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Abstract

This thesis presents detailed observational studies of theextended distributions of gas, galaxies, and dark mat-

ter around hyperluminous quasars (HLQSOs) at high redshift. Taken together, these works aim to coherently

describe the relationships between these massive, accreting black holes and their environments: the nature of

the regions that give rise to such massive black holes, the effect of HLQSO radiation on their surrounding

galaxies and gas, and the ability of both galaxies and black holes to shed new light on the formation and

evolution of the other.

Chapter 2 focuses on the continuum-color-selected galaxies drawn from the Keck Baryonic Structure Sur-

vey (KBSS, Rudie et al. 2012). The KBSS is a uniquely deep spectroscopic survey of star-forming galaxies

in the same volumes of space as 15 HLQSOs at 2.5 < z < 2.9. The three-dimensional distribution of these

galaxies among themselves and the nearby HLQSOs is used to infer the extent to which these black holes

are associated with overdense peaks in the dark matter and galaxy distribution as quantified by clustering

statistics. In conjunction with recent dark-matter simulations, these data provide the first estimates of the

host dark-matter halo masses for HLQSOs, providing new insight into the formation and evolution of the

most massive black holes at high redshift.

Chapter 3 describes the first results from a new survey (KBSS-Lyα) conducted for this thesis. The KBSS-

Lyα survey uses narrowband imaging to identify Lyα-emitters (LAEs) in the∼Mpc regions around eight of

the KBSS HLQSOs. Many of these LAEs show the effect of reprocessed HLQSO radiation in their emission

through the process known as Lyα fluorescence. In Chapter 3, these fluorescent LAEs are used togenerate a

coarse map of the average HLQSO ionizing emission on Mpc scales, thereby setting the first direct constraints

of the lifetime and angular distribution of activity for a population of these uniquely luminous black holes.

Chapter 4 contains a more detailed description of the KBSS-Lyα survey itself and the detailed prop-

erties of the star-forming and fluorescent objects selectedtherein. Using imaging and spectroscopic data

covering rest-frame UV and optical wavelengths, includingspectra from the new near-infrared spectrome-

ter MOSFIRE, we characterize this population of nascent galaxies in terms of their kinematics, enrichment,

gas properties, and luminosity distribution while comparing and constrasting them with previously-studied

populations of continuum-selected galaxies and LAEs far from the effects of HLQSO emission.

At the conclusion of this thesis, I briefly present future directions for the continuation of this research. In

Appendix A, I provide background information on the instrumentation used in this thesis, including my own

contributions to MOSFIRE.
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Chapter 1

Introduction

Let us begin, as always, with the universe.

Soon1 after the Big Bang, the universe was filled with two primary components: dark matter and gas.

Gravity caused dark matter to form over-dense clumps, creating the first structures and directing gas to flow

into these regions. The gas in these proto-galaxies eventually became dense enough to form the first stars, and

the deaths of these stars likely created the first black holes. At this point, however, galaxy formation became

much more complicated as the emergence of the first stars and black holes severely disrupted the smooth flow

of gas into the nascent galaxies.

This complexity arises because the processes of turning gasinto stars and accreting gas into black holes

release colossal amounts of energy. Once this phase of galaxy growth begins, the inflowing gas is subjected to

blasts of ionizing radiation and outflowing winds that expelgas from galaxies and can violently terminate the

growth of black holes and formation of new stars. The remainder of the evolution of these galaxies remains

a puzzle, but it must be determined by a complex interplay between dark matter, stars, black holes, and gas

that eventually yields the array of galaxies seen in the modern-day universe.

This thesis addresses the primary participants in this interplay. The work described here uses measure-

ments of different types of galaxies around some of the most rapidly-accreting black holes in the universe to

determine the types of environments where black holes grow most effectively and the effect of these black

holes on their local neighborhood. Using these bright blackholes (called QSOs) as subjects of study, trac-

ers of galaxy density, and illuminators of their surrounding galaxies and gas, this thesis provides a new and

unique step forward in solving the puzzle of galaxy formation and growth.

1.1 Galaxy Formation and “Feedback”

A simple picture of galaxy formation was presented above in which gas flows into dense, bound clumps of

dark matter (“dark matter halos”), eventually condensing via gravity into stars. In fact, however, most of the

gas never ends up in stars at all. Galaxies are remarkably inefficient machines for converting gas into stars:

1“Soon” is a notoriously subjective term, here refering to a period of roughly 370 million years.
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Figure 1.1: The stellar and dark-matter mass functions of galaxies. Black points are measurements of the
stellar mass function from the Sloan Digital Sky Survey (SDSS) by Panter et al. (2007). The black dashed
line is the mass function of dark matter halos produced by an N-body (gravity-only) dark matter simulation
using the concordanceΛCDM cosmology; the curve has been scaled down by a multiplicative factor of 0.05.
If all gas in galaxies was converted into stars, the two curves would be parallel, with an offset given by the
universal baryon-to-dark-matter fraction (∼0.2). Instead, star formation is highly suppressed, particularly at
low and high masses. Figure from Moster et al. (2010).

despite the fact that the dark matter mass, gas mass, and stellar mass of galaxies are seen to grow over cosmic

time, only a small fraction of the gas coming in feeds new star-formation, regardless of galaxy age, type, or

mass (e.g. Schmidt 1959; Kennicutt 1998).

This ineffiency may be parameterized as the fraction of baryonic matter (i.e. non-dark matter) that has

entered a galaxy halo that is now in the form of stars. When thisinefficiency is studied as a function of galaxy

mass, a clear trend emerges: despite the universally-low stellar mass fractions, star formation is most efficient

in halos ofMhalo∼ 1012M⊙ from z ∼ 8 to the present day (Moster et al. 2010; Behroozi et al. 2013), falling

off sharply at higher and lower dark matter halo masses (Fig.1.1).

Both the global suppression of star formation and the dependence on mass suggest that galaxy growth

is highly regulated by one or more mass-dependent processes. These regulatory processes are described as

“feedback” effects, so-called because it seems that the effects that suppress star formation seem to be driven

by the very growth of galaxies themselves.

What aspect of galaxy growth could counteract the powerful gravitational pull toward cooling, conden-
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Figure 1.2: Hydrodynamical simulations of stellar feedback in galaxies by Hopkins et al.. Each row consists
of edge-on simulated images of a different galaxy model, while each column displays the results of turning
various stellar feedback modes on or off. The left column shows all feedback modes enabled, while the
middle column shows thermal feedback via supernovae, stellar winds, and photoionization turned off. The
right column shows heating turned on, but short- and long-range radiation pressure turned off. Color encodes
gas temperature fromT . 1000 K (blue) toT ∼ 104 − 105 K (pink) to T & 106 K (yellow). The stellar
feedback modes counteract the effects of gravitational collapse by heating gas, driving material out of dense
regions (creating dark bubbles in these images), and blowing hot gas out into the intergalactic medium in the
form of galaxy winds. Figure from Hopkins et al. (2012), withsome panels omitted for brevity.

sation, and ignition? The energy released by young stars is an obvious possibility. Young stellar populations

include massive hot stars utterly unlike our peaceful Sun: in the course of their short lives, the most massive

stars emit ionizing photons, stellar winds, and long-rangeradiation pressure, only to die in yet another blast

of thermal and kinetic energy. Simulations such as Hopkins et al. (2012; see Fig. 1.2) suggest that stellar

feedback involves all of these processes in degrees that mayvary with stellar mass and other galaxy proper-

ties. Not only do these simulations quench and modulate starformation, but they can also produce the strong

outflowing winds that are observed in nearly all samples of high-redshift galaxies. Because the scales of indi-

vidual stars and star clusters driving this feedback are notresolved in galaxy simulations, however, much of

the physics of these effects must be estimated and imported by hand; it remains a challenge to physically con-

nect simulations of stellar feedback and star formation in an entirely self-consistent and physically-motivated

manner.

Therefore, while simulations are making swift progress in this arena, there is still substantial mystery

surrounding the interactions of galaxies with their interstellar gas, as well as the gas in the intergalactic

medium (IGM) and circumgalactic medium (CGM;rgal ∼ 0.3− 2 Mpc). Of particular import is the fact that

hydrodynamical galaxy simulations typically predict copious amounts of inflowing neutral Hydrogen (HI)
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gas along anistropic filaments (e.g. Kereš et al. 2005), a process that is argued to be necessary to produce the

observed cosmic star formation and its evolution (van de Voort et al. 2011).

However, observational evidence for these “cold flows” is lacking: surveyed galaxy populations seem

to be uniformly dominated by signatures of outflowing, metal-enriched gas, with little or no evidence for

inflowing streams of pristine HI. Even the predictions for observables associated with coldflows remain

unclear. Furthermore, there is still a gap between the hydrodynamical treatment of inflows and stellar feed-

back; it remains to be seen how observationally-consistentmodels of feedback will effect simulations of gas

accretion.

On the observational side, progress must come from continued measurements of galaxies and their sur-

rounding gas. The observable signatures of stellar feedback must be extended to a larger range of galaxy

properties (including low stellar mass, continuum-faint populations) to see how these effects scale. Particular

attention should be attended to populations where gas inflowmight be expected to dominate over outflows,

such as those where star-formation has only recently begun.

Finally, a complete understanding of galaxy feedback requires more than just the interactions of their stars

and gas. At the high-mass end of the galaxy mass function (Fig. 1.1), even the most powerful stellar-feedback

prescriptions seem unable to overcome the deep gravitational potential of the most massive halos. For these

systems, another form of feedback has been proposed (e.g. Croton et al. 2006) that further modulates galaxy

growth through the colossal power associated with accretion onto supermassive black holes (SMBHs). A

description of these objects, the history of their study, and their role in galaxy formation follows below.

1.2 QSRS, QSOs, and SMBHs: A History

One hurdle to understanding the field of supermassive black hole research is the decades of nomenclature

that have persisted even after the paradigms that defined them have fallen away.2 The first detections of ob-

jects that would motivate the study of supermassive black holes occurred in the 1960’s, when Allan Sandage,

Maarten Schmidt, Thomas Matthews, and Jesse Greenstein (among others associated with Caltech and the

nearby Mt. Wilson and Palomar Observatories) began identifying optical counterparts to radio sources of

unknown origin and distance. The point-like optical sources exhibited spectra with unrecognized broad emis-

sion lines, which along with their radio emission led to the moniker “Quasi-Stellar Radio Sources” (QSRS or

QSS).

In 1963, Maarten Schmidt famously3 identified the Balmer series of Hydrogen and the MgII λ2797 line

redshifted by 16% in the spectrum of QSO 3C 273. Potential galactic sources of such redshifted emission

(high radial velocity stars, strong gravitational redshift) were soon ruled out, and the existence of a popula-

tion of compact, extragalactic, radio-loud sources was established. Shields (1999) suggests that the “radio”

2A fascinating review of the history of QSO science was written by Shields (1999). Much of the background given here is an
all-too-brief summary of that paper.

3in astrophysical circles, at the very least, but see also theMarch 11, 1966 cover of TIME magazine.
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Figure 1.3: A composite spectrum of 65 QSOs and similar objects (Seyfert1 galaxies). The spectrum is
shifted to the rest frame to account for the redshift of the sources. The broad emission lines and strong UV
(λ . 3000Å) continuum emission are typical of QSOs. Note in particular the strong, broad Balmer lines
(Hα, Hβ, etc.) and MgII λ2797 line seen in emission: these lines were used by Maarten Schmidt to measure
the large redshift of QSO 3C 273. This first QSO redshift measurement quickly established the extragalactic
origin and extreme luminosities of these “quasi-stellar” objects. Figure from Meusinger & Brunzendorf
(2001).

requirement was dropped when Sandage (1965) reported a new population of extra-galactic objects without

radio detections but which matched the optical properties (including strong UV continua) of QSRS; these ob-

jects were soon dubbed Quasi-Stellar Galaxies (QSGs) or Blue Stellar Objects (BSOs). By 1967 the related

term Quasi-Stellar Objects (QSOs) was established enough to title a book by Geoffrey Burbidge,4 though the

name was used as early as 1964 on a leaflet from the Astronomy Society of the Pacific:QSO’s, the Brightest

Things in the Universe.5 The title of this leaflet captures a primary feature of QSOs and their analogues: even

with an over-estimated rate of Hubble expansion, the measured redshifts of these objects were quickly seen

to imply huge distances and thus unprecedented absolute luminosities for compact sources.

The widespread association of QSOs and other Active Galactic Nuclei (AGN) with supermassive black

holes (SMBHs) did not occur until decades later. Lynden-Bell (1969) suggested that “collapsed bodies” (i.e.

black holes) at the centers of local galaxies could be the remnants of QSOs and could explain other AGN-

associated phenomena. However, a broader focus on SMBHs as the engines of QSO emission awaited the

development of accretion-disk theory and the determination that other compact sources of nuclear emission

(star clusters, supermassive stars) would eventually formblack holes as their eventual endpoint, as described

4Quasi-stellar Objects, Burbidge, A Series of Books in Astronomy and Astrophysics, San Francisco: W.H.Freeman, 1967
5This leaflet, available as a scanned digital document throughthe SAO/NASA Astrophysics Data System, contains a fascinating

summary of a conference in December 1963 centered on the quickly-growing field of QSO research featuring the latest results from
Sandage, Matthews, Schmidt, Greenstein, Margaret Burbidge, and others. The idea of massive energy being released through grav-
itational collapse to “within the Schwarzchild radius” is mentioned, though only in the context of a number of other “radical ideas”
proposed at the conference.
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in a review by Rees (1984). While the details and evolution of these powerful objects remains the focus of

substantial research, SMBH accretion in the nuclei of galaxies has been the generally-accepted model for the

broad range of AGN activity since that time.

Many features of QSOs identified before the SMBH paradigm remain equally relevant today. Schmidt

(1965) presented the first detection of Lyα in a QSO spectrum, noting the irregular, double-peaked profile of

the emission line. Matthews et al. (1964) identified overdensities of galaxies around luminous radio galaxies,

another type of QSO analogue. While the study of QSOs has advanced significantly since that time, the as-

sociation of scattered Lyα emission (McCarthy et al. 1987; Trainor & Steidel 2013) and galaxy overdensities

(Venemans et al. 2007; Trainor & Steidel 2012) with bright AGN remain areas of active research and are a

substantial part of this thesis.

1.3 QSO Environments and Galaxy Evolution

While black holes may be fascinationg objects in isolation, they have become even more compelling as it

has become clear that they play a strong role in galaxy evolution as well. Observed correlations among

properties of galaxies and the masses of their central blackholes (e.g. Magorrian et al. 1998; Gebhardt et al.

2000; Ferrarese & Merritt 2000) suggest a strict relationship between the nuclear activity that accompanies

black hole growth and the gas accretion and cooling that causes star formation. As mentioned in Sec. 1.1,

models such as Croton et al. (2006) also demonstrate the potential for black hole accretion to explain the

extremely low efficiency of star formation in the most massive halos. However, the mechanisms that govern

these interactions remain unclear; loosely termed “AGN feedback”, they must somehow efficiently couple

the energetics of AGN and star formation over orders of magnitude in spatial scale. Adding to this complex

picture, SMBH-driven emission must be highly anisotropic in order to unify the vastly different categories of

AGN selected at wavelengths from the radio to hard x-rays, and this anisotropy may diminish the solid angle

over which AGN activity can effectively couple to galactic proto-stellar gas.

This unified model, in which AGN are obscured by dusty torii, suggests that inclination determines the

observed properties of AGN to first order, but essential second-order modifications to this successful paradigm

are now coming to light. The obscuration of AGN seems to be time-dependent and to correlate with galaxy

properties, at least in the low-redshift universe; obscured AGN may tend to live in galaxies with extreme

star-formation rates (e.g. Sanders et al. 1988), while optically-bright QSOs are more common in passive

ellipticals (e.g. Dunlop et al. 2003). This correlation suggests a track in galaxy evolution whereby AGN may

quench star formation as they disrupt their obscuring gas and dust (e.g. Hopkins et al. 2008), but such a model

requires that AGN obscuration vary with the age of a black hole’s growth phase in addition to its inclination.

Relationships persist to larger scales as well: Hickox et al. (2011) and Donoso et al. (2013) find that obscured

QSOs are more biased than unobscured QSOs atz ∼ 1, suggesting a dependence on halo mass, while radio-

loud QSOs are known to inhabit overdense environments (Matthews et al. 1964; Best et al. 2005; Venemans
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et al. 2007). Clearly, the evolution of black holes and theirability to modulate galaxy growth depend on many

factors, including the anisotropy of their emission, the lifetime of their obscured and unobscured phases, and

the halo and large-scale environments that they inhabit.

As discussed in Chapters 2 and 3, this thesis places new constraints on these QSO properties by leveraging

two unique surveys of faint galaxies around hyperluminous QSOs at 2.5< z < 3. In addition to advancing our

understanding of QSO-galaxy interactions, the large number of faint galaxies (particularly low-stellar-mass

Lyα emitters) in these surveys provides a unique oppportunity to study the properties of faint galaxies at high

redshift, including the role of feedback and their surrounding gas in guiding their evolution. These results are

discussed in Chapter 4.
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Chapter 2

The Halo Masses and Galaxy
Environments of Hyperluminous QSOs
at Z ≃ 2.7 in the Keck Baryonic
Structure Survey

This chapter was previously published as Trainor & Steidel 2012, ApJ, 752, 39.
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Abstract

We present an analysis of the galaxy distribution surrounding 15 of the most luminous (& 1014 L⊙; M1450≃
−30) QSOs in the sky withz ≃ 2.7. Our data are drawn from the Keck Baryonic Structure Survey(KBSS),

which has been optimized to examine the small-scale interplay between galaxies and the intergalactic medium

(IGM) during the peak of the galaxy formation era atz ∼ 2− 3. In this work, we use the positions and spec-

troscopic redshifts of 1558 galaxies that lie within∼3′ (4.2h−1 comoving Mpc; cMpc) of the hyperlumi-

nous QSO (HLQSO) sightline in one of 15 independent survey fields, together with new measurements of

the HLQSO systemic redshifts. By combining the spatial and redshift distributions, we measure the galaxy-

HLQSO cross-correlation function, the galaxy-galaxy autocorrelation function, and the characteristic scale of

galaxy overdensities surrounding the sites of exceedinglyrare, extremely rapid, black hole accretion. On aver-

age, the HLQSOs lie within significant galaxy overdensities, characterized by a velocity dispersionσv ≃ 200

km s−1 and a transverse angular scale of∼25′′ (∼200 physical kpc). We argue that such scales are expected

for small groups with log(Mh/M⊙) ≃ 13. The galaxy-HLQSO cross-correlation function has a best-fit cor-

relation lengthrGQ
0 = (7.3±1.3)h−1 cMpc, while the galaxy autocorrelation measured from the spectroscopic

galaxy sample in the same fields hasrGG
0 = (6.0±0.5)h−1 cMpc. Based on a comparison with simulations eval-

uated atz ∼ 2.6, these values imply that a typical galaxy lives in a host halo with log(Mh/M⊙) = 11.9±0.1,

while HLQSOs inhabit host halos of log(Mh/M⊙) = 12.3±0.5. In spite of the extremely large black hole

masses implied by their observed luminosities [log(MBH/M⊙) & 9.7], it appears that HLQSOs do not require

environments very different from their much less luminous QSO counterparts. Evidently, the exceedingly

low space density of HLQSOs (. 10−9 cMpc−3) results from a one-in-a-million event on scales≪ 1 Mpc,

and not from being hosted by rare dark matter halos.
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2.1 Introduction

The study of galaxies with supermassive black holes has become a topic of considerable interest, particularly

since the discovery that properties of these black holes arestrongly correlated with those of their host galaxies

(e.g. Magorrian et al. 1998; Gebhardt et al. 2000; Ferrarese& Merritt 2000). The processes of supermassive

black hole accretion and growth can produce spectacularly luminous QSOs, allowing their study over vast

cosmological volumes (0< z . 7). The details of these accretion processes, however, are concealed not only

by distance, but also by our lack of knowledge concerning theduty cycle of AGN and the environments that

drive and sustain their growth.

Because the brightest QSOs are extreme, ultra-luminous objects, it is often assumed that they must inhabit

comparably rare environments. In particular, the rarity ofthese objects could arise because they require the

highest mass dark matter halos, which are highly biased withrespect to the overall matter distribution, or

because of other, finely-tuned environmental factors that influence the availability of gas and the propensity

for the black hole to accrete. As such, the masses and spatialdistribution of the dark matter halos that host

QSOs are of considerable interest, and detailed statisticson these quantities have become available through

large-scale surveys, primarily through studies of QSO clustering using the two-point correlation function.

Recent surveys have covered wide regions of the sky and largeranges of redshift, e.g., the Sloan Digital Sky

Survey (SDSS; York et al. 2000; Eisenstein et al. 2011), the 2dF QSO Redshift Survey (2QZ; Croom et al.

2004), and the DEEP2 Redshift Survey (Davis et al. 2003).

Because these surveys include QSOs with a wide range of luminosities and redshifts, the QSO autocor-

relation function has been frequently used to constrain QSOclustering out to high redshifts using the SDSS

samples (e.g. Myers et al. 2006, 2007; Shen et al. 2007, 2010;Ross et al. 2009), 2QZ samples (e.g. Porciani

et al. 2004; Porciani & Norberg 2006; Croom et al. 2005), and combined 2dF-SDSS LRG and QSO survey

(2SLAQ; survey description in Croom et al. 2009, clusteringresults in da Ângela et al. 2008). The results of

these analyses are in broad agreement that QSOs inhabit hostdark matter halos of mass log(Mh/M⊙)∼12.5

at redshiftsz . 3. Due to the low space density of QSOs at all redshifts, theseautocorrelation measurements

have generally been confined to large scales, but complementary measurements have also been obtained:

Hennawi et al. (2006) and Shen et al. (2010) conducted surveys for close QSO pairs; the galaxy-QSO cross-

correlation function was measured by Adelberger & Steidel (2005b), in the DEEP2 survey atz ∼ 1 by Coil

et al. (2007), and in a low redshift (z < 0.6) SDSS QSO sample by Padmanabhan et al. (2009). These studies

generally agree with the QSO autocorrelation results, and the mass scale log(Mh/M⊙)∼12.5 seems fairly

well-established for the general population of QSOs atz . 3.

However, studies which divide the population of QSOs into specific subsamples reveal a more compli-

cated picture of the dependence of QSO properties on halo mass. Low-redshift studies display a possible

relation between obscuration and host halo mass (Hickox et al. 2011), which may be significant at higher

redshifts, where the population of obscured QSOs is relatively unconstrained. Shen et al. (2010) find that
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radio-loud QSOs are more strongly clustered than radio-quiet QSOs matched in redshift and optical lumi-

nosity. In addition, there is an expected dependence of QSO luminosity on host halo mass because the QSO

luminosity depends on black hole mass, which in turn exhibits the aforementioned association with the mass

of the host halo. In practice, however, QSO luminosities depend in detail on the availability of matter to ac-

crete and the physical processes governing the efficiency with which this accretion occurs. Thus, it is perhaps

not surprising that the clustering of QSOs shows little association with QSO luminosity in observations near

z ∼ 2 (e.g. Adelberger & Steidel 2005b; Croom et al. 2005; da Ângela et al. 2008, and in simulations by Lidz

et al. 2006); however, Shen et al. (2010) detect stronger clustering among the most luminous QSOs in their

sample atz > 2.9, and Krumpe et al. (2010) find that SDSS QSOs atz ∼ 0.25 cluster more strongly with in-

creasing X-ray luminosity. Finally, the survey of close QSOpairs by Hennawi et al. (2006) reveals an excess

at the smallest scales, which the authors attribute to dissipative interaction events that trigger QSO activity in

rich environments. In short, the properties of QSOs are related to their host halo masses in a complex manner,

and it is clear that other environmental factors are at play.

