental data [47,11,32].

However, we saw in the previous section that the system continued to improve as N increased.

A possible reason for this may be that the non-zero weights on the delays in between the end values

decrease the gain on the two largest weighted delays, resulting in a larger region of stability with

respect to the second delay. This combines the benefit of a dual-delayed feedback and a reduction
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Figure 5.8: Stability plots for different delay ranges and distributions (blue). The shaded green
region and grey lines correspond to the stability plot in Fig. 5.7. The black circle indicates the
parameter values corresponding to the simulations.

in the effective gain. We initially assumed that the primary delay was a single discrete, but we see

how a distributed delay (a possibly more accurate description due to variation in the delays) can

potentially benefit the system.

Notice that even though adding additional delays decreases the H∞ norm from the input to the

output, the waterbed affect can result in larger magnitudes at the higher frequencies. It appears as

though the distribution which gives the smallest H∞ norm may not always be the best choice. One

could imagine designing the weighting filter such that improvement is obtained where needed, based

on knowledge of the uncertainty.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The noisy nature of genetic regulatory networks has been viewed as a real obstacle in designing

networks with predictable behavior, but results suggest that the stochastic nature of the delay may

help to increase stability regions. In addition, delays can play a positive role in the performance of

systems. Interestingly enough, introns add significant delays in eukaryotes and reduce the relative

variance of the delay distribution in transcription. In humans for example, it is odd to think that

introns (noncoding DNA) account for 94% of the transcriptional delay, increasing the delay more

than 15 fold. If one considers a simple feedback system, the larger delay with a tighter distribution

may be more likely to destabilize, however, introns allow for more complex regulatory mechanisms.

One of the long-term goals of this work is understanding how delays influence dynamics in genetic

regulatory networks and the evolved control mechanisms that handle them.

It was shown that transcriptional and translational delays can be well approximated by an Erlang

distribution. This approximation is a common assumption but only now has been substantiated more

rigorously. The distribution for a time-varying rate coefficient was also derived, which we showed to

be useful in applications to temperature sensitive oscillators.

This modeling framework then served as a powerful tool to investigate the effect of delays on

the dynamics of regulatory networks, albeit in simplified networks, but with interesting results

nonetheless. Feedback systems were investigated with varying distribution parameters and varying

temperature. With the modeling framework used for the delays, the distribution parameters can be

directly related to properties of the system, namely, reaction rates and gene lengths. This told us

that while an increased gene length decreases the relative variance of the distribution, it also reduces

the stability region. We found the same general trends in the stochastic and deterministic modeling
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framework. In addition, the bifuracation curve for the stochastic system approached that of the

deterministic system quickly as the relative variance decreased. Considering average gene lengths

are at minimum on the order of 103, we find that the deterministic system (the average dynamics

in the thermodynamic limit) provides a good approximation of the stability region.

The relation between the delay distribution and the period of limit cycles induced in autoregula-

tory networks was explored. As would be expected, larger delays lead to larger periods of oscillations.

However, as the relative variance decreased, the period quickly approached twice the mean delay

of the distribution. Under the conditions of time-varying temperatures, it was shown that a robust

limit cycle can be achieved if the delay is near the period of oscillation of the temperature.

A common reccurring motif in biological systems is the dual-feedback system. One can consider

this a different level of distributed delayed feedback. From the results obtained with a single feedback

path, one may guess that a second feedback path may also aid in stabilizing a system since it increases

the variance of the distribution. It is demonstrated that this is indeed possible but may not always

hold true. There is a definite tradeoff between the stabilizing effects of an increasing variance and

the destabilizing effects of increased delay. In some collaborative work, a delay-based controller

design method is proposed. In a motivating example, the dual-delayed feedback path is shown to re-

emerge as an effective network structure for increased stability and even noise rejection, suggesting,

along with previous work, that the second feedback path may be an intentional easily-implementable

controller design.

6.2 Future Work

In Chapter 3, stability conditions were found for stochastic feedback systems with identically in-

dependently distributed delays. Future work includes generalizing the results. Namely considering

stochastic delays that may not necessarily be identically independently distributed. This assumption

was key to the results in Chapter 3. Finding conditions that imply convergence with probability

one (w.p.1) is not a trivial task; however, there are many well known convergence theorems for

Martingales [78]. These results can allow one to determine stability of systems with more general

dynamics on the stochastic evolution of the delay τ with conditional probabilitites.

In future work we also propose using results on general phase-type distributions [17]. Results

indicate that any positive distribution can be arbitrarily approximated by phase-type distributions.

