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Abstract

All major geochemical cycles on the Earth’s surface are mediated by microorganisms. Our

understanding of how these microbes have interacted with their environments (and vice

versa) throughout Earth’s history, and how they will respond to changes in the future, is

primarily based on studying their activity in different environments today. The overarching

questions that motivate the research presented in the two parts of this thesis – how do

microorganisms shape their environment (and vice versa)? and how can we best study

microbial activity in situ? – have arisen from the ultimate goal of being able to predict

microbial activity in response to changes within their environments both past and future.

Part one focuses on work related to microbial processes in iron-rich Lake Matano and,

more broadly, microbial interactions with the biogeochemical cycling of iron. Primarily, we

find that the chelation of ferrous iron by organic ligands can affect the role of iron in anoxic

environmental systems, enabling photomixotrophic growth of anoxygenic microorganisms

with ferrous iron, as well as catalyzing the oxidation of ferrous iron by denitrification

intermediates. These results imply that the ability to grow photomixotrophically on ferrous

iron might be more widespread than previously assumed, and that the co-occurrence of

chemical and biological processes involved in the coupled biogeochemical cycling of iron

and nitrogen likely dominate organic-rich environmental systems.

Part two switches focus to in situ measurements of growth activity and comprises work

related to microbial processes in the Cystic Fibrosis lung, and more broadly, the physiology

of slow growth. We introduce stable isotope labeling of microbial membrane fatty acids
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and whole cells with heavy water as a new technique to measure microbial activity in

a wide range of environments, demonstrate its application in continuous culture in the

laboratory at the population and single cell level, and apply the tool to measure the in situ

activity of the opportunistic pathogen Staphylococcus aureus within the environment of

expectorated mucus from cystic fibrosis patients. We find that the average in situ growth

rates of S. aureus fall into a range of generation times between ⇠12 hours and ⇠4 days,

with substantial heterogeneity at the single-cell level. These data illustrate the use of heavy

water as a universal environmental tracer for microbial activity, and highlight the crucial

importance of studying the physiology of slow growth in representative laboratory systems

in order to understand the role of these microorganisms in their native environments.
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Chapter 1: Preface

Chapter 1

Preface

a bit beyond perception’s reach

i sometimes believe i see

that life is two locked boxes, each

containing the other’s key

Piet Hein

1.1 Why study microbial activity?

When looking around us at the world we live in and are capable of perceiving, unaided,

it is difficult to fathom the profound impact that microorganisms, invisible to our naked

eyes, exert on our planet. And yet, this vast unseen majority has shaped the chemistry

of the Earth’s surface for billions of years, and co-evolved with it in turn. Today, we

recognize that all major geochemical cycles on the earth’s surface – in fact, the chemical

transformations in most environments large and small – are mediated by microorganisms.

Any predictive understanding of how these microbes, along with their environments, have

responded to perturbations and change in the past, and how they will respond in the
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future, requires deep insight and understanding of who they are, what they are capable

of, and how actively they are growing. The overarching questions that motivate the

research presented in this thesis – how do microorganisms shape their environment (and

vice versa)? and how can we best study microbial activity in situ? – have arisen from

a desire to work towards this ultimate goal of being able to predict microbial activity in

response to changes within an environment.

1.2 A two-sided approach

Characterize 
chemistry 

Identify microbial 
catalysts 

Figure out what  
they’re doing 

Microbial 
physiology 

Gene/Enzyme 
Function 

Km

0.5�Vmax

Vmax

0

20

40

0 40 80 120
[S]

v

Reaction 
Kinetics 

   
   

   
   

   
 

Environment Laboratory

Figure 1.1 – A two-sided approach: iterating between environmental observation and laboratory
manipulation.

In order to gain a mechanistic understanding of microbial processes and how they might

be affected by environmental change, it is important to combine careful observation of

environmental microbial growth conditions with representative laboratory experiments.
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Geomicrobiology provides a wide range of analytical tools to characterize an environment

increasingly well by measuring its chemistry to understand which geochemical cycles

are at play, by identifying the microbial population to figure out which microbes could

be involved, and, increasingly, by studying which metabolic parameters best describe

their physiological state. At the same time, pure culture isolates of key environmental

microorganisms increasingly provide the means to couple environmental observations to

laboratory work where growth conditions can be manipulated more easily. This allows

for more detailed study of their physiological potential, and the function of specific

genes and enzymes, as well as the kinetics at which biologically mediated geochemical

transformations can potentially proceed. Information obtained from laboratory studies can

be employed to construct a working model of how the microbial community interacts with

its environment, which can be used to inform specific hypotheses to test in environmental

systems. In practice, this approach constitutes an iterative process (illustrated in a simple

cartoon in figure 1.1) where careful observation and hypothesis testing in the environment

informs increasingly more accurate laboratory models of environmental processes, and vice

versa. In the various chapters that comprise this thesis, I present work representing both

sides of this cycle, ranging from research on newly isolated organisms of an environment of

particular geochemical interest, to in situ studies of the environmental growth parameters

of well-understood pure cultures whose native metabolic activity is poorly constrained.

1.3 Outline

All of the papers presented in this thesis were written in collaboration with a number of

authors. Although I am deeply grateful to all of my collaborators, several individuals in

particular have contributed directly to the ideas and data presented herein.
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Part I

Chapter 2 was written together with Arpita Bose and Dianne K. Newman as a book

chapter and published in Microbial Metal and Metalloid Metabolism (Bose et al., 2011).

In this chapter, we explore various approaches and techniques that a geomicrobiologist

might use to study how microbial communities affect their environments and vice-versa.

We focus the discussion on iron-rich Lake Matano as an example of an environment that

is geochemically fascinating with respect to metal-cycling. This chapter also provides a

useful introduction to the biogeochemical cycle of iron, and will be particularly helpful to

readers unfamiliar with this topic in familiarizing them with several key concepts revisited

in subsequent chapters of part I.

Chapter 3 was written with Dianne K. Newman, and presents our work on the phys-

iology of phototrophic iron oxidation in the purple non-sulfur bacterium Rhodobacter

capsulatus SB1003. This chapter appears as a paper in the Journal of Geobiology (Kopf

and Newman, 2011).

Chapter 4 was written together with Cynthia Henny and Dianne K. Newman, and

would not have been possible without the many inspiring conversations I shared with

James J. Morgan (for which he generously and stubbornly refuses to take credit). This

chapter presents our work on the effects of organic ligands on the chemical oxidation of

iron, and appears as a paper in Environmental Science & Technology (Kopf et al., 2013).

The research in this chapter was inspired by a desire to understand the physiology of the

bacterial isolate Pseudogulbenkiania strain MAI-1. MAI-1 is an organism that I was able

to isolate from Lake Matano as a result of field work enabled by a collaboration with Sean

Crowe, CarriAyne Jones, Arne Sturm, Cynthia Henny, Sulung Nomosatryo, David Fowle

and Don Canfield at Lake Matano in the Spring of 2010. Additional information on the

physiology of Pseudogulbenkiania strain MAI-1 can be found in the supplemental material

for this chapter, in Appendix C.
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Chapter 5 represents work done in collaboration with Rachel Stanley on primary

productivity in Lake Matano, and is based on oxygen samples collected at the lake with

Sean Crowe, CarriAyne Jones and Arne Sturm.

Part II

Chapter 6 provides a brief introduction to cystic fibrosis and the approaches taken in

subsequent chapters to study microbial activity.

Chapter 7 represents work done in collaboration with Elise Cowley, Yang Hu, Josh

Silverman, Alex Sessions and Dianne Newman, and introduces hydrogen isotope labeling as

a tool for measuring microbial growth. The work in this chapter focuses on the potential of

using heavy water as a metabolic tracer for lipid biosynthesis, and discusses the conceptual

approach, laboratory verification, potential impact and limitations of this technique.

Chapter 8 represents work done in collaboration with Shawn McGlynn, Kat Dawson,

Victoria Orphan and Dianne Newman, and establishes the framework for using dual

hydrogen and nitrogen isotope labeling in secondary ion mass spectrometric analyses of

single cells as well as cells embedded and thin sectioned in acryl. The work in this chapter

provides the foundation for studying spatial multi-isotope labeling patterns from diverse

microbial activity in complex environmental samples that require sectioning approaches

for structural resolution.

Chapter 9 represents work done in collaboration with Elise Cowley, Ryan Hunter,

Abigail Green, Lindsey VanSambeek, Michael Dieterle, Victoria Orphan, Alex Sessions

and Dianne Newman, and applies the techniques developed in chapters 7 and 8 to the

study of in situ microbial activity rates in the lungs of cystic fibrosis patients.
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Chapter 2

From geocycles to genomes and back1

2.1 Introduction

A holy grail for environmental microbiologists is being able to predict the effects of any

given microbial community on a particular environment. In an era of increasingly-dramatic

changes in global climate, this goal is becoming ever-more important. It is now well-

accepted that microorganisms have had and continue to have a profound influence on

shaping the chemistry of the Earth. It would thus be both intellectually satisfying and

practically useful if we could enumerate the microbial players in a specific locale, and,

knowing their metabolic potential and how they regulate their various metabolisms, make

predictions about how their presence would shape the geochemistry of that locale as it

evolves in time.

Despite significant progress that has been made in developing tools that would aid

in this effort in the past decade, we are still very far from being able to accomplish this.
1Bose et al. (2011) in Microbial Metal and Metalloid Metabolism: Advances and Applications. Edited

by John F. Stolz and Ronald S. Oremland © 2011 ASM Press, Washington, DC
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This is due to many factors, including our limited understanding of how microorganisms

catalyze reactions that have a geochemical impact. While we have gotten good at

identifying which organisms inhabit a particular site, we seldom have a complete grasp

of their metabolic potential and how their metabolisms are regulated, and have an even

poorer understanding of the stability and catalytic rates of their biogeochemically-relevant

enzymes. While impressive efforts have been made in describing the metabolic potential of

specific microbial communities through large sequencing projects (e.g. metagenomic and

metaproteomic reconstruction of microbial communities in acid-mine drainage systems

(Wilmes et al., 2009; Allen and Banfield, 2005), large gaps in our understanding remain.

In this chapter, we discuss ways a budding geomicrobiologist might embark on the

quest to understand how microbial communities affect their environment and predict how

they will respond in the face of environmental change. To this end, we first introduce

various methods geomicrobiologists have at their disposal to achieve this goal, including

both traditional (non-molecular) and molecular methods. Because this book concerns

microbial interactions with metals, we have chosen to focus our discussion on iron—one

of the most ubiquitous and biogeochemically relevant metals in the environment. We

provide a brief review of the (bio)geochemistry of this element before concluding the final

portion of this chapter with a description of Lake Matano, an iron-rich environment that

is geochemically fascinating with respect to metal-cycling. We use Lake Matano as a case

study to illustrate how the approaches described in the first section might be applied to

gain insight into the complex interplay between microorganisms and geochemistry in a

specific context.
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2.2 Methods available to study microbial commu-

nities

Today, geomicrobiologists can take advantage of numerous approaches to ask questions

about the roles microorganisms play in any given place. While lately, there has been

great enthusiasm for molecular techniques, there is still great value in using traditional

methods to characterize the contributions of microorganisms to a system. We begin with

a description of the latter, as non-molecular methods provide a foundation upon which to

perform molecular studies.

2.2.1 Non-molecular approaches

Non-molecular methods include techniques that involve studying microbial processes in

the field (in situ) and those that involve studying a microbial process in the laboratory

in microcosms or as isolated reactions (in vitro). Each approach has its advantages and

disadvantages, as we will discuss.

2.2.1.1 In situ methods

The success of in situ methods depends heavily on having information about a given

environment. For most commonly studied environments such as lakes, rivers, wetlands,

soils and sediments, this would include geochemical parameters such as pH, redox potential

(Eh), solute composition, carbon sources and the availability of terminal electron acceptors

in addition to geophysical properties relevant to the respective site (temperature, water

depth and stratification, soil horizons, seasonality, wind regime, etc.). This information

sets the stage for use of the various in situ approaches described hereafter. One has to

be aware, however, that in situ approaches in general have a few caveats. When studying

a natural system, the role of microbes cannot always be based on ‘guilt by association’;

i.e., the presence of an organism at a site does not necessarily imply that it is mediating
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the geomicrobial process under question. In addition, microbes almost never occur in

isolation. Either they form stable associations called ‘consortia’ or they form transient

associations where only one or a few members of an association are of interest, and the

rest just hitchhike their way into one’s data. Also, microbes undergo processes of dispersal,

where they might be present in a sample only because they were in transit through the

area being sampled.

To simplify in situ studies, workers have divided microbes found in a particular sample

into: 1) indigenous microbes: part of the normal microflora of the sample site, and

most likely are the geomicrobial agents being sought; 2) adventitious microbes: transient

passerby organisms that came into the sample site during dispersal; 3) contaminants:

organisms introduced during sampling (Ehrlich and Newman, 2008). Using some assump-

tions we can classify the organisms present in a particular sample. Indigenous microbes

will likely represent the numerically dominant species. The adventitious microbes in many

cases might be incapable of growth under the prevailing conditions in the sample site

while contaminants might be recognized as organisms that are unlikely to be present in

the setting where they were found (Ehrlich and Newman, 2008).

In situ microscopy

Use of microscopy to study the role of geomicrobial organisms is a very simple means of

studying microbial diversity at a given site. Visual examination followed by light microscopy

is a traditional tool for observing microbes when they occur in abundance (Brock, 1978).

Samples can either be directly visualized using light microscopy, or after acquiring the

microbes of interest such as by the buried-slide method. In this method, a slide buried

at a location of interest, such as, for example, in the sediments of a lake or river bed,

is retrieved after a few days of incubation, washed and stained appropriately (Lawrence,

et al., 1997). Photosynthetic organisms are autofluorescent, and thus can be visualized

using fluorescence microscopy (Lawrence, et al., 1997). Capillaries have also been used
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1 μm

Fe(OH)
3

A.  B. 

200 nm

Figure 2.1 – Transmission electron microscopy (TEM) and scanning electron microscopy
(SEM) of Rhodobacter strain SW2 grown photoferrotrophically. Panel A. TEM image of
Rhodobacter strain SW2 grown photoferrotrophically for 5 days. Arrows indicate Fe(III) precipitates.
Image previously published as Figure 4, panel B in (Kappler and Newman, 2004). Panel B. SEM of
Rhodobacter strain SW2 grown photoferrotrophically for 4 weeks showing the crystalline regularly
shaped Fe(III) precipitates.

to draw up microbes, and then studied under the microscope (Perfil’ev and Gabe, 1969).

However, various forms of electron microscopy are also used in the field for less abundant

organisms. These include transmission electron microscopy (TEM), scanning electron

microscopy (SEM) and environmental SEM (ESEM) (Baker and Banfield, 2003; Ghiorse

and Balkwill, 1983; Goebel, 1999; Jannasch and Wirsen, 1981; Sieburth, 1975) (Figure

2.1).

In situ study of geomicrobial activity

Radioisotopes can be used to study the biogeochemistry of certain substances to determine

ongoing geomicrobial processes. They are especially useful because of the high sensitivity

of their measurement, which allows the experimentalist to add very little radioactivity to

a sample even for the detection of slow geomicrobial processes. For example, the globally

relevant contribution of microbial communities to the sulfur cycle in the form of sulfate

reduction and sulfide oxidation could be studied using either 35SO4
2- or H35S-. A small-

predetermined amount of these chemicals could be added to a closed vessel at the depth
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from which the sample was originally taken (Ivanov and Starkey, 1968). After incubation

and the likely action of the geomicrobial organisms present in the sample, 35S2- or 35SO4
2-

could be separated and quantified. This technique is also applicable for the investigation

of microbial interactions with metals: in the case of manganese, for example, it can be

used to determine the existence and extent of biological manganese oxidation. There

are two approaches: the first method assumes that reduced Mn is insoluble and that the

change in dissolved 54Mn2+ after removal of the precipitated form is a measure of microbial

54Mn2+ oxidation; the second method measures microbially-assimilated 54Mn using a filter

based assay (Burdige and Kepkay, 1983). One could envision similar experiments being

performed with radioisotopes of iron to quantify the rates of iron transformations, both

oxidative and reductive, mediated by microorganisms under various conditions (e.g. in the

presence or absence of nitrate; in the presence or absence of light).

On a different scale, voltammetric methods can be used to measure changes in

concentrations of metals over short distances. Sensitive voltammetric microelectrodes

exist for measuring oxygen, Mn2+, Fe2+, and HS- (Luther et al., 1998). These techniques

are particularly amenable to application in sediment or soil environments as well as

microbial biofilms, where the density of microorganisms is higher than in the water column,

and geochemical gradients can be expected to change over much smaller scales. However,

for environments with slow chemical turnover and/or relatively fast diffusion, we would

not expect the changes in concentrations of such chemicals to change substantially, and

it would be necessary to utilize in vitro methods to better understand the steady-state in

situ observations.

2.2.1.2 In vitro methods

In vitro methods can help support conclusions drawn regarding whether any given microbial

process that is observed using in situ methods plays a role in a particular environment.

However, such methods work best for simple microbial communities, and their success
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relies heavily on the accurate reproduction of the environment of the sampling site.

In many cases, measurements made in the field represent steady-state concentrations

of chemicals. However, microorganisms mediating various geomicrobial processes might

require higher concentrations of electron donors and acceptors in non-flow-through systems

(e.g. batch culture), so care must be taken in the design of relevant in vitro experiments.

In vitro laboratory reconstruction typically provides more energetically favorable conditions

that can enable the selection of organisms that mediate the geobiological process of

interest or help maintain a pure culture or consortium stably. In this regard, in vitro

methods commonly deviate from the actual environment that they strive to reproduce.

With this caveat in mind, geomicrobiologists have devised a number of methods to

study microbial communities or pure cultures. These are divided into batch cultures and

chemostats (White et al., 2000). Though neither of the two methods exactly simulates

the natural environment, they permit changes in microbial physiology along with changes

in the chemical composition of the culture vessel to be monitored.

Batch cultures and chemostats

The batch culture method is especially popular for studying microbial processes mediated

by pure cultures of microbes, and is a closed system approach. It consists of growing

cells with a predetermined amount of carbon source, electron donor and electron acceptor

(either rich/undefined medium made in a consistent manner or defined medium can be

used for such experiments). The growth of the microbial population leads to continuous

changes in the medium; substrates deplete, products accumulate and many inhibitory

compounds that are products of metabolism result in defined phases of growth (White

et al., 2000; Ehrlich and Newman, 2008). These include a lag, exponential, stationary and

death phase (for details read Novick, 1955; Ehrlich and Newman, 2008). Batch culture

experiments can establish the rates at which particular microorganisms catalyze a given

reaction under well-defined conditions.
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A chemostat is an open system method where the total volume of medium remains

constant. However, unlike a batch culture, the spent medium is replaced by fresh medium

at a pre-determined rate called the flow rate (for details read Herbert et al., 1956;

White et al., 2000; Ehrlich and Newman, 2008). A steady-state situation allows the

microbial population to grow at a maximum rate called the growth rate. However, if the

populations were limited for any nutrient the growth rate would change and adjust until

a new steady state is reached. Using such concepts, the geomicrobiologist can determine

the concentration of a limiting nutrient for a microbial population. Depending on how

accurate the lab simulation is to the natural environment, chemostat experiments can be

used to assess what nutrient the population might be limited for in its natural setting

(Jannasch, 1967; 1969).

Culturing techniques and the enrichment method

In vitro experiments usually rely on the utilization of pure strains or enrichment cultures.

The pure culture technique has classical microbiological roots and has served the field

of medical microbiology very well (Schlegel, 1993). However, for the environmental

microbiologist, this technique has not been as rewarding. This is based on the realization

of the ‘great plate anomaly’; i.e., that we can culture only 0.1 to 1% of the microbes

from any given sample (Staley and Konopka, 2003). Thus, any inference that one makes

about a community based on pure culture techniques is always incomplete. Nonetheless,

to move from finding the microbe present in an environment to understanding its real role,

one has to try to obtain pure cultures. To do so, we must realize that organisms like to

grow under conditions where they are found, and that they might prefer growing in stable

microbial communities. The role of geochemists in helping microbiologists understand

the chemical composition of the environment is becoming apparent. Careful design of

medium composition, micro-encapsulation followed by flow cytometry and optical tweezer

methods have helped obtain many species in pure culture (Kaeberlein et al., 2002; Zengler
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et al., 2002; Rappe et al., 2002; Svensson et al., 2004). However, the ability to sequence

partially pure cultures to give rise to whole genome sequences for ‘Candidatus’ strains

helps minimize the anguish caused by the inability to obtain pure cultures (Duan et al.,

2009; Tran-Nguyen et al., 2008; Pelletier et al., 2008; Jargeat et al., 2004).

Together, these traditional approaches can be used to begin to describe the microbial

contribution to geochemical processes in any environment, by trying to isolate and enrich

for some of the strains involved in the geochemical reactions of interest, and by exploring

their physiology and metabolic potential in batch cultures and chemostats. To follow up on

such studies and better understand the variables that control the microbial community in

situ, study unculturable organisms, as well as to assess the actual function and importance

of isolated strains in a particular environment, work on the molecular level is necessary.

2.2.2 Molecular approaches

In the past few decades, environmental microbiology has been influenced heavily by

advances in molecular biology. The ease and affordability of DNA sequencing has aided

incorporation of many molecular tools into the geomicrobiologist’s tool kit. Molecular

methods combined with classical microbial genetics and biochemistry can help us appreci-

ate how microbes perform many geochemical processes. Three simple questions one can

answer with molecular tools are: Who is there? What are they doing? How are they doing

it? Ultimately, all three questions must be understood in order to predict the influence of

a microbial population on a given environment.

2.2.2.1 Who is there?

Culture-independent approaches have taken environmental microbiology to a whole new

level. The need for such methods arose with the realization that most microbes from a

given environment are recalcitrant to being isolated in pure culture (Eilers et al., 2000). A

failure to reproduce the natural conditions in which the organisms reside often contributes
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to this problem. In addition, microbes rarely exist in isolation and thus trying to purify

them may disrupt important cell-cell interactions that are integral to their survival. One

way around this is to extract lipids, DNA, and RNA from natural samples, and use them

to infer the identity of the organisms present in that sample. 16S rDNA, i.e., the DNA

sequence that encodes the 16S rRNA, has become the molecule of choice for phylogenetic

identification (Stahl, 1997; Ward et al., 1990). The reason for this is that ribosomal RNA

undergoes only minor sequence changes, because it is part of the ribosome. Translation

is an essential information pathway, and extreme changes in the key machinery are rarely

tolerated. This realization led Woese and coworkers to show that 16S rRNA sequences

from diverse organisms can be used for phylogenetic analysis (Olsen and Woese, 1993).

The 16S rRNA molecule has been tested for its rigor at assigning an unknown microbe

a phylogenetic identity for nearly four decades, and proven robust. Many variations have

been developed over the years to exploit 16S rRNA. However, it should be noted that

while 16S rRNA/DNA-based approaches might help assign an unknown organism an

identity, in most cases this does not predict its metabolism (McArthur, 2006). This

is because microorganisms are capable of diverse metabolisms, some of which have

been moved around through horizontal gene transfer over evolutionary history, giving

their genomes a fluidity that restricts the utility of 16S rRNA/DNA to identification

and phylogeny (Doolittle, 2000). In addition, other genes that are key players in other

information pathways, such as transcription and DNA-replication, can also add robustness

to a phylogenetic assignment based on 16S rRNA/DNA (Olsen and Woese, 1993). Some

organisms have multiple divergent rrn operons, i.e., ribosomal RNA encoding genes, which

complicates identification of an unknown organism (Klappenbach et al., 2001). With

these caveats in mind, 16S rRNA/DNA still stands as one of the most commonly used

biomolecules for identification and phylogenetic assignment.

In the following sections, we briefly summarize various culture-independent techniques

that have become widely used in the past few decades. Such molecular methods can be
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applied to any environment of interest.

Polymerase chain reaction (PCR)-based methods
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Figure 2.2 – Culture–independent approaches to understand community structure. Panel A.
Strategy for construction of clone libraries. Samples are collected from a given environment such as
Lake Matano. The total DNA is isolated from the sample using commercial kits. This DNA is used
for PCR amplification using degenerate 16S rDNA primers. The PCR products are then cloned into
appropriate cloning vectors that are also commercially available. The inserts of each plasmid are then
sequenced using primers that are specific for regions of the plasmid. The sequence obtained is then
compared to comprehensive databases that have 16S rDNA sequence data to determine the organism
with the closest 16S rDNA sequence. Panel B. Genral strategy for performing fluorescence in situ
hybridization (FISH). A collected sample is fixed to preserve the natural structure and physiological
state of the cells and to permeabilize the cells. The samples are then hybridized to a fluorescently
labeled probe that targets a desired group of organisms. The excess probe is washed and cells that
are now fluorescently labeled can be visualized and quantified using epifluorescence microscopy or
sorted and quantified using flow cytometry.

PCR-based methods allow identification of known and unknown organisms exploiting

the ability of degenerate primers targeting 16S rDNA to amplify divergent sequences

(Guyer and Koshland, 1989). In practice, DNA is purified using commercial kits from any

new isolate or complex microbial community. Polymerase chain reaction and degenerate

primers are used to amplify the 16S rDNA, and sequenced directly for a pure culture or pre-

pared into a PCR clone library followed by sequencing individual clones. This sequence is
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then compared to public databases such as GenBank (http://www.ncbi.nlm.nih.gov/Genbank/)

or Ribosome Database Project (http://rdp.cme.msu.edu/). Because the 16S rDNA se-

quence for any new isolate or microbial community studied is submitted to these public

databases, a quick comparison of the unknown sequence to this database allows geomi-

crobiologists to find the closest phylogenetic relative of the microbe under study (Figure

2.2A). However, the level of sequence identity required to assign a microorganism at the

species level is debated. Recent studies show that closely-related 16S rDNA sequences can

be binned into clusters that represent bacterial taxa, and called an operational taxonomic

unit (OTU). OTUs are defined as clusters with up to 2.5% sequence divergence in 16S

rRNA (Hughes et al., 2001). This is based on the observed divergence seen within

populations of known species (Stackebrandt and Goebel, 1994). Other workers have

considered each 16S rRNA sequence type as a distinct OTU; however, no sequence-based

OTU corresponds to the fundamental units of bacterial ecology. As pointed out earlier, 16S

rDNA and other single-gene-based approaches, in most cases, are limited to identification

(Cohan, 2002; Staley and Konopka, 2003).

An application of the PCR-based approach that gives insight into community com-

position is denaturing gradient gel electrophoresis (DGGE). This method separates PCR

products of similar size but differing sequence (Figure 2.2A). 16S rDNA can be amplified

from a community and then hybridized with probes specific for a particular species being

sought. Also, individual bands of interest can be cut and eluted for re-amplification,

followed by DNA sequencing to identify the associated microbe (Muyzer et al., 1993;

Münster and Albrecht, 1994; Ward et al., 1992; 1998). Another technique especially

useful for comparing communities is terminal restriction fragment length polymorphism

(t-RFLP). One of the PCR primers used has a fluorescent label. DNA is amplified using

PCR and digested with restriction enzymes. The DNA bands resulting from this digestion

are separated according to size, and each fragment is detected using a laser detector

that can detect the fluorescent label. Though a good measure of community structure,
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this method does not help in identification of individual organisms or OTUs (Clement

et al., 1998; Dunbar et al., 2001; Liu et al., 1997). Finally, the use of DNA microarrays

to catalogue microbial diversity is becoming increasingly popular. This method involves

hybridization techniques using amplified DNA probed against a library of spotted DNA

molecules on a glass-slide that correspond to known organisms (Wu et al., 2006; Gentry

et al., 2006).

Fluorescence in situ hybridization (FISH) methods

The large diversity of microbial 16S rDNA sequences available allows us to design methods

to use these known sequences to identify close relatives in uncharacterized communities.

The approach that has exploited growing 16S rDNA sequences the most is FISH, although

autoradiography-based approaches have also been used (Giovannoni et al., 1988; Amann

et al., 1995). rRNA is an ideal biomolecule for identification of microbes for the following

reasons: 1) Ribosomes are essential to survival of all forms of life, including microbes.

Under most physiological conditions, microbes have thousands of ribosomal particles,

which results in natural amplification of a signal. 2) 16S rDNA is conserved evolutionarily,

as discussed above. In addition, RNA molecules do not undergo evolution of the third

(Wobble) base of each codon, as happens in protein coding genes. Thus, probes that

span much larger regions of RNA can be designed, and allow construction of probes that

detect much larger taxonomic units of Bacteria and Archaea. In practice, performing

FISH is fairly straightforward (Figure 2.2B); however, the success of FISH depends on

many variables, which will be discussed later. First, the microbial cells in a given sample

are fixed to stabilize cell morphology and permeabilize cells for later hybridization. Then,

the cells are incubated with a labeled probe at which point the probe enters the cell

and hybridizes with the rRNA sequence. Excess probe is then washed off to reduce

background. The sample can then be visualized by epifluorescence microscopy, or the

cells of interest can be sorted using flow cytometry. A database of successful and tested
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FISH probes is available on ProbeBase (http://www.microbial-ecology.net/probebase/)

(Amann and Fuchs, 2008). One can also design a new FISH probe based on phylogenetic

analysis from databases like SILVA (http://www.arb-silva.de/fish-probes/probe-design/)

(Amann and Fuchs, 2008). However, success of the new probe entails iterative testing and

optimization, making it a tedious, time-consuming process. It also requires a pure culture

of the organism being tested, though techniques such as Clone-FISH, which allows probes

to be optimized without the need for pure cultures, can circumvent this issue (Amann and

Fuchs, 2008). Various modifications of the basic FISH procedure have been developed

to counter issues of failure to observe any/weak signal due to low ribosomal content

or lack of active transcription. This includes catalyzed reported deposition (CARD)

FISH, a method that uses horseradish-peroxidase-labeled oligonucleotide probes. The

horseradish peroxidase catalyses the deposition of tyramine molecules, which results in

signal amplification (Pernthaler et al., 2002).

Whole genome sequence approaches (i.e. phylogenomics)

The caveats of using single-gene approaches to understand phylogeny ultimately affect our

ability to identify organisms with certainty. Whole-genome sequencing is now affordable

and routine in microbiology, owing to the relatively small size of microbial genomes. This

has led to the development of the concept of phylogenomics that uses all the genes in an

organism to determine its phylogeny (for details read Delsuc et al., 2005). Availability of

genomic data helps counter the effects due to too-small sample size that phylogenetics

faces by expanding the number of characters that can be used in phylogenetic analysis by

orders of magnitude. Phylogenomics, unlike phylogenetics, involves the development of

tools to analyze large sets of genomic data and make phylogenetic inferences from them.

Emerging from these studies are not only more robust phylogenetic trees, but also new

species-like characters that are based on genome structure, such as rare genomic changes

(RGCs)(Philippe and Laurent, 1998; Rokas and Holland, 2000).
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Caveats of using DNA-based methods

All the above-mentioned methods are DNA-based, and therefore, they all suffer from some

basic problems. These include: 1) the inability to access microbial cells that adhere to

particles; 2) the inability to lyse cells and isolate DNA; 3) co-purification of PCR inhibitors

that affect downstream applications; 4) shearing of DNA; 5) PCR bias; and 6) PCR-based

errors. Though recognition of these problems leads to development of better technology,

another way to circumvent such issues is to use other approaches, like those mentioned

below. Information gained from each approach can then converge into a unified and

reliable data set.

2.2.2.2 What are they doing?

When analyzing a particular environment for microbial activity, the first step is often to

determine which organisms are present in that niche (“Who is there?”). However, due to

the concepts of indigenous, adventitious and contaminant organisms introduced earlier,

the presence of an organism does not always mean it is playing a direct role in a specific

geomicrobial process of interest. The non-molecular in situ and in vitro methods described

earlier can shed light on the specific role of microbes present in a given environment; in

addition, a number of molecular methods can help answer the “What are they doing?”

question with finer resolution. Such methods can be applied to single cells or microbial

communities.

Single-cell approaches

The general principle of single-cell methods combines identification of single cells with

separation of the desired population of these cells, and then determining their particular

characteristics (Figure 2.3).
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Figure 2.3 – Fluorescent in situ hybridization – microaudioradiography (FISH-MAR) and
isotope arrays as methods for understanding function of specific organisms in a community.
Panel A. FISH-MAR involves collecting a sample, and incubating the sample with a desired
radiolabeled substrate. The sample is then used to perform FISH as described in Figure 2.4. The
same sample is then treated with a photographic emulsion, and the cells are then visualized by inverse
confocal microscopy. Comparison of the FISH image and the photographic image reveal organisms
that incorporated the radiolabel into cell material using the substrate provided. Panel B. Isotope
array is a modification of the DNA microarray approach that involves the incubation of the sample
with a radiolabeled substrate. The RNA from the sample is then isolated and fluorescently labeled.
This labeled RNA sample is then hybridized to a DNA microarray that has 16S rDNA oligos for a
number of predetermined microbial species spotted onto a glass slide. The fluorescence indicates the
organisms that are present in a given sample, and comparison with the radiographic image confirms
which of these organisms incorporated the label into their RNA.

FISH-Microautoradiography (FISH-MAR)

This was one of the first single-cell approaches developed to understand microbial com-

munities. It involves the use of radio-labeled substrates and monitoring their incorporation

into macromolecules of a desired set of organisms that are identified in parallel using FISH

approaches. The use of radio-labeled substrates makes FISH-MAR very sensitive, such

that short incubations suffice. However, a disadvantage is that radio-labeled compounds

not incorporated into macromolecules are lost during sample preparation for FISH analysis.

Thus, the nature of the metabolic products is never obvious (Lee et al., 1999; Ouverney
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and Fuhrman, 1999). FISH-MAR also has a number of other limitations: 1) it requires

active growth of the microbial population under study; 2) it requires prior knowledge about

the kind of organisms that are present in a given sample; 3) only a limited number of

populations can be visualized simultaneously using FISH, due to requirement of distinct

fluorophores; 4) FISH analysis might not be possible for some microbes; and 5) the

unavailability of the desired radio-labeled substrate. The techniques described below help

circumvent some of these issues.

FISH-Secondary ion mass spectrometry (FISH-SIMS)

This method combines FISH-based identification of an organism followed by analysis of the

stable isotopic composition of the desired cells using an ion microprobe. The advantage

of SIMS-based approaches is the ability to analyze the surface of a microbe or microbial

assembly to resolve the spatial distribution of small isotopic differences. This powerful

technique thus allows spatial tracing of isotopic signals (whether from naturally occurring

signatures such as isotopically light methane, or labeled 13C and 15N incubations) as

they are assimilated, incorporated and propagated by the different microbial populations

fluorescently tagged with FISH. FISH-SIMS has been, for example, very successfully used in

the past decade to investigate consortia of methane oxidizing archaea with sulfate-reducing

bacteria responsible for anaerobic methane oxidation in numerous natural environments

(Orphan et al., 2001; Pernthaler et al., 2008).

Magneto-FISH

Another modification of FISH employs use of magnetic beads attached to antibodies

specific for the fluorophore used in the CARD-FISH technique. This allows immunosep-

aration of a desired phylogenetic group of microbes. The separated cells can then be

used to isolate DNA for metagenomic analysis. It is especially useful in isolating microbial

consortia (Pernthaler et al., 2008).
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Single-cell PCR

Recent advances in single-cell PCR approaches have enhanced our ability to assess single

cells of microorganisms while simultaneously linking these capabilities to their phylogeny.

Microfluidic digital PCR allows amplification of 16S rDNA sequences along with other

genes that serve as markers for a specific metabolic capability. This technique is therefore

unbiased with respect to transcriptional levels and protein content, which are major

limitations of FISH-based approaches (Ottesen et al., 2006). Single-cell PCR combined

with single-cell whole genome sequencing is a powerful tool that paves the road to single-

cell phylogenomics.

Community approaches

Although single-cell approaches are useful in understanding the metabolic capabilities of

individual cells, figuring out how these metabolisms combine together to give rise to

an observed geochemical profile entails studying a whole community. A few of such

community-based methods are discussed below. However, newer methods that combine

the single-cell approaches with the community-based approaches are becoming increasingly

popular.

Stable isotope probing (SIP)

SIP involves tracking stable isotopes from particular substrates into components of micro-

bial cells that provide phylogenetic information (biomarkers). This process has primarily

been used to identify microorganisms involved in specific biogeochemical transformations

that are important in global elemental cycling. The first instance when SIP was used was

to study incorporation of 13C into polar lipid derived fatty acids (PLFA) (Petsch et al.,

2003). However, the phylogenetic resolution offered by PLFA is much lower in comparison

to 16S rRNA/DNA based methods. Thus, DNA-SIP and RNA-SIP were devised.
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DNA labeled with stable isotopes can be isolated from mixed microbial communities,

based on the increase in buoyant density associated with isotopic enrichment. Density

centrifugation in CsCl gradients can then be used to separate labeled from unlabeled

DNA, and 16S rDNA clone libraries constructed from labeled DNA can be sequenced to

obtain the identity of organisms assimilating the labeled substrate. Although DNA-SIP

offers superior phylogenetic resolution to PLFA-SIP, it requires a high level of isotopic

enrichment. For instance, DNA must contain at least 15-20% 13C before it can be

isolated on the basis of buoyant density (Radajewski et al., 2000). DNA synthesis is

related to replication, but bacterial replication in most environments is slow. Therefore,

the incorporation of stable isotopes into DNA may not be efficient for DNA-SIP to be

applied. The use of RNA as a biomarker in SIP helps circumvent this drawback of DNA-

SIP. Transcription occurs with a much higher turnover rate, and so the incorporation of

the stable isotope is much higher in RNA-SIP. Labeled RNA can be isolated by density

centrifugation, on caesium trifluoroacetate gradients. Followed by reverse transcription,

PCR and sequencing then provide the phylogenetic information desired (Dumont and

Murrell, 2005; Whiteley et al., 2006). The advantage of SIP methods is the ability to

identify hitherto unknown organisms involved in biogeochemical processes.

Isotope array

Isotope array methods combine the utility of DNA microarrays with the benefits of stable

isotope probing. RNA-SIP is performed, and the isolated RNA is then labeled with a

fluorescent dye. This labeled RNA is then used to probe a 16S rRNA microarray of

predetermined microbes. Isotope arrays are unfortunately limited in application due to

the requirement of prior knowledge about the organisms being sought (Hesselsoe et al.,

2009; Adamczyk et al., 2003).
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Metagenomics, metatranscriptomics and metaproteomics

Metagenomic analysis ensues the direct isolation of genomic DNA from an environment

and thus circumvents culturing the organisms under study. Subsequently cloning this DNA

into a cultured organism (such as Escherichia coli) confines it for study and preservation

(Riesenfeld, et al., 2004). Metagenomics has seen numerous advances such that it is

even possible to reconstruct whole genomes of uncultured organisms with some certainty

(Woyke et al., 2010). It has also provided new genes that have later been pursued

using classical genetic and biochemical tools and shown to encode novel enzymes (Hoff

et al., 2008). However, metagenomics alone does not directly tell us the metabolic role

a particular organism (or gene) might play in a given environment, as DNA only stores

information. The transcription, translation and regulation of the gene products allow

organisms to affect their surroundings, resulting in a complex geomicrobial process. In

spite of its limitations, metagenomics can offer powerful initial insights into the possible

microbes and microbial processes that might occur in a given environment.

Metatranscriptomics helps understand which genes in a community are transcribed at

any given time. Thus, unlike metagenomics, direct inferences can be drawn about which

genes are important under the condition being assessed. Like metagenomics, metatran-

scriptomics (or environmental transcriptomics) involves random sequencing, of microbial

community mRNA. Because no primers or probes are required for direct sequencing there is

no need to anticipate important genes a priori, and transcripts from microbial assemblages

are sequenced without bias. Further, highly similar sequences, which might crosshybridize

on a microarray, can be distinguished by having a unique sequence (Warnecke and Hess,

2009; Shi et al., 2009). Experimental metatranscriptomics involves assessing changes

in transcription in a particular environment, and is a powerful tool for understanding the

timing and regulation of complex microbial processes within communities and consortia, as

well as microbial dexterity in response to changing conditions (Warnecke and Hess, 2009).
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Community expression profiling via direct sequencing saves data obtained from individual

metatranscriptomic studies and added to community databases. These include CAMERA

(http://camera.calit2.net/), MG-RAST (http://metagenomics.nmpdr.org/), or IMG/M

(http://img.jgi.doe.gov/cgibin/m/main.cgi).

2.2.2.3 How are they doing it?

Knowledge about which organisms are present in an environment, along with information

about the metabolic reactions they perform, can prompt questions such as: How do these

organisms do what they do? Which genes are responsible? Do these genes resemble

other known genes? If these genes encode enzymes, what is their mechanism and how

are their rates of catalytic activity affected by relevant environmental variables? Where

are the products of these genes located in the cell? What other molecular factors are

required for their assembly? How are these genes or gene products regulated? Only by

answering these questions can geomicrobiologists achieve a deeper level of understanding

over the variables that control microbial activities. Such depth of knowledge, ultimately,

is necessary for being able to predict how microbial communities will respond to, and

in turn, modify, an environment as it changes over time. To acquire this information,

geomicrobiologists can draw on a wealth of tools from the fields of classical genetics,

biochemistry, and cell biology.

Genetics

Classical genetics is extremely powerful, and techniques in microbial genetics have been

honed immensely over decades. Genetics has also kept abreast with advances in molec-

ular biology such that molecular genetics is now commonplace. Through tools of both

random and directed mutagenesis, scientists can identify genes that are linked a particular

metabolic capability (Maloy et al., 1994). The prerequisites for performing random

mutagenesis on an organism are: 1) existence of a pure or partially pure culture; 2) ability
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Figure 2.4 – ‘Loss of function’ genetic strategies to determine which genes are responsible for
a particular phenotype in an environmental isolate. Panel A. Random transposon mutagenesis.
This approach involves the use of randomly inserting transposons to find a desired genetic locus. A
plasmid carrying a transposon and a selectable marker, usually for antibiotic resistance, is introduced
into an environmental isolate either via conjugation or other means. The plasmid carrying the
transposon cannot replicate in the environmental isolate. However, once the plasmid is transferred
to the isolate, a transposition event occurs randomly into the chromosome of the isolate, conferring a
selectable phenotype. Subsequent selection and search for the loss of the desired phenotype results
in identification of a genetic locus likely responsible for the phenotype. Later complementation
experiments confirm that the genetic locus predicted to confer the phenotype is indeed due to the
identified locus. Panel B. Targeted gene deletion via homologous recombination. Bioinformatic or
other means allow the prediction of a genetic locus that likely confers a desired phenotype. The
upstream and downstream region of the desired locus is cloned into a plasmid vector that carries
both a selectable marker (usually resistance to an antibiotic) and a counterselectable marker (a
gene whose presence cause the cell to die when a certain selection is applied). This vector is then
transferred to the isolate and selection is applied. The inability of the carrier plasmid to replicate in
the isolate forces the plasmid to integrate into the chromosome via homologous recombination when
selected for antibiotic resistance. Subsequent segregation and counterselection leads to deletion of
the desired gene.

of the organism to form colonies on solidified media; 3) ability to transfer DNA into the

isolated organism; 4) ability to assay the phenotype being sought; 5) the ability of one

or more plasmids to stably replicate in the native host for complementation experiments.

If all these requirements are met, random mutagenesis can be performed using various

established protocols (Figure 2.4A) (Salyers et al., 2000). The use of targeted gene

deletion requires, in addition to the requirements for random mutagenesis, the knowledge
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of the genome sequence, or at least the region surrounding the locus to be deleted. Two

methods are generally used, both based on homologous recombination: 1) Insertional

inactivation, and 2) markerless deletion (Figure 2.4B) (Rother and Metcalf, 2005; Guss

et al., 2005; Pritchett et al., 2004).

In case an organism does not fulfill the requirements listed above, the method of

heterologous complementation can be applied using a closely related genetically tractable

organism. DNA isolated from the organism under study is cloned into plasmids that

replicate in the host organism. The host organism is then tested for gain of the activity

that is being sought (Figure 2.5). Many examples exist where this approach has been

successfully applied (Croal et al., 2007; Beja et al., 2000; Martinez et al., 2007).
A. Heterologous complementation

Isolate genomic DNA Clone DNA fragments
X

X

Desired phenotype
Donor Recipient

Heterologous 
host

Complemented
Heterologous 

host

Desired phenotype not
obtained

Desired phenotype obtained

Figure 2.5 – ‘Gain of function’ genetic strategy to determine the genes responsible for a
particular phenotype. Panel A. Heterologous complementation involves isolation of genomic DNA
from an environmental isolate. This DNA is then cloned into a plasmid that can replicate in an
organism that is closely related to the environmental isolate being studied that lacks the phenotype
specific to the environmental isolate (a heterologous host). The plasmid is then transferred to the
heterologous host using conjugation. If a genetic locus can confer the phenotype being sought then
we determine the sequence of the inserted DNA. The identity of the genetic locus can then be
revealed by homology searches to publicly available sequence databases.

Bioinformatics and subsequent studies

The identification of a genetic locus that confers a certain metabolic capability to an

organism leads to the question of what these genes encode. Standard bioinformatics tools

provided as public online user-interfaces are available on the World Wide Web. NCBI blast

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), a basic alignment search tool, helps find the

closest homologs of an unknown gene from available sequences submitted to GenBank.

Other websites such as Expert Protein Analysis System (http://www.expasy.ch/) and
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EMBL-EBI servers (http://www.ebi.ac.uk/Tools/) provide numerous tools that allow

users to determine the likely protein or RNA domains and motifs present in a DNA

sequence. Though bioinformatics points to the putative role a protein or RNA, the actual

role of a biomolecule needs to be determined using experimental methods; for instance,

biochemical analysis of proteins and the study of function of small RNAs. Localization

of proteins can also be studied using methods developed by cell biologists involving use

of sophisticated microscopic tools in conjunction with fluorescent reporters (GFP and its

derivatives) (Valdivia et al., 2006). Gene regulation studies can also be performed using

quantitative reverse transcription – PCR and classical reporter gene fusions (Seeber and

Boothroyd, 1996; Miller and Hershberger, 1984).

2.3 The (bio)geochemistry of iron

2.3.1 Iron at the Earth’s surface

Iron is the most abundant element on Earth, contributing 32% by weight to the bulk

composition of our planet (Morgan and Anders, 1980). A large portion is concentrated

in the inner core, but the element still constitutes a remarkable 5% of iron in the Earth’s

crust on average, exceeded in crustal abundance only by oxygen, silicon and aluminum

(Rankama et al., 1950). The chemical reactivity of iron and its role as one of the most

important reduction-oxidation (redox) active elements implicate iron in a myriad of highly

relevant geochemical as well as biochemical transformations.

Igneous rocks rich in iron bearing mafic minerals, such as olivine and pyroxene, are

the primary source of iron to the Earth’s crust and surface environment. The (bio)

geochemical cycling of iron at the Earth’s surface starts with the mobilization of iron

during erosion and weathering of exposed igneous rock, as well as during hydrothermal

circulation of seawater at oceanic spreading centers (the sources). Subduction of iron-

bearing oceanic crust and seafloor sediments ultimately returns iron to the mantle (the
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sink) where the rocks can melt, form a magma, and reenter the igneous rock cycle.

Once in a mobile phase as a particulate mineral or dissolved ion, many physicochemical

processes can occur, altering properties such as solubility and chemical speciation (Ussher

et al., 2004). Iron is distributed throughout the hydrosphere by riverine and marine fluxes,

transported in the atmosphere in aerosols and dust particles, and spread throughout the

lithosphere by sedimentary processes, mineral precipitation and diagenesis, making up a

large proportion of soils and sedimentary rocks from where it can be remobilized again.

Its complex biogeochemical cycle affects not only its own distribution in the lithosphere,

hydrosphere, atmosphere and biosphere, but also the distribution and processes of other

important element cycles such as those of carbon, nitrogen and sulfur.

Iron is most commonly observed in its ferrous (oxidation state +2) or ferric (oxidation

state +3) form. Reducing conditions in the mantle and deep crust make the ferrous

form dominant in magma and fresh igneous rock, but ferric iron is stable at present

oxic atmospheric conditions, making +3 the most common oxidation state in surface

environments. However, the dynamic and variable chemistry of many surface environments

sometimes allows for considerable amounts of ferrous iron and co-occurrence of both oxida-

tion states. The following chemical reactions exemplify two typical redox transformations

of iron: (I) the oxidation of Fe2+ by molecular oxygen to form a simple, insoluble Fe3+

hydroxide and (II) the reduction of Fe3+ by excess hydrogen sulfide, partially precipitating

as an iron sulfide mineral (pyrite). Both reactions are relevant redox pathways in natural

environments.

4Fe2+ +O
2

+ 10H
2

O ! 4Fe(OH)

3

(s) + 8H+ (2.1)

2Fe3+ + 2H
2

S ! 2FeS
2

(s) + Fe2+ + 4H+ (2.2)
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The solubility and chemical behavior of iron in aqueous environments is heavily influ-

enced by its speciation; that is, the actual form in which it is present in solution. Besides

the oxidation state of the element, speciation depends largely on acidity/alkalinity of the

environment (pH) and the availability of ligands. Ferric iron is generally much less soluble

than ferrous iron, especially at circumneutral pH, although strong ligands can improve

its stability in solution. Ferric iron in marine environments, for example, has been found

to be >99% complexed by strong organic ligands (Ussher et al., 2004). The solubility

of the ions is ultimately limited by the stability of various minerals; for example, siderite

and pyrite for Fe2+, (oxy)hydroxides and oxides like ferrihydrite, goethite and hematite for

Fe3+.

Fe

C
(carbon dioxide)

C

N
(nitrate)

S
(sulfide)

S
(sulfur)

Fe + S
(pyrite)

Fe + C

Fe (+ S)
(FeS clusters, heme)

N

fixation

S

assimilation C

respiration

(siderite)

MINERAL

(organic matter)

de/nitrification
assimilation

photosynthesis
(ferrous iron)

REDOX CYCLING
FORMATION

ENZYMATIC CATALYSIS

Fe
(ferric iron)

N
(nitrite)

C
(organic matter)

C
(carbon dioxide)

oxidation

respiration

reduction

reduction

oxidation

fixation
precipitation

precipitation

Figure 2.6 – Simplified illustration of the coupling of the biogeochemical cycling of iron
(color-coded in red) with the carbon (black), nitrogen (blue) and sulfur (green) cycles.
Shown are interactions of the element cycles during mineral formation and dissolution (left column:
arrows indicate precipitation, parenthesis provide examples of mineral species), redox cycling (center
column: arrows illustrate redox transformations coupled to iron oxidation/reduction, parentheses
provide examples of the reduced and oxidized species involved) and enzymatic catalysis (right column:
arrows indicate examples of iron-dependent metabolic processes for sulfur, carbon and nitrogen
respectively).
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The biogeochemical cycling of iron strongly influences other element cycles by means

of mineral formation and dissolution, coupling of redox cycles, and enzymatic catalysis.

The distribution and transformation of iron in the Earth’s surface environment have a

particularly noteworthy impact on the previously mentioned, globally important cycling

of nitrogen, sulfur and carbon (illustrated schematically in Figure 2.6). While iron and

nitrogen redox cycling is coupled directly in the microbial process of anaerobic respiration

of ferrous iron with nitrate, iron impacts the nitrogen cycle most pervasively in its role in

enzymatic catalysis (Weber et al., 2006b). A wide variety of metalloproteins and cofactors

incorporate iron in their active sites, and virtually all processes of the microbially-mediated

cycling of nitrogen (nitrogen assimilation, fixation, denitrification, nitrification) require

small amounts of iron for this purpose. Many surface environments are rarely limited by

iron availability, but the low concentrations of iron in ocean waters can crucially affect

the productivity and ecology of the oceans by limiting nitrogen fixation (Falkowski et al.,

1998; Morel, 2003).

The sulfur and iron cycle are closely linked through the mutually-controlled formation

of iron-sulfur minerals, such as the aforementioned pyrite, and through the reductive

interaction of sulfide species with ferric iron (Canfield et al., 1992). The two cycles are,

however, most intimately intertwined in their prominent role as iron-sulfur (FeS) clusters

in a variety of metalloproteins and cofactors involved in electron transfer reactions that

impact a variety of other element cycles.

The biogeochemical cycling of iron is linked to the carbon cycle in various direct and

indirect ways. Direct links include the formation of the iron-carbonate mineral siderite as

well as the coupling of redox cycling in phototrophic iron oxidation (where ferrous iron is

used as a source of electrons to fix carbon) and dissimilatory iron reduction (where organic

substrates are respired using ferric iron as the terminal electron acceptor). In its catalytic

function in enzymes, iron is central to redox metabolism (Fraústo da Silva and Williams,

2001). It plays an active role, for example, in many enzymes involved in electron transfer
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reactions of both respiration and photosynthesis, and furthermore influences the carbon

cycle indirectly through its effects on the nitrogen cycle.

Finally, the interaction of iron with the carbon and sulfur cycle has played an im-

portant role in the accumulation of atmospheric oxygen throughout Earth’s history. The

accumulation of oxygen at the Earth’s surface is largely controlled by the direct burial

of organic carbon and the indirect burial of the reducing power from organic carbon in

the form of pyrite. The prior prevents some of the biomass produced during oxygenic

photosynthesis to be respired again with the produced oxygen, and thus frees some of

the oxygen to accumulate. In the latter case, the organic matter produced by oxygenic

photosynthesis drives sulfate reduction and iron reduction, producing pyrite and oxidizing

the organic matter to CO2. Burial of pyrite through the couplings of the carbon, sulfur

and iron cycle thus liberates oxygen to the atmosphere (Garrels and Lerman, 1981; Berner

and Maasch, 1996; Canfield, 2005).

2.3.2 Iron and the biosphere

The biosphere has a tremendous impact on the distribution of iron at the Earth’s surface.

Microorganisms, in particular, heavily influence the geochemical cycling of iron in various

ways. Most organisms assimilate small amounts of iron to satisfy their nutritional demands

for the element. In the process, they heavily influence the mobilization of iron from

rocks, soils and sediments, and alter the speciation of iron in aqueous environments.

This is a result of both active and passive microbial activities through the deliberate

production of molecules for iron acquisition, and by action of common metabolic products

such as organic acids, respectively. Many microorganisms can catalyze the oxidation or

reduction of iron both actively by metabolizing iron to generate energy for growth, as

well as passively, e.g. by influencing the chemistry of their immediate surroundings or

providing catalytic surfaces for mineral formation.
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2.3.2.1 Iron as a nutrient

Iron is an essential nutrient for the survival, growth and reproduction of almost all forms

of life. As a key catalyst in several enzymatic electron transfer reactions, iron is required

by most organisms for vital cellular processes ranging from respiration to photosynthesis,

nitrogen fixation and the oxidative stress response (Fraústo da Silva and Williams, 2001).

Many of the iron-bearing enzymes involved in these processes likely evolved at a time

in Earth’s history when ferrous iron was abundant in the world’s oceans as the Earth’s

surface environment was still anoxic, and the much less soluble ferric form of iron could

not yet stabilize (Anbar and Knoll, 2002; Saito et al., 2003; Glass et al., 2009). With

the evolutionary invention of oxygenic photosynthesis and the rise of atmospheric oxygen

around 2.4 billion years ago, the eventual oxidation of the Earth’s surface and oceans

brought about drastic changes in atmospheric and marine chemistry, including a severe

limitation in the bioavailability of iron. Despite being the most abundant transition metal

in the biosphere, most iron is bound in insoluble oxides and hydroxides at near-neutral

pH at present atmospheric oxygen levels. It is thus hardly surprising that the biosphere

has evolved many elegant ways to influence the cycling of iron to allow for assimilation.

In response to the scarcity of bioavailable iron in many natural environments, many

microorganisms have, for example, evolved the ability to synthesize potent chelating

agents to aid in iron acquisition. The fascinating and complex process of mobilization

and acquisition of iron by these iron-specific chelators, commonly known as siderophores,

is discussed in detail by Kraemer (2004) and Kraemer et al. (2005).

2.3.2.2 Iron as an energy source

All non-phototrophic organisms take advantage of concentrations of oxidizable and re-

ducible species that are far from those demanded by thermodynamic redox equilibria

and kinetically too slow to proceed on their own. This is what happens in respiration,

where organic matter (highly reduced) and molecular oxygen (highly oxidized) are out of
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thermodynamic equilibrium, but the kinetics of abiotic combustion at standard conditions

are so slow that they do not just recombine spontaneously. Microorganisms gain energy

by catalyzing such redox reactions in a controlled manner to restore thermodynamic

equilibrium. Microbially-mediated transformations of iron are often much faster than

their abiotic equivalents, and are ubiquitous in natural environments. A wide variety of

physiologically different prokaryotes can use iron for energy generation, either by using

ferric iron in dissimilatory iron reduction as an oxidant to respire more reduced substrates,

or by metabolizing ferrous iron in dissimilatory iron oxidation with a stronger oxidant.

These microbially-mediated redox transformations often occur in combination, and can

contribute to extensive (re-)cycling of iron in the environment. Canfield et al. (1993)

estimated repeated oxidation and reduction in costal sediments between 100-300 times

before ultimate burial into the sediment. A good review of microbially-mediated iron redox

processes is provided by Kappler and Straub (2005).

In order to gain energy from the oxidation of ferrous iron with molecular oxygen

in aerobic environments, microorganisms have to compete with abiotic oxidation. At

circumneutral pH, the chemical reaction proceeds within minutes, and neutrophilic iron-

oxidizers have to catalyze iron oxidation extremely fast (Stumm and J Morgan, 1996).

Emerson and Weiss (2004) provide a detailed description of aerobic iron oxidation at

neutral pH. At more acidic conditions (pH <5), the stability of ferrous iron increases and

chemical oxidation proceeds much more slowly, allowing microorganisms to compete more

easily. However, the energy gained from oxidation decreases with pH and much larger

quantities of iron need to be oxidized to meet cellular energy requirements. A variety of

acidophilic iron-oxidizing bacteria from all across the proteobacteria (most prominently

Acidithiobacillus ferrooxidans), nitrospira, firmicutes, and acidobacteria as well as several

archaeal strains from lineages from the Thermoplasmatales and Sulfolobales (e.g. Edwards

et al., 2000) have been identified, particularly in acid mine drainage environments where

acidic conditions prevail and sufficient quantities of ferrous iron, mostly in the form of
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pyrite, are available (see Baker and Banfield, 2003; for a review). In addition to aerobic

iron oxidizers, several microorganisms have been discovered that can oxidize ferrous iron

anaerobically by respiring nitrate at neutral pH (see Weber et al., 2006b). Although

considered a possible form of anoxic phototrophic metabolism for a long time, the so

called photoferrotrophs – bacteria that grow photosynthetically with ferrous iron as their

sole source of reducing power – were only discovered in the early ’90s by Widdel et al.

(1993). In the past decade, several cultures of iron-oxidizing phototrophic bacteria from

all three major phylogenetic lineages of anoxygenic phototrophs (purple sulfur bacteria,

purple non-sulfur bacteria, and green sulfur bacteria) have been isolated from such diverse

environments as iron-rich springs, freshwater marshes and marine sediments (Kappler and

Straub, 2005).

Instead of harnessing energy from existing thermodynamic disequilibra, fixation of

solar energy by photosynthesis actually creates new thermodynamic gradients that can be

harnessed to support cell growth. As such, photoferrotrophy is fundamentally different

from all other microbial interactions with the iron cycle. It is, in fact, the only microbial

process that can change the redox state of iron species in natural environments against the

thermodynamic resting state. As such, photoferrotrophy holds the power to drive redox

cycling on the Earth’s surface independent of oxygenic photosynthesis. Although such an

isolated occurrence of photoferrotrophy, completely decoupled from oxygenic photosyn-

thesis, is unlikely to occur today due to the ubiquity and evolutionary success of oxygenic

photosynthesis, it might still constitute an important contribution to primary productivity

and the generation of oxidants in shallow sediments and iron rich microenvironments.

Furthermore, assuming an early evolution of anoxygenic photosynthesis preceding the

evolution of cyanobacteria and oxygenic photosynthesis, photoferrotrophs could have been

the dominant primary producers in a ferrous iron rich Archaean ecosystem.

This last assertion is of particular interest in the context of Earth evolution due to the

occurrence of massive iron-rich sedimentary deposits, known as banded iron formations
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(BIFs), from a time in Earth’s history when dissolved ferrous iron was abundant in the

Earth’s oceans, but molecular oxygen was still extremely scarce. Photochemical oxidation

of ferrous iron by UV radiation was considered a possible mechanism, but recent findings

have cast doubt on the efficiency of such a process for the deposition of BIF, and it

is generally believed that chemical or microbially-mediated oxidation of ferrous iron by

molecular oxygen from early oxygenic photosynthesis played the main role in BIF formation

(Konhauser et al., 2005). More recently, however, the possibility of photoferrotrophic iron

oxidation has been advanced as an alternative or complementary mechanism for banded

iron formation (e.g. Kappler et al., 2005a; 2008). A good review on the extent and

significance of several major banded iron formations is provided by Beukes and Gutzmer

(2008).

The ability to use the product of ferrous iron oxidation, ferric iron, as a terminal

electron acceptor is widespread; numerous bacteria and archaea capable of dissimilatory

ferric iron reduction at circumneutral and acidic pH have been isolated in the last decade.

The environmentally most important inorganic reductant for ferric iron is hydrogen sulfide,

which constitutes a kinetically competitive abiotic pathway and commonly contributes

to iron cycling, especially when produced in large quantities during microbial sulfate

reduction. A variety of organic and inorganic substrates can be respired and some organic

substrates fermented with ferric iron depending on the strain and mineral form of the iron

available, although not all iron reducing bacteria can grow with iron as the sole electron

sink. It is unclear whether this occurs due to an inability to gain energy from the process,

or whether the energy gained is insufficient to support growth but could still be important

for survival. The ubiquity of iron minerals in sediments and breadth of substrate flexibility

makes dissimilatory iron reduction an important metabolic pathway for the anaerobic

mineralization of organic matter, especially in environments where sulfate and nitrate are

unavailable terminal electron acceptors. However, a challenge of this metabolism is that

organisms have to use an insoluble electron acceptor and cope with the difficulty of either
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solubilizing the iron mineral or transferring electrons from the cell to the mineral surface.

Three different strategies seems to have evolved in response to this problem, although

their distribution in natural environments remains inconclusive: a) physical contact with

the mineral surface for direct electron transfer, b) synthesis of iron chelators to solubilize

ferric iron, and c) synthesis of redox active molecules to shuttle electrons to the mineral

surface. See Lovley et al. (2004) for a comprehensive review.

Because the majority of ferrous iron-oxidizing and ferric iron-reducing prokaryotes

were isolated during the last decade, it is hardly surprising that our knowledge of these

microorganisms, their metabolism and especially their contribution to the biogeochemical

cycling of iron is still in its infancy (Kappler and Straub, 2005). This is particularly

true for the most recently discovered group of anoxygenic phototrophic iron oxidizers,

whose metabolic potential and place in microbial ecosystems is only recently starting to

be investigated and fully appreciated.

2.4 From geocycles to genomes and back: Lake

Matano as a case study

A recent study of the iron-rich lake Matano in Indonesia by Crowe et al. (2008a) provides

an interesting case study for a joint geochemical and microbiological effort to investigate

the roles microorganisms play in shaping the geochemistry of this environment. In this final

section, we describe what is known about Lake Matano, and discuss how the traditional

and molecular microbiological approaches described above may be used to gain insight

into how microorganisms affect the biogeochemical cycling of iron and other elements in

this environment.

Lake Matano, a part of the Malili Lakes system of Indonesia, is among the ten deepest

lakes on Earth. It is estimated to be between one and four million years old (Brooks,

1950). It has relatively stable physical characteristics, leading to species endemism,
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which has been studied in this lake by numerous workers (Sabo et al., 2008; Myers

et al., 2000). Its unique iron geochemistry makes the lake a particularly interesting

analogue for the chemistry of the oceans on early Earth (Crowe et al., 2008a), which

differed markedly from modern environments. As discussed earlier, the lack of oxygen and

presence of low concentrations of sulfide along with the abundance of ferrous iron have

implicated microbially-mediated Fe(II) oxidation as a possible mechanism for the formation

of extensive BIFs in the Archaean ocean (Canfield et al., 2000; Canfield, 2005; Isley and

Abbott, 1999). Because Lake Matano’s geochemistry may resemble the composition of

ancient oceans (Crowe, et al., 2008a), it provides an opportunity to study the closely-

linked biogeochemical cycles of iron, carbon and sulfur in an environment that can be

characterized both geochemically and microbiologically. As discussed in detail below,

numerous interesting observations have emerged from the study of the geochemistry of

this lake, and point to the likelihood of novel microbial metabolisms working within it that

actively shape the geochemistry of the lake (Crowe et al., 2008b;a).

Lake Matano is a tropical lake, which therefore shows many typical characteristics of

lake systems at low latitudes, such as higher annual irradiance, lack of seasonal variation,

and high amounts of Fe and Mn hydroxides supplied from extensive weathering of iron-

rich country rock in the drainage basin. The lack of large temperature fluctuations

can facilitate poor mixing of the different layers of water, often leading to seasonal

stratification, i.e., a separation of the water column into stable layers of differing water

densities due to temperature and salinity differences. In the case of Lake Matano, the

great depth and relatively small surface area of the lake allows this commonly seasonal

phenomenon to persist, leading to a permanently stratified water column.

Stratification of lakes can lead to subsequent chemical stratification of redox sensitive

elements due to the redox activity of microorganisms. Measurements of physical param-

eters in Lake Matano reveal that is has a permanent pycnocline at ⇠100 m depth stably

separating the mixolimnion, the upper mixed water layer in contact with the atmosphere,
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from the monimolimnion, the deep anoxic waters. The redox- or chemocline, marking

the gradual chemical transition from completely oxygenated surface waters to increasingly

reducing deep waters, extends from ⇠100 m to ⇠220 m depth (Crowe et al., 2008b).
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Figure 2.7 – Simplified schematic illustrating element cycling in Lake Matano at various
depths. The oxic surface waters are shown in light blue, and the anoxic monimolimion is shown
in light grey. Phototrophic transformations are indicated in yellow, non-phototrophic microbial
transformations in red, precipitation and diffusion in green. Coupled arrows, such as organic matter
oxidizing to carbon dioxide (<CH2O> to CO2) while sulfate is being reduced to hydrogen sulfide
(SO4

2- to HS-), illustrate closely-linked redox transformations. Hypothesized, but still insufficiently
investigated, potential processes in Lake Matano, such as photoferrotrophy and iron-dependent
anaerobic methane oxidation, are highlighted with a question mark.

The unique geochemistry of Lake Matano arises due to the interplay between the

geophysical characteristics of the environment and the activity of resident microbes in the

lake. Spatio-chemical stratification of electron acceptors is observed in the lake as follows:

oxygen concentrations drop until they reach undetectable levels at ⇠100 m depth. At this

depth, the dissolved Mn concentration increases to 10 mM, and Fe(II) to 140 mM. Both

Fe(II) and dissolved Mn concentrations do not drop dramatically from this concentration

as the depth increases to 300 m (Crowe, et al., 2008b). At the same time, the sulfate

concentrations in Lake Matano remain very low (<20 mM). Modeling studies predict that
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microbially-mediated sulfate reduction is not expected to occur in the water column, but

rather in the sediment, while sulfide accumulation in the water column is limited to below

detection by the low solubility of iron sulfide minerals and the high concentration of Fe(II)

(Crowe et al., 2008b).

Spatio-chemical stratification of various electron donors is intimately linked to mi-

crobial oxidation of organic matter. The autochthonous organic carbon from primary

productivity in the lake is very low, and it is the degradation of allochthonous organic

matter, accounting for most of the dissolved organic carbon (DOC), that likely leads

to spatio-chemical stratification. The DOC is mineralized completely between 100-200

m depth concomitant with the increase in Fe(II) concentrations, suggesting microbial

Fe(III) reduction as a possible means of substrate oxidation. It is likely that an iron cycle

operates across the chemocline with some flux of iron from the sediment to the water

column. Modeling studies suggest that a combination of various phenomena might lead

to the steady state concentrations of Fe in this region. These include a) the descent of

insoluble Fe(III) hydroxides, b) appearance of Fe(II) due to microbially-mediated Fe(III)

reduction, c) diffusion of Fe(II) from the monimolimnion, d) regeneration of Fe(III) by

Fe(II) oxidation at the redox boundary, and e) upward flux of soluble Fe(II) from the

sediment to monimolimnion (Figure 2.7) (Crowe et al., 2008b).

In the anoxic deep waters, once anaerobic microorganisms have utilized the more

favorable electron acceptors, methanogenesis and anaerobic methane oxidation (AOM)

can contribute to the carbon cycle. Sulfate reduction is more energetically favorable

than methanogenesis, and sulfate reducing bacteria (SRB) outcompete methanogens for

acetate as a carbon source (Reeburgh, 2007; Capone and Kiene, 1988). The absence

of sulfate in the Lake Matano water column precludes this competition. However, the

abundance of Fe and Mn introduces the possibility of microbes that reduce these minerals

competing with methanogens for acetate. In addition, the absence of sulfate and nitrate in

Lake Matano, the two well-established electron acceptors that are coupled to AOM, raises
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the possibility that Fe and Mn are more important players in AOM in this environment

(Crowe et al., 2008a; Boetius et al., 2000; Raghoebarsing et al., 2006). The recent

demonstration that marine sediments can couple anaerobic methane oxidation to Fe

and Mn reduction shows that such reactions are feasible (Beal et al., 2009). Methane

production occurs primarily in the sediment in spite of the presence of considerable

amounts of Fe and Mn. Disappearance of methane below the pycnocline between 100-200

m suggests likelihood of AOM in this zone (Crowe et al., 2008a).