In this chapter we study the environments of hyperluminous QSOs (HLQSOs; defined here by a lumi-

nosity log(νLν /L⊙)&14 at a rest-frame wavelength of 1450 Å) at 2.5 . z . 3 by measuring the magnitude

and scale of overdensities in the galaxy distribution at small (.3′) projected distances using data from the

Keck Baryonic Structure Survey (KBSS). This approach complements existing studies in numerous ways:

targeting narrow fields allows us to study the local environments of these extremely rare HLQSOs, including

the galaxies at comparable redshifts that lie far below the flux limits of the typical wide-field QSO surveys.

In this way we are able to constrain the properties of the relatively unexplored environments of the highest-

luminosity QSOs. Focusing on the brightest QSOs should reveal whether host halo mass plays a significant

role in determining QSO properties, while sensitivity to the local environment may demonstrate whether

these HLQSOs are associated with the types of environments where mergers and dissipative interaction are

expected to be most common.

This chapter is organized as follows: in §2.2 we discuss the observations used in this study; §2.3 describes

the techniques used to construct an unbiased measure of the galaxy distribution around the HLQSOs and our

estimates of the magnitude and scale of the surrounding galaxy overdensities. In §2.4, we describe and

implement a method for estimating the small-scale galaxy-HLQSO correlation function and galaxy-galaxy

autocorrelation function from our data along with the implied galaxy and HLQSO host halo masses. In §2.5

we present evidence that the HLQSOs inhabit group-sized virialized structures conducive to merger events;

a summary is given in §2.6. Throughout this chapter, we will assumeΩm = 0.3,ΩΛ = 0.7, andh = H0/(100

km s−1). We have left all comoving length scales in terms ofh for ease of comparison to previous studies,

but we quote physical scales, luminosities, and halo massesassumingh = 0.7. For further clarity, we denote

comoving distance scales in units of cMpc (comoving Mpc) andphysical scales as pkpc (physical kpc).
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Table 2.1. HLQSO Redshifts and Corrections

QSO NIR Spectra Sourcea znewb zold
c ∆z ∆v (km s−1)

Q0100+13 (PHL957) Keck II/NIRSPEC 2.721±0.003 2.681 −0.040 −3214
HS0105+1619 P200/TSPEC 2.652±0.003 2.640 −0.012 −983
Q0142−10 (UM673a) Keck II/NIRSPEC 2.743±0.003 2.731 −0.012 −943
Q0207−003 (UM402) P200/TSPEC 2.872±0.003 2.850 −0.022 −1699
Q0449−1645 P200/TSPEC 2.684±0.003 2.600 −0.084 −6818
Q0821+3107 (NVSS) P200/TSPEC 2.616±0.003 2.624 +0.008 +686
Q1009+29 (CSO 38) Keck II/NIRSPEC 2.652±0.003 2.620 −0.032 −2620
SBS1217+490 P200/TSPEC 2.704±0.003 2.698 −0.006 −484
HS1442+2931 P200/TSPEC 2.660±0.003 2.638 −0.022 −1797
HS1549+1919 Keck II/NIRSPEC 2.843±0.003 2.830 −0.013 −1011
HS1603+3820 P200/TSPEC 2.551±0.003 2.510 −0.041 −3452
Q1623+268 (KP77)d Keck II/NIRSPEC 2.5353±0.0005 2.518 −0.018 −1489
HS1700+6416 Keck II/NIRSPEC 2.751±0.003 2.736 −0.015 −1220
Q2206−199 (LBQS) Keck II/NIRSPEC 2.573±0.003 2.558 −0.015 −1255
Q2343+12 (also SDSS) Keck II/NIRSPEC 2.573±0.003 2.515 −0.058 −4854

aRefers to the instrument used to measure the near-IR QSO spectra and redshift. NIRSPEC is used on the
Keck II telescope, while P200 is the Palomar Hale 200-inch telescope, used with the TripleSpec instrument.

bznew refers to the redshift used in this analysis.

czold refers to the previous published redshift value.

dThe redshift for Q1623+268 (KP77) is more tightly constrained because of the presence of narrow [OIII ]
lines at the presumed systemic redshift of the QSO.

2.2 Data

The data used in this study form part of the Keck Baryonic Structure Survey (KBSS; Steidel et al. 2012), a

large sample (Ngal = 2298) of high-redshift star-forming galaxies (1.5< z < 3.6) close to the lines-of-sight of

15 HLQSOs at redshifts 2.5<z<2.9. Because we have observed fields of differing solid anglearound each

of these HLQSOs, we standardized the fields for the purposes of this study by including only those galaxies

within δθ ∼ 3′ (4.2h−1 cMpc at the HLQSO redshifts) of the line-of-sight of the HLQSO in each, an area that

is well-sampled for all 15 fields. This subset of the total KBSS dataset contains 1558 galaxies and comprises

the entire sample used in this chapter.

2.2.1 HLQSO Redshifts

An important prerequisite to establishing the galaxy environment of the HLQSOs is an accurate measurement

of the HLQSO systemic redshifts. Redshifts for QSOs in the range 2. zQSO. 3 are typically measured from

the peaks or centroids of broad emission lines of relativelyhigh ionization species in the rest-frame far-UV

(e.g., NV λ1240, CIV λ1549, SiIV λ1399, CIII ] λ1909). These lines are known to yield redshifts that

differ significantly from systemic, and tend to be blue-shifted by several hundred to several thousand km

s−1 (see e.g. McIntosh et al. 1999; Richards et al. 2002; Gonçalves et al. 2008). These velocity offsets also

tend to increase with QSO luminosity, thus making the present sample of hyperluminous QSOs particularly

susceptible to this issue. In view of the importance of precise redshifts to locate the HLQSO environments
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Table 2.2. Galaxy Samples and HLQSO Properties

Field zQSO
a L1450

b MBH
c NBX NMD NCDM Ntot N1500

d

(1013L⊙ ) (109M⊙)

Q0100+13 2.721 6.4 2.0 68 12 15 95 7
HS0105+1619 2.652 4.5 1.4 74 6 23 103 7
Q0142−10e 2.743 <6.4 <2.0 75 13 16 104 1
Q0207−003 2.872 6.1 1.9 54 12 27 93 7
Q0449−1645 2.684 4.0 1.3 68 12 31 111 9
Q0821+3107f 2.616 4.1 1.3 64 7 21 92 4
Q1009+29 2.652 10.9 3.4 54 19 43 116 8
SBS1217+490 2.704 5.1 1.6 67 14 11 92 3
Q1442+2931 2.660 4.9 1.5 71 25 22 118 3
HS1549+1919 2.843 14.9 4.6 54 14 39 107 23
HS1603+3820 2.551 11.0 3.4 80 15 14 109 10
Q1623−KP77f 2.5353 3.2 1.0 82 9 12 103 7
HS1700+6416 2.751 13.6 4.3 69 16 16 101 6
Q2206−199 2.573 4.5 1.4 78 11 20 109 0
Q2343+12 2.573 3.8 1.2 71 9 25 105 6

azQSO refers to the systemic redshift of the field defined by the HLQSO(see Table 2.1 and §2.2.1).

bL1450 refers to the estimated luminosityνLν near a rest-frame wavelengthλrest≃ 1450, extrapolated
from theg′ andr′ magnitudes from the SDSS (Eisenstein et al. 2011) database when available, and other-
wise from our own measurements. We have assumedh = 0.7.

cMBH is the minimum black hole mass capable of producing a QSO with luminosity L1450, assuming
Eddington-limited accretion (§2.4.6).

dN1500 = N(|δv| < 1500 km s−1) is the number of galaxies in the field that have spectroscopicredshifts
within 1500 km s−1 of their corresponding HLQSO.

eQ0142-10 (UM673a) is known to be gravitationally lensed (Surdej et al. 1987) and has an unknown
magnification; the estimated luminosity and mass are therefore upper limits.

fQ0821+3107 and Q1623−KP77 are the only HLQSOs in our sample with radio detections. Q0821 has a
flux fν = 162 mJy at 4830 MHz (Langston et al. 1990); KP77 has a fluxfν = 6.4 mJy at 1.4 GHz (Condon
et al. 1998).
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within the survey volume, we obtained near-IR spectra of theentire sample using NIRSPEC on the Keck II

10m telescope, TripleSpec on the Palomar 200-inch (5m) telescope, and in some cases, both (see Table 2.1).

Among the 15 HLQSOs in the sample, narrow forbidden lines ([OIII ] λ5007) were detected for only 2

of them (Q1623+268, Q2343+12), either because no such lineswere present in the spectra (common at the

highest luminosities), or because the HLQSO redshift was such that the strongest transitions fell in regions

between the near-IR atmospheric bands. However, in all cases we were able to measure one or more hydrogen

Balmer lines and the MgII λ2798 line, which were mutually consistent and are known to becloser to the

true systemic redshift than the high ionization lines in theUV (McIntosh et al. 1999; Richards et al. 2002).

The redshifts obtained from the Balmer/MgII lines (which agree well with that given by [OIII ] in the two

cases where all were measured) were then subjected to several cross-checks, including the wavelength at

the onset of the Lyman-α forest measured from the high resolution HLQSO spectra (a lower limit on the

systemic redshift, but one which agrees to within∆z ≃ 0.001 of the Balmer line redshift in all but two

cases); the redshift of narrow HeII λ1640 in intermediate resolution optical spectra of the HLQSOs; and,

in several cases, regions exhibiting narrow Lyα emission were discovered with small angular separations

from the HLQSO, and we have found that such nebulae lie very close to the systemic redshift of the nearby

HLQSO. In two cases (HS1603+3820 and Q1009+29) this last criterion led to a significant modification

(∆z ∼ +0.01, or∼ 800 km s−1) of the redshift suggested by the near-IR spectroscopy. We adopt a HLQSO

redshift uncertaintyσz = 270 km s−1 (for those HLQSOs without measured [OIII ] redshifts) based on the

measured dispersion of the MgII line with respect to [OIII ] by Richards et al. (2002); the broad agreement

among our many redshift criteria suggest that this is a conservative estimate of the redshift uncertainties.

Table 2.1 summarizes the adopted redshifts for all 15 HLQSOsbased on these considerations; also given

(column 4;zold) is the published redshift for each and the redshift and velocity error that would result from

adopting the published values (∆z≡ zold −znew). As expected, all but one of the old redshifts are systematically

too low (the median shift is∼ −1500 km s−1, and the mean∼ −2100 km s−1). Failure to account for these

large velocity errors would severely compromise our measurements. As we show below, the measuredzQSO

values must be quite accurate given the very tight redshift-space correlation between the HLQSOs and the

spectroscopically measured, continuum-selected galaxies nearby.

2.2.2 Galaxy Redshifts

Galaxy redshifts were measured using low-resolution (∼5Å), rest-frame UV spectra obtained with the LRIS

multi-object spectrograph on the Keck I telescope (Oke et al. 1995; Steidel et al. 2004). Candidate galaxies

were color-selected using the Lyman-break technique and were sorted as BX (z ∼ 2.2), MD (z ∼ 2.6), or

CDM (z ∼ 3) galaxies based on the color criteria discussed in Steidelet al. (2003) and Adelberger et al.

(2004); the data collection and reduction procedures are described therein. All galaxies in the spectroscopic

sample haveR < 25.5 [whereR ≡ mAB(6830Å)], which corresponds to MAB(1700Å) . −19.9 at z ∼ 2.7

(about 1 magnitude fainter than M∗ at this redshift; see Reddy et al. 2008). Redshifts were determined by
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a combination of Lyα emission or absorption and far-UV interstellar (IS) absorption. Since Lyα emission

tends to be redshifted with respect to the systemic redshiftof the host galaxy, and interstellar absorption

tends to be blueshifted (see e.g. Shapley et al. 2003; Adelberger et al. 2003; Steidel et al. 2010), we estimate

each galaxy’s systemic redshift via the method proposed in Adelberger et al. (2005a) and updated by Steidel

et al. (2010). In this method, the average Lyα emission and IS absorption offsets are calculated based on the

redshift of the Hα nebular line (NIR spectroscopy is available for a subset of the galaxy sample), which traces

ionized gas in star-forming regions of the galaxy, and is thus a more accurate estimate of the systemic redshift.

Rakic et al. (2011) derive similar corrections for the same galaxy sample using the expected symmetry of IGM

absorption about the systemic redshift of the galaxy.

We estimate the systemic galaxy redshifts (zgal) based on a combination of the above results. A more

detailed discussion of our correction formulae can be foundin Rudie et al. (2011; in prep.), but the formulae

are reproduced below. For galaxies with NIR spectra (e.g. the Hα line), the NIR redshift is used with

no correction. For galaxies with measured Lyα emission but without interstellar absorption, we use the

following estimate:

zgal ≡ zLyα +
∆vLyα

c

(

1+ zLyα

)

, (2.1)

wherezLyα is the redshift of the measured Lyα emission and∆vLyα = −300 km s−1 is the velocity shift needed

to transform the Lyα redshift to the systemic value,zgal.

For galaxies with interstellar absorption, we use an estimate based on the absorption redshift whether or

not Lyα emission is present:

zgal ≡ zIS +
∆vIS

c
(1+ zIS) , (2.2)

wherezIS is the redshift of the measured interstellar absorption and∆vLyα = 160 km s−1 is the velocity shift

needed to transform the absorption redshift to the systemicvalue.

For galaxies with both interstellar absorption and Lyα emission, we verify that the corrected absorption

redshift does not exceed the measured redshift of the Lyα line; that is, we verify thatzIS < zgal < zLyα, where

zgal is calculated using Eq. 2.2 above. If this condition is not satisfied, we recompute the galaxy systemic

redshift as the average of the absorption and emission redshifts:

zgal ≡
zIS + zLyα

2
. (2.3)

The residual redshift errors (calculated from the galaxiesin the NIR sample) have a standard deviation

σv,err = 125 km s−1, which we adopt as the uncertainty in our galaxy redshift measurements.
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Figure 2.1: Velocity distribution of galaxies with respect to their nearest HLQSOs, stacked for all 15 HLQSO
fields. The velocityδv is given by Eq. 2.4, whereδv = 0 for a galaxy at the redshift of its corresponding
HLQSO. The yellow shaded area corresponds to the selection function, constructed as described in §2.3.1.
The dashed curve is a gaussian profile fit to the overdensity, with σv,fit = 350 km s−1. After removing the effect
of ourσv,err∼ 125 km s−1 (270 km s−1) galaxy (HLQSO) redshift errors, we estimate a peculiar velocity scale
of σv,pec≃ 200 km s−1 for the galaxies associated with the overdensity, with an offset〈δv〉 = 106±54 km s−1

from the HLQSO redshifts.

2.3 Redshift Overdensity

In order to consider the positions of the galaxies relative to their corresponding HLQSOs in redshift space

while accounting for the differences in the HLQSO redshiftsbetween fields, the redshift of each galaxy was

transformed into a velocity relative to its associated HLQSO. For a galaxy with indexi in a field with index

j, this velocity difference is given by

δvi, j =
c

1+ zQSO,j
(zgal,i − zQSO,j) . (2.4)

Once transformed to units of velocity, the distributions ofgalaxies relative to their HLQSOs were stacked

to reveal the average environment of HLQSOs in terms of the local galaxy number density (per unit velocity)—

this distribution is shown in Fig. 2.1. The distribution shows a well-defined peak nearδv = 0, indicating the

presence of significant clustering of the galaxies around the HLQSO redshifts. We attribute the slight offset

of the overdensity from the HLQSO redshifts (fit〈δv〉 = 106±54 km s−1) to a residual systematic offset in our
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determination of the HLQSO redshifts.

Figure 2.2: Redshift distributions for BX, MD, and CDM color-selected galaxy types. Red histograms
display the measured distributions of all such galaxies in each sample, while the yellow region represents the
fit spline function specific to the color-selected sample (i.e.,NBX(z), NMD(z), andNCDM(z)). The blue hashed
region is the overall redshift selection function for all color types.

2.3.1 Building the Selection Function

Clustering measurements can be grossly misinterpreted when the relevant selection functions are not well-

understood (Adelberger 2005). While the criteria for selecting galaxies for follow-up spectroscopy were

identical for all 15 of the KBSS fields, small differences in image depth and seeing, as well as slight changes

in the algorithms used for assigning relative weights in theprocess of designing slit masks, can lead to field-

to-field variations in the redshift selection functions. Toat least partially mitigate such variations in the

redshift-space sampling between fields, we used the number of successfully observed BX, MD, and CDM

galaxies in each field to estimate the form of our field-specific selection functionsNj(z). These estimates of

the selection functions were constructed as follows.

First, the redshift distributions of all BX, MD, and CDM galaxies in our sample were arranged in a coarse

histogram with bins of width∆z = 0.2. A spline fit was then performed to estimate the smooth distribution

functions of each galaxy type—the histograms and spline fits for each type are displayed in Fig. 2.2.
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For each field, we built a field-specific selection function bycombining these galaxy redshift distributions

for each color criterion according to the number of those galaxies successfully observed in the field. Thus for

a field with indexj, the redshift selection function is given by Eq. 2.5:

N j(z) = NBX,j NBX(z) +

NMD,j NMD(z) +

NCDM,j NCDM(z) , (2.5)

whereNBX,j corresponds to the number of BX-selected galaxies in fieldj, NBX is the selection function

for BX-selected galaxies over all fields, and other variables are defined similarly. We then transform these

redshift-space selection functions into units of velocityrelative to their corresponding bright HLQSOs using

Eq. 2.4. Finally, we combined this set of field-specific velocity-space selection functions (already weighted

by the number of galaxies in each field) into a single stacked function:

N (v) =
15
∑

j=1

N j(v) . (2.6)

The resulting selection function is fairly flat over the range |δv| < 20000 km s−1 with a slight negative

slope (yellow shading in Fig. 2.1), indicating our slight bias toward detecting objects “in front" of the HLQSO

(that is, at lower redshifts) compared to galaxies slightly“behind” the HLQSO in each field. The selection

function is thus a prediction for the observed distributionof galaxies in relative-velocity space in the absence

of clustering.

2.3.2 Bias in Field Selection

We previously knew one KBSS field (HS1549+1919) to have a large overdensity in the galaxy distribution

very close to the redshift of the central HLQSO. The variation in overdensity among fields can be estimated

by N1500 in Table 2.2, which is the number of galaxies within 1500 km s−1 of the HLQSO redshift for that

field. In order to ensure that our clustering results are not being dominated by a single field, we repeated our

analysis on subsamples of the data consisting of 14 of the 15 fields, removing a different field each time. In

each case the magnitude and scale of the overdensity was consistent with that observed when all 15 fields

were included in the analysis, indicating that the observedmagnitude and scale of the overdensity are not

determined by any single field.
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Figure 2.3: The relative overdensityf ovr (Eq. 2.7) as a function of velocity relative to the central HLQSOs
over a wide velocity range. The overdensity is measured in bins of 500 km s−1, as this Hubble flow velocity
roughly corresponds to the same physical scale as our transverse field of view (5h−1 cMpc ∼ 500 km s−1).
See §2.3.1 for details on the selection function.

2.3.3 Redshift Clustering Results

Fig. 2.1 shows the observed galaxy distribution in units of velocity along with the selection function estimate

from §2.3.1. The peak in the galaxy distribution near the HLQSO redshifts is clearly visible. Fitting a Gaus-

sian function to the histogram in Fig. 2.1 gives a velocity width σv,fit = 350±50 km s−1, which includes the

effect ourσv,err ≃ 125 km s−1 galaxy redshift errors and the random residual errors in ourHLQSO redshifts,

assumed to beσv,err ∼ 270 km s−1. After subtracting the redshift errors in quadrature, we find an intrinsic

velocity width of σv,pec≃ 200 km s−1 for the galaxy overdensity, which we attribute to peculiar velocities.

Note that the residual HLQSO redshift errors are uncertain and likely to be largely systematic (see §2.2.1), so

our estimated velocity dispersion is an upper limit on the true peculiar velocity scale if the random component

of the HLQSO redshift error is larger than we have assumed.

We also consider the relative overdensity at the HLQSO redshift by comparing the observed density to

that predicted by our selection function. The distributionis plotted as a relative overdensity

fovr = (Nobs− Npred)/Npred (2.7)

in Fig. 2.3, whereNobs is the number of galaxies observed in a given velocity bin andNpred is the number

predicted for that bin by our selection function. The relative overdensity is measured in bins with∆v = 500

km s−1; this scale was chosen to correspond roughly to the transverse scale of our field, since a Hubble-flow

velocity of 500 km s−1 ∼ 5h−1 cMpc at these redshifts. Fig. 2.3 shows that the HLQSOs are associated (on

average) with aδn/n ∼ 7 overdensity of galaxies when considered on the∼5h−1 Mpc scale of our field, with
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no features of comparable amplitude over a wide range of redshifts (40000 km s−1 corresponds to∆z ≃ 0.5

at z ≃ 2.7).

Figure 2.4: For each projected circular annulus, the relative overdensity ( fovr; Eq. 2.7) of galaxies within
1500 km s−1 of the HLQSO with respect to the redshift selection functionand angular selection function. The
overdensity of galaxies is localized for the most part to a tranverse scaleR . 0.5h−1 cMpc.

Repeating this analysis after dividing the galaxies into radial annuli, we find that the redshift association

is most pronounced for those galaxies within 25′′ of the HLQSO line of sight (∼200 pkpc), though a lower

level of redshift clustering does extend to larger projected distances (see Fig. 2.4). If this distance is taken

as an isotropic spatial scale of the galaxy overdensity, then the line-of-sight velocity dispersion due to the

Hubble flow would be only∼65 km s-1. However, a less-significant overdensity does extend to larger radii,

and thus likely includes many galaxies that are clustered around the HLQSO but move with the Hubble flow.

In order to ensure that the measured velocity width is not inflated by these non-virialized galaxies, we directly

measure the velocity dispersion among the 15 galaxies within 1500 km s−1 and 0.5h−1 cMpc (200 pkpc) of the

HLQSOs; as discussed in §2.5, these galaxies are likely to bevirialized and associated with the HLQSO, and

our selection functions predict only 1.5 galaxies in this volume in the absence of clustering. These 15 galaxy

velocities have a sample standard deviation of 335 km s−1, consistent with the velocity width measured for the

entire overdensity. The observed velocity spread is thus presumably set by peculiar velocities ofσv,pec≃ 200

km s-1 among the HLQSO-associated galaxies.

A comparison of Figs. 2.3 & 2.4 demonstrates that the relative overdensity is highly scale-dependent. If

we assume that the width of the overdensity in velocity spaceis entirely due to peculiar velocities, and hence

that all 15 of the galaxies observed withR < 0.5h−1 cMpc and|δv|< 500 km s−1 are physically located within

a three-dimensional distancer < 0.5h−1 cMpc from their nearest HLQSO, then the number of galaxies inthis

composite volume is∼50x the number predicted by our redshift and angular selection functions (described
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in §2.3.1 & §2.4.1.1, respectively).