Erlang is a special case of a phase-type distribution. An advantage to the phase-type distribution is

that it can be represented by a first passage time of a Markov process. Furthermore, a distribution
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resulting from the convolution of different Erlang distributions is also a phase-type distribution. The

resulting distribution is not trivial, but in the framework of a phase-type distribution one can easily

calculate the first and second moment. We have seen that the second moment plays a crucial role

in stability. Using this approach, one can determine the properties of the distribution capturing not

only transcription but also translation and protein folding.

In Chapter 5 delay-based controllers were considered. Delayed pathways were added to a feedback

system to improve stability and performance. In future work we would like to consider the possibility

of applying a time-varying delay based controller. For example, instead of adding multiple delays,

a single delay can be designed to adaptively change with time. This concept is similar to adaptive

control where a time-varying feedback gain is designed.

In a much broader scope, future work entails developing control theoretic tools for analysis

and design of synthetic networks. This will incorprate experimental assays and new systems theory

tailored to genetic regulatory networks. This includes developing a systematic way of derving reduced

state delay-based models for easier analysis.

Designing robustness in man-made systems has been key to advancements in technology such

as aircraft or satellites in orbit. To make similar advancements in genetic regulatory networks, one

can apply the same control theoretic tools to analyze and systematically design networks. However,

isolating and identifying control mechanisms in regulatory networks in existing biological systems is

a difficult task due to the complexity of the networks and highly nonlinear couplings. Interactions

such as “cross-talk” or undesirable biochemical processes are not well understood, and so further

problematize research. To effectively manage these issues, the objective is to investigate control

mechanisms and reccurring motifs in existing regulatory networks in search of evolved phenotypic

control mechanisms to gauge the effectiveness of controller motifs via modeling and synthetic engi-

neering. Using a control theoretic approach, one can investigate the robustness properties of motifs

such as was done with the promising dual-delayed feedback. To deal with the fundamental differ-

ences between biological systems and man-made systems, one can anticipate the need to develop

new control theory-based tools as part of a long-term objective.

The significance of deduced analytical results depends upon the model’s ability to accurately

capture important dynamics; therefore, a predictive model is essential in systematically designing

a regulatory network. The chemical master equation is the most widely accepted description of

intracellular dynamics and often simulated through Gillespie algorithms because they are difficult

to deal with analytically [79]. Generalized mass action models, models consisting of ordinary differ-
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ential equations derived from rate equations, are more tractable analytically. However, in order to

gain a more rigorously qualitative understanding, generalized mass action models are often reduced

through Michaelis-Menten [53] and Hill-type function approximations [25]. Accurately predicting

behavior with reduced models is challenging and often deters biologists from using models for design.

Additionally, more involved models have limitations due to a lack of full understanding of cellular

processes and the inability to measure all system parameters [46]. Even assuming full knowledge of

a system, the complexity of the model would not lend to design easily because of the difficulty in

identifying the components most influential to stability and performance. In modeling, there is a

need to find a balance between accuracy (complexity) and capturing essential qualitative behavior,

which involves identifying important system properties.

Future work aims to identify a suitable modeling framework for controller design. We propose

that this will be a distributed-delay based model, thus, we will design assays that measure delay

distributions in system response. We will explore stochastic as well as deterministic models. The

main reason we adopt this model is its generality and applicability without having to characterize all

chemical processes involved in protein production. This ensures a working predictable model suitable

for pursuing design efforts, while accurately quantifying robustness properties and effectiveness of

delay-based controller designs in regulatory networks.

The variability we are most interested in capturing is delay distributions of system response to

an inducer because we would like to have control over the initiation of transcription. We can treat

a subsystem as a black box, in which we can measure the output response to a known input, a

characterization of systems typical in engineering. One may not be able to measure times required

for the intermediate steps in protein production such as binding time of transcription factor protein

to the promoter site, transcription, and protein folding time; however, one can get a distribution on

the time needed for these lumped processes to take place or the time required for all intermediate

process to complete. We can then achieve a low dimensional accurate model by implicitly capturing

intermediate processes through distributed, delayed differential equations. Figure 6.1 illustrates how

we will utilize single-cell tracking methods to capture variability in the delays for “turn on” times,

the time from initiation of transcription to the time we see fluorescence or protein production time.

In addition, we can look at the response time of more complex circuits, such as a full feedback

network.
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Figure 6.1: Characterizing delay distributions using single-cell measurements. (A) Cartoon image
of cells under a microscope in which “turn on” times of fluorescence are indicated by labels t1,
t2, t3, and t4. (B) Single-cell flouresence plots. The cells are considered “on” after exceeding an
indicated threshold. (C) Cartoon histogram of cell “turn on” times allocated into bins and used to
fit a distribution function. (D) Cartoon response time of a population of cells. The response time
of a population of cells may likely depend on the measured single-cell distribution.
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