The concentrations of nitrogen and phosphorus are below detection limits in the

mixolimnion. Ammonium is detected in the monimolimnion as the predominant N species,

while soluble phosphate is the predominant P species across the chemocline. The appear-

ance of soluble phosphate increases with the Fe(II) concentration, suggesting that the

P and Fe cycles are linked in this environment, likely involving sorption and removal

of phosphate from the mixolimnion by particulate Fe(III) species. The lack of essential

nutrients along with the high concentration of chromium (Cr(VI)) might account for the

low primary productivity in the mixolimnion of Lake Matano (Crowe et al., 2008b).

Given the many spatio-chemical gradients of common substrates for microbial meta-

bolisms in Lake Matano, the likelihood of finding organisms that actively contribute to

shaping these gradients is high. For example, photosynthetic pigment measurements in the

lake have revealed that chlorophyll a (Chl a) is present at low levels in the surface oxic layer

where cyanobacteria would be commonly expected to contribute significantly to primary

productivity in nutrient richer environments. The low levels of light-absorbing pigments

such as Chl a in the surface layer allow light to penetrate to the deeper layers where

bacteriochlorophyll e (Bchl e) predominates. This pigment is characteristic of anoxygenic

photosynthetic bacteria that belong to the Chlorobiaceae that thrive under lower light

conditions. Consistent with this, 16S rDNA studies have indicated the presence of various

members of this family in the redoxcline of Lake Matano (Crowe et al., 2008a). The

high concentration of Fe(II) in this layer suggests that it might be serving as an electron
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donor for anoxygenic photosynthesis for these organisms, and that their activities might

influence iron-cycling in the lake. However, whether this is in fact the case, or whether

other Fe(II)-oxidizing and Fe(III)-reducing organisms make greater contributions to the

iron cycle is not clear. Indeed, it is possible that different groups of microorganisms

control the iron biogeochemistry of the lake at different times, and that these microbial

communities change altogether from year to year. Such depth of knowledge, ultimately,

is necessary for being able to predict how microbial communities will respond to, and in

turn, modify, an environment like Lake Matano as it changes over time. How can we

resolve this?

As described at the beginning of this chapter, a variety of traditional as well as

molecular microbiological methods could be used to provide some insight and inform

our understanding of the microbial communities and biogeochemical dynamics in this

environment. Fortunately, recent work on Lake Matano has provided us with detailed

information on the geochemistry of the lake (Crowe et al., 2008a;b; Crowe, 2008), paving

the road for some of the in situ techniques. Traditional light microscopy could be

used to study microbial populations in the lake sediments and their spatial variability

close to the chemocline (e.g. by the buried slide method). Due to low concentrations

of microorganisms in the water column itself, however, more powerful techniques such

as TEM and SEM could be necessary, which would provide the additional benefit of

allowing investigation of the physical association of microorganisms with freshly formed

minerals, such as iron (hydro)oxides from microbial iron oxidation. A reliable assessment

of in situ geomicrobial activity via isotope labeling at the chemocline in the case of

phototrophic organisms could be foiled by slow growth in the relatively low light at

this depth; however, chemotrophic organisms could be operating on faster time scales

if external carbon sources to the lake provided sufficient substrate for growth. While

limited by slow growth, advanced isotope techniques such as RNA-SIP are of particular

interest for an environment like Lake Matano, where a high degree of species endemism
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suggests the possible occurrence and likely importance of novel microorganisms and unique

metabolic pathways that could be identified by this technique.

In vitro batch culture as well as chemostat studies of microorganisms from this

environment are highly desirable to assess their metabolic potential, but depend on

enrichment and isolation of organisms from the water column. Slow growth might be a

limiting factor in the ultimate success of this approach. Culture-independent techniques,

however, could be employed regardless, and FISH could be used, for example, to study the

small-scale spatial distribution, abundance and physical association of various bacterial and

archaea groups identified by 16S fingerprinting to be present in the lake sediments. Modern

extensions of the approach, such as FISH-SIMS, could be similarly successful in investigat-

ing microbial populations in the lake, possibly aiding identification and study of a so-far

elusive but suspected syntrophic community that combines anaerobic methane oxidation

with metal reduction in this unique environment. While technically and computationally

challenging, the combination of meta-genomic, -transcriptomic and -proteomic techniques

could significantly advance our understanding of the genetic metabolic potential, actively

expressed metabolic pathways and geochemically active enzymes the microbial commu-

nities in Lake Matano command. Detailed genetic studies of the organisms, however,

would require reasonably fast-growing pure cultures, whose metabolic machinery for iron

oxidation or reduction, for example, could then be assessed by random mutagenesis (for

genetically tractable organisms) or heterologous complementation (for intractable strains

with suitable tractable strains that are closely related). Once whole genomes of novel

organisms from this environment become available, bioinformatics provides powerful addi-

tional tools to search for metabolic key components that contribute to the biogeochemical

cycling of iron and other elements in this environment, and whose identification is crucial

for our understanding of the biogeochemical dynamics of this system.
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2.5 Conclusions

We began this chapter with the assertion that a holy grail for environmental microbiologists

is to understand the biogeochemistry of an environment sufficiently well to predict its

behavior. This is a tall order, and requires tremendous effort on the part of many groups

to achieve for any given environment. One might reasonably ask whether the complexity

of real-world systems is so vast as to make this impossible to achieve? Perhaps, but we

can hope that first-order predictions about the behavior of a given biogeochemical system

is attainable, provided that the dominant pathways are known and the controlling variables

are well-defined.

In the case of the example we discussed in detail in this chapter, Lake Matano, although

we know basic aspects about its geochemistry and microbial communities, much remains

to be learned. We do not have a good appreciation for how the structure of its microbial

community changes over time, nor how changes to this structure affect the geochemical

profiles of the lake. We do not understand which environmental variables control the

success of particular members of the community, nor how functionally redundant it is

(e.g. particular organisms may come and go, but the geochemical reactions they catalyze

might be similarly catalyzed by a different group of organisms). The better able we are

to characterize these aspects, and point to underlying molecular catalysts (e.g. metabolic

enzymes), their rates, and the variables that regulate them, the better able we will be to

make predictions about how the lake might respond to environmental perturbations.

Despite these knowledge gaps, the current state of research in microbe-metal in-

teractions provides a fascinating outlook. From years of investigations in geochemistry

and microbiology, we can appreciate the tremendous scope of possible pathways. We

are working in a historically opportune moment, when enough is known about specific

microbial processes to allow us to venture into assessing their relative contributions and

importance to the complex cycling of iron and other elements in situ. The co-evolution
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of microbial life and the environment is much akin to a terrific puzzle where we know

enough of the pieces to get a first blurry glimpse of the magnificent full picture, but we

don’t know yet where each one goes nor how they fit together. It will be satisfying to

see the details of this picture emerge and sharpen over the coming years in a variety of

systems.
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Chapter 3

Photomixotrophic growth of

Rhodobacter capsulatus SB1003

on ferrous iron1

Abstract

This study investigates the role iron oxidation plays in the purple non-sulfur bacterium

Rhodobacter capsulatus SB1003. This organism is unable to grow photoautotrophically on

unchelated ferrous iron [Fe(II)] despite its ability to oxidize chelated Fe(II). This apparent

paradox was partly resolved by the discovery that SB1003 can grow photoheterotrophically

on the photochemical breakdown products of certain ferric iron–ligand complexes, yet

whether it could concomitantly benefit from the oxidation of Fe(II) to fix CO2 was

unknown. Here, we examine carbon fixation by stable isotope labeling of the inorganic

carbon pool in cultures growing phototrophically on acetate with and without Fe(II). We

show that R. capsulatus SB1003, an organism formally thought incapable of phototrophic
1Kopf and Newman (2011), © John Wiley & Sons
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growth on Fe(II), can actually harness the reducing power of this substrate and grow

photomixotrophically, deriving carbon both from organic sources and from fixation of

inorganic carbon. This suggests the possibility of a wider occurrence of photoferrotrophy

than previously assumed.

3.1 Introduction

Microbial processes throughout Earth’s history have had a profound impact on the bio-

geochemical cycling of iron (Kappler and Straub, 2005; Ehrlich and Newman, 2008).

While much attention has been paid to iron’s ability to serve as an electron donor or

electron acceptor in catabolic processes, beyond a crude accounting for electrons in the

metabolisms of a few model organisms, we have little appreciation for how cells make

use of iron’s redox chemistry. For example, we would expect multiple elements within a

cell to be affected by an imbalance in iron homeostasis, which in turn would be expected

to change how a cell might regulate its export or uptake of substrates containing these

elements. Similarly, we would expect intracellular redox homeostasis to be influenced by

iron in myriad ways. How these and other more subtle effects manifest themselves is

poorly understood, yet they may be important drivers of the overall iron biogeochemical

cycle.

In recognition of this knowledge gap, we chose to explore how ferrous iron [Fe(II)] is

used by the anoxygenic phototroph, Rhodobacter capsulatus strain SB1003. We chose this

organism as a model system because it exhibited a curious phenotype during phototrophic

growth. Unlike other Rhodobacter species (Ehrenreich and Widdel, 1994), R. capsulatus

SB1003 does not oxidize iron (and grow photolithotrophically) in medium containing Fe(II)

chloride as the sole source of reducing power (Croal et al., 2007). However, in the presence

of chelating agents such as citrate and NTA, Fe(II) oxidation is enabled, and SB1003 can

grow photoheterotrophically on supplementary carbon sources (Croal et al., 2007; Poulain
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and Newman, 2009), or, in the case of photoactive ferric [Fe(III)]-ligand complexes such

as Fe(III)-citrate, on the photochemical breakdown products of the ligand (Caiazza et al.,

2007). This shows that Fe(II) oxidation can benefit the organism indirectly, but does not

resolve whether Fe(II) oxidation can benefit R. capsulatus directly. Poulain and Newman,

2009 first explored the ambiguous role of Fe(II) oxidation in R. capsulatus SB1003 and

proposed Fe(II) oxidation as a potential detoxification mechanism. Preliminary data on

gene expression furthermore revealed that several Calvin cycle genes are upregulated in the

presence of Fe(II) (Poulain and Newman, unpublished data), suggesting a potential link to

Fe(II) oxidation. Herein, we expand on these studies and show that R. capsulatus SB1003

can grow photomixotrophically using Fe(II) as an electron donor for carbon fixation.

3.2 Materials and Methods

3.2.1 Experimental conditions

Rhodobacter capsulatus SB1003 was grown phototrophically in anoxic, minimal-salts

freshwater medium, prepared as previously described (Ehrenreich and Widdel, 1994). The

medium was buffered at pH 7.0 with 22mM sodium bicarbonate. All experiments were

prepared in an oxygen- and hydrogen-free, anaerobic chamber under an atmosphere of

pure N2. All reagents and glassware were stored in the chamber at least three days prior

to use to remove traces of oxygen. In addition to standard heat sterilization procedures

used for all equipment and medium preparation, glassware was precombusted in a muffle

furnace at 550°C to remove all remaining traces of organic materials potentially adhered

to the glass. Cells were grown anaerobically at 30°C under constant illumination from two

60W incandescent light sources at 30cm distance, providing a total irradiance of ca. 40

W/m2 (45.5% visible light, 54.4% IR, ~0.1% UV). Growth was followed by optical density

at 675nm (OD675). This wavelength was used to decrease distortion by Fe(III)-NTA,
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which absorbs strongly at 600nm. OD675 underestimates optical density as compared to

a measurement at 600nm.

3.2.2 Phototrophic growth in the presence of iron

Phototrophic growth was assessed in bicarbonate buffered freshwater medium amended

with 4mM ferrous Fe(II) complexed by 10mM nitrilotriacetate (NTA), or 5mM ferric

Fe(III) complexed by 10mM NTA. Medium amended with either 5mM NTA only or with

Fe(II)-NTA incubated in the dark was tested as controls. No additional carbon or electron

sources were provided. NTA was chosen as the complexing agent to avoid fast photolytic

breakdown of the Fe(III)-ligand complex. Previous work with citrate revealed a high

degradation of the more photoreactive Fe(III)-citrate complex (~0.6 mM / day, Caiazza

et al., 2007), which allowed for rapid accumulation of acetoacetate, a substrate that

can be readily metabolized by R. capsulatus and obscures the effect of Fe(II) oxidation.

The chosen concentrations of NTA were previously found not to interfere with growth

on other substrates (data not shown) while ensuring that virtually all Fe(II) and Fe(III)

remain complexed, preventing precipitation of iron hydroxides (Poulain and Newman,

2009). Experiments were conducted in biological triplicates. Fe(II) concentrations were

measured at the start and end of the experiment. Fe(II) was quantified throughout this

study using the FerroZine assay (Stookey, 1970).

3.2.3 Isotope labeling

For isotope labeling, freshwater medium was buffered with 22mM labeled sodium bicar-

bonate (NaH13CO3, CAS# 87081-58-01) purchased from Cambridge Isotope Laboratories,

Inc. (catalogue # CLM-441, purification grade: >99% 13C). Freshwater medium was

amended with 3mM acetate only [A], ~4mM Fe(II)-10mM NTA only [B], or both [C].

Cultures were harvested upon reaching early stationary phase (20 hours after inoculation

for [A], 29 hours for [B,C]), washed thrice in deionized water and lyophilized overnight.
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Acetate and Fe(II) concentrations were determined before inoculation and at the time of

harvest. Acetate was measured using a Dionex ICS-3000 ion chromatography system with

a 4x240mm AS-11 IonPac column and NaOH elution gradient (0.5 to 5.0 mM NaOH in

3.5 min followed by 5.0 to 37mM NaOH in 12 min at a flow rate of 2 ml/min). Isotopic

composition of bulk cell carbon was determined by EA-IRMS at the UC Davis Stable

Isotope Facility (Davis, CA). Carbon isotopic compositions from labeled experiments are

reported in terms of atom percent %13C = 100 [13C / (12C + 13C)] throughout this

study. Isotopic composition of acetate, NTA as well as the inoculum culture used in this

study were measured and confirmed to be approximately natural abundance (⇡ 1.1 %13C,

d13C > -40%�, data not shown). The labeled bicarbonate was assumed to comply with

the manufacturer’s specifications (⇡ 99 %13C). Experiments were conducted in biological

triplicates [A] or quadruplicates [B,C]. Abiotic controls indicated no significant oxidation

of Fe(II) over the course of the experiment.

3.2.4 Carbon assimilation efficiency

The carbon assimilation efficiency of R. capsulatus during phototrophic growth on acetate

was determined from the consumption of acetate and concomitant increase in cell dry

weight of cultures grown to late exponential phase on acetate as the only carbon source.

Cultures were pelleted by centrifugation, filtered onto pre-weighed Spin-X centrifuge tube

filters, and dried to constant weight in a 60°C drying oven. Total cell carbon content

was derived from dry weights based on the elemental composition of R. capsulatus

(CH1.83N0.183O0.5, Dorffler et al., 1998). Acetate consumption was measured by ion

chromatography.
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3.3 Results and discussion

3.3.1 Fe(II) oxidation promotes growth

To elucidate whether Fe(II) oxidation itself confers any growth benefit to R. capsulatus,

we assessed phototrophic growth on Fe(II) complexed by nitrilotriacetate (NTA) in anoxic

freshwater medium, completely devoid of additional electron donors (trace organics or

hydrogen, see Materials and Methods), with bicarbonate as the sole carbon source (Figure

3.1). The lack of growth in the control experiment (NTA only) shows that R. capsulatus

cannot use NTA as a carbon source. When provided with Fe(II)-NTA in the light, the

organism grew rapidly for 2 days, and appeared to grow slowly for the remainder of

the experiment. Optical density likely reflects growth, as iron oxides did not precipitate

(all Fe(III) complexed by NTA), although small variations in optical density could also

be due to morphological changes as the cells aged. Fe(II) was completely oxidized

after 2 days, and remained oxidized for the remainder of the experiment. No growth

or Fe(II) oxidation occurred in the dark (Figure 3.1). When provided with Fe(III)-NTA

instead, the organism had no direct source of reducing power and showed only very little

growth, similar to later stage (2+ days) on Fe(II)-NTA (Figure 3.1). Small quantities

of reduced Fe(II) (360±80 mM) accumulated in the medium within 2 days. Since the

Fe(III)-NTA complex can be photochemically active at the experimental pH and light

regime (Andrianirinaharivelo et al., 1993), the observed accumulation of Fe(II) is likely

due to photoreduction of Fe(III) in the Fe(III)-NTA complex. This process is expected to

photodegrade the ligand, yielding NTA breakdown products that could serve as a carbon

source for photoheterotrophic growth or dissimilatory Fe(III) reduction (Dobbin et al.,

1996). The apparent slow growth in the presence of Fe(III)-NTA, both when supplied

initially or provided by oxidation of Fe(II), suggests that the organism can benefit from

photoreduction of Fe(III), photolytic breakdown of NTA, or both. Because Fe(II)-NTA
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does not photolyze, and photolysis of unbound NTA is exceedingly slow (Larson and

Stabler, 1978), the rapid initial growth in the presence of Fe(II)-NTA cannot be explained

by growth on photochemical breakdown products, and suggests that the oxidation of Fe(II)

provides a growth benefit to R. capsulatus.
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Figure 3.1 – Fe(II) oxidation promotes growth. Phototrophic growth was assessed in freshwater
medium amended with NTA only, ferrous Fe(II)-NTA (light and dark), or ferric Fe(III)-NTA. Symbols
represent the averages of biological triplicates. Error bars indicate standard deviation, and may be
smaller than symbol size. OD (675nm) is optical density at 675nm.

3.3.2 Fe(II) oxidation allows for carbon fixation

To test whether Fe(II) serves as an electron donor for carbon fixation, we conducted isotope

labeling experiments with 13C labeled bicarbonate. If CO2 is fixed during growth on Fe(II)-

NTA, inorganic 13C should be strongly incorporated into cell carbon. However, purple non-

sulfur bacteria like R. capsulatus also use CO2 as a sink for excess reducing equivalents to
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achieve redox homeostasis during photoheterotrophic growth (Tabita, 2004), potentially

obscuring this signal. This is further complicated by any potential contribution to growth

from photolytic breakdown products of NTA, which would introduce unlabeled carbon

into the cell. To allow a quantitative interpretation of the labeling experiments, we thus

explored three different growth conditions: phototrophic growth on [A] acetate alone,

[B] Fe(II)-NTA alone, and [C] acetate and Fe(II)-NTA together. Table 3.1 documents

optical density as well as acetate and Fe(II) concentrations at the onset and conclusion

of each experiment, in addition to the 13C content of the harvested cells (see Materials

and Methods for experimental details). Because all organic carbon sources were unlabeled

(acetate, NTA) and the entire inorganic pool was labeled (bicarbonate), these isotopic

data represent the net assimilation of organic vs. inorganic carbon into biomass for each

growth condition. The low variability between biological replicates provides confidence in

the reproducibility and comparability of the experimental conditions.

Sample
OD (675nm) Acetate [mM] Fe(II) [mM]

Bulk 13C [%]
Inoculation Harvest Start End Start End

Acetate only [A] 0.007±0.001 0.353±0.001 3.02±0.03 <0.1* none none 16.8±0.1

Fe(II)-NTA only [B] 0.007±0.001 0.145±0.003 none none 4.31±0.08 0.21±0.03 62.8±0.5

Acetate & Fe(II)-NTA [C] 0.008±0.003 0.451±0.026 3.02±0.03 <0.1* 4.32±0.13 0.33±0.11 28.1±0.3

Table 3.1 – Fe(II) oxidation allows carbon fixation. Bulk isotopic composition of R. capsulatus after
phototrophic growth in freshwater medium containing 22mM H13CO3

- and amended with acetate
only [A], Fe(II)-NTA only [B], or both [C]. Optical density (OD at 675nm), acetate and ferrous
Fe(II) concentrations were measured at inoculation (t=0) and at the time of harvest (20 hours after
inoculation for [A], 29 hours for [B,C]). Values represent averages of biological triplicates [A] and
quadruplicates [B,C] respectively. Reported error is one standard deviation.
*Acetate at time of harvest could no longer be detected, and is reported to be below the lower limit of determination.

The isotopic data from growth condition [A] (acetate only) illustrates the role of

carbon fixation for redox homeostasis during photoheterotrophic growth. During photo-

heterotrophic growth, purple non-sulfur bacteria like R. capsulatus generate energy from

cyclic phosphorylation while building cell carbon directly from organic carbon sources.

The use of organic substrates for biosynthesis, however, can lead to a buildup of excess
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reducing power, requiring these phototrophs to find an electron sink to maintain redox

homeostasis. In organisms limited for nitrogen, nitrogenase can serve this function by

sinking excess electrons into N2 and H+, producing ammonium and H2 (Hillmer and Gest,

1977; Mckinlay and Harwood, 2011). Additionally, certain alternative electron acceptors

such as dimethylsulfoxide can provide the necessary electron sink (Richardson et al.,

1988). More commonly though, redox homeostasis under photoheterotrophic growth

of R. capsulatus is achieved by using CO2 as a sink for excess reducing equivalents

through the Calvin-Benson-Bassham pathway (the Calvin cycle) (Tichi and Tabita, 2000;

2001; Bauer et al., 2003; Tabita, 2004). During the experimental conditions employed

in this study, photoheterotrophic growth of R. capsulatus in the presence of excess

ammonium and the absence of alternative electron acceptors, CO2 fixation via the Calvin

cycle provides the only available sink for excess reducing power. This introduces cell

carbon derived from the inorganic carbon pool into the cell. Our data indicate that

close to 17% (Table 3.1) of cellular carbon is derived from the inorganic carbon pool

during photoheterotrophic growth of R. capsulatus SB1003 on acetate. This result

is in agreement with a detailed metabolic flux analysis of another purple phototroph,

Rhodopseudomonas palustris, growing photoheterotrophically on acetate (Mckinlay and

Harwood, 2010): R. palustris metabolizes 22% of the provided acetate to CO2 via central

metabolic pathways and reincorporates 68% of the released CO2 into cell carbon via

the Calvin cycle, ultimately deriving approximately 16% of its cellular carbon from CO2

(Mckinlay and Harwood, 2010). Several pathways of acetate assimilation that can explain

the observed exchange of carbon with the inorganic pool have been discovered in the

purple phototrophs (Blasco et al., 1989; Willison, 1998; Filatova et al., 2005; Meister

et al., 2005). However, why these organisms build up excess reducing power (that is

disposed of via the Calvin cycle or other redox sinks) during growth on substrates that are

more oxidized than cell carbon is still poorly understood (Mckinlay and Harwood, 2010).

Under the experimental conditions employed in this study, the energetic cost of carbon
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fixation via the Calvin cycle is unlikely to significantly affect the energy available to R.

capsulatus. ATP generation via cyclic photophosphorylation provides energy independently

of the growth-limiting sources of reducing power (organic carbon and Fe(II)).

The large incorporation of labeled inorganic carbon in cultures grown phototrophically

on Fe(II)-NTA alone (close to 63%, growth condition [B], see Table 3.1) confirms that

Fe(II) serves as an electron donor for carbon fixation. However, the dilution of the

inorganic signal (99% 13C) indicates that R. capsulatus must be capable of assimilating

some organic carbon from the chelator NTA, the only unlabeled pool of carbon available

in the medium. Because the organism is unable to metabolize NTA directly (Figure

3.1), the isotopic data suggest that it can benefit from photolysis of the ligand. Pre-

vious studies (Caiazza et al., 2007) have shown that under similar conditions, growth

of R. capsulatus SB1003 on Fe(II)-citrate occurs as a result of Fe(II) oxidation and

Fe(III)-citrate photochemistry, which produces acetoacetic acid as a consequence of ligand

breakdown, a carbon source accessible to the organism. A similar model is conceivable for

Fe(II)-NTA with the well-studied photochemically active Fe(III)-NTA complex breaking

down to iminodiacetic acid (IDA), formaldehyde (HCHO), CO2 and hydroxyl radicals

(Trott et al., 1972; Stolzberg and Hume, 1975; Andrianirinaharivelo et al., 1993; Bunescu

et al., 2008). IDA can further disintegrate to formaldehyde and glycine, although this

second photolytic step proceeds at slower rates (Stolzberg and Hume, 1975). Based

on the presence of genes annotated as hydroxymethyl-transferase (glyA, RCC00438),

serine-glyoxylate aminotransferase (RCC03109) and hydroxypyruvate reductase (ttuD,

RCC02615) in the sequenced genome of R. capsulatus SB1003, formaldehyde assimilation

by the serine pathway should be possible in SB1003, making formaldehyde a potential

carbon source (Chistoserdova et al., 2003). This pathway is a common functional module

in methylotrophs, and well-understood at the biochemical level. An additional pathway of

formaldehyde metabolism using the glutathione-dependent formaldehyde dehydrogenase

(adhC, RCC00869) present in the genome of SB1003 is also possible, as pointed out
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previously (Caiazza et al., 2007). This pathway leads to the net generation of reducing

equivalents by oxidizing formaldehyde, and could be used for fixing inorganic carbon, but

would not lead to direct assimilation of the organic carbon (which is oxidized to CO2).

R. capsulatus is unable to grow photoheterotrophically on IDA (no growth observed on

5mM IDA over the course of 3 days, data not shown) but can grow on glycine as the sole

carbon source (growth on 5mM glycine up to an optical density of 0.3 at 675nm, data not

shown), rendering glycine an additional potential source for carbon. Lastly, the radicals

formed during Fe(III)-NTA photolysis can potentially interact with NTA or IDA to provide

additional accessible, yet unidentified carbon sources. Our isotopic data provides evidence

that R. capsulatus can assimilate some of these NTA breakdown products; however,

which photolytic product of NTA degradation is metabolized by the organism, and how it

is metabolized, remains to be shown.

The intermediate incorporation of labeled inorganic carbon in cultures grown pho-

totrophically on acetate and Fe(II)-NTA (28%, growth condition [C], see Table 1) is

consistent with a combination of the effects observed during growth on acetate alone and

growth on Fe(II)-NTA alone (conditions [A] and [B]).

These results indicate that R. capsulatus SB1003 grows photomixotrophically by fixing

CO2 with Fe(II) as the electron donor (photoautotrophic metabolism) while simultaneously

assimilating organic carbon sources (photoheterotrophic metabolism). Why the organism

can benefit from the oxidation of Fe(II)-NTA but fails to oxidize unchelated Fe2+ is unclear,

and merits further research. It could reflect a requirement for ligand-bound Fe(II) to be

recognized for efficient uptake into the cell, and/or result from a toxic effect of the free

metal ion, as suggested by (Poulain and Newman, 2009).

3.3.3 Mass balance model

The isotopic data shows that R. capsulatus can incorporate a mixture of carbon sources

during phototrophic growth, and provides a basis for quantitative evaluation of their
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respective contributions. In the presence of complexed Fe(II), the organism seems capable

of exploiting simple, naturally widespread organic acids (such as acetate), photochemically

mobilized refractory carbon (such as ligand breakdown products), and the reducing power

of the Fe(II) itself (summarized schematically in Figure 3.2). Isotopic mass balance yields

the relative contributions of these carbon sources:

%

13CTCC [TCC] = %

13CInoc�C [Inoc] + %

13CAc � CEAc[Ac] + %

13CFe�CRC/Fe[Fe(II)] + %

13CNTA�C [NTA]

where [Inoc], [Ac] , [Fe(II)] and [NTA] are the concentrations of the different carbon

pools (initial inoculum, acetate assimilation, carbon fixation through Fe(II) oxidation, and

acquisition of carbon from Fe(III)-NTA breakdown) contributing to total cell carbon [TCC].

EAc denotes the net efficiency of acetate assimilation, RC/Fe the net ratio of molecules

of CO2 fixed into cell carbon per atoms of Fe(II) oxidized. %13CInoc-C , %13C Ac-C ,

%13C Fe-C and %13C NTA-C indicate the isotopic composition of cell carbon derived from

these different sources, respectively. %13CTCC is the isotopic composition of total cell

carbon, as measured in the isotope labeling experiments in this study (Table 3.1).

The net efficiency of carbon assimilation from acetate during photoheterotrophic

growth of R. capsulatus was 1.75±0.14 mol cell C / mol acetate (EAc =88% carbon

conservation efficiency, average from 5 biological replicates ± SD), in agreement with

similar measurements for the anoxygenic phototroph R. palustris (Mckinlay and Harwood,

2010). The net ratio of CO2 fixation to Fe(II) oxidation was estimated to be RC/Fe =0.23,

since 4.3 electrons from Fe(II) are required to reduce inorganic carbon to the carbon redox

state of of R. capsulatus biomass (-0.3, see Supporting Information B for details). The

contribution from the inoculum to final biomass was estimated to be 1% of the biomass

generated from growth on acetate (the 1% inoculum). Assuming that acetate metabolism

proceeds by very similar pathways irrespective of the presence or absence of Fe(II)-NTA

metabolism and vice-versa, the mass balance equations for the different experimental

conditions [A, B and C] provide the estimates for the unknown parameters (%13CNTA-C
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Figure 3.2 – Mixotrophic growth of R. capsulatus. Schematic overview of the various pathways
that can contribute to photomixotrohpic growth in the presence of Fe(II)-NTA. Question marks (?)
indicate hypothesized pathways (discussed in text) that require further investigation. Abbreviations:
Calvin-Benson-Bassham pathway (CBB), photosynthetic reaction center (RC), NTA breakdown
products (NTA BDP), photochemically/photosynthetically active radiation (hv).

and [NTA]) reported in Table 3.2.

NTA breakdown products are metabolized with an exchange of ~18.6% of assimilated

carbon with the inorganic pool (either by dearboxylation/recarboxylation reactions or

oxidation and refixation via the Calvin cycle), which is similar to our measured value

for acetate assimilation (16.9%). The total amount of cell carbon derived from the

assimilation of NTA breakdown products (0.70 mM C), corresponds to 0.12mM NTA (a

6C compound) – or 1.2% of the total NTA pool – if all carbon in the photolytic breakdown

products can be metabolized by the organism. The precise rate of photolytic breakdown

is difficult to estimate because Fe(III)-NTA photolysis is strongly pH- and wavelength-

dependent, but would be expected to be slow at circumneutral (or higher) pH with little

irradiation in the UV (shorter than ~365nm) (Andrianirinaharivelo et al., 1993).

The estimate for [NTA] also enables calculation of an electron mass balance based on
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Carbon sources
Derived cell carbon Acetate only [A] Fe-NTA only [B] Acetate

& Fe-NTA [C]

[mM C] [% 13C] Relative contributions [%C-source]

Inoculum 0.05±0.01 1.1 1.0±0.2% 3.1±0.4% 0.8±0.1%

Acetate assimilation 5.3±0.4 16.9 99.0±0.2% - 76±2%

Carbon fixation by Fe oxidation 0.95±0.07 99.0 - 56±6% 14±1%

Assimilation of NTA breakdown

products

0.7±0.2 18.6 - 41±6% 10±1%

Total biomass C [mM] 5.3±0.4 1.7±0.2 7.0±0.5

Total biomass e- [mM] * 22.9±2.4 7.3±0.9 29.9±2.9

Total e-donor e- [mM] # 24.4±0.3 7.1±0.8 31.2±0.8

e-recovery [%] + 94±10% 103±18% 96±10%

Table 3.2 – Carbon and electron mass balance. Carbon mass balance includes total amounts
and isotopic composition of cell carbon derived from the different carbon sources. Electron recovery
is based on total e- donor consumption and cellular e- content. Derived quantities are reported with
errors derived by error propagation. Reported error is one standard deviation.
*based on e- content of R. capsulatus biomass derived in Supplemental Information B
#assuming substrate from NTA breakdown to be primarily in the oxidation state of formaldehyde (see Table B.1)
+ratio of total e- recovered in biomass / e- available from e-donors

the total electron content of the generated R. capsulatus biomass and the total electron

content of the consumed substrates (acetate, Fe(II) and NTA breakdown products).

For this calculation, we assume that the oxidation state of carbon in the assimilated

NTA breakdown product corresponds to the oxidation state of carbon in formaldehyde;

making this assumption, we can estimate the total electron recovery for each experimental

condition (Table 3.2).

3.3.4 Obligate mixotrophy

Interestingly, the model results and Figure 1 suggest that R. capsulatus cannot fully benefit

from the assimilation of NTA breakdown products in the absence of Fe(II). In the presence

of Fe(II), NTA breakdown products contribute as much as 41% to cell carbon. If provided

with Fe(III)-NTA, however, this contribution is not visible in the growth curve. Because

all organic carbon sources available to R. capsulatus in our experiments are slightly more

oxidized than bulk biomass (see Supporting Information for details), the organism requires
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some reducing power for net biosynthetic reduction of the substrate. In the case of

photoheterotrophic growth on acetate alone, the oxidation of some acetate can provide

the necessary reducing power to assimilate the remaining acetate, ultimately contributing

to the observed suboptimal efficiency (88%) of acetate assimilation. In the case of NTA

breakdown products, however, some of the reducing power available from the oxidation of

Fe(II) might be required to fully benefit from these carbon sources (hypothesized pathway,

Figure 3.2). If this were the case, the observed phototrophic growth on Fe(II)-NTA would

be truly obligate photomixotrophy. This possibility cannot be fully resolved here, but

provides a testable hypothesis for further research. Detailed metabolic flux experiments

could help elucidate the interdependence of these pathways and explore the role Fe(II)

oxidation might play in the assimilation of refractory organic carbon sources. Analogously,

the ambiguous function of Fe(II) oxidation in anaerobic chemotrophic Fe(II) oxidizers

(Kappler et al., 2005a) might similarly be explained by considering Fe(II) oxidation as an

auxiliary mechanism for redox balancing during the assimilation of organic carbon.

3.4 Conclusion

The existence of mixotrophic growth itself is not surprising, and has previously been

suggested to occur both in phototrophic (Widdel et al., 1993) and chemotrophic (Hallbeck

and Pedersen, 1991) Fe(II) metabolisms. However, its significance is rarely appreciated

despite its likely importance in nature. Our results show that an organism not previously

considered capable of growing by Fe(II) oxidation, in fact originally thought incapable

of oxidizing Fe(II) altogether, can use Fe(II) for growth under certain conditions. The

ability to grow photomixotrophically on Fe(II) might be more widespread than previously

assumed, even for cultured organisms that have simply not been exposed to conditions

that allow this mode of growth to be observed in the laboratory. It will be interesting to

learn whether mixotrophic growth accounts for a significant proportion of cellular Fe(II)
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oxidation activity by different types of Fe(II) oxidizing organisms. Future research into

the different enzymatic pathways of Fe(II) oxidation and a more detailed understanding

of their regulation could permit a more accurate assessment of how widespread and

environmentally significant microbial Fe(II) oxidation is today and has been throughout

Earth’s history.
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Chapter 4

Ligand-enhanced abiotic iron

oxidation and the effects of

chemical versus biological iron

cycling in anoxic environments1

Abstract

This study introduces a newly isolated, genetically tractable bacterium (Pseudogulbenkia-

nia sp. strain MAI-1) and explores the extent to which its nitrate-dependent iron-

oxidation activity is directly biologically catalyzed. Specifically, we focused on the role

of iron chelating ligands in promoting chemical oxidation of Fe(II) by nitrite under anoxic

conditions. Strong organic ligands such as nitrilotriacetate and citrate can substantially

enhance chemical oxidation of Fe(II) by nitrite at circumneutral pH. We show that strain

MAI-1 exhibits unambiguous biological Fe(II) oxidation despite a significant contribu-
1Kopf et al. (2013), © American Chemical Society
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tion (⇡30−35%) from ligand-enhanced chemical oxidation. Our work with the model

denitrifying strain Paracoccus denitrificans further shows that ligand-enhanced chemical

oxidation of Fe(II) by microbially produced nitrite can be an important general side effect

of biological denitrification. Our assessment of reaction rates derived from literature

reports of anaerobic Fe(II) oxidation, both chemical and biological, highlights the potential

competition and likely co-occurrence of chemical Fe(II) oxidation (mediated by microbial

production of nitrite) and truly biological Fe(II) oxidation.

4.1 Introduction

Fe(II)/Fe(III) is an important redox couple in natural environments (Stumm and J Morgan,

1996). In anoxic systems, iron oxidation can be mediated by several biological agents,

such as anoxygenic phototrophs (Ehrenreich and Widdel, 1994; Jiao et al., 2005) and

nitrate-dependent chemotrophs (Straub et al., 1996b; Hafenbradl et al., 1996). While

the enzymatic machinery for Fe(II) oxidation has been identified and characterized for

two anoxygenic phototrophs (Jiao et al., 2005; Croal et al., 2007; Newman et al., 2012)
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comparable catalysts have not yet been identified for nitrate-dependent chemotrophs. To-

wards this end, we isolated a fast growing Fe(II) oxidizing, nitrate-dependent chemotroph

from the iron-rich tropical Lake Matano (Crowe et al., 2008b), with the intention of

developing it into a model genetic system. However, work with the isolate highlighted

a second, often overlooked aspect of Fe(II) oxidation in anoxic environments: direct

chemical interaction with nitrite (a form of chemodenitrification (Tiedje, 1988)). Being

able to distinguish the mechanisms and turnover rates of direct biological versus abiotic

components of anaerobic Fe(II) oxidation is necessary to gain a complete understanding

of the biogeochemical coupling of the N and Fe redox cycles. Here, we expand our

understanding of chemodenitrification by experimental elucidation of how organic ligands

promote abiotic Fe(II) oxidation by nitrite, and discuss its relevance to assessing the

potential co-occurrence of chemical and biological Fe(II) oxidation.

The isolation and characterization of an increasing number of microorganisms capable

of nitrate-dependent anaerobic Fe(II) oxidation in recent years (Straub et al., 1996b;

Hafenbradl et al., 1996; Straub et al., 2004; Coates et al., 2001; Kuenen et al., 2006;

Benz et al., 1998; Kappler et al., 2005b; Weber et al., 2006b; Edwards et al., 2003) has

revealed the potential for chemotrophic recycling of Fe(II) in anoxic systems. However,

deconvolving the chemical and biological aspects of this process remains challenging in

many environmental settings (Komatsu et al., 1978; Matocha and Coyne, 2007) and

even laboratory studies (Brons et al., 1991; Shelobolina et al., 2003). The complication

arises whenever denitrifying organisms reduce nitrate in iron-rich anoxic systems, where

the metabolic intermediate nitrite can oxidize Fe(II) (Cooper et al., 2003; Coby and

Picardal, 2005; Miot et al., 2009; Chakraborty et al., 2011; Carlson et al., 2012; Pantke

et al., 2012). This was recently highlighted in a review by Picardal (Picardal, 2012),

which underscored that while biologically induced (through the production of nitrite

during biological denitrification), Fe(II) oxidation can be abiotically catalyzed and proceed

by chemodenitrification. Because Fe(II) oxidation may also be directly catalyzed by
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(potentially the same) denitrifying organisms, two competing pathways exist whose precise

mechanisms and relative importance in nature are poorly understood. While the physiology

of nitrate-dependent Fe(II)-oxidizing bacteria has been the subject of a growing number

of studies (Weber et al., 2006a; Chakraborty et al., 2011; Weber et al., 2009; Blothe

and Roden, 2009; Muehe et al., 2009), the chemical aspect of anaerobic Fe(II) oxidation

by nitrite has received less attention (Picardal, 2012; Weber et al., 2001), despite its

relevance to constraining the extent of its microbial counterpart.

Rapid oxidation of ferrous iron (Fe(II)) by nitrite in strongly acidic conditions was

described as early as 1936 (Abel et al., 1936), with high reaction rates linked to the

generation and subsequent degradation of nitrous acid (pKa = 3.4). At circumneutral

pH, nitrite is stable, and anaerobic Fe(II) oxidation requires a catalyst or suitable Fe(II)-

containing mineral to proceed at appreciable rates. Acceleration of this process has been

reported with a number of specific Fe(II) mineral phases and catalysts, such as Cu2+ (Mor-

aghan and Buresh, 1977), iron oxides and hydroxides (Weber et al., 2001; Van Cleemput

and Baert, 1983; Van Cleemput and Samater, 1996a; Sørensen and Thorling, 1991; Tai

and Dempsey, 2009), green rust (Pantke et al., 2012; Hansen et al., 1994), as well as

siderite (Rakshit et al., 2008) and vivianite (Miot et al., 2009), and even microbial surfaces

(Coby and Picardal, 2005), providing possible reaction mechanisms for Fe(II)-oxidizing

chemodenitrification. The same is true for nitrate, which is generally less reactive towards

Fe(II) than nitrite at circumneutral pH (Moraghan and Buresh, 1977), but can similarly

benefit from metal and mineral catalysis (Ottley et al., 1997; Sorensen et al., 1996).

However, metals and surfaces are not the only agents for chemical catalysis. While the

kinetic effects of ligands (including EDTA, NTA and citrate) on iron redox processes in

oxic environments have been explored before (Theis and Singer, 1974; Pham and Waite,

2008; Demmink and Beenackers, 1997; Zang et al., 1988) and often lead to acceleration

of Fe(II) oxidation, much less is known about their effects in the absence of molecular

oxygen. Several studies have investigated the effect of ligands on iron redox processes
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in acidic conditions and solvents (Zang and van Eldik, 1990; Fanning, 1991), but with

the notable exception of studies on microbial Fe(II) oxidation in the presence of EDTA

(Kuenen et al., 2006; Chakraborty and Picardal, 2013), little is known about the impact

of ligands at circumneutral pH.

Here, we investigate the effect of several Fe(II)-chelating ligands on iron-oxidizing

chemodenitrification to 1) assess true biological Fe(II) oxidation in the newly isolated b-

proteobacterium Pseudogulbenkiania sp. strain MAI-1, and 2) elucidate the role ligands

could play more generally in abiotic Fe(II) oxidation in laboratory and environmental

settings. We use Paracoccus denitrificans as a model strain to show how Fe(II) oxidation

can appear to be directly biologically catalyzed when, in fact, much of this activity may

only be indirectly biologically mediated. We describe the kinetics and potential reaction

mechanism of the chemical oxidation of Fe(II) by nitrite observed in these experiments,

and discuss their relevance for the interpretation of laboratory and environmental studies.

We place our findings in the context of chemical and biological oxidation rates reported

in the literature to evaluate their relative importance in anaerobic Fe(II) oxidation.

4.2 Materials and methods

4.2.1 Media

All reagent solutions were autoclaved or filter-sterilized prior to use. The basal medium for

all experiments was a freshwater medium containing 500mg/L MgSO4·7H2O, 300mg/L

NH4Cl, 100mg/L CaCl2·2H2O and 5.4mg/L KH2PO4·2H2O. For microbial cultures, the

medium was amended with a 1000x vitamin mix (final concentrations in the medium:

40µg/L 4-aminobenzoic acid, 10µg/L D-biotin, 100µg/L nicotinic acid, 50µg/L Ca pan-

tothenate, 100µg/L pyridoxamine·2HCl, 100µg/L thiamine·2Cl) and a 1000x trace element

solution (final concentrations in the medium: 1.1mg/L FeSO4·7H2O, 42µg/L ZnCl2,

50µg/L MnCl2·4H2O, 190µg/L CoCl2·6H2O, 2µg/L CuCl2· 2H2O, 24µg/L NiCl2·6H2O,
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18µg/L Na2MoO4·2H2O, 300µg/L H3BO3)(Newman et al., 2004). For aerobic cultures,

the medium was buffered to pH 7.2 with 20mM phosphate. For anoxic experiments, the

medium was pH buffered with 22mM NaHCO3 and adjusted to pH 7 with 1M HCl under

an oxygen-free atmosphere containing 15% CO2. Phosphate addition was minimal (but

not microbially growth inhibiting) to avoid precipitation of vivianite (Fe3(PO4)2·8H2O) at

high Fe(II) concentrations. The final ionic strength was ~0.04M. Anoxic solutions were

prepared using O2-free deionized water and stored anoxically for at least three days prior to

use. Reactant solutions containing nitrite were always prepared fresh from an anoxic stock

solution kept at pH 11 to avoid degradation through self-decomposition. All glassware

and plastics were autoclaved and stored anoxically for at least three days prior to use.

4.2.2 Bacterial strains

Paracoccus denitrificans strain ATCC 19367 was obtained from the United States De-

partment of Agriculture culture collection, and was grown routinely in anoxic freshwater

medium under denitrifying conditions with succinate as the growth substrate. Pseudogul-

benkiania sp. strain MAI-1 is a newly isolated b-proteobacterium that was routinely grown

in anoxic freshwater medium under denitrifying conditions with acetate as the growth

substrate.

4.2.3 Isolation

Cultures of anaerobic Fe(II) oxidizing chemotrophs were enriched by inoculating freshwater

medium supplemented with 10mM FeCl2, 10mM Na3NTA, 2mM Na Acetate and 5mM

NaNO3 with samples from a microbial mat in the litterol zone of iron-rich tropical Lake

Matano, Sulawesi Island, Indonesia. Enrichments were incubated at 30ºC in the dark.

After a few days, some enrichments developed the characteristic dark green color of

Fe(III)-NTA, indicating Fe(II) oxidation. Cultures exhibiting fast Fe(II) oxidation were

transferred successively to fresh Fe(II)-containing medium. After four transfers, serial
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dilutions of enrichments were plated on YP agar pates (0.3% yeast extract, 0.3% Difco

Bacto Peptone, 1.2% agarose) and incubated aerobically at 30ºC in the dark to identify

strains potentially suitable for genetic manipulation. Colonies were picked and subcultured

in the Fe(II) enrichment medium. Fast Fe(II) oxidizers were plated again and the purity was

assessed by phase-contrast microscopy. The 1497-bp 16S rRNA gene sequence of strain

MAI-1 was deposited in the GenBank database under the accession number HQ714499.

The pure strain was deposited with the American Type Culture Collection under the ATCC

number BAA-2177.

4.2.4 Analytical techniques

The concentration of Fe(II) was determined colorimetrically at 562nm using the fer-

rozine [3-(2-pyridyl)-5,6 bis(4-phenylsulfonic acid)-1,2,4-triazine, monosodium salt] assay

(Stookey, 1970) without prior acidification of analyte. Sample acidification in the presence

of nitrite led to underestimation of Fe(II) concentrations(Weber et al., 2001), and was

therefore avoided (see supplementary Figure C.4). The assay was calibrated using ferrous

ammonium sulfate hexahydrate of known concentration. Nitrite was determined colori-

metrically at 520nm using sulfanilamide and N-1-napthylethylenediamine dihydrochloride

(Promega, 2009). The chelator EDTA is incompatible with this assay (Colman, 2009), but

none of the ligands used in this study interfere with nitrite determination (Figure C.5). The

assay was calibrated using a commercial nitrite standard (Fluka Analytical TraceCERT).

Samples for Fe(II) and nitrite determination in microbial cultures were obtained with a

sterile disposable syringe flushed for 30 seconds with 20%CO2/80%N2. The evolution of

N2O in abiotic reactions was assessed qualitatively by gas-chromatography using a Hewlett

Packard 5890 Series II Plus Gas Chromatograph equipped with a Thermal Conductivity

Detector. Samples were injected onto a HP-MOLSIV column (30m, 0.32mm ID, 12µm

film) and eluted with helium at a flow rate of 10mL/min using a temperature gradient

from 35ºC to 240ºC (4min at 35ºC, 35ºC/min up to 140ºC, 25ºC/min up to 240ºC).
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Formation of the nitrosyliron-NTA complex (Fe(II)-NTA-NO) was assessed qualitatively

by monitoring its characteristic absorption peaks (440nm and 600nm) (Lin et al., 1982;

Schneppensieper et al., 2002) spectroscopically. Growth of microbial cultures was followed

by optical density at 600nm (OD600) in cultures without iron, and at 700nm (OD700)

in cultures with iron. This wavelength was used to decrease distortion by Fe(III)-NTA,

which absorbs strongly at 600 nm. OD700 underestimates optical density as compared to

OD600.

4.2.5 Experimental procedure

Kinetic Fe(II) oxidation experiments were conducted inside an anaerobic chamber (Coy

Laboratory Products, Inc.) equipped with palladium catalysts for O2 removal. The

chamber contained ~3%H2/15% CO2/82% N2, and experiments were performed at 25ºC

using a digital heat block. Samples were taken at varying time points and analyzed

immediately for Fe(II) and nitrite concentrations using a BioTek Synergy 4 Microplate

Reader housed inside the chamber. Oxidation experiments were conducted in sterile

basal freshwater medium containing 2mM Fe(II) and 2mM NO2
-, and were amended

alternatively with 2mM nitrilotriacetate (NTA), 300mg/L Pahokee Peat Humic Acid

(PPHA, International Humic Substances Society), 0.1, 0.5 or 2mM citrate, 300mg/L

PPHA + 2mM citrate. PPHA was selected as the humic acid of choice due to its high

solubility and low capacity for storing redox equivalents that could re-reduce Fe(III) and

interfere with the experiment (Bauer and Kappler, 2009). Control experiments included

incubations of Fe(II) with or without NTA in the absence of nitrite or in the presence of

2mM nitrate. pH was measured at the beginning and conclusion of each experiment.

Pseudogulbenkiania sp. strain MAI was grown in triplicate at 30ºC in the dark in

freshwater medium amended with 0.5mM acetate, 4mM Fe(II) and 8mM NTA, and a

headspace of ~3%H2/15% CO2/82% N2. Cultures were sampled regularly for nitrite

accumulation and Fe(II) oxidation.
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Paracoccus denitrificans was grown in triplicate at 30ºC in the dark in freshwater

medium amended with 10mM succinate and 20mM nitrate, and sampled regularly for

nitrite accumulation. Upon reaching a nitrite concentration of ~5mM, 5 mL of each

culture was withdrawn and processed anaerobically as follows: each withdrawn sample

was divided into four aliquots. Two aliquots were left unchanged while the other two

were filter sterilized using a 0.2µm syringe filter. All aliquots were spiked with ~5mM

Fe(II) and one of each set (one unfiltered P. denitrificans and one filter-sterilized aliquot)

was further amended with 10mM citrate (all from 1M stock solutions to avoid sample

dilution). No citrate was present in cultures prior to spiking. Aliquots were incubated

at 25ºC for 4 hours and sampled at regular intervals as described in the kinetic Fe(II)

oxidation experiments. The remaining cultures were re-incubated at 30ºC for continued

monitoring of growth and nitrite accumulation.

4.2.6 Computation

Nonlinear least-squares model fits and parameter estimates for kinetic data were computed

using the statistical model analysis functionality provided by Wolfram Mathematica (v.

8.0). Fe(II) speciation in solution was estimated using the Visual MINTEQ equilibrium

speciation model (v. 3.0) with stability constants provided by King (1998) (Fe(II)-

carbonate complexes) and the MINTEQ database (Smith and Martell, 1998) (all other

Fe(II) species), and precomputed humic substance properties based on the NICA-Donnan

model (Kinniburgh et al., 1996). Chemical oxidation of Fe(II) with nitrite produced by

MAI-1 was modeled using Euler’s method to calculate step-wise solutions of equation 4.7.

Nitrite concentrations at each time step were calculated by linear interpolation between

closest measurement timepoints. Chemical oxidation with concomitant biological NO

consumption was modeled by assuming complete NO removal and subsequent lack of

Fe(II)-NTA-NO complex formation.
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4.3 Results
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Figure 4.1 – Ligands affect the abiotic oxidation of Fe(II) by NO2
-. Error bars omitted for clarity

(relative standard deviation of Fe(II) and NO2
- quantitation from all seven experiments estimated

at 3% and 2%, respectively).

The enrichment of fast-growing anaerobic Fe(II) oxidizing chemotrophs led to the
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successful isolation of Pseudogulbenkiania sp. strain MAI-1, a novel b-proteobacterium

closely related to the lithoautotrophic Fe(II) oxidizer Pseudogulbenkiania sp. 2002 (Weber

et al., 2006b; 2009) (96.9% 16S rRNA gene sequence similarity, 97.3% to the type strain

Pseudogulbenkiania subflava BP-5, Lin et al., 2008). MAI-1 has several key characteristics

necessary for routine genetic manipulation: the strain forms colonies on plates (aerobically

within 24 hours), grows rapidly both aerobically and anaerobically (overnight at 30ºC), is

sensitive to antibiotics, and cryopreserves well. Most importantly, it displays the desired

phenotype: rapid nitrate-dependent Fe(II) oxidation (10mM in less than 24 hours, Figure

C.1) in the presence of a chelator, nitrilotriacetate - NTA, which prevents the formation

of mineral precipitates (that obscure cells in automated assays), but does not serve as a

growth substrate for the organism (Figure C.2). When first isolated, MAI-1 appeared to be

an ideal candidate for elucidating the genes required for nitrate-dependent Fe(II) oxidation.

However, although Fe(II)-NTA is highly stable in abiotic controls in the presence of nitrate

(Figure 4.1, Figure C.1), adding Fe(II)-NTA to filter-sterilized spent MAI-1 growth medium

that had accumulated substantial amounts of nitrite lead to rapid Fe(II) oxidation with

concomitant nitrite reduction (Figure C.3). The strain’s ability to use a wide range of

chelators as a carbon substrate (e.g. citrate, humic acids, DTPA) and its inability to grow

and oxidize free Fe2+ (Figure C.1) precluded avoiding NTA. Additionally, MAI-1 cannot

use alternate electron acceptors (e.g. DMSO, TMAO, fumarate), requiring the use of

nitrate (and consequentially risking the production of nitrite) for anaerobic culturing.

To quantitatively assess the effect of Fe(II) chelation on chemical oxidation by nitrite

at circumneutral pH, we conducted kinetic experiments with NTA as well as two environ-

mentally relevant Fe(II)-chelating ligands (citrate - CIT, and Pahokee Peat Humic Acid

- PPHA). Attempts to investigate the effect of Fe(II) chelation with the siderophore

desferoxamine (DFO) and the organic pollutant ethylenediaminetetraacetate (EDTA)

proved unsuccessful because of interference with the ferrozine assay and the nitrite assay,

respectively (Figure C.5). They were not pursued further. Figure 4.1 shows the oxidation
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Figure 4.2 – Fe(II) oxidation by Pseudogulbenkiania sp. strain MAI-1 during anaerobic
growth with nitrate. Nitrite accumulation during growth depicted in top panel, concomitant Fe(II)
oxidation in middle panel, modeled abiotic Fe(II) oxidation in bottom panel (see Materials and
Methods for details on computation). Solid and dashed lines indicate Fe(II) oxidation without/with
biological NO consumption, respectively. Dotted line indicates Fe(II) oxidation with 6x higher rate
constant and NO consumption. Model range for three biological replicates shaded in gray. Vertical
line indicates timepoint addressed in text. Experiment conducted in biological triplicates (solid
markers) and with abiotic control (empty circles - ○). All data are shown.

of Fe(II) and concomitant reduction of NO2
- over the course of ~100 hours (4.2 days) for

each condition. Nitrite-free controls without any oxidant or amended with nitrate show

little Fe(II) oxidation (a maximum of 2% without oxidant, 5% with nitrate, see Table 4.1)
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Table 4.1 – Summary of kinetic Fe(II) oxidation experiments by nitrite. The rate constant
kapp is reported for reactions that are described well by second-order kinetics. The experiments were
conducted at 25ºC, pH 6.9 to 7.1.
The p-values for the model parameter kapp are <0.001 for all conditions. R2 is the adjusted regression coefficient for
the least-squares fit.
‡: percentage change of [Fe(II)] and [NO2

-] relative to starting concentrations
#: derived by error propagation from measurement errors (relative standard deviation of Fe(II) and NO2

- quantitation
during experiments estimated at 3% and 2% respectively)
*: lower (LCI) and upper (UCI) 95% confidence interval of parameter derived from model fit

over the course of the experiment. This provided confidence that O2 contamination is

not a significant source of error in our experimental setup, and suggested that nitrate is

relatively unreactive towards Fe(II) even in the presence of ligands (see abiotic control in

Figure C.1). Nitrite in the absence of iron shows high stability, confirming the expected

absence of nitrite self-decomposition that occurs at acidic pH (Van Cleemput and Baert,

1976). In the absence of any chelating moieties, less than 9% of Fe(II) is oxidized by

nitrite within the first 22 hours. Similar control experiments in previous reports have

yielded Fe(II) oxidation rates at ~8% Fe(II) within 10 h (Sørensen and Thorling, 1991),

~9% within 20 h (Rakshit et al., 2008), and ~1% within 24 h (Tai and Dempsey, 2009).

Complexation by both citrate and NTA, however, leads to rapid depletion of Fe(II) and

nitrite, indicating that these organic ligands can accelerate Fe(II) oxidation by nitrite
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(Figure 4.1).
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Figure 4.3 – Fe(II) oxidation in P. denitrificans cultures and filter-sterilized spent medium.
Fe(II) concentrations shown as solid lines, NO2- concentrations as dashed lines. Samples are drawn
from triplicate cultures (Figure S6) after accumulation of ~5mM NO2

- and spiked with Fe(II) +/-
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Table 4.2 – Summary of kinetic Fe(II) oxidation experiments by nitrite in P. denitrificans

cultures and spent medium. The experiment was conducted at 25ºC.
P-values for the model parameter k2 are <0.01. R2 is the adjusted regression coefficient for the least-squares fit.
‡: percentage change of [Fe(II)] and [NO2

-] relative to starting concentrations
#: derived by error propagation from measurement errors (relative standard deviation of Fe(II) and NO2

- quantitation
during experiments estimated at 3% and 2% respectively)
*: lower (LCI) and upper (UCI) 95% confidence interval of parameter derived from model fit
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Equipped with an estimate for the extent of chemical Fe(II) oxidation by nitrite in the

presence of NTA, we grew MAI-1 in the presence of Fe(II)-NTA while closely monitoring

the accumulation of nitrite (Figure 4.2) to model the maximal abiotic Fe(II) oxidation

resulting from an abiotic reaction with nitrite. Given the strong effect of citrate on the

chemical oxidation of Fe(II) by nitrite, we also tested the hypothesis that abiotic Fe(II)

oxidation could be mediated by the biological production of nitrite during denitrification

in general. For this purpose, P. denitrificans, a model denitrifying microorganism, was

grown anaerobically on succinate and nitrate, such that substantial quantities of nitrite

accumulated during early exponential growth (Figure C.6). After accumulation of ~5 mM

nitrite, filter-sterilized culture medium as well as active cultures of P. denitrificans were

amended with ~5 mM Fe(II) with or without 10 mM citrate. Figure 4.3 illustrates the

resulting oxidation of Fe(II) over the course of 4 hours. Moderate oxidation occurred in the

absence of chelation both with P. denitrificans cultures as well as in spent medium (up to

21% and 12%, respectively). Higher oxidation rates for cultures are likely a consequence

of continued denitrification by P. denitrificans, increasing the measured pool of nitrite by

up to 13%. However, the most striking feature is the rapid depletion of Fe(II) and nitrite

(up to 76% Fe(II), 38% NO2
-) observed with the addition of 10mM citrate, regardless of

the presence of P. denitrificans (Table 4.2, Figure 4.3).

4.4 Discussion

4.4.1 Reaction mechanisms and kinetics

Understanding the kinetics of Fe(II) oxidation in the presence of ligands provides the tools

for predicting the potential effects of ligand-enhanced Fe(II) oxidation in microbial systems.

The total consumption of Fe(II) and nitrite (Table 4.1) suggests that Fe(II) oxidation by

nitrite proceeds with 2:1 Fe(II):NO2- stoichiometry regardless of complexation (no ligand,

PPHA, citrate), with the notable exception of NTA, which appears to deplete Fe(II) and
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NO2- in a 1:1 ratio. The 2:1 stoichiometry is in agreement with literature reports that the

predominant product of nitrite reduction at pH regimes between 6 and 8 is N2O (Coby

and Picardal, 2005; Moraghan and Buresh, 1977; Sørensen and Thorling, 1991; Tai and

Dempsey, 2009; Bonner and Pearsall, 1982), according to the following representative net

reaction:

4Fe2+ + 2NO�
2

+ 6H+

k1�! 4Fe3+ +N
2

O + 3H
2

O (4.1)

where Fe2+ can be unbound Fe2+ or a ligand-bound Fe(II)-L species, and Fe3+ can be

ligand-bound Fe(III)-L or contained within an (oxy)hydroxide mineral (e.g., FeOOH).

This net reaction likely comprises a number of elementary reaction steps; we consider the

following three to contextualize our observations:

Fe2+ +NO�
2

+ 2H+

k2(slow)�! Fe3+ +NOaq +H
2

O (4.2)

Fe2+ +NOaq
k3(fast)�! (Fe(II)�NO)

2+ (4.3)

(Fe(II)�NO)

2+

+ H+

k4(fast)�! Fe3+ +

1

2

N
2

O +

1

2

H
2

O (4.4)

Reactions 4.3 (Kustin et al., 1966) and 4.4 (Pearsall and Bonner, 1982) proceed rapidly

at circumneutral pH, with 4.2 being the rate limiting step (k
1

⇡ k
2

). Accordingly, the

reaction consumes 2 Fe(II) for every NO2
- , except in the case of NTA. Both citrate and

NTA complexes with ferrous iron can bind nitric oxide such that the following reactions

can occur in competition with reaction 4.3:

(Fe(II)� CIT )� +NOaq
k5�! (Fe(II)� CIT �NO)

� (4.5)
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(Fe(II)�NTA)� +NOaq
k6�! (Fe(II)�NTA�NO)

� (4.6)

However, Fe(II)-NTA forms a considerably stronger complex with NO (k
6

⇡ 2.1 ·

10

7M�1s�1, Keq = 10

6.26) (Lin et al., 1982; Demmink et al., 1997; Schneppensieper

et al., 2001) than Fe(II)-citrate (k
5

⇡ 4.4 · 105M�1s�1, Keq = 10

2.83) (Schneppensieper

et al., 2001) or Fe2+ alone (k
3

⇡ 6.2 · 105M�1s�1, Keq = 10

2.65) (Kustin et al., 1966),

potentially preventing reaction 4.4 from proceeding. For example, if 100µM Fe(II) reacted

with 100µM NO2
- to form NO in the presence of 2mM NTA, more than 99.98% of the

produced NO would form the highly stable Fe(II)-NTA-NO complex. The 1:1 stoichiometry

of Fe(II) oxidation by nitrite observed in the presence of NTA is likely a consequence of this

stable Fe(II)-NTA-NO complex formation. As expected, we confirmed evolution of N2O

during Fe(II) oxidation by nitrite by gas chromatography in the presence of citrate, but no

N2O formed in the presence of NTA (Figure C.8); the formation of the Fe(II)-NTA-NO

complex could be observed instead (Figure C.9).

Based on the rate-limiting, Fe(II) and NO2
- dependent first reaction step (4.2), a

plausible scheme for the overall reaction kinetics is a second-order rate expression with

overall rate constant kapp in analogy with oxidation of Fe(II) and Mn(II) by O2(King,

1998; Morgan, 2005)

dFe(II)

dt
= �2 kapp · [Fe(II)][NO�

2

]

(4.7)

dNO�
2

dt
= �kapp · [Fe(II)][NO�

2

]

(4.8)

where Fe(II) comprises the total pool of ferrous iron (free Fe2+ as well as all complexed

Fe(II)). Given the equimolarity of initial total Fe(II) and NO2
- in our experimental setup,

we integrate equations 4.7 and 4.8 to yield the following decay equations (see Appendix
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C for details):

Fe(II)(t) =
Fe(II)

0

�1 + 2 · eFe(II)0·kappt
(4.9)

NO�
2

(t) =
NO�

2

· eNO�
2 ·kappt

�1 + 2 · eNO�
2 ·kappt

(4.10)

Least-squares fits of equations 4.9 and 4.10 to our experimental results for Fe(II)

and NO2
- depletion provide two separate estimates of the overall rate constant kapp for

each condition (Table 4.1 & 4.2). Reactions without a ligand and with low citrate or

PPHA are better described by a linear least-squares fit (apparent zero-order kinetics),

and are therefore considered kinetically unresolved (no kapp determined). Elementary

reaction steps and kinetic constraints for these conditions cannot be deduced from our

observations, and it remains unclear why the reactions appear to be zero-order. Oxidation

in these conditions likely proceeds as a consequence of ferric (oxy)hydroxide precipitation

(observed visually) and subsequent heterogeneous autocatalysis as reported by Tai and

Dempsey (2009). Apparent zero-order kinetics could reflect the complex balance between

the generation of catalytic mineral surfaces and depletion of dissolved Fe(II) and nitrite.

At higher concentrations of citrate and NTA, the reactions remained homogenous,

and are in agreement with a second-order kinetic interpretation of our data (Table 4.1 &

4.2 and Figure C.7). Rate constants derived from Fe(II) oxidation and nitrite reduction

agree well within their 95% confidence intervals, lending further credence to the model.

The pH remained close to 7.0 in all conditions, with an average change of 0.1 by the end

of the experiment (Table S1), suggesting that the presence of the ligands, rather than

fluctuations in pH, are responsible for the observed differences in reaction kinetics. The

reaction progression observed in the presence of PPHA suggests that chelation of Fe(II) by

the humic acid moieties (10% of the initial Fe(II) pool is organically complexed) has little

to no effect on the kinetics of iron oxidation (see Figure 4.1, PPHA & CIT + PPHA).

94



Chapter 4: Ligand-enhanced abiotic iron oxidation

Rather than accelerating Fe(II) oxidation, PPHA appears to have a slight retarding effect.

In contrast to experiments without a ligand, PPHA is likely to impede iron oxide formation

and autocatalysis as a result of its high affinity for Fe(III). In combination with citrate,

PPHA leads to diminished formation of the Fe(II)-citrate complex (Table C.2), which

appears to reduce the overall reaction rate (Table C.1).
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Figure 4.4 – Rate constants increase with increasing degree of Fe(II) complexation. Second-
order rate constants for oxidation experiments in the presence of citrate (black symbols) and NTA
(grey symbols) are plotted against the degree of Fe(II) complexation by citrate/NTA. Rate constants
derived from [Fe(II)] depicted as circles (○), constants derived from [NO2

-] as squares ( ). Error
bars indicate 95% confidence intervals (Table 4.1 & 4.2). Details on speciation can be found in Table
S1. Larger confidence intervals for data reported in Table 4.2 are a consequence of reduced temporal
resolution and greater deviation from the assumption that initial Fe(II) and NO2

- concentrations are
equimolar.

Additional information for predicting the contribution of chemical Fe(II) oxidation,

especially in well-defined laboratory systems, can be gained from identifying the reactive

species. In analogy to Fe(II) and Mn(II) oxidation by O2, the overall rate constant kapp

observed in our experiments can likely be explained in terms of the weighted sum of the

oxidation rates of individual Fe(II) species (King, 1998; Morgan, 2005) kapp =

P
ki↵i,
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where ↵i is the fraction of each Fe(II) species in solution, and ki the species-specific

second-order rate constant for oxidation by nitrite. A comparison of kapp with the extent

of Fe(II) complexation for each experimental condition (Figure 4.4, Table C.2) suggests

that the Fe(II)-L complex is involved in accelerating Fe(II) oxidation, although the effect

is ligand-specific (no effect for PPHA, variable magnitude for citrate and NTA). The

observed reaction rates at low species fractions of Fe(II)-L (< 20%) suggest the existence

of other Fe(II) species with appreciable nitrite-dependent oxidation rates. We speculate

that the carbonate species Fe(II)-CO3-OH- and Fe(II)-(CO3)2
2- (Table S2) could provide

such reactive species in analogy to their role in Fe(II) oxidation by molecular oxygen

(King, 1998). However, the precise mechanism and species-specific reaction rates ki

for the observed oxidation of Fe(II) by nitrite are beyond the scope of this report, and

await further study. Due to the uncertainty surrounding the reactive species involved, we

recommend caution in applying the rate constants derived in Table 4.1 and 4.2 to aqueous

environments with widely differing Fe(II) complexation, pH or ionic strength.

4.4.2 Biological Fe(II) oxidation by Pseudogulbenkiania sp.

strain MAI-1

Using the kinetic rate constants derived for the oxidation of Fe(II) by nitrite in the presence

of NTA with the nitrite accumulation measured in culture of MAI-1 (Figure 4.2), we

modeled the purely abiotic Fe(II) oxidation that would result from the interaction of

Fe(II) with the accumulated nitrite (Figure 4.2, bottom), assuming the presence of cell

surfaces (Coby and Picardal, 2005) to have negligible effects on purely chemical oxidation.

Even if we conservatively assume the upper 95% confidence interval for the rate constant

(8.13M�1 s�1), see Table 4.1) and that produced NO is biologically consumed (thus

leaving more Fe(II) free to react by preventing formation of the highly stable Fe(II)-

NTA-NO complex), abiotic oxidation would maximally account for ~30%/35% (solid vs.

dashed curve) of the observed Fe(II) oxidation after 28 hours (timepoint indicated by
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vertical line in Figure 4.2). In fact, a six-times-higher rate constant (combined with

biological consumption of any produced NO) would be required to attribute observed

Fe(II) oxidation to purely chemical processes (Figure 4.2, dotted model). Based on

the kinetic quantification of chemical oxidation of Fe(II), it thus becomes evident that

Pseudogulbenkiania sp. MAI-1 can directly oxidize Fe(II), establishing the organism as

a novel neutrophilic nitrate-dependent chemotroph with unambiguous biological Fe(II)-

oxidizing activity. The potential to easily genetically manipulate this strain makes it

a good candidate for elucidating the machinery involved in biological Fe(II) oxidation.

Whether the biological component of Fe(II) oxidation in MAI-1 occurs via a dedicated

enzyme system or via non-specific reactions with redox active components of the cell,

such as periplasmic thiols or components of the electron transport chain (Pantke et al.,

2012; Carlson et al., 2012), is a question that could be addressed in the future.