2.4 Correlation Function Estimates

2.4.1 Galaxy-HLQSO Cross-Correlation Function

Much of the recent work on QSO clustering relies on large-scale two-point correlation functions, particularly

the QSO autocorrelation function (see, e.g., Shen et al. 2007). The galaxy-HLQSO cross-correlation function

ξQ can provide a complementary estimate of HLQSO host halo mass.

The correlation function is defined as the excess conditional probability of finding a galaxy in a volume

dV at a distancer = |r1 − r2|, given that there is a HLQSO at pointr1, such thatP(r2|r1)dV = P0[1 + ξ(r)]dV ,

whereP0dV is the probability of finding a galaxy at an average place in the universe. Here we assume a power-

law form for the correlation function:ξGQ = (r/rGQ
0 )−γ , whereγ is the slope parameter andr0 corresponds to

the comoving distance at which the local number density of galaxies is twice that of an average place in the

universe.

Many recent analyses of the two-point correlation functionhave dispensed with power-law fits in favor of

directly modeling the halo-occupation distribution (HOD;see, e.g., Seljak 2000; Berlind & Weinberg 2002;

Zehavi et al. 2004) based on the theory of Press & Schechter (1974) and a statistical method of populating

dark matter (DM) halos with galaxies. A general feature of these HOD models is a deviation from a single

power law at distances near 1h−1 cMpc due to a transition from the single-halo regime (the clustering of

galaxies/QSOs within a single dark-matter halo) to the two halo regime (the clustering of galaxies/QSOs

hosted by distinct halos).

In this chapter we implement the simpler power-law fitting technique for the following reasons. First,

our smaller sample (with respect to the large surveys at low redshift) does not allow us to detect a deviation

from a power-law fit with any significance, particularly for the galaxy-HLQSO cross-correlation. Second, our

choice to fix the power-law slopeγ (see below) desensitizes our result to the precise shape of the correlation

function, leaving the clustering lengthrGQ
0 to primarily reflect the integrated pair-probability excess over the

range of projected distances in our sample.

In practice, the three-dimensional correlation functionξ(r) is not directly measurable: line-of-sight ve-

locities are an imperfect proxy for radial distance due to peculiar velocities and redshift errors. As such, it is

more useful to consider the reduced angular correlation function, wp(R|∆z) by integrating over a redshift or

velocity window:

P(R)dΩ = P′

0dΩ
[

1+ wp(R)
]

= dΩ

∫

∆z
P(r)dz , (2.8)

whereR = DA(z)θ(1+ z) is the projected comoving distance from the HLQSO, andDA(z) is the angular diam-

eter distance to the HLQSO. In the limit∆z →∞, and assuming a power-law form of the three-dimensional
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correlation function, it can be shown that the reduced angular correlation function has an equally simple

power-law form:

wp(R) = AR−η (2.9)

with η = γ − 1. However, we would like to restrict our analysis to small redshift/velocity scales, choosing a

value of∆z that includes the entire clustering signal while eliminating the noise contribution of uncorrelated

structure at large line-of-sight separations from the HLQSO, and this priority precludes the assumption of

∆z →∞. In the case of a truncated redshift range, the reduced angular correlation function does not simplify

to a power-law, and instead takes the form of a Gaussian hypergeometric function, denoted as2F1(a,b;c;z).

In our particular case, the reduced angular cross-correlation functionwGQ
p is expressed by the following:

wGQ
p (R) =

∫ z0

−z0

(r/rGQ
0 )−γdz =

∫ z0

−z0

(
√

R2 + z2/rGQ
0 )−γdz

=

(

rGQ
0

R

)γ

2F1

(

1
2
,
γ

2
;
3
2

;
−z2

0

R2

)

(2.10)

wherez0 is the half-width of the redshift window over which we compute the clustering strength. We choose

a valuez0 = 1500 km s−1 ≃ 14h−1 cMpc in order to encompass the entire observed overdensity (see Fig. 2.1)

and the range of projected distances we are able to probe (R < 4.2h−1 cMpc) without including excess noise.

We then fit the reduced angular correlation functionwGQ
p (R|rGQ

0 ,γ) to the data by variation of the correlation

lengthrGQ
0 . We fixγ = 1.5 for simplicity in matching our data to halo populations (see §2.4.3); this value ofγ

was chosen as it is a reasonably good fit to both the galaxy autocorrelation function and galaxy-HLQSO cross-

correlation function, as well as the correlation functionsamong the simulated halo populations. Increasing

the value ofγ causes the best-fit value ofrGQ
0 to decrease, but the corresponding halo mass is very insensitive

to the choice ofγ, so long as the same value is used for both the galaxy and the simulated halo populations.

In order to estimatewGQ
p (R) from our data, we separate our fields into projected circular annuli of varying

widths, constructed so that each annulus has a roughly similar signal-to-noise ratio, and with our largest

annulus having its outer edge∼200′′ from the HLQSO, a projected distance ofR = 4.2h−1 cMpc. As noted

above, we wish to restrict our analysis to those galaxies that are closely associated with a HLQSO in redshift

as well as projected position, so we also separate our galaxysample into two velocity groups: one with

|δv| ≤ 1500 km s−1 and one with|δv|> 1500 km s−1. In this way, we defineNv(Rk) as the number of velocity-

associated galaxies in the kth annular bin andN0(Rk) as the number of non-associated galaxies in the bin.2

The solid angle covered by the kth annular bin is given byAk = π(R2
outer,k− R2

inner,k); thus we likewise define

the area densities of galaxiesΣv,0(Rk) = Nv,0(Rk)/Ak.

2In this chapter, we will use the subscript or superscriptv to denote velocity-associated galaxies, and 0 to denote non-associated
galaxies.



23

We then used the selection function constructed in §2.3.1 toestimate the expected number of galaxies

in each velocity group [i.e.,Nv = N (|δv| < 1500) andN0 = N (|δv| > 1500)], which we convert to expected

average area densities for each velocity group (Σ
pred
v,0 = Nv,0/Afield). Finally, we divide the measured area

densities by the average predicted value to define the relative overdensity of each annulus. If the overdensity

Σv(Rk)/Σ
pred
v is purely due to the clustering signal, then the reduced angular cross-correlation function is

given bywGQ
p = Σ

GQ
v,obs(Rk)/Σ

GQ
v,pred− 1; however, this assumption is invalid if the angular sampling of the field

is not uniform, which we explore below.

2.4.1.1 Angular Selection Function

The use of the redshift selection function inNpred ensures that large-scale variations and sampling biases in

redshift are taken into account in our analysis. Selection biases can also occur in the plane of the sky; because

our fields are centered on their HLQSOs, any bias that varies with distance from the center of the field will

mimic a change in the correlation function. To account for this effect, we recall that galaxies with|δv|> 1500

km s−1 show no association with the HLQSO (see Fig. 2.1), and therefore should be uniformly distributed on

average. Therefore, if the functionΣ0(R) is not a constant, it must describe a non-uniform angular selection

function, which encapsulates variations in optical selection sensitivity (e.g. due to non-uniform extinction or

field coverage) as well as any biases in slit positions on our masks. We assume these biases are independent of

redshift, and that they produce the same fractional excess of galaxy counts in all velocity bins. Therefore, the

measured values ofΣv(R)/Σ
pred
v correspond to the the true reduced correlation function 1+ wp(R) multiplied

by a transverse (angular) selection function, which we estimate byΣ0(Rk).

Σv(Rk)

Σ
pred
v

=
Σ0(R)

Σ
pred
0

[

1+ wp(Rk)
]

. (2.11)

We found that the measured values ofΣ0(Rk) are well-matched by a power-law inR, and therefore, rather

than using Eq. 2.11 directly to estimatewp(Rk), we found best-fit parametersα andβ for the following model:

Σ0(R)

Σ
pred
0

= αRβ . (2.12)

The best-fit parameters for this model areα = 1.59,β = −0.58 withR in h−1 cMpc; the fit selection function

is displayed in Fig. 2.5. Combining Eqs. 2.10, 2.11, & 2.12, we arrive at an explicit model forΣv(R) in terms

of the galaxy-HLQSO cross-correlation lengthr0 and correlation slopeγ:

Σv(Rk)

Σ
pred
v

= αRβ

[

1+
( r0

R

)γ

2F1

(

1
2
,
γ

2
;
3
2

;
−z2

0

R2

)]

(2.13)

wherez0 = (1500 km s−1)H−1
0 (1+ z)−1 is the half-width of the redshift window in physical units, and againα

andβ are set by fittingΣ0(R) to Σ0(Rk). We then adjust the free parameterr0 corresponding to the cross-

correlation function to fit the measured values ofΣv(Rk).
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The fit to Σv was performed via a simpleχ2-minimization using an error vector constructed assuming

Poisson uncertainties in the galaxy counts. The binned datacover a range of projected distances 0.22−3.57h−1

cMpc.

Our empirical estimate forwp(R) obtained via the above methods is displayed in Fig. 2.6. We find a best-

fit correlation lengthr0 = (7.3±1.3)h−1 Mpc after fixingγ = 1.5, where the error is a 1σ uncertainty computed

via a bootstrap estimate. This procedure consisted of repeating the entire analysis 100 times (computation of

selection functions, counting of pairs, andχ2-fitting of wp) using a random bootstrap sample of 15 of the 15

independent fields selected with replacement. The quoted uncertainty is the standard deviation of parameter

values derived from these 100 bootstrap samples. The results of this procedure were consistent with the

results of jackknifing estimates performed using 14 of the 15fields (i.e., ann − 1 jackknife estimate) or using

8 of the 15 fields (i.e., an approximately∼ n/2 jackknife estimate). Theχ2 value for the fit is 3.7 on 4 degrees

of freedom.

As noted in §1, Adelberger & Steidel (2005b) performed a cross-correlation measurement with a similar

sample of color-selected galaxies to compare black hole andgalaxy masses over a large range of AGN lumi-

nosities (-20& MAB(1350Å)& -30) at a similar range of redshifts to our galaxy sample (1.5. z . 3.6). That

study separated the AGN sample into two bins of black-hole mass, obtaining galaxy-AGN cross-correlation

lengthsr0 = 5.27+1.59
−1.36 h−1 cMpc for AGNs with 105.8 < MBH/M⊙ < 108 andr0 = 5.20+1.85

−1.16 h−1 cMpc for AGNs

with 108 < MBH/M⊙ < 1010.5. These measurements are fairly consistent with our own measurement ofr0 for

the galaxy-HLQSO cross-correlation, given the size of the uncertainties, and Adelberger & Steidel (2005b)

assume a correlation function slope of 1.6, rather than the slope of 1.5 used in this study. As noted above,

the best-fit value ofr0 varies inversely with the chosen slope for the range of separations our measurements

include, and this effect likely accounts for the slight discrepancy between these two estimates.

2.4.2 Comparison to Galaxy-Galaxy Clustering

The strength of the clustering signal corresponds to the mass scale of the HLQSO-host halos, which we

are interested in comparing to the average halo mass scale ofnon-active galaxies. As such, the relative

strengths of the galaxy-galaxy (GG) and galaxy-HLQSO (GQ) clustering reveal the relative mass scales of

their respective host halos, and therefore illuminate any halo-mass requirements for the formation of HLQSOs

at z ≃ 2.7.

Our estimate of the galaxy-galaxy correlation function is based on the same technique as our galaxy-

HLQSO estimates but is modified by centering on each galaxy inturn, rather than on the HLQSO. In addition,

we restrict our GG analysis to those galaxies at redshiftszgal > 2.25 so that the GG autocorrelation function

probes a similar redshift range to that of the GQ cross-correlation; the 909 galaxies withz > 2.25 have a

median redshiftzmed
gal = 2.63, while the median HLQSO redshift iszmed

QSO= 2.66. For each galaxy in our sample,

we consider the number density (per unit solid angle) of galaxies as a function of projected distance from our

fiducial galaxy, separating between redshift-associated galaxies (those within 1500 km s−1 and in the same
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Figure 2.5: The ratioΣ
obs/Σ

pred for the galaxy-QSO clustering (GQ; top) and galaxy-galaxy clustering (GG;

bottom). In each panel, the red diamonds denoteΣ
obs
v /Σ

pred
v , while the black crosses denoteΣ

obs
0 /Σ

pred
0 . The

error bars are from Poisson uncertainties. The dashed blackline is the fit toΣobs
0 /Σ

pred
0 and defines the angular

selection function; the functional form is a power-law for the GQ selection function (§2.4.1.1) and linear for
the GG case (§2.4.2).

field as the fiducial galaxy) and non-associated galaxies (those outside the velocity range or in a different

field). We then integrate over the redshift selection function (§2.3.1) to find the expected number of galaxies

in each interval, from which we can define an angular correlation function for each interval (by analogy to

Eq. 2.11):

Σ
GG
v,obs(R)

ΣGG
v,pred

=
Σ

GG
0,obs(R)

ΣGG
0,pred

[

1+ wGG
p (R)

]

(2.14)

where again thev subscript denotes quantities corresponding to the redshift-associated sample, and the 0 sub-

script denotes those corresponding to the non-associated sample. The non-associated sample is not expected

to cluster about the arbitrary line of sight defined by the position of our fiducial galaxy, so we interpret the

quantityΣobs,0(R)/Σpred,0(R) as an estimate of the relative completeness of our angular sampling. We found

the completeness (i.e., the angular selection function of the galaxy-galaxy pairs) of our sample to be well-

described by a linear model inR with negative slope:Σ0 = aR+b. This shape reflects the fact that we are able

to measure the power on small scales for essentially all galaxies, while we can see the maximum separation

≃ 2Rmax only for the small fraction of galaxies at the edge of our fields (and even then we see only the subset

of pairs that lie entirely within the field). The best-fit parameter values for the GG angular selection function

area = −0.160,b = 1.04 with R in h−1 cMpc (Fig. 2.5).

As in the case of the GQ cross-correlation function, we then fit a model toΣ
GG
v that is a combination

of the underlying clustering signal described bywGG
p (R) and the selection function described byΣ

GG
0 . The
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Figure 2.6: Estimate of the reduced galaxy-HLQSO (red) and galaxy-galaxy (black) correlation functions
wp(R) for those galaxies closer than 1500 km s−1 from the HLQSO (or fiducial galaxy) redshift.wp is the
excess probability of a galaxy appearing at a projected comoving separationR from the HLQSO line of sight,
as compared to predicted galaxy number counts determined bythe redshift selection function (§2.3.1) and
angular selection function (§2.4.1.1). Solid curves are fits to the best-matched MultiDark halo populations
(§2.4.3), which imply a galaxy halo mass log(Mh,gal/M⊙) = 11.9±0.1 (see §2.4.4) and a HLQSO halo mass
log(Mh,QSO/M⊙) = 12.3±0.5.

combined model is given by Eq. 2.15:

Σ
GG
v (R)

Σ
pred
v

= (aR + b)

[

1+
(

rGG
0

R

)γ

2F1

(

1
2
,
γ

2
;
3
2

;
−z2

0

R2

)]

.

Fitting this model to the measured values ofΣ
GG
v (Rk), we find the best-fit galaxy autocorrelation length

to be rGG
0 = (6.0± 0.5)h−1 Mpc, again fixing the slopeγ = 1.5. In this case, the errors inΣGG

v cannot be

considered Poissonian because each galaxy is counted in several pairs and the galaxy counts are correlated

between bins. However, the 15 HLQSO fields each provide an independent estimate ofΣGG
v , and the error

used for theχ2-fitting is based on the scaled scatter among these values. The quoted error onrGG
0 is the 1σ

uncertainty from the same bootstrap and jackknife procedures described forrGQ
0 (§2.4.1.1). Theχ2 value for

the fit is 9.3 on 5 degrees of freedom.

This autocorrelation length is significantly larger than that found by Adelberger et al. (2005b) [r0 =

(4.0±0.6)h−1 cMpc at z = 2.9], despite both studies relying on a similarly-selected set of galaxies. How-

ever, this study is restricted to the spectroscopically-observed galaxies, which have a higher mean luminos-

ity than the galaxies in the photometric sample used in Adelberger et al. (2005b), and are more compara-

ble to the higher-luminosity sub-sample of galaxies used inthat chapter, for which the authors estimated

r0 = (5.2±0.6)h−1 cMpc. In addition, the much larger set of spectroscopic redshifts used in our sample al-

lows us to characterize the redshift selection function with much greater accuracy, as well as to restrict our
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analysis to those galaxies associated with the HLQSOs in three-dimensional space. For example, an injudi-

cious choice ofz0 in Eq. 2.10 would lower the estimated cross-correlation length, either by failing to count

HLQSO-associated galaxies (z0 < 1500 km s−1) or by diluting the clustering signal by the inclusion of the

voids adjacent to the HLQSO in redshift space (z0 > 1500 km s−1).

2.4.3 Estimate of Halo Mass

The measured clustering of the galaxies in our sample is primarily useful in its connection to the mass scale

of the galaxy host halos. Because the clustering strength ofdark matter halos is a function of halo mass, we

can invert this relation to obtain the halo mass for a population of objects with a given autocorrelation length.

In practice, we perform this inversion numerically, findingthe population of simulated halos (for which the

mass is known) that match the clustering strength of our galaxy sample.

Using halo catalogs from the MultiDark MDR1 simulation (Prada et al. 2011; accessed via the MultiDark

Database of Riebe et al. 2011), we measured the correlation lengthr0 as a function of minimum halo mass

Mh using the Landy-Szalay estimator (Landy & Szalay 1993) and assuming the same power-law slope (γ =

1.5) used in our fit to the galaxy autocorrelation function. Thecorrelation function was measured for halo

populations of differing masses by varying the minimum Mh in steps of 0.05 dex; the correlation lengths for

a subset of the halo samples are listed in Table 2.3. A power-law correlation function is a poor fit to the

halo clustering at small scales due to the effect of halo exclusion; therefore, we restricted our fit to pairs with

separations 1≤ d/(h−1 Mpc) ≤ 5, a range that avoids the halo-exclusion zone while still closely matching

the range of projected distances in our observed sample. In this manner, we find that our galaxy sample is

most consistent with having a minimum halo mass log(Mh/M⊙)>11.7±0.1, the fit to which is displayed in

Fig. 2.6. The halos in this mass range have a median mass log(Mh/M⊙) = 11.9±0.1. The statistical error in

the mass estimate is entirely due to the propagated error in the autocorrelation function, as the uncertainty in

the autocorrelation function among simulated halos is negligible by comparison.

In addition to matching clustering strengths, we can also attempt to match the abundances of observed

galaxies and simulated halos. Although our spectroscopic sample of galaxies is incomplete, we can com-

pare this halo population to the galaxy luminosity function(GLF) of Reddy et al. (2008), which corrects

for incompleteness in both the spectroscopic and photometric samples. Luminosity functions are measured

separately for galaxies with 1.9≤ z < 2.7 and 2.7≤ z < 3.4, while our sample straddles these two redshift

intervals, but the GLF evolves very little over this redshift range, and the predictions of either model are quite

similar. Using the Schechter (1976) GLF parameters listed in Table 7 of Reddy et al. (2008), and taking our

magnitude limitR< 25.5 to correspond to MAB(1700Å). −19.9 atz≃ 2.7, the Reddy et al. models predict a

galaxy number densityφgal = 2.4−7.0×10−3h3Mpc−3 (including the 1σ limits onφ∗). The number density of

log(Mh/M⊙)>11.7 halos in the MultiDark MDR1 simulation isφsim = 4.4×10−3h3Mpc−3, entirely consistent

with the measured value ofφgal.

Taking the population of log(Mh/M⊙)>11.7 halos to represent the host halos of the galaxies in our sample,
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Table 2.3. Clustering Properties of Simulated Halos

Minimum ACF r0
a XCF r0

b

log( Mh
M⊙

) (h−1 Mpc) (h−1 Mpc)

11.50 5.1 5.6
11.60 5.6 5.9
11.70 6.1 6.1
11.80 6.7 6.3
11.90 7.1 6.8
12.00 7.8 6.8
12.10 8.6 7.2
12.20 9.6 7.6
12.30 10.5 7.8
12.40 11.6 7.9
12.50 12.8 8.4
12.60 14.6 8.6
12.70 16.3 9.0
12.80 18.6 9.1

aHalo autocorrelation length (compare
to rGG

0 = (6.0±0.5)h−1 cMpc)

bCross-correlation length with halos
of mass log(Mh/M⊙)>11.7 (compare to
rGQ

0 = (7.3±1.3)h−1 cMpc)

we then estimate the mass of the HLQSO hosts by finding the population of simulated halos whose cross-

correlation with the representative galaxy halos is equal to our measured galaxy-HLQSO cross-correlation

function. Again varying the minimum Mh (of fiducial HLQSO hosts) in 0.05 dex increments, and us-

ing a Landy-Szalay variant for a cross-correlation withγ = 1.5, we find that a HLQSO host halo mass

log(Mh/M⊙)>12.1±0.5 (a median halo mass of log(Mh/M⊙) = 12.3±0.5) is most consistent with our galaxy-

HLQSO cross-correlation measurement. The error in the massis due to the error on bothrGQ
0 and the prop-

agated error on the galaxy host halo mass, since the strengthof the cross-correlation function depends on

the mass of both the HLQSO-host and galaxy-host halo populations. The fit to the corresponding simulated

cross-correlation function is shown in Fig. 2.6. The MultiDark halos of log(Mh/M⊙)>12.1±0.5 have an au-

tocorrelation length of 6−15 h−1 cMpc, which we consider to be an estimate of the HLQSO autocorrelation

length, and such halos have an abundanceφsim = (0.17− 5.9)×10−3h3Mpc−3 at z∼2.5 in the simulation.

2.4.4 Dependence on Simulation Cosmology

The MultiDark suite of simulations used cosmological parameters based on the WMAP 5-year results,

{Ωm,ΩΛ,σ8,h} = {0.27,0.73,0.82,0.70}, which are consistent with the most recent WMAP 7-year results from

Larson et al. (2011): {0.276±0.029,0.734±0.029,0.801±0.030,0.710±0.025}. In comparison, the older (and
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widely-utilized) Millennium simulation (Springel et al. 2005) used cosmological parameters based on the

WMAP 1-year results, {Ωm,ΩΛ,σ8,h} = {0.25,0.75,0.9,0.73}. We here consider how such a variation in these

cosmological parameters affects the halo-matching process employed in this study.

The parametersΩm andσ8 both affect halo abundances, and thus affect the halo bias and the mapping

from clustering strengths to halo masses. Zehavi et al. (2011) conduct an HOD analysis on a large sample

of galaxies and find that varying the matter density over the range 0.25≤ Ωm ≤ 0.3 produces only a∼2%

variation in their clustering measurements, which is quitesmall compared to the statistical uncertainty in our

measurements.

However, the amplitude of the linear dark-matter fluctuations,σ8, is tied to the clustering in a more pro-

nounced and complicated manner. The clustering of galaxiesin linear theory is given by the galaxy bias

and the dark-matter clustering:ξGG(M) = b2(M)ξDM . Decreasingσ8 decreases the value ofξDM but also

greatly decreases the number density of high-mass halos, which causes the bias at a given halo massb(M)

to increase. For high-mass halos, the overall effect is to increase the clustering strength at a given mass

whenσ8 is decreased, which suggests that mapping halo masses to clustering strengths using the Millennium

simulation would result in a shift toward larger halo masses. Repeating our halo-matching analysis on Mil-

lennium halo catalogs, we find that the best-matched halo population of galaxies has a minimum halo mass

log(Mh,Mill /M⊙)>12.0±0.1 and a median mass log(Mh,Mill /M⊙)=12.2±0.1 in that simulation. The discrep-

ancy between the two simulations is∼3x the statistical uncertainty in the galaxy halo mass measurements,

confirming that the clustering of these massive halos is quite sensitive to the chosen cosmological parameters.

2.4.5 Relative Abundances of Galaxy-Host and HLQSO-Host Halos

The mass scales of the host halos for galaxies and HLQSOs map to halo abundances, as described in §2.4.3.

A galaxy host halo abundance ofφsim,11.7= 4.4× 10−3h3Mpc−3 (the MultiDark Simulation abundance of

halos with log(Mh/M⊙)>11.7) and a HLQSO host halo abundance ofφsim,12.1= 1.2×10−3h3Mpc−3 suggest

that halos massive enough to host a HLQSO are only∼4x less abundant than those massive enough to host

the average galaxy in our sample; the fact that far fewer thanone quarter of the galaxies in our sample

host a HLQSO is a strong constraint on the duty cycle of these objects. However, the precise value of the

HLQSO duty cycle depends on the number density of HLQSOs, which in turn depends on the choice of QSO

population.

All of our HLQSOs have luminosities at rest-frame 1450Å of log(νLν /L⊙)∼14, or an absolute magnitude

M(1450Å)∼ −30.3 This is brighter than the luminosity range for which large-sample statistics are available in

surveys such as SDSS and SLAQ [see, e.g., Croom et al. 2009, whose Mg(z=2) is comparable to M(1450Å)],

but we can obtain an estimate of thez ∼ 2.7 quasar luminosity function (QLF) by extrapolating the results of

the highest redshift bins of Croom et al. (2009) to slightly higher redshifts and luminosities; in this way we

3This criterion may not be satisfied for the gravitationally lensed object Q0142-10, and it is possible that other QSOs in our sample
are also lensed. However, we regard it as unlikely that significant lensing has remained undetected in these well-studiedobjects, so the
rest-frame luminosities quoted here are assumed to be accurate.
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roughly estimate the number density of M(1450Å)& −30 QSOs to beφQSO∼ 10−9.5h3 Mpc−3. Integrating this

density over the total comoving volume between redshifts 2≤ z ≤ 3 predicts∼25 QSOs in this luminosity

range over the entire sky, suggesting that a large fraction of the comparably bright QSOs at these redshifts

are already in our sample.

Given this number density, we can extract the duty cycle of HLQSOs from the ratioφQSO/φsim,12.1≃
10−6 − 10−7, defining the duty cycle as the fraction of halos massive enough to host a hyperluminous QSO

[log(L/L⊙)&14] that actually do host such a QSO. This extreme rarity withrespect to the number of potential

host halos indicates that the formation of the HLQSO must rely on a correspondingly rare event occurring on

scales much smaller than those probed by our analysis, perhaps related to an extremely atypical merger or

galaxy interaction scenario.

2.4.6 Black Hole Mass vs. Halo Mass

It is interesting to compare the host halo masses of the HLQSOs to the minimum black hole (BH) masses

allowed by their luminosities under the assumption of Eddington-limited accretion; we will refer to this

minimum mass as MBH. The minimum BH masses for each HLQSO are listed in Table 2.2.We calculate the

value of MBH directly from L1450 (the value ofνLν at a rest-frame wavelength of 1450Å):

MBH =
σTL1450

4πGmpc
= 3.1×10−5

(

L1450

L⊙

)

M⊙ . (2.15)

We use L1450 in place of the bolometric luminosity Lbol in order to avoid the additional uncertainty in the

bolometric correction. The true bolometric correction is likely to be small: Nemmen & Brotherton (2010) use

a thin accretion disc model to predict a correction factor Lbol/L1450∼ 3, which is consistent with the empirical

correction estimated by Netzer & Trakhtenbrot (2007) for L5100 and scaled by the L5100/L1450 relationship of

Netzer et al. (2007). However, there is substantial scatterin these corrections, and it may be expected that

Lbol/L1450 approaches unity for QSOs selected by the most extreme rest-UV luminosities, so L1450 is a useful

estimate (and likely a lower limit) on Lbol.

The HLQSOs in our sample span a range of∼5x in MBH (with the possible exception of Q0142-10), and

it is notable that the field (HS1549+1919) with the largest value of MBH is also associated with the largest

redshift overdensity in the galaxy distribution (see column N1500 in Table 2.2). However, there is no clear

relation betweenN1500 and MBH among the other fields, and our galaxy samples are not large enough to

comment on the variation of MBH with halo mass.

The median value of MBH for our sample is log(MBH/M⊙) ≃ 9.7. This indicates that the HLQSO host DM

halos are only∼300-2000x more massive than their associated supermassiveBHs, even assuming accretion

at the Eddington limit. The relationship between BH mass andDM halo mass is uncertain even atz ≃ 0

(compare, e.g., Ferrarese 2002, Booth & Schaye 2010, and Kormendy & Bender 2011), but these BHs lie

well above the predictions of the MBH-σ or MBH-vc relations for any reasonable mapping of the DM halo
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mass to the bulge velocity dispersionσ or circular velocityvc, as demonstrated below.

Three such mappings are considered in Ferrarese (2002), in which the halo virial velocityvvir is related

to the circular velocity by consideringvc = vvir (a zeroth-order approximation),vc = 1.8vvir (based on obser-

vational constraints on DM halo mass profiles by Seljak 2002), or vc/vvir given by a function of halo mass

extracted from the N-body simulations of Bullock et al. (2001). These three different assumptions predict

BH masses of log(MBH/M⊙) = 7.0, 8.4, and 7.5, respectively, for a halo of mass log(Mh/M⊙) = 12.3, cor-

responding to MDM /MBH ≃ 2×105, 8×103, and 6×104. In any of these cases, the minimum BH masses

for the HLQSOs in our sample are 1-2 orders of magnitude higher than the predictions of the low-redshift

associations, implying that the host halos must “catch up” with the BHs in order to fall on the established

relations byz ≃ 0.

Though estimates of BH masses at high redshift are highly uncertain, as are the stellar masses of their

host galaxies, this result agrees qualitatively with several observational studies that find BH host galaxies

at high redshift (1. z . 4) of a given stellar mass have systematically higher BH masses than in the local

universe (e.g. Peng et al. 2006; Decarli et al. 2010; Merloniet al. 2010; Greene et al. 2010); Booth & Schaye

(2010, 2011) describe an interpretation of this evolution in terms of the compactness of DM halos, which are

more tightly bound at high redshifts. These studies generally find a smaller deviation from thez ≃ 0 relations

than is present in our sample, but the extreme luminosities of the HLQSOs in our sample force us to probe

the highest-mass end of the BH mass distribution, so our measurements are very sensitive to the scatter in the

Mh−MBH relation as well as to evolution in the mean.

If we consider the possibility that the dynamical mass discussed in §2.5 includes matter external to the

HLQSO host halo atz ≃ 2.7, which may merge into a single more massive halo byz ≃ 0, we can cal-

culate where such a halo would fall in the Mh−MBH relations of Ferrarese (2002). Taking a halo mass

log(Mh/M⊙) = 13, the above prescriptions predict BH masses of log(MBH/M⊙) = 8.3, 9.6 and 8.7, respec-

tively, which lie much closer to the range of BH masses seen inour sample. However, it seems clear that the

extremely high BH masses indicate that the HLQSOs are atypical (with respect to the general population of

QSOs) at the smallest scales.

2.5 Group-Sized HLQSO Environments

In addition to the properties of the HLQSO host halos themselves, it is interesting to consider the type of larger

environment these hyperluminous objects inhabit. The spatial scale of the galaxy overdensities occupied by

the HLQSOs in our sample is∼0.5h−1 cMpc (Fig. 2.4;∼200 pkpc), and the peculiar velocity scale of the

composite overdensity isσv,pec≃ 200 km s−1 after accounting for our measurement errors (Fig. 2.1). The

relatively compact nature of the overdensity suggests thatit may represent a virialized structure (discussed

below), in which case the inferred size and velocity scales can be combined to provide a crude estimate of

the mass scale of the overdensity. The virial mass estimatorcan be expressed in terms of the 3D velocity



32

dispersion〈v2〉, a characteristic radiusR, the gravitational constantG, and a constantα ∼ 1 that depends on

the geometry of the system:

Mdyn = αR〈v2〉/G . (2.16)

If we approximate our group as a sphere of uniform density, wehaveα = 5/3. We can also take〈v2〉 =

〈v2
x〉+ 〈v2

y〉+ 〈v2
z〉 = 3σ2

v ≃ 3× (200 km s−1)2 andR ≃ 200 pkpc from the scales above, from which we find that

the average HLQSO overdensity is associated with a total mass log(Mdyn/M⊙) ≃ 13 — the approximate mass

scale of a small galaxy group, and consistent with the HLQSO host halo mass derived from the clustering

analysis in §2.4.3.

Because of the crude nature of this estimate, we considered several checks to determine whether these

overdensities are indeed consistent with virialized groups. If the galaxies around the HLQSOs are in virial

equilibrium, their spatial extent should roughly match thevirial radiusr200 of a log(Mh/M⊙) ≃ 13 halo, where

r200 = (3Mgrp/800πρcrit)1/3. In fact, the virial radius for this mass scale is approximately r200 ≃ 200 pkpc

≃ 0.5h−1 cMpc — this close match to the observed overdensity scale suggests that the HLQSO-associated

galaxy overdensities are indeed virialized.

Finally, we can estimate the number of galaxies associated with each HLQSO. From our smoothed selec-

tion function (§2.3.1), we find that the approximate number density of spectroscopically-observed galaxies at

z ∼ 2.7 isφspec= 1.3×10−3h3Mpc−3, while the number density of log(Mh/M⊙)>11.7 halos in the MultiDark

simulation isφsim = 4.4× 10−3h3Mpc−3 (which is also the abundance of galaxies predicted by the GLFof

Reddy et al. 2008). Under the assumption that each of these log(Mh/M⊙)>11.7 dark matter halos hosts a

galaxy of comparable luminosity to those in our sample (§2.4.3), this implies that our spectroscopic sample

is ∼30% complete. We find a total of 15 galaxies in our sample that are within 1500 km s−1 and 0.5h−1

projected cMpc of a HLQSO; taking our completeness into account, we expect that there are another∼ 35

galaxies remaning unobserved in this volume. On average, therefore, each of the 15 HLQSOs in our sample

has∼3 other log(Mh/M⊙) ≃ 12 galaxies within 200 pkpc, again suggesting a group-sizedenvironment.

Note that we use the term “environment” here to connote a region that may or may not correspond to the

host halo of the HLQSO. The mass we derive here is slightly larger than the average HLQSO host halo mass

of log(Mh,QSO/M⊙) = 12.3±0.5 derived from our clustering analysis (§2.4.3), and the galaxies associated

with the HLQSO overdensity extend to greater projected radii than the∼130 pkpc virial radius of such a halo

(Fig. 2.4). The discrepancy in the mass estimate may be due tolarger-than-assumed errors in the HLQSO

redshifts, as noted in §2.3.3; overestimation of the galaxyvelocity dispersion would inflate the dynamical

mass estimate of the system. However, it may also be that the HLQSO host and its galaxy neighbors are

subhalos within a larger structure corresponding to our measured dynamical mass.

In addition, we note that the velocity scale of 200−300 km s−1 and the overdensity of galaxies in such

an environment are extremely conducive to mergers and dissipative interactions among galaxies. We suggest
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that the results of this study are thus strong evidence that the fueling of these HLQSOs is associated with

merger activity, with the caveat that our sample of HLQSOs are extreme outliers in the QSO luminosity

distribution, and thus may be formed and sustained by ratherdifferent mechanisms than the average QSO at

these redshifts.

2.6 Summary

We have used a large sample of galaxy redshifts to investigate the environments of 15 hyperluminous QSOs

(HLQSOs) in the redshift range 2.5 < z < 2.9. Our galaxy sample includes 1558 spectroscopic redshifts

betweenz = 1.5− 3.6 from the KBSS—we use the galaxies far from the HLQSOs to characterize our redshift

selection function in much greater detail than is possible with purely photometric samples. Furthermore, all

the redshifts in our sample are projected within∼3′ of one of the HLQSOs, which allows us to describe the

HLQSO environments on sub-Mpc scales. The principal conclusions of this work are given here:

1. The HLQSOs are associated with aδ ∼ 7 overdensity in redshift when considered on scales of∼5h−1

Mpc. The overdensity has a velocity scale ofσv,pec≃ 200 km s−1 after subracting the effect of redshift

errors, and a projected scale ofR ∼ 200 pkpc. When stacked at the redshifts of the HLQSOs, the

combined galaxy distribution shows no peaks of similar significance, and stacking on random galaxy

redshifts shows that the HLQSOs are correlated with much more significant small-scale overdensities

than the average galaxy in our sample.

2. Careful treatment of the HLQSO redshifts is essential in order to accurately determine which galaxies

are associated with the HLQSOs in three-dimensional space.When available, we used a combination

of low-ionization broad lines, narrow emission lines, and the onset of the Ly-α forest in the HLQSO

spectra themselves in conjunction with narrow Ly-α at small angular separations from the HLQSOs

to obtain HLQSO redshifts offset by hundreds or thousands ofkm s−1 from their previously published

values. The velocity scale of the observed overdensity, which is smaller than the measured offset for

any one of these HLQSOs, demonstrates both the accuracy of our redshifts and the inadequacy of

common techniques for estimating the redshifts of these hyperluminous objects.

3. The best-fit autocorrelation function for the subset of galaxies in our sample withz > 2.25 (zmed≃
2.63) has a correlation lengthrGG

0 = (6.0± 0.5)h−1 cMpc. Comparison to dark-matter halo catalogs

from the MultiDark simulation suggests that the galaxies inour sample have a minimum halo mass of

log(Mh/M⊙)>11.7±0.1 and a median halo mass of log(Mh,med/M⊙) = 11.9±0.1.

4. The best-fit galaxy-HLQSO correlation function for our sample has a correlation lengthrGQ
0 = (7.3±

1.3)h−1 cMpc. By measuring the clustering between dark matter halosof various masses and those

halos having masses log(Mh/M⊙)>11.7, we find that the cross-correlation between log(Mh/M⊙)>11.7
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halos and log(Mh/M⊙)>12.1 halos most closely matches our observed value ofrGQ
0 . We therefore

deduce that each HLQSO in our sample inhabits a dark matter halo with mass log(Mh/M⊙)>12.1±0.5,

which corresponds to a median halo mass of log(Mh,med/M⊙) = 12.3±0.5. The number density of these

halos exceeds the number density of HLQSOs by a factor∼106 − 107.

5. The HLQSO luminosities imply minimum masses log(MBH/M⊙) & 9.7, suggesting a BH-DM mass

ratio MDM /MBH . 300−2000 for a dark matter mass log(MDM /msun)≃ 12.3−13. Such a small ratio

indicates that the HLQSOs are significantly overmassive with respect to the MBH−Mh relation atz ≃ 0,

and appear overmassive with respect to equivalent relations at higher redshift (though black hole mass

estimates are quite uncertain at high redshifts).

6. The HLQSOs in our sample are associated with group-sized environments with total mass log(Mgrp/M⊙)∼13.

This conclusion follows from a dynamical mass estimate fromthe peculiar velocities and projected

scale of the galaxy overdensity, and is consistent with the virial radius and galaxy counts expected for

such a group. The peculiar velocities and overdensities associated with groups strongly indicates that

these HLQSOs inhabit environments where mergers and dissipative interactions are common.

In conclusion, the results of this chapter demonstrate thatthe host halos of HLQSOs are not rare, so

the scarcity of these objects is likely due to an extremely improbable small-scale phenomenon that produces

HLQSOs. Such a phenomenon could be related to an atypical galaxy interaction geometry or similar scenario:

the overdense environment with small relative velocities would increase the probability of such an event,

but an unusual merger configuration is likely required to generate such large black hole masses and QSO

luminosities.
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Chapter 3

Constraints on Hyperluminous QSO
Lifetimes via Fluorescent Lyα Emitters
at Z ≃ 2.7

This chapter was previously published as Trainor & Steidel 2013, ApJ, 775, L3.
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Abstract

We present observations of a population of Lyα emitters (LAEs) exhibiting fluorescent emission via the

reprocessing of ionizing radiation from nearby hyperluminous QSOs. These LAEs are part of a survey at

redshifts 2.5 < z < 2.9 combining narrowband photometric selection and spectroscopic follow-up to char-

acterize the emission mechanisms, physical properties, and three-dimensional locations of the emitters with

respect to their nearby hyperluminous QSOs. These data allow us to probe the radiation field, and thus the

radiative history, of the QSOs, and we determine that most ofthe 8 QSOs in our sample have been active

and of comparable luminosity for a time 1 Myr. tQ . 20 Myr. Furthermore, we find that the ionizing QSO

emission must have an opening angleθ ∼ 30◦ or larger relative to the line of sight.
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3.1 Introduction

The extreme luminosities of QSOs make them effective tracers of black hole growth over most of the Uni-

verse’s history (0< z . 7) and likewise illuminate the evolution of galaxies and large-scale structure over

these cosmological epochs and volumes. In particular, the mass of supermassive black holes is tightly cor-

related with properties of their host galaxies (e.g. Magorrian et al. 1998; Gebhardt et al. 2000; Ferrarese &

Merritt 2000), while QSO clustering properties are well-matched to the expected distribution of dark mat-

ter in and out of halos (e.g. Seljak 2000; Berlind & Weinberg 2002; Zehavi et al. 2004) according to the

cosmological standard model.

However, the manner in which QSOs populate and interact withgalaxies and dark-matter halos is ob-

scured by the unknown timescales and geometries over which black holes accrete mass and produce substan-

tial radiation. Specifically, the fraction of black holes that can be observed as QSOs depends sensitively on

the length of their active phases and whether their emissionis isotropic or confined to a narrow solid angle.

A short QSO lifetime (tQ) and/or a small opening angle (θQ) would indicate that observed QSOs comprise a

small fraction of the total population of black holes (and therefore galaxies and dark-matter halos) that will

pass through a QSO phase. Furthermore, both the comparison of tQ to a typical star-formation timescale

tSF∼ 100 Myr and the value ofθQ have deep implications for the mechanisms by which the QSO couples to

the ISM in galaxies and produces feedback.

Current estimates oftQ utilize numerous methods, many of which are described in detail in a review

by Martini (2004), and in general allow for QSO lifetimes in the range 106 yr < tQ < 108 yr. In the last

decade, measurements of the QSO luminosity function and clustering have provided particularly powerful

constraints on a globally-averagedtQ (e.g. Kelly et al. 2010), but they also rely on the poorly-constrained

black hole mass function or assume that the most luminous QSOs populate the most massive halos, contrary

to some observations and physically-motivated models (e.g. Trainor & Steidel 2012; Adelberger & Steidel

2005a; Conroy & White 2013). These global measures oftQ are also degenerate between single-phase QSO

accretion (in which the bulk of activity occurs in a single event) and multi-burst models (in which the same

total time in a QSO phase is distributed over many short accretion events).

More direct measurements oftQ may be obtained from the effect of QSO radiation on their local enviro-

ments. Measures of the transverse proximity effect use the volumes (and associated light-travel times) over

which bright QSOs ionize their nearby gas and have yielded estimates or lower limits in the rangetQ ∼ 16−40

Myr by tracing HeII (e.g. Jakobsen et al. 2003; Worseck et al. 2007) and metal-line (Gonçalves et al. 2008)

absorption systems.

The detection of fluorescent Lyα emission provides another direct measurement oftQ. Fluorescent Lyα

arises from the reprocessing of ionizing photons (either from the metagalactic UV background or a local QSO)

at the surfaces of dense, neutral clouds of HI. This effect has been modeled with increasing complexity over

the last few decades (Hogan & Weymann 1987; Gould & Weinberg 1996; Cantalupo et al. 2005; Kollmeier
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et al. 2010) and has now been observed around bright QSOs (Adelberger et al. 2006; Cantalupo et al. 2007,

2012; Trainor et al. 2013, in prep.). These detections have verified the feasibility of identifying fluorescent

emission from the intergalactic medium (IGM) and suggesteda wide opening angleθQ of QSO emission (but

see also Hennawi & Prochaska 2013). They are consistent withother constraints ontQ, but have been limited

by small sample sizes and/or a lack of the 3D spatial information necessary to probe the spatial variation of

the QSO radiation field in detail.

This chapter presents results from a large survey of Lyα emitters (LAEs) in fields surrounding hyperlu-

minous (LUV ∼ 1014 L⊙) QSOs at redshifts 2.5 < z < 2.9. The full results of this survey, including a detailed

analysis of the Lyα emission mechanisms and physical properties of the LAEs, will be presented in Trainor

et al. (2014, in prep.) and in Chapter 4. This chapter focuseson the implications of these data fortQ and

θQ. Observations and the data are briefly discussed in §3.2; identification of fluorescent sources is discussed

in §3.3.1; constraints ontQ andθQ appear in §3.3.2−§3.3.5; and conclusions are given in §3.4. A standard

cosmology withH0 = 70 km s−1 and{Ωm,ΩΛ} = {0.3,0.7} is assumed throughout, and distances are given in

physical units (e.g. pMpc).

3.2 Observations

We conducted deep imaging in each survey field using custom narrowband filters and corresponding broad-

band filters sampling the continuum near Lyα with Keck 1/LRIS-B over several years; these data are de-

scribed in Chapter 4. All eight fields are part of the Keck Baryonic Structure Survey (KBSS; Rudie et al.

2012; Steidel et al. 2013, in prep.)

We used one of four narrowband filters to image each of the eight QSO fields (centered on or near the

QSO); a brief description of the fields and corresponding filters is given in Table 3.1. Each filter has a FWHM

∼ 80Å and a central wavelength tuned to Lyα at the redshift of one or more of the hyperluminous QSOs. The

QSOs span a redshift range 2.573≤ z ≤ 2.843, and the filter width corresponds to∆z ≈ 0.066 or∆v ≈ 5400

km s−1 at their median redshift. The narrowband images have total integration times of 5-7 hours and reach a

depth for point sources ofmNB(3σ) ∼ 26.7; the continuum images are typically deeper by∼ 1.5 mag.

Object identification and narrowband and continuum magnitude measurements were performed with SEx-

tractor. The success rate of our initial follow-up spectroscopy dropped sharply abovemNB = 26.5, so our LAEs

are selected to have 20< mNB < 26.5 andmcont− mNB > 0.6 (corresponding to a rest-frame equivalent width

in Lyα WLyα & 20Å). These criteria define a set of 841 LAEs. The LAEs range from unresolved/compact

to extremely extended (FWHM& 10′′) sources. The extended objects require large photometric apertures

that may enclose unassociated continuum sources; in order to avoid the complication of determining the true

continuum counterparts of these sources, LAEs with FWHM> 3′′ were removed from our sample for this

analysis, leaving a final photometric sample of 816 LAEs.