4.4.3 Chemical vs biological Fe(II) oxidation in laboratory and

environmental studies

Given the aforementioned difficulty in discriminating between chemical and biological

contributions to anaerobic Fe(II) oxidation in many systems, it can be informative to

compare Fe(II) oxidation rates observed in a variety of environmental and laboratory

settings. Table 4.3 provides an overview of the maximal Fe(II) oxidation rates reported in

a number of publications on chemical and biological Fe(II) oxidation in nitrite/nitrate-rich

anoxic environments at circumneutral pH. Several observations are particularly noteworthy:

1. The majority of observed maximal rates of chemical and biological Fe(II) oxida-

tion fall within a similar range of values (~10-100µM/hr), highlighting the likely

competition and co-occurrence of chemical and biological processes involved in the

coupled biogeochemical cycling of iron and nitrogen. Moreover, because nitrite is

produced and often accumulates during the microbial denitrification process, they
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Table 4.3 – Maximal rates of Fe(II) oxidation reported for various anaerobic processes at
circumneutral pH (25-30ºC, except where otherwise indicated).
1Sørensen and Thorling (1991), 2 Rakshit et al. (2008), 3Tai and Dempsey (2009), 4Sorensen et al. (1996), 5

Shelobolina et al. (2003), 6Straub et al. (1996b), 7Blothe and Roden (2009), 8Weber et al. (2006b), 9Benz et al.
(1998), 10Hafenbradl et al. (1996), 11 Coates et al. (2001), 12Kuenen et al. (2006), 13Kappler et al. (2005b), 14

Muehe et al. (2009), 15Chakraborty et al. (2011), 16Chakraborty and Picardal (2013), 17Senn (2002), 18Jiao et al.
(2005), 19Poulain and Newman (2009)

are intrinsically coupled. This biologically-induced chemical oxidation of iron (via

the microbial production of nitrite) in organic rich environments such as soils and
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wetlands is likely to contribute significantly to the cycling of iron and immobiliza-

tion of metal contaminants and organic pollutants on iron (oxy)hydroxides. High

oxidation rates reported for environmental samples with mixed contributions from

biological and chemical catalysis (Shelobolina et al., 2003) illustrate the interplay

of this process, and call for caution in interpreting an observed effect to stem from

solely one or the other mechanism.

2. In the case of mineral accelerated Fe(II) oxidation, the presence of amorphous

hydrous ferric oxide (HFO / ferrihydrite) (Tiedje, 1988; Weber et al., 2001; Tai and

Dempsey, 2009) and green rust (Sorensen et al., 1996) appears to cause the most

significant acceleration of Fe(II) oxidation (see Table C.3 for additional detail on rate

constants derived for mineral catalysis). This effect is likely to be highly relevant

in natural settings where poorly crystalline iron oxides are ubiquitous. However,

it is also important to consider this effect in laboratory studies where iron oxides

precipitate over the course of an experiment and can provide catalytic surfaces for

chemodenitrification, as suggested previously (Miot et al., 2009; Chakraborty et al.,

2011; Pantke et al., 2012).

3. In the case of ligand-enhanced Fe(II) oxidation by nitrite, the absence of a major

effect of the humic acid representative PPHA and low environmental abundance of

the anthropogenic ligand NTA (maximal levels of 10-100 nM in aqueous systems)

(Stumm and J Morgan, 1996) suggests that citrate (detected in soil solutions in

appreciable quantities, ~100 µM range) is likely to be the only ligand investigated

in this study that could be relevant in natural systems. In laboratory studies of iron-

oxidizing microorganisms in the presence of citrate or NTA, the ligands’ effect on

oxidation kinetics is a crucial aspect of Fe(II) depletion that cannot be disregarded.

This is particularly clear from the experiment reported in Figure 4.3, which confirmed

that ligand-enhanced chemical oxidation of Fe(II) by nitrite can be an important side
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effect of microbial denitrification in general. Here, chemical Fe(II) oxidation could

be mistaken for direct biological catalysis by P. denitrificans. Such direct catalysis

may indeed be at play; it would simply be challenging to unambiguously identify

without appropriate controls. While biologically-induced chemical Fe(II) oxidation is

the dominant Fe(II) oxidation pathway in our experiments with P. denitrificans, it is

likely that the complex interplay and relative importance of chemical and biological

Fe(II) oxidation in many denitrifying microorganisms is strongly dependent on the

precise culturing conditions, and may even vary from strain to strain.
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Chapter 5

Primary productivity in Lake Matano

from triple oxygen isotopes

5.1 Introduction

The iron-rich tropical Lake Matano provides a unique field site for studying microbial

activity at the interface of a permanently stratified large water body with oxic surface

waters and ferrugenous bottom waters. Recent work on the geochemical cycles of this

Lake have highlighted its potential as an analogue for the anoxic, iron-rich Archean and

Early Proterozoic oceans (Crowe et al., 2008b), particularly through the transition from

anoxia throughout the water column before the advent of oxygenic photosynthesis, to the

gradual oxygenation of the surface waters by early oxygenic phototrophs.

In Lake Matano, one consequence of water column stratification appears to be a low

concentration of biomass and chlorophyll in the surface waters (Sabo et al., 2008; Crowe

et al., 2008c). This is mainly attributed to either metal toxicity from high levels of iron

and chromium in the lake, or to the scavenging and removal of bioavailable phosphate by
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sedimenting particles of iron oxyhydroxides1. However, with only a single rate estimate

of primary productivity from a measurement of H13CO3
- incorporation by the microbial

community at 35m water depth (Crowe et al., 2008c), the oxygen and carbon production

rates in the surface waters of Lake Matano are ill-constrained. Here, we present insights

gained from triple oxygen isotope measurements of water samples from the oxic surface

waters of the lake to constrain gross primary production, reflecting the total amount of

oxygenic photosynthesis in the system, as well as net community production, a measure

of the net amount of carbon added from the surface waters.

5.2 Materials and methods

5.2.1 Terminology

There is a bit of confusion in the naming of distinct layers in stratified lakes in limnol-

ogy due to different terminology used for permanently stratified (meromictic) and non-

permanently (i.e. mixed at least once a year) stratified (holomictic) lakes. Usually, the

layer below the permanent pycnocline/chemocline in a meromictic lake is referred to as the

monimolimnion. The layer above the chemocline is either referred to as the mixolimnion

or the epilimnion. If referred to as the mixolimnion, this layer is often further subdivided if

a seasonal pycnocline exists, in which case the whole mixolimnion is treated as a “pseudo-

holomictic lake” with an epilimnion above the seasonal pycnocline (i.e. the mixed surface

layer) and a hypolimnion below the seasonal pycnocline (above the permanent pycnocline).

To avoid the confusion associated with epilimnion here, this term is not used at all, and

the layer above the seasonal pycnocline (here called thermocline) is just referred to as

the mixed layer (0 to ⇠35m depth). The permanent pycnocline is referred to as the
1Whether surface ocean productivity in a gradually oxygenating Proterozoic ocean would have been

limited by the availabililty of phosphate due to absorption and removal by iron hydroxides is a matter
of active debate, and depends strongly on the levels of dissolved silica (Canfield and Bjerrum, 2002;
Konhauser et al., 2007).
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chemocline (⇠110m depth). Samples were all taken from above the chemocline (no O2

below) at different water depths (3, 10, 25, 50, 80, 85m).

5.2.2 Sampling and analysis

Twice 3 samples for gas and oxygen stable isotope analysis were collected at Lake Matano

in two different sampling casts, six days apart from each other, using a local fishing boat.

All water samples were collected with 5L Go-Flow Niskin bottles attached in series to a

stainless steel cable and a hand-operated winch. The bottles were placed at depth to an

accuracy of ±1 m with the help of a commercial fish finder. Water samples from the Niskin

bottles were collected as described in Hendricks et al. (2007b) and Stanley and Howard

(2013). Briefly, custom-made borosilicate glass sample bottles with 9 mm Louwers–Hapert

valves (Emerson et al., 1999) were poisoned with 100 mL saturated mercuric chloride

solution and dried at 40C. All flasks were evacuated to less than 10-3torr. It is imperative

not to get air into the sample bottles while collecting the sample, so samples were collected

by gravimetric flow of bubble-free, freshly-recovered lake water from the Niskin bottle into

the overflowing valve side arm, and entrained from the side arm into the evacuated flask

after thorough rinsing of the side arm. The gases exsolve into the head space of the

bottles, and equilibrium is reached before the liquid is drained from the bottle without

loss of the gases. The sample O2 and Ar were quantitatively separated from N2, CO2, and

H2O by an automated gas chromatographic system (Blunier et al., 2002) in preparation

for mass spectrometric analysis of �17O, �18O and [O2]

[Ar] . The oxygen-argon mixture was

measured by dual inlet mass spectrometry (Finnigan MAT 252) against a standard mixture

of oxygen and argon.
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5.2.3 Calculations

5.2.3.1 Isotope notation

Isotope ratios (xR = xO / 16O) and delta notation (xdref = xRsample / xRref – 1) are used

as commonly defined (all ratios are for oxygen so x = 17 or 18). Capital delta notation is

defined as

17

� = ln
�
1 +

17 �
�
� � · ln

�
1 +

18 �
�

(5.1)

� values are reported in h (which implies multiplication by a factor of 103), and � is

reported in ppm (implying multiplication by a factor of 106). Omission of the reference

name (ref ) implies d values are relative to atmospheric O2 except where otherwise in-

dicated. The mass-dependent fractionation slope is assumed to be l=0.518 (the slope

for respiration, as discussed in Luz and Barkan, 2005), except where otherwise indicated.

The employed � notation is independent of the isotopic reference standard (i.e., for two

mass-dependently related materials a and b, � works out correctly as: �a = �b).

5.2.3.2 Equilibrium O2

There is considerable disagreement about the isotopic composition of water O2 in equi-

librium with air (Luz and Barkan, 2005; Juranek, 2005; Hendricks et al., 2007a; Luz

and Barkan, 2009; Stanley et al., 2010; Kaiser, 2011). Principally, values cluster around

17

�eq = 8ppm and 17

�eq = 16ppm, but the cause of this discrepancy is unclear (Stanley

et al., 2010). However, temperature does seem to affect 17

�eq. Given the relatively high

water temperatures of Lake Matano (⇠30C at the surface), we use the equation presented

by Luz and Barkan (2009) to obtain a temperature-corrected 17

�eq = 0.6 · T + 1.8 (T in

degree Celsius), at 30C, 17

�eq = 19.8ppm . It is important to note that this value is higher

than any value actually measured by Luz and Barkan (2009) (3.5 to 25C). 17�eq = 0.707h
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is calculated from 17

�eq = 19.8ppm and 18�eq = 0.707h (Luz and Barkan, 2011) using

Equation 1.

5.2.3.3 Photosynthetic O2

The isotopic composition of photosynthetic O2 varies depending on type of primary pro-

ducer. In the case of oligotrophic Lake Matano, cyanobacteria dominate the mixed surface

layer numerically (Sabo et al., 2008), and the isotopic composition of photosynthetically

produced O2 is best approximated by 18�cyano = �22.868%�, 17�cyano = �11.635%�

(values for Synechocystis are the only available measure for cyanobacteria; average phy-

toplankton would be 18�all = �20.014%�, 17�all = �10.126%�, 17

�all = 249ppm instead)

(Luz and Barkan, 2011). This describes O2 produced by photosynthesis from VSMOW

(18�V SMOW = �23.324%�, 17�V SMOW = �11.883%�), and for cyanobacteria, the cor-

responding fractionation factors are 18↵photo�V SMOW = 1.00047 and 17↵photo�V SMOW =

1.00025 (i.e., hardly any fractionation associated with photosynthetic production of O2

from water). Adjusting the isotopic composition of photosynthetic O2 for Lake Matano

requires taking the isotopic offset of Lake Matano water from VSMOW into consideration.

The surface waters of Lake Matano are depleted in 18O by about ⇠4.5%� relative to

VSMOW (Katsev et al., 2010). The mass scaling factor for the global meteoric water

line is 0.528, and the 17O isotopic offset of meteoric water relative to VSMOW (due to

the slight differences in mass scaling in equilibrium and diffusive processes) in Indonesia

averages 54ppm (based on 4 measurements of rain in Borneo from Luz and Barkan (2010)).

Accordingly, Lake Matano water has an isotopic composition of 18� = �27.719%� and

17� = �14.180%� relative to atmospheric oxygen. The adjusted isotopic composition

of photosynthetically produced O2 in Lake Matano is then 18�photo = �27.265%� and

17�photo = �13.933%� (using the above-mentioned fractionation factors representative of

cyanobacteria).
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5.2.3.4 Piston velocity (k)

O2 piston velocities were calculated from the wind speeds using the empirical relationships

described in Wanninkhof et al. (1985):

k = K · u2 ·
✓

Sc

660

◆�1/2

(5.2)

where k is the gas transfer velocity (in cm/hr), u is wind speed (in m/s), K is a constant

that takes a value of 0.31 for steady winds, and Sc is the Schmidt number for O2 at the

relevant temperatures (this relationship was empirically derived for CO2 at 20C, hence the

factor of 660). The Schmidt number for oxygen in freshwater systems is described by the

polynomial

Sc = A� B · T + C · T 2 �D · T 3 (5.3)

where T is the temperature in Celsius, and A=1800.6, B=120.1, C=3.7818, D=0.047608

(Wanninkhof et al., 1985). A word of caution: this empirical fit was derived for the tem-

perature range 0 to 30ºC, and should not be used outside this range. The surface waters

of Lake Matano with T=29.8 are very close to the end points and this approximation.

5.2.3.5 Biological O2 saturation (BOS)

The physical properties of Argon and O2 are very similar, but Ar has no biological sources

or sinks. Consequently, simultaneous measurements of Ar and O2 allow for the correction

of O2 concentrations for physical effects. Biological saturation of O2 (that is, O2 saturation

corrected for physical processes) can be calculated directly from MS measurements (Luz

and Barkan, 2009):

BOS =

✓
[O

2

]

[O
2

]eq

◆

bio

=

�
O2
Ar

�
sample�

O2
Ar

�
equilib

(5.4)

112



Chapter 5: Primary productivity in Lake Matano from triple oxygen isotopes

with (O2 / Ar)sample measured against a reference gas (usually air) and reported in delta

notation as d(O2/Ar) = (O2 / Ar) / (O2 / Ar)ref – 1. Here, it is assumed that the

reference gas is air with (O2 / Ar)air = 20.946/0.9340. Equilibrium (O2 / Ar)equilib ratios

are calculated from temperature and salinity data for each water sample using the solubility

relations for O2 and Ar equilibrium concentrations reported in the literature, most recently

for Ar (Hamme and Emerson, 2004) as

ln[Ar]eq = A
0

+ A
1

· Ts + A
2

· T 2

s + A
3

· T 3

s + S ·
�
B

0

+B
1

· Ts +B
2

· T 2

s

�
(5.5)

and for O2(Garcia and Gordon, 1992b) as

ln[O
2

]eq =A
0

+ A
1

· Ts + A
2

· T 2

s + A
3

· T 3

s + A
4

· T 3

s + A
5

· T 5

5

+

S ·
�
B

0

+B
1

· Ts +B
2

· T 2

s +B
3

· T 3

s

�
+ C

0

· S2

(5.6)

with scaled temperature

Ts = ln

✓
298.15� t

273.15 + t

◆
(5.7)

with temperature t in ºC and salinity S in %�/psu. The constants for Ar are A0=2.79150,

A1=3.17609, A2=4.13116, A3=4.90379, B0=-6.96233 x 10-3, B1=-7.66670 x 10-3, B2=-

1.16888 x 10-2 (Hamme and Emerson, 2004). The constants for O2 are A0=5.80871,

A1=3.20291, A2=4.17887, A3=5.10006, A4=-9.86643 x 10-2, A5=3.80369, B0=-7.01577

x 10-3, B1=-7.70028 x 10-3, B2=-1.13864 x 10-2, B3=-9.51519 x 10-3, C0=-2.75915 x

10-7(Garcia and Gordon (1992b) with recommended coefficients derived from data of

Benson and Krause Jr, 1984).

5.2.3.6 Gross oxygen production (GOP) and net oxygen production (NOP)

Mixed layer gross oxygen production can be estimated either based on 17D or, as more

recently discussed by Luz and Barkan (2011); Prokopenko et al. (2011) and Kaiser (2011),
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directly based on 17d and 18d. While the 17D notation is very intuitive for qualitative

interpretation (see Figure 2) the derivation based directly on 17d and 18d is preferable

for quantitation, particularly, because the biological endmember is better constrained in

�-space (there is a fair amount of confusion surrounding the value of the biological 17D

endmember as a consequence of varying scaling factors and 17D definitions). Here, I thus

use

GOP = k · [O
2

]eq ·

⇣
1� �17Oeq+1

�17Odis+1

⌘
� 0.518 ·

⇣
1� �18Oeq+1

�18Odis+1

⌘

⇣
�17Op+1

�17Odis+1

� 1

⌘
� 0.518 ·

⇣
�18Op+1

�18Odis+1

� 1

⌘ (5.8)

where k is the piston velocity, subscripts dis, eq and p stand for dissolved, equilibrium

and photosynthetic O2, and GOP is the gross rate of O2 production by photosynthesis

integrated over the depth of the mixed layer (in mol O2 area-1 time-1), assuming that

the mixed layer is at steady state. Similarly, net oxygen production (NOP, same units as

GOP) over the mixed layer can be estimated from the biological oxygen saturation (BOS)

(e.g. Hendricks et al., 2007b):

NOP = k · [O
2

]eq · (BOS � 1) (5.9)

Both equations assume a mixed layer at steady state under the simplifying assumption

that there is no interaction between the mixed layer and the seasonal thermocline (Luz

and Barkan, 2009). There are no strong winds that would be likely to temporarily erode

the seasonal thermocline at Lake Matano, so it is assumed that quasi-steady state is a

reasonable approximation (this will be discussed in more detail in Section 5.3). For the

thermocline, GOP can only be evaluated assuming neither addition nor loss of O2 from/to

the mixed layer. GOP in the thermocline can be assessed by evaluating the production

between different time points, as outlined for example in Luz and Barkan (2009) and

Kaiser (2011). Thermocline GOP at any single depth (in mol · volume�1 · time�1 ) is
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derived as (Kaiser, 2011):

P = c ·
1

1+

17� ·
d17�
dt � �R · 1

1+

18� ·
d18�
dt

17�P�17�
1+

17� � �R · 18�P�18�
1+

18�

(5.10)

5.2.3.7 Gross carbon production (GCP) and net carbon production (NCP)

The gross oxygen production by photosynthesis is stoichiometrically linked to carbon

fixation by the photosynthetic quotient (PQ). The PQ depends on the redox state of

the nitrogen source for primary producers. The PQ is 1.1 for ammonia-based production

(N recycled) and 1.4 for nitrate-based production (new production) (Laws, 1991). For

Lake Matano, it is prudent to assume a mixed contribution and we use a conservative

PQ=1.25. Additionally, the Mehler reaction (photosynthetic production of O2 without

carbon fixation) and photorespiration to CO2 lead to O2 production without concomitant

net carbon fixation. This loss term (L) was previously estimated to be ⇠15% (Juranek,

2005; Nicholson et al., 2012). This translates into a conversion factor of 1.25 x 0.85 from

GOP (mol O2 Area-1 time-1) to GCP (mol C Area-1 time-1):

GCP = PQ · L ·GOP (5.11)

Net carbon production can only be estimated from GCP if autotrophic respiration rates

are known. Bender et al. (1999) estimated plant respiration to account for ⇠35% of GCP,

such that NCP = 0.65 x GCP (Juranek, 2005).

5.2.4 Error assessment

Hendricks et al. (2007b) discuss errors introduced in samples stored for an extended period

of time (627 days in their case), observing that for flasks stored with water in the sidearm,

leakage of atmospheric O2 (and Ar) leads to up to a 7% increase in O2 content, lowering

17D by up to 8ppm and changing O2/Ar ratio up to 5%. Overall, even the maximal
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errors estimated by Hendricks et al. (2007b) are unlikely to make a significant difference

in the interpretation of our data. Routine error of the measurement itself is ⇠7ppm

in the Stanley lab. The largest error in all calculated quantities is likely a consequence

of uncertainties in the piston velocity k because of approximate wind speeds and likely

inaccuracies in the empirical relationships used to derive this quantity. Also, the in situ

oxygen concentrations measured at Lake Matano might have a systematic error associated

with them that is difficult to assess in absence of precise oxygen concentration data from

Winkler titrations.

5.3 Results and Discussion

5.3.1 Wind data

O2piston velocities are calculated from wind speeds using the equations’ outlines in section

5.2.3.4. Wind data is available for the sampling days from the airport near the Lake, and

for an extended period of time preceding the sampling date from the INCO mining plant

nearby. INCO plant measurements are available in half-hour intervals and allow for an

estimate of the average daily wind speeds (and range of speeds) as illustrated in Figure

5.1. The wind speeds from the plant are not likely to be perfectly representative of wind

at the Lake, but are the best estimate currently available for long-term speeds. Given the

relative stability of daily average wind speeds, we use average piston velocities derived

from wind data spanning a 60-day period prior to each sampling date for calculations.

5.3.2 Isotopic data and productivity calculations

The primary processes (photosynthesis, respiration and gas exchange) affecting the iso-

topic composition of O2 in the surface layer (assuming steady state, no exchange with

thermocline) all change the isotopes in very specific ways that are helpful to consider for

discussing the data in triple oxygen isotope space. Gas exchange always redirects surface
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Figure 5.1 – Wind data from INCO plant near Lake Matano. Black line: daily averages from
47 daily measurements (half hourly from 0:30 to 23:30). Blue band: range of daily wind speeds.
Sampling days are indicated in red. Wind speeds measured at Soroako airport on sampling dates
indicated in black.

18� and 17

� towards equilibrium with the atmosphere, i.e. towards the equilibrium

values outlined in Section 5.2.3.2. Photosynthesis injects isotopically light O2 (decreasing

18�) from water oxygen with very little fractionation (the O2 is isotopically light because

the water is light compared to atmospheric O2 to begin with). Additionally, photosynthetic

O2 is heavy in 17O, leading to an increase in 17

�. It is important to note that while

photosynthesis fractionates mass-dependently, atmospheric O2 is anomalous in its triple O

composition due to mass-independent stratospheric processes (Mauersberger, 1981; Gao,

2001; Luz et al., 1999), and O2 derived from water consequently has non-zero 17

� relative
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Figure 5.2 – Chemical and oxygen isotope depth profiles of Lake Matano. A) �18O of water
samples, red lines indicate isotopic endmembers - composition of Lake Matano water (-27.7%�)
and O2 equilibrated with the atmosphere (0.7%�). B) �17O of water sample, red lines indicate
isotopic endmembers (exact values are debated) - O2 equilibrated with the atmosphere (20ppm)
and biologically produced O2 (249ppm). C) Biological oxygen saturation as defined in text. D&E)
Temperature and dissolved O2 profiles from CTD cast.

to atmospheric O2 as the standard2. Respiration consumes O2 mass-dependently with a

preference for light O (⇠20%�), leaving residual O2 enriched (increasing 18�) but not

changing 17

� (constant). Many papers on the subject illustrate this very well; see, for

example, Figure 1 in Hendricks et al. (2004) for an informative schematic.

5.3.2.1 Mixed layer

Consistently similar isotopic composition of the surface layer between the 2 casts suggests

that primary productivity is relatively invariant and reaches a rate of gross oxygen pro-

duction of ⇠10mmol m-2 d-1. This rate is low even in comparison to other oligotrophic
2This is a consequence of the traditional use of atmospheric O2 instead of VSMOW as the reference

standard in isotope measurements of molecular oxygen.
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Cast Depth
[m]

17�
[ppm]

17�
[h]

18�
[h]

Temp
[C]

O2
[µM ]

BOS
[%]

avg k
[m/d]

GOP [mmol
O2 m�2 d�1]

NOP [mmol
O2 m�2 d�1]

GCP [mmol
C m�2 d�1]

NCP [mmol
C m�2 d�1]

4/13/10 3 34 -0.972 -1.940 29.8 177 104 0.39 7.9 3.3 8.4 5.5
4/13/10 10 40 -1.135 -2.267 29.6 166 105 0.39 11.7 4.8 12.5 8.1
4/13/10 25 40 -1.074 -2.150 29.6 155 105 0.39 11.8 4.2 12.6 8.2
4/19/10 3 33 -0.977 -1.950 29.7 186 104 0.39 7.7 3.6 8.1 5.3
4/19/10 10 39 -1.070 -2.138 29.6 179 104 0.39 11.0 4.0 11.7 7.6
4/19/10 25 38 -1.044 -2.086 29.6 174 104 0.38 10.1 4.0 10.7 7.0

Table 5.1 – Oxygen isotope composition of mixed layer at Lake Matano.

environments and is consistent with previous estimates of low abundances of primary

producers in the surface waters of Lake Matano (Sabo et al., 2008). However, this mixed

layer average rate is higher than the single previous estimate of carbon fixation rates of

0.35µg C l-1 hr-1(equivalent to a flux of ⇠0.7 mmol C m-2 d-1) provided by incubation with

isotopically labeled bicarbonate (H13CO3
-) at 32 m water depth (Crowe et al., 2008b).

This closed-bottle bicarbonate incubation measurement captures only the carbon fixation

rate close to the bottom of the mixed layer (at 32 m water depth), suggesting that

the measured rate of gross oxygen production reflects a dominant contribution from

photosynthesis occuring closer to the surface (above 32 m water depth) at higher light

intensities.

5.3.2.2 Thermocline

Cast Depth
[m]

17�
[ppm]

17�
[h]

18�
[h]

Temp
[C]

O2

[µM ]
BOS
[%]

4/13/10 50 93 0.888 1.538 28.0 80 56
4/13/10 80 88 4.807 9.154 27.2 47 31
4/13/10 85 84 5.257 10.041 27.1 43 30
4/19/10 50 94 0.558 0.897 28.1 84 61
4/19/10 80 87 4.758 9.061 27.2 49 30
4/19/10 85 87 4.971 9.477 27.1 44 30

Table 5.2 – Oxygen isotope composition of thermocline at Lake Matano.

The small difference in isotopic composition between the two casts (within measure-

ment error of each other) makes GOP (gross oxygen production, Section 5.2.3.6) difficult

to assess from the current data. Given the small differences of the measurements combined

with the uncertainty in actual sampling depth, GOP below the surface layer cannot be

quantified at this point. However, the small difference between the casts (1 week apart)
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would suggest that there is very little primary productivity. If the time of establishment

of the seasonal pycnocline were known, primary productivity could be evaluated over

the much longer time frame (from establishment of the pycnocline until time of the

cast) when making the assumption that original thermocline waters have mixed layer

isotopic composition and slowly shift to higher 17

� as photosynthesis below the mixed

layer produces additional 17O heavy O2 (slowly enough for water between 50 and 85m

depth to be well-mixed but separated from the surface by the seasonal pycnoline). The

increased 18� values of O2 below the mixed layer suggest active aerobic respiration in this

area (does not affect 17

�). The 18� gradient from 50m to 85m depth could indicate that

respiration rates are higher than the mixing rates of the water in this depth interval, and

that respiration is higher at greater depth. However, the low O2 concentration (<50µM at

80m) likely affects accurate determination of 18�, and the difference might be insignificant

within error. Also, exchange between the mixed layer and thermocline, as well as isotopics

effects from loss of O2 to non-respiratory processes (for example, chemical reaction with

Fe2+ at the chemocline) are currently poorly constrained, and not taken into consideration.

Overall, the data reported here confirm low rates of primary productivity throughout

the water column of the oxic surface waters of Lake Matano, and are consistent with

previous observations of low concentrations of chlorophyll and biomass (Sabo et al., 2008;

Crowe et al., 2008c). However, an integrated seasonal flux model of oxygen and carbon

production and exchange between the surface mixed layer, thermocline and bottom waters

would require higher temporal resolution oxygen isotope data over the course of the

formation and decline of the seasonal pycnocline.
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Chapter 6

Introduction

The study of the growth of bacterial cultures does not

constitute a specialized subject or branch of research: it is

the basic method of Microbiology.

Jacques Monod (1949)

Cystic fibrosis (CF) is an autosomal recessive genetic disorder arising from two defect

copies of the gene encoding the cystic fibrosis transmembrane conductance regulator. The

genetic defect interferes with salt homeostasis throughout the body, leading to excessive

water uptake into mucosal membranes. This leaves mucus throughout the body of CF

patients dehydrated and significantly more viscous than healthy mucus. The effect is

particularly detrimental in the lung, where thick mucus collects over time and allows

for progressive colonization of the pulmonary system by a polymicrobial community of

opportunistic pathogens, which leads to chronic infection of the airways and contributes

to most of the morbidity and mortality associated with CF (Goss and Burns, 2007).

While it is well-established that the physiological state of individual pathogens within

the lung plays an important role in microbial persistence and drug tolerance (Hirschhausen

et al., 2013; Hart and Winstanley, 2002; Davies, 2002; Nguyen et al., 2011; Baek et al.,
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2011), very few direct measurements of actual growth-activity rates of these populations

exist in the host. While largely unconstrained, the growth rates and metabolisms of

opportunistic pathogens in vivo are potentially vsery different from conditions commonly

studied in the laboratory, and are likely to change dynamically within the host. A better

understanding of how populations grow in vivo is crucial to developing representative

laboratory tests of potential therapies that produce reliable results and lead to safe and

effective treatment strategies (Harrison, 2007).

In Geomicrobiology, a number of techniques have been developed to study the growth

and metabolism of microbial populations in difficult environments using tools from mi-

crobial ecology and stable isotope geochemistry. These techniques can provide unique

new insights into the growth rates of microbial communities in cystic fibrosis infections

and inform the appropriate conditions to study in laboratory experiments. However, the

complex, organic rich mucus environment of CF infections provides an obstacle for the

use of traditional carbon- or nitrogen-based isotopic tracers. Chapter 7 thus introduces

hydrogen isotope labeling as a new tool for measuring microbial growth, and focuses on

the potential of using heavy water as a metabolic tracer for lipid biosynthesis, discussing

the conceptual approach, laboratory verification, potential impact and limitations of this

technique. Heavy water provides an ideal isotopic tracer for complex environments like

infections, which are often saturated with bioavailable carbon and nitrogen. Heavy water

minimally alters any aquatic chemical environment (due to D2O being the label), is an

equally universal substrate for all forms of life, and can be used safely within biological

systems (Kushner et al., 1999b; Jones and Leatherdale, 1991a; Steinhauser and Lechene,

2013).

2H incorporation into bacterial fatty acids provides a bulk measure of microbial activity,

but cannot provide insight into growth heterogeneity within a target population. While

it is likely that the physiological states of individual cells in such complex communities

vary, little is known about the extent of this variation within the CF lung. Given the
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hypothesized correlation between physiological diversification and antimicrobial resistance,

it is highly desirable to know the extent of in situ heterogeneity in the metabolic states

of individual cells at different stages of infection. Multi-isotope secondary ion Imaging

Mass Spectrometry (MIMS or nanoSIMS) provides one of the most sensitive and precise

analytical methods available for the study of elemental and isotopic composition at high

spatial resolution. While primarily applied in the study of spatiometabolic activity of

microbial communities in environmental systems (Pernthaler et al., 2008a; Orphan et al.,

2009; Dekas et al., 2009; Dekas and Orphan, 2011; Dekas et al., 2013), as well as

symbiotic microbe-animal interactions (Lechene et al., 2007; Kuypers, 2007; Pernice et al.,

2012), this technique poses tremendous potential for application in the quantitative study

of metabolic processes of infectious communities. Examples of applications in medical

research to date include studies of stem cell division and metabolism in mice (Steinhauser

et al., 2012; Gormanns et al., 2012), protein renewal in kidney cells (Lechene et al., 2006),

and microbial activity studies of oral biofilms (Spormann et al., 2008). As evidenced by this

accelerating body of work since the first applications of MIMS/nanoSIMS, this technique

could be useful far beyond its original purpose in disciplines as diverse as geobiology,

biogeochemistry, host-microbe interactions and biomedical research (Orphan and House,

2009; Steinhauser and Lechene, 2013; Hoppe et al., 2013). However, the application

to potentially slow-growing, diverse microbial communities in complex mucus samples

likewise limits the use of carbon and nitrogen isotope tracers. Chapter 8 thus establishes

the framework for using dual hydrogen and nitrogen isotope labeling in secondary ion

mass spectrometric analyses of single cells as well as cells embedded and thin-sectioned

in acryl.

Chapter 9 finally presents the application of these new techniques to study microbial

activity rates in the lungs of cystic fibrosis patients.
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Chapter 7

Hydrogen isotope labeling

as a novel tracer for growth

in microbial ecology

7.1 Introduction

Stable isotope labeling is a key tool in microbial ecology that provides insights into the flux

of carbon, nitrogen and sulfur through microbial communities and entire ecosystems. In

an era where molecular techniques provide powerful tools for studying microbial activity

in well-understood microbial systems, stable isotope techniques are the key to pushing

the frontiers of what we understand about microbial activity in complex, dynamically

changing, poorly-explored environments. In these systems, quantiative insights into basic

physiological constraints (such as growth rates and nutrient fluxes) are the first step

towards making these environments accessible to representative study in the lab and

developing well-informed molecular tools that, in turn, can provide higher-resolution (at

the species, or even gene level) insights into specific environmental processes.

132



Chapter 7: Hydrogen isotope labeling in lipids

For example, ribosomal RNA (rRNA) provides a powerful tool for measuring species-

specific abundances of ribosomes, which can be linked to microbial activity patterns for

well-understood organisms in relatively static systems. However, rRNA concentrations

don’t scale linearly with growth rates across taxa and are limited as a reliable indicator

of metabolic state in microbial communities, slow-growing/dormant cells or dynamically

changing environments (Blazewicz et al., 2013; Ecker and Schaechter, 1963), mostly

because our understanding of how these conditions affect this molecular proxy are limited.

Isotope labeling techniques provide an approach for measuring biosynthesis directly,

due to the nature of a chemically-identical but isotopically-enriched tracer whose incor-

poration into biomass is dictated directly by biological activity. Additionally, analytical

techniques developed for the study of minute differences in naturally occurring isotopic

variations provide exceedingly high sensitivity for the incorporation of minute amounts

of an isotopically-enriched tracer. However, traditional isotopic labels face two major

drawbacks for the study of metabolic activity in microbial communities. First, labeled

substrates can change the nutrient availability in an environment, which biases measures

of activity towards organisms that can quickly respond to changes in the added substrate.

For example, the quantitative use of nitrogen and carbon as tracers is often limited by

a) their differential use in communities with mixed metabolisms (preference by certain

members of the community for a specific organic or inorganic carbon or nitrogen source),

and b) the alteration of nutrient availability by the isotopic tracer (adding for example

bioavailable nitrogen to a nitrogen starved community). Second, isotopic tracers do not

easily provide phylogenetic information to tease apart the differential contribution of the

various members of a microbial community, unless enrichment is high enough to make

biomolecules amenable to preparatory separation techniques (as successfully employed in

stable isotope probing; e.g., Kreuzer-Martin (2007); Whiteley et al. (2006); Dumont and

Murrell (2005); Radajewski et al. (2000)), which negates their potential in the analysis of

slow-growing or low-spike communities.

133



Chapter 7: Hydrogen isotope labeling in lipids

Here, we discuss the use of hydrogen isotope labeling with deuterated water as an

important new addition to the isotopic toolkit available to microbial ecologists. This tool

provides a labeling technique that minimally alters any aquatic chemical environment (due

to D2O being the label), can be administered with strong labels even in minimal addition

(natural background is very low), is an equally universal substrate for all forms of life

even in complex, carbon and nitrogen saturated systems, and can be combined with other

isotopic tracers (e.g. Wegener et al., 2012; Kellermann et al., 2012). Additionally, while

hydrogen exchanges rapidly in reactive groups and most O-2H, N-2H and S-2H bonds

(especially all acidic or basic functional groups) (Thomas, 1971; Katz, 1960), it is stably

incorporated in many, virtually non-exchangable C-2H bonds (Sessions et al., 2004) that

can be used in compound specific isotope analyses of organic molecules to provide coarse

phylogenetic resolution of microbial activity over a tremendous dynamic range.

Most importantly, 2H in the form of heavy water (D2O) can be administered easily

and safely in environmental as well as within biological systems (Kushner et al., 1999a;

Jones and Leatherdale, 1991a; Steinhauser and Lechene, 2013). It mixes well, and diffuses

rapidly in aquatic environments. Additionally, cell water equilibrates within minutes or less

in response to an osmotic gradient, as water exchanges readily across the lipid bilayer and

through specific water transport proteins (aquaporins) (Verkman, 2013).

Lastly, deuterated compounds (especially water) have been produced in large quantities

because of the nuclear industry since the discovery of deuterium by Harold Urey in 1931

(published in Urey et al., 1932b1). This makes the purchase and application of heavy

water (and other deuterated compounds) easily affordable and has already established

deuterium as an important tool in biochemical research (Kushner et al., 1999a).

Here, we present an overview of the conceptual approach to stable isotope labeling

in the study of microbial activity in general, and with D2O in particular. We provide a

detailed discussion of the theoretical basis, experimental approach, analytical challenges,
1A feat that earned Harold Urey the Nobel Prize in Chemistry only three years later, and is largely to

credit with inspiring his broader interest in many aspects of isotope geochemistry.
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scientific opportunity and quantitative caveats posed by D2O as an isotopic tracer, and

present data on its experimental verification in continuous culture systems.

7.2 Theoretical model for the incorporation of iso-

tope tracers
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Figure 7.1 – Flow of isotopically-labeled nutrients through a biological system. Most isotopic
tracers employed in environmental studies of microbial activity are simple substrates (S:15NH4

+,
HCO3

-, D2O, etc.) that enter the biological system by de novo synthesis of cellular intermediates
(I: simple organic acids, amino acids, nucleotides, fatty acids, etc.) that are turned into cellular
components for replication (P: proteins, membranes, DNA). Biomass (B = P + I, i.e. the bulk
cells) is produced with rate constant µ (often called the specific growth rate) and removed with
death/removal rate d (cells removed for example by predation, death or direct physical removal).
This simple model can be further expanded by taking into account the recycling of exogenous
precursors (E, rate r) as well as the turnover of biomolecules (rate w), both pictured in this overview
cartoon and discussed in more detail in section 7.4.6. The presence, branching pattern, and exchange
flux (e) between specific pools of biosynthetic intermediates represents another layer of complexity
that is addressed in section 7.4.5. Legend: the different pools are highlighted in green (E, S, I,
P, B), rate constants are highlighted in red (s, µ, d, r, w) and fluxes in and out of reservoirs are
highlighted in blue (vB

+/-).

Figure 7.1 illustrates a simplified view of the flow of isotopically-labeled substrates

through a biological system, such as, for example, a population of microorganisms. An

isotope label administered as a pulse of isotopically-enriched substrate will propagate

through this system as a function of the kinetic rates (all in units of reciprocal time) that

govern biosynthesis, degradation and death. Typically, microbial activity is assessed by
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measuring the incorporation of the stable isotope label into the bulk biomass B over time.

The flux into this overall cellular pool can be considered in terms of the rate of biosynthesis

s from (labeled) substrates and the rate of recycling r of exogenous precursors. s and r

combine to form the overall biosynthetic rate, or specific growth rate µ (which signifies

cellular replication), plus excess biosynthesis (which compensates for degradation due to

turnover of proteins or lipids, etc. and can be viewed as part of maintenance). The flux

out of B comprises both losses due to turnover degradation/maintenance ! as well as

any type of physical removal or straight-out death d of individual cells in the population.

The following equations summarize the flux in (+) and out (-) of the total biomass B.

v+B = (s+ r) · B = (µ+ !) · B

v�B = (d+ !) · B
(7.1)

Based on the fluxes outlined in equation 7.1, the set of differential equations describing

the rate of change in total biomass B and the rate of change in new biomass Bnew is

the difference between the synthesis and degradation fluxes, in the case of Bnew weighed

appropriately by the fraction of new biomass in their source pools:

dB

dt
= v+B � v�B = (µ� d) · B

dBnew

dt
= fS · v+B � fBnew · v�B = [fS (µ+ !)� fBnew (d+ !)] · B

(7.2)

with the fraction fBnew of new vs. total biomass in B
�
fBnew =

Bnew
B

�
weighing the flux

v�B of new biomass out of B, and the fraction fS of substrate-derived (new) vs. substrate-

derived + recycled (total) weighing the flux v+B into B
�
fS =

s
r+s

�
. These expressions can

be used to obtain a differential equation for the time-dependent fraction of new biomass
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using the quotient rule and substituting Eqs. 7.2 to arrive at:

dfBnew

dt
=

@

@t

✓
Bnew

B

◆
=

1

B

dBnew

dt
� Bnew

B2

dB

dt
=

1

B

✓
dBnew

dt
� fBnew

dB

dt

◆

= fS (µ+ !)� fBnew (d+ !)� fBnew(µ� d)

= (fS � fBnew) · (µ+ !)

(7.3)

Integration of these differential equations readily leads to a solution for the biomass

B(t) and the accumulated fraction of new biomass fBnew(t) in the system as a function

of time since t
0

:

B (t) = B
0

· e(µ�d)·t

fBnew(t) = fS ·
�
1� e�(µ+!)·t�

(7.4)

When an isotopic label is added to the nutrient pool at t
0

, we can use this relation

for the fraction of new biomass fBnew to derive the isotopic mass balance2 between the

original and new material to get to the temporal evolution of the isotopic composition of

the bulk biomass:

xFB(t) =
Bnew · xF new +Bold · xF old

B

= fBnew(t) · ↵B/S · xFL + (1� fBnew(t)) · xFB(t0)

= fS ·
�
1� e�(µ+!)·t� ·

�
↵B/S · xFL � xFB(t0)

�
+

xFB(t0)

(7.5)

where xFB is the fractional abundance of the isotope label (e.g. x = 2 (2H), 13 (13C),

15 (15N)) in the biomass at time t
0

(isotopic composition of the population prior to

pulse labeling) and at time t after the spike, xFL is the fractional abundance of the
2Here in terms of fractional abundances. The use of mass balance approximation with isotopic values

in �-notation is discouraged for calculations involving strong isotope labels. See section D.5.1 in Appendix
D for details.
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isotope label in the spiked substrate pool, and ↵B/S
3is the fractionation factor associated

with biosynthetic incorporation of the substrate into biomass. The inverse expression for

calculating the specific growth rate µ from isotopic measurements is readily derived as

µ = � ln

✓
1� f�1

S ·
xFB(t)� xFB(t0)

↵B/S · xFL � xFB(t0)

◆
· t�1 � ! (7.6)

We can use Equations 7.5 and 7.6 to evaluate the incorporation of an isotopic tracer

due to microbial activity, but before applying these formulae, it is important to discuss

their assumptions, and useful to highlight some of their implications.

7.2.1 Assumptions

• All flux rates (µ, d, !, s + r) are time-invariant over the labeling interval. For

this model to apply, the rates have to be constant (however, the fluxes and pool

size are not fixed, as discussed shortly). This implies, for example, that over the

labeling interval, the growth rate – whatever it may be for the population at the

time (set by the metabolic constraints imposed on the population) – is assumed to

remain essentially constant. This also assumes by extension that since the rates are

constant, the isotopic effects expressed during overall biosynthesis (↵B/S) can be

assumed to remain constant.

• The proportion of recycling rate vs. de novo synthesis rate is time-invariant (fs =

const). This assumption implies that it must be possible to consider the dietary

habits of the population between recycling exogenous materials and de-novo biosyn-

thesis constant over the labeling interval. In practice, this requires that any change

in nutrient availability in the environment does not significantly alter metabolism

over the course of a labeling experiment. However, it is possible to integrate the
3↵

B/S

is usually reported/known in terms of ↵
B/S

= R

B

R

S

; see section D.5.2 in Appendix D for
details on how to calculate this effect exactly, and information about the error introduced if using the
approximation ↵

B/S

· F
S
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differential equations in 7.2 with a time-dependent parametrization of fs if it is

known to change in time-dependent manner during the labeling interval, in similar

manner as derived for the isotopic label strength xFL.

• The isotopic labeling strength (xFL) is time-invariant. This model assumes that

the isotopic spike is instantaneously distributed into the bioavailable substrate pool

(that is, the material the cells actually take up and use is spiked without time-

delay), the isotope label is not diluted out of the substrate pool over time by any

process including the potential influx of unlabeled material from turnover !, and the

consumption of the substrate does not significantly alter its isotopic composition.

This is a reasonable assumption during relatively long labeling times with highly

diffusible labels in a closed system where turnover ! can be expected to release

relatively little material to dilute the labeled pool. However, it is also possible

to include a time-dependent parametrization of xFL if it is known to change in

time-dependent manner during the labeling interval. The derivation follows from

Equations 7.3, 7.4 and 7.5, and is illustrated with a dilution model for the isotopic

label strength (xFL(t) =
xFL0 · e�kt ):

Bnew · xF new

B
=

Z
dfBnew · ↵B/S · xFL(t) dt

=

Z
fS · (µ+ !) · e�(µ+!)·t · ↵B/S · xFL0 · e�k·t

dt

= ↵B/S · xFL0 · fS · µ+ !

µ+ ! + k
·
�
1� e�(µ+!+k)·t�

(7.7)

with dilution rate constant k, rare isotope fractional abundance of the initial spike
xFL0, and all other variables as previously named. Substituting back into Eq. 7.5
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yields
xF#

B(t) =
Bnew · xF new +Bold · xF old

B

= ↵B/S · xFL0 · fS · µ+ !

µ+ ! + k
·
�
1� e�(µ+!+k)·t�

+

�
1� fS ·

�
1� e�(µ+!)·t�� · xFB(t0)

(7.8)

which provides the basis for modeling the impact of tracer dilution and can be

fitted to experimental data numerically but does not have an analytical solution like

Equation 7.6 for µ.

• The biomass removal flux d is unbiased. It is implicitly assumed that the biomass

removal flux d is unbiased; i.e., cells are removed randomly without a preference for

older or newer material. Removal thereby reduces the entire bulk pool (and all its

components proportionally to their size) without affecting the relative proportions

of old and new biomass. As a consequence of this assumption, the removal term d

drops out in Equation 7.3.

• All isotopically analyzed cellular materials are representative of the bulk biomass B.

This assumption needs to be considered carefully when only specific components

of a cell are analyzed, or during bulk analysis after significant portions are lost.

Intracellular exchange kinetics (✏ in figure 7.1) and branching patterns of cellular

intermediates can cause significant deviations from expected isotope incorporation

into individual compounds, and have to be taken into consideration when inferring

microbial activity from isotopic enrichments of specific cellular components (such

as pools I or P in Figure 7.1, or their components) instead of bulk biomass (see

Chen et al. (2012) for a recent discussion of this aspect). Section 7.4.5 provides

additional detail on this issue. However, the recycling and exchange ✏ of biosynthetic

intermediates within the whole system does not affect the labeling dynamics of the

bulk biomass (only exogenous input does), and it is safe to ignore this aspect if it

is reasonable to assume that this is captured analytically.
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7.2.2 Implications

• The population itself does not have to be in steady state. The isotope tracer will

be incorporated as a function of growth and turnover (µ + !) regardless of any

temporal changes in the total biomass B(t) (Eq. 7.4). Total biomass can remain

the same (µ = d), accumulate (µ > d) or decline (µ < d) over the course of a

labeling experiment without affecting this measurement. This also implies that a

single pulse labeling experiment cannot provide a constraint for the removal/death

rate d, which drops out in Eq. 7.3 without any additional constraints. Section D.4

in Appendix D illustrates this point in detail.

• A labeling experiment usually measures the biosynthetic activity rate (apparent

growth rate). Without knowing either the turnover/maintenance rate ! or the

specific growth rate µ of the population a priori, the only quantity that can be

measured from isotopic enrichment is the biosynthetic activity or apparent growth

rate µact = µ + !, which always overestimates the true growth rate (! > 0). If

it is reasonable to assume that turnover/maintenance is negligible (! ⌧ µ), then

µ ⇡ µact. This measure also allows an estimate of the apparent generation time of

the population gact =
ln(2)
µact

. µ and µact are not to be confused with population net

growth/decline µnet = µ� d, which results from the balance of biomass production

and removal processes (B(t) in Eq. 7.4) and cannot be determined without an

independent constraint for d. µnet relates to the true generation/doubling time of

the population (the time the total biomass would double in size) as gtrue = ln(2)
µnet

.

• Approximations: The equations for the isotopic composition of the population over

time (7.5 and 7.8) can be approximated by Taylor expansion around t = 0 (and
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simplifying with µact = µ+ !):

xFB(t) =
1X

n=0

xF (n)
B (t

0

)

n!
(t� t

0

)

n

=

xFB(t0) + fS ·
�
↵B/S · xFL � xFB(t0)

�
· µact · t

� 1

2

· fS
�
↵B/S · xFL � xFB(t0)

�
· µ2

act · t2 + ...

xF#

B(t) =
xFB(t0) + fS ·

�
↵B/S · xFL � xFB(t0)

�
· µact · t

� 1

2

· fS
�
↵B/S · xFL · (µact + k)� xFB(t0) · µact

�
· µact · t2 + ...

(7.9)

As long as incubation times t are relatively small compared to the generation time

of the population, second- and higher-order terms are relatively insignificant, and

both equations simplify to

xFB(t) ⇡ xFB(t0) + fS ·
�
↵B/S · xFL � xFB(t0)

�
· µact · t

µact ⇡
xFB(t)� xFB(t0)

fS ·
�
↵B/S · xFL � xFB(t0)

� · t�1

(7.10)

This linear approximation always overestimates isotope labeling as a function of

growth, and consequently underestimates biosynthetic activity and overestimates

apparent generation times as a function of label incorporation (i.e., at a given

label incorporation, this approximation projects a lower growth / longer generation

time than is actually the case). Section D.5.3 in Appendix D illustrates the errors

introduced when using this approximation in greater detail.

7.2.3 The use of D2O as an isotopic tracer

The use of heavy water as an isotopic tracer provides a unique tool for measuring microbial

activity in a diverse range of environments. The label is easy to administer both in

environmental and medical contexts, does not distort substrate availability to the benefit

of some organisms over others, and is stably incorporated into fatty acids and other
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hydrocarbon membrane components with stable C-H bonds during active metabolism.

Additionally, its low natural abundance (2Fnat = 156ppm, de Laeter et al., 2003) enables

relatively minor isotopic spikes to capture a wide range of microbial activity in a short time

span. Figure 7.2 shows the incubation times required to capture an enrichment signal of

�D = 500h with two different isotopic spikes, labeling new biomass with deuterium at

2FL = 1% and 15%, for a wide range of microbial populations doubling anywhere from

once an hour to once in a hundred years. The model illustrates that a 1% label can easily

capture microbial activity rates on a day to year time scale with only a few hours to days

of exposure to the label; a 15% label can capture rates on the 100-year time scale within

less than a month.

7.3 Materials and methods

All media and reagent solutions used for culturing were autoclaved or filter-sterilized prior

to use. All non-consumable glassware used for lipid extraction and derivatization was

pre-combusted in a muffle furnace at 550 °C to remove all remaining traces of organic

materials potentially adhered to the glass. All heavy water used for labeling experiments

was purchased as sterile 70% D2O solution from Cambridge Isotope Laboratories (#DLM-

2259-70-1L).

7.3.1 Bacterial strains and growth media

Culturing experiments were conducted with a well-studied, prototrophic K-12 derivative

of Escherichia coli (NCM 3722, Soupene et al., 2003), a well studied wild-type clinical

isolate of the gram-negative opportunistic pathogen Pseudomonas aeruginosa (PA14,

RAHME et al., 1995), a clinical isolate of the gram-negative opportunistic pathogen

Stenotrophomonas maltophilia (Hugh and Leifson, 1963), and a well-studied wild-type
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Figure 7.2 – Incubation time requirements. This figure illustrates the incubation times required
to reach an isotopic enrichment in deuterium of �

D

= 500h, depending on the strength of the
isotopic label in new biomass and the average generation/doubling time of a microbial population.
Details on an interactive version of this plot can be found in Appendix D, section D.6.2

clinical isolate of the gram-positive opportunistic pathogen Staphylococcus aureus (MN8,

KREISWIRTH et al., 1983).

For routine growth, all strains were grown in a phosphate-buffered minimal medium

(hereafter referred to as “minimal”) at pH 7.2 containing 2.5 g/L NaCl, 13.5 g/L K2HPO4,

4.7 g/L KH2PO4, 1 g/L K2SO4 and 0.1 g/L MgSO4·7H2O with 5 mM / 1.35 g/L succinate

hexahydrate (E. coli and P. aeruginosa) or 6.5 mM / 470µL/L glycerol (S. aureus) as the

carbon source and 10 mM NH4Cl as the only source of nitrogen. Additionally, the medium
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was amended with iron (3.6µM / 1mg/L FeSO4· 7 H2O) complexed by EDTA (8 µM)

for S. aureus and P. aeruginosa. S. aureus further exhibits auxotrophy for several amino

acids and vitamins (some phenotypic, some genotypic; Aldeen and Hiramatsu (2004);

LINCOLN et al. (1995); Mah et al. (1967)). For routine growth of this organism, the

medium was further amended with 11.5 mg/L proline, 10mL/L 50x MEM Amino Acid

solution (Sigma-Aldrich, #M5550, final amino acid concentrations: 63.2 mg/L arginine,

15.6 mg/L cysteine, 21 mg/L histidine, 26.35 mg/L isoleucine, 26.2 mg/L leucine, 36.3

mg/L lysine, 7.6 mg/L methionine, 16.5 mg/L phenylalanine, 23.8 mg/L threonine, 5.1

mg/L tryptophan, 18.0 mg/L tyrosine, 23.4 mg/L valine) as well as 100µg/L thiamine

(B1), 100 µg/L nicotinic acid (B3) and 10 µg/L biotin (B7).

For growth in a simulated “complex” medium, P. aeruginosa and S. aureus were grown

in defined synthetic cystic fibrosis sputum medium (hereafter referred to as “SCFM”). This

medium is designed to mimic the average nutritional environment of the cystic fibrosis

lung, and was chosen as a representative model medium that simulates a clinical context

more closely. The medium was prepared as described in (Palmer et al., 2007); briefly, it

is a MOPS buffered medium (adjusted to pH 6.8) that contains basic salts, a mixture of

amino acids (about ⇠19mM equivalents in total), glucose (3.2mM) and lactate (9.3 m).

Due to the high concentration of amino acids, microbial growth in this medium tends to

raise the pH significantly (>pH 8), and this medium was buffered with 50mM instead

of 10mM MOPS in this study. Like in minimal medium, SCFM was amended with the

essential vitamins for growth experiments with S. aureus.

All culturing experiments were conducted aerobically at 37ºC with agitation, and were

inoculated from fresh (exponential or early stationary phase) cultures grown on the same

medium and verified microscopically to be axenic. Growth was monitored by measuring

optical density at 600nm. Cells intended for isotopic analysis were generally harvested by

centrifugation at 5000rpm for 10min (at 4ºC), washed by resuspension in 1x phosphate

buffered saline solution, repelleted and frozen immediately at -80ºC until lipid extraction
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and analysis.

7.3.2 Experimental Setup

7.3.2.1 Water fraction factor

To determine the isotopic composition of new biomass synthesized by E. coli, P. aeruginosa

and S. aureus in medium with source water of a given isotopic composition, the organisms

were grown aerobically in 10mL replicate batch cultures in source water of different isotopic

compositions. Cells were harvested in exponential or early stationary phase, pelleted by

centrifugation and frozen at -80°C until lipid extraction and analysis. P. aeruginosa was

additionally grown in separate chemostats with identical dilution rates but source waters of

different isotopic compositions. Cells were harvested in steady-state, pelleted and frozen

until lipid extraction and analysis.

7.3.2.2 Continuous culture

For growth experiments in continuous culture, all medium was amended with 100µL/L

Antifoam 204 (Sigma Aldrich, #A6426) for growth of E. coli, and with 500µL/L for P.

aeruginosa and S. aureus. A Sartorius Biostat QPlus autoclavable chemostat system was

set up for continuous culture, with medium supplied at different flow rates (depending

on the desired dilution rate) by high-precision Watson Marlow peristaltic pumps. Over-

flow from a reactor vessel was continuously removed to maintain the vessel at a fixed

volume (measured precisely after termination of each experiment, usually between 500

and 600mL). A reactor vessel was equipped with heating jacket, exhaust gas condenser,

temperature, pH, redox and pO2 sensors, and was autoclaved fully assembled and kept as a

closed, sterile system after autoclaving (with supply medium, overflow waste, gas inlet and

exhaust also protected by sterile air filters). During operation, a reactor vessel was kept at

37°C, stirred at 500rpm and continuously sparged with filtered air at a flow rate of 1 L/min.

Reactor vessel medium supply lines were maintained at ⇠90°C for 5cm tubing length right
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before the vessel inlet via a custom-made aluminum heating block and heating tape to

prevent any potential growth in the medium supply lines. pH probes were calibrated prior

to autoclaving, and pO2 probes were calibrated after autoclaving and at least 2 hours

after connection to the amplifier. Uninoculated reactor vessels were first sparged with

pure N2 to calibrate 0% oxygen saturation, and then with air until signal equilibration for

100% oxygen saturation. Reactor vessels were run at least 24 hours prior to inoculation to

confirm sterility and then inoculated from a single colony pre-grown in the same medium

(via a septum port sterilized with 70% ethanol). Slow continuous flow of medium was

started with inoculation, and set to and maintained at the experimental dilution rate

once cultures reached exponential growth. Redox potential, pH and dissolved oxygen

were monitored continuously and optical density was measured periodically in aliquots

withdrawn aseptically from vessel overflow. Experiments (for example isotope spiking)

were conducted only once cultures reached steady state as gauged from the monitored

physiological parameters, usually after 4-6 generation times (⇠3-4 complete medium

turnovers). Purity of the culture was checked periodically by light and epifluorescence

microscopy. The dilution rate of each vessel was calculated from the gravimetric medium

flow rate and the weight of the total volume in the vessel (measured immediately after

conclusion of an experiment).

7.3.2.3 Isotope tracer incorporation

For isotope labeling experiments, chemostat reactor vessels were spiked with small aliquots

of 70% D2O (1 or 2mL depending on the experiment) once at steady-state, and 5-10 mL

samples were withdrawn from the reactor vessel at regular time intervals afterwards using

a sterile sampling device (generating suction with a sterile filter and 30mL syringe). Cell

growth was arrested immediately after sample withdrawal by adding the sample directly

into an equal volume of ice. Cells were harvested, washed once and frozen immediately.

Sampling intervals were never as small and sample sizes as large as to exceed the rate of
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medium replenishment by continuous flow.

7.3.2.4 Fatty acid recycling

Experiments aimed at assessing the recycling of exogenous fatty acids by S. aureus

were carried out in 250 mL flasks with 100 mL of the minimal medium. The glycerol

concentration in the medium was increased to 10mM and the medium was amended

with no exogenous fatty acids (control), 100µg perdeuterated pentadecanoic acid (C15:0

FA), or 100µg perdeuterated octadecanoic acid (C18:0) from 10 mg/mL stock solu-

tions in DMSO (addition of 100µL the solvent alone did not have affect growth). The

perdeuterated fatty acids were purchased from CDN Isotopes and are completely deuter-

ated (CD3(CD2)13COOH and CD3(CD2)16COOH, respectively) with the sole exception of

the carboxylic acid hydrogen (which exchanges too quickly in solution to retain a label).

Cells were harvested in early stationary phase (OD
600

⇡ 0.8), washed twice, and frozen

immediately.

7.3.3 Analytical Procedures

7.3.3.1 Isotopic composition of water

The isotopic composition of water in all culture media was measured from 1mL aliquots

using a Los Gatos Research DLT-100 liquid water isotope analyzer. Samples were analyzed

in 4+ replicate analyses with 10 injections each. Samples close to natural abundance

isotopic composition were calibrated against four working standards (�2H values: �117h,

�11h, +290h, 1270h) that in turn were calibrated against the VSMOW, GISP, and

SLAP international standards (Coplen, 1988). Average precision was 3.2h / 0.5ppm

(1�). Samples that were more heavily enriched from isotope tracer work (�2H > 1270h

/ 2F > 350ppm) were calibrated against enriched working standards (2F values: 500ppm,

1000ppm, 1250ppm, 1500ppm). Average precision was 2.5ppm (1�). The presence of

doubly-substituted species (DOD) was not taken into consideration due to fast equi-
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libration of water molecules by protonation/deprotonation and consequently negligible

abundance of DOD at these levels (2Fmax = 1500ppm). Samples beyond this scale were

no longer in the linear response range of the instrument, and were analyzed by isotope

dilution with natural abundance water of known isotopic composition.

7.3.3.2 Extraction and derivatization of fatty acids

Frozen cell pellets were lyophilized, weighed out into ⇠1mg aliquots of dry cell mass,

and spiked with 10µg of 21:0 phosphatidyl choline as a phospholipid extraction standard.

All samples from experiments on water fraction factors and isotope tracer incorporation

were transesterified in the presence of an acid catalyst (acetyl chloride in anhydrous

methanol, 1:20 v/v) at 100°C for 10 min (Rodríguez-Ruiz et al., 1998; Lepage and

Roy, 1986). Samples from experiments on the recycling of exogenous fatty acids were

transesterified in the presence of a base catalyst (0.5M NaOH in anhydrous methanol)

at room temperature for 10 min (Christie, 1997; Metcalffe and Wang, 1981; Griffiths

et al., 2010). Free fatty acids are not transesterified under these basic conditions, which

prevented the derivatization of any remaining exogenous perdeuterated free fatty acids not

consumed by the microorganisms or removed during washing steps. The resulting fatty

acid methyl esters (FAMEs) from all samples were extracted into hexane after addition of

a quantification standard (10µg C25:0 FAME), and concentrated under a stream of N2 at

room temperature prior to analysis. All preparation, processing and analysis of samples

containing perdeuterated materials was performed in a separate laboratory to avoid any

risk for cross-contamination of natural-abundance or isotope-tracer experiments.

7.3.3.3 Identification and analysis

Fatty acid methyl esters (FAMEs) from water-fraction-factor and isotope-tracer experi-

ments were analyzed by gas chromatography/mass spectrometry (GC/MS) on a Thermo-

Scientific Trace DSQ equipped with a ZB-5ms column (30m x 0.25mm i.d., film thickness
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0.25µm) and PTV injector operated in splitless mode, using He as a carrier gas at 0.8

ml/min. The GC oven was held at 80ºC for 1 minute, ramped at 20ºC/min to 130ºC,

and ramped at 5ºC/min to a final temperature of 320ºC (held for 20min). Peaks were

identified by comparison of mass spectra and retention times to authentic standards and

library data. Fatty acids are reported using the nomenclature z-Cx:y, where x is the

total number of carbons in the fatty acid skeleton (regardless of structure), y is the

number of double bonds, and z is a prefix describing additional structural features of the

compound. z=”cyclo-” identifies fatty acids with cyclopropyl rings, z=”i-” (iso-methyl

branched) identifies fatty acids that have a methyl branch on the penultimate carbon

(second carbon from the tail end), z=”a-” (anteiso-methyl branched) identifies fatty acids

that have a methyl branch on the ante-penultimate carbon (third carbon from the tail

end). The position and stereochemistry of the double bonds or cyclopropyl rings was not

determined (Christie, 2006).

The isotopic composition of the most abundant FAMEs was measured by GC/pyrolysis/

isotope-ratio mass spectrometry (GC-ir-MS) on a Thermo-Scientific Delta+ XP with

methane of known isotopic composition as the calibration standard and squalene of

known isotopic composition as an external standard. Additionally, a multi-compound

FAME standard was run every 4-6 samples to verify instrument accuracy and precision.

Chromatographic conditions were identical to those from GC/MS analysis except for

a thick-film column (ZB-5ms, 30m x 0.25mm i.d., film thickness 1.00µm) and slight

modifications to the temperature program to optimize chromatographic separation of key

FAMEs for the characteristic lipid profiles of the different species. Peaks were identified

based on retention order and relative height based on the GC/MS analysis. Samples that

were abundant enough for replicate analyses were analyzed at least in triplicate. All data

were corrected for the addition of methyl hydrogen during derivatization. The root-mean-

square (RMS) error of the squalene standard was 2.5h. Relative proportions of fatty

acids for isotope mass balance calculations were determined from peak areas corrected for
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derivatization and isotopic composition of each analyte.

Samples from recycling experiments were analyzed on a Waters Micromass GCT

Premier 6890N equipped with a Zebron-ZB-Wax column (29.5m x 0.25mm i.d., film

thickness 0.25µm) and PTV injector operated at a 10:1 split ratio, using He as a carrier

gas at 15 ml/min. The GC oven was ramped at 2ºC/min to 200ºC, held for 1min,

and ramped at 18ºC/min to a final temperature of 250ºC (held for 7min). Heavily

deuterated fatty acids were detected as distinct peaks that eluted earlier than their

respective natural abundance counterparts (see section Appendix D.1 for details), and

the degree of deuteration was determined from the mass shift of their molecular ions.

7.3.4 Computation / Modeling

Symbolic computations including analytical solutions to differential equations were de-

termined using equation-solving in Wolfram Mathematica (v. 9.0). Data processing,

analysis, model simulations and plotting were performed in R (R Core Team, 2014) using

functionality provided by various analytical and graphical packages (Soetaert et al., 2013;

Wickham, 2014a; Wickham and Chang, 2013; Xie, 2013b; Neuwirth, 2011; Dragulescu,

2013).

Hydrogen isotope measurements were recorded in the conventional �-notation (mea-

suring isotope ratios of analytes against isotope ratios of laboratory reference standards

with known isotopic composition relative to VSMOW), but are also converted to fractional

abundances using the known isotopic composition of VSMOW ( 2H
1H = 155.7643ppm,

de Laeter et al. (2003)) to allow consistent reporting and exact mass balance calculations in

all isotope tracer experiments4. In tables and plots, the fractional abundance of deuterium

2F is reported in parts per million (ppm = 10

6 · x). All conversions were performed using

an isotopes R module described in Section A.2 of Appendix A.
4See Section D.5.1 in the appendix on the topic of exact mass balance calculations.
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7.4 Results and Discussion

7.4.1 Limitations of D2O as an isotopic tracer

The use of high-strength heavy water labels as tracers for microbial activity is a very

desirable option, especially when either short incubation times are of interest (e.g. in

high temporal resolution studies of microbial activity response to environmental stimuli,

toxins or other effectors), or when very slow microbial activity is the subject matter, such

as for example in extreme environments like the deep biosphere (D’hondt, 2002; Morono

et al., 2011b; Jørgensen and Boetius, 2007; Hoehler and Jørgensen, 2013). The first

concern for the use of such a strong label is biological compatibility. 2H / deuterium is

unique amongst the stable isotopes in its chemical effects on biological systems due to

its extreme relative increase in mass from1H. At high concentrations of 2H, the heavy

isotope starts to significantly affect the solvent properties of water, affecting biological

macromolecules in the process. At the same time, there are significant isotopic effects

as a consequence of 2H substituting for 1H in functional groups, catalytic sites and key

substrates. However, these effects don’t usually come to bear until D2O exposure reaches

levels that are typically well beyond those relevant for isotope tracer work. Most organisms,

including mammals and insects, are usually unaffected by relatively low doses of D2O

(⇠10%). Most microorganisms are able to handle much higher concentrations (20-30%),

with some groups, including certain phototrophs, capable of adapting to extreme doses

of heavy water (>50%) without significant adverse effects (Kushner et al., 1999a). We

have found similar capability for tolerating D2O in experiments with P. aeruginosa and

S. aureus, whose growth rates were not adversely affected by ⇠20% and ⇠15% D2O,

and only showed substantial retardation from exposure to 50% D2O (see Section D.2 of

Appendix D for details). We thus consider isotopic spikes as high as 15-20% to be safe for

use without any adverse effects, and high label (up to ⇠35%) to be of reasonable potential
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for use if the application necessitates such a strong spike and the potential effects on all

relevant organisms is reasonably well-understood.
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Figure 7.3 – Chromatographic overlap during heavy 2H labeling. This plot models the peak
broadening and formation of a double peak in isotope labeling experiments with strong deuterium
isotope tracers.

The second concern is analytical in nature, and pertains to measuring growth activity

by incorporation of 2H into biological membranes. Typically, compound-specific isotope

ratio analysis of hydrogen in organic molecules requires chromatographic separation of
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different analytes of interest. However, it is well-established that deuterium substitution

has a non-trivial effect on the chromatographic behavior of organic molecules. This

effect has been studied in numerous publications, e.g. McCloskey et al. (1967); Rohrer

and Olechno (1992); Turowski et al. (2003); Iyer et al. (2004), and is well-appreciated

for its potential in separating deuterated isotopologues. In fact, in this study, we take

advantage of this effect to resolve exogenous perdeuterated fatty acid compounds of

microbial membranes by chromatographic separation (see Section 7.4.6 for details).

In the case of compound-specific hydrogen isotope analysis of relatively “low” en-

richment (on the order of hundreds or thousands of h, but far from perdeuteration),

this phenomenon can have very undesirable side effects. It is important to note that

what we tend to think of as a change in overall isotopic composition during isotope

enrichment, is actually the mixing of two isotopically distinct pools. These pools (the old

biomass and newly synthesized, isotopically-labeled biomass) more or less maintain their

distinct isotopic signatures, but the change in their relative proportions leads to overall

isotopic enrichment. While tremendous overall isotopic enrichment can be achieved in

a short amount of time, it is absolutely crucial to consider the chromatographic effects

of deuterium substitution in the new pool on the broadening of the mass 3 signal in the

isotopic analysis, in order to capture this microbial activity accurately.

Figure 7.3 illustrates the limitations of strong D2O spikes. Here, we show a a

simulated analysis of a C18:0 fatty acid methyl ester peak affected by different isotopic

spikes (chromatographic attributes and signal strengths of the peak taken from an actual

analysis of a natural abundance sample analyzed with a slow temperature ramp aimed at

increasing resolution). Enrichment is simulated with isotopic spikes that lead to an isotope

composition of new biomass of 1%, 10% and 25% 2H, and relative proportions of the new

to total biomass (the actual growth of the microbial population) ranging from 0.01%

to 0.5%. It is clear from the simulation that labeling with excessive D2O requires very

careful integration of chromatographic peaks in order to capture the full signal. While this
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is technically feasible with due diligence in the case of isolated peaks, most environmental

samples have messy chromatograms where such peak broadening might make it impossible

to still resolve the isotopic composition of individual analytes. Additional details on the

calculations and modeling are presented in Appendix D, Section D.1.