Spectra were obtained with Keck 1/LRIS-B in the multislit mode using the 600/4000 grism; the spectral
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Table 3.1. Lyα-Emitter Field Descriptions

QSO Field zQ NB Filter Nphot Nspec NWLyα>100Å

Q0100+13 (PHL957) 2.721±0.001 NB4535 79 20 9
HS0105+1619 2.652±0.001 NB4430 109 23 6
Q0142−10 (UM673a) 2.743±0.001 NB4535 58 25 11
Q1009+29 (CSO 38) 2.652±0.001 NB4430 60 35 13
HS1442+2931 2.660±0.001 NB4430 120 39 23
HS1549+1919 2.843±0.001 NB4670 202 95 27
HS1700+6416 2.751±0.001 NB4535 66 23 11
Q2343+12 2.573±0.001 NB4325 122 0a 16

aSpectroscopic follow-up observations of field Q2343+12 hadnot been obtained at
the time of this publication.

resolution near Lyα for these spectra isR ∼ 1200. Redshifts were measured via an automated algorithm

described in Chapter 4; the detected Lyα lines have a minimum SNR∼ 3.5 and a median SNR∼ 15. Detected

lines were required to lie at a wavelength where the transmission exceeds 10% for the narrowband filter used

to select their associated candidates (typically a∼110Å range), but no other prior was used to constrain the

automatic line detection. Redshifts were measured for 260 of the LAEs meeting our final photometric criteria;

these comprise the spectroscopic sample used in this chapter. QSO redshifts were determined as described in

Trainor & Steidel (2012) and have estimated uncertaintiesσz,QSO≈ 270 km s−1.

3.3 Results

3.3.1 Detection of Fluorescent Emission

Lyα emission is subject to complex radiative-transfer effectsand is ubiquitous in star-forming galaxies, so

accurate discrimination between fluorescence and other Lyα emission mechanisms is key to its use as a QSO

probe (see Cantalupo et al. 2005; Kollmeier et al. 2010). A powerful tool in this regard is the rest-frame

equivalent width of Lyα (WLyα), which has a natural maximum in star-forming sources because the same

massive stars produce the UV continuum and the ionizing photons that are reprocessed as Lyα emission.

Empirically, UV-continuum-selected galaxies at 2. z . 3 almost never exhibitWLyα > 100Å (Kornei et al.

2010), which is also the maximum value expected for continuous star-formation lasting∼ 108 yr or longer

(Steidel et al. 2011). This threshold may demarcate the realm of fluorescence from that of typical star-forming

galaxies. Furthermore, models of star-formation in the extreme limits of metallicity and short bursts predict

a stringent limit ofWLyα < 240 Å (see Schaerer 2002 and discussion in Cantalupo et al. 2012) for even the

most atypical star-forming galaxies.

The distribution ofWLyα andmNB for the LAEs are displayed in Fig. 3.1. Observed-frame equivalent
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Figure 3.1: The rest-frame equivalent width (WLyα) of Lyα determined from the measuredmcont− mNB color
for each LAE in our photometric sample. Objects detected in the continuum band are displayed as blue
circles, while objects consistent with having no continuumflux (after subtracting the measured Lyα flux) are
displayed as red arrows denoting 1σ lower limits. Thresholds for the maximum value ofW0,Lyα consistent
with typical and extremely brief star-formation are plotted as dashed lines atWLyα = 100Å andWLyα = 240Å,
respectively (see §3.3.1 for details). The dotted line atWLyα = 20Å denotes the minimum Lyα equivalent
width for a LAE.

widths (W ) were measured from the narrowband color excess while accounting for the presence of Lyα

within the continuum filter bandpass; details of this procedure are given in Chapter 4.WLyα is estimated from

W by WLyα = W/(1+ zQSO), wherezQSO is the redshift of the associated hyperluminous QSO.

Fig. 3.1 demonstrates that many of our LAEs exceed both the model and empirical thresholds for the max-

imumWLyα consistent with pure star formation: of the 816 LAEs, 116 exceedWLyα > 100Å and 32 exceed

WLyα > 240Å. We consider these high-WLyα sources as excellent candidates to be fluorescence-dominated,

with minimal stellar contribution to their Lyα flux.

3.3.2 Time delay of fluorescent emission

The presence of a fluorescent emitter indicates that its local volume element was illuminated by ionizing QSO

radiation at the lookback timetLyα when the observed Lyα photon was emitted. Depending on whether the

fluorescent source lies in the foreground or background of the QSO,tLyα may be greater or less thantQSO, the

lookback time to the QSO itself.

However, this fluorescent Lyα photon was generated by the reprocessing of an ionizing QSO photon

emitted a timetlt beforetLyα, wheretlt is the light-travel time from the QSO to the emitter. It is geometrically
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trivial to show thattQSO≤ tLyα + tlt , and we can define the delay time for an emitter at a vector position r :

tdelay(r ) = tLyα(r ) + tlt(r ) − tQSO . (3.1)

It can likewise be shown that the locus of points for whichtdelay is constant forms a paraboloid pointed

toward the observer with the QSO at the focal point (see Fig. 3.2, top, for a pictorial representation at varying

values oftdelay).

The significance of such a delay surface can be seen by considering a simple, step-function model of QSO

emission in which the ionizing emission was zero a timetQ before we observe the QSO and has been constant

since that time. Under such a model, the ionizing field is zerofor tdelay(r ) > tQ, and the spatial distribution of

fluorescent emitters must be restricted to the interior of the paraboloid defined bytdelay(r ) = tQ.

Since the high-WLyα LAEs described in §3.3.1 are highly likely to be dominated byfluorescence, they

represent the best tracers of the QSO ionizing field. Below, we use the distribution of these sources to set

limits on tQ.

3.3.3 Constraints ontQ from the redshift distribution

The geometry of our survey volume is such that we can probe long timescales (107 yr . tQ . 108 yr) via the

line-of-sight distribution of sources (see red box in Fig. 3.2, top). The distribution ofWLyα vs. dz for the

260 LAEs with measured redshifts is displayed in Fig. 3.2 (middle), wheredz is the Hubble distance of each

emitter from its associated hyperluminous QSO determined from the difference of emitter and QSO redshifts.

Due to the effects of redshifts errors and peculiar velocities among the LAEs and QSOs, our fore-

ground/background discrimination breaks down at∆v ≈ 700 km s−1, corresponding todz . 3 pMpc and

tdelay. 20 Myr; we are therefore unable to constraintQ lower than 20 Myr based on the redshift distribution

of sources. Attdelay> 20 Myr, however, there is a significant paucity of high-WLyα sources: only four sources

with WLyα > 100Å lie in this range, and there are none attdelay> 33 Myr. This suggeststQ . 20 Myr for these

fields; we evaluate the significance of this result via numerical tests below.

The non-uniform redshift coverage of our QSO fields complicates the analysis ofdz; the observed redshift

distribution is modulated by the narrowband filter bandpassand the distribution of large-scale structure along

the QSO line of sight. In addition, the QSO redshifts are not perfectly centered in their filter bandpasses,

which contributes part of the observed asymmetry. Fortunately, the distribution of star-forming galaxies

presumably represented by ourWLyα < 100Å LAEs trace all of these effects, and we can use their redshift

distribution to determine the expected distribution of emitters in the absence of fluorescence. We use the

entire sample of emitters with spectroscopic redshifts andWLyα < 100Å for this comparison.

First, we utilize the two-sample Kolmogorov-Smirnov (KS) test, a measure of the probability that two

samples of observations are drawn from the same parent distribution. Evaluating the test on the distributions

of dz(WLyα > 100Å) anddz(WLyα ≤ 100Å) yields a KS statisticMKS = 0.234, corresponding top < 4×10−3.
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There are insufficient emitters with redshift measurementsto perform the test on the higher-threshold (WLyα >

240Å) sample with significance.

A disadvantage of the two-sample KS test is that it is most sensitive to differences that occur near the

center of two distributions, whereas we expect the strongest deviation in these distributions at largedz, where

no fluorescent emitters would appear iftQ . 20 Myr. For this reason, we conducted a Monte-Carlo test

in which subsamples of theWLyα < 100Å LAEs were randomly selected (with replacement), whereeach

subsample has 67 objects, the number ofWLyα > 100Å emitters with spectroscopic redshifts in our actual

sample. For each subsample, the number of sources withdz > 3 pMpc (corresponding totdelay& 20 Myr) was

counted.

As noted above, only four sources withWLyα > 100Å exceeddz = 3 pMpc. In 105 simulated subsamples,

40 had three or fewer objects withdz > 3 pMpc, yielding a significancep < 4×10−4. We therefore conclude

that the 7 QSOs with spectroscopic follow-up (i.e., all except Q2343+12) are consistent withtQ . 20 Myr

(approximately the lowest it can be measured unambiguouslyfrom our redshift measurements).

3.3.4 Constraints ontQ from the projected distribution

While the redshift distribution is not sensitive for probingshorter QSO lifetimes, sufficiently small values

of tQ will affect the projected distribution of sources in the survey volume. In particular, the constant-tdelay

paraboloids fortdelay. 1 Myr are well matched to the geometry of our survey volume (see curves on the left

side of Fig. 3.2, top).

Fig. 3.3 shows the correspondence of these surfaces (shown for 104 yr ≤ tdelay≤ 106 yr) to the radial

distribution ofWLyα for the entire photometric sample (note that the survey geometry is not to scale, unlike in

Fig. 3.2). As above, a QSO withtQ ≤ tdelay will produce fluorescent emission only within the corresponding

paraboloid. FortQ < 0.3 Myr, this would produce a maximum projected distance (dθ) at which a fluorescent

emitter could appear in our survey volume. For 0.3 Myr ≤ tQ ≤ 1 Myr, the fractional volume of the survey

within the time-delay surface decreases with increasingdθ, predicting that the probability of a given emitter

exhibiting fluorescence will likewise decrease withdθ. 1

Notably, the projected distribution of LAEs is well-populated by objects withWLyα > 100Å and those

with WLyα > 240Å out to the largest values ofdθ probed by our survey, thus firmly ruling out lifetimes

tQ < 0.3 Myr. Furthermore, the radial distributions of sources with WLyα > 100Å andWLyα ≤ 100Å are

entirely consistent when subjected to a two sample KS test (MKS = 0.095; p < 0.24); the null result is similar

using theWLyα = 240Å threshold. Given the large number of objects in our photometric sample (Nphot = 816),

these data provide strong evidence thattQ & 1 Myr for the QSOs in our sample.

1The probability of being fluorescence-dominated will also vary with distance due to the fall-off of the QSO ionizing radiation field,
but the effect on a flux-limited sample depends on the size distribution of fluorescently-emitting regions. Simulations by Kollmeier et al.
(2010) indicate that the net effect is small, so we neglect it here.
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Figure 3.2: Redshift constraints on QSO lifetimes.Top: Schematic representation of QSO light travel with
observer lying to the left of the plot. Dashed circles represent the current position of photons emitted by the
QSO 10 Myr, 20 Myr, ... 60 Myr ago. Shaded parabolas on right side denote surfaces of constanttdelay. For
the simple model of QSO emission discussed in §3.3.2, sources may only exhibit fluorescent emission if they
lie in the foreground of the surface for whichtdelay = tQ, wheretQ is the QSO lifetime. The red region shows
the geometry of this survey, for which surfaces of constant time delay are well-approximated by surfaces
of constant redshift (green lines) fortdelay & 20 Myr. The narrow parabolas on the left side are time-delay
surfaces fortdelay≤ 1 Myr, which are shown in more detail in Fig. 3.3.Middle: Lyα equivalent width (WLyα)
as a function of line-of-sight distance from the QSO for LAEswith measured redshifts. Red limits and blue
points are plotted as in Fig. 3.1 with the addition of 1σ error bars. Nearly all points withWLyα > 100Å
lie in the foreground of thetdelay = 20 Myr surface.Bottom: The redshift distribution of emitters in three
bins ofWLyα, whereWLyα is either the detected value or the 1σ lower limit. The fraction of emitters with
WLyα > 100Å drops sharply fordz > 10 Mlyr ≈ 3.24 pMpc.
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Figure 3.3: Plane-of-sky constraints on QSO lifetimes.Top: Schematic representation of QSO region (as in
Fig. 3.2, top), with observer lying to the bottom of the plot.Shaded parabolas denote surfaces of constant time
delay (104 ≤ tdelay≤ 106 as noted on figure). For all lifetimestQ . 1 Myr, few or no fluorescent sources are
predicted at large (dθ ∼ 2 pMpc) separations from the QSO for our survey geometry. The2D distribution of
spectroscopic LAEs is shown for comparison asWLyα < 100Å (blue dots),WLyα > 100Å (orange diamonds),
andWLyα > 240Å (red stars).Middle: Lyα equivalent width (WLyα) as a function of projected distance from
the QSO for photometrically-identified LAEs. Red limits andblue points are plotted as in Fig. 3.1. Sources
with WLyα > 100Å are common out to the maximum projected distances probed by our survey volume,
suggesting that the QSOs in our sample have lifetimestQ & 1 Myr. Bottom: The projected distribution of
emitters in three bins ofWLyα, whereWLyα is either the detected value or the 1σ lower limit. The fraction of
emitters withWLyα > 100Å is fairly constant fordθ < 2 pMpc.

3.3.5 Constraints onθQ

For θQ ≪ π/2, a substantial fraction of the survey volume at largedθ will be inaccessible to the ionizing

emission of the QSO, which will affect the distribution ofdθ for fluorescent sources similarly totQ ≪ 1 Myr.

We can probeθQ in detail through the 2D spatial distribution of those high-WLyα LAEs with spectroscopic

redshifts. It is easily seen in Fig. 3.3 (top) that the high-WLyα LAEs (red and orange points) extend to large

projected radii at or near the QSO redshift, suggesting thationizing emission is emanating from the QSO

nearly perpindicularly to the line of sight (i.e., withθQ ∼ 90deg). In reality, redshift errors and peculiar

velocities prohibit us from establishing the line-of-sight distance of an LAE from the QSO to be less than 3

pMpc (see §3.3.3), so these data (with a 2 pMpc projected range) provide the constraintθQ & arctan(2/3)≈
30deg.
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3.4 Conclusions

We have presented constraints on the lifetime and opening angle of ionizing QSO emission based on a large

photometric/spectroscopic survey of LAEs in the regions around hyperluminous QSOs (described in detail in

Chapter 4), finding 1 Myr. tQ . 20 Myr andθQ & 30◦.

These results are consistent with the most of the literaturediscussed in §3.1; in particular, our estimate

of tQ falls at the short end of the broad range allowed by the measurements reviewed in Martini (2004) and

is similar to the transverse proximity effect measurementsof Gonçalves et al. (2008), which included a QSO

of comparable luminosity to those in this sample. Perhaps most significantly,tQ measured here is short

compared to thee-folding timescale of Salpeter (1964):tSal = MBH/ṀBH ≈ 45 Myr for a QSO withL = LEdd

and a radiative efficiencyǫ = L/Ṁc2 = 0.1. Unless these QSOs haveL ≫ LEdd or are accreting with a low

radiative efficiency (neither of which is expected for luminous QSOs), then these observed hyperluminous

accretion events do not dominate the accretion history of their central black holes.
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Chapter 4

The Kinematic and Gaseous Properties
of Lyα-Emitting Galaxies at Z ≃ 2.7
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Abstract

We present a systematic survey of a population of faint, Lyα-emitting galaxies (LAEs) in the Mpc-scale re-

gions around hyperluminous QSOs (HLQSOs) at 2.5 < z < 3. The dataset of 749 photometrically-identified

LAEs includes 316 with spectroscopic detections of their Lyα emission line. A sample of 35 LAEs with

rest-frame optical emission line spectra from MOSFIRE are used to interpret the LAE spectra in the context

of their systemic redshifts. The fields described herein arefrom the Keck Baryonic Structure Survey (KBSS),

which includes a large amount of ancillary broadband imaging. This large, multiwavelength database allows

us to characterize the distributions of LAE luminosities and Lyα equivalent widths and compare them to stud-

ies of LAEs unassociated with known, bright QSOs. We find evidence for a fluorescent contribution to their

Lyα luminosities, strengthening the results of our previous studies. Using the MOSFIRE spectra, we study

the distributions of Lyα-line velocities with respect to the LAE systemic redshifts, finding a small population

of objects with significantly blueshifted Lyα emission, a potential indicator of inflowing gas. We also usethe

MOSFIRE redshifts to calibrate and stack the 316 rest-FUV LAE spectra into their rest frame, yielding the

first detections of metal-enriched, outflowing winds in these faintest high-redshift galaxies. Further observa-

tions, particularly continued deep spectroscopy in the observed near-IR, are necessary to further probe the

evolution and enrichment of these galaxies in the context oftheir QSO environments.
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4.1 Introduction

While the association of Lyα emission with star formation in galaxies has long been expected (Partridge &

Peebles 1967), the samples of galaxies at low redshift continually displayed extremely weak or indiscernable

Lyα emission (e.g. Giavalisco et al. 1996 and references therein). Only at high redshifts did the Lyα line be-

come an effective tool for tracing star-formation or selecting galaxies, first for individual sources (Lowenthal

et al. 1991; Wolfe et al. 1992), and eventually in large numbers through narrowband surveys (e.g. Cowie &

Hu 1998; Steidel et al. 2000). The increased efficacy of high-redshift surveys draws in part from logistical

factors: the detection of FUV photons suffers from significant terrestrial and galactic extinction as well as

technological limitations, all of which are ameliorated byallowing these photons to redshift into more acces-

sible regions of the electromagnetic spectrum. However, the intrinsic Lyα-emitting properties of galaxies also

increase with redshift out to at leastz ∼ 6 (Stark et al. 2011), and this evolution is likely driven by changes in

the internal properties of galaxies that generate Lyα photons and/or inhibit their escape.

In particular, the resonant nature of the Lyα line causes these photons to experience many scatterings

before leaving a galaxy, which causes the net emission to be highly sensitive to both the initial sources of

Lyα photons (e.g. star-formation) and the transmissive properties of their surrounding medium (e.g. the

dust, neutral gas, and their spatial and kinematic distributions). For these reasons, galaxies selected by their

Lyα line (so-called Lyman-α emitters; LAEs) are found to be younger, fainter, and less reddened than those

selected by the Lyman break and analogous continuum-color techniques (LBGs), despite the fact that all such

galaxies emit at least low-level Lyα emission (Steidel et al. 2011).

In addition to providing a complementary population of high-redshift galaxies to LBG samples, narrow-

band LAE surveys provide a notable advantage for isolating volumes of specific interest for galaxy selection.

The first detections of LAEs noted above came from targeting the fields and redshift intervals associated with

damped Lyα absorbers (DLAs), and narrowband surveys have been used to detect large numbers of LAEs

around radio galaxies (Venemans et al. 2007), QSOs (Cantalupo et al. 2007, 2012; Trainor & Steidel 2013),

and known galaxy overdensities (Steidel et al. 2000; Erb et al., submitted). Such targeted surveys gener-

ate essential information on the environmental dependenceof galaxy evolution while also providing a more

efficient means of selecting large numbers of galaxies with respect to “blank field” studies.

Futhermore, LAE surveys drive our understanding of the faint galaxies that likely dominate the star-

formation density and ionizing emission of the early universe (e.g. Robertson et al. 2013). Many aspects of

galaxy properties that are well-determined for LBG samplesat high redshift have not been extended to low

stellar masses and continuum luminosities. Perhaps most importantly, the gaseous outflows seen ubiquitously

in large samples of LBGs (Steidel et al. 1996; Pettini et al. 2001; Shapley et al. 2003) have extremely limited

observational constraints in LAEs. The primary markers of these outflows are blueshifted absorption features

in the spectra of galaxies, and the intrinsic faintness of LAEs in the continuum essentially prohibits these

measurements in all but the most atypically luminous LAEs. The typically-redshifted Lyα line can similarly
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indicate the presence of outflowing winds, but only in conjunction with an independent measurement of the

systemic (i.e. stellar) redshift of the galaxy. Rest-UV features associated with the systemic redshift are inac-

cessible in continuum-faint spectra, and rest-optical nebular emission lines have been quite observationally

expensive until the recent advent of multi-object infraredspectrometers. However, it is precisely the faint

LAEs that provide the most exciting enviroment for studyingthe kinematics of gas and galaxies. If the feed-

back processes omnipresent in LBGs extend to the earliest and faintest galaxies, then the effects of galaxies

on their local gaseous environments must be taken into account when modeling the enrichment (e.g. Steidel

et al. 2010) and transparency (e.g. Schenker et al. 2013) of the circumgalactic and intergalactic media (CGM

and IGM).

In this chapter, we describe a survey of 749 LAEs in the regions around 8 hyperluminous QSOs (HLQ-

SOs) at 2.5< z < 2.9. The galaxy overdensities around these luminous black holes provide a means of study-

ing the environmental dependence of LAE population parameters (e.g. the luminosity function and equivalent

width distribution in Lyα), while also allowing the efficient selection of many more LAEs than would be ob-

servable in the same time in a blank field. The higher density of sources in these fields also facilitates efficient

spectroscopic follow-up, and we present rest-FUV spectroscopy of a large fraction (316/749; 42%) of these

LAEs to describe their velocity distribution, emission line morphologies, and absorption spectra. Lastly, we

present a smaller subsample of 35 LAEs for which we have obtained rest-frame optical spectra, thereby re-

vealing their systematic redshifts and Lyα kinematics and allowing the calibration and interpretation of the

much larger sample of rest-UV-only spectra.

The survey design and detailed descriptions of the photometric, rest-UV spectroscopic, and rest-optical

spectroscopic LAE samples are given in Sec. 4.2. The distributions of photometric properties of the LAEs are

given in Sec. 4.3, including measurements of the Lyα luminosity function in the HLQSOs in comparison with

numerous studies of blank fields, the distribution of the measured Lyα equivalent width (WLyα) in comparison

with blank fields, and the broadband photometric propertiesof these LAEs with respect to previous galaxy

samples of LAEs and LBGs. In Sec. 4.4, we present the spectroscopic properties of the Lyα emission lines,

including the measurements of the shift of the line with respect to systemic for objects with rest-optical

spectra. In Sec. 4.5, we present measurements of metal absorption lines in the stacked continuum spectra

of the rest-UV spectroscopic sample, and we characterize the ionization, covering fraction, and velocity

distribution of star-formation driven outflows in the LAEs.A brief discussion and summary is given in

Sec. 4.6. Physical quantities are given in observable unitswhen possible, but aΛCDM universe with (Ωm,

ΩΛ, H0) = (0.3, 0.7, 70 km s−1) is assumed when necessary.
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Table 4.1. Lyα-Emitter Field Descriptions

QSO Field zQ (±0.001) NB Filter FWHM (Å) Exp (s)a BB Filterb Nphot Nspec NHST
c

Q0100+13 (PHL957) 2.721 NB4535 76 24,590 B+G 69 20 12
HS0105+1619 2.652 NB4430 72 21,600 B 79 22 22
Q0142−10 (UM673a) 2.743 NB4535 76 18,000 B+G 48 22 10
Q1009+29 (CSO 38) 2.652 NB4430 72 18,000 B 71 35 15
HS1442+2931 2.660 NB4430 72 18,000 B 140 41 29
HS1549+1919 2.843 NB4670 88 18,000 G 198 95 44
HS1700+6416 2.751 NB4535 76 23,400 B+G 56 20 9
Q2343+12 2.573 NB4325 74 15,896 B 88 63 23

aExp is the total exposure time on LRIS-B with the corresponding NB filter in the final selection image for each
field.

bBB Filter refers to the broadband filter (B, G, or a combination of the two) used to measure the continuum
magnitude of the LAEs in each field (Sec. 4.2.1).

cNHST refers to the number of objects in each field withHST/WFC3 photometry in one or both of the F140W
and/or F160W filters.

4.2 Observations

4.2.1 Photometric Sample

We conducted deep imaging in each survey field using custom narrowband (NB) filters and corresponding

broadband filters sampling the continuum near Lyα with Keck 1/LRIS (Oke et al. 1995; Steidel et al. 2004)

over a period of several years; these observations are described in Table 4.1. All eight fields are part of the

Keck Baryonic Structure Survey (KBSS; Rudie et al. 2012) andhence have ancillary images in a variety of

broadband filters; the collection and reduction of these data are described in Steidel et al. (2004), Erb et al.

(2006), Reddy et al. (2008), and references therein. The MOSFIRE near-infrared (NIR)J andK imaging will

be described in A. Strom et al. (in prep.).

The NB images were taken as a series of 1800 s exposures with a dither pattern optimized to cover the

13.5′′chip gap on LRIS-B. Each field had∼10 NB exposures for a total of∼5 hours of observing time per

field, for a typical 3-σ depth ofmNB(3σ) ∼ 26.7 as estimated through Monte-Carlo simulations of simulated

fake objects. The recovered fraction of simulated objects in these simulations suggest that our survey is

>95% complete (cumulatively) formNB < 26.8 and has a magnitude-specific completeness&90% for all

magnitude binsmNB . 26.8. We used 4 NB filters for this survey, and each field was imagedwith the NB

filter centered most closely to the wavelength of Lyα at the redshift of its corresponding QSO. Other than

their central wavelengths, the 4 NB filters have similar transmission properties, with FWHM∼ 80 Å and a

peak transmission∼85% in all cases. As the QSOs span a redshift range 2.573≤ z ≤ 2.843, the filter width

corresponds to∆z ≈ 0.066 or∆v ≈ 5400 km s−1 at their median redshift. See Table 4.1 for more detailed
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statistics on each field.

The continuum filter also varied among the fields in order to effectively sample the wavelength range

close to Lyα with minimal sensitivity to the continuum slope. For this reason, images were obtained using

the LRIS-BB and/orG filters; the continuum image for each field is then theB image,G image, or an equal-

weighted combination of the two images (see Table 4.1). In each field, the effective central wavelength of the

continuum image is within∼60 Å of that of the correponding NB filter. Broadband images were taken with

exposure times of&1 hour, for a typical 3-σ depth ofmBB(3σ) ∼ 28, again estimated through simulations of

fake objects. Henceforth,mBB denotes the measured magnitude from the broadband filter(s)used to infer the

UV continuum value (B, G, or both).

Standard IRAF routines were used to reduce the data via bias subtraction, flat-fielding, cosmic-ray rejec-

tion, sky-subtraction, and image registration and combination. Before the final image combination, individual

exposures were astrometrically registered to LRIS-RR-band images previously obtained as part of the KBSS

and corrected for distortion and rotation; the use of these deep broadband images for image registration en-

sured a high density of sources across the entire field. In this manner, we optimize the relative astrometric

registration between our NB and Lyα-continuum images as well as their correspondence to the ancillary

KBSS data. As part of this process, all the images are registered to the 0.′′211 pix−1 scale of LRIS-R before

being combined. Gaussian smoothing was performed to one or both of the NB and Lyα-continuum images

in order to match the PSFs of the two images.

Photometric calibration of the Lyα-continuum images was performed using photometric standard stars

from the catalogs of Massey et al. (1988) and Oke (1990) as described in Steidel et al. (2003). The NB

images were calibrated iteratively with respect to the continuum images during object selection. SExtractor

was used in two-image mode to select objects in the NB image and measure their magnitudes in both the

NB and continuum images. For each field, the resulting catalog and color-magnitude diagram contained a

well-defined ridge of points with fairly constantmNB −mBB; the zero-point of the NB image was then adjusted

iteratively until this ridge-line corresponded tomNB −mBB = 0. In fields where this ridge line was not constant

in mNB − mBB color, a color-dependent correction was applied to the broadband fluxes. In all cases, this color

correction effectivelyincreased the broadband flux, a choice we made to ensure a lack of contamination

by low-WLyα sources; however, this choice may have caused us to underestimate the value ofWLyα for the

faintest objects.

The success rate of our initial follow-up spectroscopy dropped significantly abovemNB = 26.5 (see

Sec. 4.2.2), so our photometrically-identified LAEs are selected to have 22< mNB < 26.5. The initial object

selection used in Trainor & Steidel (2013) was based on the color excessmBB − mNB > 0.6 (corresponding

closely to a rest-frame equivalent width in Lyα [WLyα] & 20Å). However, this color excess is not a perfect

proxy for equivalent width: the range of redshifts of our QSOfields mean that a given value inWLyα cor-

responds to a slightly different color for each narrowband filter. Furthermore, measurement uncertainties in

flux map to uncertainties inWLyα in a non-trivial manner, particularly for sources with little or no detected
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Figure 4.1: The apparent magnitude distribution of all photometric andspectroscopic LAEs observed in the
survey. NB magnitude denotes the apparent magnitude of eachLAE in the narrowband (NB) filter used to
select it. Nearly all LAEs with NB< 25.5 were targeted spectroscopically. For NB> 26.5, the success
rate of spectroscopic identification of the Lyα emission line dropped precipitously; for this reason, thispaper
primarily considers only those LAEs with a NB magnitude brighter than 26.5.

broadband flux. Because of these complexities, the best value and and uncertainty onWLyα was estimated via

a Monte-Carlo method described in Sec. 4.3.2, and the final photometric selection is such thatWLyα > 20Å

as determined by those methods. As in Trainor & Steidel (2013, Chapter 3), extended sources (FWHM> 3′′)

were removed from our sample for this analysis, as were objects visually identified as likely contaminants

(such as those near bright stars, image defects, or the edge of the detector, as well as those with spectral sig-

natures of contamination; see below). Via spectroscopic searches for contamination to our sample from other

emission lines, we estimate a total contamination due to low-redshift interlopers of<3% (see below). In to-

tal, these photometric criteria define a set of 749 LAEs. Thissample is slightly different from that of Trainor

& Steidel (2013) because of the more robust treatment ofWLyα for faint sources, as well as stricter criteria

for omitting potentially spurious sources. The apparent magnitude distribution of both the photometric and

spectroscopic sample of LAEs is given in Fig. 4.1.

Photometry for the other KBSS broadband images was performed as above, using SExtractor in two-

image mode to extract broadband magnitudes for the NB-defined apertures. Most of the images come from

ground-based telescopes (Keck LRIS, MOSIRE; Palomar WIRC) and cover the entire∼5′×7′ footprint of
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the KBSS-Lyα fields. HST/WFC3 data were obtained in the single pointings1 at the center of each field in

the F140W (PI: Erb) and F160W (PI: Law) bands; these smaller images are∼2′×2′ and cover only 91 of

the 749 KBSS-Lyα LAEs. These data are described in detail in Erb et al. (in prep.) and Law et al. (2012),

respectively, and they are summarized in Table 4.1.

4.2.2 LRIS Spectroscopic Sample

Rest-UV spectra were obtained with Keck 1/LRIS-B in the multislit mode using the 600/4000 grism and

560nm dichroic; the spectral resolution near the observed Lyα wavelength for these spectra isR ∼ 1300,

corresponding to a velocity resolutionσv∼100 km s−1. Spectroscopic observations were performed in sets of

3-4 1800 s exposures, for a total of 1.5-2 hours of total integration time per object. By the completion of the

survey, more than 50% of candidates in all fields had been observed, with some candidates being observed

on as many as three different masks. These observations wereconducted and reduced in essentially the same

manner as those of the KBSS and preceding surveys, a detaileddescription of which can be found in Steidel

et al. (2003) and Steidel et al. (2004). Specifically, masks were constructed and targets assigned as described

by Steidel et al. (2003), but with a minimum slit length of 11′′in order to provide better background subtrac-

tion for these continuum-faint (R∼27; see 4.3.3) sources. The data were reduced (including flat-fielding,

cosmic-ray rejection, background subtraction, flexure compensation, and wavelength/flux calibration) using

a set of standard IRAF tasks as described in Steidel et al. (2003). The output spectra were resampled to the

median wavelength scale of the observations, 1.26 Å/pix.

The resulting one-dimensional spectra were then subjectedto an automated line-detection algorithm,

described here. First, each spectrum was smoothed with a kernel corresponding to the instrumental res-

olution (∼3.5Å FWHM). A detection region of the spectrum was then isolated: in order to ensure that

spectroscopically-detected objects corresponded to their NB-selected counterparts, the algorithm only lo-

cated emission lines that would fall between the 10% power points of the corresponding NB filter used to

select them. The highest peak in this detection region was then used to define the first guess at the emission

line wavelength. The significance of the detected peak was then estimated by

P(y) = 1−

(

∫ ∞

ymax/σy

G(x)dx

)npix

, (4.1)

whereymax is the observed peak (minus any measured continuum, which isusually not detected) in the

smoothed spectrum,σy is the sample standard deviation of the smoothed spectrum inthe detection region,

G(x) = e−x2/2/
√

2π is the normal distribution function, andnpix is the number of pixels in the detection region

of the spectrum. In this way,P(y) represents the probability of measuring one or more pixelswith value

y≥ymax within the detection region, assuming the pixel values are normally distributed with varianceσ2
y .

Spectra withP(y) ≤ 0.05 were rejected as non-detections, while those withP(y) > 0.05 were designated

1A second F160W pointing was obtained in the Q2343 field away from the QSO, but these data are not used in this chapter.
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candidate emission lines. The total flux in each candidate emission line was then estimated both by Gaussian

fitting and by direct integration of the unsmoothed spectrum. If the fit was poor (either by comparison of

the two flux values or by theχ2-value of the fit) or the signal-to-noise of the line was sufficiently high

( fλ ≥ 5×10−18 erg s−1 cm−2 Å−1), the line was re-fit using an asymmetric line profile:

fλ(λ) =







Ae−(λ−µ)/2σ2
blue λ < µ

Ae−(λ−µ)/2σ2
red λ ≥ µ .

(4.2)

Here,σblue represents the line-width measured from the “blue” side of the peak, whileσred is the width

on the “red” side of the peak. From these quantities, we can likewise define the asymmetry of the line

shape,αasym≡ σred/σblue, a potential diagnostic of Lyα escape physics (Zheng & Wallace 2013; Chonis

et al. 2013). For lines found to be multi-peaked (defined by the existence of a second peak in the smoothed

spectrum at least 2.5σ above the continuum and within 1500 km s−1 of the primary peak), a second Gaussian

or asymmetric Gaussian component was allowed to be fit as well. No more than two Gaussian components

were allowed in each fit. When fitting asymmetric profiles, the fits were constrained such that neitherσblue nor

σred could fall below the instrument resolution (σblue/red> 1.5Å). The asymmetries and multiple components

of the Lyα profile will be presented in future work, and they may containadditional information about the

Lyα emission and obscuration mechanisms present in these LAEs.

The observed wavelength of the emission lines were estimated via two methods: direct integration of the

unsmoothed spectrum (i.e. the flux-weighted line centroid), and the fit value ofµ (i.e. the peak of the fit

Gaussian profile, whether symmetric or asymmetric). For multi-peaked lines, the peak of the component that

encompassed a majority of the line flux was used. Henceforth in this chapter,zLyα,peak denotes the redshift

of the Lyα line derived from the Gaussian peak, whilezLyα,ave refers to the redshift derived from direct

integration; these values are compared in Sec. 4.4.1.

The observed spectral range for each spectrum depends on theplacement of the corresponding slit on

the mask, but most slits were placed to cover a rest-wavelength range 900Å.λ.1500Å atz∼2.7. As such,

contaminants to our LAE sample were considered by searchingfor anomalous emission lines outside of the

Lyα detection window. A small number of such objects were found.Because the narrowband filters employed

in this survey all haveλc < 5000Å, [OIII ] emitters are excluded by design; all the spectroscopically-identified

contaminants were lower-redshift AGN in which strong CIV λ1550 (z∼1.9) or HeII λ1540 (z∼1.7) emission

was detected by our narrowband filter and misidentified as Lyα. In these systems, all of Lyα, C IV , and HeII

show high-equivalent-width emission. In order to control for such contaminants, each spectrum was checked

by the line-detection algorithm for emission at the expected location of the other two lines in the case of a line

mis-identification. In this manner, 5 objects were found where the narrowband excess was caused by CIV

emission, and another 5 objects were detected due to HeII emission. These objects were removed from both

our spectroscopic and photometric samples. In total, theseconstraints define a sample of 422 spectra for 316

unique LAEs; the contamination rate for the photometric sample is thus estimated to be 10/(316+10) = 3.1%
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Figure 4.2: The redshift distribution of all spectroscopically-identified LAEs in each field (red). For each
field, the number of objects with spectra is given in the upperleft. Vertical dashed lines correspond to the
HLQSO redshift in each field. Solid black lines denote transmission function for the narrowband filter used
to select objects in each field; the normalization is such that N=1 is 10% transmission, the cut-off value for
the automatic line-detection algorithm. Note that nearly all fields display a strong association of LAEs with
the QSO redshift in addition to a more broadly-distributed component.

based on the number of these identified low-z AGN contaminants.

QSO redshifts were determined as described in Trainor & Steidel (2012) and have estimated uncertainties

σz,QSO≈ 270 km s−1. The redshift distribution of LAEs with respect to their nearby QSO is shown for

each field in Fig. 4.2. On small scales, the redshift distribution of LAEs with respect to the HLQSOs is

more meaningful to consider as a distribution of velocities. The relative LAE-QSO velocities are calculated

as in Eq. 2.4, withvLAE = c(zLAE − zQSO)/zQSO. The distribution of QSO-centric velocities for our entire

spectroscopic LAE sample is given in Fig. 4.3. In this case, thezLAE is not equal tozLyα, but has been shifted

by −200 km s−1 to account for the typical redshift of the Lyα emission peak with respect to systemic derived

from our MOSFIRE data set; this analysis is discussed in Sec.4.4.1.

4.2.3 MOSFIRE Spectroscopic Sample

For a small subset of these Lyα-selected objects, rest-frame optical spectra were also obtained via the new

Multi-Object Spectrometer For InfraRed Exploration (MOSFIRE; McLean et al. 2010, 2012) on the Keck 1

telescope. These data were taken over the course of the KBSS-MOSFIRE survey (Steidel et al. 2014). All

the MOSFIRE data considered in this analysis are from the field around the HLQSO Q2343+12 (z = 2.573).

H-band andK-band spectra were obtained for 42 LAEs in this field and reduced via the MOSFIRE-DRP;
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Figure 4.3: The velocity distribution of all spectroscopically-identified LAEs with respect to their nearby
hyperluminous QSO. The LAE redshifts are taken from the spectral detection of Lyα, but are shifted by
−200 km s−1 to account for the mean Lyα offset with respect to systemic. The hatched curve is the selection
function defined by the set of narrowband filters used to select the LAEs.
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Table 4.2. MOSFIRE Observations

Object Name WLyα (Å) zLyα
a zH

a zK
a σneb (km s−1)b fLyα/ fHα

c

Q2343-NB0280 52.6 2.580 2.5777 2.5627 50± 5 1.9
Q2343-NB0308 58.8 2.569 - 2.5663 37± 8 6.4
Q2343-NB0345 36.9 2.592 - 2.5877 68± 0 2.5
Q2343-NB0405 134.8 2.589 2.5861 - 59± 6 -
Q2343-NB0565 313.9 2.566 - 2.5636 55± 8 3.1
Q2343-NB0791 37.4 2.571 - 2.5740 69± 8 1.1
Q2343-NB0970 44.1 2.561 - 2.5755 52±14 3.9
Q2343-NB1041 133.9 2.550 - 2.5477 31± 8 4.5
Q2343-NB1154 54.1 2.577 - 2.5907 58±10 3.1
Q2343-NB1174 236.6 2.551 - 2.5477 48± 7 5.9
Q2343-NB1361 90.6 2.560 2.5588 - 97±15 -
Q2343-NB1386 25.8 2.569 - 2.5670 50±10 0.4
Q2343-NB1416 20.7 2.560 2.5584 - 36± 6 -
Q2343-NB1501 35.2 2.561 - 2.5604 193±41 0.6
Q2343-NB1518 22.3 2.589 - 2.5860 145±32 2.8
Q2343-NB1585 303.4 2.567 2.5651 (2.5645)d 45± 5 7.0
Q2343-NB1692 359.2 2.562 - 2.5605 46± 7 6.7
Q2343-NB1783 35.0 2.578 2.5766 (2.5767)d 68± 3 1.4
Q2343-NB1789 88.2 2.547 - 2.5446 46± 8 4.7
Q2343-NB1806 19.3 2.598 - 2.5952 61±11 2.4
Q2343-NB1828 26.7 2.575 - 2.5723 83±13 2.6
Q2343-NB1829 32.1 2.578 - 2.5754 78± 9 0.9
Q2343-NB1860 23.6 2.574 - 2.5737 67±13 1.5
Q2343-NB2089 51.9 2.572 - 2.5773 68±10 2.4
Q2343-NB2211 66.2 2.578 - 2.5758 40± 5 2.8
Q2343-NB2571 29.4 2.582 - 2.5922 25± 5 1.3
Q2343-NB2785 14.2 2.572 - 2.5785 73±14 1.9
Q2343-NB2816 58.5 2.578 - 2.5737 42± 8 3.2
Q2343-NB2821 32.4 2.580 - 2.5783 45± 8 0.5

the observational strategies employed and reduction software are described in Steidel et al. (2014). Redshift

fitting and object extraction were performed using the IDL program MOSPEC (A. Strom et al., in prep.). Of

the 42 observed LAEs, 35 yielded redshifts via measurement of Hα (K-band, 31 objects) and/or the [OIII ]

λλ4959,5007 doublet (H-band, 7 objects) in emission (note that three objects have measured redshifts in both

bands). Four of these objects do not meet the Lyα equivalent width threshold employed here to define LAEs

in a strict sense (WLyα > 20Å), but these four are kept in the sample because they were otherwise selected

via the same photometric techiniques used to define the rest of the sample, and they all display strong Lyα

emission in their spectra. Further information on these spectra is given in Table 4.2 and Fig. 4.4.1. The

redshift measured from the MOSFIRE spectra, whether from the H or K band, is hereafter denoted byzneb.

In the three cases where a measurement was obtained in both bands, the measurement of the higher-S/NH

was used, but both bands generally agree quite closely (. 35 km s−1).
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Table 4.2

Object Name WLyα (Å) zLyα
a zH

a zK
a σneb (km s−1)b fLyα/ fHα

c

Q2343-NB2834 7.2 2.570 - 2.5654 60±12 2.5
Q2343-NB2957 23.3 2.580 - 2.5550 45± 7 1.7
Q2343-NB3061 57.6 2.579 - 2.5765 108±23 1.4
Q2343-NB3170 90.0 2.549 - 2.5499 60±12 2.6
Q2343-NB3231e 110.4 2.574 2.5715 (2.5709)d 45± 5 10.1
Q2343-NB3292 13.4 2.570 - 2.5630 38± 9 1.2

azLyα, zH , andzK denote the redshifts measured from fitting the Lyα emission line,H
band emission lines (primarily [OIII λ5007]), andK band emission lines (Hα exclusively).

bσneb is the velocity width of the nebular emission line used to define zneb. The instru-
mental profile width of∼35 km s−1 has not been removed.

c fLyα/ fHα is the ratio of Lyα to Hα for those objects withK-band spectroscopy.fLyα

comes from direct integration of the Lyα LRIS spectrum, whilefHα is estimated by a fit to
the MOSFIRE spectrum. No slit correction is applied to either measurement.

dIn the three cases where both theH andK band spectra yielded redshifts, we adopted
the higher-S/NH band redshifts to definezneb.

eThe nebular redshift of Q2343-NB3231 was measured from the [O III ] λ4959Å line
because theλ5007Å line did not fall on the detector.

4.3 Photometric properties of LAEs

4.3.1 TheLyα luminosity function

The distribution of Lyα-line luminosities for our photometric sample of LAEs is given in Fig. 4.4. Individual

LAE luminosities are estimated using the continuum-subtracted NB image and laboratory-estimated filter

width (FWHM, see Table 4.1) to infer an integrated line flux. Asthe redshift of each photometrically-selected

LAE is not known, the luminosity distance to the QSO in each field was used to convert these integrated fluxes

into luminosities.

The NB filters used to measure these fluxes are not perfectly top-hat in shape (Fig. 4.2), so some censor-

ing and underestimation of flux will occur for those objects that fall in the wings of the filter transmission

function. To account for this effect, we follow the method ofGronwall et al. (2007) and Ciardullo et al.

(2012) in computing a convolution kernel to apply to the flux distribution. Those works studied the distri-

bution of LAEs in blank fields, however, and the underlying redshift distribution was assumed to be fairly

uniform. The presence of bright QSOs that are known to be associated with galaxy overdensities (Trainor &

Steidel 2012) thus violate this assumption. To account for this, we applied the numerical convolution of the

filter transmission function via a Monte Carlo technique that accounts for the fact that most objects lie near

the QSO, where the filter transmission is highest. Specifically, emitters were simulated with redshifts drawn

from a two component distribution: a combination of gaussian distribution centered on the QSO redshift
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Figure 4.4: The Lyα luminosity function for the 749 LAEs in our photometrically-identified sample. In
converting NB flux to a Lyα luminosity, each LAE was assumed to lie at the redshift of itsnearby QSO,
and a correction was made for the non-“top hat” transmissionfunction of the NB filter (see §4.3 for explana-
tion). The best-fit Schechter function is plotted in black. Overplotted curves correspond to Lyα luminosity
functions at similar redshifts from the literature (Cantalupo et al. 2012; Hayes et al. 2010; Gronwall et al.
2007; Ciardullo et al. 2012); each curve is solid over the ranges of luminosity used to derive it and dashed to
extrapolate over the entire range covered by this survey. Note that the survey of Cantalupo et al. (2012) was
conducted in the field around a HLQSO of comparable luminosity to those described here, but with a more
narrow selection filter. That work did not formally fit the luminosity function, but rather assumed the values
of Hayes et al. (2010) forφ∗ andL∗, adjustingα (Eq. 4.3) to provide a visually acceptable fit to their data.
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Table 4.3. Best-fit Schechter Function Parameters

log(L∗/erg s−1) log(φ∗/h3
70 cMpc−3) α χ2

43.04±0.15 −3.49±0.24 1.80±0.11 10.8
43.1 (fixed)a −3.58±0.05 1.84±0.05 10.9

aThe Schechter (1976) function was fit in two ways; first by
fitting all three functional parameters simultaneously, and sec-
ondly by fixingL∗ to the value measured by Hayes et al. (2010)
and assumed by Cantalupo et al. (2012). The fits (and goodness-
of-fit) are nearly identical in both cases, but the covariance is
significantly decreased in the fixed-L∗ fit. The parameters of the
full fit are used in Fig. 4.4.

and a flat distribution covering the NB bandpass. The width ofthe gaussian and relative normalization of

the two components were chosen such that the output distribution matched the observed combined velocity

distribution of LAEs with respect to their nearby QSOs (Fig.4.3). The overall effect is a slight (∼20%) boost

to the average LAE flux, and these corrections have been applied to the binned points in Fig. 4.4 in order

to facilitate comparison to the curves of Gronwall et al. (2007) and Ciardullo et al. (2012), which have been

similarly corrected. Aχ2 fit was also performed to the binned values using Poisson errors and assuming a

Schechter (1976) functional form:

φ
(

L/L∗
)

= φ∗

(

L
L∗

)1−α

e−L/L∗

(4.3)

the fit parameter values for which are given in Table 4.3. Theχ2 value of the fit is 10.8 on 9 degrees of

freedom. Atz ∼ 2.7, our measurements might be expected to lie inbetween thez ∼ 3.1 andz ∼ 2.1 curves

of Gronwall et al. (2007) and Ciardullo et al. (2012), but allour points lie above even thez ∼ 3.1 curve.