7.4.2 Biological parameters: water fraction factors

For the application of D2O as a quantitative isotopic tracer for microbial activity, it is

important to be able to estimate the isotopic composition of newly synthesized biomass

2FBnew at a given source water isotopic composition 2Fwater. Here, we are interested in

determining this relation specifically between microbial lipids 2Flipid and source water, with

the goal of spiking the source water with D2O to affect the isotopic composition of lipids in

actively synthesizing populations. To first order, 2Flipid follows 2Fwater - offset by isotopic

fractionation associated with biosynthesis (Hayes, 2001; Sachse et al., 2012). Extensive

work on environmental systems and laboratory cultures of microbial phototrophs (Sauer

et al., 2001; Schouten et al., 2006; Zhang et al., 2009b; Sachse and Sachs, 2008; Romero-

Viana et al., 2013) revealed substantial variability in this isotopic effect. Additional

work in other metabolic systems (Campbell et al., 2009; Sessions et al., 2002; Valentine

et al., 2004; Kreuzer-Martin et al., 2006) matched this observation, and hinted at a more

complex role of metabolism in the isotopic offset between source water and microbial lipids.

Although fatty acid biosynthesis is conserved throughout the bacterial domain, a number

of different metabolic levers can affect this process. During central metabolism, NADP+

is reduced to NADPH by hydride ion (H-) transfer from a metabolically derived reductant

and can subsequently be used in anabolic reactions5. During lipid biosynthesis, the nascent

fatty acid chain is elongated progressively by the addition of acetyl-CoA (via malonyl-CoA)

(KANEDA, 1991), with a number of hydrogen additions occurring during reductive steps.
5Sometimes, the redox carrier NADH, typically used for catabolic reactions, is used as a reductant in

fatty acid biosynthesis in addition to NADPH (White et al., 2005). The two can also be interconverted
by transhydrogenases (HOEK and RYDSTROM, 1988), which can carry additional strong isotopic effects
(Zhang et al., 2009a; Jackson et al., 1999).

155



Chapter 7: Hydrogen isotope labeling in lipids

The hydrogen composition of the resulting fatty acid depends on the exact structure

(saturation state, branching), but to first order, this highly-conserved pathway includes

50% hydrogen derived from NAD(P)H, 25% from water (as a proton) and 25% from the

precursor acetyl-CoA (Zhang et al., 2009a; Valentine, 2009) in all bacterial fatty acids.

The isotopic composition and source of hydrogen in NADPH and acetyl-CoA, however,

depend strongly on the metabolic program of the organism with hydrogen in both pools

ultimately sourced from either of the two end-member reservoirs: water (as is the case in

autotrophic organisms), or organic substrates. Enzymatic differences in the biosynthetic

and reductive steps themselves, although existent in some organisms, are likely to be of

secondary importance for the hydrogen isotopic composition of the resulting fatty acid,

and as shown and discussed before (Sessions and Hayes, 2005; Zhang et al., 2009a), the

isotopic composition of lipids can thus be considered in terms of the combination of the

mole fraction of ultimately water-derived hydrogen xw with water isotopic composition

2Fw and associated net hydrogen isotope fraction 2↵l/w, and substrate-derived hydrogen

(xw�1) with substrate isotopic composition 2Fs and associated net isotope fractionation

2↵l/s
6:

2Flipidnew = xw· ↵l/w · 2Fw + (1� xw) · ↵l/s · 2F s (7.11)

Unfortunately, the exact values of xw, ↵l/w and ↵l/s cannot be determined from

culturing experiments (they can only be constrained some). However, for the purposes

of isotope labeling experiments where the overall effects of different substrates can be

assessed in culture, it is sufficient to determine the combined effects of the water hydrogen

mole fraction and biosynthetic fractionation xw · ↵l/w (here termed the water fraction

factor – a concatenation of “water fraction” xw and “fractionation factor” ↵l/w) and the

combined substrate offset (1� xw) · ↵l/s ·2 FS (here termed the substrate offset). These

6See D.5.2 in Appendix D for details on how to calculate isotopic fractionation of a fractional
abundance xF with a fractionation factor x↵ exactly, and information about the error introduced if
using the approximation x↵ · F

x

.
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can be readily obtained from the slope and intercept of culturing experiments with different

water isotopic compositions Fw, and are reported here for the heterotrophic E. coli, P.

aeruginosa, S. aureus and S. maltophilia. Previous data on these parameters of hydrogen

metabolism only exist for E. coli grown on LB and glucose (Zhang et al., 2009a).

Medium Condition Microbe Compound % Membrane water fraction factor�
xw · ↵l/w

� substrate offset
(1� xw) · ↵l/s · 2FS [ppm] R2

Minimal Batch (Stationary) EC C16:1 FA 20.2 0.81± 0.07 38± 12 1.0
Minimal Batch (Stationary) EC C16:0 FA 44.4 0.85± 0.07 32± 12 1.0
Minimal Batch (Stationary) EC cyclo-C17:0 FA 12.7 0.82± 0.07 39± 13 1.0
Minimal Batch (Stationary) EC C18:1 FA 22.7 0.81± 0.07 40± 12 1.0
Minimal Batch (Stationary) PA C16:1 FA 7.6 0.72± 0.05 78± 8 1.0
Minimal Batch (Stationary) PA C16:0 FA 39.2 0.83± 0.03 69± 5 1.0
Minimal Batch (Stationary) PA C18:1 FA 43.7 0.77± 0.03 77± 5 1.0
Minimal Batch (Stationary) PA cyclo-C19:0 FA 7.7 0.75± 0.05 81± 9 1.0
Minimal Batch (Stationary) SA a-C15:0 FA 46.7 0.47± 0.04 66± 7 1.0
Minimal Batch (Stationary) SA a-C17:0 FA 20.2 0.46± 0.08 73± 14 1.0
Minimal Batch (Stationary) SA C18:0 FA 6.7 0.52± 0.29 76± 50 0.9
Minimal Batch (Stationary) SA i/a-C19:0 FA 10.7 0.49± 0.05 75± 9 1.0
Minimal Batch (Stationary) SA C20:0 FA 10.1 0.58± 0.20 70± 35 1.0
SCFM Batch (Exponential) PA C16:1 FA 7.6 0.74± 0.06 61± 10 1.0
SCFM Batch (Exponential) PA C16:0 FA 37.4 0.80± 0.04 50± 7 1.0
SCFM Batch (Exponential) PA C18:1 FA 47.4 0.78± 0.04 54± 7 1.0
SCFM Batch (Stationary) PA C16:1 FA 12.0 0.65± 0.07 82± 12 1.0
SCFM Batch (Stationary) PA C16:0 FA 37.1 0.72± 0.08 76± 13 1.0
SCFM Batch (Stationary) PA C18:1 FA 48.9 0.67± 0.08 84± 13 1.0
SCFM Batch (Stationary) SA a-C15:0 FA 51.2 0.42± 0.11 82± 18 0.9
SCFM Batch (Stationary) SA a-C17:0 FA 29.6 0.41± 0.11 87± 18 0.9
SCFM Batch (Stationary) SA i/a-C19:0 FA 8.5 0.36± 0.12 94± 19 0.9
SCFM Batch (Stationary) SM C14:0 FA 4.9 0.65± 0.01 61± 2 1.0
SCFM Batch (Stationary) SM i-C15:0 FA 59.7 0.52± 0.02 75± 3 1.0
SCFM Batch (Stationary) SM a-C15:0 FA 17.1 0.53± 0.01 72± 2 1.0
SCFM Batch (Stationary) SM C16:0 FA 11.2 0.73± 0.03 51± 4 1.0
SCFM Continuous (1̃9hrs) PA C16:1 FA 5.7 0.74± 0.06 41± 10 1.0
SCFM Continuous (1̃9hrs) PA C16:0 FA 45.9 0.86± 0.24 24± 41 0.9
SCFM Continuous (1̃9hrs) PA C18:1 FA 33.8 0.89± 0.06 21± 10 1.0
SCFM Continuous (1̃9hrs) PA cyclo-C19:0 FA 9.0 0.84± 0.06 32± 10 1.0
SCFM Continuous (2̃hrs) PA C16:1 FA 6.9 0.64± 0.05 60± 8 1.0
SCFM Continuous (2̃hrs) PA C16:0 FA 40.9 0.61± 0.19 60± 32 0.9
SCFM Continuous (2̃hrs) PA C18:1 FA 42.4 0.65± 0.03 60± 5 1.0

Table 7.1 – Water fraction factors. Summary of the water fraction factors and substrate offsets of
major fatty acids (>5% relative abundance) derived from water fraction factor experiments with E.
coli (EC), P. aeruginosa (PA), S. aureus (SA) and S. maltophilia (SM). Errors are 95% confidence
intervals of the coefficients from the linear regression fit.

Table 7.1 summarizes the water fraction factors and substrate offsets for the major

fatty acids (comprising more than 5% of the membrane of the respective organisms)

from experiments in a variety of growth conditions. Figure 7.4 and 7.5 illustrate these

visually for ease of discussion. Additional details on the experiment and derivation of these

biological parameters are available in section D.3 of Appendix D. Here, we describe and

discuss the three main sources of variability observed in the data: variation between
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different membrane components, variation between organisms, and variation between

growth conditions.

E. coli P. aeruginosa S. aureus S. maltophilia
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Figure 7.4 – Water fraction factors. Summary of the water fraction factors. Different colors
indicate tested growth conditions. Size of symbols indicates the relative membrane abundance of
the compound. Symbols from different experiments are slightly offset from the central axis for each
compound to increase clarity. Error bars are 95% confidence intervals of the coefficients from the
linear regression fit.

7.4.2.1 Same organism, same medium, different membrane components

Different membrane fatty acids produced by the same culture generally show similar water

fraction factors and substrate offsets. This is consistent with the level of biosynthetic

overlap between different fatty acids, which are all extended by the same fatty acid

synthase, one 2-carbon unit (from acetyl-CoA) at a time. However, some of the variation

observed here hints at the subtle differences in the biosynthetic pathways for different

fatty acid classes. This is most notable in the strikingly higher water fraction factor of

straight chain fatty acids (C14:0 and C16:0 ) in S. maltophilia compared to the rest of

the membrane, which is primarily composed of methyl branched (i-C15:0and a-C15:0) fatty

acids. The difference in this case lies with the initiation of fatty acid biosynthesis.
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In addition to its role in chain elongation during the biosynthesis of all fatty acids,

acetyl-CoA is also the primer for the initiation of straight chain fatty acid biosynthesis.

Methyl-branched fatty acids are elongated by the same enzyme using acetyl-CoA just

like their straight chain counterparts, but biosynthesis is initiated differently. Instead of

acetyl-CoA, several a-keto acids act as primers via transamination and decarboxylation by

branched chain a-keto acid decarboxylase. Specifically, in the case of odd-chain iso- and

anteiso- methyl branched fatty acids, which constitute a major portion of the membranes

of S. aureus and S. maltophilia, leucine and isoleucine act as the respective primers

(KANEDA, 1991; Kaneda, 1971; Oku and KANEDA, 1988; Christie and Han, 2010). Given

the presence of leucine and isoleucine in both SCFM and S. aureus minimal medium, it is

reasonable to assume that hydrogen incorporated into mature methyl-branched fatty acids

via these primers is not affected by the hydrogen isotope composition of the source water.
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Compared to the acetyl-CoA primer of straight chain fatty acids, which contributes only

the 3 hydrogens on the terminal carbon directly to the mature fatty acid, both leucine-

and isoleucine-derived primers contribute a total of 9 hydrogens to the fatty acid tail.

This implies, for example, that i-C15:0 only contains 20 (29 - 9) hydrogens that could be

affected by water hydrogen vs. 28 (31 - 3) in straight chain C16:0, and suggests that xw

for i-C15:0 should be ⇠25% lower than xw for C16:0. The resulting water fraction factor

is expected to be reduced similarly, assuming that isotopic fractionation of the overall

biosynthetic process ↵l/s does not change substantially. For S. maltophilia, we observe

a reduction in the water fraction factor of ⇠27% from C16:0to i-C15:0, consistent with

this interpretation (⇠22% from C14:0 to i-C15:0, with the expected reduction at ⇠20%).

Similar trends are observed for the respective fatty acids classes in S. aureus, and are

mirrored in the substrate offsets for both organisms (which are affected as 1� xw).

Additional trends expected between different fatty acid classes include a similar reduc-

tion of water-derived hydrogen xw from saturated to unsaturated fatty acids (for example

C16:0 to C16:1in E. coli and P. aeruginosa) due to two hydrogens that could be affected by

water missing in the double bond (the missing reductive step introduces a proton and an

NADPH hydrogen). This prediction can be observed as a general trend in our data, but

is difficult to ascertain within the projected error ranges.

Cyclo-propyl fatty acids (for example, cyclo-C17:0 and cyclo-C19:0) are derived from

their unsaturated precursors (e.g. C16:1 and C18:1) by addition of a methylene group

derived from S-adenosylmethionine across the double bond (Grogan and Cronan, 1997).

This introduces hydrogen from the methionine methyl (which, in turn, is derived from 5-

methyl-tetrahydrofolate in de-novo synthesis of methionine, Guest et al. (1964)) but the

hydrogen isotopic composition and ultimate source of this hydrogen (water vs. substrate)

likely depends on the nutritional environment, and its effect on water fractionation factors

is difficult to predict. In E. coli growing on minimal medium, there is no statistically

significant difference between the water fraction factors and substrate offsets of C16:1 and
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its derivative cyclo-C17:0. In P. aeruginosa, there appears to be a slight decrease in the

water fraction factor (increase in the substrate offsets) from C18:1 to its derivative cyclo-

C19:0 both in Minimal and SCFM medium, but the statistical support for this difference

is also weak.

7.4.2.2 Same medium, different organisms

Within error, E. coli and P. aeruginosa show similar water fraction factors for their shared

fatty acids at comparable conditions (growth in minimal medium on succinate). These

are also consistent with observations made by Zhang et al. (2009a) for the facultative

freshwater bacterium Cupriavidus oxalaticus in minimal succinate medium (0.83 for C16:1,

0.80 for C16:0 and 0.89 for C18:1, compared to 0.81, 0.85 and 0.81 for E. coli and 0.72,

0.83 and 0.77 for P. aeruginosa on succinate in our study).

However, there is a significant difference in the substrate offset of P. aeruginosa and

E. coli in minimal medium. This is surprising because both show similar water fraction

factors, and are grown on exactly the same carbon source. Assuming that the isotopic

fractionation between lipid and water ↵l/w is similar for this metabolism, it implies that xw

must also be similar, and suggests that the hydrogen isotope fractionation factor between

substrate (i.e. succinate) and lipid ↵l/s in P. aeruginosa is significantly higher than in

E. coli. Zhang et al. (2009a) hypothesized high ↵l/s in succinate metabolism to be a

consequence of two complementary effects:

• The first is removal of one of two methylene H from succinate by succinate dehydro-

genase prior to abstraction of the second H by isocitrate dehydrogenase to generate

the NADPH used in lipid biosynthesis. The H removal by succinate dehydrogenase

likely carries a very strong kinetic isotope effect that has been measured at 4,400h in

vitro (Zhang et al., 2009a; Rétey et al., 1970), which leaves the remaining hydrogen

that is used for fatty acid biosynthesis via NADPH strongly enriched in 2H and lead

to a high net ↵l/s. This effect depends primarily on the property of these TCA
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cycle enzymes. While it is likely a strong contributor to a high ↵l/s in both E. coli

and P. aeruginosa, it is unlikely to lead to significant differences between the two

organisms.

• The second effect relates to the anabolic need for NADPH vs. the catabolic need

for NADH. During high flux through the TCA cycle, high production of NAPDH

likely exceeds anabolic needs for the reductant, and is balanced by interconversion

to NADH via transhydrogenase (HOEK and RYDSTROM, 1988), which can carry

strong kinetic isotope effects (Jackson et al., 1999) that leave residual NADPH

enriched in 2H as suggested by Zhang et al. (2009a). This effect depends primarily

on the balance between energy generation and biosynthesis, and could indeed vary

between E. coli and P. aeruginosa growing on the same substrate. The observed

difference in the substrate offset (figure 7.5) would then suggest that P. aeruginosa

ultimately converts more substrate to energy and less substrate to biomass than E.

coli (i.e., it is less efficient at building up biomass).

The same observation applies not only in minimal medium but also in comparison of P.

aeruginosa and S. aureus in SCFM medium, where the substrate offset of P. aeruginosa is

relatively enriched, although this is more difficult to interpret due to the complex nature

of the SCFM medium.

Most of the variability between P. aeruginosa and S. maltophilia (comparable in SCFM

medium) is likely due to the differences between straight-chain and methyl-branched fatty

acids discussed before, as supported by the similar water fraction factors of C16:0 (the only

fatty acids that constitute a significant component of the membranes of both organisms

and can be compared directly). However, S. aureus water fraction factors are lower than

their P. aeruginosa or S. maltophilia counterparts in SCFM medium (marked in blue in

Figure 7.4). Assuming isotopic fractionation between water and lipid ↵l/w to be similar for

all these heterotrophs when grown in the same medium (Zhang et al., 2009a), this suggests
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that S. aureus incorporates less hydrogen from water (⇠11% lower xw in the direct

comparison of a-C15:0 produced both by S. aureus and S. maltophilia). This difference is

mirrored accordingly in the substrate offset, as expected from its dependence on 1� xw.

Although there is not enough information to draw conclusions as to the mechanisms

underlying this difference, it is worthwhile to point out that the gram-positive S. aureus

is the most phylogenetically different organism among the four strains. It is the one most

adapted to (and dependent on) growth in the presence of multiple carbon substrates,

and might be using a different combination of substrates than the other organisms in the

multi-substrate SCFM medium.

7.4.2.3 Same organisms, different growth conditions

Comparisons of the water fraction factors and substrate offsets for the same organism

grown under different conditions further highlights the potential range of the parameters

controlling the isotopic composition of hydrogen in lipids (xw, ↵l/w, ↵l/s) as a function

of metabolism, and were explored in some detail with P. aeruginosa.

The first difference arises from growth in simple (Minimal) vs. more complex (SCFM)

medium. In P. aeruginosa, this implies a transition from growth on succinate to growth on

a mixture of lactate, glucose and various amino acids, and is accompanied by a significant

drop in the water fraction factor (substrate offsets are not directly comparable, because

the isotopic composition of all the organic hydrogen sources is not known). As discussed

before (Zhang et al., 2009a), this is likely a consequence of both reducing ↵l/w and xw

in switching from succinate (a relatively high ↵l/w) to a more complex medium (smaller

xw due to increased assimilation of preformed cell constituents). The same pattern is

observed in comparing growth of E. coli on minimal succinate medium in our study (high

water fraction factors: ↵l/w ·xw = 0.81 for C16:1, 0.85 for C16:0 and 0.81 C18:1) to growth

of E. coli in complex medium (LB broth: ↵l/w · xw = 0.44 for C16:1, 0.52 for C16:0 and

0.48 for C18:1, Zhang et al. (2009a)).
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Additionally, the same pattern can be observed in water fraction factors from P. aerug-

inosa cultures harvested in stationary phase (dark blue, Figure 7.4) vs. exponential phase

(light blue) in SCFM medium. P. aeruginosa metabolizes certain substrates (aspartate,

alanine, arginine) in SCFM preferentially, and others (glucose, leucine, lysine) only once

it depletes the prior sources (Behrends et al., 2009). Stationary-phase cultures carry

the integrated signal of hydrogen metabolism during exponential phase where preferred

substrates are consumed, and hydrogen metabolism during the transition to stationary

phase where the remaining substrates are consumed. Although little is known about

the individual effects of these substrates, the observed pattern suggests that hydrogen

metabolism of early substrates (aspartate, alanine, arginine) occurs with a higher ↵l/w

(not offset by changes in xw), higher xw (not offset by changes in ↵l/w), or both. The

mirrored shift in substrate offsets suggests that changes in xw play a substantial role in

altering the water fraction factors (lower xw for the consumption of refractory materials

are then consistently reflected in the 1� xw dependence of the substrate offset), and/or

that refractory substrates are isotopically heavier or less fractionated (or more strongly

reversely fractionated if ↵l/s > 1).

Comparing P. aeruginosa grown in batch culture to stationary phase vs. growth in

continuous culture at an intermediate doubling time of ⇠2 hours (dark blue and pink in

figure 7.4) shows similar water fraction factors (xw ·↵l/w) within error, consistent with both

representing the cumulative hydrogen isotope effects from consumption of all substrates.

However, the substrate offset ((1 � xw) · ↵l/s · Fs) in continuous culture is significantly

reduced, without a clear physiological explanation in light of the conserved water fraction

factors. Given the complexity of the medium and its use of a range of common labo-

ratory substrates (amino acids, lactate, glucose, etc.), it is conceivable, however, that

one or multiple substrates came from different vendors/batches with different isotopic

composition Fs in the two experiments.

The most interesting comparison lies with the continuous culture experiments at
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different growth rates. Cultures of P. aeruginosa grown in continuous culture with a

long doubling time (⇠19hrs) vs. intermediate doubling time (⇠2hrs) show a significant

shift in water fraction factors to higher values, and a mirrored shift in substrate offsets

to lower values (red and pink in Figure 7.4). Both experiments were conducted in close

succession, and care was taken to include the same batch of chemicals to ensure no

changes in the chemical environment or substrate isotopic composition between these

cultures. This suggests that isotopic effects in individual steps of the biosynthetic pathways

likely remained unchanged, though, the relative rate of biosynthesis (doubling only once

in 19 hours) provides a much longer time scale for isotopic exchange and equilibration of

precursors and reagents with water hydrogen (effectively raising xw towards 1). The most

important site of potential exchange would be hydrogen carried on NAD(P)H. As pointed

out by Zhang et al. (2009a), experiments with NADP2H and purified fatty acid synthesis

enzymes incubated in vitro over 5 hours resulted in 2H-incorporation into fatty acids

without loss of the label (suggesting no exchange with water during fatty acid synthesis

itself), while experiments with crude cell extracts showed substantial loss of the label to

exchange reactions (Saito et al., 1980). This H-exchange is likely mediated by a wide range

range of enzymes in the cell that perform NAD(P)H chemistry. The enzymes and kinetics

involved are difficult to estimate in vivo with the limited information available at present.

However, if the time scale of in vitro experiments (⇠5 hours) provides a reasonable

timescale for exchange, the rate of metabolic turnover of NADPH in fast-growing cultures

likely exceeds the rates of the various potential exchange reactions (preserving most if

not all of the primary metabolic hydrogen isotope signal), while slow-growing cultures

are affected much more significantly. This hypothesis would explain our observations

in continuous culture with P. aeruginosa at a ⇠19hr doubling time, and merits further

research into the rates and mechanisms of NAD(P)H hydrogen exchange.

The implications of the various observations for the use of D2O in isotope tracer

experiments to measure microbial activity can be summarized as follows: (i) to first
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order, the heterotrophs studied here and elsewhere (Zhang et al., 2009a) display a similar

range of water fraction factors from ⇠0.4 to ⇠0.9; (ii) different growth substrates and

metabolic programs as well as membrane fatty acid composition modulate where individual

organisms’ water fraction factors fall within this range; (iii) slow growth increases water

fraction factors, likely due to hydrogen exchange of metabolic intermediates with water

hydrogen (ultimately increasing xw); (iv) substrate offsets do not readily translate to other

media without detailed knowledge of the hydrogen isotope composition of the growth

substrates.

7.4.3 Isotope labeling in continuous culture

We applied hydrogen isotope labeling in continuous culture experiments to estimate

microbial activity as a proof of concept, and to assess various parameters that could

affect the interpretation of data from environmental applications. Continuous culture,

or chemically static (chemostat) experiments provide the ideal setting for testing any

tracer of microbial activity. The chemostat was developed independently around 1950 by

Jacques Monod at the Pasteur Institute (MONOD, 1950), who coined the term continuous

culture (and called the device a bactogène), and by Aaron Novick and Leo Szilard at

the University of Chicago (Novick and SZILARD, 1950), who gave it its modern name.

The theory and application of chemostats was refined in subsequent years, and led to

fascinating new insights into fundamental aspect of microbial physiology (e.g. Novick

(1955); Herbert et al. (1956)). The molecular revolution saw its use diminish for several

decades, but the importance of continuous culture to physiological research remains as

important today as it was 60 years ago, which is increasingly re-recognized for a wide range

of research applications (Hoskisson, 2005). Briefly, a chemostat provides a chemically

constant environment for microbial culture by continuously feeding fresh medium at a

constant rate into a reactor vessel that is kept at a constant volume by removing the

overflow. Assuming that cells are either not actively degraded, or if they are, their (partly
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labeled) cellular constituents are recycled by the remainder of the population (i.e. cells are

not completely lost to the dissolved organic matter pool), the only form of actual removal

of biomass is the dilution rate imposed by the continuous culture setup. This sets a fixed

dilution rate of the microbial culture (equivalent conceptually to removal rate d discussed

in Section 7.2), which the population needs to counteract by doubling at the same rate

(µ = d) once at steady-state7. Here, we take advantage of a culturing environment with

an independently controlled growth rate to test incorporation of an isotopic spike of D2O

administered at steady-state as a function of growth. Towards this end, we expand on

the equations and concepts derived in Sections 7.2 and 7.4.2.

In the case of an isotope labeling experiment in an environmental setting, the overall

metabolic mode (heterotrophy vs. autotrophy, chemotrophy vs. phototrophy) can likely be

constrained, and laboratory values for the water fraction factor xw ·↵l/w (Eq. 7.11, Table

7.1 and Figure 7.4) provide reasonable estimates for the corresponding environmental

values. The exact nature and hydrogen isotope composition of the environmental growth

substrate(s) Fs is rarely known, providing limited information on how to apply the substrate

offset or substrate fraction factor (if known). However, with an estimate of the water

fraction factor and knowledge of the natural isotopic composition of the source water

Fwnat , the medium/environment specific substrate offset can be estimated simply from

observing the natural isotopic composition of the lipids 2Flipid(t0) before application of

an isotopic spike:

(1� xw) · ↵l/s · 2F s =
2F lipid(to)� xw · ↵l/w · 2Fwnat

(7.12)

7A tremendous amount of literature exists on the theory and application of chemostats; please see
e.g. Smith (1995) for details.
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which, substituted back into Eq. 7.11 to provide an expression for the isotopic composition

of newly synthesized lipids, yields:

2Flipidnew = xw· ↵l/w ·
�
2Fw � 2Fwnat

�
+

2F lipid(t0) (7.13)

Using Eq. 7.13 to describe the isotopic composition of newly-formed lipids, with a

dilution model for the isotopically spiked water 2Fw(t) =

2Fwspiked
· e�kt (with initial

isotopic composition of the spiked medium water 2Fwspiked
and dilution rate constant k)

and substituting back into Equation 7.8 finally yields:

2F lipid(t) =
Bnew · 2F new

B
+

Bold · 2F old

B

=


xw · ↵l/w · 2Fwspiked

· fS · µ+ !

µ+ ! + k
·
�
1� e�(µ+!+k)·t�

+

�
2F lipid(t0)� xw · ↵l/w · 2Fwnat

�
· fS ·

�
1� e�(µ+!)·t�⇤

+

⇥
2F lipid(t0) ·

�
1� fS ·

�
1� e�(µ+!)·t��⇤

= xw · ↵l/w · fS ·

2Fwspiked

· µ+ !

µ+ ! + k
·
�
1� e�(µ+!+k)·t�� 2Fwnat ·

�
1� e�(µ+!)·t�

�

+

2F lipid(t0)

(7.14)

which in the case of a constant isotopic label (no dilution or other variation of the water

isotopic composition over the course of the isotope labeling experiment), would simplify

to:

2F lipid(t) = xw · ↵l/w · fS ·
�
2Fwspiked

� 2Fwnat

�
·
�
1� e�(µ+!)·t�

+

2F lipid(t0)

(7.15)

where xw · ↵l/w is the water fraction factor, fS the fraction of de novo biosynthesis

(vs. recycling of exogenous lipids), 2Fwspiked
the isotopic composition of the spiked
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medium/environmental source water, 2Fwnat the natural isotopic composition of the source

water, µ the growth rate of the population, ! the turnover rate and 2Flipid the isotopic

composition of the microbial lipids at time t (all parameters as described previously).
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Figure 7.6 – Isotope labeling of E. coli. This figure illustrates the isotopic enrichment of
major membrane components (>5%) of E. coli after an isotopic D2O spike into a culture grown
continuously at a fixed dilution rate equivalent to doubling every ⇠2.3 hours. Time is shown as the
fraction of a doubling for ease of comparison to other experiments. Colors indicate the different fatty
acids, symbol sizes represent the relative pool sizes (% of all fatty acids in the membrane). The
thick dashed line indicates the average isotopic composition of the whole membrane. The dotted
thin line indicates the predicted enrichment from theoretical considerations, and is based on the
weighted average water fraction factor determined for this medium (Table 7.1). The gray shaded
band indicates the maximal range of predicated labeling considering the maximal range of measured
water fraction factors (of any fatty acid of this organism) in combination with the 95% confidence
interval on the measurement of the initial water isotopic composition of the D2O spiked reactor.

Figure 7.6 shows the incorporation of 2H into the major fatty acid components of E.

coli over the course of ⇠1/5 of a doubling after an isotopic spike with D2O (2Fwspiked=

1208ppm) during growth in continuous culture at a constant growth rate of ⇠7.3 day-1(a

doubling time of ⇠2.3 hours) in Minimal medium (see Table D.14 for the data). These

data show immediate incorporation of the water tracer into all membrane components,

consistent with rapid osmotic equilibration predicted to occur in microorganisms due to
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their high surface-to-volume ratio (Verkman, 2013). Additionally, the different fatty acids

show substantial divergence in their labeling patterns, with C16:1 getting over-labeled

with respect to the major membrane component C16:0, and C18:1 and cyclo-C17:0

getting under-labeled (significantly so in the case of cyclo-C17:0). This divergence pattern

provides potential insight into dynamics within this microbial population, and is discussed

in some detail in Section 7.4.5. Here, we focus on the overall isotopic labeling of the

membrane as a whole (the weighted isotopic average, or mass balance, of all membrane

components), as shown in Figure 7.6 by the thick dashed line. Since the growth rate

µ is controlled by the chemostat setup, we can model the expected isotopic enrichment

using Equation 8.2 with the following measured parameters: 2Fwspiked
is the isotopic

composition of the medium water after the spike (diluted with dilution rate k set by the

chemostat), 2Fwnat is the natural isotopic composition of the medium water, xw · ↵l/w is

the weighted average water fraction factor for E. coli in this medium (see Section 7.4.2

for details on individual fatty acids), 2Flipid(t0) the weighted average isotopic composition

of the membrane measured at the onset of the labeling experiment, and fS = 1 (the

medium is well-defined, and contains no exogenous fatty acid sources). The dotted line in

Figure 7.6 represents the resulting theoretical level of enrichment, which closely matches

the actual labeling pattern of the major fatty acid (C16:0), but slightly overestimates

the observed labeling of the membrane as a whole. The single largest source of error

in the prediction stems from uncertainty in the water fraction factor (see Figure 7.4).

This is illustrated in Figure 7.6 by the gray band, which represents the maximal and

minimal labeling prediction based on the entire range of water fraction factors of all

membrane components observed for E. coli combined with uncertainty in the water isotope

measurement (the latter is a minor component). The observed isotope labeling of the

membrane matches the theoretical prediction well within this uncertainty, indicating that

this method could be used in reverse for its original purpose (predicting growth rates from

isotopic enrichment).
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It is important to note that the slight under-labeling of the membrane as a whole

with respect to the model prediction could also hint at a role of metabolically produced

water in diluting the water label within the cells (Kreuzer-Martin et al., 2006). This effect

could explain the observed enrichment if the heavy water label is effectively diluted by

5-10% within the cells due to water produced from metabolic activity. However, given the

uncertainty in the water fraction factor, the current data does not reveal whether this effect

occurs in this experiment or what its exact magnitude might be. If present, it is reasonable

to assume that its importance would increase at faster growth rates and decrease at slower

growth rates due to its direct dependence on metabolic water production. This merits

careful evaluation when applying this technique to even faster-growing cultures.

7.4.4 The role of turnover / maintenance

For any technique to quantitatively capture microbial activity, it is important that it scales

well to lower, environmentally-relevant growth rates. This is particularly important in the

case of isotopic tracers, because the premise of high sensitivity and low detection limits of

small isotopic enrichments partly motivates their use in studying microbial activity in the

first place. Here, we report on several experiments with P. aeruginosa and S. aureus in

continuous culture at different growth rates (from doubling times of ⇠2 hours to ⇠13 days)

and discuss the role of turnover/maintenance activity in slower-growing microorganisms.

Figure 7.7 illustrates the results from three separate labeling experiments with P.

aeruginosa at growth rates that correspond to doubling times of ⇠2.2 hours, ⇠16.2 hours

and ⇠5.4 days (details listed in Table 7.2, data in Table D.12). The figure shows the

isotopic enrichment of all major fatty acid membrane components after administration of

an isotopically-labeled water spike in combination with the weighted average enrichment

of the membrane as a whole (dashed thick line) and the theoretically predicted enrichment

(dotted thin black line with gray confidence bands). As discussed in Section 7.4.3 for E.

coli, substantial divergence in the labeling pattern of individual fatty acids can be observed
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Figure 7.7 – Growth-rate-dependent isotope labeling of P. aeruginosa. This figure illustrates
the isotopic enrichment of major membrane components (>5%) of P. aeruginosa after an isotopic
D2O spike into cultures grown continuously at fixed dilution rates. Time is shown as the fraction of
a doubling for ease of comparison. Colors indicate the different fatty acids, symbol sizes represent
the relative pool sizes (% of all fatty acids in the membrane). The thick dashed line indicates the
average isotopic composition of the whole membrane. The dotted thin line indicates the predicted
enrichment from theoretical considerations, and is based on the weighted average water fraction
factor determined for this medium (Table 7.1). The gray shaded band indicates the maximal range
of predicated labeling considering the maximal range of measured water fraction factors (of any fatty
acid of this organism) in combination with the 95% confidence interval on the measurement of the
initial water isotopic composition of the D2O spiked reactor. The dotted red line indicates the best
fit of the theoretical model with a variable turnover rate !.

as well in P. aeruginosa. Additionally, growth at slower rates is shown to affect the overall

membrane composition of the organism, and alters the isotopic enrichment divergence

pattern.
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This is most striking in terms of the switch in divergence between C16:0 and C18:1 at

the slowest growth rate and the growth-rate-dependent increase of cyclo-C19:0. Specif-

ically, cyclo-C19:0 production increases with a decrease in growth rate, and comes at

the expense of the unsaturated precursor C18:1 to the point where in the slow-growth

condition of doubling every ⇠5 days, the majority of C18:1 has been converted to cyclo

C19:0. This is consistent with known patterns of cyclo-propyl fatty acid (CFA) formation.

CFAs have been observed for a long time to be a side effect of batch cultures transitioning

from exponential to stationary phase, which – physiologically – is similar to a radical

reduction in growth rate. However, the effect is particularly striking in continuous culture,

which implies that CFAs are an inherent feature of slow metabolism, rather than a

unique aspect of the sudden, radical metabolic transition experienced from exponential

to stationary phase growth in batch culture. Historically, the timing of CFA production

(right before growth arrest) and the accompanying reduction of unsaturated fatty acids

(which are amenable to damage by lipid peroxidation), have been interpreted as evidence

for cells preparing for adverse conditions. However, given the substantial energetic cost

and absence of conclusive evidence for a protective effect, the role and regulation of CFA

formation remains unresolved (Grogan and Cronan, 1997).

The second, and key observation, however, lies with the the observed enrichment

relative to the theoretical prediction (dashed thick line vs. dotted think black line).

During relatively fast growth conditions (⇠2 hours in the top panel), the theoretical

prediction closely matches the observed isotope labeling of the membrane as a whole,

and lies well within the projected error from uncertainty in the water fraction factors. As

growth slows, the isotopic enrichment increasingly exceeds theoretical predictions (beyond

even the extremes of the entire range of water fraction factors), which implies that the

cellular membranes of these microbial populations are produced faster than necessary for

replication, suggesting that membrane turnover in excess of growth plays a substantial role.

The exact same observation applies to our data from four separate labeling experiments
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with S. aureus at growth rates that correspond to doubling times from ⇠6.4 hours to

⇠13.3 days as illustrated in Figure 7.8 (details listed in Table 7.2, data in Table D.13).
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Figure 7.8 – Growth-rate-dependent isotope labeling of S. aureus. This figure illustrates the
isotopic enrichment of major membrane components (>5%) of S. aureus after an isotopic D2O spike
into cultures grown continuously at fixed dilution rates.

Such turnover is a theoretically unnecessary sink for energy that might only be required

in order to “repair” the membrane or, in terms of a broader concept in cell biology,

maintain cellular functionality – even if growth were entirely absent. The concept of a
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fundamental maintenance energy is well-established in cell biology, and comprises a rich

body of literature from over half a century of work (Marr et al., 1963a; Harder, 1997; van

Bodegom, 2007; Arbige and Chesbro, 1982; Tempest and Neijssel, 1984; Anderson and

Domsch, 1985; Tijhuis et al., 1993; Pirt, 1965). Here, the turnover rate ! is closely

related conceptually to maintenance energy, and directly corresponds to the specific

maintenance rate a defined originally by Marr et al. (1963a). Often, this rate is considered

a constant (akin to a minimum quantum of energy necessary to stay alive), and derived

by extrapolation from substrate specific biomass yields at various (relatively fast) growth

rates. In reality, this maintenance rate is likely variable, and depends on the growth rate

as discussed by van Bodegom (2007).

Microbe Medium Weighted avg.
xw · ↵l/w

Isotope spike
2Fw

spiked

[ppm]

Doubling time Growth rate
µ[day�1

]

Turnover rate
![day�1

]

EC Minimal 0.829 1208.100 2̃.29 hours 7.267
PA SCFM 0.740 1421.914 5̃.35 days 0.130 0.23± 0.01
PA Minimal 0.788 1566.207 1̃6.22 hours 1.026 0.52± 0.03
PA Minimal 0.788 1415.049 2̃.16 hours 7.700 1.15± 0.14
SA Minimal 0.482 2747.675 1̃3.34 days 0.052 0.05± 0.01
SA SCFM 0.411 1440.456 4̃.91 days 0.141 0.06± 0.01
SA Minimal 0.482 2464.333 1̃.24 days 0.559 0.11± 0.03
SA Minimal 0.482 2477.390 6̃.38 hours 2.609 0.12± 0.09

Table 7.2 – Modeling parameters and turnover rate estimates. This table shows the parameters
of the continuous culture growth experiments together with the estimated values of ! from non-
linear least squares fitting. Errors are 95% confidence intervals for the turnover/maintenance rate !
from the fit of the data to Equation 8.2 with the parameters listed in this table. The water fraction
factor x

w

· ↵
l/w

is the weighted average from lipid-specific water fraction factors derived in Section
7.4.2 for the appropriate medium. Potential variations in water fraction factor were not taken into
consideration when solving for !, but the range of values is illustrated in Figures 7.7 and 7.8.

The isotope labeling approach taken here allows a uniquely different approach to

estimating maintenance rates directly from lipid turnover, with the caveat that it describes

membrane maintenance, rather than whole-cell (protein, DNA, etc.) maintenance. Taking

the turnover rate ! to be the only unconstrained parameter in Equation 8.2, we can derive

an estimate of ! directly from fitting Equation 8.2 to the isotope enrichment data at each

growth rate. Figures 7.7 and 7.8 illustrate this fit with a dotted red line, Table 7.2 includes

the derived turnover rates, and Figure 7.9 illustrates them visually.
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Figure 7.9 – Turnover/maintenance rate estimates. This figure shows the absolute and relative
turnover/maintenance rates observed for P. aeruginosa and S. aureus in continuous culture as a
function of growth rate. The area shaded in gray indicates the regime were turnover exceeds growth.

This figure shows an interesting trend (left panel) with turnover/maintenance rates

decreasing as a function of growth rate, rather than staying constant. This trend implies

that at slower growth, the cells adapt to some degree to the low nutrient-flux conditions

and expend less total energy on maintenance, which is consistent with data compiled in

van Bodegom (2007). As the growth rate decreases, maintenance (although decreasing

in absolute terms) constitutes a larger portion of overall activity, to the extreme where

maintenance rates exceed growth rates (area shaded in grey in Figure 7.9) and become

negligible at fast growth (right panel). To our knowledge, some of these maintenance

rates are measured at the lowest growth rate to date in a controlled laboratory setting,

and uniquely reach all the way into the regime were maintenance exceeds growth (gray

zone in Figure 7.9) as compared to the literature compilation and discussion of microbial

maintenance by van Bodegom (2007). It is important to keep in mind that these estimates

are based on a constant water fraction factor (the mean weighted average of all growth

conditions for the same organism in the same medium). However, significantly higher

water fraction factors at lower growth rates would only lead to an amplification of this

trend (even stronger gradient from higher turnover rates at fast growth to lower turnover

rates at slow growth).
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The data further suggest that P. aeruginosa has fundamentally higher maintenance

rates than S. aureus, which is consistent with P. aeruginosa turning organic substrate into

biomass with a lower efficiency, potentially due to high energy expenditure for the operation

of its wide array of export pumps and the synthesis of various secondary metabolites.

7.4.5 Divergence of different fatty acids in isotope labeling

Figures 7.6, 7.7 and 7.8 show substantial divergence in the incorporation of the isotopic

label into different fatty acids. While the divergence itself does not affect the isotope

labeling of the membrane as a whole, it reflects the underlying dynamics of the biological

system and could inform our understanding of how it operates mechanistically. Here,

we suggest two separate and fundamentally different hypotheses that could explain this

phenomenon.

7.4.5.1 Kinetics of label propagation

One hypothesis predicts differential label propagation through different components of the

biological system as a consequence of the inherent kinetics and turnover times for individual

precursor and end-member pools. The simplest case to model is that of label divergence

in the production of cyclopropyl fatty acids (CFA), which are formed directly from their

unsaturated precursors attached to a phospholipid head-group in the membrane (Grogan

and Cronan, 1997). This constitutes a pathway where both pools of interest (unsaturated

precursor and derived CFA) are actually measured. A more complicated pathway needs to

be invoked for the interesting case where different fatty acids are derived from one another

during de novo biosynthesis but cannot be converted once membrane bound. Examples of

this are straight chain fatty acids that are two carbon units apart (e.g. C16:0 and C18:0

or a-C15:0 and a-C17:0), but chain elongation requires the free fatty acid rather than

its polar intact polar lipid form. Any significant labeling divergence due to the kinetics

of isotope label propagation requires either this precursor pool of free fatty acids to be
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Figure 7.10 – Kinetically-driven divergence in fatty acid labeling. Fit of a model of a-C17:0
fatty acid formation from free a-C15:0 fatty acid, and its effects on the kinetics of isotope label
propagation. Shown is the data from continuous culture of S. aureus in SCFM medium with the
observed divergence pattern of the a-C15:0 and a-C17:0 fatty acids. Dashed lines represent a
numerical solution to the system of differential equations governing the biosynthetic model.

relatively large, or an active exchange between the intact polar lipid bound and free forms

of the precursor. The prior (large free fatty acid pool) is inconsistent with what we know

about fatty acid and membrane biology, so we focus here primarily on the latter (active

exchange with rate ✏, as indicated in Figure 7.1).

The system of differential equations describing this biosynthetic model with a free

fatty acid pool of the shorter chain fatty acid that exchanges with its membrane bound

version and can be elongated to form the longer fatty acid does not have an analytical

solution, but can be fitted numerically. Here, we show the results of this approach for the
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data of S. aureus growing in continuous culture in SCFM medium at a growth rate of

⇠4.9 days (Figure 7.8), where the two major fatty acids produced by S. aureus (a-C15:0

and a-C17:0) diverged significantly in their isotope incorporation. A numerical fit of the

differential equations to these data by optimization with the exchange rate ✏ and free a-

C15:0 pool size as free parameters illustrates how this model could indeed explain the data

(see Figure 7.10). The best-fit parameters suggest a relatively small free fatty acid pool

of a-C15:0 (<0.005% of the total membrane bound a-C15:0), but requires a relatively

large exchange rate ✏ = 1.1µ on the order of the overall growth rate of this culture (and

about twice the turnover rate ! as shown in Table 7.2). Unlike the turnover (!), this

exchange (✏) between the free and membrane bound forms of a-C15:0 cannot explain

overall isotopic enrichment of the whole membrane beyond the incorporation rate from

active growth (µ), but it amplifies kinetic effects that cause the divergence of different fatty

acid components. The exchange rate is large relative to the growth rate (which represents

a ⇠4.9 day doubling time in this experiment) but loses significance at faster growth rates.

This can be observed in the data where S. aureus growing at slower rates (⇠1.2 days

and ⇠6.4 hours doubling time, see Figure 7.8) shows significantly less divergence in the

isotope incorporation into a-C15:0 and a-C17:0. However, a return to lower divergence at

even slower growth rates than ⇠4.9 days (13.3 days in the last panel of Figure 7.8) is not

explained by this model, and requires further research into the dynamics of lipid turnover

and exchange in this context.

7.4.5.2 Population heterogeneity

An alternative hypothesis predicts divergence in the isotope labeling pattern as a con-

sequence of population heterogeneity. Data on the relative abundances of different

fatty acids during different growth conditions (see tables in Section D.7 and Figures

7.6, 7.7 and 7.8 for a visual representation) suggests that growth rate has an effect

on overall lipid composition. Additionally, observations in long-term experiments of
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stationary phase cultures suggest that at any point in time, the population actually

consists of distinct subpopulations that are dynamically increasing and declining over

time (Finkel, 2006). While this growth advantage in stationary phase (GASP) phenotype

of different subpopulations is mostly reported in the context of batch cultures where

chemical conditions are not constant, it is likely that a slow-growing chemostat provides

an environment that also supports substantial heterogeneity within the culture, although

this diversity may only be phenotypic and not genotypic given the time scales of the

experiment. If chemostat populations actually represent individual cells with a diverse

range of growth rates (that average out to the turnover rate), and growth rates affect

the fatty acid profiles of individual cells, it is conceivable that an isotopic spike will show

divergent incorporation into different fatty acids. Specifically, any fatty acid component

that has a higher abundance in the membranes of the more active part of the population,

relative to its abundance in the membrane of the less active part of the population, would

turn out net over-labeled, while relatively less-abundant fatty acids would be under-labeled.

For example, the relative abundance of a-C15:0 and a-C17:0 in cultures of S. aureus

changes as a result of growth (see Figure 7.8), with a-C17:0 increasing in its relative impor-

tance in slower-growing cultures. At the same time, a-C15:0 (relatively more abundant

in fast-growing cultures) is over-labeled in isotope labeling experiments, while a-C17:0

turns out under-labeled. Figure 7.11 simulates the effect of population heterogeneity

in terms of the growth rates and fatty acid compositions on the divergence of isotopic

enrichment in the a-C15:0 and a-C17:0 pools after administration of an isotopic spike.

The figure illustrates that neither heterogeneity in growth rates alone, nor heterogeneity

in membrane composition alone can lead to a divergence pattern (no over- / under-

representation of any one more strongly / less strongly enriched membrane component is

possible without heterogeneity in both). The black trace in Figure 7.11 further illustrates

the level of divergence consistent with data from the same growth experiment evaluated

in the previous hypothesis. This suggests that the divergence could be explained by this
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Figure 7.11 – The effect of population heterogeneity on fatty acid divergence. Model
simulation of divergence in isotopic composition �F

D

between a-C15:0 and a-C17:0 as a consequence
of population heterogeneity in terms of fatty acid composition (F

a�15FA

signifies the fraction of
a-C15:0 in the membrane) and growth rate (µ). Heterogeneity is modelled as a gaussian distribution,
and expressed on both axes in terms of the standard deviation relative to the mean (for example,
�

µ

= 0% implies a uniform population with growth rate µ and no spread, whereas �

µ

= 50% implies
a diverse population with growth rates normally distributed around µ with variance �2 = 0.25 · µ).
Shown in black is the contour of labeling divergence that is consistent with the divergene data from
continuous culture of S. aureus in SCFM medium (panel 3 in figure 7.8).

model of heterogeneity, but it requires a substantial range in growth rate and/or fatty

acid composition. The relative abundance data on fatty acids of S. aureus suggests that

while the composition varies, the variation in the abundance of a-C15:0 in favor of a-
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C17:0 does not exceed ⇠30%, even at the slowest growth rate investigated (13.3 days

doubling), although this of course represents an average of the whole populations. If

30% variation is considered a reasonable estimate for the maximal relative deviation in

fatty acid abundance, this implies that the relative deviation in growth rate reaches as

high as 80%. This suggests that growth rates can vary on the order of ⇠2-fold within

the population, which is not at all unreasonable if compared to relative variations in the

GASP phenotype. Additionally, a return to lower divergence in isotope labeling patterns

at the slowest growth rates investigated (13.3 days in the last panel of Figure 7.8) could

be simply a consequence of reaching a limiting uniform fatty acid composition (even if

divergence in growth rates should further increase).

7.4.6 Recycling of exogenous fatty acids

Recycling exogenous sources is an important caveat to isotope labeling experiments in

substrate-rich environments. If organisms can build their membranes from pre-existing

fatty acids, or fatty acid fragments, that are available in their environment, they no

longer need to synthesis all fatty acids de novo. Consequentially, an isotopic tracer in

the form of 2H-rich water would be incorporated into the total membrane at a much

slower rate. Without knowledge of the rate of recycling, isotopic enrichment alone could

underestimate true growth of the population, because growth with recycled fatty acids

does not incorporate the tracer. This concept is represented in Figure 7.1 by the relative

fractional rate of de novo synthesis fS (relative to total incorporation from de novo

synthesis and recycling).

Two examples for this process are provided by recent work on this topic in P. aeruginosa

(Yuan et al., 2012a;b). First, the organism appears capable of recycling exogenous free

fatty acids, such as C16:0, by direct incorporation en bloc during phospholipid biosynthesis.

Any fatty acid recycled by this mechanism would carry its original isotopic signature from

when it was first synthesized, rather than incorporate any water isotope signal present at
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the time of en bloc incorporation. Second, the initiating step of fatty acid synthesis from

acetyl-CoA as the primer is catalyzed by a ß-acetoacetyl-ACP synthase (fabH in E.coli).

In P. aeruginosa, a closely-related, but distinct new class of synthases (now called fabY )

catalyze this step instead (Yuan et al., 2012b). Additionally, a wide range of genetically

very similar enzymes exist in these organisms, and even with a deletion mutant of fabY,

P. aeruginosa is capable of growing. Yuan et al. (2012a) discovered that in the absence

of fabY, the preferred fatty acid synthesis pathway initiated from acetyl-CoA (which is no

longer possible without the gene) can be replaced in the presence of exogenous fatty acids

(C8, C12, C16, undefined mixtures like LB, etc.). P. aeruginosa can shunt C8-CoA from

ß-oxidation degradation of fatty acid metabolism back into fatty acid biosynthesis via the

enzyme encoded by open reading frame PA3286, thereby skipping the de novo synthesis

of the C8 precursor carbon skeleton. From the scavenged intermediate, the organism can

produce all longer chain cellular fatty acids, including both saturated and unsaturated fatty

acids. Any fatty acid recycled by this mechanism would carry a mixed isotopic signature

with the C8 tail maintaining its original isotopic composition, while the de novo elongated

remainder of the molecule would reflect the water isotope signal present at the time of

re-elongation.

Here, we investigated the capability of S. aureus to recycle fatty acids by a similar

approach to that employed by Yuan et al. (2012b). Perdeuterated precursor fatty acids

(entirely 2H-substituted in the hydrocarbon tail) were provided as an exogenous source of

free fatty acids in batch cultures of S. aureus. Unfortunately, methyl-branched precursors

are not commercially available in their perdeuterated form, so only straight chain fatty

acids (perdeuterated C15:0 and C18:0) were tested. Figure 7.12 illustrates the resulting

fatty acid profiles of S. aureus. The complete data is listed in Table D.15 of Appendix D.

The data indicate that S. aureus is indeed capable of incorporating exogenous fatty

acids en bloc, as can be seen from the presence of significant amounts of completely

perdeuterated C15:0 and C18:0 in the intact polar lipids of the organism. Additionally, it
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Figure 7.12 – Recycling of exogenous fatty acids by S. aureus. Summary of the en bloc
incorporation and recycling of exogenous fatty acids by S. aureus growing in minimal medium
amended with perdeuterated C15 and C18 fatty acid. Error bars are 95% confidence intervals from
analytical replicates.

appears to be capable of elongating the exogenously-provided free fatty acids by extension

with 2 carbon units (acetyl-CoA), as witnessed by the presence of partly deuterated C17:0

and C19:0 when grown with perdeuterated C15:0 (the mass spectrum reveals a completely

deuterated C15 skeleton extended with undeuterated C2 / C4), and partly deuterated

C20:0 when grown with perdeuterated C18:0 (again, a completely deuterated C18 skeleton

extended with undeuterated C2). Curiously, none of these fatty acids are membrane
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components that S. aureus naturally produces in significant quantities (except some minor

amounts of C18:0), yet they constitute a significant portion of the intact polar lipid

membrane fraction when provided exogenously. It is striking that the major, naturally

occurring component that is altered the most in its abundance, is the longer chain a-

C17:0 fatty acid, which is produced naturally by elongation of a-C17:0. This suggests

that either chain elongation of the exogenous fatty acids directly competes for substrate

(acetyl-CoA) with elongation of a-C15:0 to make a-C17:0 FA, or a regulatory response of

the organism compensates for the presence and effect of the longer chain fatty acids on

the physical properties of the membrane by reducing a-C17:0 production.

The second key observation, however, is that, unlike P. aeruginosa, S. aureus does

not appear to partly break down the exogenous fatty acids and build them back up during

fatty acid degradation (no partly deuterated fatty acids shorter than C17/C20 could be

detected in any analysis). For the regular dominant components of its membrane (a-C15:0

and a-C17:0 fatty acids), this is consistent with the known biosynthetic pathway of anteiso

methyl branched fatty acids, which are built from an isoleucine primer in de novo fatty

acid synthesis (KANEDA, 1991; Kaneda, 1971; Oku and KANEDA, 1988; Christie and

Han, 2010), and could not possibly be initiated from any partially degraded straight chain

fatty acid by known biosynthetic mechanisms.

This suggests that during isotope labeling experiments to measure microbial activity of

P. aeruginosa in an environment that experiences a heavy continuous influx of exogenous

fatty acids from breakdown of organic matter, the potential rate of fatty acid recycling

must be considered carefully. In studies with S. aureus in the presence of exogenous fatty

acids, any fatty acid potentially elongated directly from an exogenous precursor is equally

problematic; however, unless external sources provide significant quantities of iso/anteiso

methyl branched fatty acids (direct precursors to a-C15:0 and a-C17:0 FA) or the fatty

acids themselves, the methyl-branched fatty acids are likely pure products of de novo

synthesis. If the contribution is solely from other members of the same population, any
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isotopic spike still captures the activity of the population as a whole, although the sizes of

the individual reservoirs and fluxes through the biosynthetic and recycling pathway affect

the labeling efficiency. See Section 7.4.5 for a discussion of this aspect.

7.5 Conclusions

Here, we present stable isotope labeling of microbial membrane fatty acids with heavy

water as a promising new technique to measure microbial activity in a wide range of

environments, especially including slow-growth settings. An overview of the conceptual

approach to isotope labeling, results from modeling isotopic enrichment with D2O as a

tracer, and results from culturing work in batch and continuous culture are presented and

discussed in light of the capabilities and potential caveats of this approach: analytical

limits, uncertainty in biological parameters, biological activity decoupled from growth

(i.e. maintenance), recycling of exogenous fatty acids, and differential labeling patterns

between different fatty acids.

Specifically, analytical limits are outlined by considering the chromatographic behavior

of heavily deuterated organic molecules. The range and diversity of water fraction factors

is discussed as the primary source of uncertainty in the biological uptake of a heavy water

isotope tracer. The main source of overestimating “true growth” (potentially by orders

of magnitude) is the difference between microbial activity (growth + maintenance) vs.

the true generation time of a population, although this aspect only becomes significant

at slow growth rates and can be mediated by reasonable estimates of turnover rates from

laboratory experiments. The main sources for underestimating growth are microbial

recycling mechanisms of exogenous fatty acid sources in organic rich environments, as

well as interpreting a low component terminal lipid biomarker that is likely to under-label,

although more research into the kinetic fluxes of the isotope label through the system is

required for establishing a predictive model of fatty-acid dependent incorporation.

186



Chapter 7: Hydrogen isotope labeling in lipids

To first order, with some knowledge of the likely overall membrane composition of an

organism, it is reasonable to assume that a single measurement of a major straight chain or

methyl branched fatty acid will overestimate growth rates for the shortest fatty acid chain,

and underestimate growth for the longer chains. Unsaturated fatty acids are more difficult

to interpret in the absence of a representative laboratory labeling experiment (we observe

over-labeling in E. coli and under-labeling in P. aeruginosa with respect to the equivalent

straight chain fatty acids). Cyclopropyl fatty acids appear to always underestimate growth,

likely due to their derivation from unsaturated fatty acids in intact polar lipids. Larger

membrane components are always safer to interpret than minor fatty acids.

All of these present important constraints that we need to carefully consider when

interpreting environmental growth data derived from D2O stable isotope labeling. How-

ever, they also also present great scientific opportunities for novel insights into the various

mechanisms at play in the growth dynamics of microbial populations, and this work barely

scratches the surface.
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7.6 Glossary
µ The specific growth rate is a rate constant that has units of reciprocal time and

represents the frequency by which an exponentially growing population (for example
clonally replicating microorganisms) grows by a factor of e. This is sometimes also
called relative growth rate, exponential growth rate or continuous growth rate, and
abbreviated either as µ or k.

d The specific death or removal rate is a rate constant that has units of reciprocal
time and represents the frequency by which a population diminishes by a factor of e
(cells completely removed/degraded rather than just recycled within the population,
for example by predation, death and degradation, or direct physical removal).

w The turnover rate is rate constant that represents the rate of excess biosynthesis and
degradation that is not part of cellular replication. This process has no net effect on
biomass accumulation or removal, but contributes to its turnover. It can be viewed as
a process that is part of maintaining the cell even in situations where there is no net
growth.

µact The apparent or activity growth rate is a rate constant that represents overall
biosynthetic activity from the combination of growth(µ) and turnover(!).

µnet The net growth rate is a rate constant that represents the overall accumula-
tion/decline of biomass due to growth(µ) and death/removal(d).

gtrue The true generation or doubling time of a population is the time it takes to net
double in biomass, taking into consideration all counteracting processes that contribute
to increase and decline of the population. It relates to the net growth rate as gtrue =
ln(2)
µnet

.
gact The apparent generation time or doubling activity of a population is the time it takes

until half the biomass consists of new material (by a combination of replacement and
new growth). It represents the time that a population appears to be doubling and would
be equal to the true generation/doubling time without the effects of death/removal
and turnover/maintenance processes. It relates to the apparent growth or activity rate
as gact = ln(2)

µact
.
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Chapter 8

Spatiometabolic activity of complex

microbial communities by multi-isotope

imaging mass spectrometry with H,

C and N

8.1 Introduction

Multi-isotope secondary ion Imaging Mass Spectrometry (MIMS or nanoSIMS) provides

one of the most sensitive and precise analytical methods available for the study of elemental

and isotopic composition at high spatial resolution. Increasingly, this powerful technique

is applied to answer questions in biological systems that greatly benefit from the high

spatial resolution and the vast possibilities conferred by the use of stable isotope tracers.

This is especially the case in microbial ecology, where linking the identity of microorgan-

isms to their activity in the environment remains a crucial gap in our understanding of

microbial communities. In addition to using the technique to measure the natural isotopic
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composition of individual cells in environmental systems (Orphan et al., 2001a; 2002; Fike

et al., 2008), this has been very successfully employed in studying the spatiometabolic

activity of deep sea methane oxidizing consortia (Pernthaler et al., 2008a; Orphan et al.,

2009; Dekas et al., 2009; Dekas and Orphan, 2011; Dekas et al., 2013), soil microbe-

mineral co-localization (Herrmann et al., 2006), and symbiotic microbe-animal interactions

(Lechene et al., 2007; Kuypers, 2007; Pernice et al., 2012) using various 15N labeled

isotope tracers. Additionally, the non-toxic nature of stable isotope labels combined with

the high sensitivity and spatial resolution of this technique poses tremendous potential for

application in the quantitative study of metabolic processes within any model organism

ranging from microbes to humans1. Examples include the application of isotopically

labeled 15N-thymidine to trace stem cell division and metabolism in mice (Steinhauser

et al., 2012; Gormanns et al., 2012),13C-oleic acid to study fatty acid transport in lipid

droplets, 15N-leucine to trace protein renewal in kidney cells (Lechene et al., 2006), various

15N labeled amino acid for the study of protein turnover in hair-cell sterocilia (Zhang

et al., 2012), 18O-trehalose penetration into the nucleus of mouse sperm (Lechene et al.,

2012) and dual 13C and 15N-labeld substrated in microbial activity studies of oral biofilms

(Spormann et al., 2008). As evidenced by this accelerating body of work since the first

applications of MIMS/nanoSIMS, this technique could be useful far beyond its original

purpose in disciplines as diverse as geobiology, biogeochemistry, host-microbe interactions

and biomedical research. For additional inspiration on this topic, we refere the reader to

three excellent reviews: Orphan and House (2009), Steinhauser and Lechene (2013), and

Hoppe et al. (2013).

The predominant traditional isotopic tracers (13C and 15N) face two major drawbacks

for the study of metabolic activity in complex host systems and microbial communities.

13C and 15N labeled substrates frequently change the nutrient availability in an envi-
1Steinhauser and Lechene (2013) recently highlighted the extensive record of the safe application

of stable isotopic studies in human subjects including infants, pregnant women, elderly and severely ill
patients with diverese isotope tracers including the stable isotopes of hydrogen, carbon, nitrogen, oxygen,
magnesium, calcium, iron, copper, zinc and selenium.
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ronment, which biases measures of activity towards organisms that can quickly respond

to changes in the added substrate. For example, the quantitative use of nitrogen and

carbon as tracers is often limited by a) their differential use in communities with mixed

metabolisms (preference by certain members of the community for a specific organic

or inorganic carbon or nitrogen source), and b) the alteration of nutrient availability

by the isotopic tracer (adding for example bioavailable nitrogen to a nitrogen-starved

community). Here, we introduce the use of hydrogen isotope labeling with deuterated

water as an important new addition to the isotopic toolkit available for use in mult-isotope

imaging mass spectrometry. This tool provides a labeling technique that minimally alters

any aquatic chemical environment (due to 2H2O being the label), can be administered

with strong labels even in minimal addition (natural background is very low), and is an

equally universal substrate for all forms of life even in complex, carbon- and nitrogen-

saturated systems. Additionally - although analytically challenging - it can be combined

with carbon and nitrogen tracers by simultaneous detection of all three isotopic systems

in nanoSIMS imaging, as demonstrated for the first time in this study.

In this manuscript, we present the proof-of-concept application of truly simultaneous

detection of all three isotope systems (hydrogen, carbon and nitrogen) in the isotopic

analysis of single cells, establish the necessary calibration for the use of 2H2O in stable

isotope tracer work with single cells at environmentally relevant levels of 13C, 15N and

2H enrichment, and demonstrate its application in a study of microbial activity and

population heterogeneity of Staphylococcus aureus during slow growth in continuous

culture. Additionally, we expand the single cell calibration for isotopic tracer work with

2H, 13C and 15N to applications in plastic embedded thin-sectioned samples, which we

expect to further expand the range of applicability of this technique in complex systems.
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8.2 Materials and Methods

8.2.1 Experimental setup

All media and reagent solutions used for culturing were autoclaved or filter-sterilized prior

to use.

8.2.1.1 Bacterial isotope standards

Bacterial hydrogen, carbon and nitrogen isotopic standards for single cell analysis were

created by growing the well-studied gram-positive organism Staphylococcus aureus (MN8

(KREISWIRTH et al., 1983)) and the well-studied gram-negative organism Pseudomonas

aeruginosa (PA14 (RAHME et al., 1995)) in minimal medium with nutrients of different

isotopic composition. A phosphate buffered minimal medium at pH 7.2 containing 2.5

g/L NaCl, 13.5 g/L K2HPO4, 4.7 g/L KH2PO4, 1 g/L K2SO4 and 0.1 g/L MgSO4·7H2O

served as the basis for all experiments. P. aeruginosa was grown in this medium with

different amounts of D2O (up to 1%, from 70% stock, Cambridge Isotope Laborato-

ries, #DLM-2259-70-1L), 10 mM ammonium chloride (spiked up to 10% 15N with 98%

enriched15NH4Cl, Sigma-Aldrich, #299251) and 10mM sodium succinate (spiked up to

10% with 99% enriched succinic-1,2-13C2 acid, Sigma-Aldrich, #491977). S. aureus was

grown in this medium with different amounts of D2O, 10 mM amonium chloride (both

spiked identically to P. aeruginosa cultures) and 10mM glycerol (no isotopic label available

at the time). S. aureus further exhibits auxotrophy for several amino acids and vitamins

(Aldeen and Hiramatsu, 2004; LINCOLN et al., 1995; Mah et al., 1967) and the medium

was further amended with 11.5 mg/L proline, 10mL/L 50x MEM Amino Acid solution

(Sigma-Aldrich, #M5550, final amino acid concentrations: 63.2 mg/L arginine, 15.6

mg/L cysteine, 21 mg/L histidine, 26.35 mg/L isoleucine, 26.2 mg/L leucine, 36.3 mg/L

lysine, 7.6 mg/L methionine, 16.5 mg/L phenylalanine, 23.8 mg/L threonine, 5.1 mg/L
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tryptophan, 18.0 mg/L tyrosine, 23.4 mg/L valine) and 100µg/L thiamine (B1), 100 µg/L

nicotinic acid (B3) and 10 µg/L biotin (B7).

All cells were grown in 50mL batch cultures aerobically at 37ºC, and were inoculated

from fresh (exponential) cultures grown on the same medium and verified microscopically

to be axenic. Cultures were harvested in mid-exponential phase to ensure as homogenous

a population as possible for consistent isotopic composition. Cells were harvested by

centrifugation at 4000rpm for 10min at 4ºC, and washed 5 times by resuspension in 1x

phosphate buffered saline (PBS) solution to remove all traces of the isotopic labels. Before

the last washing step, samples were split into separate aliquots for bulk isotopic analysis

and single cell analysis. Aliquots for bulk analysis were pelleted, frozen and stored at -80C

until further processing. Aliquots for single cell analysis were fixed in 1% freshly prepared

formaldehyde in PBS (Paraformaldehyde, Electron Microscopy Sciences, #15713) for 2

hours at room temperature, then washed once in 1% PBS and dehydrated in 50% ethanol.

A small aliquot was stored at 4C for whole single cell analysis, and the remainder was

embedded for thin-sectioning.

Additional aliquots from samples grown without an isotopic label (i.e. natural abun-

dance samples) were washed, fixed, dehydrated and embedded in identical manner to all

other samples, except that the strongest employed mixture of isotope labels (~1% D2O,

~10% 15NH4, ~10% 13C succinate) was spiked into the aliquots just prior to addition

of the formaldehyde fixative in order to test the effects of fixation in the presence of

unwashed isotope tracers.

8.2.1.2 Continuous culture

Continuous culture experiments were carried out with S. aureus growing in the same

medium (+500µL/L Antifoam 204) at three different growth rates (corresponding to

doubling times of ~6 hours, ~1 day and ~2 weeks) as described in detail in Section 7.3.2.2

of chapter 7. Briefly, once at steady state, culture vessels (usually ~500-600mL working
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volume) were spiked with 1mL D2O and 10mM 15NH4 isotope tracers, and samples were

withdrawn at regular intervals depending on the growth rate. Samples for single cell

analysis were collected before adding the isotopic spike, at the last data point used for

bulk analysis (see S. aureus cultures in minimal medium in Chapter 7), and twice more

at equal intervals afterwards for a total of 4 samples (t0 + 60min, 120min and 180min

for the fastest chemostat, 200min, 400min and 600min for the intermediate chemostat,

30hours, 60hours and 90hours for the slowest chemostat). Cell growth was arrested

immediately after sample withdrawal by adding the sample directly into an equal volume

of ice. Samples were washed, fixed and dehydrated in identical manner to bacterial isotope

standards prepared for whole single cell analysis.

8.2.2 Bulk analysis

All bulk analyses were carried out on homogenized dry biomass from lyophilized cell pellets.

8.2.2.1 Bulk C and N analysis

For nitrogen isotope analysis, lyophilized cell pellets were additionally incubated at 80C

for 24 hours to drive off any residual ammonium. For each sample, 300 to 800 µg of cell

powder were weighed out into tin capsules in duplicate, and the bulk carbon and nitrogen

isotopic composition was determined by EA-ir-MS at the UC Davis Stable Isotope Facility

(Davis, CA).

8.2.2.2 Bulk H isotope analysis

Hydrogen exchanges rapidly in reactive groups and most O-H, N-H and S-H bonds

(especially all acidic or basic functional groups) (Thomas, 1971; Katz, 1960), but is stably

incorporated in many, virtually non-exchangable C-H bonds (Sessions et al., 2004) that

can be used in compound specific isotope analyses of membrane fatty acids. Here, we

thus use the average membrane fatty acid hydrogen isotopic composition as a measure of
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bulk 2H incorporation. This enables comparison with other compound-specific membrane

component analysis of bulk biomass, as described, for example, in Chapter 7.

For hydrogen isotope analysis, lyophilized cell pellets were weighed out into ~1mg

aliquots of dry cell mass and spiked with 10µg of 21:0 phosphatidyl choline as a phospho-

lipid extraction standard. Samples were transesterified in the presence of an acid catalyst

(acetyl chloride in anhydrous methanol, 1:20 v/v) at 100°C for 10 min (Rodríguez-Ruiz

et al., 1998; Lepage and Roy, 1986), extracted into hexane, and concentrated under

a stream of N2 at room temperature prior to analysis. All non-consumable glassware

used for lipid extraction and derivatization was pre-combusted in a muffle furnace at

550 °C to remove all remaining traces of organic materials potentially adhered to the

glass. Fatty acid methyl esters (FAMEs) were identified by gas chromatography/mass

spectrometry on a Thermo-Scientific Trace DSQ, and analyzed in triplicate for their

isotopic composition by GC/pyrolysis/isotope-ratio mass spectrometry on a Thermo-

Scientific Delta Plus XP (described in detail in Section 7.3.3.3 of Chapter 7). All data

were corrected for the addition of methyl hydrogen during derivatization. Reported bulk

hydrogen isotope compositions represent the mass balance weighted average isotopic

composition of the whole membrane from all major fatty acid components for each

organism (a-C15:0 and a-C17:0 fatty acid for S. aureus and C16:1, C16:0 and C18:1

fatty acid for P. aeruginosa).

8.2.3 Single cell analysis

8.2.3.1 Sample preparation

1µL aliquots of fixed whole cells suspended in 50% EtOH (both isotopic standards and

continuous culture samples) were spotted onto custom-cut indium tin oxide (ITO) coated

glass (TEC15, Pilkington Building Products, Greensboro, NC, USA) and air-dried at room

temperature.
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Lightly pelleted concentrates of the isotopic standards were suspended in a few drops

of molten noble agar (2% Difco Agar Noble in 50mM HEPES buffered filter-sterilized

water), solidified by cooling at room temperature, cut into ~2mm3cubes, resuspended in

50% EtOH in PBS, and dehydrated in 100% Ethanol over the course of 3 exchanges, with

final resuspension in 100% for at least 1 hour. Ethanol was then replaced twice with 100%

Technovit 8100 infiltration solution (Heraeus Kulzer GmbH, #64709012) to infiltrate the

agar plugs over night. Agar plugs were finally suspended in airtight 0.6mL microcentrifuge

tubes in Technovit 8100 infiltration solution amended with hardener II reagent and stored

at 4C over night to complete polymerization. Technovit is a cold-polymerising nitrogen-

free acryl plastic composed of methyl methacrylate and glycol methacrylate.

Thin sections (1-2 mm thick) were cut using a rotary microtome. Each section was

stretched on the surface of a 1.5µL drop of 0.2µm filtered deionized water on a 1” diameter

round microprobe slide (Lakeside city, IL) and air-dried at room temperature. All ITOs and

glass rounds were fully mapped microscopically with a 40x air objective for later orientation

and sample identification during secondary ion mass spectrometry. ITO-coated glass is

conductive, and spotted cells are too small to interfere with substrate conductivity. To

prepare samples in plastic sections on glass rounds for analysis, the rounds were made

conductive by sputter-coating with a 50nm layer of gold (Dekas et al., 2009; Dekas and

Orphan, 2011).

8.2.3.2 NanoSIMS analysis

All samples were analyzed with a CAMECA NanoSIMS 50L (CAMECA, Gennevilliers,

France) housed in the Division of Geological and Planetary Sciences at Caltech, with a

mass resolving power of approximately 5000. Whole cells on ITO were analyzed using

a ~3.6pA primary Cs+ beam and were presputtered with ~20pC/µm2. Cells embedded

in plastic were analyzed using a ~1.9pA primary Cs+ beam with a nominal spot size

of ~300nm, and were presputtered with ~340pC/µm2. Details on presputtering and
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ionization efficiency are discussed in Section 8.3.1.1 of the Appendix. Seven masses

were collected in parallel (1H-, 2H-, 12C−, 13C−, 14N12C−, 15N12C−, 28Si−) using electron

multipliers. Individual samples were located using the NanoSIMS CCD camera, and

random analytical spots were chosen within a sample area. For all analyses, the beam

was rastered over a square region of 10µm by 10µm for 15min per analytical plane/frame,

and images were collected in 256x256 pixel resolution. Presputtering was typically carried

out on a larger region of 15µm by 15µm to make sure that the analytical frame was fully

within. Analytical parameters including primary beam focus, secondary beam centering

and mass resolution for all ions were verified and tuned every ~30 minutes (i.e. after every

2 frame analysis).

8.2.4 Quantification

Bulk carbon, nitrogen and hydrogen isotope measurements were recorded in the conven-

tional �-notation (�13C vs VPDB, �15N vs air, �2H vs VSMOW), but are converted to

fractional abundances using the known isotopic composition of the reference standards

(VPDB 13C
12C = 1.1180%, Air 15N

14N = 0.3676%, VSMOW 2H
1H = 155.7643ppm, de Laeter

et al. (2003)) to allow consistent reporting and exact mass balance calculations2. Frac-

tional abundances of single cell analyses were calculated directly from raw ion counts

and calibrated against bulk measurements (Section 8.3.2). In this study, the fractional

abundance values of most isotopically enriched standards and samples fall into the percent

(10-2) range, and are thus reported in %. All conversions and mass balance calculations

were performed using an isotopes R module described in the Appendix. All data processing,

analysis, model simulations and plotting were performed in R (R Core Team, 2014) using

functionality provided by various analytical and graphical packages (Soetaert et al., 2013;

Wickham, 2014a; Wickham and Chang, 2013; Xie, 2013b; Neuwirth, 2011; Dragulescu,

2013).
2See Section D.5.1 in the Appendix of Chapter 7 on the topic of exact mass balance calculations.
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8.2.4.1 Ion image processing

Raw data from all acquired ion images was processed using the open-source MATLAB

plugin Look@NanoSIMS (Polerecky et al., 2012). Ion images from multiple frames were

corrected and aligned, and discrete regions of interest (ROIs) were hand-drawn to identify

the cellular outlines. Here, ROIs refer to the spatial demarkation of individual cells (the

isotopic composition of an ion map inside the cell outline). The terms ROI and single cell

represent the same concept in this manuscript, and are used interchangeably. The raw

ion counts for all collected ions from individual and aggregated frames in the individual

ROIs were exported from Look@NanoSIMS, and further processed in R.

8.2.4.2 Error in single cell isotope measurements

Even if detection, amplification and signal conversion in isotope ratio measurements were

completely free of noise, there would still be a theoretical limit to the maximum attainable

precision of isotopic data. This limit is posed by shot noise, a consequence of the discrete

nature of electronic charge (whether it is carried by electrons or ions). The statistical

error from shot noise is rarely a concern in standard bulk isotope measurements, but

due to the low number of ions detected from measuring individual cells in secondary

ion mass spectrometry, this error can become significant. This is particularly relevant in

measurements of ions from low abundance elements, ions with low ionization efficiency or

with rare minor isotopes (hydrogen qualifies for the last two). The error from shot noise

is often considered in terms of the resulting isotope ratio or �-value (Hayes, 2002), but

rarely in terms of fractional abundances. The relevant equation is derived in detail in the

Appendix (E.1), and yields

⇣�F

F

⌘
2

= (1� F )

2

✓
1

Nm
+

1

NM

◆
=

(1� F )

2

NMF
(8.1)
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where Nm is the ion count of the minor isotope, NM the ion count of the major

isotope, and F/�F is the resulting fractional abundance and standard deviation.

8.2.4.3 Quality control

Due to the low ionization efficiency of hydrogen and the rare abundance of 2H, primary ion

beam currents employed in this study have to be relatively high. This is less problematic

in plastic sections where the acryl support matrix provides higher resistance to ablation by

the primary ion beam, but causes relatively fast destruction of unsupported whole single

cells. Typically, this allows for a maximum of three sequential frames during analysis of

single cells. Two frames were collected routinely, and individual ROIs3 were screened for

consistency between the isotopic values of two subsequent frames to control for higher

quality data not distorted by sample destruction. ROIs with isotopic value Fi in any frame

deviating by more than 2 · �F (eq. 8.1) and more than 1% from the frames’ accumulated

average F were discarded. For details, see Sections 8.3.1.1 and E.2.1 of the Appendix.

8.3 Results and Discussion

8.3.1 Simultaneous analysis of H, C and N isotopes

The CAMECA NanoSIMS 50L is a multicollector secondary ion mass spectrometer equipped

with 7 electron multiplier detectors on movable trolleys that provide simultaneous detec-

tion of up to 7 secondary ions at a fixed magnetic field strength. The large dynamic range

of the instrument typically allows parallel detection of ions with vastly different masses

up to a ~22:1 ratio (i.e. mmax = 22 ·mmin ). This allows, for example, routine parallel

detection of several of the most important biological ions with 12C- at 12 Da, 14N12C-

(the ionized form of nitrogen) at 26 Da, 31P- at 31Da and 32S- at 32 Da as well as their
3Here, Regions Of Interest (ROIs) refer to the spatial demarkation of individual cells (the isotopic

composition of an ion map inside the cell outline). The term ROI and single cell represent the same
concept in this manuscript, and are used interchangeably.
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minor isotopes, 13C- at 13 Da, 15N12C- at 27 Da and 34S- at 34 Da. However, due to

the low mass of hydrogen, simultaneous measurement of 1H- at 1 Da (mmin = 1) and

2H- at 2 Da can only be combined with other ions up to a mass of 22 Da (mmax = 2),

which allows multi-isotope imaging for H and C in parallel, but not H and N in parallel.

This restriction provides a serious impediment to the use of hydrogen labeled isotopic

tracers in combination with nitrogen (both an important isotopic tracer and identifying

ion for biomass). One approach to this problem is to use the instrument in magnetic field

switching mode, which requires alternating magnetic field strengths to capture the various

ions in subsequent frames of the same analysis. However, cycling the magnetic field is

time consuming, does not allow for true simultaneous detection, and retaining the mass

resolving power required for resolving all isotopologues (especially isobaric interference at

27 Da for 15N12C-) is often unreliable.

An alternative approach was proposed in recent work (Lozano et al., 2013; Kraft

and Klitzing, 2014) by measuring the 12C2H- vs. 12C1H-ions with a NanoSIMS 50L

in experiments with highly 2H enriched sphingomeylin lipids as tracers, and correcting

the measured ratio for isobaric interferences from 13C1H- and 12C2H-. However, the

mass resolving power achievable by the CAMECA NanoSIMS 50L is insufficient to resolve

these interferences at any level that makes the method applicable to environmental tracer

experiments without highly enriched 2H (Doughty et al., 2014). Yet another method is

currently under development at the National Resource for Imaging Mass Spectrometry

operated by the Harvard Medical School. This method takes advantage of the deflection

plates located in front of the electron multipliers to use electrostatic peak switching for

quasi-simultaneous detection of 12C2
2H- and 12C14N- (both nominally at 26 Da). However,

significant isobaric interferences include 13C2
-, 12C13C1H- and 12C2

1H2
-, which makes it

questionable whether this method will be suitable for environmental tracer experiments.

Here, we demonstrate the feasibility of measuring the actual 1H-, 2H-, 12C−, 13C−,

14N12C− ions all in parallel by extending the positions of the detector trolleys at the high
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Figure 8.1 – HMR curves for H, C, N isotope analysis on a CAMECA NanoSIMS 50L. The
dynamic range and mass resolving power of the multicollector NanoSIMS 50L at the Center for
Microanalysis at Caltech permits multi-isotope imaging mass spectrometry with fully resolved H, C
and N for the first time. Intensities are plotted on a logarithmic scale.

and low end to their maximally possible configuration in a CAMECA NanoSIMS 50L to

gain an effective dynamic mass range of 28:1. Figure 8.1 shows the mass resolution curves

at a magnetic field strength of 1006.8 T for two different samples (dark blue is enriched

in 15N, 13C and 2H, light blue is natural abundance), and at a magnetic field strength of

998.7 T (red curve). Both magnetic field strengths and trolley setups performed well, and

allowed simultaneous detection of all ions with key isobaric interferences well-resolved. All

curves plotted on a log scale to emphasize overlap:13C- is resolved from the slightly higher

mass 12C1H-, 14N12C− is resolved from the slightly higher mass 12C13C1H-and 15N12C-

is resolved from the slightly higher mass 14N13C-. The configuration with the higher

magnetic field strength additionally allowed detection of 28Si− with the 7th detector, while

the configuration with the slightly weaker magnetic field showed slightly higher peak
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stability. The key here for parallel analysis even of natural abundance hydrogen isotopes

is the detection at 1 Da and 2 Da, where the lack of isobaric interferences allows for

complete resolution and high sensitivity to minor enrichments.

8.3.1.1 Optimizing presputtering conditions
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Figure 8.2 – Ionization efficiency and sample ablation in free cells.

One challenge of the simultaneous measurement of hydrogen, carbon and cyanide ions

is their different ionization efficiencies. Hydrogen ionizes least efficiently, but requires high

ion counts due to exceptionally low natural abundance of 2H (~150ppm). To detect a

sufficiently high number of ions without excessively long analysis times, a relatively strong

primary beam current is required, which limits the maximal spatial resolution. In balancing

primary beam current, aperture, presputtering and analysis time, additional complications

arise from the destructive nature of the technique and the faster ionization of nitrogen.

Presputtering is a process where the sample is bombarded with a higher primary beam

current for a short amount of time prior to analysis in order to “embed” primary ions

in the sample matrix (Hoppe et al., 2013). This greatly improves ionization efficiency,
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Figure 8.3 – Depth degradation test with whole cells. Ionization/degradation test with a 15µm
x 15µm raster after various times of presputtering. Ion maps collected in a 4min analysis with a
primary beam current of ~3.6pA. See Figure 8.2 for details.

and consequently provides higher secondary ion counts during analysis, but also degrades

the sample and changes ionization efficiency differentially depending on the ion. Figure

8.2 illustrates the change in ion counts per second for the major isotopes’ ions (1H, 12C,
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14N12C) as a function of pre-exposing the sample surface (here, a cluster of single whole

cells of P. aeruginosa on ITO coated glass) to increasing amounts of charge (from the

primary ion beam) per unit area. The figure shows how presputtering increases ionization

efficiency up to a maximum, at which point the sample is increasingly degraded, and ion

counts drop as the organic material disappears. This can also be observed visually, as

illustrated in the ion maps in Figure 8.3, which correspond to images acquired during

short analyses at each data point in Figure 8.2 (ion counts for the minor isotopes from

these quick analyses would not be sufficient for determining cells’ isotopic composition).

Additionally, the faster increase in the ionization efficiency of nitrogen, and subsequent

quicker depletion of the element in response to presputtering, is clearly visible. This

requires adapting analytical conditions to capture ion images ideally during peak ionization

before cellular degradation. The corresponding analytical window targeted in this study

for all analyses of intact single cells is indicated by the gray band in Figure 8.2. Lastly,

the figure also indicates the ion counts as a percentage of the primary beam current.

This measure depends on both the total abundance of each element and their respective

ionization efficiencies, and as such is not an indication of absolute ionization efficiencies.

However, it provides some information about relative differences between elements, and

illustrates the relatively high ionization efficiency of nitrogen: 14N12C- ions reach ~0.7% of

the primary beam current compared to ~0.2% for 12C-, although the abundance of carbon

in organic material exceeds that of nitrogen (P. aeruginosa cells were measured to have

a C:N mole ratio of ~4.5). Likewise, the low ionization efficiency of hydrogen becomes

apparent: 1H-ions reach only ~0.03%, although hydrogen is by far the most abundant

element in organic material.

Figure 8.4 illustrates the change in ion counts per second for the major isotopes’

ions as a function of pre-exposing plastic-embedded cells to increasing amounts of charge

from the primary ion beam. Compared to whole single cells, the plastic matrix provides a

material that is much more resilient to ion bombardment, as evidenced by the significantly
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Figure 8.4 – Ionization efficiency and sample ablation in embedded cells.

higher presputtering flux (>10x higher) required for an increase in ionization efficiency

and sample degradation. This is partly due to the gold coating, but the primary ion

beam vaporizes the thin gold layer relatively quickly (the gold is already removed by the

time of the first data point in Figure 8.4), and is mostly a consequence of the plastic

matrix. This figure also shows the same trends observed for whole cell analysis, namely

the faster increase in ionization efficiency and subsequent quicker depletion of nitrogen.

Additionally, 28Si- ions were collected in addition to H, C and N ions, and illustrate

the gradual degradation of the plastic to the point where the underlying glass starts to

contribute to the secondary ion beam. Figure 8.4 also illustrates the effects of altering the

analytical beam current by changing the aperture from ~1.9pA (aperture D1-2) to ~0.9pA

(D1-3) to ~0.45pA (D1-4). Figure 8.5 finally shows the ion maps, which correspond
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Figure 8.5 – Depth degradation test in plastic. Ionization/degradation test with a 10µm x 10µm
raster after various times of presputtering. Ion maps collected in an 8min analysis with a primary
beam current of ~1.9pA. See Figure 8.4 for details.
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to images acquired with the highest beam current (~1.9pA) during short analyses at

each data point in Figure 8.4. While the plastic embedded samples degrade at a much

slower rate, thus extending the window for analysis, this figure clearly illustrates the

accelerated degradation of nitrogen containing cellular material (here, the nuclei of two

eukaryotic cells), highlighting the importance of timing analysis with presputtering such

that ionization efficiencies are relatively high, but all cellular components are still intact.

In this study, analysis was targeted roughly to the analytical window starting at the gray

band in Figure 8.4. Despite the relatively high primary beam current, we maintained high

spatial resolution that allowed distinct detection of individual cells of S. aureus at sizes

below ~300nm2 (see ion maps for isotopic standards in Figure E.6).

8.3.2 Single cell vs. bulk analysis

To calibrate the simultaneously acquired measurements of hydrogen, carbon and nitrogen

isotopic composition of single cells by NanoSIMS, we measured single cells of isotopically

labeled homogenous cultures of S. aureus and P. aeruginosa with independently measured

bulk isotopic composition. This calibration step is particularly important for hydrogen due

to the high capacity for H exchange in organic material, and is prudent in light of the first

application of multi-isotope imaging mass spectrometry with H, C and N simultaneously.

Although natural abundance cells of Escherichia coli and spores of Clostridia (Davission

et al., 2008; Orphan et al., 2009; Dekas and Orphan, 2011) as well as highly 15N enriched

(~50% 15N) cells of P. fluorescences (Herrmann et al., 2006) have been used as reference

materials for isotopic analysis of whole single cells, to our knowledge, an actual calibration

with enriched isotopic standards does also not exist for carbon or nitrogen analysis of free

whole cells. Additionally, in the case of isotope analysis of cells embedded within a

plastic polymer (which introduces large quantities of carbon and hydrogen), it is crucial

to calibrate for matrix effects.

Calibration parameters were calculated from 1/x weighted linear regression of the
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Type Organism Isotope
xF

cells

vs. xF
bulk

slope
xF

cells

vs. xF
bulk

intercept xF [%]
R2

free P. aeruginosa 2H 0.67± 0.05 0.0± 0.0 0.998
free S. aureus 2H 0.59± 0.05 0.0± 0.0 0.997
free P. aeruginosa 13C 0.73± 0.07 0.1± 0.2 0.997
free P. aeruginosa 15N 0.94± 0.06 �0.0± 0.1 0.998
free S. aureus 15N 0.91± 0.03 0.0± 0.0 1.000
plastic P. aeruginosa 2H 0.30± 0.06 0.0± 0.0 0.985
plastic S. aureus 2H 0.34± 0.07 0.0± 0.0 0.981
plastic P. aeruginosa 13C 0.17± 0.02 0.6± 0.0 0.994
plastic P. aeruginosa 15N 0.95± 0.04 0.0± 0.1 0.999
plastic S. aureus 15N 1.31± 0.29 �0.2± 0.3 0.981

Table 8.1 – Summary of single cell vs. bulk analysis. Calibration parameters for all isotopic
standards tested in this study. PA = Pseudomonas aeruginosa, SA = Staphylococcus aureus.

average isotopic composition of all single cells for a given standard vs. the measured bulk

isotopic composition. Table 8.1 summarizes the calibration parameters for all isotopic

standards tested in this study, and is discussed in detail hereafter. Calibration curves

are illustrated visually in Figures 8.6, 8.7, E.8 and E.10. In calculations of the average

single cell composition, individual cells were weighted inversely by the Poisson error in their

isotopic measurement to offset the influence of highly imprecise measurements (from small

ROIs and low ion counts).

8.3.2.1 Whole cells

Figures 8.6 and 8.7 show the calibration curves for single whole cell analyses of P.

aeruginosa (172 ROIs) and S. aureus (222 ROIs), respectively. Additional detail on

all ROIs is presented in the Appendix, Figures E.2, E.4, E.7 and E.9, with ion maps

in Figure E.6. As expected, the nitrogen isotope compositions of single cells for both

organisms mirror the bulk isotopic composition, with near perfect linear correlation and

slope close to 1. However, it is important to note that both slopes fall slightly short of 1.0

(0.94±0.06 and 0.91±0.03), suggesting either systematic dilution of the cellular isotopic

signal from trace nitrogen on ITO coated glass, systematic isotope fractionation in the

analytical process, or both. Background analysis of nitrogen ion counts on ITO coated

glass indicates that this component, while present, contributes maximally ~1% of cellular
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Figure 8.6 – Calibration curve for whole single cells of S. aureus. Calibration curve for
isotopic composition of single cells measured by NanoSIMS vs. bulk isotopic composition of the
population (measured by EA-ir-MS / GC-pyrolysis-ir-MS). Data points represent the mean isotopic
composition of all measured single cells. The colored bands for each data point represent the range
that comprises 50% of the single cell data. The dashed whiskers represent the entire range of all
single cells. The empty white circles represent statistical outliers. Horizontal error bars represent
the maximum interval of the measured bulk isotopic composition (smaller than symbol sizes in most
cases).

nitrogen (data not shown). Since isotope ratios and fractional abundances of single cells

are derived here directly from NanoSIMS ion count measurements without comparison to

an authentic reference standard, fractionating effects during ionization and analysis likely

contribute to the observed discrepancy.

Similar effects are observed for the carbon isotope composition of single P. aeruginosa

cells (no 13C standards were prepared for S. aureus), which closely follow the bulk

isotopic composition but also fall short, with a slope of 0.73±0.07. This also suggests a

combination of systematic dilution and isotopic fractionation during analysis. Background
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Figure 8.7 – Calibration curve for whole single cells of P. aeruginosa. Calibration curve for
isotopic composition of single cells measured by NanoSIMS vs. bulk isotopic composition of the
population (measured by EA-ir-MS / GC-pyrolysis-ir-MS). Data points represent the mean isotopic
composition of all measured single cells. The colored bands for each data point represent the range
that comprises 50% of the single cell data. The dashed whiskers represent the entire range of all
single cells. The empty white circles represent statistical outliers. Horizontal error bars represent
the maximum interval of the measured bulk isotopic composition (smaller than symbol sizes in most
cases).

analysis also indicates a maximal contribution of organic carbon adhered to the ITO coated

glass of ~3%. However, in the case of carbon, fixed single cells are expected to be slightly

offset isotopically from the unfixed bulk population due to the introduction of near natural

abundance carbon in formaldehyde. Musat et al. (2014) recently reported this effect to

account for a ~4% dilution of cellular carbon in experiments with Pseudomonas putida,

which could explain part of the observed offset in the calibration. Lastly, it is important

to note that the nitrogen isotopic composition of highly enriched S. aureus cells shows a

significant amount of spread with a predominant cluster of cells at the expected value, but
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several outliers (see Figure 8.6) deviating by more than 10%. This is likely a consequence

of slight heterogeneities even in the exponentially growing cultures modulating the isotopic

composition of individual cells due to differential incorporation of the diverse sources of

nitrogen available to S. aureus (several amino acids present in addition to the isotopically

labeled ammonium; see Section 8.2.1.1 for detail).

Finally, the hydrogen isotope composition of single cells for both organisms show

a robust linear dependence on the bulk (whole membrane) isotopic composition. The

slope is substantially lower than unity (0.67±0.05 for P. aeruginosa and 0.59±0.05 for S.

aureus). This is consistent with the expected effects of hydrogen exchange. While the

measured bulk isotopic composition is based on non-exchangeable hydrogen incorporated

into membrane fatty acids, the 2H content of individual cells measured by NanoSIMS is

necessarily based on the integrated signal from all cellular hydrogen. Here, we employed a

strict multi-step washing protocol for all cultures, with the goal of exchanging all readily

exchangeable hydrogen with natural abundance H (�2H ⇡ �60h) from the washing

solutions. This should allow for applying the calibration between single cell 2H content

measured by NanoSIMS and bulk membrane incorporated 2H measured by GC-pyrolysis-

ir-MS for cells treated identically. The calibration parameters inferred for P. aeruginosa

and S. aureus suggest, however, that there can be a substantial degree of variability

between individual organisms. The observed pattern indicates that S. aureus cells contain

a higher proportion of hydrogen that exchanges during these washing steps (lower slope)

than P. aeruginosa (higher slope), which is consistent with the gram-positive (one lipid

membrane instead of two), spherical (lower surface to volume ratio) S. aureus containing

a lower proportion of lipid bound hydrogen than the gram-negative (two lipid membranes),

rod-shaped P. aeruginosa. In the absence of any isotope fractionation in the detection

of hydrogen during NanoSIMS analysis, the observed slopes would indicate that about

~40% of the hydrogen was lost to exchange with water during the washing steps for

S. aureus, and ~30% for P. aeruginosa. Lastly, single cell isotopic measurements of
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hydrogen show substantial variability around the mean for both S. aureus and P. aeruginosa

(Figures 8.6 and 8.7), which likely reflects both the high statistical uncertainty in the

measurements for each single cell from low ion counts of 2H (see Section E.1 , Figure

E.7 and Figure E.9 in the Appendix), as well as random variation in the exact cellular

components (highly exchangeable vs. non-exchangeable parts of the cell) sampled by the

ion beam. This aspect of hydrogen isotope measurements of single cells by secondary

ion mass spectrometry is a fundamental constraint that limits the ability to resolve small

isotopic differences between individual cells, and requires the analysis of many cells (10s

to 100s) within a microbial population if isotopically similar communities need to be

distinguished.

This calibration provides the empirical parameters for inferring the bulk (whole mem-

brane) hydrogen isotopic composition from the analysis of single whole cells of S. aureus

and P. aeruginosa, with the statistical caveats outlined above. The technique is applied

and cross-validated in a case study of growth and population heterogeneity in continuous

culture of S. aureus (see Section 8.3.3 below). While this calibration is likely applicable

to other gram-negative and gram-positive cells of similar morphology that are prepared

identically for NanoSIMS analysis, this extrapolation to other microorganisms has to be

interpreted with care.

8.3.2.2 Thin sectioned cells

Multi-isotope imaging mass spectrometry in thin-section vastly expands the range of ap-

plicability of this technique in complex systems. However, many thin sectioning techniques

with a relatively soft, removable matrix (e.g. embedding in OCT for cryosectioning, or

embedding in paraffin) do not permit cutting sections thinner than ~5µm. While less prob-

lematic for large eukaryotic cells, this limits the potential applicability for microbial cells

within larger communities or host systems where accurate targeting and identification of

individual microbial cells in an ion image require even thinner sections. Hard polymerizing
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Figure 8.8 – Calibration curve for embedded single cells of S. aureus. Calibration curve for
isotopic composition of single cells measured by NanoSIMS vs. bulk isotopic composition of the
population (measured by EA-ir-MS / GC-pyrolysis-ir-MS). Data points represent the mean isotopic
composition of all measured single cells. The colored bands for each data point represent the range
that comprises 50% of the single cell data. The dashed whiskers represent the entire range of all
single cells. The empty white circles represent statistical outliers. Horizontal error bars represent
the maximum interval of the measured bulk isotopic composition (smaller than symbol sizes in most
cases).

plastic resins developed for electron microscopy, such as LR White, provide the matrix

support required for ultra-thin sections, however, they are often too dense to permit

the use of fluorescent staining techniques important for microbial identification, such as

fluorescent in-situ hybridization. Here, we thus use the plastic polymer Technovit, which

is of intermediate hardness, and allows both routine sectioning to ~1µm thickness as well

as application of most fluorescent staining techniques (Takechi et al., 1999). Technovit

works well for preserving the structure of a sample and, unlike most resins, polymerizes at

cold temperatures (~4C), precluding the need for extended exposure to relatively high heat
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(and the associated risk for structural changes). The structural support lent by the plastic

matrix provides thin-sections with a smooth surface that enables high spatial resolution in

imaging mass-spectrometry due to the lack of strong topological features. It also retards

sample destruction by the ion beam, as discussed in Section 8.3.1.1. However, as an acryl

plastic (a combination of methyl methacrylate and glycol methacrylate), the Technovit

resin contributes significant amounts of isotopically circumnatural carbon and hydrogen

that dilute the isotopic signal from enriched cells. It is thus imperative to calibrate and

correct any isotopic measurements of single cells embedded in plastic.
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Figure 8.9 – Calibration curve for embedded single cells of P. aeruginosa. Calibration curve
for isotopic composition of single cells measured by NanoSIMS vs. bulk isotopic composition of the
population (measured by EA-ir-MS / GC-pyrolysis-ir-MS). Data points represent the mean isotopic
composition of all measured single cells. The colored bands for each data point represent the range
that comprises 50% of the single cell data. The dashed whiskers represent the entire range of all
single cells. The empty white circles represent statistical outliers. Horizontal error bars represent
the maximum interval of the measured bulk isotopic composition (smaller than symbol sizes in most
cases).
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Here, we present the necessary calibration curves for cells of S. aureus (Figure 8.8,

based on 104 ROIs) and P. aeruginosa (Figure 8.9, based on 100 ROIs) embedded in

Technovit as described in Materials and Methods. Additional detail on all ROIs is presented

in the Appendix, Figures E.3, E.5, E.8 and E.10, with ion maps in Figure E.6). Calibration

parameters are listed in the Summary Table 8.1.

As expected, the nitrogen isotope compositions of embedded single cells for both

organisms are not diluted by the plastic polymer (which contains no nitrogen). In P.

aeruginosa, the calibration slope for embedded cells closely matches the slope for free

whole cells (0.94 ± 0.06 and 0.95 ± 0.04), with near perfect linear correlation and slope

close to 1. In the case of S. aureus, the substantial variability in the nitrogen isotopic

composition of individual cells, as discussed above, likely effects the large uncertainty

observed in the calibration slope for embedded cells (which increases to 1.31± 0.29), and

should be applied with caution.

The key observation, however, is the effect of the plastic on the carbon and hydrogen

isotopic composition of the microbial isotope standards. As expected, the calibration

parameters for both carbon (P. aeruginosa only) and hydrogen suggest substantial dilution

of the isotopic signal by the plastic polymer, with the slope for carbon dropping from

0.73±0.07 to 0.17±0.02, and for hydrogen from 0.67±0.05 to 0.30±0.06 (P. aeruginosa)

and from 0.59± 0.05 to 0.31± 0.10 (S. aureus). To first order, these parameters suggest

a dilution of the cellular carbon by ~75% and the cellular hydrogen by ~50%. Although

the calibration curve for carbon in embedded cells vs. bulk isotopic composition provides

a robust linear correlation, the hydrogen calibration curves for both organisms suffer from

elevated scatter, likely due to the same effects observed in whole cells, that reduce their

predictive value.

These empirical relationships show that the isotopic enrichment of embedded single

cells in both hydrogen and carbon (and of course nitrogen) can be quantified and used to

estimate bulk isotopic compositions of individual cells in addition to measuring diversity
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(which can be assessed in relative terms without calibration). However, our results indicate

that the high dilution of C and H by the plastic polymer restrict the accuracy of single

cell isotopic measurements at relatively low levels of enrichment, and should not be used

for values below ~1000h (i.e. 2x natural abundance). Additionally, the same caveats as

for the analysis of single whole cells (extrapolation to other organisms and morphologies,

statistical significance for distinguishing isotopically similar populations, etc.) equally

apply. Lastly, given the relatively high scatter for these calibration curves, it is important

to apply caution when using them in relating single cell isotopic compositions in plastic

back to bulk equivalents, and carefully take the uncertainty into consideration.

8.3.2.3 Effect of isotopic spike present during fixation

Microbe Isotope natural abundance cells
avgxFcells [%]

natural abundance cells
�xF [%]

spiked during fixation
avgxFcells [%]

spiked during fixation
�xF [%]

PA 13C 0.90 0.06 0.81 0.01
PA 15N 0.35 0.01 2.2 0.2
PA 2H 0.021 0.005 0.026 0.005
SA 15N 0.361 0.005 2.2 0.1
SA 2H 0.021 0.007 0.026 0.005

Table 8.2 – Effect of isotopic spike during fixation.

In environmental applications of isotope labeling techniques combined with microscopy

and imaging mass spectrometry, cells are typically fixed with formaldehyde (or other

fixatives) prior to analysis to arrest metabolism and preserve cellular structure. Frequently,

fixatives are added to samples still in the presence of (some of) the isotopic label, because

extensive washing procedures are either impractical (for very complex samples) or deemed a

risk to the structure and integrity of the target cells. However, fixation can both chemically

and/or physically trap unincorporated isotope label that is not actually part of the cell.

Such trapped isotope label is retained in excess of true cellular label incorporation, and

can lead to an overestimate of microbial activity upon analysis. To estimate the potential

extent of this effect, we fixed cells grown with natural abundance substrates in the presence

of a strong isotopic label, as described in Materials and Methods. Table 8.2 summarizes

the potential effects of the presence of a strong isotopic label during the microbial fixation

224



Chapter 8: Hydrogen isotope labeling with NanoSIMS

with formaldehyde prior to embedding in plastic. The presence of carbon (13C succinate)

and hydrogen (2H2O) does not have a significant enrichment effect within the analytical

error, but the presence of 15NH4 leads to strong apparent enrichment of the microbial

population (15F ⇡ 2.2% , i.e. ~5000h above natural abundance). This is likely a

consequence of cross-linking reactions of proteins with the isotope label and subsequent

trapping of the label. The effect is considerably exaggerated here due to the nature of the

experiment of mixing finely suspended single cells rapidly with both an isotope tracer and

a fixating agent. Previous work on environmental samples reported less severe, but still

significant abiotic 15N retention of 15F ⇡ 0.6% (Orphan et al., 2009). Due to importance

of sample conservation, this is often an unavoidable risk when working with a 15NH4label.

Ideally, samples are washed to remove the label prior to fixation, but whenever this is not

a viable option, it is important to determine the potential extent of this effect in control

experiments representative of experimental conditions.

8.3.3 Growth diversity in continuous culture

Here, we present an example of employing hydrogen isotope labeling and secondary ion

mass spectrometry to study both the activity and heterogeneity of microbial populations.

S. aureus was grown in continuous culture at three different growth rates as described in

detail in Materials and Methods and Chapter 7, and spiked at steady state simultaneously

with both a 2H2O isotope label as well as a 15NH4
+ label for comparison. Samples were

withdrawn at regular intervals, and the hydrogen and nitrogen isotopic composition of

individual cells was measured by multi-isotope NanoSIMS as described in 8.3.1. Single

cell values from 1135 ROIs were converted to equivalent bulk cell compositions using the

calibration for whole S. aureus cells described in Section 8.3.2.1, and are presented here

for both 15N and 2H.

Figure 8.10 shows the aggregated data for 15N enrichment from continuous culture

experiments at three different growth rates (generation times of ~6.4 hours, ~1.2 days
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Figure 8.10 – Growth-rate-dependent single cell labeling of S. aureus with 15N ammonium.

The three panels show data from continuous culture experiments at different growth rates. The
colored bands for each time point represent the range that comprises 50% of the single cell data.
The whiskers represent the entire range of all single cells (upper and lower quartile). White diamonds
represent the average isotopic composition of all measured cells at a time point, the black lines
represent the median. Differences between the mean and the median reflect a skewed distribution
in the isotopic composition of individual cells that is discussed in detail in the text. All single cell
data is corrected to reflect the corresponding bulk cell composition.
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Figure 8.11 – Growth-rate-dependent single cell labeling of S. aureus with 2H2O. The three
panels show data from continuous culture experiments at different growth rates. The white circles
show data from bulk isotopic composition (whole membrane) measurements. The dashed red line
indicates the projected whole cell isotopic composition based on continuous culture growth rates
and bulk-data-derived turnover rates. The colored bands for each time point represent the range
that comprises 50% of the single cell data. The whiskers represent the entire range of all single
cells (upper and lower quartile). White diamonds represent the average isotopic composition of all
measured cells at a time point, and the black lines represent the median. Differences between the
mean and the median reflect a skewed distribution in the isotopic composition of individual cells
that is discussed in detail in the text. All single cell data is corrected to reflect the corresponding
bulk cell composition.

and ~13.3 days), illustrating both the average isotopic composition of all measured cells

as well as the range of single cell enrichments. Additional detail on all ROIs is presented
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in the appendix, figures E.11, E.12, E.13 and E.14). As expected, the data show overall

isotopic enrichment over time as the population increasingly assimilates 15N from the

ammonium spike. Additionally, the spread in single cell enrichments (bars and whiskers)

provides insight into the range of heterogeneity within each population. The data reveals

substantial diversity in cellular activity rates even for the fastest growing culture, which

is further amplified at slower growth. In the slowest-growing culture, it becomes evident

that this diversity is significantly spread asymmetrically, with the majority of cells hardly

active and some cells highly active, as shown visually by the medians (black bar) falling

out substantially lower than the mass balance population averages (white diamonds).

Figure 8.11 shows the data from the same cells for 2H enrichment, which matches the

pattern observed in 15N. However, it is worthwhile to point out that this is achieved here

in hydrogen isotope labeling with a much smaller isotopic spike (1mL 70% D2O into a

~500mL reactor) despite the relatively low (2Fmax ⇡ 0.1%) and analytically challenging

signal. The much stronger 15N spike (~10mM of 99% 15NH4
+) provides enrichment up to

15Fmax ⇡ 10%, but cannot be interpreted quantitatively because of the presence of amino

acids, which provide an alternative source of nitrogen for S. aureus. This illustrates the

exact scenario that inspired the development of hydrogen isotope labeling with heavy water

presented in this manuscript, as a tool for measuring microbial activity in nutritionally

complex environments.

The hydrogen enrichment presented in Figure 8.11 can be interpreted quantitatively

based on measuring the isotopic composition of the source water after the spike, and the

water fraction factors measured experimentally for S. aureus in Chapter 7. Additionally,

the bulk hydrogen isotopic data from whole membrane measurements discussed in Chapter

7 can serve as a point of comparison for the single cell data. Figure 8.11 thus shows an

overlay of the enrichment data from bulk measurements (white circles) as well as the

predicted isotope enrichment based on the apparent/activity growth rate µact of each

population (derived from the growth rate µ of the continuous culture setups and the
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Figure 8.12 – Growth-rate-dependent single cell diversity of S. aureus from isotope labeling
experiments with 2H2O. The three panels show data from continuous culture experiments at
different growth rates. The individual data points indicates the apparent growth rates of individual
cells/ROIs (scattered for clarity, vertical position has not meaning for the data points). The blue line
indicates the kernel density estimation of the probability density function that represents the data.
The vertical red line indicates the independent apparent growth rate (µ

act

) estimates of the different
populations, derived from the continuous culture setups and the bulk isotope labeling patterns. All
data are plotted relative to the respective bulk apparent growth rate (µ

act

) of the culture on a
logarithmic scale. For reference, the corresponding generation times change with the inverse of the
growth rate (2 · µ / g

2 ).
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turnover/maintenance rates ! inferred from bulk isotope labeling patterns; see Chapter

7 for details). Although overall population enrichment is slightly underestimated by

single cell data at the fastest growth rate (panel 1), and slightly overestimated at the

intermediate growth rate (panel 2), the single cell hydrogen isotope data matches the

projected isotopic composition within error for the majority of the cells.

Finally, the apparent growth rate µact = µ+! for each individual cell can be estimated

from the relation derived in Chapter 7:

2F cell(t) = xw · ↵l/w ·

2Fwspiked

· µact

µact + k
·
�
1� e�(µact+k)·t�� 2Fwnat ·

�
1� e�µact·t

��

+

2F cell(t0)

(8.2)

with water fraction factor xw · ↵l/w (measured for S. aureus in Chapter 7), isotopic

composition of the spiked medium source water 2Fwspiked
(measured after application of

the isotopic spike), natural isotopic composition of the source water 2Fwnat (measured

before application of the isotopic spike), the spike dilution rate k (set by the dilution rate

of the continuous culture setup) and the cellular hydrogen isotope composition 2Fcell at

time t (measured by NanoSIMS and converted using the calibration derived in Section

8.3.2.1). The resulting growth rates of all measured cells are shown in Figure 8.12 relative

to the expected growth rate of the whole population for each growth condition.

The observed pattern confirms that substantial heterogeneity exists for all growth

conditions, with some cells growing faster than the average, and some cells growing

slower than the average. However, it is particularly striking how diversity in growth activity

increases at slower average growth rates. This reaches an extreme at the slowest growth

condition tested in this study (generation times of ~13.3 days) where the population of

S. aureus clearly falls into a bimodal activity pattern with two distinct populations. No

clear pattern as to a dependence of growth activity on cell size (represented to first order
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by ROI size) could be distinguished.

8.4 Conclusions

Here, we present stable isotope labeling of microbial populations with heavy water in

combination with multi-isotope imaging mass spectrometry by NanoSIMS, as a novel

technique to measure single cell microbial activity in a wide range of environments. A

discussion of the analytical challenges, calibration of single cell measurements against bulk

isotopic composition, and example application in continuous culture is presented in light

of the capabilities and potential caveats of this approach.

The main analytical challenges are posed by a) the large dynamic mass range required

to analyze both hydrogen isotopes and nitrogen isotopes simultaneously in a multicollec-

tor secondary ion mass spectrometer, b) the low ionization efficiency of hydrogen and

vanishingly small natural abundance of the 2H isotope, and c) the fast degradation of

small individual microbial cells at high primary beam currents. We demonstrate, for the

first time, that simultaneous multi-isotope analysis of hydrogen, carbon and nitrogen at

high-mass resolution can be achieved on a CAMECA NanoSIMS 50L by extending the

positions of the detector trolleys at the high and low end to their maximally possible

configuration, and show its successful application to microbial samples.

We also report calibration data on linking measured single cell isotopic compositions

of free whole cells as well as cells embedded in plastic back to bulk isotopic compositions.

While this calibration provides the necessary parameters for inferring the bulk (whole

membrane) hydrogen isotopic composition from the hydrogen isotope analysis of single

whole cells of S. aureus and P. aeruginosa, it is important to recognize its likely limitations

in translating to vastly different cell types (phylogenetically or morphologically different,

or prepared very differently), as well as in resolving small isotopic differences between

individual cells.
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Lastly, we apply this technique to the study of microbial activity and population

heterogeneity of slow-growing S. aureus cells in continuous culture. Our data reveal

both accurate detection of population growth even by relatively low isotope labeling

(2Fmax ⇡ 0.1%) and quantitative insight into the range and diversity of heterogenous

population activity rates.

The analytical challenge, measurement uncertainty and need for calibration all present

important constraints that need to be considered carefully when planning or interpreting

single cell environmental growth data from D2O stable isotope labeling (or any stable

isotope labeling for that matter). However, the technique also represents incredible

scientific opportunity for studying spatiometabolic microbial diversity with a non-disruptive

isotope tracer that can be employed even in the most complex environments.
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Chapter 9

Microbial activity in cystic fibrosis

9.1 Introduction

Cystic fibrosis (CF) is an autosomal recessive genetic disorder arising from two defective

copies of the gene encoding the cystic fibrosis transmembrane conductance regulator. The

genetic defect affects the production of mucus in a variety of organs, and is particularly

detrimental in the lung, where thick mucus collects over time and allows for progressive

colonization of the pulmonary system by a polymicrobial community of opportunistic

pathogens. This leads to chronic infection of the airways, and contributes to most of the

morbidity and mortality associated with CF (Goss and Burns, 2007).

While it is well-established that the physiological state of individual pathogens within

the lung plays an important role in microbial persistence and drug tolerance (Hirschhausen

et al., 2013; Hart and Winstanley, 2002; Davies, 2002; Nguyen et al., 2011; Baek et al.,

2011), very few direct measurements of actual growth-activity rates of these populations

exist in the host. However, a better understanding of how populations grow in vivo

is crucial to developing representative in vitro tests of potential therapies that produce

reliable results and lead to safe and effective treatment strategies (Harrison, 2007).

237



Chapter 9: Microbial activity in cystic fibrosis

The sole currently available quantitative estimate of the range of growth activities in

cystic fibrosis stems from an assessment of ribosome content of fast-growing Pseudomonas

aeruginosa cells in sputum measured by fluorescent in situ hybridization (FISH) calibrated

against liquid batch culture growth rates (Yang et al., 2008). However, this indirect proxy

for metabolism is ambiguous for the complex conditions encountered in most clinical

samples, as rRNA concentrations don’t scale linearly with growth rates across taxa,

and provide an unreliable indicator of metabolic state in microbial communities, slow-

growing/dormant cells and dynamically changing environments (Blazewicz et al., 2013;

Ecker and Schaechter, 1963).

Here, we use the incorporation of a stable isotope tracer into biosynthetically active

cells as an alternative direct measure of metabolic activity in sputum samples from cystic

fibrosis patients. Specifically, we use the method presented in Chapter 7 based on hydrogen

isotope enrichment of microbial fatty acids from 2H2O incorporation. Heavy water (2H2O)

provides an ideal isotopic tracer for complex environments like infections, which are often

saturated with bioavailable carbon and nitrogen such that 13C and 15N labeled substrates

would change the nutrient availability and only capture microbial activity of organisms

consuming the particular labeled substance. 2H2O can be administered with strong labels

even in minimal addition (natural background is very low), is an equally-universal substrate

for all forms of life even in complex, carbon- and nitrogen-saturated systems, can be

combined with other isotopic tracers (e.g. specific carbon or nitrogen sources), and can

be used safely within biological systems (Kushner et al., 1999b; Jones and Leatherdale,

1991a; Steinhauser and Lechene, 2013).

In this study, we focus on the growth rates of the opportunistic pathogen Staphylo-

coccus aureus for its importance in lung infections of pediatric cystic fibrosis patients and

its unique fatty acid profile. S. aureus is one of the earliest bacteria detected in infants

and children with CF, is the most prevalent organism among U. S. children with CF, and

has gained a tremendous amount of attention in the last decade due to the rise of beta-
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lactam-resistant strains (methicillin-resistant S. aureus, or MRSA) (Goss and Muhlebach,

2011; Kahl, 2010).

Lastly, 2H incorporation into bacterial fatty acids provides a bulk measure of microbial

activity, but cannot provide insight into growth heterogeneity within a target population.

While it is likely that the physiological states of individual cells in such complex commu-

nities vary, little is known about the extent of this variation within the CF lung. Given the

hypothesized correlation between physiological diversification and antimicrobial resistance,

it is highly desirable to know the extent of in situ heterogeneity in the metabolic states of

individual cells at different stages of infection. This is particularly important in persistent

infections in which slow- or non-growing bacteria play a major role (Helaine et al., 2010;

Stewart et al., 2011; Helaine et al., 2014).

Here, we build on the tools presented in Chapter 8 to combine thin-sectioning of

sputum samples with fluorescent in situ hybridization (FISH) and nano-scale secondary

ion mass spectrometry (nanoSIMS) to measure microbial activity in clinical samples at the

single cell level, and gain quantitative insights into the heterogeneity in microbial activity

rates.

9.2 Material and Methods

All reagent solutions were filter-sterilized prior to use. All non-consumable glassware used

for lipid extraction and derivatization was pre-combusted in a muffle furnace at 550 °C to

remove all remaining traces of organic materials potentially adhered to the glass.

9.2.1 Sample collection

9.2.1.1 Study design

Fifteen participants (aged 11 to 20 years) were recruited from Children’s Hospital Los

Angeles (CHLA). Inclusion criteria were: a positive diagnosis of cystic fibrosis, ability to
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expectorate sputum, informed consent, and recent detection of an infection by S. aureus

from clinical data. The study was approved by the ethical commissions of the California

Institute of Technology and the Children’s Hospital Los Angeles.

9.2.1.2 Sample collection

Immediately upon expectoration (usually within 5-10min), sputum samples were sus-

pended at the hospital in a pre-warmed phosphate buffered saline (PBS) isotope labeling

solution (with 1 to 30% D2O), and incubated at 37C for up to 60 minutes. Microbial

growth activity in samples for lipid analysis was arrested by flash-freezing in liquid nitrogen

at the end of sample incubation, and samples were preserved at -20C until transfer to and

processing at the California Institute of Technology. Microbial growth in samples for

single cell analysis was arrested by transfer to a freshly thawed 1% formaldehyde solution

in PBS (Paraformaldehyde, Electron Microscopy Sciences, #15713). Just prior to sample

preservation, the residual labeling solution was collected and filter-sterilized for water

isotope analysis.

Typically, most pediatric patients could not expectorate more than 0.5 - 1g of sputum,

but when sufficiently large sputum samples (>0.6g) were expectorated, the sample was

divided into multiple aliquots prior to isotope labeling by division with a scalpel or transfer

with a large syringe, and sub-samples were incubated for different amounts of time from

0 to 60 minutes. The full sampling procedure, is illustrated in the flow chart in Figure

9.1, which served to standardize sample collection.

9.2.1.3 Isotopic composition of water

The water hydrogen isotopic composition 2Fw of all samples was measured using a Los

Gatos Research DLT-100 liquid water isotope analyzer. Samples were analyzed in 3

replicate analyses with 10 injections each. Samples close to natural abundance isotopic

composition were calibrated against four working standards (�2H values: �117h, �11h,
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 How much does sputum sample weigh?
(if a lot of saliva, increase cutoff weight)

How much does remaining sputum sample weigh? 
(if a lot of saliva, increase cutoff weight)

while samples incubate, get liquid nitrogen 
if subsampled for microscopy: also get fixa-
tion solution from freezer stock (2mL tubes 

with 1.5mL 1% PFA in PBS , yellow sticker 
on top, should defrost on benchtop in time, 

if necessary, defrost in heating block)

Preparation:
 - preweigh sputum sampling tube (RECORD)
 - forceps and scalpel for microscopy sampling
 - 10mL syringe and needle for subsampling
 - several spinX tubes for water samples
At least 30min before sampling, preheat the following to 37C:
 - 1 vial D isotopic labeling solution (50mL tube)
 - 1 vial DN isotopic labeling solution (800µL in 2mL tube from DN box , red sticker)
 - 4 empty vials for extra samples (15mL tubes with empty weight on outside)

Collect sputum sample
--> LABEL sampling tube with sample ID: date & 
patient # (.1, .2, .3 if multiple samples in a single day)
--> RECORD sampling time

< 0.6 g > 0.6 g

< 1.4 g

> 1.4 g

> 2.1 g

> 2.8 g

Subsample
For each 15mL subsample,  tare 
balance with 15mL tube. Take up 
sputum sample with needle and 
syringe (don’t homogenize), add 
~0.7g sputum to 15mL tube 
(speed is more important than 
precision here). 

Sample supernatant and freeze sample
--> LABEL a spinX tube (blue sticker) with (sub)sample ID
After incubation time (length depending on subsampling) 
is almost finished, use 1mL pipette to withdraw ~150µL of 
the solution into spinX tube. 

Freeze rest of sample in liquid nitrogen and store frozen. 
--> RECORD end time
Bring to Caltech on dry ice whenever convenient.
--> SUBMIT info for each (sub)sample with spreadsheet 
form “Isotope Labeling”

Sample supernatant and fix sample
--> LABEL a spinX tube (blue sticker) with sample ID + “microscopy”
After 60mins are almost finished, withdraw 100µL of the solution into spinX 
tube (should be easy with small sample in large sampling solution volume). 

Fix the sample by gently transferring it from the labeling solution to the de-
frosted PFA fixation solution (use tweezers) or by pipetting off as much 
labeling solution as possible and then adding the PFA fixation solution. 
--> RECORD end time
Bring to Caltech as soon as possible for preservation (keep in fridge if stay-
ing at CHLA overnight, do NOT freeze).

Filter spinX column by centrifuging at 
maximum speed until at least 50µL are 
filtered (might require multiple 5min 
spins). Discard filter (biohaz waste) and 
bring tube to Caltech as soon as possible 
for preservation (store at room tempera-
ture in the meantime).

Split sample into 2 samples:
--> LABEL a 15mL tube with sample ID + “a (60min)”. 

Split sample into 3 samples:
--> LABEL a 15mL tube with sample ID + “a (60min)”. 
--> LABEL a 15mL tube with sample ID + “b (30min)”. 

Split sample into 4 samples:
--> LABEL a 15mL tube with sample ID + “a (60min)”. 
--> LABEL a 15mL tube with sample ID + “b (40min)”. 
--> LABEL a 15mL tube with sample ID + “c (20min)”. 

with
remainder of 

sample in origi-
nal sampling 

tube

for 
each sub-

sample

with 
original 

sampling tube
--> LABEL 

“whole”

Freeze control
--> RECORD remaining sputum weight
--> LABEL tube as “control”
Add 2x weight of sputum in D labeling 
solution (from 50mL tube) and immedi-
ately freeze in liquid nitrogen and store 
in freezer.

CONTROL

Take sample for microscopy
--> LABEL preheated DN labeling solution (800µL in 2mL 
tube) with sample ID
Tare balance with tube on it, use long forceps and scalpel to 
cut small piece from sputum sample (can be very small, pea 
sized at most) and suspend in tube. If possible preserve 
structure of sample as much as possible.
--> RECORD weight
--> RECORD start time
Add sample to 37C incubator (invert several times if sample 
stuck to tube wall).

MICROSCOPY

Isotope label 
--> RECORD sputum weight
Tare balance, add 2x weight of sputum in 
mL of  prewarmed D isotopic labeling 
solution (from 50mL tube), e.g. for 0.62g 
sample, add twice 620µL.
--> RECORD solution weight
--> RECORD start time
Add sample to 37C incubator (invert sev-
eral times if sample stuck to tube wall).

SAMPLE

after 60 m
in

after incbuation (20-60m
in)

Figure 9.1 – Sampling procedure for clinical samples. This flowchart portrays the sampling
protocol used for collection of clinical samples.

+290h, 1270h) that in turn were calibrated against the VSMOW, GISP, and SLAP

international standards (Coplen, 1988). Heavily-enriched samples from isotope tracer

solutions were beyond the linear response range of the instrument, and were analyzed by

isotope dilution with natural abundance water of known isotopic composition.
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9.2.2 Fatty acid analysis

9.2.2.1 Extraction and derivatization

Frozen sputum samples were lyophilized for at least 48 hours. Homogenized dry powder

was weighed out in up to ⇠40mg aliquots (or the maximum available amount), and spiked

with 10µg of 21:0 phosphatidyl choline as a phospholipid extraction standard. Samples

were transesterified in the presence of a base catalyst (0.5M NaOH in anhydrous methanol)

at room temperature for 10 min (Christie, 1997; Metcalffe and Wang, 1981; Griffiths et al.,

2010). Free fatty acids and aldehydes are not transesterified under basic conditions, which

prevents the derivatization of fatty acids from degraded materials in the sputum sample,

as well as the derivatization of abundant aldehydes, which interfere chromatographically

with target analytes. Derivatized fatty acid methyl esters (FAMEs) were extracted into

hexane after addition of a quantification standard (10µg C25:0 FAME), and concentrated

under a stream of N2 at room temperature.

Primary target analytes (a-C15:0 FA and a-C17:0 FA produced by S. aureus) typically

constituted less than 1% of host-derived fatty acids (see Figure F.2 in the Appendix for

a visual example). The high abundance of host material (primarily C18:1 FA, C18:2

FA, and longer chain (poly)-unsaturated fatty acids) interfered with compound-specific

isotope ratio analysis of less-abundant compounds due to column overload. The low

total amount of target analytes available from most sample sizes precluded the use of

elaborate purification steps with low yields or risk of contamination. To remove several

major host compounds and increase relative abundance of the analytes sufficiently for

isotope ratio analysis, saturated FAMEs were separated from unsaturated FAMEs using

Discovery® Ag-Ion solid phase extraction columns in combusted glass cartridges (Supelco,

custom preparation1). Extracted samples were dried to 1 ml and applied to preconditioned

columns, followed by elution of saturated FAMEs in 0.125% acetone in hexane, and mono-
1Standard columns are only available in plastic cartridges with contaminant bleed high enough to

interfere chromatographically with the low-abundance analytes.
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and disaturated FAMEs in acetone. Separation of unsaturated and saturated fatty acids

was quantitative using this procedure with lipid extracts from up to ⇠40mg of dry sputum

(see Figure F.3 in the Appendix). Fractions were evaporated to dryness and resuspended

in hexane prior to analysis.

9.2.2.2 Analysis

Fatty acid methyl esters (FAMEs) were analyzed by gas chromatography/mass spectrom-

etry (GC/MS) on a Thermo-Scientific Trace DSQ equipped with a ZB-5ms column (30m

x 0.25mm i.d., film thickness 0.25µm) and PTV injector operated in splitless mode, using

He as a carrier gas at 0.8 ml/min. The GC oven was held at 80ºC for 1 minute, ramped

at 20ºC/min to 130ºC, and ramped at 5ºC/min to a final temperature of 320ºC (held

for 20min). Peaks were identified by comparison of mass spectra and retention times to

authentic standards and library data.

The isotopic composition of the primary target analytes (a-C15:0, a-C17:0, and other

microbially produced fatty acids) was measured in the saturate fraction by GC/pyrolysis/

isotope-ratio mass spectrometry (GC-ir-MS) on a Thermo-Scientific Delta+XP with methane

of known isotopic composition as the calibration standard. A multi-compound FAME

standard was run every 4-6 samples to verify instrument accuracy and precision. Chro-

matographic conditions were identical to those from GC/MS analysis except for a thick-

film column (ZB-5ms, 30m x 0.25mm i.d., film thickness 1.00µm) and slight modifications

to the temperature program to optimize chromatographic separation of key analytes (i-

C15:0 and a-C15:0 / i-C17:0 and a-C17:0) despite peak broadening from heavy isotope

labeling (see Section 7.4.1 in Chapter 7 for a discussion). Samples were injected in

highly-concentrated aliquots to obtain maximum signal for target analytes. Peaks were

identified based on retention order and relative height based on the GC/MS analysis.

High-abundance components in the saturate fraction (C16:0, C18:0, C20:0) that were

too concentrated relative to target analytes were prevented from entering the source
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by appropriately-timed backflush of the column effluent. Relative proportions of fatty

acids for isotope mass balance calculations were determined from peak areas corrected for

derivatization and isotopic composition of each analyte.

9.2.3 Single cell analysis

9.2.3.1 Sample preparation

Immediately upon receipt of samples from the hospital, on the same day as sputum

expectoration and incubation with isotope label, formaldehyde-fixed sputum samples were

transferred to excess PBS solution (10mL) in a column above an 8µm sterile filer. The

sample was washed by slowly rinsing it with a total of 50mL PBS solution that was added

to the column in 10mL aliquots and drained by gravimetric or slight vacuum flow through

the filter.

Samples for cryosectioning were suspended in O.C.T. Compound (a poly ethylene

glycol and polyvinyl alcohol based embedding solution, Tissue-Tek), which was allowed

to infiltrate the sample for 48 hours at 4C. Samples in O.C.T. were slowly frozen by

contact with dry-ice cooled ethanol and stored at -80C. Thin sections (down to ⇠5µm)

were cut using a rotary microtome in a cryostat and transferred to 1-inch-diameter round

microprobe slide. The water soluble O.C.T. was removed by slowly dipping the round into

1x PBS solution, followed by dehydration in 50%, 75% and 100% ethanol.

Samples for plastic thin-sectioning were suspended in a few drops of molten noble

agar (2% Difco Agar Noble in 50mM HEPES buffered filter-sterilized water), solidified

by cooling at room temperature, and cut into ⇠2mm3cubes. Fixed and washed agar

cubes were incubated for at least 1 hour at 30C in freshly prepared 1mg/ml lysozyme and

50µg/mL lysostaphin (Sigma-Aldrich, #L2898) in 10mM tris buffered water to digest S.

aureus cell wall, washed once in PBS, resuspended in 50% EtOH in PBS, and dehydrated

in 100% Ethanol over the course of 3 exchanges, with final resuspension in 100% for

at least 1 hour. Ethanol was then replaced twice with 100% Technovit 8100 infiltration
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solution (Heraeus Kulzer GmbH, #64709012) to infiltrate the agar cubes overnight. Agar

cubes were finally suspended in airtight 0.6mL microcentrifuge tubes in Technovit 8100

infiltration solution amended with hardener II reagent and stored at 4C for overnight

polymerization. Thin sections (1 mm thick) were cut using a rotary microtome. Each

section was stretched on the surface of a water drop on polylysine-coated microscope

slides and air-dried at room temperature.

9.2.3.2 Fluorescent in situ hybridization (FISH)

Fluorescent in situ hybridization (FISH) was conducted on the cryo-sections and plastic

thin-sections using the universal bacterial probe EUB338 (5’ to 3’: GCTGCCTCCCG-

TAGGAGT, Amann et al., 1990), which hybridizes to bacterial 16S ribosomal RNA, probe

Sau (5’ to 3’: GAAGCAAGCTTCTCGTCCG, Kempf et al., 2000), which hybridizes to

S. aureus 16S ribosomal RNA, and probe Psae (5’ to 3’: TCTCGGCCTTGAAACCCC,

Hogardt et al. 2000; Trebesius et al. 2000), which hybridizes to P. aeruginosa 23S

ribosomal RNA. Both probes were specifically designed and tested for use in microbial

identification in cystic fibrosis sputum (Hogardt et al., 2000; Tajbakhsh et al., 2008b;a).

Additionally, probe Non338 (5’ to 3’: ACTCCTACGGGAGGCAGC, Wallner et al., 1993),

an oligonucleotide complementary to the probe EUB338, served as a negative control for

nonspecific binding. Probes EUB338 and Non338 were labeled with the cyanine dye Cy3,

probe Sau with the cyanine dye Cy5, and probe Psae with fluorescein. All probes were

labeled on both the 5’ and 3’ end to increase fluorescence intensity (Stoecker et al., 2010).

For hybridization, each section was covered with 20µl of hybridization buffer (0.9 M

NaCl, 20mM Tris-HCl at pH 8, 0.01% sodium dodecyl sulfate, 20% formamide, Kempf

et al. 2000; Tajbakhsh et al. 2008b) containing 50 ng of unlabeled oligonucleotide probe

BET42a (5’ to 3’: GCCTTCCCACTTCGTTT, Manz et al., 1992) and preincubated for

10min at 46C to reduce nonspecific binding of labeled oligonucleotide probes (Hogardt

et al., 2000). Probes EUB338 (or Non338), Sau and Psae were added (5ng/µL), and
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samples were incubated in a moisture chamber at 46C for 3 hours. Stringent washing was

performed by incubating the samples in washing buffer at decreased NaCl concentration

(Lathe, 1985) (225mM NaCl with 5mM EDTA, 20 mM Tris-HCl at pH 8, 0.01% sodium

dodecyl sulfate) at 48°C for 12 min. Finally, samples were dipped into ice-cold deionized

water to rinse off the salt, air-dried and mounted in the glycerol-based soft mount

Vectashield (®Vector Laboratories, Florijn et al., 1995) with 1.5 µg/ml 4’,6-diamidino-

2-phenylindole (DAPI) as a DNA counterstain.

The proper functioning of the FISH probes in technovit plastic sections was tested

extensively using embedded pure culture standards. This revealed problems with the

targeting of S. aureus by FISH probes (universal EUB338 or specific Sau) in plastic thin

sections, despite digestion with lysozyme/lysostaphin to permeabilize the gram-positive

S. aureus cells. While the same procedure (cell wall digestion + FISH) yielded excellent

results in whole cells (see Figure F.6 in the Appendix), only a small portion of the cells

were labeled successfully in plastic thin section. The problem was solved by including

the cell wall digestion step prior to embedding in plastic (Figure F.7 in the Appendix),

suggesting reduced efficiency / failure of lysozyme to hydrolyze glyocosidic bonds within

the plastic polymer matrix. It was also confirmed that the employed procedure did not

disrupt P. aeruginosa cells, suggesting that gram-negative cells were not adversely affected

(Figure F.7). Accordingly, all clinical samples were processed with cell wall digestion prior

to embedding.

Samples were routinely imaged using a Zeiss Axio Imager microscope, and mapped

extensively for sample identification and target localization for FISH-NanoSIMS (Dekas

and Orphan, 2011; Dekas et al., 2013) using a Keyence BZ-9000 microscope equipped

with a mercury lamp and filter cubes for DAPI, GFP, Cy3 and Cy5). For secondary ion

mass spectrometry, samples were made conductive by sputter-coating with a 50nm layer

of gold (Dekas et al., 2009).

All samples were analyzed with a CAMECA NanoSIMS 50L (CAMECA, Gennevilliers,
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France) housed in the Division of Geological and Planetary Sciences at Caltech. Free

samples in cryo-sections were analyzed using a ⇠3.6pA primary Cs+ beam, and were

presputtered with ⇠20pC/µm2. Cells embedded in plastic were analyzed using a 1.9pA

- 3.6pA primary Cs+ beam, and were presputtered with ⇠340pC/µm2. Seven masses

were collected in parallel (1H-, 2H-, 12C−, 13C−, 14N12C−, 15N12C−, 28Si−) using electron

multipliers. Target locations in individual samples were located using the NanoSIMS CCD

camera, secondary electron image and 14N12C− ion maps. For all analyses, the beam was

rastered over a square region ranging from 5x5 to 20x20µm2 for 5-30min per analytical

plane/frame, and images were collected in 256x256 pixel resolution up to 12x12µm2 and

512x512 pixel resolution for larger areas. Presputtering was carried out on a region larger

than the analytical frame by at least 2µm on each side. Analytical parameters including

primary beam focus, secondary beam centering and mass resolution for all ions were

verified and tuned every ⇠30minutes.

9.2.4 Quantification

Raw data from all acquired ion images was processed using the open-source MATLAB

plugin Look@NanoSIMS (Polerecky et al., 2012). Ion images from multiple frames were

corrected and aligned, and the corresponding microscopy images were warped onto the

14N12C− ion image using functionality provided by Look@NanoSIMS. Discrete regions of

interest (ROIs) were hand-drawn around individual microbes based on the 14N12C− ion im-

age and the FISH+DAPI images. The raw ion counts for all collected ions from individual

and aggregated frames in the individual ROIs/cells were exported from Look@NanoSIMS

and further processed in R using a custom module. Isotopic values are reported in

fractional abundances to allow for exact mass balance calculations. Fractional abundances

of single cell analyses were calculated directly from raw ion counts and calibrated against

bulk measurements (Section 8.3.2 in Chapter 8). All conversions and mass balance

calculations were performed using an isotopes R module described in Section A.2 of
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Appendix A. All data processing, analysis, model simulations and plotting were performed

in R (R Core Team, 2014) using functionality provided by various analytical and graphical

packages (Wickham, 2014a; Wickham and Chang, 2013; Xie, 2013b; Neuwirth, 2011;

Dragulescu, 2013).

9.3 Results and discussion

9.3.1 Lipid profiles

The stable incorporation of isotopically heavy hydrogen from 2H2O into membrane fatty

acids during microbial growth can be combined with compound-specific isotope analyses to

provide coarse phylogenetic resolution of microbial activity. Figure 9.2 illustrates the aver-

age fatty acid profiles of Burkholderia cenocepacia, Haemophilus influenzae, Pseudomonas

aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and Streptococcus

pneumoniae2, several major opportunistic pathogens involved in lung infections of cystic

fibrosis patients (Goss and Burns, 2007; Harrison, 2007; Goss and Muhlebach, 2011). The

fatty acid profiles show differences between the various organisms that can be used to track

microbial activity of one population vs. another in polymicrobial infections. However, in

the complex environment present by the human lung, both the mucus as well as host cells

within the mucus (mostly immune system cells) provide a substantial source of host-derived

fatty acids, highlighted in red in Figure 9.2. While some of these (e.g. C16:1, 3-OH-C16:0,
2Data on Streptococcus pneumoniae from Lu and Rock (2005) grown in Todd–Hewitt broth

supplement with 0.5% yeast extract at pH 7.0 (TY medium), cultures harvested in mid-log phase.
Data on Stenotrophomans maltophilia represents the average lipid profile from batch culture growth
experiments with a clinical isolate of S. maltophilia in Chapter 7 and data from batch culture growth
experiments by Norman et al. (1997), with several plant isolates of S. maltophilia grown on Trypticase
Soy brooth amended with 5% sucrose and harvested in late exponential phase. Data on Burkholderia
cenocepacia is from a study by Krejci and Kroppenstedt (2006) with 15 clinical isolates grown as colonies
on tryptic soy brooth agar plates. Data on Haemophilus influenzae is from a study by Jantzen et al.
(1980) with 35 different strains from both type culture collections and personal isolates, grown as colonies
on chocolate blood agar. Data on P. aeruginosa is largely from batch and continuous culture experiments
discussed in Chapter 7, combined with data from biofilm experiments by Chao et al. (2010). Data on S.
aureus is from batch and continuous culture experiments discussed in Chapter 7.
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C18:1) make attractive targets to trace the activity of important pathogens, such as B.

cenocepacia and P. aeruginosa, isotopic enrichment of a component also produced by the

host can only be interpreted if the relative contributions from pathogens vs. host can be

well-constrained, or if pathogens can be separated physically from host material prior to

analysis. Several fatty acids that are produced exclusively by the microbial population in

the lung (highlighted in green in Figure 9.2), such as cyclo-C17:0 and cyclo-C19:0, provide

excellent targets from an analytical perspective, but must be considered in the context of

their physiological role. Both of these lipid components tend to be produced during slow

growth and stationary-phase-like growth conditions, as discussed in detail in Chapter 7.

This implies that any signal of microbial activity from these fatty acids is biased towards

recording growth of the less active members of the microbial community, potentially

underestimating average growth of the entire population. The relative contribution of

cyclo-C19:0 to the total membrane fatty acid pool of P. aeruginosa, for example, can vary

from virtually absent to almost 30% as a function of growth conditions (see Figure F.1 in

the Appendix for details).