Furthermore, the faint-end slope inferred from our data (α ∼ 1.8) is steeper than those measured in the blank

fields (α ∼ 1.65) but is comparable to the faint-end slope measured in populations of LBGs (e.g. Reddy

et al. 2008). Notably, the break in the luminosity function is not strong, and theL∗ andφ∗ parameters are

quite degenerate: if we assume log(L∗/L⊙) = 43.1 (Hayes et al. 2010; Cantalupo et al. 2012), theχ2 value

increases marginally to 10.9 on 10 degrees of freedom (Table4.3).

The shift in overall normalization is consistent with the measured overdensity of galaxies in the QSO

neighborhoods from Trainor & Steidel (2012), and both the normalization and the faint-end slope closely

resemble the luminosity function of Cantalupo et al. (2012), which was also measured in a single HLQSO

field. That analysis is not corrected for filter censoring, but any correction would likely be minor (as here)

due to the intrinsic association of the LAEs with the centralQSO. In addition to including only a single

field and omitting spectroscopy, the major difference between that survey and the work presented here is the

width of the NB filter employed:∼40Å in Cantalupo et al. (2012) and∼80Å for the four filters of KBSS-
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Lyα. The difference in filter width corresponds to a difference in effective survey volume, and the wider

filter in our survey includes subtantial volume relatively far from the QSO, thus diluting the effect of the

QSO-associated overdensity on the overall luminosity function. Accounting for this difference in effective

volumes, the luminosity function measured here is almost identical to that of Cantalupo et al. (2012), though

with much tighter constraints and extending to higher Lyα luminosities.

The steeper faint-end slope observed both in these data and in Cantalupo et al. (2012) is likely caused

by a fluorescent contribution to the observed Lyα luminosity, in which ionizing QSO radiation incident on

optically-thick HI in these gas-rich galaxies is reprocessed as Lyα photons (Cantalupo et al. 2005; Kollmeier

et al. 2010). Radiative transfer simulations conducted by Cantalupo et al. (2012) show that this process causes

a steepening of the Lyα faint-end slope due to the fact that the fluorescent contribution to the total Lyα flux

produces the greatest fractional effect in gas-rich, intrinsically faint galaxies. In this interpretation, many

of the faint objects selected near the QSOs are likely to harbor very faint stellar populations that would fall

below the detection limit in a similarly deep survey in a blank field.

For comparison, similarly-constructed Lyα luminosity functions are presented for each of the eight fields

individually in Fig. 4.5. The diversity among fields is apparent in the figure and can also be seen among

the blank field surveys atz ∼ 2.2 in Fig. 4.4. Nearly all the QSO fields, however, are fairly consistent with

the combined luminosity function; the one exception is the field around HS1549+1919, which is the brightest

QSO in the sample and was previously known to harbor an exceptionally rich overdensity of galaxies (Trainor

& Steidel 2012).

4.3.2 Lyα equivalent width distribution

The rest-frame equivalent width of Lyα, WLyα, is an essential quantity for characterizing LAEs: not onlydoes

WLyα define the selection criterion for LAEs, but its distribution is seen to evolve significantly with redshift

(e.g. Ciardullo et al. 2012) and likely traces the evolving physical properties that dominate the emission and

transmission of Lyα photons.

The value ofWLyα is difficult to define and to measure, however. The resonant scattering of Lyα pho-

tons through the interstellar and circumgalactic media quite generally produces diffuse Lyα halos around

high-redshift galaxies that appear compact in the UV continuum (Steidel et al. 2011), causing the observed

Lyα equivalent width to vary with aperature size and surface-brightness sensitivity. This issue is especially

problematic in spectroscopic measurements of Lyα flux and equivalent width, where differential slit losses

between the line and continuum flux can cause the Lyα line to appear in emission, absorption, or a super-

position of the two even for net-Lyα-emitters (Steidel et al. 2011). Additionally, the continua of these faint,

high-WLyα sources are not significantly detected in individual spectra.

In light of these issues, we use photometric estimates ofWLyα for source selection and analysis using the

narrowband and broadband UV continuum images discussed in Sec. 4.2.1. WhilemNB andmBB correspond

closely to the Lyα and UV continuum fluxes, a precise estimate ofWLyα requires accounting for the Lyα
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overall Lyα luminosity function in Fig. 4.4 (dashed black line). The number of photometrically-identified
LAEs in each field is given in the upper right.

flux falling within the broadband passband; for the highest-WLyα sources, the Lyα line flux can dominate the

measured broadband flux. The expression forWLyα is thus given by the following:

WLyα = ∆λNB

(

∆λBB −∆λNB

( fBB/ fNB)∆λBB −∆λNB
− 1

)

1
zQSO

, (4.4)

wherefNB and fBB are the AB flux densities corresponding tomNB andmBB, ∆λNB and∆λBB are the effective

FWHM of the narrowband and broadband images for each field (seeTable 4.1), andzQSO is the redshift of

the nearby HLQSO, taken to be the most likely redshift for theLAEs selected in each field.

BecauseWLyα is undefined forfBB = fNB∆λNB/∆λBB in this expression, we consider it to be formally

measured only iffBB ≥ fNB∆λNB/∆λBB + σBB, whereσBB is the estimated error onfBB
2. If this condition

is not met, only a lower limit can be set onWLyα. The dependence ofWLyα on fBB also means that small

errors in fBB can translate to extremely large errors inWLyα for continuum-faint sources. The uncertainties

and lower limits onWLyα thus depend on the flux uncertainties in a complicated manner, so we estimate these

values via the following Monte-Carlo technique.

For each object, 1000 “observations” offNB and fBB are performed in which a small error is added to both

flux values; these errors are independently drawn from gaussian distributions with zero mean and variance

σ2
NB andσ2

BB, respectively. These recomputed flux values are designatedf ′NB and f ′BB. For each “observation”,

W ′
Lyα is then computed fromf ′NB and f ′BB using Eq. 4.4, so long asfBB ≥ fNB∆λNB/∆λBB. If this condition

2This is equivalent to requiring that the line-subtracted continuum flux is greater than the uncertainty in the continuumflux.
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Figure 4.6: The distribution ofWLyα, the rest-frame equivalent width of Lyα. Left: The overall distribution
of WLyα (grey), with the best-fit exponential function (blue line).The histogram is in log scale to emphasize
the high-WLyα end, where the distribution deviates strongly from an exponential. Best-fit functions from
Gronwall et al. (2007), Ciardullo et al. (2012), and Guaita et al. (2010) are plotted for comparison.Right:
The distributions ofWLyα for those LAEs with spectroscopic redshifts lying in front (blue) or behind (red)
the QSO. The foreground LAEs are∼20Å higher in averageWLyα than those in the background and include
∼2× more sources withWLyα > 100Å.

is not satisfied,f ′BB is replaced byfNB∆λNB/∆λBB in the computation ofW ′
Lyα. Estimated uncertainties on

WLyα are then drawn from the distribution ofW ′
Lyα: the 15.7 and 84.2 %-tile values ofW ′

Lyα are taken as the

lower and upper 1-σ uncertainties onWLyα in cases whereWLyα is formally measured, while the 31.8 %-tile

value is taken as the lower limit onWLyα when fBB < fNB∆λNB/∆λBB +σBB.

The distribution ofWLyα calculated in this way is given in Fig. 4.6. For comparison, best-fit exponential

distribution functions from Ciardullo et al. (2012), Gronwall et al. (2007), and Guaita et al. (2010) are shown

as well (parameterized asP(WLyα) = e−WLyα/W0/W0). Ciardullo et al. use these fits to argue that the distribution

evolves significantly fromz ∼ 3.1 to z ∼ 2.1: Guaita et al. (2010) find a most-likely e-folding scale ofW0 =

50±7Å atz∼ 2.1, while Gronwall et al. (2007) and Ciardullo et al. (2012) findW0 = 64±9Å andW0 = 75±6Å

respectively, for the same field atz ∼ 3.1 using two different NB filters.

Using the maximum-likelihood estimator of the e-folding scale for our data givesW0 = 43Å, and this curve

is also plotted for comparison. However, none of these distributions provide an acceptable description of our

data. An Anderson-Darling test for the likelihood of these data being drawn from an exponential distribution

(Anderson & Darling 1954) rejects that hypothesis at probability p ≪ 1%. The non-exponential nature of the

distribution is clear from Fig. 4.6 (left panel): while the curve fits reasonably well at 50Å< WLyα < 200Å,

it significantly underpredicts the fraction of LAEs withWLyα > 200Å, and all four curves underpredict the

fraction of LAEs with low values ofWLyα.

The failure of the exponential function to fit these data may simply be due to the size of the data set, as an
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underlying non-exponentialWLyα distribution can be obscured in smaller samples such as those referenced

above. However, as those samples are also taken from blank fields, the differences in our sample may also

be associated with the presence of the nearby QSO. It is well known that LAEs are associated on average

with lower dust fractions and younger stellar populations than continuum-bright galaxies, and Ciardullo et al.

(2012) suggest that the evolution of the equivalent-width distribution tracks the production of dust and aging

of stellar populations over this time period. As galaxy evolution is expected to proceed more quickly in more

highly-biased environments (e.g. Steidel et al. 2005; Kulas et al. 2013), it is perhaps not surprising that the

scale length of the equivalent-width distribution is smaller in these overdense QSO environments in the field.

On the other hand, the QSO fields also show an excess of high-WLyα LAEs. Cantalupo et al. (2012) find

a similar population of high-WLyα LAEs in a QSO field atz ∼ 2.4, arguing (as in Trainor & Steidel 2013,

Chp. 3) that this effect is a key prediction of models of QSO-induced fluorescent emission.

The HLQSOs in this sample were estimated to have agestQSO∼ 10 Myr based on the spatial distribution

of high-WLyα LAEs; this effect can also be seen by comparing the distribution ofWLyα itself in the foreground

and background of each QSO. These distributions are given inFig. 4.6 (right panel). As expected from the

results of Trainor & Steidel (2013, Chp. 3), the distributions differ: the 164 spectroscopic LAEs in the

foreground, where fluorescence is detected, have an averagevalue〈WLyα〉 = 94±6Å, while the background

LAEs have〈WLyα〉 = 77± 6Å. Similarly, 57 of the 88 spectroscopic LAEs withWLyα > 100Å lie in the

QSO foreground, while only 31 lie in the background (most of which are consistent with lying at the QSO

redshift, given their redshift uncertainties). Under a non-parametric KS test, the foreground and background

distributions ofWLyα differ with moderate significance,p = 0.03.

4.3.3 Continuum properties

Because the presence of the nearby QSO seems to have a strong effect on the Lyα-emitting properties of the

LAEs, it is useful to consider their properties at other wavelengths in order to constrain physical properties

of the LAEs themselves, including those of their stellar populations. In Fig. 4.7, we show the distribution of

NB and broadband fluxes for all the rest-frame optical and NIRbands covering the KBSS fields. The data

are divided into subsamples based onWLyα, and theWLyα > 100Å sample in particular consists of objects

with marginal detections or non-detections in all broadband filters, including deep HST WFC3 observations

in many cases.

In the following sections, we consider some detailed spectral properties of the Lyα line, some of which

are shown by Erb et al. (2014, submitted) to correlate with continuum brightness. It is useful to note that the

LAEs studied here are significantly fainter on average than the sample of Erb et al., which had a medianR

magnitude of 26.0; the 749 LAEs of this sample have a medianR = 27.2, including 307 objects fainter than

the 3-σ R depth of 27.6.
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4.4 Lyman-α spectral morphology

As introduced in Sec. 4.1, the observed spectral profile of the Lyα line is the result of both the input distri-

bution of Lyα photons produced directly from recombination and the resonant scattering that both impedes

and shapes their escape. The net result of these processes instar-forming galaxies is generally seen to be the

broadening of the Lyα line and an overall shift redward with respect to the systemic redshift (e.g. Shapley

et al. 2003), an observation that can be simply explained by outflowing winds that drive Lyα photons to sig-

nificant shifts in both space and velocity (Steidel et al. 2010). The details of these effects, however, depend

on many factors, including the dust content, column density, covering fraction, and velocity distribution of

the scattering medium.

As the Lyα line profile bears the imprint of these diverse galaxy and gasproperties, it may be an important

tool for studying galaxy evolution. However, the degenerate effects of these processes require care in their

interpretation. For instance, Hashimoto et al. (2013), Schenker et al. (2013), and Shibuya et al. (2014) show

that galaxies selected via their Lyα emission have a smaller velocity shift of Lyα with respect to systemic

compared to continuum-selected galaxies (e.g. those of Steidel et al. 2010). Erb et al. (2014, submitted)

extend this study to a large sample of LAEs and LBGs with systemic redshifts, demonstrating that the Lyα

velocity shift shows a significant inverse trend withWLyα for the combined population of galaxies selected by

either technique. The physical basis of this relationship remains unclear, however. In particular, it is not clear

whether the velocity offset of Lyα is predominantly driven by wind velocity (as suggested by Hashimoto

et al. 2013) or HI optical depth (as suggested by Chonis et al. 2013). Furthermore, many LAEs do not

exhibit simple Lyα shifts, but rather show complex, multipeaked profiles that may result from either internal

star formation (Kulas et al. 2012) or externally-illuminated fluorescent processes (Kollmeier et al. 2010). In

particular, Lyα lines that are blueshifted with respect to systemic may indicate systems that are dominated by

inflowing H I (Verhamme et al. 2006) whose low star-formation and intrinsic Lyα-production would likely

hide them from view in non-fluorescing populations. The distribution of Lyα spectral properties and their

relation to other physical properties of the galaxies are thus an important window into the the processes that

drive gas into and out of galaxies throughout their evolution.

4.4.1 Velocity shift with respect to systemic redshift

The offset of the Lyα line with respect to the systemic redshift was measured for each of the 36 LAEs in the

MOSFIRE sample using thezLyα andzneb values estimated as described in Sec. 4.2.2 and 4.2.3. The velocity

offset was then inferred from the measured redshifts asvLyα =
zLyα−zneb

1+zneb
c.

Postage stamps of each Lyα and nebular line spectrum in the MOSFIRE sample are displayed in Fig. 4.4.1.

The majority of the nebular redshifts are derived from Hα, for which the intrinsic flux ratiofLyα/ fHα = 8.7

under the typical assumption of case-B recombination. The actual line ratios in Fig. 4.4.1 vary considerably

( fLyα/ fHα ∼ 0.4− 10.1, Table 4.2) due to the differential slit losses and attenuation affecting Lyα and Hα



69

−1000 0 1000

0

1

2 Q2343-NB0280

−1000 0 1000

0

1

2 Q2343-NB0308

−1000 0 1000

0

2

4

6

8 Q2343-NB0345

−1000 0 1000

0

1

2 Q2343-NB0405

−1000 0 1000

0

1

2

3 Q2343-NB0565

λ
 F

λ
 (
10
−1

4
 e
rg

 s
−1

 c
m
−2

)

−1000 0 1000

0

1

2

3 Q2343-NB0791

−1000 0 1000

0

1

2 Q2343-NB0970

−1000 0 1000

0

1

2 Q2343-NB1041

−1000 0 1000

0

1

2

3 Q2343-NB1154

−1000 0 1000

0

2

4 Q2343-NB1174

−1000 0 1000

0

1

2 Q2343-NB1361

−1000 0 1000

0

1

2

3 Q2343-NB1386

−1000 0 1000

0

1

2 Q2343-NB1416

−1000 0 1000

0

1

2 Q2343-NB1501

Velocity (km s−1 )
−1000 0 1000

0

1

2 Q2343-NB1518

−1000 0 1000

0

1

2 Q2343-NB1585

Figure 4.8: Lyα and nebular line spectra for subsample of objects with MOSFIRE redshifts. Lyα spectra
(black) are from LRIS, with resolutionR ∼ 1300. Nebular spectra are for the Hαline (red) or [OIII ] (purple),
whichever was used to estimate the systemic redshift. All [OIII ] spectra are for the 5007Å line with the
exception of NB3231, for which we use the 4959Å line because the higher-wavelength emission line fell off
the detector. MOSFIRE spectra have been down-sampled by a factor of three to match the LRIS resolution
and suppress noise; the narrowest lines are resolved in the un-binned spectra. Both spectra are shifted to the
redshift frame estimated fromzneb. The fluxes are inλFλ units to facilitate comparison of their integrated line
luminosities.

photons.

The imperfect correspondence of the Lyα line to the systemic redshift is clear from the panels in Fig.4.4.1.

The majority (28/35; 80%) of spectra display the redshiftedLyα profile typical of star-forming galaxies, but

there are several objects with minimal velocity shift, or even a dominant peak blueward of the systemic

redshift. The distribution of measured velocity shifts,vLyα, is given in Fig. 4.9. The typical Lyα shift of +200

km s−1 is clearly visible. This shift is consistent with that foundfor the few samples of LAEs with systemic

redshifts in the literature (e.g. McLinden et al. 2011; Hashimoto et al. 2013; Chonis et al. 2013; Shibuya et al.

2014), and significantly less than that found in typical samples of LBGs (Steidel et al. 2010).

The two panels of Fig. 4.9 show the effect of definingzLyα by either the fitted peak (zLyα,peak) or the

flux-weighted mean of the line profile (zLyα,ave; see Sec. 4.2.2). While both methods yield qualitatively
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Figure 4.8: Continued.
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Figure 4.9: Distribution of Lyα velocity offsets for the LAEs with nebular redshifts measured with MOS-
FIRE. In each panel, the vertical dashed line denotesvLyα = 0. Left: The distribution whenzLyα is defined by
the peak of the fit line profile (zLyα,peak). Most of the LAEs have offsets in a tight range aroundvLyα = 200 km
s−1, but a few have Lyα lines blueshifted with respect to the systemic redshift (vLyα < 0). The LAEs falling
outside this narrow peak are labeled for comparison with Fig. 4.4.1. Right: The distribution whenzLyα is
defined by the flux-averaged central value of the line (zLyα,ave). Most LAEs again havevLyα ∼ 200 km s−1,
but with a broader distribution. Again, discrepant objectsare labeled, 5/6 of which are in common with the
zpeakplot.

similar distributions,zLyα,peak displays a markedly tighter correlation with the redshift derived from nebular

emission lines thanzLyα,ave. Leaving aside the 7 LAEs with significantly discrepant values ofvLyα under

either indicator (i.e., those labeled in either panel of Fig. 4.9), the standard deviations of the two distributions

areσv,peak= 113 km s−1 andσv,ave= 148 km s−1, whereσv = 〈∆(zneb− zLyα)〉. The similarities between the two

distributions suggest that either quantity is a reasonableproxy for the systemic redshift after correcting for the

typical 200 km s−1 offset, and even the individual velocities computed by bothmeasurements are consistent

within 100 km s−1 for the majority of objects. BecausezLyα,peak trackszneb more tightly, however, we adopt

zsys,Lyα = zLyα,peak− 200 as the best estimate of the systemic redshift in the absence of nebular emission line

measurements.

In addition to the distribution of average or peak Lyα line velocities, it is interesting to consider the

total distribution of Lyα and nebular flux. Fig. 4.10 displays the stacked profile of the35 LAEs in the

MOSFIRE sample. Of particular note is the breadth of the Lyα profile with respect to the nebular line

profile; assuming that the Lyα photons are generated by recombination processes in the same H II regions

that generate the nebular emission, the left panel of Fig. 4.10 clearly displays the diffusion of the Lyα photons

in velocity as they resonantly scatter through the surrounding H I gas. Fitting a Gaussian function to the stack

of nebular lines yields a velocity width ofσneb = 50±2 km s−1, while the stacked Lyα profile has a width

of σLyα = 162± 8 km s−1 for the primary (red) peak. These figures include the instrumental resolution of

MOSFIRE (∼ 35 km s−1) and LRIS (∼ 100 km s−1) in their observed modes; subtracting this factor in

quadrature yields intrinsic widths ofσintrinsic
neb ≃ 40 km s−1 andσintrinsic

Lyα = 127 km s−1. The peak of the stacked

Lyα spectrum is again quite close to+200 km s−1, but there is a distinct component blueward of the systemic
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Figure 4.10: Stacked spectral profiles for the 36 LAEs with systemic (nebular) redshift measurements.Left:
Comparision of the stacked nebular (red) and Lyα (black) line profiles for these LAEs. The nebular stack
consists of both Hα and [OIII ] λ5007 lines where available. The lines are stacked accordingto their corre-
sponding nebular redshifts, and the effect of resonant scattering on escaping Lyα photons is clearly visible,
as is the typical Lyα velocity offset of∼ 200 km s−1 redward of systemic.Right: Comparison of the average
Lyα profiles when spectra are stacked according to their nebular, systemic redshift (black, as above) and a
redshift derived directly from the Lyα line peak (blue, shifted+30 km s−1 for clarity), wherein the “systemic”
redshift is estimated asvsys,Lyα = vLyα −200 km s−1. Stacking via the Lyα redshift distorts the Lyα profile and
diminishes the measured flux blueward of the systemic redshift.

redshift as well. After subtracting the low-level continuum, the fraction of Lyα line flux emitted blueward of

v = 0 is 29%. For comparison, we show the effective profile that would result from stacking all the Lyα lines

at the redshifts derived from the Lyα line and then making a+200 km s−1 shift in the right panel of Fig. 4.10.

The resulting profile is narrower (σlya = 129±5 km s−1), and only 15% of the continuum-subtracted line flux

is measured to be emitted atv < 0, roughly half of what is measured using the true systemic redshifts.

4.5 Evidence for winds in stacked spectra

4.5.1 Absorption signatures

While the resonance of the Lyα transition makes it a strong tracer of gas in and around high-redshift galaxies,

this strong coupling can obscure the details of the physicalprocesses driving Lyα absorption and emission.

In particular, we note in Sec. 4.4 that Lyα transmission is sensitive to a variety of factors, including the

optical depth, covering fraction, dust content, and kinematics of the gas distribution. Because they produce

degenerate effects on the Lyα profile, Lyα emission alone is insufficient to fully characterize the dominant

emission mechanisms and physical conditions in LAEs or high-redshift galaxies generally.

The measurement of non-resonant lines in the UV continuum spectra of galaxies is thus a crucial tool

for disentangling these effects. Detailed analysis of the continuum spectra of typical high-redshift galaxies

began with spectra of the gravitationally-lensedz ∼ 2.7 galaxy MS 1512-cB58 (Pettini et al. 2000, 2002) and



73

was extended to non-lensed galaxies through stacking the spectra of many (∼1000)z ∼ 3 LBGs by Shapley

et al. (2003). These studies utilized the high S/N of the lensed or stacked spectra to extract metal abundances,

ion-specific covering fractions, wind velocities, and systemic redshifts for the galaxies while placing these

properties in the context of their star-formation rates, masses, and Lyα emission properties. For faint LAEs

such as those in our sample, constraints on the metal contentand wind velocities are especially interesting

because they reveal the extent to which past and on-going star formation are already having an effect on the

chemistry and kinematics of these particularly young, low-mass galaxies.