Here, we thus focus first on the microbial activity of the important early-stage gram-

positive CF pathogen Staphylococcus aureus (Goss and Muhlebach, 2011), which pro-

duces anteiso C15 (a-C15:0) and anteiso C17 (a-C17:0) fatty acids as the two major

components of its membrane. Both of these methyl branched odd-carbon number fatty

acids are microbial in nature, and can be distinguished from host material in bulk fatty

acid extracts of cystic fibrosis sputum samples. Additionally, amongst the major pathogens

typically considered to play a dominant role in CF infections, only S. maltophilia can po-

tentially contribute to the pool of a-C15:0, allowing a-C15:0 and a-C17:0 to be reasonably

used as S. aureus-specific targets for measuring microbial activity. Given the high incidence

of S. aureus infections in pediatric CF patient populations, and the crucial role of this

pathogen in establishing polymicrobial chronic infections (Goerke and Wolz, 2010; Kahl,

2010; Stone and Saiman, 2007), we investigated the microbial activity of S. aureus in a
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Figure 9.2 – Fatty acid profiles of key CF pathogens.
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cohort of patients at the Children’s Hospital Los Angeles with a clinical record of recent

S. aureus infection.

9.3.2 Growth rates of S. aureus in clinical samples

As part of this study, we collected 38 samples from 15 different patients with sufficient

quantities of a-C15:0, a-C17:0 or both, for compound-specific isotope ratio analysis to

determine the biosynthetic activity of S. aureus during the incubation interval. The

experimental conditions were chosen such that minimal time expired between sputum

expectoration and conclusion of the experiment (typically a little over 1 hour), as to

ensure as close to in situ conditions as possible without requiring any invasive procedures.

The interpretation of the isotopic enrichment in the context of microbial activity is based

on equations derived in detail in Chapter 7 (see, e.g., Equation 8.2). However, instead of

the isotopic tracer being diluted out of the system (as in Chapters 7 and 8), it mixes into

system in the clinical experiments studied here.

9.3.2.1 Label mixing

Water provides an excellent isotope tracer due to its rapid self-diffusivity, which is well-

understood in aqueous solutions (⇡ 2.9 ·10�5cm2s�1 for H2O at 35C, almost identical for

H2
18O, lower for fully tritiated water 3H2O at 0.81 to 1.02 · 10�5cm2s�1) (Dibdin, 1981;

Easteal et al., 1984; Holz et al., 2000), but more difficult to assess in the context of

the highly viscous, biofilm-like sputum samples. Although biofilm-like organic structures

have a water content typically around ⇠90%, high cell densities and the presence of

extracellular polymeric substances arrest convective flow and slow down diffusion of all

molecules (Stewart, 2003; 1998), including water.

On long time scales, water diffusion would be negligible, but due to the short incubation

time scales required for quasi in situ experiments with expectorated sputum samples, this

effect becomes significant. The lack of data and complexity of sputum poses difficulty in
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Figure 9.3 – Heavy water tracer mixing in sputum samples.

calculating the mixing of the isotopic labeling solution with water in the sputum sample

ab initio. Here, we instead conducted several mixing experiments with sputum samples to

derive a simple empirical mixing relationship of the form 1� e�kt that allows a functional

parametrization of the isotope label mixing. In several experiments with sputum samples

of different weights ranging from ⇠0.5 to 2.5g, the equilibration of the hydrogen isotopic

composition of water in the isotope labeling solution 2Fwsln
(t) from exchange with water

contained within the suspended sputum sample 2Fwsputum(t) (about 2:1 w/w) was tracked

over time, as illustrated in Figure 9.3. The hydrogen isotope composition of both end-

member pools was described as mixing towards the equilibrium isotope composition 2Fweq

of the fully exchanged combined water pool with mixing rate constant k:

2Fwsln
(t) = 2Fweq +

�
2Fwspike

� 2Fweq

�
· e�k·t (9.1)
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2Fwsputum(t) =
2Fweq +

�
2Fwnat � 2Fweq

�
· e�k·t (9.2)

where 2Fwspike
is the hydrogen isotope composition of the spiked isotope labeling solution

(i.e. 2Fwsln
at t

0

), and 2Fwnat is the natural isotope composition of water contained within

the sputum sample (i.e. 2Fwsputum at t
0

). The data in Figure 9.3 is fitted to Equation

9.1 (fit of both equations illustrated in dashed and dotted lines, respectively), to derive a

measure of k for each sample.
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Figure 9.4 – Weight dependence of tracer mixing rate.

Figure 9.4 illustrates the derived values of k, which show a relationship with the sample

weight as expected, and provides a model to estimate k for samples of differing weights.

As samples become larger, it takes water from the isotopic labeling solution longer to mix

with water in the sputum sample (lower k) than in small samples (higher k). In order
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to substantially reduce the effect of water mixing (and effects of errors in estimating the

exact value of k), we aimed for an ideal clinical sample size of ⇠0.5 g, which was rarely

higher than actual samples from the pediatric cohort. An example of the water mixing

with samples of differing weights is illustrated in Figure F.4 in the Appendix.

For each isotopically-labeled clinical sample, the hydrogen isotope composition of water

in the labeling solution 2Fwsln
(tinc) was measured in the residual solution at the conclusion

of the experiment (at time tinc), and the corresponding equilibrium isotopic composition

between labeling solution and sample water 2Fweq was calculated using the estimated

value of k for the given sample weight:

2Fweq =

2Fwsln
(tinc)� 2Fwspike

· e�k·tinc

1� e�k·tinc

(9.3)

Based on these parameters, we can use Equation 9.2 to model the time-course of

the sputum water isotopic composition that the microbial population experiences over

the entire incubation time interval (assuming sputum water is a reasonable representation

of bioavailable water – see the discussion on water exchange and labeling in continuous

culture in Chapter 7 for reference). The isotopic composition of newly-synthesized lipids

is then described by

2Flipidnew(t) = xw · ↵l/w ·
�
2Fwsputum(t)� 2Fwnat

�
+

2F lipid(t0)

= xw · ↵l/w ·
�
2Fweq � 2Fwnat

�
·
�
1� e�k·t�

+

2F lipid(t0)
(9.4)

with water fraction factor xw · ↵l/w (measured for S. aureus in Chapter 7), equilibrium

isotopic composition 2Fweq of sputum water mixed with the isotope labeling solution

(Equation 9.3), original isotopic composition of the sputum water 2Fwnat (estimated to

be circumnatural), the mixing rate k and the natural lipid hydrogen isotope composition

2Flipid(t0). Substituting back into Equation 7.8 in Chapter 7 and integrating finally yields
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an equation for the overall isotopic composition:

2F lipid(t) =
Bnew · 2F new

B
+

Bold · 2F old

B

=


�xw · ↵l/w ·

�
2Fweq � 2Fwnat

�
· fS · µact

µact + k
·
�
1� e�(µact+k)·t�

+

�
2F lipid(t0) + xw · ↵l/w ·

�
2Fweq � 2Fwnat

��
· fS ·

�
1� e�µact·t

�⇤

+

⇥
2F lipid(t0) ·

�
1� fS ·

�
1� e�µact·t

��⇤

= xw · ↵l/w · fS ·
�
2Fweq � 2Fwnat

�
·

1� e�µact·t � µact

µact + k
·
�
1� e�(µact+k)·t�

�

+

2F lipid(t0)

(9.5)

where µact is the apparent microbial activity (comprising both actual growth µ as well as

maintenance activity !, see Section 7.2 in Chapter 7 for details), fS is the fraction of

lipids derived from de novo synthesis vs. recycling (here assumed to be fS = 1 because S.

aureus was shown be unable to recycle any major host fatty acids for partial synthesis of

the target analytes a-C15:0 and a-C17:0; see Section 7.4.6), and all other variables are as

described before3. If mixing-in of the label were practically instantaneous relative to the

incubation and growth time scales (k ! 1) , this would simplify to (and would always

overestimate true label incorporation):

2F lipid(t) = xw · ↵l/w · fS ·
�
2Fweq � 2Fwnat

�
·
�
1� e�µact·t

�
+

2F lipid(t0) (9.6)

9.3.2.2 Growth rate estimates

Figure 9.5 shows all growth rate estimates for S. aureus in sputum, derived separately

for a-C15:0 and a-C17:0 (whenever it could be quantified) as well as from the combined

weighted average isotopic composition of both components. Several observations are

particularly striking. First, the majority of all samples fall into an activity range equivalent
3For single samples with not enough material for subsampling, 2F

lipid

(t0) was estimated from the
average isotopic composition of all measured control samples (Figure F.5 in the Appendix).
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Figure 9.5 – Growth rate estimates from 2H lipid labeling. Circles show weighted average
isotopic composition for each data point from both major S. aureus membrane components (a-
C15:0 and a-C17:0). Size of each symbol illustrates the relative abundance of the component within
each sample. Colors represent samples from different patients. Area highlighted in gray represents
the typical range of growth rates studies in laboratory experiments with S. aureus.

to generation times of ⇠12 hours to ⇠4 days. This is significantly different from growth

rates typically employed in laboratory studies with S. aureus (roughly equivalent to the

area highlighted in gray in Figure 9.5). Second, there appears to be significant divergence

between the individual fatty acid components (a-C15:0 a-C17:0) associated with the entire

S. aureus population present in each sputum sample. The pattern consistently shows an

over-labeling of a-C15:0, and under-labeling of a-C17:0 relative to the weighted average,
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which is consistent with, but more extreme than, the divergence pattern observed for S.

aureus grown in continuous culture in synthetic cystic fibrosis medium at slow growth

rates (see discussion in Chapter 7). The exact cause of this pattern in some laboratory

experiments is yet undetermined, but could be a reflection of underlying heterogeneity

in the microbial population with slower-growing cells producing a-C17:0 preferentially

and faster-growing cells producing a-C15:0 (Section 7.4.5.2 in Chapter 7). In this case,

the divergence would highlight that measures of microbial activity in S. aureus based

on isotopic labeling of a-C15:0 would always provide an upper limit on growth rates,

whereas measures based on isotope labeling of a-C17:0 would provide a lower limit on

growth. However, the observed divergence pattern could also reflect a mixed contribution

from multiple organisms (for example, S. aureus and S. maltophilia) with different activity

rates.

Figure 9.6 shows a closer focus on several samples that provide additional information

on sample variability. Samples 1.1, 1.2 and 1.3 (red, blue and green symbols) represent

a unique case of multiple samples expectorated separately by the same patient within a

30-minute window. Samples 2 and 3 represent two samples from different patients that

were large enough for subsampling and a time-course incubation of the aliquots. If the

microbial population within the whole lung (1.1, 1.2, 1.3) or within individual sputum

samples (2 & 3) were perfectly homogenous, microbial activity would be expected to be

identical across each sample group. And indeed, the replicate measures are relatively

similar within the larger scheme of fast- vs. slow-growth, and given the wide range of

growth-rate estimates derived from different S. aureus fatty acids (a-C15:0 vs. a-C17:0).

However, substantial variation exists on an absolute scale, with each group spanning

approximately a 2x range in apparent growth rates for each component. While there

is uncertainty in growth-rate estimates (error in the analytical measurements of water

and lipid isotopic composition, and error in the estimated water-mixing-rate constants),

this variation suggests heterogeneity in the microbial population on the scale of a single
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Figure 9.6 – Sample variability. Circles in upper panel show weighted average isotopic composition
for each data point from both major S. aureus membrane components (a-C15:0 and a-C17:0). Size
of each symbol illustrates the relative abundance of the component within each sample. Colors
represent different (sub)samples. Area highlighted in gray represents the typical range of growth-
rate studies in laboratory experiments with S. aureus. Dashed lines in lower panel represent the
isotope labeling contours from the estimated growth rates derived separately for each data point
(and each component).

sputum sample (subsamples of 2 & 3) and within the larger community (1.1, 1.2 and 1.3)

at any point in time. The potential range of variation was investigated on the single-cell

level, and is discussed in section 9.3.3.

9.3.2.3 Correlations with clinical parameters

Clinical information was collected for all samples whenever available. While limited in

its statistical significance by the total number of samples and the nature of a cross-

sectional study, several parameters with relatively high coverage across the sample set

were investigated for correlation with the microbial activity data for S. aureus derived

from weighted average isotopic enrichment of combined a-C15:0 and a-C17:0 FA. Sample
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Figure 9.7 – Correlation between microbial activity and clinical parameters. The left panel
shows the correlation between FEV1 values and the growth rates of S. aureus measured in all clinical
samples (from weighted average isotopic composition of combined a-15:0 and a-17:0). The right
panel shows the correlation for the day of the hospital visit. Panel headers denote the respective
R2and p-values for the linear correlation (but growth rates are plotted on a logarithmic scale for
clarity). The different colors indicate samples from different patients in the study. Not all clinical
information was available for all data points.

parameters that should be unrelated to microbial growth rates, such as the isotopic labeling

strength or the weight of a subsample, were confirmed to be uncorrelated (both have an

R2value smaller than 0.01). Figure 9.7 illustrates a subset of four clinical parameters that
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we discuss in more detail. All other correlation plots are presented in Figure F.8 of the

appendix.

The most commonly-used indicator of disease severity and declining lung function is

the forced expiratory volume in one second FEV1 (lower left panel in Figure 9.7), with

values below 40% indicating severe impairment of lung function, values from 40% to 69%

indicating moderate lung function, and values from 70% to 89% indicating mildly impaired

lung function (Flume et al., 2007; Miller et al., 2005). The FEV1 value shows a positive

correlation (faster microbial growth correlates with worse lung function), suggesting a

more active microbial community in more severe disease states, although the correlation

is not statistically robust enough (p-value=0.1) to be interpreted fully.

The Hospital Day # (lower right panel) indicates the day of an in-patient’s stay at the

hospital at the time of sample collection, with day 0 representing the day of admission.

Microbial activity shows a statistically significant correlation with this parameter (p-value

< 0.0005) with higher microbial activity in samples from patients who have been at the

hospital for a longer duration. This correlation is likely a consequence of sicker patients

staying longer at the hospital.

The ratio of a-C17:0 over a-C15:0 (upper left panel) indicates the measured relative

abundance of the two S. aureus membrane components in the sample, and shows a positive

correlation with growth rates (p < 0.002). This could reflect slower-growing populations

of S. aureus that are producing membranes composed of a higher proportion of a-C17:0,

in accordance with similar membrane composition patterns observed for S. aureus grown

in continuous culture in minimal medium at slow growth rates (see discussion in Chapter

7).

Lastly, the colistin parameter indicates whether the patient was taking the polymyxin

antibiotic colistin (binary yes=1/no=0, upper right panel) at the time of sample collection,

and shows no correlation with growth rates. Colistin is mostly used as an antibiotic to

treat and prevent chronic infections of P. aeruginosa, and is not known to have a strong
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effect on S. aureus. However, like any antibiotic administered as part of a multi-drug

treatment (most of the patients receive at least 2 antibiotics while hospitalized), these

data are difficult to interpret quantitatively, and require more targeted studies of microbial

activity at different antibiotic regimes for the same patient.

9.3.3 Heterogeneity of microbial activity

Hydrogen isotope enrichment of microbial fatty acids from 2H2O incorporation provide a

first quantitative measure of average microbial activity. Here we combine thin-sectioning

of sputum samples with fluorescent in situ hybridization (FISH) and nano-scale secondary

ion mass spectrometry (NanoSIMS) to measure microbial activity in clinical samples at the

single-cell level, with the goal of estimating the range of microbial activities encountered

in cystic fibrosis lung infections.

Cryosection (⇠5µm) Plastic section (⇠1µm)

Figure 9.8 – Cryo vs. plastic thin section. DNA stained with DAPI and shown in blue (host
cell nuclei predominate the signal). Bacterial cells identified by FISH with universal bacterial probe
EUB338 and shown in red. Autofluorescence of the mucus matrix recorded in the GFP channel and
shown in green. Scale bars are 10µm.
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9.3.3.1 Cryo- vs. plastic sections

Sections with a soft, removable matrix, such as those produced by embedding and

cryosectioning in O.C.T., provide an attractive strategy for investigating structurally com-

plex samples by FISH-NanoSIMS. The embedding and sectioning procedure is relatively

straightforward and, most importantly, the matrix is easy to remove, which allows single-

cell isotopic measurements without the complicating contribution of matrix material.

However, this technique does not not permit cutting sections thinner than ⇠5µm, which

can be a limiting factor in imaging mass spectrometry of microbial targets. ⇠1µm plastic

sections are more difficult to produce, less established in combination with fluorescent in

situ hybridization, and require careful calibration of any isotopic measurement to account

for matrix effects (discussed in detail in Chapter 8). For the application of FISH-NanoSIMS

on microbial targets in the complex sputum matrix of clinical samples from cystic fibrosis

patients, we found the spatial resolution and ion-image correlations in cryo-sections to

be insufficient for single cell quantitation, and developed hydrogen isotope measurements

of single cells embedded in Technovit plastic as an alternative with the desired spatial

resolution. Figure 9.8 illustrates the difference in clarity between a 5µm cryo- and 1µm

plastic section from sputum samples with microbial targets ⇠500nm to 1µm in size. While

optical clarity in the fluorescent mapping of sample sections is a welcome benefit of the

thinner sections, the major difficulty of the cryosections lies with the identification of

microbial cells within the ion images captured by secondary ion mass spectrometry.

Figure 9.9 illustrates the difficulty of locating targets in cryosection, and the approach

taken in the thinner plastic sections. In cryosection, the sample’s thickness and lack of a

support matrix causes the ion beam to hit and ionize organic material in the sample at

different depths on the topographically irregular surface exposed to the beam. As a con-

sequence, nitrogen (in the form of the 14N12C-) is detected in similar amounts everywhere

on the exposed surface of the highly complex sputum sample (rich in extracellular DNA
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Figure 9.9 – Target identification and 2H enrichment in cryo- and plastic sections. Frames
shown are 10µm by 10µm, and the scale bar in ion maps is 1µm. First column shows microscopy
pictures with overlaid DAPI (blue), bacterial EUB338 FISH (red) and sample autofluorescence in
the GFP channel (green); second column shows the autofluorescence alone (slightly enhanced for
contrast), third column the 14N12C- ion image, and the last column the fractional abundance image
of 2H.

and glycoproteins), and does not provide any information as to the precise location of the

target pathogens. The same is true for ion maps of carbon, phosphorus and sulfur, and the

only means of localizing the target microorganisms is provided by the isotopic enrichment

maps (here showing evidence of 2H incorporation in several microbes). However, this

approach implies that only highly active microbial targets can be identified, and are

preferentially recorded. In the plastic section, on the other hand, the ion beam samples a

relatively smooth surface with organic sample material embedded in the Technovit plastic

polymer, which does not contain any nitrogen. This allows for direct mapping of the

263



Chapter 9: Microbial activity in cystic fibrosis

auto-fluorescent image onto the 14N12C- ion image, enabling identification of individual

cells in the ion image from fluorescent microscopy – independent of isotopic enrichment,

or lack thereof, in individual cells.

It is notable that all microbial clusters displayed in Figure 9.9 are targets from the larger

microscopy images displayed in Figure 9.8. The two clusters analyzed in the shown plastic

section illustrate visually how different organisms within the same microscopy frame can

exhibit vastly different single-cell growth activities, as recorded here in 2H incorporation.

The first cluster (second row) did not incorporate any 2H above background, suggesting

that the cells were not (or not significantly) active during the incubation time, whereas the

cluster on the right (third row) was highly active, incorporating hydrogen as a consequence

of biosynthesis. Lastly, the microorganisms shown here are all examples of targets that

were identified as microbial with the EUB338 FISH probe, but were neither Pseudomonas

aeruginosa nor Staphylococcus aureus cells.

9.3.3.2 Heterogeneity in clinical samples

Single cells of S. aureus were located, mapped and analyzed in plastic thin sections

from sputum samples of four different patients. One sample contained both a significant

population of S. aureus cells and bacterial cells of an unidentified species (verified to be

bacterial with the EUB338 probe, and confirmed to be neither S. aureus nor P. aeruginosa).

The isotopic composition of all ROIs/cells is pictured in Figure F.9 in the Appendix.

NanoSIMS measurements of single-cell hydrogen isotope compositions were converted

to equivalent bulk (whole membrane) 2F abundances using the calibration established

in Chapter 8, and apparent growth rates for each individual cell were estimated from

the relation derived in Equation 9.5. Figure 9.10 illustrates the distribution of single-cell

growth rates for the different samples. The observed pattern confirms that substantial

heterogeneity exists within the S. aureus population in all measured samples, with a

particularly wide, apparently bimodal distribution observed in the sample depicted in panel
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Figure 9.10 – Single-cell microbial activity in cystic fibrosis samples. The four panels show
data of single-cell growth rates of S. aureus cells as well as an unidentified group of bacteria from
different clinical samples. The bean bars indicate the measured growth rates of individual cells/ROIs.
The curves illustrate the smoothed density distribution function of the data for each sample. The
vertical dashed green lines indicate growth rate estimates from bulk fatty acid hydrogen isotope
enrichments of samples collected on different days from the same patient. All growth-rates are
plotted on a logarithmic scale for clarity.
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3. The large number of unidentified bacteria measured in addition to S. aureus cells in

the sample depicted in panel 4 appears to form a separate group of pathogens that is

on average more active than the co-occurring S. aureus population. Several growth-rate

estimates from bulk isotopic enrichment of the S. aureus membrane components a-C15:0

and a-C17:0 are available from other samples from the same patients (collected on different

days), which are shown in vertical dashed lines in Figure 9.10. The comparison highlights

the variation that can exist from day to day in the same patient, as illustrated already in

the aggregated bulk measurements shown in Figure 9.5.

9.4 Conclusions

Here, we present the first application of hydrogen isotope labeling to measure average

population growth rates and single-cell microbial activity in a complex environmental

context.

For this study, sputum samples from a cohort of cystic fibrosis patients were collected

at the Children’s Hospital Los Angeles, and were isotopically labeled with heavy water

for up to 60 minutes immediately upon expectoration. We focus on the opportunistic

pathogen S. aureus for its importance in lung infections of pediatric cystic fibrosis patients

and its unique fatty acid profile and, for the first time, estimate quasi in situ microbial

activity rates both on the population and single-cell level applying the tools and calibrations

developed in chapters 7 and 8.

Our cross-sectional study indicates that the average growth rates of S. aureus in

sputum fall into a range of generation times between ⇠12 hours and ⇠4 days, suggesting

that the organism most likely experiences much more pronounced slow-growth conditions

than typically considered in laboratory studies. Additionally, our results from single-cells

analysis of S. aureus indicate substantial population heterogeneity in sputum. Neither the

slow average growth rates nor the heterogeneity are a surprising feature of this microbial
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population given its role and persistence in chronic infections of the CF airways, but this is

the first time that these physiological parameters are demonstrated to occur directly in the

sputum environment. This highlights the crucial importance of studying the physiology

of slow growth in representative laboratory systems in order to understand the role and

response of different pathogens, as well as their potential resistance and susceptibility to

antimicrobial therapies in the infection context.

While this cross-sectional study provides limited context for clinical interpretation of

S. aureus growth rates due to the obscuring effects of patient-to-patient variability, it lays

the groundwork for more targeted investigations into the efficacy of different treatment

regimes and their effects on pathogen growth and metabolic heterogeneity in longitudinal

studies with cystic fibrosis patients.
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Chapter 10

What have we learned?

Where do we go from here?

Part I of this thesis presented research related to microbial processes in iron-rich Lake

Matano and, more broadly, in the biogeochemical cycling of iron. The results illus-

trated that the chelation of Fe(II) by organic ligands can fundamentally alter the role of

Fe(II) in anoxic environmental systems. Specifically, chelation can both enable biological

processes through mixotrophic growth of phototrophic microorganisms with Fe(II), as

well as affect abiotic processes through enhancing chemical reaction rates of Fe(II) with

denitrification intermediates. On the biological side, this implies that the ability to grow

photomixotrophically on Fe(II) might be more widespread than previously assumed, even

for cultured organisms that have simply not been exposed to accessible species of Fe(II).

Future research could, for example, target the hitherto un-identified enzymatic pathways

involved in photomixotrophic Fe(II) oxidation to enable assessment of how widespread

and environmentally significant this type of microbial Fe(II) oxidation might be. On the

abiotic side, our work highlights the likely competition and co-occurrence of chemical and

biological processes involved in the coupled biogeochemical cycling of iron and nitrogen.
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The biologically-induced chemical oxidation of Fe(II) – via the microbial production of

nitrite in chelator-rich environments such as soils and wetlands – is likely to contribute

significantly to the cycling of iron and immobilization of metal contaminants and organic

pollutants on iron (oxy)hydroxides. Future research should focus on gaining a quantitative

understanding of the interplay between biological processes and chemical catalysis in

environmental settings, by targeting, for example, the nitrogen isotope signatures of

different biological and abiotic pathways, as well as the in situ activity of the microbial

mediators of this process.

Part II of this thesis presented research related to microbial processes in the Cystic

Fibrosis lung, and more broadly, the physiology of slow growth, and the tools available

to study slow growth in situ. The results highlighted stable isotope labeling of microbial

membrane fatty acids and whole cells with heavy water as a promising new technique

to measure microbial activity in a wide range of environments, and showed that slow

growth plays an important role in infections of the Cystic Fibrosis airways. Specifically, we

outlined the conceptual approach to quantitative isotope labeling with heavy water as a

measure for growth, demonstrated its application in continuous culture in the laboratory

at the population and single cell level, and applied the tool to measure the in situ activity

of Staphylococcus aureus in clinical sputum samples from cystic fibrosis patients. Our

laboratory studies highlighted several features of microbial metabolism at slow growth

that present ample opportunity for follow-up work. For example, our continuous culture

work with S. aureus and Pseudomonas aeruginosa revealed both substantial differences

in membrane turnover between these species, and an apparent growth-rate dependence

of the maintenance rate. Membrane turnover is a poorly understood phenomenon and

future work using this isotope labeling approach should investigate the role of Gm-positive

(S. aureus) vs. Gm-negative (P. aeruginosa) cell envelopes in the loss and repair of

lipid membranes. Maintenance, on the other hand, is a well-studied concept in cell

biology that is often considered a constant. At slow environmental growth rates, however,

274



Chapter 10: Concluding remarks

maintenance rates are likely variable and future work should follow up on our observation

of this phenomenon to study how maintenance is affected by growth. Our clinical work

presented the first application of hydrogen isotope labeling to measure average population

growth rates and single-cell microbial activity in a complex environmental context. Our

data revealed that the average growth rates of S. aureus in sputum fall into a range of

generation times between ⇠12 hours and ⇠4 days, suggesting that the organism most

likely experiences much more pronounced slow-growth conditions than typically considered

in laboratory studies. Undoubtedly, extension of this research presents one of the most

exciting avenues for follow-up work. Particularly, it would be important to understand

what features of the chemical environment limit microbial growth in situ by supplying

exogenous supplements (such as oxygen) during growth rate measurements. Likewise,

the in situ efficacy of therapeutic agents could be tested in similar manor to inform

microbial susceptibility. Furthermore, the experimental setup in our work to date with

freshly expectorated sputum was chosen such that sputum samples for isotope labeling

experiments were as similar as possible to in situ conditions. While this quasi in situ

state provides a close approximation of the infection environment, stable isotope labeling

approaches could be applied directly within the host in future work, as 2H in the form of

heavy water can be administered to patients easily and safely. Lastly, the isotopic labeling

methods introduced here, provide a tool that enables the study of microbial activity and

spatiometabolic diversity in a much broader range of environmental and medical systems,

with a non-disruptive isotope tracer that can be employed even in the most nutritionally-

complex habitats, and can trace slow and fast growth over several orders of magnitude

(for example, in the study of intracellular pathogens, or slow-growth infectious diseases

such as tuberculosis). It is exciting to ponder the potential of this method in combination

with other emerging tools for the in situ study of microbial activity, in advancing not only

our understanding of the “who’s there?” of environmental microbial systems, but also the

next step of “what are they doing?” and “how do they respond to environmental change?”.
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Appendix A

R packages for isotopic

data processing

A.1 Introduction

The key to reproducible data reduction and data processing in scientific research is the

ability to faithfully record every step of the process in a reproducible format that is

transparent and easy to communicate. This is not an easy task. Most of the time in

experimental research that is not primarily computational in nature, it falls victim to the

enormous effort required to design experiments well, generate the data and interpret the

results, with little time left to invest in documenting and constructing a reproducible data

reduction workflow. While this is understandable, it introduces a high risk for error, makes

it extremely difficult to share and discuss one’s approach or review others’, reproduce the

calculations at a later point or even just revisit what was done conceptually. Part of the

problem lies inherently with most data processing being difficult to document or entirely

divorced from the narrative of the scientific work it represents. This issue has been

recognized for a long time in computer science where good and effective documentation
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is absolutely crucial to collaborative work and usefulness of indivduals’ contributions. One

concept that was developed in response is the idea of literate programming, where a single

document contains both source code and associated documentation, where both can be

automatically extracted for their respective purposes, but are written and maintained

together (Knuth, 1992). In recent years, a similar concept of literate data analysis has

increasingly gained traction in some scientific communities (still primarily computational

ones) with tools available for this purpose exanding steadily. Today, interactive scientific

computing that is enabling the combination of narrative with data processing, and ac-

complishes a highly transparent and completely reproducible data reduction, is available

through Wolfram Mathematica as one of the pioneers of this approach, but also in open-

source software such as, for example, IPython(Pérez and Granger, 2007) in python and

Sweave (Leisch, 2002) as well as knitr (Xie, 2013a;b) in R. At the same time, open-source

projects like python and R are expanding rapidly from contributions of modules (called

packages in R) developed by the scientific community itself that are publicly available

and provide an enormous wealth of preexisting functionality, often custom-taylor to and

hugely enabling for a specific discipline. Two prominent examples are the Bioconductor

network in R (Gentleman et al., 2006) and QIIME in python (Caporaso et al., 2010).

While any of these tools require some initial time investment to get started, they are

becoming increasingly more accessible and easier to use, and are likely to become a core

part of any future curriculum even in traditionally less-computational disciplines.

What I perceive to be largely missing in the geochemical community are basic modules

that enable the kinds of calculations and data processing we need to do on a day to

day basis. Here, I present two prototype R packages, one that could be useful to the

larger geochemical community (the isotopia package for working with isotope values and

notation), and one that could be useful to a more specialized subdiscipline (the isoread

package for processing isodat files). As an example of literate programming, all the

code in this chapter is stored and executed inside the document itself. This provides
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both transparency and reproducibility and makes it easy to communicate to readers and

reviewers what is being done in such a way that they can follow, reproduce, and adapt

the calculations if they chose to do so.

Acknowledgements
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A.2 isotopia R package

In geochemical calculations, we use a number of different representations of isotopic

information and processes (ratios, abundances, delta values, alpha values, epsilon values,

fractionation factors, refereence frame shifts, mass balance calculations, mass-indepentent

effects, etc., etc.) that are constantly being converted back and forth and used for different

kinds of isotope arithmetic. Very frequently, the tangle of keeping track of this information

and how all the calculations are done properly makes code very hard to read, difficult to

communicate - or even understand oneself later on, and as anyone knows who’s ever

dropped a �1 or ·1000 at the wrong place, prone to small mistakes that can make a huge

difference.

The isotopia package uses the S4 object system of R to define elemental isotopic data

classes so that it can automatically keep track of what is a ratio, what is a delta value (and

is it in h notation or in ppm), etc., and perform isotope arithmetic accordingly 1. This

allows the user to focus on the actual calculations and communicate to the reader exactly
1the multiple dispatch system of S4 allows any generic function to be dispached to a method based

on the class of the argument, i.e. a fractionation function can be implemented differentely whether it is
supposed to fractionate an isotope ratio or a delta value
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what each value represents. Most importantly, the isotope value object structure allows

isotopia to put safeguards in place against non-sense calculations and makes it easy

to implement rigorous, automatically executed tests (Wickham, 2011) for every single

formula and computation (currently there are over 350 tests implemented, see section

A.2.6 for a few examples). This means that any time any of the isotopia source code

is modified, it has to pass all the tests that ensure it is functioning exactly as expected.

This kind of test-driven implementation provides high confidence in the calculations and

protects from small code changes leading to incorrect results and interpretation.

The isotopia module thus provides several isotopic data types that can be initialized

by calling the respective ratio, abundance, delta, fractionation_factor and intensity func-

tions. Each data type has additional attributes (such as name of the minor and major

isotopes, and what compound it represents, what the reference ratio is for delta values,

and what notation is used), which are all described in great detail in the help functions of

isotopia that are accessible directly from R. Each data type can be initialized as a single

vector of isotopic data or an entire system of isotope values for the same element (e.g. all

oxygen or all sulfur isotopes). As all isotope data objects are implemented as extensions of

primitive data types in R, they can be structured and aggregated in all the ways familiar

to people with prior R experience, but should be intuitive enough to be useful “out of

the box” for users new to this language. Isotope data types can then be converted from

one type to another using to_ratio, to_abundance, to_delta, to_fractionation_factor

methods, can be used in operations (mass_balance, fractionation, etc.) or transferred

from one notation to another using switch_notation. Here, I provide a few examples how

isotopia works and how it can be used, with the complete documentation available in

the reference manual in section A.2.8.
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A.2.1 Installation

The isotopia R module can be installed directly from the source code, which is hosted

on the open-source version control and code sharing platform GitHub, by using the R

development tools module (Wickham and Chang, 2014). The version of isotopia that is

installed here and used throughout this document is v0.4. I recommend installing this

version for the purpose of running any of these code examples locally because isotopia is

still under active development and future versions will likely include additional functionality

with syntax that might not be backwards compatible. If interested in the newest version

of isotopia, visit isotopia on GitHub.

install.packages('devtools', depen=T)
library(devtools)
install_github('isotopia', 'sebkopf', ref = "v0.4")

A.2.2 Data types

After isotopia is installed, it can be loaded at any time like any other R module using

library(isotopia). The basic data types are initialized simply by calling the respective ratio,

abundance, delta and fractionation_factor functions with single or multiple values.

library(isotopia)
show(ratio(0.1))

## An isotope value object of type 'Ratio value': R
## [1] 0.1

show(abundance(c(0.1, 0.2)))

## An isotope value object of type 'Abundance value': F
## [1] 0.1 0.2

show(delta(100, notation = "permil"))
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## An isotope value object of type 'Delta value': d [permil]
## [1] 100

show(fractionation_factor(seq(0.97, 1.03, by=0.01), notation = "alpha"))

## An isotope value object of type 'FractionationFactor value': alpha
## [1] 0.97 0.98 0.99 1.00 1.01 1.02 1.03

show(intensity(100, unit = "mV"))

## An isotope value object of type 'Intensity value': [mV]
## [1] 100

A.2.2.1 Attributes

All data types have certain attributes that are stored with the data values. For example, an

isotope ratio can specify what minor and major isotope it represents and what compound

it belongs to.

show(ratio(�13C� = 0.011, major = "12C", compound = "CO2"))

## An isotope value object of type 'Ratio value': CO2 R 13C/12C
## [1] 0.011

And a fractionation factor, for example, can additionally describe what the two reser-

voirs are between which it fractionates (introducing the shortcut ff instead of the identical

long version fractionation_factor in the following).

show(ff(�13C� = 0.995, major = "12C", ctop = "CO2", cbot = "DIC"))

## An isotope value object of type 'FractionationFactor value': 13C alpha_CO2/DIC
## [1] 0.995

All attributes can also be changed on an already initialized object using the set_attrib()

function. However, changing previously defined attributes will always trigger a warning to

alert the user to the fact that they are overwriting an attribute.
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r <- ratio(�18O� = 0.002, major = "16O", compound = "CO2")
r <- set_attrib(r, minor = "17O")

## Warning: changing the isotope name (’Ratio value’ object) from ’18O’
to ’17O’

show(r)

## An isotope value object of type 'Ratio value': CO2 R 17O/16O
## [1] 0.002

There are also a large number of safeguards in place that trigger errors if non-sensical

isotope values are initialized (for example a negative isotope ratio or alpha fractionation

factor).

A.2.2.2 Isotope systems

Entire isotope systems can be initialized in identical ways, by simply passing several

separate values (or entire sequences of values) to the initialization functions (introducing

the shortcut ab instead of the identical long version abundance in the following).

show(ab(�33S� = 0.0075, �34S� = 0.0421, �36S� = 0.0002, major = "32S"))

## An isotope system object of type 'Abundances' with F 33S, F 34S, F 36S
## 33S 34S 36S
## 1 0.0075 0.0421 2e-04

A.2.3 Notation

Closely related to the attributes system is the notation system implemented in isotopia.

Notation is special because it is an attribute that, when changed, also changes the

numerical value of an isotope object with it. All isotope value objects keep track internally

what notation they are in, which allows them to be used correctly in any operations and

conversions completely independent of what notation the user prefers to work in. Notation

is first specified when an isotope value object is initialized and several different notations
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are implemented for the different isotope value objects. If not specified during intialization,

isotopia assumes tha an object is created with its default notation. A number of default

settings can be specified and retrieved using set_iso_opts() and get_iso_opts(). Here

an example of checking and setting the default notation for fractionation factors (which

can be either ↵ values, raw ✏ = ↵ � 1 or ✏ values in h notation), initializing a new

object with default notation (i.e. without specifying notation=”x” during initialization)

and converting it back and forth.

show(get_iso_opts("default_ff_notation"))

## [1] "alpha"

show(ff(1.02)) # alpha notation

## An isotope value object of type 'FractionationFactor value': alpha
## [1] 1.02

set_iso_opts(default_ff_notation = "permil")
show(p <- ff(20)) # permil notation

## An isotope value object of type 'FractionationFactor value': eps [permil]
## [1] 20

show(switch_notation(p, "eps"))

## An isotope value object of type 'FractionationFactor value': eps
## [1] 0.02

show(switch_notation(p, "alpha"))

## An isotope value object of type 'FractionationFactor value': alpha
## [1] 1.02

It is important to note that of course all of these values are equivalent, they are just

representions of the same fractionation factor in different notation. Accordingly, they

behave exactly the same in all calculations implemented by isotopia regardless what

notation they are in.
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A.2.4 Conversions

One of the core features of isotopia is the implementation of all standard conversions

between different types of isotope values. Conversions are done by simply calling to_ratio,

to_abundance, to_delta, etc. on the object that needs to be converted to the specified

type and isotopia automatically recognizes from the object’s class what the proper

calculation entails. These conversions work both on single objects as well as entire

isotope systems (which is of course important for example when going from ratios in

a multi-isotope system to the equivalent fractional abundances). As with all functionality

in isotopia, non-sensical conversions or conversions with not enough information (e.g.

from a delta value to a ratio without knowing the reference) are rigourosly checked

for and trigger errors whenever attempted. All conversions also take into consideration

the notation of the isotope value that is to be converted and adjust the calculations

accordingly. Attributes that are shared between the ingoing and outcoming value types

are transferred (for example the minor and major isotope names) and the notation of

the new object is always switched to the default setting for its data type (which can

be changed as desired, for example, set_iso_opts(default_ab_notation = “percent”,

default_delta_notation = “raw”, default_ff_notation = “permil”)).

i <- intensity(�32S� = 9502, �33S� = 75, �34S� = 421, �36S� = 2,
major = "32S", unit = "#")

show(i)

## An isotope system object of type 'Intensities' with 32S [#], 33S [#], 34S [#], 36S [#]
## 32S 33S 34S 36S
## 1 9502 75 421 2

r <- to_ratio(i)
show(r)

## An isotope system object of type 'Ratios' with R 33S/32S, R 34S/32S, R 36S/32S
## 33S 34S 36S
## 1 0.007893 0.04431 0.0002105
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ab <- to_abundance(r)
show(ab)

## An isotope system object of type 'Abundances' with F 33S, F 34S, F 36S
## 33S 34S 36S
## 1 0.0075 0.0421 2e-04

Because the system of intensities (here as ion counts #) had the major isotope

attribute specified, the conversion to_ratio could automatically figure out what ratios

to form. Without specifying which one is the major isotope, the intensities would have

still initialized just fine but isotopia would have thrown an error when trying to convert to

isotope ratios. There’s much more functionality in the conversions, which are all listed in

the reference manual available for isotopia (section A.2.8) or directly within R by calling

?isotopia or ?to_ratio or any other function defined in the module.

A.2.4.1 Delta values and reference standards

In the case of delta values, conversions often require the specification or use of a reference

ratio. This can simply be done by specifying the reference ratio when converting to_delta

and since isotopia stores the reference ratio with the delta value object, it can be used

automatically in the reverse calculation.

r <- ratio(�13C� = 0.0115, major = "12C")
ref_r <- ratio(�13C� = 0.011237, major = "12C", compound = "VPDB")
d <- to_delta(r, ref_ratio = ref_r)
show(d)

## An isotope value object of type 'Delta value': d13C [permil] vs. VPDB
## [1] 23.4

show(to_ratio(d))

## An isotope value object of type 'Ratio value': R 13C/12C
## [1] 0.0115
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Additionally, isotopia keeps a register of known reference materials with several default

values already entered and the possibility for the user to add additional ones they want to

use (with the register_standard() function). Standards can be retrieved as ratio objects

by calling get_standard() and specifying which standard to retrieve for which isotope (see

the manual in section A.2.8 for details). The list of all registered ratios can be retrieved

as any other option with a call to get_iso_opts (here turned into a table with the k-table

or kable command provided by the knitr module (Xie, 2013b)):

library(knitr)
kable(get_iso_opts("standards"), format = "latex")

minor major name ratio
2H 1H VSMOW 0.0002
13C 12C VPDB 0.0112
15N 14N Air 0.0037
18O 16O VSMOW 0.0020
34S 32S CDT 0.0045

Table A.1 – Default reference ratios available in isotopia.

Registered standards provide isotopia with the means to automatically select the

correct reference ratio during conversions with delta objects that have sufficiently specific

attributes (a message informs the user what was selected, if not enough information is

provided to match exactly to one correct standard, this will fail with an error unless the

user specifically provides a reference ratio for the conversion).

d <- delta(�2H� = 100, major = "1H", ref = "VSMOW")
show(d)

## An isotope value object of type 'Delta value': d2H [permil] vs. VSMOW
## [1] 100

r <- to_ratio(d)

## Successfully found a registered standard to convert delta value: VSMOW
R 2H/1H: 0.0001558
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show(r)

## An isotope value object of type 'Ratio value': R 2H/1H
## [1] 0.0001713

A.2.5 Operations

With the conversions and data types all in place, isotopia can easily expand its func-

tionality by building on top of the data types. Currently, operations are limited to a

number of key features, such as mass_balance() calculations for fractional abundances

and delta values, as well as fractionating (fractionate()) isotope data objects with frac-

tionation_factors and shifting the reference frame on delta values (shift_reference()). As

always, attributes are carried through these operations in the most sensible way for what

they actuallly represent.

A.2.5.1 Mass balance

Mass balance makes use of an additional attribute not mentioned before, the weight

attribute. This allows one to weight values according to their reservoir sizes such that

during mass balance calculations, isotopically different pools are mixed according to their

relative proportions. Weight can be specified either during initialization or by using the

weight() function later on. Imagine a reservoir of CO2 that receives a tiny spike of heavily

labeled additional carbon. For convenience, we’re introducing here the isotopia options

to set the default minor and major isotope names - this is nice for working on a problem

in a specific isotope system. Also, we’re going to do the mass balance exact by converting

to fractional abundances (although isotopia provides the approximate mass_balance()

directly with delta value objects as well).

set_iso_opts(
default_minor = "13C",
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default_major="12C",
default_ab_notation = "percent")

res <- delta(-10, compound = "CO2", ref = "VPDB", weight = 100)
show(res)

## A weighted isotope value object of type 'Delta value': CO2 d13C [permil] vs. VPDB
## value weight
## 1 -10 100

spike <- ab(seq(5, 25, by = 5), compound = "Cspike")
show(spike)

## An isotope value object of type 'Abundance value': Cspike F 13C [%]
## [1] 5 10 15 20 25

mb <- mass_balance(
to_ab(res), # convert reservoir to abundance
weight(spike, 0.1) #weight spike

)
show(mb)

## A weighted isotope value object of type 'Abundance value': CO2+Cspike F 13C [%]
## value weight
## 1 1.104 100.1
## 2 1.109 100.1
## 3 1.114 100.1
## 4 1.119 100.1
## 5 1.124 100.1

Notice that the result of the mass balance again is a weighted isotope value object it-

self. It can be converted to other data types or you can keep adding additional components

to it with mass balance calculations. In fact, since isotopia keeps track of the weight, you

can keep tagging multiple mass balances together (the mass_balance() function takes as

many parameters as desired). Additionally, since R implements basic arithmetic operators

as functions, isotopia redefines adding (+) and subtracting (-) for abundance and delta

objects to be interpreted as mass balance calculations. This means mass_balance(x, y)

is the same as x + y for these isotope value objects. This allows short-hand calculations

like the following (although mass_balance() is recommended in more complex situations
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for clarity of recording what is happening). Here, we are adding a heavy relatively small

but heavy pool (40permil, weight=2) to a circumneutral reservoir (5permil, weight=10)

and then remove an isotopically light fraction from the pool (-10permil, weight=4).

mb <-
delta(5, weight = 10) +
delta(40, weight = 2) -
delta(-10, weight = 4)

show(mb)

## A weighted isotope value object of type 'Delta value': d13C [permil]
## value weight
## 1 21.25 8

A.2.5.2 Fractionate

During fractionation, a fractionation factor modifies an isotope value object (for example

an isotope ratio or a delta value).

a <- ff(0.95, ctop = "DIC", cbot = "CO2")
r <- ratio(0.0114, compound = "CO2")
r <- fractionate(a, r)
show(r)

## An isotope value object of type 'Ratio value': DIC R 13C/12C
## [1] 0.01141

Notice that isotopia automatically keeps track of what compound is represented. Af-

ter fractionation, the ratio represents no longer CO2 but DIC according to the fractionation

factors attributes. If these attributes do not “cancel” correctly, this command fails with an

error and the relevant error message. Same as with mass_balance(), isotopia implements

arithmetic shorthand for this, isotope value objects can be simply fractionationed by

multiplying with a fractionation factor. I.e., fractionate(a, b) is the same as a*b (this

also means fractionation factors can be easily chained with a1*a2*a3*b but only if the

“numerators” and “denominators” cancel properly).
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ff(-25, notation = "permil", ctop = "Corg", cbot = "DIC") *
ff(-5, notation = "permil", ctop = "DIC", cbot = "CO2") *
delta(100, compound = "CO2")

## An isotope value object of type 'Delta value': Corg d13C [permil]
## [1] 67.14

A.2.5.3 Shift reference

The last operation to introduce for now is shifting a reference frame. This is only defined

for delta values and requires the denominator and numerator to cancel (otherwise fails

with an error). It is also implemente with the delta * delta arithmetic shorthand. This is a

typical scenario useful for processing laboratory data which is measured against a standard

of known isotopic composition relative to an international reference.

sample <- delta(-5, compound = "sample", ref = "my_std")
standard <- delta(-2.5, compound = "my_std", ref = "VPDB")
show(shift_reference(sample, standard))

## An isotope value object of type 'Delta value': sample d13C [permil] vs. VPDB
## [1] -7.487

show(sample * standard)

## An isotope value object of type 'Delta value': sample d13C [permil] vs. VPDB
## [1] -7.487

A.2.5.4 Arithmetic

Several of the arithmetic shorthands were introduced already, but there are several more

(for all, see the manual). For all of these, it is always recommend to use the actual real

functions in more complex scenarios for clarity. Here’s just an example of what isotopia

can automatically keep track of in terms of isotope data objects. Here are two ways of

turning isotope ratios into a fractionation factor in permil notation - it works booth by

explicit mention of each functional step, or by the arithmetic equivalent.
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r1 <- ratio(0.011)
r2 <- ratio(0.0113)
p <- switch_notation(to_ff(r1, r2), "permil")
show(p)

## An isotope value object of type 'FractionationFactor value': 13C eps [permil]
## [1] -26.55

p <- (r1/r2 - 1) * 1000
show(p)

## An isotope value object of type 'FractionationFactor value': 13C eps [permil]
## [1] -26.55

A.2.6 Testing

Testing of all functionality in isotopia is implemented using the testthat module (Wick-

ham, 2011), which provides a simple and uniform way of writing tests that can be

run automatically to report any incorrect behaviour immediately. This enables multiple

developers to contribute to the core functionality of the project without the risk of breaking

prior implementations, but also allows users to easily write a few tests of their own to be

confident that the module is doing what it is supposed to be doing, or just to test their

own code and formulas on a regular basis. Here are few examples from the many tests

already implemented for isotopia to give an idea of the range of functionality tests:

library(testthat)

set_iso_opts(default_ab_notation = "raw", default_delta_notation = "permil", default_ff_notation = "alpha")

expect_error(ratio(-0.2), "cannot be negative")

expect_false(is.ratio(abundance(0.1)))

expect_equal(to_ff(delta(200), delta(-200)), ff(1.2 / 0.8))

expect_is({

amix <-

abundance(�13C� = 0.2, weight = 2, compound = "a") +
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abundance(�13C� = 0.5, compound = "b") +

abundance(�13C� = 0.3, weight = 3, compound = "c")

}, "Abundance")

expect_equal(get_label(amix), "a+b+c F 13C")

expect_equal(get_value(amix), (0.2*2 + 0.5 + 0.3*3) / (2+1+3))

expect_equal(get_value(ff(0.8) * delta(200) + delta(100), "permil"),

1000*(0.8*1.2 - 1 + 0.1)/2)

And this is what happens as soon as a test fails (here have to catch the error, otherwise

this document would not compile):

tryCatch(

expect_equal(fractionate(ff(0.995), delta(42)), delta(42)),

error = function(e) print(e))

## <simpleError: fractionate(ff(0.995), delta(42)) not equal to delta(42)

## Mean relative difference: 0.124>

A.2.7 Future extensions

The isotopia package currently implements a lot of the core functionality for isotope

arithmetic. However, there is much that could built on top of it, including support for

mass-scaling and mass-independent data objects and multiply subsituted isotopologues.

The goal with all of these would be to provide an interface that can implement rigorous

unit tests to ensure calculations are always performed the exact same way, tools to convert

between reference frames and make it easier to compare and visualize data in different

isotopic spaces, and, above all, to make it fun, intuitive and reproducible to work with

isotopic data.
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A.2.8 Manual
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isotopia-package isotopia package

Description

R interface for working with isotopic data (abundances, ratios, delta values, etc.).

Details

This package provides several isotopic data types that can be initialized by calling the respective
ratio, abundance, delta, fractionation_factor and intensity functions. Each data type
has additional attributes (such as name of the major isotope for all data types, reference ratio for
delta values, notation for delta and fractionation_factor, unit for intensity) and these are
described in detail in the help for each function. The attributes of any existing isotope data object
can be modified easily by calling set_attrib

Each data type can be initialized as a single vector of isotopic data or an entire system of isotope
values for the same element (e.g. all oxygen or all sulfur isotopes). To intialize an isotope system,
simply pass multiple named data vectors with the same number of data points to the initialization
functions (please see examples for details). Isotope systems are returned as a data.frame with
all the different components of the system as separate columns. This object can be treated and
manipulated just like a regular R data.frame. The column headers are named after the individual
named data vectors (e.g. ratio(34S = �.1, 33S = �.2) will produce a data.frame with columns
34S and 33S) - careful if using names like ’12C’ that start with a number, they are not syntactically
valid variable names in R and must be back quoted as 34S. Isotope data objects in an isotope system
that are not named generate columns named iso, iso.1, iso.2, ....

Isotope data objects (both single vectors and isotope systems) can then be converted to different
data types using the respective to_ratio, to_abundance, to_delta functions. Notations can also
be changed using switch_notation
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Global options for isotopia can be set using set_iso_opts and standard reference ratios can be
registered using register_standard

Author(s)

Sebastian Kopf

See Also

ratio, is.ratio, to_ratio, etc.

Examples

# these examples are for initializing isotope ratio objects but apply equally to other data types
ratio(�.1) # single value
ratio(c(�.1, �.2, �.3)) # multiple values
ratio(13C = c(�.1, �.2, �.3)) # named ratio
ratio(33S = c(�.1, �.2, �.3), 34S = c(�.2, �.4, �.6), major = "32S") # isotope system

abundance Fractional abundance

Description

Generate an isotope abundance object. See isotopia for general information on initializing and
converting isotope data objects.

Usage

abundance(..., major = get_iso_opts("default_major"), compound = "",
notation = get_iso_opts("default_ab_notation"), weight = numeric(),
single_as_df = FALSE)

ab(..., major = get_iso_opts("default_major"), compound = "",
notation = get_iso_opts("default_ab_notation"), weight = numeric(),
single_as_df = FALSE)

Arguments

... - numeric vectors (can be named) to turn into isotope abundance objects

major - name of the major isotope in the isotope system [optional], only of importance
if converting from abundance to ratio or delta value, and want automatic name
propagation

compound - name of the compound the isotopic values belong to [optional]

notation - what notation the abundance is in (’raw’ values or ’percent’), see switch_notation
for details

Details

The ab function is a shorthand for abundance but otherwise identical.
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See Also

Other isotope data types: delta; ff, fractionation_factor; intensity; ratio

arithmetic Isotope arithmetic

Description

Several arithmetic operators (+, -, *, /) are implemented to work with specific isotope value object
to allow shorthand data type conversions and calculations. Operations are generally only permitted
if the two isotope objects being combined have matching attributes (isotope name, major isotope,
etc.).

Usage

intensity +- intensity

abundance +- abundance

delta +- delta

alpha - 1

delta * 1���

ff * ratio

delta * delta

intensity / intensity

ratio / ratio

ff / ff

delta / delta

Details

intensity+-intensity allows the addition of intensity values, the result is a another intensity
object
abundance+-abundance is a shorthand for calculating the isotopic mass balance of two abundance
objects, see mass_balance for details
delta+-delta is a shorthand for calculating the isotopic mass balance of two delta objects, see
mass_balance for details
alpha - 1 is a shorthand for converting a fractionation factor from alpha to epsilon notation. The ff
object has to be in alpha notation, otherwise this is just interpreted as a regular arithmetic operation
and the result will no longer be an isotope object. eps + 1 is the reverse operation.
delta * 1��� is a shorthand for converting a raw delta value to permil notation or permil to ppm.
The same works for fractionation factors in epsilon notation. delta / 1��� is the reverse
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ff*ratio, ff*ff, ff*delta are a shorthand for fractionating an isotope object with a factionation
factor, see fractionate for details

delta*delta, is a shorthand for shifting the reference frame of the first delta value to that of
the second (requires the compound measured in the second to be the reference of the first!), see
shift_reference for details

intensity/intensity allows the creation of an isotope ratio object

ratio/ratio allows the creation of an isotope fractionation_factor This is a shorthand for the
to_ff function.

ff/ff allows the creation of another isotope fractionation_factor object but requires that either
the denominator names or numerator names of the two objects are identical (i.e. they "cancel"). This
is a shorthand for the to_ff function.

delta/delta creates an fractionation_factor object that describes the fractionation factor be-
tween the two compounds, requires the reference name of the two delta values to be identical. This
is a shorthand for the to_ff function.

as.data.frame Convert isotope system to a data frame.

Description

This function returns the underlying data frame of an isotope system. The individual columns that
hold isotope values keep their status as isotope value objects.

Usage

## S3 method for class Isosys
as.data.frame(x, ...,
stringsAsFactors = default.stringsAsFactors())

See Also

as.data.frame

convert_isosys generic function to convert an isotope system that is part of a data
frame and stitch it back together with the columns in the proper po-
sitions. uses a callback function that has to do the conversion of the
isotope values

Description

generic function to convert an isotope system that is part of a data frame and stitch it back together
with the columns in the proper positions. uses a callback function that has to do the conversion of
the isotope values

Usage

convert_isosys(iso, class_isosys, conv_fun)
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Arguments

iso - the isotope system object
class_isosys - the class of the isotope system to convert to
conv_fun - the function which converts the isotope value objects of the data frame, has to

accept one parameter that is a data.frame of only the isotope value objects

delta Delta value

Description

Generate an isotope delta value object. See isotopia for general information on initializing and
converting isotope data objects. Delta values can be easily converted from values in one notation to
values in another notation by using switch_notation.

Usage

delta(..., major = get_iso_opts("default_major"), compound = "", ref = "",
ref_ratio = numeric(), notation = get_iso_opts("default_delta_notation"),
weight = numeric(), single_as_df = FALSE)

Arguments

... - numeric vectors (can be named) to turn into delta values
major - name of the major isotope in the isotope system [optional]
compound - name of the compound the isotopic values belong to [optional]
ref - name of the reference material
ref_ratio - value of the reference material
notation - which notation the value is in, "permil" (1000x multiplicaiton), "raw" (raw

value, i.e. no multiplication) and "ppm" (10^6 multiplicaiton) are currently im-
plemented for delta values. See switch_notation on details how to convert
between notations.

weight - weight the isotope value (with a mass, concentration, etc.) for easy mass bal-
ance calculations. The default value is 1, i.e. an unweighted isotope value. If
specified, weight must be a single value or a numeric vector of the same size
as the data values. The weight of an isotope value obejct can be retrieved and
(re)set with the weight function.

Details

For mass balance calculations with delta values, simply add the appropriate weights (if different
from the default) and use delta(...) + delta(...).

See Also

Other isotope data types: ab, abundance; ff, fractionation_factor; intensity; ratio

Examples

delta(5�, notation = "permil") # enter as permil value
delta(�.�5, notation = "raw") # enter as non-permil value
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fractionate Fractionate an isotopic value

Description

This function calculates the outcome of isotopic fractionation by a fractionation_factor and
can be applied to ratio data, delta values or other fractionation_factor objects.

Usage

fractionate(frac, iso)

Arguments

frac the fractionation factor ff used to fractionate the isotope value

iso the isotope object to fractionate

Value

an object of the same type as iso

Note

Several of these calculations are also implemented with an arithmetic shorthand. All calculatinos
are only permissible if the fractionation factors and isotope values have matching attributes.

See Also

Other operations: mass_balance; shift_reference

fractionation_factor Fractionation factor

Description

Generate a fractionation factor object. Can be initialized in alpha and epsilon notation. Fraction-
ation factors can be easily converted from values in one notation to values in another notation by
using switch_notation.

Usage

fractionation_factor(..., major = get_iso_opts("default_major"),
notation = get_iso_opts("default_ff_notation"), ctop = "", cbot = "",
single_as_df = FALSE)

ff(..., major = get_iso_opts("default_major"),
notation = get_iso_opts("default_ff_notation"), ctop = "", cbot = "",
single_as_df = FALSE)
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Arguments

... - numeric vectors (can be named) to turn into fractionation factors
major - name of the major isotope in the isotope system [optional]
notation - which notation the value is in, "alpha" (alpha value), "eps" (epsilon value),

"permil" (epsilon * 1000) are currently implemented for fractionation_factor
values. See switch_notation on details how to convert between notations.

ctop - name of the compound representing the top isotope ratio [optional]
cbot - name of the compound representing the bottom isotope ratio [optional]

Details

See isotopia for general information on initializing and converting to other isotope data objects. The
ff function is a shorthand for fractionation_factor but otherwise identical.

See Also

Other isotope data types: ab, abundance; delta; intensity; ratio

get_name Information about an isotopic data object

Description

Get information about the name, label and units of an isotopic data object.

Usage

get_name(object)

get_units(object)

get_label(object)

Details

get_name() returns the name of an isotopic data object
get_units() provides the units of an isotope data object depending on the object type and notation
get_label() provides the full label of an isotope data object

See Also

Other data type attributes: get_value; get_weighted_value; get_weight; set_attrib; switch_notation;
weight

Examples

## Not run:
get_label(ratio(...))
get_label(abundance(...))
get_label(isosys(ratio(...), ratio(...))

## End(Not run)
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get_value Retrieve isotope object’s primitive values

Description

This function returns an isotope object’s (single value or isotope system) primitive data value(s).

Usage

get_value(iso, notation = iso@notation)

Arguments

notation specifiy which notation to return the value in (default is the notation that the
object is in)

Value

In the case of a single isotope object (Isoval), returns the numeric vector of raw values stored in
the object (same as as.numeric). In the case of an isotope system (Isosys), returns the data frame
underlying the object with all its isotope value objects also replaced with their numeric raw values.
To just get the data frame but keep the isotope values intact, use as.data.frame instead.

See Also

as.numeric, as.data.frame, as.data.frame (base method)
Other data type attributes: get_label, get_name, get_units; get_weighted_value; get_weight;
set_attrib; switch_notation; weight

get_weight Retrieve isotope object’s weights

Description

This function returns an isotope object’s weight values.

Usage

get_weight(iso)

Value

In the case of a single isotope object (Isoval), returns the numeric vector of weights stored in the
object. In the case of an isotope system (Isosys), returns the data frame underlying the object with
all its isotope value objects replaced with their weight values.

See Also

as.data.frame, as.data.frame (base method)
Other data type attributes: get_label, get_name, get_units; get_value; get_weighted_value;
set_attrib; switch_notation; weight
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get_weighted_value Retrieve isotope object’s weighted values

Description

This function returns an isotope object’s weighted values.

Usage

get_weighted_value(iso)

Value

In the case of a single isotope object (Isoval), returns a numeric vector of the object’s values
weighted by the object’s weights. In the case of an isotope system (Isosys), returns the data frame
underlying the object with all its isotope value objects replaced with their weighted values.

See Also

as.data.frame, as.data.frame (base method)

Other data type attributes: get_label, get_name, get_units; get_value; get_weight; set_attrib;
switch_notation; weight

intensity Ion intensity

Description

Generate an ion intensity object (e.g. ion counts or signal intensity). See isotopia for general
information on initializing and converting isotope data objects.

Usage

intensity(..., major = get_iso_opts("default_major"), compound = "",
unit = "", single_as_df = FALSE)

Arguments

... - numeric vectors (can be named) to turn into ion intensity objects

major - name of the major isotope in the isotope system [optional],

compound - name of the compound the isotopic values belong to [optional]

unit - units of the measurement (e.g. #, V, mV)

See Also

Other isotope data types: ab, abundance; delta; ff, fractionation_factor; ratio
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is.iso Checks for isotope value objects

Description

Checks for different kinds of isotope value objects. All checks recognize both the vector (single iso-
tope value) and the data.frame (isotope system) version of an isotope value object. is.isosys(obj)
can be used to make the distinction between the two.

Usage

is.iso(obj)

is.isoval(obj)

is.isosys(obj)

is.ratio(obj)

is.abundance(obj)

is.delta(obj)

is.intensity(obj)

is.ff(obj)

\code{is.weighted(iso)}

Arguments

obj - object to test

Details

is.iso checks whether the object is an isotope value object of any kind. Returns TRUE if it is (e.g.
ratio, abundance, delta, etc. - single or system of values), FALSE otherwise.

is.isoval checks whether the object is a single isotope value. Returns TRUE if it’s a single isotope
value object (of any kind, ratio, abundance, delta, etc.) and FALSE otherwise.

is.isosys checks whether the object is a an isotope system. Returns TRUE if it’s an isotope system
(of any kind, ratios, abundances, deltas, etc.) and FALSE otherwise.

is.ratio checks whether the object is an isotope ratio object. Returns TRUE if it’s a single isotope
ratio object or an isotope system of ratios, FALSE otherwise.

is.abundance checks whether the object is an isotope abundance object. Returns TRUE if it’s a
single isotope abundance object or an isotope system of abundances, FALSE otherwise.

is.delta checks whether the object is a delta value object. Returns TRUE if it’s a single delta
value object or an isotope system of delta values, FALSE otherwise.

is.intensity checks whether the object is an ion intensity object. Returns TRUE if it’s a single
ion intensity object or an isotope system of ion intensities, FALSE otherwise.
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is.ff checks whether the object is an fractionation factor value object. Returns TRUE if it’s a
single fractionation factor value object or an isotope system of fractionation factor values, FALSE
otherwise.

is.weighted checks if an isotope object is weighted. An object counts as weighted if any of the
weights associated with the data values is != 1, that means only objects whose weights are ALL 1
is considered unweighted.

Examples

is.weighted(ratio(�.2)) # returns FALSE
is.weighted(ratio(�.2, weight = 1)) # returns FALSE
is.weighted(ratio(c(�.1, �.2), weight = c(1,2))) # returns TRUE

iso create an isotope value object (this function is not exported and
should be access via the appropriate wrapper functions, e.g. ratio,
abundance, etc.)

Description

create an isotope value object (this function is not exported and should be access via the appropriate
wrapper functions, e.g. ratio, abundance, etc.)

Usage

iso(class_isosys, ..., attribs = list(), single_as_df = FALSE)

Arguments

class_isosys name of the class for an isotope system (which holds the info on which isoval
class belongs to the system as well)

attribs named list of attributes to pass to the isotope data object constructors

... values (can be single data frame or list)

single_as_df whether to return a single value as a data frame

Note

the setup for this function also means that you can modify e.g. an existing ratio with the paramters
passed in (say to set the name later on)
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mass_balance Calculate isotope mass balance

Description

This function calculates the isotope mass balance from combining multiple weighted isotope abundance
or delta value objects. This calculation is also implemented with an arithmetic shorthand.

Usage

mass_balance(iso, iso2, ..., exact = get_iso_opts("exact_mass_balance"))

Arguments

... - any number of weighted isotope value objects (have to be all either abundance
or delta)

exact - whether to calculate mass balance of delta values exactly (default FALSE), not
fully implemented yet

Value

weighted abundance or delta value object that represents the combination of the parameters

See Also

Other operations: fractionate; shift_reference

quietly Run a calculation quietly.

Description

This small utility function is just a convenient wrapper for running isotope calculations silently
without outputting any of the warnings or messages (it uses suppressMessages and suppressWarn-
ings internally) that might occur. Use with care to suppress warnings, you might end up hiding
important information.

Usage

quietly(expr)
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ratio Isotope ratio

Description

Generate isotope ratio objects. See isotopia for general information on initializing and converting
isotope data objects.

Usage

ratio(..., major = get_iso_opts("default_major"), compound = "",
weight = numeric(), single_as_df = FALSE)

Arguments

... - numeric vectors (can be named) to turn into isotope ratio objects

major - name of the major isotope in the single ratio or isotope system [optional]

compound - name of the compound the isotopic values belong to [optional]

weight - weight the isotope value (with a mass, concentration, etc.) for easy mass bal-
ance calculations. The default value is 1, i.e. an unweighted isotope value. If
specified, weight must be a single value or a numeric vector of the same size
as the data values. The weight of an isotope value obejct can be retrieved and
(re)set with the weight function.

See Also

Other isotope data types: ab, abundance; delta; ff, fractionation_factor; intensity

Examples

ratio(�.1) # single value
ratio(c(�.1, �.2, �.3)) # multiple values
ratio(13C = c(�.1, �.2, �.3)) # named ratio
ratio(33S = c(�.1, �.2, �.3), 34S = c(�.2, �.4, �.6), major = "32S") # isotope system

recast_isoval generic function to recast an isotopic value object during conversions

Description

generic function to recast an isotopic value object during conversions

Usage

recast_isoval(iso, to_class, mods = list(), validate = TRUE)

Chapter A: R packages for isotopic data processing

308



register_standard 15

Arguments

iso object
to_class - which class to cast to
mods - list of modifications to existing attributes (can be list(x = NULL) for removing

attribute x)
validate - whether to validate after the recast, default TRUE

register_standard Isotope standards

Description

Isotopia provides functionality to register and retrieve isotope standards. Registered standards can
be used for automatic conversions of, for example, delta values which have attributes that match a
standard.

Usage

register_standard(ratio)

get_standards(minor = NULL, major = NULL, name = NULL)

get_standard(minor = NULL, major = NULL, name = NULL)

Arguments

ratio - a ratio object with ’minor’, and ’major’ isotope as well as ’compound’ (the
name of the standard) attributes all defined

minor - character vector of minor isotope names to search for
major - character vector of major isotope names to search for
name - character vector of standards names to search for

Details

Use register_standard() to register an isotope standard. This can be useful for keeping track of
standards you use internally and will also allow conversions from delta to e.g. ratio to automati-
cally try to find the approriate standard for the conversion from the registered values.
Use get_stanards to retrieve any number of registered isotope standards that can be identified
with the provided search terms. For an overview table of all standards (rather than the actual ratio
objects), use get_iso_opts("standards") instead.
get_standard is the same as get_standards except that it returns a single object from the found
standards and throws an error if the search criteria did not yield exactly one.

Value

list of ratio objects

See Also

Other options: get_iso_opts, set_iso_opts
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set_attrib Set attributes of isotope objects

Description

Set an attribute of an existing isotope value object.

Usage

set_attrib(iso, minor = NULL, major = NULL, compound = NULL,
compound2 = NULL, ref = NULL, ref_ratio = NULL, ctop = NULL,
cbot = NULL, unit = NULL)

Arguments

iso the isotope value object to update

minor the name of the minor isotope

major the name of the major isotope

compound name of the compound the isotopic values belong to [optional]

ref name of the reference material (delta values only)

ref_ratio - value of the reference material (delta values only)

ctop name of the compound representing the top isotope ratio in a fractionation_factor

cbot name of the compound representing the bottom isotope ratio in a fractionation_factor

unit unit for intensity value objects

See Also

Other data type attributes: get_label, get_name, get_units; get_value; get_weighted_value;
get_weight; switch_notation; weight

set_iso_opts Isotopia options

Description

This allows specifying and retrieving default values for newly created isotopia objects.

Usage

set_iso_opts(default_ab_notation = c("raw", "percent"),
default_ff_notation = c("alpha", "eps", "permil", "ppm"),
default_delta_notation = c("raw", "permil", "ppm"),
default_intensity_unit = "", default_major = "", default_minor = "",
exact_mass_balance = FALSE, standards = c())

get_iso_opts(opts)

Chapter A: R packages for isotopic data processing

310



set_iso_opts 17

Arguments

default_ab_notation
default notation of abundance objects, see switch_notation for details

default_ff_notation
default notation of fractionation factors

default_delta_notation
default notation of delta values

default_intensity_unit
default unit for intensity values

default_major default major isotope on all isotope objects

default minor default minor isotope on all isotope objects

standards isotope ratio objects to register as standards

exact_mass_balance
NOT IMPLEMENTED YET! If enabled, mass balance calculations with delta
values (i.e. mass_balance(delta, delta, delta... or delta() + delta())
will always be performed exact by converting to natural abundances first and
making the addition in abundance space (will be converted back to delta value
afterwards). This is only possible if the ref_ratio in the delta values is set and
will lead to an error if attempted without the reference ratios set.
If disabled, mass balance calculations with delta values (delta() + delta())
will be performed in delta space (which is not exact but the discrepancy is neg-
ligible unless the minor isotopes in an isotope system make up a significant
portion)
see register_standard for details

Details

get_iso_opts allows retrieval of all or individual isotopia options. Returns a single value if only
one option is requested, a named list if multiple

Note

Default options are the following and are set during package loading together with the default
standards
set_iso_opts(
default_ab_notation = "raw",
default_ff_notation = "alpha",
default_delta_notation = "permil",
default_intensity_unit = "",
default_major = "",
default_minor = "",
exact_mass_balance = FALSE
)

See Also

Other options: get_standard, get_standards, register_standard
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Examples

get_iso_opts("standards") # get a table of all standards
get_iso_opts(c("default_major", "default_minor")) # get a named list with the
default major and minor isotopes

shift_reference Shift reference frame

Description

This function shifts the reference frame of an isotopic data object that has a reference associated
(currently only delta values.

Usage

shift_reference(iso, ref)

Arguments

iso the isotope object whose reference frame to shift (delta)
ref the isotope object which is relative to the new reference frame (delta)

Value

a delta value with the shifted reference

Note

The function requires the reference of the first delta value to the compound measured in the second
delta value. This calculations is also implemented with an arithmetic shorthand. All calculatinos
are only permissible if the fractionation factors and isotope values have matching attributes.

See Also

Other operations: fractionate; mass_balance

switch_notation Switch notation

Description

Convert from one notation to another for an isotope data object.

Usage

switch_notation(iso, to)

Arguments

iso isotopic data object (ff, abundance, delta)
to which notation to convert to
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Details

Valid notations depend on the data type:

• abundance: ’raw’, ’percent’

• delta: ’raw’, ’permil’, ’ppm’

• fractionation_factor: ’alpha’, ’eps’, ’permil’, ’ppm’

Value

isotope object with converted notation, an error if it is not a valid conversion

See Also

Other data type attributes: get_label, get_name, get_units; get_value; get_weighted_value;
get_weight; set_attrib; weight

to_abundance Convert to isotope abundance

Description

to_abundance converts another isotopic data type to an abundance. The to_ab function is a short-
hand for to_abundance but otherwise identical.

Usage

to_abundance(iso)

to_ab(iso)

Arguments

iso isotopic data object (ratio, abundance, delta, etc.)

Value

isotope abundance object if iso can be converted to a abundance, an error otherwise

See Also

Other data type conversions: to_d, to_delta; to_ff; to_r, to_ratio
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to_delta Convert to delta value

Description

to_delta converts another isotopic data type to a delta value. The to_d function is a shorthand for
to_delta but otherwise identical.

Usage

to_delta(iso, ref_ratio)

to_d(iso, ref_ratio)

Arguments

iso isotopic data object (ratio, abundance, delta, etc.)

ref_ratio the refernce ratio associated with the delta value. This is optional but required if
planning later conversions back to ratios or abundane values. Can be supplied as
a raw numeric numer or a Ratio object (in the case of the latter, the compound
name of the Ratio object will be registered as the name of the reference).

Value

isotope delta object if iso can be converted to a delta, an error otherwise

See Also

Other data type conversions: to_ab, to_abundance; to_ff; to_r, to_ratio

to_ff Fractionation factor

Description

Calculate/convert to an isotope fractionation_factor

Usage

to_ff(iso1, iso2)

Arguments

iso1 the top compound in the fractionation factor

iso2 the bottom compound in the fractionation factor
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Details

The to_ff(...) function calculates the fractionation factor between two isotope data objects (for
example two delta values, two ratio, or two ff). All calculatinos are only permissible if the
isotope values have matching attributes and fractionation factors will be returend in the default
notation (see set_iso_opts for details)

Value

isotope fraction_factor object if parameters can be converted, an error otherwise

Note

Some of the conversions are also implemented in arithmetic shorthand, for example to generate an
fractionation factor in alpha notation from two ratios to_ff(ratio(), ratio()) is the same as
ratio() / ratio(). See arithmetic for details.

See Also

Other data type conversions: to_ab, to_abundance; to_d, to_delta; to_r, to_ratio

to_ratio Convert to isotope ratio

Description

to_ratio converts another isotopic data type to a ratio. The to_r function is a shorthand for
to_ratio but otherwise identical.

Usage

to_ratio(iso)

to_r(iso)

Arguments

iso isotopic data object (ratio, abundance, delta, etc.)

Value

isotope ratio object if iso can be converted to a ratio, an error otherwise

See Also

Other data type conversions: to_ab, to_abundance; to_d, to_delta; to_ff
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update_iso update_iso the attributes of an isotope value object internal function
that is called by set_attrib wrapper

Description

update_iso the attributes of an isotope value object internal function that is called by set_attrib
wrapper

Usage

update_iso(obj, attribs)

weight Weight an isotope value object

Description

weight(iso, weight) adds a weight (can be thought of as mass or concentration) to an isotopic
value which will be used to weigh the isotope value when adding together multiple isotope values.
get_weight(iso) returns the weight of an isotope value object.

Usage

weight(iso, weight)

Arguments

iso - object to get weight or add weight

weight - vector of weight values, has to be a single value or the same length as the data
stored in the isotope value object.

Note

This can also be achieved when first initializing (or updating) an object via calls to ratio, abundance,
delta, etc.

See Also

Other data type attributes: get_label, get_name, get_units; get_value; get_weighted_value;
get_weight; set_attrib; switch_notation

Examples

r <- ratio(�.2)
r <- weight(r, 1�)
print(get_weight(r)) # returns 1�
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A.3 isoread R package

isoread

BinaryFile

filepath : String
filename : String
rawdata : Binary
data : data.frame
keys : data.frame

load()
process()

IrmsData

plotOptions : list

check_data()
plot()
ggplot()
summarize()
export_data()

IrmsContinuousFlowData

chromData : data.frame
peakTable : data.frame
peakTableColumns : data.frame

check_chrom_data()
check_peak_table()
get_peak_table()
get_mass_data()
get_ratio_data()
get_peak_by_rt()
plot_peak_table()
plot_refs()
map_peaks()
identify_peaks()
set_ref_peaks()
reevaluate_peak_table()

IrmsDualInletData

IsodatFile

IsodatHydrogenContinuousFlowFile

currently not
implemented
yet

Figure A.1 – Class diagram of isoread. The diagram sketch of the class structure of
isoread with most basic functionality for reading binary isodat files implemented in BinaryFile,
and most functionality for interacting with the data implemented dynamically in IrmsData
and IrmsContinuousFlowData. IsodatHydrogenContinousFlowFile only contains functionality and
structural elements that are highly specific to this data file type.

The isoread R module is intended to provide an interface to IRMS file formats typically

used in stable isotope geochemistry and is implemented using the R5 reference class object

system of R, which allows in place (i.e. traditional object oriented) modification of the

data objects. isoread is currently only fully implemented for reading compound specific

hydrogen isotope data recorded by Isodat 2.0, but the class structure is designed to be

easily expandable to other file and data types. An overview sketch is provided in figure

A.1.
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A.3.1 Installation

The isoread R module can also be installed directly from the source code on GitHub.

The version of isoread that is installed here and used throughout this document is v0.2. I

recommend installing this version for the purpose of running any of these code examples

locally because isoread is also still under active development and future versions will likely

include additional functionality with syntax that might not be backwards compatible. If

interested in the newest version of isorad, visit isoread on GitHub.

library(devtools)
install_github('isoread', 'sebkopf', ref = "v0.2")

A.3.2 Reading an isodat file

Here, we read a simple isodat file that is provided as an example in the module. isoread

takes all the information directly from the binary, which makes it easy to record each

step of what you are doing with the data. isoread can also use functionality provided by

isotopia to interact with this data so we are loading both modules.

library(isotopia)
set_iso_opts(default_minor = NULL, default_major = NULL, default_delta_notation = "permil")

library(isoread)
file <- isoread(system.file("extdata",

"6520__F8-5_5uL_isodat2.cf", package="isoread"),
type = "H_CSIA")

## Reading file /Library/Frameworks/R.framework/Versions/3.1/Resources/library/isoread/extdata/6520__F8-5_5uL_isodat2.cf

A.3.2.1 Chromatographic data

The file variable now contains an isoread object with all the information from the binary

file and we can take a look at the chromatographic data in the object, here we look at
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the first 5 lines (using the k-table or kable command from the knitr package (Xie, 2013b)

for latex output):

kable(file$get_mass_data()[1:5,], format = "latex")

time mass2 mass3 time.s time.min mass2.offset mass3.offset
0.209 194.6 60.02 0.209 0.0035 394.6 60.02
0.418 194.5 60.05 0.418 0.0070 394.5 60.05
0.627 194.5 60.21 0.627 0.0104 394.5 60.21
0.836 194.6 59.92 0.836 0.0139 394.6 59.92
1.045 194.6 59.72 1.045 0.0174 394.6 59.72

Table A.2 – Chromatographic data read by isoread

For convenience, isoread also implements several plotting functions based on standard

plot as well as the ggplot module (Wickham and Chang, 2013) so we can have a look at

the whole chromatograms in figure A.2:

library(ggplot2)

file$ggplot()

Notice that isoread plots all masses and ratios by default and labels the peaks with

their peak numbers (reference peaks are marked with *). The plotting functions are of

course a lot more flexible and we can use isoread functionality to plot just a specific time

window of the mass trace chromatogram, and switch the time units to minutes instead

of seconds as illustrated in figure A.3:

file$plot_masses(tlim = c(12.3, 12.6), tunits = "min")

A.3.2.2 File information

Since isoread has access to the original raw binary data file, it can extract other parame-

ters stored with the data, here shown with the example of the H3factor registered as the

most current during the analysis:
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Figure A.2 – A chromatogram of an isodat file read by isoread
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Figure A.3 – A zoomed mass chromatogram of an isodat file read by isoread
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kable(file$get_info("H3factor"), format="latex")

Property Value
11 H3factor 2.79431047797221

A.3.2.3 Peak table

The table of peaks detected by isodat during the analysis or added by the user later on

are also directly accessible. The complete set of 29 columns is available through isoread,

here a small subset of key components:

kable(
subset(file$get_peak_table(),

select = c("Peak Nr.", "Status", "Ref. Peak", "Component",
"Rt", "Start", "End", "Ampl. 2", "d 2H/1H")),

format = "latex")

Peak Nr. Status Ref. Peak Component Rt Start End Ampl. 2 d 2H/1H
1 Auto FALSE - 286.3 283.4 293.0 3978 -160.9
2 Auto FALSE - 321.2 318.3 327.9 3979 -160.4
3 Auto FALSE - 612.0 606.3 634.9 4993 -154.2
4 Auto TRUE - 671.5 666.1 699.3 4906 -151.9
5 Auto FALSE - 747.8 740.7 768.1 5227 -218.1
6 Auto FALSE - 809.5 801.5 829.3 5044 -210.4
7 Auto TRUE - 860.7 855.4 889.5 4129 -151.9
8 Auto FALSE - 936.5 927.8 961.6 4534 -155.5
9 Auto FALSE - 1002.2 993.4 1023.1 4354 -198.1

10 Auto TRUE - 1055.0 1049.0 1086.0 4070 -151.9
11 Auto FALSE - 1135.9 1126.7 1154.3 4377 -189.5
12 Auto FALSE - 1201.3 1191.9 1223.1 4384 -207.9
13 Auto TRUE - 1249.4 1244.2 1283.1 4160 -151.9
14 Auto FALSE - 1333.6 1324.4 1356.2 4316 -168.1
15 Auto FALSE - 1395.3 1386.3 1416.8 3706 -193.3
16 Auto TRUE - 1459.4 1453.6 1490.2 4183 -151.9
17 Auto FALSE - 1608.7 1600.9 1636.5 4303 -154.3
18 Auto FALSE - 1739.7 1736.4 1746.2 3974 -160.1
19 Auto FALSE - 1779.4 1776.7 1786.1 3972 -160.6

Table A.3 – Peak table from an isoread object.
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Currently, none of the Components in this peak table are identified, but we can

generate a mapping file that identifies which component comes out approximately at

which retention time. A simple mapping table, which identifies peaks by retention time,

could look like this (here only for 2 components):

map <- data.frame(
Rt = c(940, 1135),
Component = c("C16:0 FAME", "C18:0 FAME"),
stringsAsFactors = F)

kable(map, format = "latex")

Rt Component
940 C16:0 FAME

1135 C18:0 FAME

Table A.4 – Mapping table.

Typically, one would maintain this information for example in an excel file and load it

directly from there. The map can then be applied to the peak table by isoread, which

makes the identified peaks accessible by name:

file$map_peaks(map)
kable(file$get_peak_by_name(c("C16:0 FAME", "C18:0 FAME"),

select = c("Peak Nr.", "Component", "Rt", "Ampl. 2", "d 2H/1H")),
format = "latex")

Peak Nr. Component Rt Ampl. 2 d 2H/1H
8 8 C16:0 FAME 936.5 4534 -155.5
11 11 C18:0 FAME 1135.9 4377 -189.5

Table A.5 – Peak table of select peaks.

Lastly, the delta value reported in column d 2H/1H is automatically loaded as a delta

value object using isotopia and can be used accordingly with all the functionality from

isotopia. For a simple example, conversion to a fractional abundance (and switch to

percent notation):
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file$map_peaks(map)
d <- file$get_peak_by_name(c("C16:0 FAME", "C18:0 FAME"))[["d 2H/1H"]]
print(d) # delta value

## An isotope value object of type 'Delta value': d2H [permil] vs. VSMOW
## [1] -155.5 -189.5

print(switch_notation(to_abundance(d), "percent")) # abundance in percent

## An isotope value object of type 'Abundance value': F 2H [%]
## [1] 0.01315 0.01262

A.3.2.4 Extensions

Having this information available of course opens various possibilities for the implemen-

tation of useful features that are specific to the data. For example, an overview of how

consistent the reference peaks in a run were is helpful for determining if one of them might

be offset by an overlapping analyte or contaminant. This is implement in isoread by the

plot_refs() functionality (output in figure A.4):

file$plot_refs()

Other extensions that are already provided include streamlined functionality to gen-

erate a two-page summary pdf for an isoread object which includes the chromatogram,

references plot, analytes plot and complete peak table, as well as export of the data

to comma-separated-value files. All functionality can be applied across several isoread

objects at once so it is easy to load and process many analyses together (isoread_folder()

makes it particularly easy for loading all isodat files in a folder). Planned future extensions

include functionality for reintegrating detected peaks after reassigned reference peaks or

values, automatic peak detection, adding, editing and deleting as well as well integrated

derivatization corrections. For a more detailed overview of existing functionality, see the

reference manual below.
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Index 12

isoread-package isoread package

Description

R interface to IRMS (isotope ratio mass spectrometry) file formats typically used in stable isotope
geochemistry.

Details

See isoread for details on how to use.

Author(s)

Sebastian Kopf

BinaryFile Binary File reference class

Description

Binary File reference class

Fields

filepath stores the path to the binart file

filename stores the filename

creation_date stores the date the file was created (if it could be retrieved, which is not always the
case when running on linux but no problem on OS X and windows)

rawdata this is the binary raw data from the file (typically removed during cleanup unless clean_raw
= FALSE)

keys these are the Unicode and ASCII text fragments found in the binary file, they are used for
navigating in the file when pulling out the relevant data (typically removed during cleanup
unless clean_keys = FALSE)

data a list that contains all the actual data pulled from the file
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export_data 3

Methods

clean_keys(removeText = NULL, removePattern = NULL, unlessByteLength = �, unlessText = NULL)
clean up keys by removing randomly found strings that are clearly not proper targets

cleanup(clean_raw = TRUE, clean_keys = TRUE, ...) clean up the object by removing the
raw data and keys (and other large but only transiently important information) from memory

find_key(pattern, occurence = 1) find a key by a regexp pattern

find_keys(asciiL = 1�, unicodeL = 5) finds all unicode and ascii strings and stores them for
navigation around the file

get_info(show = c()) Get basic information about the object

initialize(file, ...) initialize BinaryFile object, requires a file path

load(...) load the data from the file and generate key lookup

move_to_key(key, occurence = 1) moves position to the end of a specific occurence of a key
(use -1 for last occurence)

parse(type, length = 1, id = NA, skip_first = �) parse binary data at current position
in the data stream advances pointer by the size of the read data
#’ @param type see map_binary_data_type #’ @param length see parse_binary_data #’
@param id if provided, will store the parsed data with this key in the $data field #’ @param
skip_first how many bytes to skip before reading this

parse_array(types, n, id = NA, skip_first = �) repeatedly read the same set of informa-
tion into a data frame
#’ @param types a named vector of data types (for data types see parse_binary_data), #’
the names are used for the columns of the resulting data frame #’ @param id if provided, will
store the parsed data with this key in the $data field #’ @param n length of array #’ @param
skip_first how many bytes to skip before reading this

process(...) process the raw data to fill the data list

read_file() read the binary file
#’ @note this does not work for very large files probably because of the 2^31-1 #’ limit on
vector size! think about ways to fix this... #’ –> might have to acually read directly from the
conection instead of the raw data buffer!

skip(nbyte) skip nbyte number of bytes in the raw data stream

export_data Convenience function to export data from multiple IrmsData objects
of the same class into a comma-separated value file.

Description

Convenience function to export data from multiple IrmsData objects of the same class into a comma-
separated value file.

Usage

export_data(data, file = "irms_data_export.csv", ...)
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4 IrmsContinuousFlowData

IrmsContinuousFlowData
IrmsContinuousFlowData reference class

Description

IrmsContinuousFlowData reference class

Fields

chromData stores the chromatographic data (the actual mass and ratio data traces),

peakTable stores the peak table (detected peaks and all their information)

peakTableColumns stores the definition of which columns exist in the peak table and what their
proper data types are

peakTableKeys stores information about which columns correspond to key elements of the peak-
Table (e.g. the peak number, retention time and compound name)

Methods

check_chrom_data(masses = names(.self$plotOptions$masses), ratios = names(.self$plotOptions$ratios), ..., warn = TRUE)
checks the consistency of the chromatographic data, by default checks for all masses and ratios

check_data(...) check the data consistency, calls check_crom_data and check_peak_table

check_peak_table(..., warn = TRUE) checks the consistency of the peak table and converts
data types if necessary

export_data(file, ...) export the data stored in this object to file

get_mass_data(masses = names(.self$plotOptions$masses), melt = FALSE) get the mass
trace data for specific masses, can be provided in melt = TRUE format for easy use in ggplot
style plotting

get_peak(peak_nr, select = names(peakTable)) retrieve information for a peak in the peak
table (identified by peak_nr), can specify which columns to retrieve with selec, retrieves all
columns by default

get_peak_by_name(names, select = names(peakTable)) retrieve information for peak(s) in
the peak table (identified by names)

get_peak_by_rt(rts, select = names(peakTable)) retrieve information for peak(s) in the
peak table (identified by retention times)

get_peak_nr_by_name(names) find peak numbers (i.e. ids) by name(s), returns a vector of found
peak numbers (integer(0) if none found)

get_peak_nr_by_rt(rts) find peak numbers (i.e. ids) by retention time(s), returns a vector of
found peak numbers (integer(0) if none found)

get_peak_table(type = c("ref", "data", "both")) retrieve the peak table

get_ratio_data(ratios = names(.self$plotOptions$ratios), melt = FALSE) get the ra-
tio trace data for specific ratios, can be provided in melt = TRUE format for easy use in ggplot
style plotting
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IrmsContinuousFlowData 5

ggplot(tlim = NULL, tunits = .self$plotOptions$tunits$labels[[.self$plotOptions$tunits$value]], masses = names(.self$plotOptions$masses), ratios = names(.self$plotOptions$ratios))
ggplot the data
#’ @param tlim time range (in tunits units)
#’ @param tunits units (currently ’s’ or ’min’)
#’ @param masses vector of the masses to plot (if NULL, panel excluded)
#’ @param ratios vector of the ratios to plot (if NULL, panel excluded)

ggplot(...) generate a ggplot object for the data in this IrmsData object
identify_peaks(rts, compounds) Identify peaks by mapping compound names to retention

times
init_irms_data() initialize irms data container
map_peaks(map) Add information to peaks by mapping properties from a data frame that contains

at least the defined peak number (e.g. ‘Peak Nr.‘) or retention time (Rt) as a column. Addi-
tional columns (other than peak nr and retention time) are mapped to the relevant peaks if they
correspond to existing columns, otherwise they are disregarded with a warning.
Note: make sure to have the data.frame that is passed in set with stringsAsFactors = F
(usually the desired setting for the mapping)

plot(tlim = NULL, mass_ylim = NULL, ratio_ylim = NULL, masses = names(.self$plotOptions$masses), ratios = names(.self$plotOptions$ratios), tunits = .self$plotOptions$tunits$labels[[.self$plotOptions$tunits$value]])
Plot the data (both masses and ratios) - much faster than ggplot but not as versatile
#’ @param tlim time range, should be in the same tunits
#’ @param masses which masses to plot (all defined in plot optinos by default)
#’ @param ratios which ratios to plot (all defined in plot options by default)
#’ @param tunits time units, as defined in tunits (currently either ’s’ or ’min’), takes the one
set in plotOptions as default

plot_data(y, ylab = "", title = "data peaks") plot the data of the actual sample peaks,
see plot_peak_table for details on syntax

plot_masses(tlim = NULL, ylim = NULL, masses = names(.self$plotOptions$masses), tunits = .self$plotOptions$tunits$labels[[.self$plotOptions$tunits$value]])
Plot the masses (this if much faster than ggplot but not as versatile)

plot_peak_table(y = NULL, ylab = "", title = "", data = get_peak_table()) Plot the
data points in the peak table
#’ @param y = expression which data to plot (will be evaluated in context of the data frame)
#’ @param ylab = y axis label
#’ @param title = title of the plot
#’ @param data = peak table data (by default the whole peak table)

plot_ratios(tlim = NULL, ylim = NULL, ratios = names(.self$plotOptions$ratios), tunits = .self$plotOptions$tunits$labels[[.self$plotOptions$tunits$value]])
Plot the ratios (this if much faster than ggplot but not as versatile)

plot_refs(y, ylab = "", title = "references") plot the data of the reference peaks, see
plot_peak_table for details on syntax

reevaluate_peak_table() reevalutes the peak table (not currently implemented)
set_plot_options(...) set plot options
set_ref_peaks(rts, set = TRUE, reevaluate = FALSE) Identify peaks (by their retention times)

as reference peaks (or remove their status as a reference peak)
summarize(file, ....) summarize the data stored in this object and save it to file

See Also

IrmsData, IrmsDualInletData
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6 IrmsDualInletData

IrmsData IrmsData reference class

Description

IrmsData reference class

Fields

plotOptions holds information about default plotting options

Methods

export_data(file, ...) export the data stored in this object to file

ggplot(...) generate a ggplot object for the data in this IrmsData object

init_irms_data() initialize irms data container

set_plot_options(...) set plot options

summarize(file, ....) summarize the data stored in this object and save it to file

IrmsDualInletData IrmsDualInletData reference class

Description

IrmsDualInletData reference class

Methods

export_data(file, ...) export the data stored in this object to file

ggplot(...) generate a ggplot object for the data in this IrmsData object

init_irms_data() initialize irms data container

set_plot_options(...) set plot options

summarize(file, ....) summarize the data stored in this object and save it to file

Note

not implemented yet for any actual data reading

See Also

IrmsData, IrmsContinuousFlowData

Chapter A: R packages for isotopic data processing

331



IsodatFile 7

IsodatFile Isodat file class

Description

Class representing an isodat binary file.

Methods

cleanup(clean_raw = TRUE, clean_keys = TRUE, ...) clean up the object by removing the
raw data and keys (and other large but only transiently important information) from memory

find_key(pattern, occurence = 1) find a key by a regexp pattern
get_info(show = c()) Get basic information about the object

See Also

BinaryFile

IsodatHydrogenContinuousFlowFile
H-CSIA DataClass

Description

Objects of this class hold the isotopic data from compound specific hydrogen isotope analysis
recorded in Isodat file formats (currently supported isodat version is 2.0 for chromatographic and
peak table data and isodat version 2.5 and 3.0 for chromatographic data only).

Details

This class is derived from IrmsContinuousFlowData which defines a number of useful plotting,
export and data access methods. This class also derived BinaryFile which provides functionality for
interacting with the underlying IsodatFile.

Methods

cleanup(clean_raw = TRUE, clean_keys = TRUE, ...) clean up the object by removing the
raw data and keys (and other large but only transiently important information) from memory

find_key(pattern, occurence = 1) find a key by a regexp pattern
get_info(show = c()) Get basic information about the object
initialize(file, ...) initialize BinaryFile object, requires a file path
plot_data(y, ylab = "", title = "data peaks") plot the data of the actual sample peaks,

see plot_peak_table for details on syntax
plot_refs(y, ylab = "", title = "references") plot the data of the reference peaks, see

plot_peak_table for details on syntax
process(...) process the raw data to fill the data list
reevaluate_peak_table() reevalutes the peak table (not currently implemented)
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8 isoread_folder

See Also

BinaryFile, IsodatFile, IrmsContinuousFlowData, IrmsData

isoread Read isotope data files

Description

Reads isodat file(s) and returns the contents as file type specific instances of BinaryFile / IrmsDataClass
(extends both).

Usage

isoread(files, type, load_chroms = T, ...)

Arguments

file path to the file(s) to read

type type of the files to be read

• ’H_CSIA’ = compound specific IRMS data for hydrogen isotopes

load_chroms whether to keep the chromatograms in the objects (otherwise only peak tables
are kept)

... parameters passed to the load and process functions of the IsodatFile objects

Value

List of file type specific objects.

• ’H_CSIA’ = instance(s) of IsodatHydrogenContinuousFlowFile which implements IrmsContinuousFlowData.

If file names start with a number, then the number is used as key in the list, otherwise the whole
filename is the key. If there is only one file, the object is returned directly.

isoread_folder Reads all isodat files in a folder.

Description

See isoread for paramter and return value details.

Usage

isoread_folder(folder, type, extension = ".cf", ...)
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map_binary_data_type Binary data type mapping

Description

Maps binary C data types to proper R data types and byte lengths

Usage

map_binary_data_type(type = c("binary", "UTF8", "UTF16", "UTF32", "short",
"long", "long long", "float", "double"))

Arguments

type • ’binary’ = raw with 1 byte (raw data)
• ’UTF8’ = character with 1 byte (ascii)
• ’UTF16’ = character with 2 bytes (unicode)
• ’UTF32’ = character with 4 bytes (unicode)
• ’short’ = integer with 2 bytes (16bit)
• ’long’ = integer with 4 bytes (32bit)
• ’longlong’ = integer with 8 bytes (64bit)
• ’float’ = numeric with 4 bytes (32bit)
• ’double’ = numeric with 8 bytes (64bit)

Note

implemented signed int and complex if needed

map_peaks Map peak table

Description

Map peak table data of IrmsContinuousFlowData object(s) based on a data frame or input excel file.

Usage

map_peaks(iso, map, startRow = 3, libfile = NULL,
colClasses = c("numeric", "character", "character"), ...)

Arguments

iso IrmsContinuousFlowData object(s)

map either a data frame with a map (containing column Rt and Component) or the
file path to a mapping file, extension determines how it will be processed cur-
rently only xlsx and xls are supported. Excel file must include column headers
on the indicated row (default startRow = 3) with columns Rt and Component
Component
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libfile name of the library file, also only xlsx and xls currently supported if provided,
will attempt to merge the components in the mapping file with the library infor-
mation for additional details on Formula and other compound properties

parse_binary_data Wrapper for parsing binary data.

Description

Convenience wrapper for parsing binary data. For more details on reading binary data, check ?read-
Bin

Usage

parse_binary_data(data, type, length = 1)

Arguments

type data type see map_binary_data_type for details

length how many instances of this object (for characters and raw this means length of
string, all others a vector)

Value

read data

quickview File quickview

Description

This functions serves to gain a quick view of a loaded isodat file. It shows the masses plot and prints
a minimal subset of the peak table. Optionally reloads the file (tries to keep the peak definitions).

Usage

quickview(iso, reload = FALSE, show = c("Peak Nr.", "Status", "Ref. Peak",
"Component", "Rt", "Start", "End", "Ampl. 2", "d 2H/1H"))

Arguments

iso a single isodat file obj

reload whether to reload the file (this is forced if there is no chromatographic data)

show list of peak table columns to show
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reload Reload an isodat file object.

Description

Reload an existing isodat object with all the chromatographic data and resets the peak table if
keep_peaks = FALSE. Good for interrogation of an individual file. Requires the original file to still
be in the same location.

Usage

reload(iso, remap_peaks = TRUE, load_chroms = TRUE)

Arguments

iso the object to reload (can be a list)

remap_peaks whether to keep the peak identification or not

load_chroms whether to load the chroms (much smaller object without)

Value

the reloaded obj (or list of objs)

Note

currently only for type = "H_CSIA"

summarize_all Summarize a collection of IrmsData objects

Description

Summarize a collection of IrmsData objects

Usage

summarize_all(iso, ...)

Arguments

iso IrmsData object(s)

... all passed to summarize
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BinaryFile, 2, 7, 8

export_data, 3

IrmsContinousFlowData
(IrmsContinuousFlowData), 4

IrmsContinuousFlowData, 4, 6–8
IrmsData, 5, 6, 6, 8
IrmsDataClass, 8
IrmsDualInletData, 5, 6
IsodatFile, 7, 7, 8
IsodatHydrogenContinuousFlowFile, 7, 8
isoread, 2, 8, 8
isoread-package, 2
isoread_folder, 8
isoreadinfo (isoread-package), 2

map_binary_data_type, 3, 9, 10
map_peaks, 9
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reload, 11
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Appendix B

Supplementary material for Chapter

3

B.1 Determination of carbon redox state

The redox state (RS) of carbon atoms in a molecule describes their average oxidation

number, and is calculated assuming hydrogen in organic molecules to have an oxidation

number of +1, oxygen -2 and nitrogen -3. The latter assumption is based on N in all

compounds in this study to be in the form of NH3 as acquired from NH4
+ in the medium

(for biomass) and released as NH3 upon complete breakdown (e.g., photolytic degradation

of NTA via glycine). The average redox state of each carbon atom in an uncharged organic

molecule CaHbNcOd is thus calculated as:

RSC = (�1b+ 2d+ 3c)/a

For biomass of R. capsulatus (CH1.83N0.183O0.5), for example, RSC = (–1 ⇤ 1.83+2 ⇤

0.5 + 3 ⇤ 0.183)/1 = �0.28. Table B.1 lists the RSC values for all organic compounds

relevant to this study.
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The redox state corresponds conceptually to the notion of electron content in an

organic molecule (e.g., Mckinlay and Harwood, 2010). How many electrons become

available from the oxidation of an organic compound depends on the redox state of C, N,

P and S, and whether they are completely oxidized to CO2, HNO3, H2PO4 and H2SO4

respectively. In compounds containing only C, N, H and O with N acquired/released as

NH3, complete oxidation proceeds as follows:

CaHbNcOd + x ⇤H
2

O ! a ⇤ CO2 + c ⇤NH
3

+ y ⇤H+

+ y ⇤ e�

Balancing this equation for biomass of R. capsulatus (CH1.83N0.183O0.5) yields:

CH
1.83N0.183O0.5 + 1.5 ⇤H

2

O ! CO
2

+ 0.183 ⇤NH
3

+ 4.28 ⇤H+

+ 4.28 ⇤ e�

suggesting that the carbon in R. capsulatus biomass harbors a total 4.28 electrons as

compared to its fully oxidized form (CO2). A more general solution, on a per mol of C

basis, yields H
2

O = (2a–d)/a and e� = (b+ 2x–3c)/a = 4 + (b–2d–3c)/a, a formula

familiar from the redox state RSc. The scaling factor of 4 describes how the redox state

scale is anchored at 0 (with positive values denoting electron scarcity and negative

values electron richness), as opposed to describing electron richness relative to the

completely oxidized CO2. The two relate as RSc = 4–e�/a.

Compound Formula Carbon redox state (RCS)
Inorganic carbon CO2/HCO3 +4

Nitrilotriacetate (NTA) C6H6NO6 +1
Glycine C2H5NO2 +1
Acetate C2H3O2 0

Formaldehyde CH2O 0
R. capsulatus* CH1.83N0.183O0.5 -0.3

Table B.1 – Carbon redox states. Average redox state of molecular carbon in inorganic carbon,
growth substrates and biomass.
*based on elemental composition of R. capsulatus as reported by Dorffler et al., 1998
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Appendix C

Supplementary material for Chapter

4

C.1 Derivations

Derivation of Fe(II) and NO2
- reaction equations:

d[Fe(II)]

dt
= �2kapp[Fe(II)][NO�

2

]

[Fe(II)] = [Fe(II)]
0

+�[Fe(II)]

[NO�
2

] = [Fe(II)]
0

+

1

2

�[Fe(II)]

d([Fe(II)]
0

+D[Fe(II)])

dt
= �2kapp([Fe(II)]

0

+D[Fe(II)])([Fe(II)]
0

+

1

2

D[Fe(II)])

dD[Fe(II)]

dt
= �2kapp([Fe(II)]

0

+D[Fe(II)])([Fe(II)]
0

+

1

2

D[Fe(II)])

(C.1)
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d[NO�
2

]

dt
= �kapp[Fe(II)][NO�

2

]

[Fe(II)] = [NO�
2

]

0

+ 2 ·�[NO�
2

]

[NO�
2

] = [NO�
2

]

0

+�[NO�
2

]

d([NO�
2

]

0

+D[NO�
2

])

dt
= �kapp([NO�

2

]

0

+ 2D[NO�
2

])([NO�
2

]

0

+D[NO�
2

])

dD[NO�
2

]

dt
= �kapp([NO�

2

]

0

+ 2D[NO�
2

])([NO�
2

]

0

+D[NO�
2

])

(C.2)

For 1:1 stoichiometry observed in the presence of NTA: The Fe-NTA-NO complex does

not appear to be reactive towards NO2
- such that Eq. C.1 describes Fe(II) oxidation even

in the presence of NTA, with the caveat that measured concentrations of Fe(II) (which

include the Fe(II)-NTA-NO- complex) require a correction for Fe-NTA-NO. Assuming all

NO that is generated complexes with Fe(II)-NTA such that it no longer participates in

a redox reaction with nitrite, but is still measured as Fe(II) by the ferrozine assay and

assuming the reactions are coupled such that [Fe(II)]ox = [Fe(II) � NTA � NO],

then D[Fe(II)] = �([Fe(II)]ox + [Fe(II) � NTA � NO]) = -2 · [Fe(II)]ox = -2 ·

([Fe(II)]
0

� [Fe(II)]obs) and D[NO�
2

] = -[NO�
2

]red = -([NO�
2

]

0

� [NO�
2

]obs). This

leads eq. C.1 to integrate to:

Fe(II)obs(t) =
Fe(II)

0

· eFe(II)0·kappt

�1 + 2 · eFe(II)0·kappt
(C.3)
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C.2 Supporting tables
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C.3 Supporting figures
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Condition Start End Change
2mM Fe(II) + 2mM NO2

- 7.03 6.88 -0.15
+ 2mM NTA 7.00 7.12 0.12
+ 300mg/L PPHA 6.99 7.03 0.04
+ 100µM Citrate 6.95 7.02 0.07
+ 500µM Citrate 6.97 7.07 0.10
+ 2mM Citrate 6.96 7.06 0.10
+ 2mM Citrate + 300mg/L PPHA 6.94 7.13 0.19

Table C.1 – pH of reactant solutions at the beginning and end of kinetic Fe(II) oxidation experiments.

Table C.2 – Theoretical Fe(II) inorganic and organic speciation in bicarbonate-buffered freshwater
medium at pH 7. Species with relative abundance < 0.01% for all experimental conditions are not
shown. Species suggested to be relevant for Fe(II) oxidation by nitrite are highlighted in gray.
#: Fe-L- = Fe-NTA- or Fe-Citrate-, Fe-HL = Fe-HNTA or Fe-HCitrate
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Table C.3 – Overview of rate constants reported for chemical oxidation of Fe(II) by NO2
-.
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Figure C.1 – Anaerobic growth and concomitant Fe(II) oxidation of Pseudogulbenkiania sp. strain
MAI-1 in freshwater medium amended with 10mM nitrate and different concentrations of Fe(II),
NTA and acetate, and a headspace containing ~3% hydrogen. In the presence of NTA, up to 10mM
Fe(II) is oxidized within 24 hours (in yellow), however, in the absence of NTA, neither growth nor
Fe(II) oxidation is observed (in green). Replicate culture (duplicates or triplicates) indicated with
solid, dashed and dotted lines, respectively.
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Figure C.2 – Growth of MAI-1 on various Fe(II) chelating ligands. The organism is grown aerobically
in freshwater medium in a 96 well plate (OD600 is measured every 5 minutes) with different ligands
as the sole carbon source. Citrate (Cit), humic acids (HA), acetate (Act) and diethylene triamine
pentaacetic acid (DTPA) can all serve as growth substrates for MAI-1. The strain’s ability to use
siderophore desferioxamine (DFO) as a carbon source is ambiguous. No growth could be observed
in the presence of nitrilotriacetate (NTA) as the sole carbon source. This makes NTA a suitable
choice for anaerobic growth experiments, with MAI-1 as a chelator for Fe(II) that does not supply
extra carbon. Replicate cultures indicated with dashed and solid lines, respectively.
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Figure C.3 – Oxidation of Fe(II)-NTA in spent MAI-1 growth medium. Triplicate cultures of
Pseudogulbenkiania sp. strain MAI-1 (solid, dashed and dotted line) were grown in freshwater
medium amended with 10mM nitrate and 1.25mM acetate, with ~3% H2 present in the headspace.
During growth of MAI-1 (upper left panel), significant amounts of nitrite accumulated in the medium
(lower left panel). Accumulated nitrite was stable at the end of growth, but upon addition of ~3mM
Fe(II)-NTA to filer sterilized spent medium, Fe(II) oxidation and concomitant nitrite reduction could
be observed (right panels).
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Figure C.4 – Oxidation test of Fe(II) in the presence of nitrite during sample dilution for the
ferrozine (Stookey, 1970) assay. The ferrozine assay often includes an acid dilution step prior
to spectrophotometric determination of Fe(II) with the ferrozine reagent. Acidification aids in the
desorption of strongly coordinated Fe(II) from mineral surfaces and other strong sorption sites, and is
an important preparative step for environmental samples. However, at acidic pH, nitrite is protonated
(pKa=3.4) to nitrous acid, which can self- decompose to form reactive N-oxides (Van Cleemput and
Baert, 1976) as well as oxidize Fe(II) directly (Abel et al., 1936; Epstein et al., 1980). To assess
the effect of acidification in the presence of nitrite for our experimental setup, an anoxic freshwater
solution containing ~650µM Fe(II) and ~1mM NO2- was diluted 1:10 with 1M HCl, and Fe(II)
concentrations were measured after varying time intervals using the ferrozine assay (depicted in
grey). Within 10 seconds of acidification, >20% of Fe(II) was oxidized and could no longer be
detected by the ferrozine assay. After 1 minute, >60% of Fe(II) was lost. Without the acidification
step (e.g. by direct dilution of the sample with the ferrozine reagent), Fe(II) concentrations did not
significantly decrease within several minutes (black line). Since our experimental conditions included
relatively high concentrations of nitrite, but little to no risk of sorptive loss of Fe(II), all ferrozine
measurements were conducted without acidification.
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Figure C.5 – Reduction test of nitrite in the presence of Fe(II) during incubation with sulfanilamide
in phosphoric acid for the nitrite assay used in this study. To assess the effect of free and chelated
Fe(II) on the assay, an anoxic freshwater solution containing ~1.7mM nitrite was amended with
2mM Fe(II) and no ligand / 2mM citrate / 2mM EDTA / 2mM NTA / 300mg/L PPHA, and
immediately diluted 1:10 with 1% sulfanilamide in 5% phosphoric acid for diazodization. Nitrite
concentrations were determined colorimetrically after varying time intervals by addition of 0.1% N-
1-napthylethylenediamine. The true concentration of nitrite measured in the absence of Fe(II) is
indicated as a grey band with 95% confidence intervals. As previously observed (Colman, 2009),
the presence of Fe(II)-EDTA leads to rapid disappearance of nitrite and significant underestimation
of nitrite concentrations by this assay. The addition of Fe(II) without a ligand, as well as with the
ligands used in this study, did not significantly affect the determination of nitrite by this assay (all
measurements were conducted within 3 minutes of sulfanilamide addition, to prevent nitrite loss).
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Figure C.6 – NO2
- production by P. denitrificans (B) during anaerobic growth on succinate (A).

Samples for Fe(II) oxidation assays were taken after accumulation of ~5mM NO2
- for each biological

replicate, respectively (grey shaded area indicated by arrow in panel B). Experiment conducted in
biological triplicates. All data are shown.
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Figure C.7 – Model fits for abiotic Fe(II) oxidation by nitrite. Low citrate, no ligand, PPHA are
best described by a zero-order (i.e. linear) reaction model (linear least squares fit illustrated for these
conditions instead of 2nd order decay).
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Figure C.8 – Evolution of N2O in the headspace of sealed septum bottles during the reaction of
5mM nitrite with ~3mM Fe(II) complexed by citrate vs. NTA (peaks normalized to Ar). Retention
times of the gases in the headspace were 2.2min (Ar), 3.0min (N2), 10.8min (N2O) and 12-13min
(CO2, poorly resolved). The accumulation of N2O (gray band) as a reaction product could only be
observed in the presence of citrate, but not in the presence of NTA. Varying trace amounts of N2
were present in the Ar/CO2 headspace of the reaction vessels at the start of the experiment, but
did not change significantly with reaction progress.
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Figure C.9 – Absorption spectrum of a ⇠3mM Fe(II)-NTA solution (dashed line) after 950µM NO2
-

was lost by abiotic oxidation of 1086µM Fe(II) (21 hrs data point in Figure C.3). Fe(II)-NTA by
itself does not absorb in this wavelength range. The oxidized Fe forms a complex with NTA that
absorbs light weakly with a characteristic peak at 470nm (dotted line). Residual light absorption
(solid line) after accounting for the effect of Fe(III)-NTA in solution is indicative of Fe(II)-NTA-NO-
complex formation. Characteristic absorption peaks of the Fe(II)-NTA-NO- complex (440nm and
600nm) (Lin et al., 1982) are indicated in gray.
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Appendix D

Supplementary material for Chapter

7

D.1 Chromatographic effects of 2H substitution

The number of average deuterium substitutions in a lipid molecule, such as a fatty acid

methyl ester, depends on the strength of the label. It is important to note that what we

tend to think of as a change in overall isotopic composition during isotope enrichment, is

actually the mixing of two isotopically distinct pools. These pools (the old and new pool)

more or less maintain their distinct isotopic signatures, but the change in their relative

proportions leads to overall isotopic enrichment. However, in the context of measuring

this overall enrichment in compound-specific analyses of lipid components, it is crucial to

consider the effect that deuterium substitution has on the chromatographic behavior of

molecules.

The change in chromatographic retention as a function of deuteration has been ex-

plored as early as McCloskey et al. (1967), and is well-established (although a mechanistic

understanding of the effect is still an area of active research). Our own findings in
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↵B/S · FL 15:0 FAME 16:0 FAME 18:0 FAME
0.016% 0.0 0.0 0.0
1% 0.3 0.3 0.4
5% 1.5 1.6 1.8
10% 2.9 3.1 3.5
50% 14.5 15.5 17.5
100% 29.0 31.0 35.0

Table D.1 – Number of average deuterium substitutions in fatty acid methyl esters.

this context (measuring the retention times of perdeuterated compounds as part of our

experiments on the recycling of exogenous fatty acids by S. aureus) corroborate the

prior observations. Figure D.1 shows the relative increase in elution rate (the deuterated

compounds always elute faster). Despite the normalization to deuteration sites, there is

some spread in the change in relation time that is likely a combination of column- and

compound-specific effects (for example, difference in saturation).

Compound Mean d / nD data points Min d / nD Max d / nD Mean dRT / nD
C14:0 FAME -0.29% 2 -0.32% -0.27% -3.435
C15:0 FAME -0.33% 1 -0.33% -0.33% -3.849
C16:0 FAME -0.4% 3 -0.42% -0.39% -4.724
C16:1 FAME -0.35% 2 -0.37% -0.33% -4.118
C18:0 FAME -0.47% 3 -0.61% -0.35% -5.480
C18:1 FAME -0.4% 2 -0.41% -0.39% -4.700
C18:2 FAME -0.37% 2 -0.42% -0.33% -4.372

Table D.2 – Overview of retention time shifts due to deuterium substitution.

The average change in retention time for C18:0 FAME was scaled by the observed

elution times of C16:0 FAME and C18:0 FAME in an actual compound-specific isotope

ratio analysis of a fatty acid methyl standard mix (reported in Table D.2). The chromato-

graphic program employed in this experiment was designed to increase peak resolution

with a slow temperature gradient. The resulting change in retention time was applied to

the exact observed C18:0 FAME peak of the same run to model the impact of multiple

deuterium substitutions (as expected from exposure to high levels of D2O labeling) on peak

shape and retention times. Figure D.2 shows the simulation. For simplicity, all hydrogen
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Figure D.1 – Change in retention time as a consequence of deuterium substitution. These
data are a synthesis from our own studies with a column and the values reported in McCloskey et al.
(1967). The change in retention time as a consequence of deuterium substitution is reported relative
to the retention difference of the commonly-encountered C16:0 and C18:0 fatty acid methyl esters.

sites on the molecule are considered to have equal probability of deuterium substitution,

and the modeled deuterium concentrations (1%, 10% and 25%) are assumed to be the

isotopic abundances of the average biosynthetically incorporated hydrogen (i.e., these

values are assumed to be after fractionation and other metabolic factors). The mass 2

and mass 3 tracers are scaled to be the same total amount as the natural abundance

sample, albeit with the respective changes in isotopic composition reflected in the signal

strengths (scaling data taken from the original data traces, and representative of the
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relative differences in amplification of mass 2 and mass 3 ions). The mass 3 signal is

simulated to capture the deuterated hydrogen signal fully; i.e., the formation of mass 4

DD molecules (although probabilistically occurring at high D concentrations) is not taken

into consideration.
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Figure D.2 – Simulation of the effect of deuterium substitution on peak broadening and
retention shifts. The simulation illustrates the resulting peaks (in black) of changing isotopic
composition with C18:0 derived from natural abundance, 1%, 10% and 25% deuterium. The peaks
belonging to the different individual isotopologues that make up the combined peak are illustrated
in color depending on their number of deuterium substitutions. Peaks are scaled for both mass
traces (measured as hydrogen mass two H2 and mass three HD) to the same amount as the original
(natural abundance) peaks on the left, illustrating how the same amount of material, but with
different isotopic composition, would change the signal.

D.2 D2O toxicity

Deuterated water (or heavy water) is known to be toxic to organisms at high concentrations

(Kushner et al., 1999b). Here, we report growth experiments with S. aureus and P.
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aeruginosa grown in standard NC medium with varying concentrations of D2O. Growth

experiments were performed at 37ºC in 96 well plates with at least 4 replicates per culture

condition. Plates were gently shaken continuously, and optical density (OD
600nm) was

recorded every 10 minutes. All culture wells were inoculated from overnight cultures

that had not previously experienced any elevated level of D2O. The effect of varying

concentrations of D2O was tested in one experiment for P. aeruginosa, and in two separate

experiments for S. aureus.

PA
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96 well plate, 250uL/well, 37C, avgs of 4+ replicates (min/max shaded)

Figure D.3 – Toxicity effects of increasing concentrations of D2O on P. aeruginosa.

The results show that levels of D2O exposure up to ⇠20% for P. aeruginosa and

⇠15% for S. aureus have no discernible effect on growth rates, but higher levels (>30%

and especially 50%) cause a significant decrease for both organisms. Growth rates were
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Figure D.4 – Toxicity effects of increasing concentrations of D2O on S. aureus from two
experiments.

Experiment condition Growth rate [1/hr] Std. Error
P. aeruginosa 0% D2O 0.989 0.044
P. aeruginosa 10% D2O 1.208 0.035
P. aeruginosa 20% D2O 1.017 0.052
P. aeruginosa 30% D2O 1.003 0.044
P. aeruginosa 35% D2O 0.992 0.024
S. aureus #1 5% D2O 0.477 0.012
S. aureus #1 10% D2O 0.504 0.006
S. aureus #1 15% D2O 0.470 0.005
S. aureus #1 20% D2O 0.436 0.005
S. aureus #1 25% D2O 0.461 0.025
S. aureus #1 30% D2O 0.415 0.015
S. aureus #1 35% D2O 0.397 0.009
S. aureus #1 50% D2O 0.361 0.031
S. aureus #2 0% D2O 0.507 0.030
S. aureus #2 10% D2O 0.544 0.018
S. aureus #2 20% D2O 0.421 0.013
S. aureus #2 30% D2O 0.439 0.024
S. aureus #2 35% D2O 0.406 0.021

Table D.3 – Changes in growth rates from toxicity effects of increasing concentrations of
D2O.
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evaluated during mid-exponential phase (during the optical density interval indicated

by the dashed lines in Figures D.3 and D.4). Growth rates varied between different

experiments (see Table D.3, S. aureus Experiment 1 and 2), likely due to slight differences

in the inoculums. However, the toxicity patterns between the different experiments are

well-conserved, and provide a estimate for the potential toxicity effects of isotope labeling

with D2O in these organisms.

D.3 Water fraction factor data

Medium Microbe # Analyses �D [h] ��D [h]

2F [ppm] �2F [ppm]

SCFM all 6 -80.5 1.1 143.2 0.2
SCFM all 6 1.0 1.6 155.9 0.3
SCFM all 6 80.7 1.7 168.3 0.3
SCFM all 6 162.6 1.9 181.1 0.3
SCFM all 6 243.1 1.8 193.6 0.3
Minimal SA 8 -86.4 1.6 142.3 0.3
Minimal SA 8 23.7 3.3 159.4 0.5
Minimal SA 8 128.9 4.5 175.8 0.7
Minimal SA 8 249.4 3.7 194.6 0.6
Minimal PA 4 -87.6 0.5 142.1 0.1
Minimal PA 4 19.4 5.1 158.8 0.8
Minimal PA 4 158.4 6.4 180.4 1.0
Minimal PA 4 258.0 3.7 195.9 0.6
Minimal EC 4 -88.3 1.8 142.0 0.3
Minimal EC 4 20.5 2.6 158.9 0.4
Minimal EC 4 128.1 3.5 175.7 0.5
Minimal EC 4 254.0 3.8 195.3 0.6
Chemostat PA 3 -75.4 0.7 144.0 0.1
Chemostat PA 3 90.0 0.5 169.8 0.1
Chemostat PA 3 261.9 0.6 196.5 0.1

Table D.4 – Isotopic composition of source waters in water fraction factor experiments. Reported
error is the standard deviation of the replicate analyses of medium water.
SA = S. aureus, PA = P. aeruginosa, EC = E. coli

Table D.4 summarizes the isotopic composition of the source waters used in water

fraction factor experiments. Tables D.6, D.7, D.8, D.9, D.10, and D.11 summarize the

isotopic composition of the major lipid components (components that constitute >5% of
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the total membrane) resulting from growth in media with source waters of different isotopic

compositions. Figures D.5, D.6 and D.7 show the membrane fatty acid composition

profiles of each culture in minimal medium as an example of the degree of variability. The

figures illustrate the high precision of the analytical replicates (error bars indicate 95%

confidence intervals), but also highlight the substantial range of membrane compositions

between biological replicates. This is not surprising, because individual cultures were likely

at slightly different growth phases (near the transition from exponential to stationary

phase, for example) at the time of harvest. This is particularly noticeable in the lipid

profiles of E. coli (Figure D.5). E. coli converts substantial amounts of C16:1 to cyclo-

C17:0 during stationary phase, which is reflected in the mirrored abundance profiles of

C16:1 and cyclo-C17:0. The diversity in membrane make-up is not an issue for determining

the water fraction factors in cultures with a single carbon substrate, because additional

growth does not mix an isotopically different carbon source into the membrane. This is the

case for growth of E. coli and P. aeruginosa in minimal medium where succinate provides

the only source of carbon. In the case of the SCFM medium as well as growth of S. aureus

on minimal medium (amended with a range of amino acids), the water fraction factors

can only be derived from cultures harvested close to the same point during their growth

phase. Accordingly, in the case of S. aureus growing on minimal medium (with amino

acids) or SCFM, for each growth condition, only samples with less than 3% variability from

the median a-C15:0 fatty acid relative abundance were considered to be at similar points

during growth. For example, three of the cultures from experiment in minimal medium

were harvested at a slightly different point during growth (which turned out to make a

significant difference) and deviated by more than 3% from the median a-C15:0FA relative

abundance (samples 2FH2O = 142ppm [#2], 159 [#2] and 176 [#2]). The data suggest

that the first two cultures under-incorporated, and the third culture over-incorporated an

additional, isotopically light carbon source relative to all other cultures (reflected also in

the shift in fatty acid profiles). They are excluded for the purpose of determining the
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water fraction factors of S. aureus in this medium.
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Figure D.5 – Major fatty acid profiles of E. coli cultures grown in minimal medium. Indicated error
bars are 95% confidence intervals.

Figure D.8 shows the regression lines of 2Flipid vs 2Fwater to determine the water

fraction factors and substrate offset for the different fatty acids that make up the different

organisms’ membranes. The resulting regression parameters are reported in Table 7.1.

D.4 Patterns of isotope tracer incorporation

Figure D.9 illustrates the evolution of total biomass, new biomass and old biomass over

the course of two generation times (the biomass is not necessarily doubling, so these

are only the apparent generation times) for varying death/removal rates. The isotopic

enrichment during this time interval is illustrated in the lower panel, and is based on an
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Figure D.6 – Major fatty acid profiles of P. aeruginosa cultures grown in minimal medium. Indicated
error bars are 95% confidence intervals.

isotopic spike with rare isotope fractional abundance FL = 10% and an initial isotopic

composition of FB(t0) = 0% (i.e. assuming negligible natural abundance). For clarity,

this illustration does not take recycling vs. de novo synthesis (fS = 1), turnover (! = 0)

or biosynthetic isotope fractionation (↵ = 1) into consideration.

D.5 Error estimation

D.5.1 Error from using �-values in mass balance calculations

Isotopic mass balance can be approximated with isotopic values in �-notation

(�mix

P
mi ⇡

P
�imi) when the isotopic composition of all pools is relatively close to

366



Chapter D: Supplementary material for Chapter 7

i−C15:0 FA a−C15:0 FA i−C17:0 FA

a−C17:0 FA C18:0 FA i/a−C19:0 FA

C20:0 FA

0%

10%

20%

30%

40%

0%

10%

20%

30%

40%

0%

10%

20%

30%

40%

Ab
un

da
nc

e 
of

 fa
tty

 a
cid

2FH2O [ppm]

142 / #1
142 / #2
159 / #1
159 / #2
176 / #1
176 / #2
195 / #1
195 / #2

Figure D.7 – Major fatty acid profiles of S. aureus cultures grown in minimal medium. Indicated
error bars are 95% confidence intervals.

natural abundance. However, this approximation introduces significant error when one or

multiple pools of heavily enriched materials are part of the mass balance. This is routinely

the case when working with isotopic labels, and it is important to use exact mass balance

calculations with fractional abundance values F instead, i.e. Fmix

P
mi =

P
Fimi .

Figure D.10 illustrates the absolute and relative error introduces in the estimate of Fmix if

mass balance between isotopically-labeled new biomass and natural abundance old biomass

is calculated using �-values (and then converted to Fmix for comparison) vs. the exact

calculation in abundance space. Mass balance using �-values systematically overestimates

the true value. The error scales with the strength of the isotope label (here pictured

up to a composition of Fnew = 50% rare isotope in new biomass), and is slightly more
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Figure D.8 – Water fraction factor regression lines. Regression lines of 2F
lipid

vs 2F
water

to determine the water fraction factors and substrate offset. Error bars shown are 95% analytical
confidence intervals from 1-3 separate analyses and confidence band on linear regression is statistical
confidence on the regression. Some rare fatty acids could not be quantified in all runs, and some
samples were only analyzed once. Data points without any error bars are derived from a single
analysis. See Tables D.6, D.7, D.8, D.9, D.10, D.11 for details.

pronounced for isotopic systems with lower natural abundance isotope ratios (error for H >

N > C). It is important to note that while the absolute error introduced from calculations

with �-values is most pronounced at a ~1:1 mixing ratio (slightly offset from 50% because

natural abundances are not 0), relative errors in the estimate for Fmix reach significant

levels (> 10%) already with very little production of new biomass (fraction of new biomass

plotted on a logarithmic scale for clarity). This aspect of �-value mass balance limits the

ability to accurately infer microbial activity in isotope labeling experiments. The use of
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Figure D.9 – Change in biomass and isotopic composition over time. This figure illustrates
the change in biomass (total biomass, new biomass and old biomass) and the corresponding isotopic
enrichment from a 10% isotope label over the course of two generations.

fractional abundances for all mass balance calculations is strongly recommended.

D.5.2 Error from using fractionation factors in F -value mass

balance calculations

Exact mass balance calculations that employ fractional abundances F instead of ��values

are highly recommended in isotope labeling experiments due to the significant deviations

discussed above. However, for biosynthetic processes that can introduce significant isotope

fractionation, it is important to take known fractionation factors into consideration even

for heavily labeled pools. An isotope fractionation factor between two pools a and b

is usually reported/known in terms of the ratio of isotope ratios between the two pools

↵b/a =

Rb
Ra

, and is appropriate only to apply to an isotope ratio. To apply it to a natural

369



Chapter D: Supplementary material for Chapter 7

0%

2%

4%

6%

8%

0% 25
%

50
%

75
%

10
0%

New (labeled) biomass

A
bs

ol
ut

e 
er

ro
r  

of
  F

m
ix
  w

ith
f⋅
δ n

ew
+

(1
−

f)
⋅δ

ol
d 

 in
st

ea
d 

of
  f
⋅F

ne
w

+
(1
−

f)
⋅F

ol
d

0%

25%

50%

75%

0.
1%

0.
2%

0.
4%

0.
8% 2% 3% 6% 10
%

30
%

50
%

10
0%

New (labeled) biomass

R
el

at
iv

e 
er

ro
r  

in
 c

al
cu

la
tin

g 
re

su
lti

ng
  F

m
ix
  w

ith
f⋅
δ n

ew
+

(1
−

f)
⋅δ

ol
d 

 in
st

ea
d 

of
  f
⋅F

ne
w

+
(1
−

f)
⋅F

ol
d

Isotope label
5 %
10 %
25 %
50 %

Heavy isotope (label) in
new biomass  Fnew

2H
13C
15N

Figure D.10 – Errors in mass balance calculations with �-values.

abundance value F , the natural abundance must be converted to a ratio
�
R =

F
1�F

�
1 to

calculate the effect of the fractionating process, and then converted back to an abundance

value
�
F =

R
1+R

�
1 for mass balance calculations:

Rb = ↵b/aRa

Fb =

↵b/a·Fa

1�Fa

1 +

⇣
↵b/a·Fa

1�Fa

⌘
(D.1)

However, the simplified formula Fb = ↵b/aFa provides a reasonable approximation. The

relative error introduced by this approximation is illustrated in Figure D.11, and can be
1This is only exact for isotope systems with one minor isotope (H, C, N), but a reasonable

approximation for others (e.g. O, S) with trace abundances of other minor isotopes. The exact formulae
would be iR =

i

F

1�
P

i

F

and iF =
i

R

1+
P

i

R

.
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Figure D.11 – Errors in mass balance calculations with �-values.

calculated as follows.

Fb � Fb�exact

Fb
= ↵b/a · Fa ·

2

4
↵b/a·Fa

1�Fa

1 +

⇣
↵b/a·Fa

1�Fa

⌘

3

5
�1

� 1 = (↵b/a � 1) · Fa (D.2)

This implies that this approximation (Fb = ↵b/aFa ) only introduces significant errors

in combination with strong fractionation and/or a very high isotope label (both a strong

fractionation of ±200h combined with a moderate label of 10% rare isotope, and a
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moderate fractionation of ±50h with a strong label of 40% rare isotope introduce a 2%

error in the calculated Fb ).

D.5.3 Error when using isotope labeling approximations

no label dilution k = µ (dilution as fast as growth) k = 2 ⋅ µ (rapid label dilution)

0%

3%

6%

9%

12%

0.0 0.5 1.0 1.5 2.00.0 0.5 1.0 1.5 2.00.0 0.5 1.0 1.5 2.0
# of doublings

R
ar

e 
is

ot
op

e 
fra

ct
io

na
l a

bu
nd

an
ce

Approx. FB(t)    
FB(t)
FB

#(t)

no label dilution k = µ (dilution as fast as growth) k = 2 ⋅ µ (rapid label dilution)

0.0%

2.5%

5.0%

7.5%

10.0%

0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
fraction of a doubling

R
el

at
ive

 e
rro

r Approx. FB(t)
FB(t)

 − 1

Approx. FB(t)

FB
#(t)

 − 1

FB(t)

FB
#(t)

 − 1

Figure D.12 – Errors in approximating isotope labeling with Taylor expansion.

Figure D.12 illustrates the approximations discussed in Equations 7.9 and 7.10 (upper

panel) and shows how the relative error of using these evolves over time (lower panel). The

isotopic enrichment is illustrated as a function of multiples of a population doubling, and is

based on an initial isotopic spike with rare isotope fractional abundance FL = 10% and an

initial isotopic composition of FB(t0) = 0% (i.e., assuming negligible natural abundance).

Various isotope tracer dilution rates k are considered (k = 0, k = µ, k = 2 · µ). For
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clarity, this illustration does not take recycling vs. de novo synthesis (fS = 1), turnover

(! = 0) or biosynthetic isotope fractionation (↵ = 1) into consideration, which all affect

the total isotope enrichment (upper panel), but do not have a significant effect on the

relative errors (lower panel). Table D.5 reports the relative error from using different

approximations after 1

10

of a doubling for reference.

Approximating isotope incorporation by using the first term of the Taylor expansion

Approx. FB(t) systematically overestimates the actual isotope labeling FB(t) (so when

used in reverse to infer growth rate from a given isotopic signal, it will underestimate

actual growth / project a slower apparent generation time than is actually the case) and

leads to a ⇡ 3.5% error relative to FB(t) (no label dilution) after 1

10

of a doubling. When

label dilution plays a role, the missing higher-order terms from the approximation introduce

significantly larger errors, exceeding 10% after 1

10

of a doubling for scenarios where the

label is diluted out of the system twice as fast as the population grows (k = 2 · µ).

The figure also illustrates the effect of considering dilution of the initial isotopic

spike on isotope enrichment
⇣
F#

B (t)
⌘
. The upper panel shows how there is naturally

no effect without any dilution (k = 0, ! FB(t) = F#

B (t)), and how isotope enrich-

ment is systematically overestimated when dilution of the label plays a significant role
⇣
k > 0 ! FB(t) > F#

B (t)
⌘
. Table D.5 shows the relative error introduced when k > 0

by approximating isotopic enrichment as if there was no dilution. The error reaches

⇡ 3.5% after 1

10

of a doubling if the dilution rate is comparable to the population growth

rate (k ⇡ µ).

Error k = 0 k = µ k = 2 · µ
FB(t)

F#
B (t)

� 1 0% 3.46% 7.01%
Approx.FB(t)

FB(t) � 1 3.51% 3.51% 3.51%
Approx.FB(t)

F#
B (t)

� 1 3.51% 7.09% 10.76%

Table D.5 – Relative error at 1
10 doubling from approximating isotope labeling with Taylor expansion.
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D.6 Isotope labeling calculator

D.6.1 How to choose the strength of an isotopic label?

Estimating the appropriate incubation times for capturing microbial activity in stable

isotope spiking experiments is a task that I encounter frequently in my research. For

biological relevance (as discussed in some detail in Chapter 7), it is important to consider

factors such as chemical changes, excessive sample dilution and potential toxicity that

could result from the introduction of the labeled substrate. Additionally, for optimal

sensitivity and analytical precision, it is important to choose the strength of the isotopic

label and exposure time to the label such that they can capture all relevant processes (i.e.

sufficient enrichment to quantify activity), but also that the resulting enrichments stay

within a range suitable for isotope ratio mass spectrometry. This latter consideration is

often overlooked in isotope labeling experiments where the notion that “bigger is better”

frequently prevails and excessive isotope labels are applied. This approach is misguided

in most environmental applications not only because small enrichments above natural

abundance are already more than sufficient to measure activity, but also because large

enrichments are problematic analytically (in typical ir-MS applications, in soft ionization

and mass spectrometric analyses of larger molecules on the other hand, only strong

enrichments stand a chance of quantification). Two major concerns are at the heart

of this issue:

D.6.1.1 ir-MS amplifier gain

Most standard isotope ratio mass spectrometers for light stable isotopes are not suitable

for measuring isotope ratios of materials vastly more enriched in a rare stable isotope than

natural abundance samples. This is because the gain resistors of the standard set of faraday

amplifiers are chosen such that they can provide higher amplification for some masses

(tuned to measure the ion current of a rare isotope) than for others (tuned to measure
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the ion current of abundant isotopes). This feature provides the necessary sensitivity for

measuring the ions from the naturally rare isotopes in an ion beam dominated by ions

from the abundant isotope, and allows quantification of both with ⇡ comparable signal

strengths. This is important to reduce the effects of non-linearities, and samples are usually

analyzed in quantities that provide appropriate ion beams 10x below amplifier saturation.

The problem for isotopically labeled materials is that most systems are equipped with only

one resistor per amplifier (rather than multiple resistors and an amplifier gain switch), so

the amplifier gain is fixed and signals from samples with unnaturally enriched rare isotopes

are amplified so strongly that the resulting signal is no longer comparable to the signal of

the naturally abundant isotope (which is amplified to a much lesser extent), significantly

reducing accuracy and risking saturation of the amplifiers.

D.6.1.2 Reference materials

Isotope ratio mass spectrometers can achieve high accuracy and precision in measuring

minute difference in the isotopic composition of different samples by virtue of measuring

them relative to the isotope ratios observed in known reference materials. For this purpose,

it is important to compare samples to reference standards of similar isotopic composition,

to avoid extrapolation errors from unaccounted non-linearities (or ideally, determine and

correct for non-linearities by using a range of standards that bracket the sample mate-

rial). Understandably, but most unfortunate for isotope labeling purposes, commercially

available, well-characterized reference materials tend to be similar in isotopic composition

to the average abundance encountered in natural samples. The characterization and

distribution of enriched standards is a very important contribution to the improvement of

isotope labeling techniques, and has fortunately seen some progress in recent years.
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Figure D.13 – Isotope labeling calculator. This app is intended for use in estimating incubation
times and isotopic enrichments in isotope labeling experiments. The source code is available on
GitHub. Please use the repository’s IssueTracker for any feedback, suggestions and bug reports.

D.6.2 A tool for label calculation

Figure 7.2 of Chapter 7 provides a plot that illustrates the required incubation times for a

desired isotopic enrichment in the context of different microbial generation times. While

useful to illustrate the power of hydrogen isotope labeling, this static figure is of limited

use for getting a sense of how different labeling strengths, isotopic systems and microbial

populations would respond. For this purpose, I implemented an interactive version of this
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plot (illustrated in Figure D.13) as an open-source web application (powered by R Core

Team, 2014; RStudio, 2014; frameworks), that allows visualization of incubation times,

enrichment curves and label summaries for different isotopic systems, label strengths and

generation times.
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D.7 Data tables

Medium Condition �DH2O

[h]

2FH2O

[ppm]

Compound n Peak
[%total]

�
[%]

�DFA

[h]

��D

[h]

2FFA

[ppm]

�2F
[ppm]

Minimal Batch (Stationary) -88.3 142.0 C16:1 FA 3 12.8 0.2 -38.9 1.4 149.7 0.2
Minimal Batch (Stationary) -88.3 142.0 C16:1 FA 3 18.2 0.0 -25.7 1.3 151.7 0.2
Minimal Batch (Stationary) 20.5 158.9 C16:1 FA 3 21.4 0.0 69.5 1.8 166.6 0.3
Minimal Batch (Stationary) 20.5 158.9 C16:1 FA 3 21.6 0.1 72.5 1.5 167.0 0.2
Minimal Batch (Stationary) 128.1 175.7 C16:1 FA 3 19.7 0.5 153.3 5.4 179.6 0.8
Minimal Batch (Stationary) 128.1 175.7 C16:1 FA 3 22.8 0.3 163.2 5.2 181.1 0.8
Minimal Batch (Stationary) 254.0 195.3 C16:1 FA 3 21.1 0.1 245.2 1.6 193.9 0.3
Minimal Batch (Stationary) 254.0 195.3 C16:1 FA 3 23.7 0.2 242.7 3.3 193.5 0.5
Minimal Batch (Stationary) -88.3 142.0 C16:0 FA 3 45.0 0.1 -31.8 0.7 150.8 0.1
Minimal Batch (Stationary) -88.3 142.0 C16:0 FA 3 45.2 0.0 -21.2 1.5 152.4 0.2
Minimal Batch (Stationary) 20.5 158.9 C16:0 FA 3 44.1 0.0 85.8 1.7 169.1 0.3
Minimal Batch (Stationary) 20.5 158.9 C16:0 FA 3 45.5 0.0 82.8 2.1 168.6 0.3
Minimal Batch (Stationary) 128.1 175.7 C16:0 FA 3 44.6 0.5 167.1 2.1 181.8 0.3
Minimal Batch (Stationary) 128.1 175.7 C16:0 FA 3 43.4 0.3 178.6 1.5 183.5 0.2
Minimal Batch (Stationary) 254.0 195.3 C16:0 FA 3 43.9 0.1 268.6 5.7 197.6 0.9
Minimal Batch (Stationary) 254.0 195.3 C16:0 FA 3 43.9 0.0 267.2 2.4 197.4 0.4
Minimal Batch (Stationary) -88.3 142.0 cyclo-C17:0 FA 3 22.6 0.1 -19.9 0.5 152.6 0.1
Minimal Batch (Stationary) -88.3 142.0 cyclo-C17:0 FA 3 15.1 0.0 -5.0 1.3 155.0 0.2
Minimal Batch (Stationary) 20.5 158.9 cyclo-C17:0 FA 3 12.5 0.0 94.1 1.1 170.4 0.2
Minimal Batch (Stationary) 20.5 158.9 cyclo-C17:0 FA 3 9.6 0.0 95.8 2.8 170.7 0.4
Minimal Batch (Stationary) 128.1 175.7 cyclo-C17:0 FA 3 9.4 0.1 182.1 1.7 184.1 0.3
Minimal Batch (Stationary) 128.1 175.7 cyclo-C17:0 FA 3 9.9 0.0 183.5 4.4 184.3 0.7
Minimal Batch (Stationary) 254.0 195.3 cyclo-C17:0 FA 3 12.3 0.1 271.7 7.5 198.0 1.2
Minimal Batch (Stationary) 254.0 195.3 cyclo-C17:0 FA 3 10.4 0.1 267.7 7.1 197.4 1.1
Minimal Batch (Stationary) -88.3 142.0 C18:1 FA 3 19.6 0.1 -25.7 2.5 151.7 0.4
Minimal Batch (Stationary) -88.3 142.0 C18:1 FA 3 21.5 0.0 -14.3 1.2 153.5 0.2
Minimal Batch (Stationary) 20.5 158.9 C18:1 FA 3 22.1 0.0 83.9 2.6 168.8 0.4
Minimal Batch (Stationary) 20.5 158.9 C18:1 FA 3 23.3 0.1 87.7 1.7 169.4 0.3
Minimal Batch (Stationary) 128.1 175.7 C18:1 FA 3 26.3 0.2 170.4 1.7 182.3 0.3
Minimal Batch (Stationary) 128.1 175.7 C18:1 FA 3 24.0 0.0 172.1 3.9 182.5 0.6
Minimal Batch (Stationary) 254.0 195.3 C18:1 FA 3 22.7 0.1 260.2 9.0 196.3 1.4
Minimal Batch (Stationary) 254.0 195.3 C18:1 FA 3 22.0 0.1 253.4 3.4 195.2 0.5

Table D.6 – Isotopic composition of major (>5%) E. coli lipid components in water fraction factor
experiments. Data is corrected for the effects of derivatization on isotopic composition. Reported
error is the standard deviation of the replicate analyses (n) for identical samples. Biological replicates
are listed separately.
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Medium Condition �DH2O

[h]

2FH2O

[ppm]

Compound n Peak
[%total]

�
[%]

�DFA

[h]

��D

[h]

2FFA

[ppm]

�2F
[ppm]

Minimal Batch (Stationary) -87.6 142.1 C16:1 FA 3 7.1 0.1 167.6 5.6 181.8 0.9
Minimal Batch (Stationary) -87.6 142.1 C16:1 FA 3 7.2 0.1 164.4 2.7 181.3 0.4
Minimal Batch (Stationary) 19.4 158.8 C16:1 FA 3 7.9 0.1 226.6 3.8 191.0 0.6
Minimal Batch (Stationary) 19.4 158.8 C16:1 FA 3 7.8 0.1 230.0 2.1 191.6 0.3
Minimal Batch (Stationary) 158.4 180.4 C16:1 FA 3 7.2 0.1 343.9 2.6 209.3 0.4
Minimal Batch (Stationary) 158.4 180.4 C16:1 FA 3 7.7 0.2 338.6 5.9 208.5 0.9
Minimal Batch (Stationary) 258.0 195.9 C16:1 FA 3 7.6 0.1 404.5 6.3 218.7 1.0
Minimal Batch (Stationary) 258.0 195.9 C16:1 FA 3 8.0 0.3 415.6 17.0 220.5 2.6
Minimal Batch (Stationary) -87.6 142.1 C16:0 FA 3 39.0 0.9 197.5 2.2 186.5 0.3
Minimal Batch (Stationary) -87.6 142.1 C16:0 FA 3 39.3 0.8 200.2 0.4 186.9 0.1
Minimal Batch (Stationary) 19.4 158.8 C16:0 FA 3 38.6 0.8 277.6 1.0 199.0 0.2
Minimal Batch (Stationary) 19.4 158.8 C16:0 FA 3 39.0 0.7 279.0 0.5 199.2 0.1
Minimal Batch (Stationary) 158.4 180.4 C16:0 FA 3 39.0 0.9 398.7 8.6 217.8 1.3
Minimal Batch (Stationary) 158.4 180.4 C16:0 FA 3 39.6 0.9 400.7 2.0 218.1 0.3
Minimal Batch (Stationary) 258.0 195.9 C16:0 FA 3 39.7 0.9 477.6 1.8 230.1 0.3
Minimal Batch (Stationary) 258.0 195.9 C16:0 FA 3 39.2 0.6 486.0 12.8 231.4 2.0
Minimal Batch (Stationary) -87.6 142.1 C18:1 FA 3 42.6 1.0 199.2 1.0 186.8 0.2
Minimal Batch (Stationary) -87.6 142.1 C18:1 FA 3 42.9 1.0 201.2 4.3 187.1 0.7
Minimal Batch (Stationary) 19.4 158.8 C18:1 FA 3 44.4 0.9 272.9 3.4 198.2 0.5
Minimal Batch (Stationary) 19.4 158.8 C18:1 FA 3 44.5 0.9 273.8 2.4 198.4 0.4
Minimal Batch (Stationary) 158.4 180.4 C18:1 FA 3 43.1 1.0 386.2 10.6 215.9 1.7
Minimal Batch (Stationary) 158.4 180.4 C18:1 FA 3 43.8 1.1 384.3 8.0 215.6 1.2
Minimal Batch (Stationary) 258.0 195.9 C18:1 FA 3 44.1 1.0 462.6 4.3 227.8 0.7
Minimal Batch (Stationary) 258.0 195.9 C18:1 FA 3 44.1 0.9 467.5 7.4 228.5 1.2
Minimal Batch (Stationary) -87.6 142.1 cyclo-C19:0 FA 3 9.0 0.2 207.5 1.5 188.0 0.2
Minimal Batch (Stationary) -87.6 142.1 cyclo-C19:0 FA 3 8.4 0.0 209.7 1.2 188.4 0.2
Minimal Batch (Stationary) 19.4 158.8 cyclo-C19:0 FA 3 7.1 0.1 272.7 2.9 198.2 0.5
Minimal Batch (Stationary) 19.4 158.8 cyclo-C19:0 FA 3 6.7 0.1 276.9 5.6 198.9 0.9
Minimal Batch (Stationary) 158.4 180.4 cyclo-C19:0 FA 3 8.4 0.1 394.0 4.4 217.1 0.7
Minimal Batch (Stationary) 158.4 180.4 cyclo-C19:0 FA 3 7.6 0.1 380.0 2.9 214.9 0.4
Minimal Batch (Stationary) 258.0 195.9 cyclo-C19:0 FA 3 7.3 0.2 459.3 9.4 227.3 1.5
Minimal Batch (Stationary) 258.0 195.9 cyclo-C19:0 FA 3 6.7 0.1 468.9 14.0 228.8 2.2

Table D.7 – Isotopic composition of major (>5%) P. aeruginosa lipid components in water fraction
factor experiments with Minimal medium. Data is corrected for the effects of derivatization on
isotopic composition. Reported error is the standard deviation of the replicate analyses (n) for
identical samples. Biological replicates are listed separately.
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Medium Condition �DH2O

[h]

2FH2O

[ppm]

Compound n Peak
[%total]

�
[%]

�DFA

[h]

��D

[h]

2FFA

[ppm]

�2F
[ppm]

SCFM Batch (Exponential) -80.5 143.2 C16:1 FA 1 7.5 74.8 167.4
SCFM Batch (Exponential) -80.5 143.2 C16:1 FA 1 7.9 65.8 166.0
SCFM Batch (Exponential) -80.5 143.2 C16:1 FA 1 7.8 72.3 167.0
SCFM Batch (Exponential) 1.0 155.9 C16:1 FA 1 7.6 137.3 177.1
SCFM Batch (Exponential) 1.0 155.9 C16:1 FA 1 7.7 127.9 175.7
SCFM Batch (Exponential) 80.7 168.3 C16:1 FA 1 8.3 167.1 181.8
SCFM Batch (Exponential) 80.7 168.3 C16:1 FA 1 7.4 196.7 186.4
SCFM Batch (Exponential) 80.7 168.3 C16:1 FA 1 7.3 207.4 188.0
SCFM Batch (Exponential) 162.6 181.1 C16:1 FA 1 7.2 258.7 196.0
SCFM Batch (Exponential) 162.6 181.1 C16:1 FA 1 8.4 230.4 191.6
SCFM Batch (Exponential) 162.6 181.1 C16:1 FA 1 7.2 256.6 195.7
SCFM Batch (Exponential) 243.1 193.6 C16:1 FA 1 7.5 304.5 203.2
SCFM Batch (Exponential) 243.1 193.6 C16:1 FA 1 7.7 308.0 203.7
SCFM Batch (Exponential) 243.1 193.6 C16:1 FA 1 7.2 320.9 205.7
SCFM Batch (Exponential) -80.5 143.2 C16:0 FA 1 37.2 54.8 164.3
SCFM Batch (Exponential) -80.5 143.2 C16:0 FA 1 37.1 49.8 163.5
SCFM Batch (Exponential) -80.5 143.2 C16:0 FA 1 37.0 50.7 163.6
SCFM Batch (Exponential) 1.0 155.9 C16:0 FA 1 37.4 120.3 174.5
SCFM Batch (Exponential) 1.0 155.9 C16:0 FA 1 36.9 114.5 173.6
SCFM Batch (Exponential) 80.7 168.3 C16:0 FA 1 37.5 163.2 181.1
SCFM Batch (Exponential) 80.7 168.3 C16:0 FA 1 37.6 192.8 185.8
SCFM Batch (Exponential) 80.7 168.3 C16:0 FA 1 37.7 186.8 184.8
SCFM Batch (Exponential) 162.6 181.1 C16:0 FA 1 37.7 251.0 194.8
SCFM Batch (Exponential) 162.6 181.1 C16:0 FA 1 37.7 235.1 192.3
SCFM Batch (Exponential) 162.6 181.1 C16:0 FA 1 38.0 248.6 194.5
SCFM Batch (Exponential) 243.1 193.6 C16:0 FA 1 37.3 307.2 203.6
SCFM Batch (Exponential) 243.1 193.6 C16:0 FA 1 37.0 305.0 203.2
SCFM Batch (Exponential) 243.1 193.6 C16:0 FA 1 37.9 317.5 205.2
SCFM Batch (Exponential) -80.5 143.2 C18:1 FA 1 46.8 64.6 165.8
SCFM Batch (Exponential) -80.5 143.2 C18:1 FA 1 48.5 60.4 165.1
SCFM Batch (Exponential) -80.5 143.2 C18:1 FA 1 47.3 62.6 165.5
SCFM Batch (Exponential) 1.0 155.9 C18:1 FA 1 46.9 130.0 176.0
SCFM Batch (Exponential) 1.0 155.9 C18:1 FA 1 47.7 122.4 174.8
SCFM Batch (Exponential) 80.7 168.3 C18:1 FA 1 49.6 169.9 182.2
SCFM Batch (Exponential) 80.7 168.3 C18:1 FA 1 46.6 197.9 186.6
SCFM Batch (Exponential) 80.7 168.3 C18:1 FA 1 46.5 193.0 185.8
SCFM Batch (Exponential) 162.6 181.1 C18:1 FA 1 46.2 258.7 196.0
SCFM Batch (Exponential) 162.6 181.1 C18:1 FA 1 49.5 240.4 193.2
SCFM Batch (Exponential) 162.6 181.1 C18:1 FA 1 46.6 256.0 195.6
SCFM Batch (Exponential) 243.1 193.6 C18:1 FA 1 47.5 313.4 204.5
SCFM Batch (Exponential) 243.1 193.6 C18:1 FA 1 48.0 310.0 204.0
SCFM Batch (Exponential) 243.1 193.6 C18:1 FA 1 46.0 323.1 206.0
SCFM Batch (Stationary) -80.5 143.2 C16:1 FA 1 12.0 126.1 175.4
SCFM Batch (Stationary) -80.5 143.2 C16:1 FA 1 11.7 127.1 175.5
SCFM Batch (Stationary) -80.5 143.2 C16:1 FA 1 11.9 125.4 175.3
SCFM Batch (Stationary) 1.0 155.9 C16:1 FA 1 12.2 183.8 184.4
SCFM Batch (Stationary) 1.0 155.9 C16:1 FA 1 11.6 182.6 184.2
SCFM Batch (Stationary) 80.7 168.3 C16:1 FA 1 11.9 229.2 191.4
SCFM Batch (Stationary) 80.7 168.3 C16:1 FA 1 12.2 235.1 192.4
SCFM Batch (Stationary) 162.6 181.1 C16:1 FA 1 12.5 241.9 193.4
SCFM Batch (Stationary) 162.6 181.1 C16:1 FA 1 11.8 296.3 201.9
SCFM Batch (Stationary) 162.6 181.1 C16:1 FA 1 11.6 282.7 199.8
SCFM Batch (Stationary) 243.1 193.6 C16:1 FA 1 12.4 341.2 208.9
SCFM Batch (Stationary) 243.1 193.6 C16:1 FA 1 12.5 347.5 209.9
SCFM Batch (Stationary) 243.1 193.6 C16:1 FA 1 12.0 339.7 208.6
SCFM Batch (Stationary) -80.5 143.2 C16:0 FA 1 37.7 144.4 178.2
SCFM Batch (Stationary) -80.5 143.2 C16:0 FA 1 37.1 140.4 177.6
SCFM Batch (Stationary) -80.5 143.2 C16:0 FA 1 38.5 150.6 179.2
SCFM Batch (Stationary) 1.0 155.9 C16:0 FA 1 36.2 204.8 187.6
SCFM Batch (Stationary) 1.0 155.9 C16:0 FA 1 38.1 206.5 187.9
SCFM Batch (Stationary) 80.7 168.3 C16:0 FA 1 38.6 262.3 196.6
SCFM Batch (Stationary) 80.7 168.3 C16:0 FA 1 36.1 264.0 196.9
SCFM Batch (Stationary) 162.6 181.1 C16:0 FA 1 36.3 273.3 198.3
SCFM Batch (Stationary) 162.6 181.1 C16:0 FA 1 36.6 326.7 206.6
SCFM Batch (Stationary) 162.6 181.1 C16:0 FA 1 37.2 320.4 205.6
SCFM Batch (Stationary) 243.1 193.6 C16:0 FA 1 37.1 383.9 215.5
SCFM Batch (Stationary) 243.1 193.6 C16:0 FA 1 36.5 391.9 216.8
SCFM Batch (Stationary) 243.1 193.6 C16:0 FA 1 36.5 376.1 214.3
SCFM Batch (Stationary) -80.5 143.2 C18:1 FA 1 48.4 155.1 179.9
SCFM Batch (Stationary) -80.5 143.2 C18:1 FA 1 49.3 151.3 179.3
SCFM Batch (Stationary) -80.5 143.2 C18:1 FA 1 47.5 165.2 181.5
SCFM Batch (Stationary) 1.0 155.9 C18:1 FA 1 49.6 210.2 188.5
SCFM Batch (Stationary) 1.0 155.9 C18:1 FA 1 48.3 214.9 189.2
SCFM Batch (Stationary) 80.7 168.3 C18:1 FA 1 47.6 266.9 197.3
SCFM Batch (Stationary) 80.7 168.3 C18:1 FA 1 49.8 267.6 197.4
SCFM Batch (Stationary) 162.6 181.1 C18:1 FA 1 49.3 273.8 198.4
SCFM Batch (Stationary) 162.6 181.1 C18:1 FA 1 49.6 328.4 206.9
SCFM Batch (Stationary) 162.6 181.1 C18:1 FA 1 49.2 323.8 206.2
SCFM Batch (Stationary) 243.1 193.6 C18:1 FA 1 48.5 380.9 215.1
SCFM Batch (Stationary) 243.1 193.6 C18:1 FA 1 49.1 389.0 216.3
SCFM Batch (Stationary) 243.1 193.6 C18:1 FA 1 49.6 373.9 214.0
SCFM Continuous (1̃9hrs) -75.4 144.0 C16:1 FA 1 5.4 -62.3 146.0
SCFM Continuous (1̃9hrs) -75.4 144.0 C16:1 FA 1 5.6 -55.0 147.2
SCFM Continuous (1̃9hrs) 90.0 169.8 C16:1 FA 1 6.6 77.7 167.8
SCFM Continuous (1̃9hrs) 90.0 169.8 C16:1 FA 1 6.0 64.9 165.8
SCFM Continuous (1̃9hrs) 90.0 169.8 C16:1 FA 1 6.5 72.2 167.0
SCFM Continuous (1̃9hrs) 261.9 196.5 C16:1 FA 1 5.6 183.9 184.4
SCFM Continuous (1̃9hrs) 261.9 196.5 C16:1 FA 1 4.3 197.4 186.5
SCFM Continuous (1̃9hrs) -75.4 144.0 C16:0 FA 1 44.0 -56.3 147.0
SCFM Continuous (1̃9hrs) -75.4 144.0 C16:0 FA 1 41.5 -37.7 149.9
SCFM Continuous (1̃9hrs) 90.0 169.8 C16:0 FA 1 43.2 124.0 175.0
SCFM Continuous (1̃9hrs) 90.0 169.8 C16:0 FA 1 46.7 42.4 162.3
SCFM Continuous (1̃9hrs) 90.0 169.8 C16:0 FA 1 44.5 85.4 169.0
SCFM Continuous (1̃9hrs) 261.9 196.5 C16:0 FA 1 50.8 265.3 197.0
SCFM Continuous (1̃9hrs) 261.9 196.5 C16:0 FA 1 50.8 217.6 189.6
SCFM Continuous (1̃9hrs) -75.4 144.0 C18:1 FA 1 33.2 -42.1 149.2
SCFM Continuous (1̃9hrs) -75.4 144.0 C18:1 FA 1 35.8 -39.2 149.6
SCFM Continuous (1̃9hrs) 90.0 169.8 C18:1 FA 1 39.9 112.1 173.2
SCFM Continuous (1̃9hrs) 90.0 169.8 C18:1 FA 1 34.8 107.1 172.4
SCFM Continuous (1̃9hrs) 90.0 169.8 C18:1 FA 1 37.3 110.2 172.9
SCFM Continuous (1̃9hrs) 261.9 196.5 C18:1 FA 1 31.5 248.7 194.5
SCFM Continuous (1̃9hrs) 261.9 196.5 C18:1 FA 1 24.2 271.5 198.0
SCFM Continuous (1̃9hrs) -75.4 144.0 cyclo-C19:0 FA 1 10.2 -14.5 153.5
SCFM Continuous (1̃9hrs) -75.4 144.0 cyclo-C19:0 FA 1 12.9 -11.7 153.9
SCFM Continuous (1̃9hrs) 90.0 169.8 cyclo-C19:0 FA 1 6.6 126.7 175.5
SCFM Continuous (1̃9hrs) 90.0 169.8 cyclo-C19:0 FA 1 6.1 112.1 173.2
SCFM Continuous (1̃9hrs) 90.0 169.8 cyclo-C19:0 FA 1 6.3 121.7 174.7
SCFM Continuous (1̃9hrs) 261.9 196.5 cyclo-C19:0 FA 1 9.5 264.5 196.9
SCFM Continuous (1̃9hrs) 261.9 196.5 cyclo-C19:0 FA 1 11.5 278.5 199.1
SCFM Continuous (2̃hrs) -75.4 144.0 C16:1 FA 1 7.2 -27.7 151.4
SCFM Continuous (2̃hrs) -75.4 144.0 C16:1 FA 1 6.4 -27.5 151.5
SCFM Continuous (2̃hrs) -75.4 144.0 C16:1 FA 1 6.7 -19.9 152.6
SCFM Continuous (2̃hrs) 90.0 169.8 C16:1 FA 1 7.5 82.8 168.6
SCFM Continuous (2̃hrs) 90.0 169.8 C16:1 FA 1 6.4 70.7 166.7
SCFM Continuous (2̃hrs) 261.9 196.5 C16:1 FA 1 7.1 198.0 186.6
SCFM Continuous (2̃hrs) 261.9 196.5 C16:1 FA 1 6.7 184.5 184.5
SCFM Continuous (2̃hrs) -75.4 144.0 C16:0 FA 1 40.8 -44.0 148.9
SCFM Continuous (2̃hrs) -75.4 144.0 C16:0 FA 1 42.3 -63.5 145.8
SCFM Continuous (2̃hrs) -75.4 144.0 C16:0 FA 1 40.7 -36.9 150.0
SCFM Continuous (2̃hrs) 90.0 169.8 C16:0 FA 1 40.5 51.4 163.7
SCFM Continuous (2̃hrs) 90.0 169.8 C16:0 FA 1 42.6 18.0 158.5
SCFM Continuous (2̃hrs) 261.9 196.5 C16:0 FA 1 38.0 193.3 185.8
SCFM Continuous (2̃hrs) 261.9 196.5 C16:0 FA 1 41.5 125.6 175.3
SCFM Continuous (2̃hrs) -75.4 144.0 C18:1 FA 1 42.3 -9.5 154.3
SCFM Continuous (2̃hrs) -75.4 144.0 C18:1 FA 1 40.3 -15.8 153.3
SCFM Continuous (2̃hrs) -75.4 144.0 C18:1 FA 1 41.5 -10.5 154.1
SCFM Continuous (2̃hrs) 90.0 169.8 C18:1 FA 1 42.6 97.1 170.9
SCFM Continuous (2̃hrs) 90.0 169.8 C18:1 FA 1 41.4 87.1 169.3
SCFM Continuous (2̃hrs) 261.9 196.5 C18:1 FA 1 47.2 205.1 187.7
SCFM Continuous (2̃hrs) 261.9 196.5 C18:1 FA 1 41.5 210.3 188.5

Table D.8 – Isotopic composition of major (>5%) P. aeruginosa lipid components in water fraction
factor experiments with SCFM medium. Data is corrected for the effects of derivatization on isotopic
composition. Reported error is the standard deviation of the replicate analyses (n) for identical
samples. Biological replicates are listed separately.
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Medium Condition �DH2O

[h]

2FH2O

[ppm]

Compound n Peak
[%total]

�
[%]

�DFA

[h]

��D

[h]

2FFA

[ppm]

�2F
[ppm]

Minimal Batch (Stationary) -86.4 142.3 a-C15:0 FA 3 45.7 0.4 -151.2 3.2 132.2 0.5
Minimal Batch (Stationary) -86.4 142.3 a-C15:0 FA 3 43.1 0.5 -137.4 1.7 134.3 0.3
Minimal Batch (Stationary) 23.7 159.4 a-C15:0 FA 3 45.8 0.3 -96.3 9.8 140.7 1.5
Minimal Batch (Stationary) 23.7 159.4 a-C15:0 FA 3 43.9 0.4 -80.2 10.2 143.3 1.6
Minimal Batch (Stationary) 128.9 175.8 a-C15:0 FA 3 46.8 0.4 -54.3 2.7 147.3 0.4
Minimal Batch (Stationary) 128.9 175.8 a-C15:0 FA 3 48.9 0.2 -81.7 1.0 143.0 0.2
Minimal Batch (Stationary) 249.4 194.6 a-C15:0 FA 3 47.6 0.5 8.7 2.2 157.1 0.3
Minimal Batch (Stationary) 249.4 194.6 a-C15:0 FA 3 47.6 0.5 4.1 2.7 156.4 0.4
Minimal Batch (Stationary) -86.4 142.3 a-C17:0 FA 3 20.0 0.4 -116.9 4.4 137.5 0.7
Minimal Batch (Stationary) -86.4 142.3 a-C17:0 FA 3 16.1 0.6 -112.3 3.6 138.3 0.6
Minimal Batch (Stationary) 23.7 159.4 a-C17:0 FA 3 17.9 0.3 -51.2 28.2 147.8 4.4
Minimal Batch (Stationary) 23.7 159.4 a-C17:0 FA 3 16.7 0.4 -52.7 5.3 147.5 0.8
Minimal Batch (Stationary) 128.9 175.8 a-C17:0 FA 3 22.0 0.5 -19.0 5.0 152.8 0.8
Minimal Batch (Stationary) 128.9 175.8 a-C17:0 FA 3 27.3 0.3 -49.8 3.1 148.0 0.5
Minimal Batch (Stationary) 249.4 194.6 a-C17:0 FA 3 18.9 0.4 44.4 1.8 162.7 0.3
Minimal Batch (Stationary) 249.4 194.6 a-C17:0 FA 3 22.0 0.2 40.3 3.1 162.0 0.5
Minimal Batch (Stationary) -86.4 142.3 C18:0 FA 3 6.8 0.1 -36.1 6.8 150.1 1.1
Minimal Batch (Stationary) -86.4 142.3 C18:0 FA 3 11.6 0.1 -17.7 3.4 153.0 0.5
Minimal Batch (Stationary) 23.7 159.4 C18:0 FA 3 7.2 0.0 32.8 3.9 160.8 0.6
Minimal Batch (Stationary) 23.7 159.4 C18:0 FA 3 9.4 0.0 45.9 4.2 162.9 0.7
Minimal Batch (Stationary) 128.9 175.8 C18:0 FA 3 5.8 0.0 63.8 3.7 165.7 0.6
Minimal Batch (Stationary) 128.9 175.8 C18:0 FA 3 5.8 0.1 -11.4 3.5 154.0 0.5
Minimal Batch (Stationary) 249.4 194.6 C18:0 FA 3 7.3 0.1 172.9 1.8 182.7 0.3
Minimal Batch (Stationary) 249.4 194.6 C18:0 FA 3 6.3 0.1 113.5 4.2 173.4 0.7
Minimal Batch (Stationary) -86.4 142.3 i/a-C19:0 FA 3 10.7 0.1 -78.6 5.7 143.5 0.9
Minimal Batch (Stationary) -86.4 142.3 i/a-C19:0 FA 3 9.0 0.2 -61.2 7.0 146.2 1.1
Minimal Batch (Stationary) 23.7 159.4 i/a-C19:0 FA 3 10.2 0.1 -18.9 5.4 152.8 0.8
Minimal Batch (Stationary) 23.7 159.4 i/a-C19:0 FA 3 10.4 0.0 -8.6 2.1 154.4 0.3
Minimal Batch (Stationary) 128.9 175.8 i/a-C19:0 FA 3 12.1 0.1 25.5 3.3 159.7 0.5
Minimal Batch (Stationary) 128.9 175.8 i/a-C19:0 FA 3 9.3 0.2 -14.0 4.5 153.6 0.7
Minimal Batch (Stationary) 249.4 194.6 i/a-C19:0 FA 3 9.7 0.1 90.5 2.6 169.8 0.4
Minimal Batch (Stationary) 249.4 194.6 i/a-C19:0 FA 3 10.5 0.2 82.3 0.8 168.5 0.1
Minimal Batch (Stationary) -86.4 142.3 C20:0 FA 3 10.3 0.0 -23.4 3.2 152.1 0.5
Minimal Batch (Stationary) -86.4 142.3 C20:0 FA 3 14.8 0.2 -2.7 3.0 155.3 0.5
Minimal Batch (Stationary) 23.7 159.4 C20:0 FA 3 13.2 0.6 38.1 2.9 161.7 0.5
Minimal Batch (Stationary) 23.7 159.4 C20:0 FA 3 14.0 0.2 63.5 2.8 165.6 0.4
Minimal Batch (Stationary) 128.9 175.8 C20:0 FA 3 8.8 0.1 95.0 2.6 170.5 0.4
Minimal Batch (Stationary) 128.9 175.8 C20:0 FA 3 5.8 0.1 23.4 2.9 159.4 0.5
Minimal Batch (Stationary) 249.4 194.6 C20:0 FA 3 10.6 0.2 192.1 3.1 185.7 0.5
Minimal Batch (Stationary) 249.4 194.6 C20:0 FA 3 7.8 0.2 147.7 6.0 178.7 0.9

Table D.9 – Isotopic composition of major (>5%) S. aureus lipid components in water fraction
factor experiments with Minimal medium. Data is corrected for the effects of derivatization on
isotopic composition. Reported error is the standard deviation of the replicate analyses (n) for
identical samples. Biological replicates are listed separately. The component i/a-C19:FA is the
combined integration of i-C19:FA and a-C19:FA, which could not be fully resolved with the employed
chromatographic program.
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Medium Condition �DH2O

[h]

2FH2O

[ppm]

Compound n Peak
[%total]

�
[%]

�DFA

[h]

��D

[h]

2FFA

[ppm]

�2F
[ppm]

SCFM Batch (Stationary) -80.5 143.2 a-C15:0 FA 1 48.7 -97.5 140.6
SCFM Batch (Stationary) -80.5 143.2 a-C15:0 FA 2 54.1 2.5 -53.4 3.4 147.4 0.5
SCFM Batch (Stationary) -80.5 143.2 a-C15:0 FA 1 51.7 -80.9 143.1
SCFM Batch (Stationary) 1.0 155.9 a-C15:0 FA 1 50.6 -56.7 146.9
SCFM Batch (Stationary) 1.0 155.9 a-C15:0 FA 1 50.4 -49.1 148.1
SCFM Batch (Stationary) 1.0 155.9 a-C15:0 FA 2 51.4 1.3 -30.9 2.6 150.9 0.4
SCFM Batch (Stationary) 80.7 168.3 a-C15:0 FA 1 51.6 -19.7 152.7
SCFM Batch (Stationary) 80.7 168.3 a-C15:0 FA 1 51.5 -11.9 153.9
SCFM Batch (Stationary) 162.6 181.1 a-C15:0 FA 1 53.5 54.0 164.1
SCFM Batch (Stationary) 162.6 181.1 a-C15:0 FA 2 50.4 2.2 3.9 5.5 156.3 0.9
SCFM Batch (Stationary) 162.6 181.1 a-C15:0 FA 1 54.3 53.0 164.0
SCFM Batch (Stationary) 243.1 193.6 a-C15:0 FA 2 52.2 1.6 67.3 5.9 166.2 0.9
SCFM Batch (Stationary) 243.1 193.6 a-C15:0 FA 1 49.5 31.6 160.7
SCFM Batch (Stationary) 243.1 193.6 a-C15:0 FA 1 48.6 1.3 155.9
SCFM Batch (Stationary) -80.5 143.2 a-C17:0 FA 1 26.5 -85.9 142.4
SCFM Batch (Stationary) -80.5 143.2 a-C17:0 FA 2 30.8 0.4 -40.4 9.9 149.5 1.5
SCFM Batch (Stationary) -80.5 143.2 a-C17:0 FA 1 30.4 -65.6 145.5
SCFM Batch (Stationary) 1.0 155.9 a-C17:0 FA 1 28.6 -45.9 148.6
SCFM Batch (Stationary) 1.0 155.9 a-C17:0 FA 1 29.9 -32.5 150.7
SCFM Batch (Stationary) 1.0 155.9 a-C17:0 FA 2 30.6 0.1 -15.9 5.7 153.3 0.9
SCFM Batch (Stationary) 80.7 168.3 a-C17:0 FA 1 29.5 -7.6 154.6
SCFM Batch (Stationary) 80.7 168.3 a-C17:0 FA 1 30.3 0.5 155.8
SCFM Batch (Stationary) 162.6 181.1 a-C17:0 FA 1 32.0 60.9 165.2
SCFM Batch (Stationary) 162.6 181.1 a-C17:0 FA 2 27.7 0.1 16.2 16.6 158.3 2.6
SCFM Batch (Stationary) 162.6 181.1 a-C17:0 FA 1 31.5 59.0 164.9
SCFM Batch (Stationary) 243.1 193.6 a-C17:0 FA 2 29.9 0.3 77.8 15.6 167.9 2.4
SCFM Batch (Stationary) 243.1 193.6 a-C17:0 FA 1 27.7 46.1 162.9
SCFM Batch (Stationary) 243.1 193.6 a-C17:0 FA 1 25.9 17.4 158.4
SCFM Batch (Stationary) -80.5 143.2 i/a-C19:0 FA 1 11.4 -93.5 141.2
SCFM Batch (Stationary) -80.5 143.2 i/a-C19:0 FA 2 7.1 0.5 -54.6 19.9 147.2 3.1
SCFM Batch (Stationary) -80.5 143.2 i/a-C19:0 FA 1 8.1 -72.3 144.5
SCFM Batch (Stationary) 1.0 155.9 i/a-C19:0 FA 1 8.7 -54.3 147.3
SCFM Batch (Stationary) 1.0 155.9 i/a-C19:0 FA 1 9.3 -39.2 149.6
SCFM Batch (Stationary) 1.0 155.9 i/a-C19:0 FA 2 8.0 0.4 -20.2 14.0 152.6 2.2
SCFM Batch (Stationary) 80.7 168.3 i/a-C19:0 FA 1 8.5 -15.1 153.4
SCFM Batch (Stationary) 80.7 168.3 i/a-C19:0 FA 1 9.2 -4.5 155.0
SCFM Batch (Stationary) 162.6 181.1 i/a-C19:0 FA 1 7.0 40.7 162.1
SCFM Batch (Stationary) 162.6 181.1 i/a-C19:0 FA 2 8.6 0.6 1.3 10.6 155.9 1.7
SCFM Batch (Stationary) 162.6 181.1 i/a-C19:0 FA 1 6.7 30.5 160.5
SCFM Batch (Stationary) 243.1 193.6 i/a-C19:0 FA 2 7.5 0.4 54.8 22.5 164.3 3.5
SCFM Batch (Stationary) 243.1 193.6 i/a-C19:0 FA 1 8.7 33.5 161.0
SCFM Batch (Stationary) 243.1 193.6 i/a-C19:0 FA 1 9.6 10.2 157.3

Table D.10 – Isotopic composition of major (>5%) S. aureus lipid components in water fraction
factor experiments with SCFM medium. Data is corrected for the effects of derivatization on
isotopic composition. Reported error is the standard deviation of the replicate analyses (n) for
identical samples. Biological replicates are listed separately. The component i/a-C19:FA is the
combined integration of i-C19:FA and a-C19:FA, which could not be fully resolved with the employed
chromatographic program.
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Medium Condition �DH2O

[h]

2FH2O

[ppm]

Compound n Peak
[%total]

�
[%]

�DFA

[h]

��D

[h]

2FFA

[ppm]

�2F
[ppm]

SCFM Batch (Stationary) -80.5 143.2 C14:0 FA 1 4.8 -12.4 153.8
SCFM Batch (Stationary) -80.5 143.2 C14:0 FA 1 5.1 -20.9 152.5
SCFM Batch (Stationary) -80.5 143.2 C14:0 FA 1 4.9 -17.8 153.0
SCFM Batch (Stationary) 1.0 155.9 C14:0 FA 1 4.9 38.4 161.7
SCFM Batch (Stationary) 1.0 155.9 C14:0 FA 1 4.9 35.4 161.3
SCFM Batch (Stationary) 1.0 155.9 C14:0 FA 1 4.9 33.5 161.0
SCFM Batch (Stationary) 80.7 168.3 C14:0 FA 1 5.2 91.0 169.9
SCFM Batch (Stationary) 162.6 181.1 C14:0 FA 1 5.1 143.2 178.0
SCFM Batch (Stationary) 162.6 181.1 C14:0 FA 1 4.8 143.3 178.1
SCFM Batch (Stationary) 162.6 181.1 C14:0 FA 1 4.8 138.7 177.3
SCFM Batch (Stationary) 243.1 193.6 C14:0 FA 1 4.8 190.1 185.3
SCFM Batch (Stationary) 243.1 193.6 C14:0 FA 1 5.0 191.2 185.5
SCFM Batch (Stationary) 243.1 193.6 C14:0 FA 1 4.9 193.6 185.9
SCFM Batch (Stationary) -80.5 143.2 i-C15:0 FA 1 59.0 -35.5 150.2
SCFM Batch (Stationary) -80.5 143.2 i-C15:0 FA 1 60.7 -38.8 149.7
SCFM Batch (Stationary) -80.5 143.2 i-C15:0 FA 1 59.9 -38.6 149.7
SCFM Batch (Stationary) 1.0 155.9 i-C15:0 FA 1 58.8 2.7 156.2
SCFM Batch (Stationary) 1.0 155.9 i-C15:0 FA 1 59.9 1.8 156.0
SCFM Batch (Stationary) 1.0 155.9 i-C15:0 FA 1 59.3 -1.4 155.5
SCFM Batch (Stationary) 80.7 168.3 i-C15:0 FA 1 60.4 51.0 163.7
SCFM Batch (Stationary) 162.6 181.1 i-C15:0 FA 1 59.1 85.2 169.0
SCFM Batch (Stationary) 162.6 181.1 i-C15:0 FA 1 59.5 84.7 168.9
SCFM Batch (Stationary) 162.6 181.1 i-C15:0 FA 1 59.2 83.7 168.8
SCFM Batch (Stationary) 243.1 193.6 i-C15:0 FA 1 59.7 127.2 175.5
SCFM Batch (Stationary) 243.1 193.6 i-C15:0 FA 1 60.6 129.3 175.9
SCFM Batch (Stationary) 243.1 193.6 i-C15:0 FA 1 59.7 134.7 176.7
SCFM Batch (Stationary) -80.5 143.2 a-C15:0 FA 1 17.0 -52.9 147.5
SCFM Batch (Stationary) -80.5 143.2 a-C15:0 FA 1 16.0 -52.5 147.6
SCFM Batch (Stationary) -80.5 143.2 a-C15:0 FA 1 16.6 -49.7 148.0
SCFM Batch (Stationary) 1.0 155.9 a-C15:0 FA 1 17.8 -4.9 155.0
SCFM Batch (Stationary) 1.0 155.9 a-C15:0 FA 1 17.0 -6.4 154.7
SCFM Batch (Stationary) 1.0 155.9 a-C15:0 FA 1 17.7 -8.5 154.4
SCFM Batch (Stationary) 80.7 168.3 a-C15:0 FA 1 16.4 36.1 161.4
SCFM Batch (Stationary) 162.6 181.1 a-C15:0 FA 1 17.4 80.5 168.3
SCFM Batch (Stationary) 162.6 181.1 a-C15:0 FA 1 17.4 79.5 168.1
SCFM Batch (Stationary) 162.6 181.1 a-C15:0 FA 1 17.7 76.0 167.6
SCFM Batch (Stationary) 243.1 193.6 a-C15:0 FA 1 17.6 118.9 174.3
SCFM Batch (Stationary) 243.1 193.6 a-C15:0 FA 1 16.6 117.2 174.0
SCFM Batch (Stationary) 243.1 193.6 a-C15:0 FA 1 17.4 124.9 175.2
SCFM Batch (Stationary) -80.5 143.2 C16:0 FA 1 11.4 2.6 156.1
SCFM Batch (Stationary) -80.5 143.2 C16:0 FA 1 11.3 -0.7 155.6
SCFM Batch (Stationary) -80.5 143.2 C16:0 FA 1 11.0 -0.6 155.6
SCFM Batch (Stationary) 1.0 155.9 C16:0 FA 1 11.2 59.5 165.0
SCFM Batch (Stationary) 1.0 155.9 C16:0 FA 1 10.9 65.5 165.9
SCFM Batch (Stationary) 1.0 155.9 C16:0 FA 1 11.0 58.9 164.9
SCFM Batch (Stationary) 80.7 168.3 C16:0 FA 1 11.0 129.7 175.9
SCFM Batch (Stationary) 162.6 181.1 C16:0 FA 1 11.4 178.1 183.5
SCFM Batch (Stationary) 162.6 181.1 C16:0 FA 1 11.0 172.7 182.6
SCFM Batch (Stationary) 162.6 181.1 C16:0 FA 1 11.4 176.0 183.1
SCFM Batch (Stationary) 243.1 193.6 C16:0 FA 1 11.2 233.6 192.1
SCFM Batch (Stationary) 243.1 193.6 C16:0 FA 1 11.2 241.5 193.3
SCFM Batch (Stationary) 243.1 193.6 C16:0 FA 1 11.3 246.1 194.1

Table D.11 – Isotopic composition of major (>5%) S. maltophilia lipid components in water fraction
factor experiments with SCFM medium. Data is corrected for the effects of derivatization on isotopic
composition. Reported error is the standard deviation of the replicate analyses (n) for identical
samples. Biological replicates are listed separately.
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Medium Generation time Time after spike Compound n Peak
[%total]

�2HFA

[h]

��

[h]

2FFA

[ppm]

�2F
[ppm]

Minimal 2.16 hours 0 seconds C16:1 FA 3 10.9 18.8 6.5 158.7 1.0
Minimal 2.16 hours 5 minutes C16:1 FA 3 10.9 109.6 5.1 172.8 0.8
Minimal 2.16 hours 10 minutes C16:1 FA 3 10.9 212.1 1.0 188.8 0.2
Minimal 2.16 hours 15 minutes C16:1 FA 3 10.8 304.9 1.4 203.2 0.2
Minimal 2.16 hours 20 minutes C16:1 FA 3 11.3 403.3 3.0 218.5 0.5
Minimal 2.16 hours 25 minutes C16:1 FA 3 11.0 499.4 5.1 233.5 0.8
Minimal 2.16 hours 0 seconds C16:0 FA 3 40.6 45.0 3.5 162.7 0.5
Minimal 2.16 hours 5 minutes C16:0 FA 3 39.9 264.0 9.9 196.8 1.5
Minimal 2.16 hours 10 minutes C16:0 FA 3 40.0 490.8 7.4 232.2 1.2
Minimal 2.16 hours 15 minutes C16:0 FA 3 39.3 691.0 10.0 263.3 1.6
Minimal 2.16 hours 20 minutes C16:0 FA 3 39.7 901.1 6.7 296.0 1.0
Minimal 2.16 hours 25 minutes C16:0 FA 3 39.3 1064.4 5.7 321.4 0.9
Minimal 2.16 hours 0 seconds C18:1 FA 3 45.3 44.5 4.4 162.7 0.7
Minimal 2.16 hours 5 minutes C18:1 FA 3 45.0 223.7 3.1 190.6 0.5
Minimal 2.16 hours 10 minutes C18:1 FA 3 45.8 402.7 2.9 218.5 0.5
Minimal 2.16 hours 15 minutes C18:1 FA 3 45.8 572.3 3.9 244.8 0.6
Minimal 2.16 hours 20 minutes C18:1 FA 3 45.7 731.5 3.7 269.6 0.6
Minimal 2.16 hours 25 minutes C18:1 FA 3 45.9 878.6 4.4 292.5 0.7
Minimal 16.22 hours 0 seconds C16:1 FA 6 8.5 61.5 11.9 165.3 1.8
Minimal 16.22 hours 30 minutes C16:1 FA 6 8.1 222.5 11.4 190.4 1.8
Minimal 16.22 hours 1 hours C16:1 FA 6 8.3 377.0 23.5 214.4 3.7
Minimal 16.22 hours 1.5 hours C16:1 FA 5 8.0 502.3 37.6 233.9 5.9
Minimal 16.22 hours 2 hours C16:1 FA 5 8.1 661.9 41.5 258.8 6.5
Minimal 16.22 hours 2.5 hours C16:1 FA 6 8.4 824.0 44.3 284.0 6.9
Minimal 16.22 hours 0 seconds C16:0 FA 6 42.4 97.8 4.0 171.0 0.6
Minimal 16.22 hours 30 minutes C16:0 FA 6 41.4 389.5 10.3 216.4 1.6
Minimal 16.22 hours 1 hours C16:0 FA 6 41.9 657.7 16.6 258.1 2.6
Minimal 16.22 hours 1.5 hours C16:0 FA 5 43.3 890.6 24.1 294.4 3.8
Minimal 16.22 hours 2 hours C16:0 FA 5 41.8 1137.7 25.8 332.9 4.0
Minimal 16.22 hours 2.5 hours C16:0 FA 6 42.1 1355.2 36.7 366.7 5.7
Minimal 16.22 hours 0 seconds C18:1 FA 6 37.6 98.2 3.7 171.0 0.6
Minimal 16.22 hours 30 minutes C18:1 FA 6 37.9 325.7 7.0 206.4 1.1
Minimal 16.22 hours 1 hours C18:1 FA 6 38.3 538.5 10.6 239.6 1.6
Minimal 16.22 hours 1.5 hours C18:1 FA 5 39.3 724.9 17.5 268.6 2.7
Minimal 16.22 hours 2 hours C18:1 FA 5 38.6 927.8 17.7 300.2 2.8
Minimal 16.22 hours 2.5 hours C18:1 FA 6 38.0 1104.9 23.2 327.8 3.6
Minimal 16.22 hours 0 seconds cyclo-C19:0 FA 3 8.4 115.1 3.6 173.7 0.6
Minimal 16.22 hours 30 minutes cyclo-C19:0 FA 6 8.6 120.3 7.0 174.5 1.1
Minimal 16.22 hours 1 hours cyclo-C19:0 FA 6 8.6 138.2 5.4 177.3 0.8
Minimal 16.22 hours 1.5 hours cyclo-C19:0 FA 2 9.4 165.1 0.1 181.4 0.0
Minimal 16.22 hours 2 hours cyclo-C19:0 FA 5 8.6 200.0 8.5 186.9 1.3
Minimal 16.22 hours 2.5 hours cyclo-C19:0 FA 6 8.5 236.4 12.3 192.5 1.9
SCFM 5.35 days 0 seconds C16:0 FA 2 48.7 -25.3 8.2 151.8 1.3
SCFM 5.35 days 2 hours C16:0 FA 3 49.6 168.0 13.7 181.9 2.1
SCFM 5.35 days 4 hours C16:0 FA 2 49.5 393.8 31.8 217.0 4.9
SCFM 5.35 days 6 hours C16:0 FA 3 48.4 611.9 15.8 251.0 2.5
SCFM 5.35 days 8 hours C16:0 FA 2 53.7 761.2 15.1 274.3 2.3
SCFM 5.35 days 10 hours C16:0 FA 3 49.8 992.3 24.3 310.2 3.8
SCFM 5.35 days 0 seconds C18:1 FA 2 14.5 -20.2 9.4 152.6 1.5
SCFM 5.35 days 2 hours C18:1 FA 3 14.2 285.5 16.4 200.2 2.5
SCFM 5.35 days 4 hours C18:1 FA 2 15.0 612.5 105.2 251.1 16.4
SCFM 5.35 days 6 hours C18:1 FA 3 13.9 954.0 42.9 304.3 6.7
SCFM 5.35 days 8 hours C18:1 FA 2 15.3 1194.5 59.7 341.7 9.3
SCFM 5.35 days 10 hours C18:1 FA 3 14.4 1464.4 75.3 383.7 11.7
SCFM 5.35 days 0 seconds cyclo-C19:0 FA 2 27.5 -11.1 14.6 154.0 2.3
SCFM 5.35 days 2 hours cyclo-C19:0 FA 3 26.6 -3.2 11.8 155.2 1.8
SCFM 5.35 days 4 hours cyclo-C19:0 FA 2 26.3 30.0 10.8 160.4 1.7
SCFM 5.35 days 6 hours cyclo-C19:0 FA 3 28.4 71.5 9.3 166.9 1.5
SCFM 5.35 days 8 hours cyclo-C19:0 FA 2 26.9 106.9 8.9 172.4 1.4
SCFM 5.35 days 10 hours cyclo-C19:0 FA 3 26.3 180.3 12.2 183.8 1.9

Table D.12 – Isotopic composition of major (>5%) P. aeruginosa lipid components in isotope
labeling experiments. Data is corrected for the effects of derivatization on isotopic composition.
Reported error is the standard deviation of the replicate analyses (n) for identical samples.
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Medium Generation time Time after spike Compound n Peak
[%total]

�2HFA

[h]

��

[h]

2FFA

[ppm]

�2F
[ppm]

Minimal 6.38 hours 0 seconds a-C15:0 FA 2 64.5 -149.3 6.4 132.5 1.0
Minimal 6.38 hours 10 minutes a-C15:0 FA 3 65.3 -19.0 9.5 152.8 1.5
Minimal 6.38 hours 20 minutes a-C15:0 FA 2 61.7 127.2 8.9 175.6 1.4
Minimal 6.38 hours 30 minutes a-C15:0 FA 3 57.7 230.9 12.3 191.7 1.9
Minimal 6.38 hours 40 minutes a-C15:0 FA 2 49.9 344.6 4.4 209.4 0.7
Minimal 6.38 hours 50 minutes a-C15:0 FA 2 57.5 512.0 20.7 235.5 3.2
Minimal 6.38 hours 1 hours a-C15:0 FA 2 63.9 622.5 35.7 252.7 5.6
Minimal 6.38 hours 0 seconds a-C17:0 FA 1 35.5 -143.6 133.4
Minimal 6.38 hours 10 minutes a-C17:0 FA 2 34.7 -25.1 1.6 151.8 0.3
Minimal 6.38 hours 20 minutes a-C17:0 FA 2 38.3 97.1 5.2 170.9 0.8
Minimal 6.38 hours 30 minutes a-C17:0 FA 1 42.3 219.2 189.9
Minimal 6.38 hours 40 minutes a-C17:0 FA 2 50.1 317.7 7.0 205.2 1.1
Minimal 6.38 hours 50 minutes a-C17:0 FA 2 42.5 437.2 7.3 223.8 1.1
Minimal 6.38 hours 1 hours a-C17:0 FA 1 36.1 562.4 243.3
Minimal 1.24 days 0 seconds a-C15:0 FA 3 63.0 -95.3 5.0 140.9 0.8
Minimal 1.24 days 40 minutes a-C15:0 FA 2 63.6 29.6 1.8 160.3 0.3
Minimal 1.24 days 1.37 hours a-C15:0 FA 2 59.1 195.9 1.3 186.2 0.2
Minimal 1.24 days 2 hours a-C15:0 FA 2 53.9 332.7 5.1 207.5 0.8
Minimal 1.24 days 2.67 hours a-C15:0 FA 2 56.8 503.0 7.7 234.1 1.2
Minimal 1.24 days 3.33 hours a-C15:0 FA 2 57.2 628.5 14.0 253.6 2.2
Minimal 1.24 days 0 seconds a-C17:0 FA 3 37.0 -60.1 0.9 146.4 0.1
Minimal 1.24 days 40 minutes a-C17:0 FA 2 36.4 19.1 4.3 158.7 0.7
Minimal 1.24 days 1.37 hours a-C17:0 FA 2 40.9 130.4 4.5 176.0 0.7
Minimal 1.24 days 2 hours a-C17:0 FA 2 46.1 219.7 2.2 189.9 0.3
Minimal 1.24 days 2.67 hours a-C17:0 FA 2 43.2 330.9 5.4 207.3 0.8
Minimal 1.24 days 3.33 hours a-C17:0 FA 2 42.8 415.0 4.1 220.4 0.6
SCFM 4.91 days 0 seconds a-C15:0 FA 3 53.2 -70.7 18.4 144.7 2.9
SCFM 4.91 days 2 hours a-C15:0 FA 3 53.9 -5.1 21.4 155.0 3.3
SCFM 4.91 days 4 hours a-C15:0 FA 3 53.6 69.6 26.2 166.6 4.1
SCFM 4.91 days 6 hours a-C15:0 FA 3 53.6 159.8 29.9 180.6 4.7
SCFM 4.91 days 8 hours a-C15:0 FA 3 53.9 214.0 31.9 189.1 5.0
SCFM 4.91 days 10 hours a-C15:0 FA 3 55.4 292.8 27.9 201.3 4.3
SCFM 4.91 days 0 seconds a-C17:0 FA 3 31.7 -77.6 22.2 143.7 3.5
SCFM 4.91 days 2 hours a-C17:0 FA 3 31.5 -44.7 22.7 148.8 3.5
SCFM 4.91 days 4 hours a-C17:0 FA 3 31.8 -11.5 21.1 154.0 3.3
SCFM 4.91 days 6 hours a-C17:0 FA 3 31.9 36.5 22.1 161.4 3.4
SCFM 4.91 days 8 hours a-C17:0 FA 3 31.4 65.0 26.4 165.9 4.1
SCFM 4.91 days 10 hours a-C17:0 FA 3 30.8 128.0 32.4 175.7 5.0
SCFM 4.91 days 0 seconds i/a-C19:0 FA 3 9.8 -61.4 12.3 146.2 1.9
SCFM 4.91 days 2 hours i/a-C19:0 FA 3 9.7 -32.6 13.8 150.7 2.1
SCFM 4.91 days 4 hours i/a-C19:0 FA 3 9.5 -8.0 11.8 154.5 1.8
SCFM 4.91 days 6 hours i/a-C19:0 FA 3 9.9 24.4 8.4 159.5 1.3
SCFM 4.91 days 8 hours i/a-C19:0 FA 3 9.4 53.4 10.4 164.1 1.6
SCFM 4.91 days 10 hours i/a-C19:0 FA 3 9.3 98.6 15.2 171.1 2.4
Minimal 13.34 days 0 seconds a-C15:0 FA 5 50.4 -87.4 10.7 142.1 1.7
Minimal 13.34 days 5 hours a-C15:0 FA 5 53.1 69.6 8.4 166.6 1.3
Minimal 13.34 days 10 hours a-C15:0 FA 4 50.9 242.1 20.7 193.4 3.2
Minimal 13.34 days 15 hours a-C15:0 FA 4 47.6 402.3 30.7 218.4 4.8
Minimal 13.34 days 20 hours a-C15:0 FA 4 47.7 570.6 37.0 244.6 5.8
Minimal 13.34 days 1.04 days a-C15:0 FA 4 54.8 762.0 39.9 274.4 6.2
Minimal 13.34 days 1.25 days a-C15:0 FA 4 59.7 995.6 47.6 310.7 7.4
Minimal 13.34 days 0 seconds a-C17:0 FA 4 49.6 -61.3 12.7 146.2 2.0
Minimal 13.34 days 5 hours a-C17:0 FA 3 46.9 60.6 19.9 165.2 3.1
Minimal 13.34 days 10 hours a-C17:0 FA 3 49.1 209.0 24.4 188.3 3.8
Minimal 13.34 days 15 hours a-C17:0 FA 3 52.4 352.4 31.1 210.6 4.8
Minimal 13.34 days 20 hours a-C17:0 FA 4 52.3 496.4 36.2 233.0 5.6
Minimal 13.34 days 1.04 days a-C17:0 FA 4 45.2 666.0 44.0 259.4 6.9
Minimal 13.34 days 1.25 days a-C17:0 FA 4 40.3 864.8 56.7 290.4 8.8

Table D.13 – Isotopic composition of major (>5%) S. aureus lipid components in isotope labeling
experiments. Data is corrected for the effects of derivatization on isotopic composition. Reported
error is the standard deviation of the replicate analyses (n) for identical samples.

386



Chapter D: Supplementary material for Chapter 7

Medium Generation time Time after spike Compound n Peak
[%total]

�2HFA

[h]

��

[h]

2FFA

[ppm]

�2F
[ppm]

Minimal 2.29 hours 0 seconds C16:1 FA 3 27.5 -126.2 2.5 136.1 0.4
Minimal 2.29 hours 5 minutes C16:1 FA 3 27.7 46.0 2.3 162.9 0.4
Minimal 2.29 hours 10 minutes C16:1 FA 3 26.4 201.8 4.1 187.2 0.6
Minimal 2.29 hours 15 minutes C16:1 FA 3 27.9 354.8 3.0 211.0 0.5
Minimal 2.29 hours 20 minutes C16:1 FA 3 27.0 486.6 12.1 231.5 1.9
Minimal 2.29 hours 25 minutes C16:1 FA 3 27.1 633.1 1.9 254.3 0.3
Minimal 2.29 hours 0 seconds C16:0 FA 3 41.3 -113.3 0.7 138.1 0.1
Minimal 2.29 hours 5 minutes C16:0 FA 3 41.6 12.6 3.9 157.7 0.6
Minimal 2.29 hours 10 minutes C16:0 FA 3 41.3 140.7 1.5 177.6 0.2
Minimal 2.29 hours 15 minutes C16:0 FA 3 41.5 267.2 8.9 197.3 1.4
Minimal 2.29 hours 20 minutes C16:0 FA 3 41.5 376.2 6.2 214.3 1.0
Minimal 2.29 hours 25 minutes C16:0 FA 3 41.6 497.9 2.0 233.3 0.3
Minimal 2.29 hours 0 seconds cyclo-C17:0 FA 3 12.5 -100.0 5.3 140.2 0.8
Minimal 2.29 hours 5 minutes cyclo-C17:0 FA 3 12.3 -89.2 9.6 141.8 1.5
Minimal 2.29 hours 10 minutes cyclo-C17:0 FA 3 12.9 -65.0 4.4 145.6 0.7
Minimal 2.29 hours 15 minutes cyclo-C17:0 FA 3 12.3 -34.2 8.2 150.4 1.3
Minimal 2.29 hours 20 minutes cyclo-C17:0 FA 3 12.7 -17.2 7.7 153.1 1.2
Minimal 2.29 hours 25 minutes cyclo-C17:0 FA 3 12.6 8.4 0.9 157.1 0.1
Minimal 2.29 hours 0 seconds C18:1 FA 3 18.7 -122.5 8.9 136.7 1.4
Minimal 2.29 hours 5 minutes C18:1 FA 3 18.3 -0.1 13.4 155.7 2.1
Minimal 2.29 hours 10 minutes C18:1 FA 3 19.4 105.3 5.5 172.1 0.9
Minimal 2.29 hours 15 minutes C18:1 FA 3 18.3 228.3 4.7 191.3 0.7
Minimal 2.29 hours 20 minutes C18:1 FA 3 18.9 303.0 11.9 202.9 1.9
Minimal 2.29 hours 25 minutes C18:1 FA 3 18.7 412.0 1.9 219.9 0.3

Table D.14 – Isotopic composition of major (>5%) E. coli lipid components in isotope labeling
experiments. Data is corrected for the effects of derivatization on isotopic composition. Reported
error is the standard deviation of the replicate analyses (n) for identical samples.
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FAME Label Experiment Peak
[%total]

�
[%]

i-C15 natural Control 2.65 0.41
i-C15 natural + 2H C15:0 0.73 0.17
i-C15 natural + 2H C18:0 0.59 0.12
a-C15 natural Control 39.59 1.56
a-C15 natural + 2H C15:0 18.63 3.48
a-C15 natural + 2H C18:0 17.64 2.99
C15 perdeuterated Control 0.00 0.00
C15 perdeuterated + 2H C15:0 4.92 0.83
C15 perdeuterated + 2H C18:0 0.00 0.01
C16 natural Control 1.07 0.22
C16 natural + 2H C15:0 0.17 0.10
C16 natural + 2H C18:0 0.17 0.12
C16 perdeuterated Control 0.00 0.00
C16 perdeuterated + 2H C15:0 0.00 0.00
C16 perdeuterated + 2H C18:0 0.01 0.01
C17 natural Control 0.10 0.07
C17 natural + 2H C15:0 0.02 0.02
C17 natural + 2H C18:0 0.02 0.01
i-C17 natural Control 2.70 0.44
i-C17 natural + 2H C15:0 0.02 0.03
i-C17 natural + 2H C18:0 0.10 0.08
a-C17 natural Control 41.01 1.44
a-C17 natural + 2H C15:0 2.03 0.16
a-C17 natural + 2H C18:0 5.69 0.23
C17 partly deuterated Control 0.00 0.00
C17 partly deuterated + 2H C15:0 21.53 0.98
C17 partly deuterated + 2H C18:0 0.00 0.00
C18 natural Control 7.14 0.46
C18 natural + 2H C15:0 1.13 0.10
C18 natural + 2H C18:0 1.06 0.07
C18 perdeuterated Control 0.00 0.00
C18 perdeuterated + 2H C15:0 0.00 0.00
C18 perdeuterated + 2H C18:0 62.20 2.53
C19 partly deuterated Control 0.00 0.00
C19 partly deuterated + 2H C15:0 50.17 3.38
C19 partly deuterated + 2H C18:0 0.00 0.00
C20 natural Control 5.74 0.88
C20 natural + 2H C15:0 0.65 0.10
C20 natural + 2H C18:0 0.36 0.06
C20 partly deuterated Control 0.00 0.00
C20 partly deuterated + 2H C15:0 0.00 0.00
C20 partly deuterated + 2H C18:0 12.26 0.76

Table D.15 – Recycling of exogenous fatty acids by S. aureus. Summary of the fatty acid
profiles from recycling fatty acid experiments.
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Appendix E

Supplementary material for Chapter

8

E.1 Error from shot noise

The number of ions N observed at a detector in a fixed time interval t follows a Poisson

distribution. The corresponding probability mass function is f(N) = P (X = N) =

(at)Ne�at

N !

. The expected value E[N ] =

¯N (mean) of a Poisson distribution is ¯N = at (for

a fixed time interval t). The variance V ar[N ] of a Poisson distribution is identical to the

expected value, and hence the standard deviation �N scales with the square root of ¯N
⇣
�N =

p
V ar[N ] =

p
¯N
⌘
. This has two important consequences for the quantification

of ion currents:

• The relative error �N
N =

1p
N

decreases with higher ion counts (i.e. longer counting

at constant rates makes the measurement more precise)

• There are diminishing returns due to the
p
N

�1

dependence

As a concrete example, consider an ion current of 1000 ions/s. If you repeatedly observed

this ion beam for exactly 1s, you would detect 1000 ions on average, but with �N = 31.6
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(or 3.16% error). If you repeatedly observed this same ion beam for 2s instead, you would

detect 2000 ions on average, but with �N = 44.7 (or 2.24% error, a
p
2

�1

improvement).

This counting error (�N =

p
N) is propagated readily to the resulting isotope ratios

R =

im
iM

(m=minor,M=major isotope), fractional abundances F =

im
iM+im

and �-values

� =

R1
R2

� 1 by standard error propagation. For details on �R and ��, see Hayes (2001).

�F is derived as follows.

�2

F =

✓
@F

@Nm

◆
2

�2

Nm
+

✓
@F

@NM

◆
2

�2

NM
=

✓
NM

(Nm +NM)

2

◆
2

�2

Nm
+

✓
� Nm

(Nm +NM)

2

◆
2

�2

NM

=

N2

MN2

m

(Nm +NM)

4

"✓
�Nm

Nm

◆
2

+

✓
�NM

NM

◆
2

#
= F 2

(1� F )

2

"✓
�Nm

Nm

◆
2

+

✓
�NM

NM

◆
2

#

!
⇣�F

F

⌘
2

= (1� F )

2

✓
1

Nm
+

1

NM

◆
=

(1� F )

2

NMF
(E.1)

References

Hayes, J. M., 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic

processes. Geochemistry Of Non-Traditional Stable Isotopes 43, 225–277.

E.2 NanoSIMS analytical details

E.2.1 Quality control

As described in Section 8.2.4.3, single cell analyses of isotopic standards were processed

with a quality-control algorithm to control for distortions by sample destruction. ROIs

with isotopic value Fi in any frame deviating by more than 2 ·�F (eq. 8.1) and more than

1% from the frames’ accumulated average F were discarded. This algorithm automatically

discarded 35% of all data points from whole single cell analysis and 7% of all data points

from embedded single cell analysis, consistent with the much stronger effects of sample
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Figure E.1 – ROI quality control.

destruction on single whole cells than on embedded cells, as described in detail in Section

8.3.1.1. Figure E.1 shows data from one whole cell analysis (~20 cells) where rapid sample

ablation destroyed part of the cells, and illustrates which data points were automatically

discarded.

E.2.2 Single cell data

Organism
2HFfa [%]

15NFbulk [%]

13CFbulk [%]

P. aeruginosa 0.017± 0.000 0.360± 0.003 1.084± 0.001
P. aeruginosa 0.030± 0.001 0.378± 0.002 1.198± 0.007
P. aeruginosa 0.177± 0.006 1.485± 0.007 1.646± 0.001
P. aeruginosa 0.237± 0.006 3.828± 0.044 2.152± 0.007
P. aeruginosa 0.599± 0.042 10.247± 0.120 10.657± 0.102
S. aureus 0.013± 0.000 0.364± 0.005
S. aureus 0.026± 0.000 0.369± 0.004
S. aureus 0.080± 0.002 0.860± 0.029
S. aureus 0.276± 0.011 0.959± 0.001
S. aureus 0.689± 0.056 4.496± 0.098

Table E.1 – Bulk isotopic composition of microbial NanoSIMS standards. Standards are from
single pure cultures harvested in mid-exponential phase; reported error is one standard deviation
from replicate analyses.
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Table E.1 lists the bulk hydrogen, carbon and nitrogen composition of the isotopic

standards. Reported bulk hydrogen isotope compositions represent the mass balance

weighted average isotopic composition of the whole membrane from all major fatty acid

components for each organism (a-C15:0 and a-C17:0 fatty acid for S. aureus and C16:1,

C16:0 and C18:1 fatty acid for P. aeruginosa).
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Figure E.2 – All ROIs from S. aureus standard whole single cells by analytical plane.
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Figure E.3 – All ROIs from S. aureus standard embedded cells by analytical plane.
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Figure E.4 – All ROIs from P. aeruginosa standard whole single cells by analytical plane.
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Figure E.5 – All ROIs from P. aeruginosa standard embedded cells by analytical plane.
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Figure E.6 – Examples of 14N12C ion maps of calibration standards. Ion maps of the calibration
standards for S. aureus and P. aeruginosa with several ROI/cell outlines.
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Figure E.7 – Calibration ROIs for whole single cells of S. areus. Individual data points represent
individual cells (regions of interest or ROIs). The size of the data points reflects the relative size of
the cells/ROIs. Horizontal error bars represent the maximum interval of the measured bulk isotopic
composition (smaller than symbol sizes in most cases), dashed vertical error bars represent 2 ·�

F

of
the error in the single cell isotopic composition from Poisson counting statistics.
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Figure E.8 – Calibration ROIs for embedded cells of S. areus. Gray triangles indicate cells that
were fixed in the presence of an isotopic spike. They are pictured for ease of visual comparison, but
were not included in the calibration.
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Figure E.9 – Calibration ROIs for whole single cells of P. aeruginosa.
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Figure E.10 – Calibration ROIs for embedded cells of P. aeruginosa. Gray triangles indicate
cells that were fixed in the presence of an isotopic spike. They are pictured for ease of visual
comparison but were not included in the calibration.
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Figure E.11 – All ROIs from S. aureus continuous cultures, timepoint 0.
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Figure E.12 – All ROIs from S. aureus continuous cultures, timepoint 1.
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Figure E.13 – All ROIs from S. aureus continuous cultures, timepoint 2.
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Figure E.14 – All ROIs from S. aureus continuous cultures, timepoint 3.
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Figure F.1 – Growth condition dependent changes in fatty acids profiles.
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Figure F.2 – Clinical fatty acid profile. This figure illustrates the typical fatty acid profiles from
a clinical lipid extracts, highlighting the predominance of many host-derived fatty acids and low
abundance of the microbial targets (here, a-15:0 FA and a-17:0 for S. aureus).
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Figure F.3 – FAME separation by silver column chromatography. Separation of saturated
from unsaturated fatty acids in a clinical sample. Left panel shows the saturated fraction F1 (red)
vs. the whole sample (green), right panel shows the unsaturated fraction F2 (red) vs. the whole
sample (green), illustrating quantitative separation of the different fatty acid types by their degree
of saturation.
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Figure F.4 – Example of weight-dependent water diffusion in sputum. This figure illustrates
how the D2O spike mixes with sputum water to increase the isotopic composition of the sputum
water towards the equilibrium mix of both pools. The mixing rate constant depends on the weight
of the sample, and is estimated from the relation shown in Figure 9.4, estimated here depending on
the sample weight to illustrate the effect.

403



Chapter F: Supplementary material for Chapter 9

100

110

120

130

Measurements

2 F l
ip

id
 [p

pm
] Component
a−C15:0 FA
a−C17:0 FA
total

Figure F.5 – Average natural isotopic composition of S. aureus fatty acids in clinical samples.
This figure illustrates the average values of naturally occurring a-C15:0 and a-C17:0 derived from
clinical samples with sufficiently large volumes to split for control samples. The average is used
for an estimate of natural abundance S. aureus fatty acids in growth-rate calculations for samples
without enough volume to split the sample.
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S. aureus (lysozyme/lysostaphin)

DAPI EUB338-Cy3 Sau-Cy5 EUB338+Sau

P. aeruginosa (lysozyme/lysostaphin)

DAPI EUB338-Cy3 Psae-fluorescein EUB338+Psae

Figure F.6 – Fluorescent in-situ hybridization of whole S. aureus and P. aeruginosa cells.
Single cell hybridization after on-slide cell wall digestion with lysozyme and lysostaphin.
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S. aureus, lysozyme/lysostaphin treated in thin-section

DAPI EUB338-Cy3 Sau-Cy5 DAPI+EUB338+Sau

S. aureus, lysozyme/lysostaphin treated before embedding

DAPI EUB338-Cy3 Sau-Cy5 EUB338+Sau

P. aeruginosa, lysozyme/lysostaphin treated before embedding

DAPI EUB338-Cy3 Psae-fluorescein EUB338+Psae

Figure F.7 – Fluorescent in-situ hybridization of S. aureus and P. aeruginosa cells in plastic
thin sections. Hybridization in plastic thin section with cell wall digestion on slide (top) vs. prior
to embedding (bottom).
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Figure F.8 – Correlation between microbial activity and all clinical parameters. This figure
illustrates the correlation between a variety of recorded clinical parameters and the measured bulk
growth rates for S. aureus in clinical samples. Each panel denotes a different parameter with the
respective R2, and p-value for the correlation with growth rate indicated in the header. The different
colours indicate samples from different patients in the study. Not all clinical information was available
for all data points.
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Figure F.9 – Isotopic composition of all ROIs from single-cell analyses.
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