LAEs are by selection generally faint in the continuum, so absorption measurements of comparable fi-

delity to those of Shapley et al. (2003) are impossible in even the largest stacks of galaxies similar to those

considered here. Hashimoto et al. (2013) consider the absorption profiles in a stack of 4 LAEs with systemic

redshift measurements to measure wind velocities, and Shibuya et al. (2014) conduct a similar analysis in

individual bright LAEs, finding typical outflow velocitiesvabs∼ 100− 200 km s−1. However, the objects in

these studies haveB-band magnitudes〈mB〉 ∼ 24, suggesting that they would easily fall within typical selec-

tion criteria for continuum-selected star forming galaxies. While useful for studying the correlation between

wind velocity vabs andWLyα, these samples are clearly far removed from the faint LAEs considered in this

thesis, with median continuum magnitude〈mB〉 = 26.8.

For such faint objects, large samples are needed to obtain even a low-fidelity measurement of metal

absorption. Stacking our entire sample of 35 LAEs with MOSFIRE redshifts does not yield sufficient signal

to measure individual absorption line strengths and velocities. However, the results of Sec. 4.4.1 demonstrate

that the peak of the Lyα line is an excellent proxy for the systemic redshift for the majority of LAEs meeting

our selection criteria. Using this correlation, we can stack the rest-UV spectra of all 316 LAEs with measured

Lyα redshifts using a rest frame defined byzsys,Lyα = zLyα,peak− 200 km s−1. As many of our objects have

multiple LRIS spectra of their rest-FUV continuum, we include all spectra for each object such that each

spectrum received equal weighting, effectively weightingeach object by total exposure time.3 Furthermore,

two spectra with individually-significant continua (likely AGN) were removed from the sample in order

ensure that they did not dominate the stack; all the remaining spectra have S/N≪ 1 in the continuum. Lastly,

the portion of each spectrum corresponding toλ ≈ 5577± 15Å in the observed frame was omitted from

the stack in order to remove contamination from a bright sky line. In total, 422 LAE spectra were stacked,

producing a final spectrum with an effective exposure time of∼675 hours.

An error spectrum was then generated for the stack via a bootstrapping procedure. 1000 iterations were

performed in which 422 spectra were drawn (with replacement) from our sample and stacked to make a set

of 1000 randomized spectral stacks. The standard deviationof values at each pixel was then used to define

the error spectrum of the true stacked data. From this error spectrum, we estimate that the stack has a median

S/N∼ 10 in the range 1230Å. λrest. 1420Å, the range of interest for the absorption lines discussed below.4

3The results of the continuum stacking are insensitive to whether the objects are weighted equally, weighted by number of spectra,
or weighted by total exposure time.

4Unfortunately, we are unable to obtain robust measurements ofthe C IV doublet 1549,1551Å, generally one of the strongest
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Figure 4.11: Interstellar absorption signatures of metal lines in the stacked spectrum of all 316 spectroscopic
LAEs. Vertical red lines are the rest-wavelenths of metal ions seen in absorption, while dashed blue lines
denote the wavelengths of fine-structure and nebular emission features. A detailed list of these lines is given
in Table 4.4. Yellow shaded regions are the areas used to calculate the equivalent width and absorption-
weighted velocity of each species; the absorption estimated for Si II λ1304 is shaded green to differentiate
it from the partially-blended OI λ1302 absorption. Uncertainties for the equivalent width measurements are
estimated via a bootstrapping procedure described in the text; the bootstrapped error spectrum is displayed in
grey at the bottom of each panel.

Measurements were made of the absorption of six metal lines,corresponding to four spectral regions

(Fig. 4.11, Table 4.4). For each spectral region, the continuum level was independently estimated using

the local median value, but the estimates among all four regions are consistent to. 2% in λ fλ units. The

measured continuum was also checked for consistency with the broadband photometry. At the median wave-

length of the absorption lines (λobs∼ 5000Å), the stacked continuum flux is 7.5∼ 10−8 Jy (m5000 = 26.72),

comparable to the mean Lyα-subtracted broadbandB/G flux (7.9∼ 10−8 Jy; 〈mBB〉 = 26.66) measured pho-

tometrically among the 318 objects in the spectral stack. Absorption measurements were then made for the

low-ionization lines SiII λ1260, OI λ1302, SiII λ1304, and CII λ1334, as well as the high-ionization doublet

Si IV λλ1393,1402. The equivalent width of absorption is estimatedin each case by numerically integrat-

ing the set of continuous pixels withfnorm < 1 nearest the rest-frame metal-line wavelength in the normalized

stack. The OI λ1302 and SiII λ1304 absorption lines are partially blended, so the division between them was

determined by visual inspection of the stacked spectrum. Uncertainties in the equivalent width were com-

puted by performing the same measurement for each line in each of the 1000 bootstrap spectra; the quoted

error refers to the standard deviation of these bootstrap measurements. An absorption-weighted velocity was

then measured for each line via numerical integration of theline profile: vabs=
∫

[1 − fnorm(v)]vdv. While the

equivalent widths in absorption of the two lines in the SiIV doublet were measured separately, they were

constrained to have the same total absorption-weighted velocity.

All the measured absorption lines have measured mean velocities〈vabs〉 ∼ 100− 200 km s−1 with absorp-

tion extending tovabs∼ 500 km s−1, in good agreement with the brighter LAE samples of Hashimoto et al.

absorption lines in high-redshift galaxies and a key indicator of AGN activity when seen in emission. Because we favor theresolution of
the 600-line grism over the increased spectral range of the 300 or 400-line grisms, the CIV doublet falls off the spectrograph for many
of our objects. Furthermore, the particular redshift range of our LAEs (z ∼ 2.6) causes significant contamination nearλrest∼ 1550Å
due to the bright sky line atλobs∼ 5577Å.
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Table 4.4. LAE Continuum Absorption Features

Ion λlab
a f b Wion (Å)c Aki (108 s−1)e

Absorption features

Si II 1260.422 1.007 0.53±0.10 -
O I 1302.169 0.04887 0.43±0.10d -
Si II 1304.370 0.094 0.17±0.08d -
C II 1334.532 0.1278 0.32±0.11 -
Si IV 1393.760 0.5140 0.30±0.12 -
Si IV 1402.773 0.2553 0.21±0.08 -

Emission features

Si II* 1264.738 - - 30.4
Si II* 1265.002 - - 4.73
O I* 1304.858 - - 2.03
O I* 1306.029 - - 0.676
Si II* 1309.276 - - 6.23
C II* 1335.663 - - 0.476
C II* 1335.708 - - 2.88

aVacuum wavelength of transition

bOscillator strength as in Pettini et al. 2002 (reproduced from Shapley
et al. 2003)

cEquivalent width of absorption in stacked spectrum (Fig. 4.11)

dThe OI λ1302 and SiII λ1304 absorption lines are partially blended, so
the division between them is somewhat uncertain.

eEinstein A-coefficients from the NIST Atomic Spectra Database
(www.nist.gov/pml/data/asd.cfm)
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(2013) and Shibuya et al. (2014). Because the systemic redshifts are not precisely known for the LAEs in

our stack, there may be some additional uncertainty in our measured velocities compared to those measured

in samples with complete catalogs of systemic reshifts. However, our stacked spectra also show several fine-

structure and nebular emission features (Fig. 4.11) that are more likely to trace the systemic galaxy redshifts;

the correspondence of these peaks to the rest-frame wavelengths of these features further suggests that our

corrected Lyα line measurements are a good proxy for the redshifts in theseLAEs.

In addition to the velocities of this outflowing gas, these absorption lines likewise constrain its covering

fraction, fc. Because the SiII λ1304 line suffers from partial blending with OI λ1302 it is difficult to robustly

measure the equivalent-width ratioW1260/W1304 and thus the optical depth of SiII ; however, the depth of the

Si II λ1260 absorption implies that the covering fraction of SiII must be at least∼30%. Similarly, OI and CII

display a covering fraction&20-25% as well. This consistency among the low-ionization species suggests

they likely correspond to a neutral gas covering fractionfc ∼30%.

The two lines of the SiIV doublet have a ratioW1393/W1402= 1.4, suggesting that the doublet is saturated

(W1393/W1402 = 2 on the linear part of the curve of growth). However, the weaker line has S/N∼ 2, and

∼25% of the bootstrap spectra haveW1393/W1402 & 2, so the transition may in fact be optically thin. The

high ionization potential of SiIV (33.5 eV) requires radiation from hot stars and/or collisional ionization in

T & 104K gas, and therefore traces ionized gas in or around the galaxy. The depth of the two absorption lines

thus suggests the presence of an ionized medium with an average covering fractionfc ∼ 20% (or greater if

the lines are optically thin).

The velocity shift of the Lyα line shows a strong inverse trend with Lyα equivalent width in the collective

populations of high-redshift LAEs and LBGs (Erb et al., submitted), but there many mechanisms that could

underly this relationship. If a change in outflow velocity isthe driver, then we should expect the velocity

profile of the metal absorption lines tracing the winds to vary with WLyα as well. Unfortunately, the S/N in

stacked subsamples is too low to probe this evolution in individual lines. However, we can boost the S/N

by combining the line profiles for multiple lines that we expect to trace the same gas. In particular, we can

stack the low-ionization lines (corresponding to neutral HI gas) and the high-ionization lines (corresponding

to ionized HII gas) and thereby extract enough signal to probe the variation of the gas velocity distribution

with WLyα.

Spectra combined in this way are displayed in Fig. 4.12 for three subsamples inWLyα. Because these

stacks include features at several different redshifts, wesubsampled them by a factor of two with respect to

the original wavelength scale before stacking in order to maximize the velocity resolution of the stacks. The

WLyα ≥ 60Å sample includes 158 LAEs (〈WLyα〉 = 135Å), the 20≤WLyα < 60Å sample includes 160 LAEs

(〈WLyα〉 = 38Å), and theWLyα < 20Å sample includes 82 objects (〈WLyα〉 = 10Å) that were selected by our

narrowband filter and whose spectra show Lyα in emission but have photometric measurements ofWLyα too

low to fall into our sample of “true” LAEs. Details of these subsamples are in Table 4.5.

Several key features are apparent in the bottom panels of Fig. 4.12. Firstly, there is substantial absorption
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Table 4.5. LAE Spectroscopic Subsamples

Subsample 〈WLyα〉 Nobj Nspec
a σred (km s−1)b σblue (km s−1)b

∆v (km s−1)b

WLyα ≥ 60Å 135Å 158 211 156±2 (120) 216±6 (191) 451±4
20≤WLyα < 60Å 38Å 160 211 156±2 (120) 292±11 (274) 474±5

WLyα ≤ 20Å 10Å 82 94 159±3 (124) 369±27 (355) 482±7

aBecause some objects were observed multiple times, and all available spectra were combined
in each continuum stack,Nspec> Nobj.

bThe parametersσred, σblue, and∆v are the velocity widths of the red peak, blue peak, and
peak separation in the fit to the stacked Lyα spectrum (Fig. 4.12). The numbers in parentheses
reflect the subtraction (in quadrature) of the LRIS instrumental resolution of∼100 km s−1.
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Figure 4.12: Lyα emission and interstellar absorption signatures in stacked subsets of spectra grouped by
their photometric Lyα equivalent width,WLyα. Details of each subsample are given in Table 4.5.Top panels:
Lyα emission spectra (black), and profile fit (green) for each subsample. The solid green line is the full fit, the
dotted green line is the fit continuum level, and the dashed green line is the blue-shifted Gaussian component
of the fit. The fits do not extend tov > +500 km s−1, as this portion of the spectrum was omitted during
fitting. Dashed and dot-dashed vertical lines denotev = 0 andv = −500 km s−1, respectively. Note that the
Å−1 in the flux units is measured in the observed frame; the specific flux is∼3.7× higher per unit rest-frame
wavelength.Bottom panels: Red curves are the average absorption profiles of the low-ionization species SiII
λ1260 and CII λ1334, while blue curves are the absorption profiles of the more highly ionized SiIV (λ1393
andλ1402). OI λ1302 and SiII λ1304 are omitted due to blending. As above, dashed and dot-dashed vertical
lines denotev = 0 andv = −500 km s−1, while the dashed horizontal line denotes the local continuum level.
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by low-ionization lines in all three panels at the systemic redshift of the galaxy (v = 0), but there is little or no

corresponding high-ionization absorption atv = 0. At the negative edge of the absorption profiles (v ∼ −500

km s−1), however, the high-ionization and low-ionization absorption are well aligned in each panel. This

pattern indicates that both ionized and neutral gas are present in the blueshifted outflow, but the interstellar

medium is dominated by neutral HI and low-ionization metals at the systemic redshift. This result holds for

all three subsamples inWLyα.

Secondly, if the lines are assumed to be optically-thick, there is a slight trend in covering fraction as a

function ofWLyα: fc ∼ 30% for theWLyα ∼ 10Å sample,fc ∼ 20% for the intermediate sample, andfc ∼ 25%

for the lowest-WLyα sample. The decline infc fromWLyα ∼ 10Å toWLyα ∼ 38Å is consistent with expectations

for Lyα-emitting galaxies: Steidel et al. (2010) demonstrate thatobserved Lyα-emission is closely correlated

with the covering fraction of the gas through which these photons escape. The increase infc fromWLyα ∼ 38Å

toWLyα ∼ 135Å may not be significant because the continuum emission isextremely faint in the highest-WLyα

stack; not only is the statistical error large, but small systematics in the spectroscopic background subtraction

could be significant in the stack of these faint objects and thus bias the measured continuum level. However,

the consistency between the photometric and spectroscopiccontinuum estimates suggests this effect should

be quite small. In any case, it seems thatfc correlates only weakly withWLyα for these faintest, highest-WLyα

galaxies.

Thirdly, there is some evolution in the maximum absorption velocity as a function ofWLyα. While the

absorption extends tovabs∼ −500 km s−1 in all three panels, theWLyα ∼ 10Å stack shows absorption in

Si IV extending to higher velocities at low optical depths. Conversely, the outer edge of absorption in the

WLyα ∼ 135Å stack extends no further thanvabs∼ −400 km s−1.5 It is important to note that the systematic

velocities used here are derived from a constant correctionto the Lyα redshift, and thus the evolution of the

Lyα offset withWLyα could theoretically mimic an evolution in absorption velocity with WLyα. However,

despite the significantly smaller Lyα offsets among LAEs with respect to LBGs, no trend invLyα vs. WLyα

is seen in samples consisting solely of LAEs, and no trend is detected among the 35 LAEs with systematic

redshifts in this sample. Furthermore, no evolution withWLyα is seen in right-most edge of the low-ionization

absorption (presumably corresponding to neutral interstellar gas at the systemic redshift) across the three

panels of Fig. 4.12; such a shift would be expected from aWLyα-dependent estimator of the systemic redshift.

Lastly, the total velocity width of absorption decreases significantly with increasingWLyα across the three

panels, suggesting the presence of a real correlation of Lyα equivalent width with outflow velocity among

these faint LAEs.

5Note that the maximum absorption velocity is insensitive to any bias in the continuum level due to systematics in the background
subtraction.
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4.5.2 Lyα emission signatures

The Lyα emission profiles for each subsample (top panels of Fig. 4.12) show evidence for evolution in wind

velocity with WLyα as well. Each Lyα profile displays a narrow peak redward of the systemic redshift (by

construction, as they are stacked on the basis of their peak Lyα redshifts) as well as an extended blue tail.

This blue tail can be seen to broaden across the three panels of Fig. 4.12 with decreasingWLyα. To quantify

this effect, a two-component Gaussian fit was performed to each stacked Lyα profile with the following form:

fλ(v) = Abluee
−(v+∆v/2)/2σblue + Arede

−(v−∆v/2)/2σred + f0,cont , (4.5)

such that the fit profile consists of two Gaussian peaks of arbitrary height and width, but with equal and

opposite shifts with respect to systemic (±∆v/2). The model intentionally evokes an idealized outflow

scenario in which the average LAE is surrounded by outflowinggas in both directions along the line of sight.

In all three stacks, the red side of the Lyα profile diverges strongly from a Gaussian shape at large velocities,

forming a broad red tail similar to that seen atv ≪ 0. In order to maintain the simplicity of the model, the

spectrum atv > +500 km s−1 was omitted from the fitting.

The resulting fits are displayed in Fig. 4.12, with fit parameters given in Table 4.5. Both the width of

the blue component and the separation of the blue and red peaks increases with decreasingWLyα. While

such an effect could partially be driven by a varying HI column density, the correspondence of the extended

absorption and emission strongly indicates the role of outflowing gas in populating the wings of the Lyα

emission profile.

4.5.3 Comparison to continuum-bright galaxies

While the trend of the outflow properties withWLyα is fairly weak among the LAEs in this sample, we

can probe a much larger range in galaxy properties by extending the sample to include continuum-bright

galaxies. Several such spectroscopic samples have been collected as part of the KBSS and related surveys.

In Fig. 4.13, we compare the stacked spectrum of all 316 LAEs in this sample with two stacks of LBGs, one

from the KBSS-MOSFIRE (Steidel et al. 2014), and the other from a survey for Lyman-continuum (LyC)

emission inz ∼ 3 galaxies (C. Steidel et al., in prep.). Details of these twosamples are given in Table 4.6.

The KBSS-MOSFIRE sample consists of 132 galaxies that each exhibit Lyα emission in their UV spectra

and have redshifts measured via nebular emission lines. Most of these rest-UV spectra were observed using

Keck/LRIS-B with the 400-line grism, providing a spectral resolutionR ∼ 800, orσv ∼ 160 km s−1. There

is significantly more metal absorption in each of the spectral lines shown in Fig. 4.11, and the absorption

profiles are both broader (extending tov ≈ −1000 km s−1) and deeper (.0.5× the continuum value) with

respect to the LAE stack. The excited fine-structure and nebular emission lines, however, are well-matched

to the corresponding LAE features, further validating the redshift offset employed for the KBSS-Lyα stack.

The LyC survey sample consists of 123 galaxies without nebular redshifts; the redshifts for this sample
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Figure 4.13: Composite UV continuum spectra for stacks of KBSS-Lyα LAEs and two comparison samples
of LBGs. Details of the LBG samples are given in Table 4.6. Thestacks are infν normalized to the same
continuum level. The LAE stack (black) is the same as that given in Fig. 4.11. The KBSS-MOSFIRE stack
(blue) hasR ∼ 800, with all redshifts measured via nebular emission lines. The “LyC Survey” stack (orange)
hasR ∼ 1300 (equal to that of the KBSS-Lyα spectra) and redshifts measured by a calibrated combination of
Lyα emission and metal absorption redshifts. The absorption lines displayed in Fig. 4.11 are here marked by
vertical dashed lines. Given the difference in resolution,the two LBG samples are highly consistent with each
other and exhibit clear contrasts with the LAE sample, including significantly broader and deeper absorption
profiles.

Table 4.6. LAE and LBG Comparison Samples

Sample 〈z〉 m1450
a M1450

b 〈WLyα〉c Nobj λ/dλ W1260
d fc,1260

e v1260 (km s−1)f

KBSS-Lyα 2.70 27.0 −18.7 42Å 316 1300 0.53Å 0.3 −100
KBSS-MOSFIRE 2.30 24.5 −20.9 16Å 132 800 1.50Å 0.5 −201
LyC Survey 3.05 24.6 −21.3 14Å 123 1300 1.73Å 0.7 −186

am1450 is the observed AB magnitude corresponding to the rest-frame λ ∼ 1450Å UV continuum. At
z ∼ 2.7 (KBSS-Lyα and KBSS-MOSFIRE), this correponds to theG band, whereas theR magnitude is
used for the LyC survey sample atz ∼ 3. For consistency with the other samples, the LAEm1540 value is
not Lyα-subtracted, though the Lyα emission dominates the broadband flux in many cases.

aM1450 is the absolute magnitude corresponding tom1450 at the typical redshift of the sample〈z〉.
cBecause the LBG samples have no narrowband Lyα images, the values ofWLyα here were measured

spectroscopically. For consistency, the spectroscopic Lyα equivalent width for our LAE stack is given as
well; note that the average photometric value for this same sample is〈WLyα〉 = 85.6Å.

dW1260 is the absorption equivalent width measurement of SiII λ1260, the strongest unblended feature in
the UV continuum of these three samples (Table 4.4, Fig. 4.11).

e fc,1260 is the covering fraction of gas implied by the depth of the SiII λ1260 absorption trough.

fv1260 is the absorption-weighted velocity of the SiII λ1260 absorption trough.
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were estimated via a combination of their Lyα emission and interstellar absorption redshifts with a calibration

based on the results of Steidel et al. (2010) and Rakic et al. (2011). Furthermore, the composite spectrum was

checked after stacking using stellar photospheric features. 10% of these galaxies have redshifts derived solely

from the Lyα line and assume a 300 km s−1 offset. The correspondence of the absorption and emission sig-

natures of the stack to those of the KBSS-MOSFIRE stack againdemonstrates the efficacy of the calibration

based on UV features. Furthermore, these spectra were observed using a 600-line grating that matches the

resolution of the KBSS-Lyα sample, thereby allowing us to account for the effect of the lower resolution of

the KBSS-MOSFIRE sample. The absorption profiles of the two LBG surveys are quite similar. The velocity

extent of the absorption is almost identical in both samples(vmax ≈ −1000 km s−1), though the LyC stack

shows deeper absorption across all the lines. This difference is partially a result of the higher spectral reso-

lution of the 600-line grism, but it may also signify a difference in the galaxy properties: atz ∼ 3, the LyC

galaxies have a brighter average rest-frame luminosity than those atz ∼ 2.3 (which have similar observed

magnitudes). The total equivalent width in absorption (represented by the equivalent width in SiII λ1260 in

Table 4.6) is insensitive to the spectral resolution and is significantly greater for the LyC stack.

While the blending of SiII λ1304 with OI λ1302 again prevents a measurement of the SiII optical

depth, Shapley et al. (2003) demonstrate that the SiII λ1260 transition is typically saturated in bright LBGs.

Furthermore, the consistency of the absorption troughs among the low-ionization species in the LBG stacks

suggests a gas covering fractionfc ∼ 0.5− 0.7 in enriched, neutral low-ionization material for the two LBG

samples. The line ratio of the SiIV doublet isW1393/W1402∼ 2 for both LBG stacks (as in Shapley et al.

2003), suggesting an optically-thin transition andfc & 0.4 for the ionized HII gas.

Through comparison of the LAE and LBG stacks, it seems clear that the qualitative links between Lyα

emission and and interstellar absorption discussed in Shapley et al. (2003) persist down to far fainter con-

tinuum luminosities than those probed by samples of LBGs. The wind velocity (represented by either the

absorption-weighted mean or the highest-velocity edge of absorption) decreases with increasingWLyα across

the LBG and LAE subsamples, and the covering fraction of gas drops steadily with increasingWLyα to at least

the intermediate subsample of LAEs (WLyα ∼38Å). The offset of the Lyα emission likewise decreases from

the LBG samples (∼300 km s−1) to the LAE stacks.

However, many of these properties break down or become more complicated at highWLyα. While fc is

significantly lower among the LAEs than either sample of LBGs, there is only weak evolution offc with

WLyα among the subsamples of LAEs, particularly atWLyα & 20− 60Å. The absorption velocity correlates

with the breadth of the extended Lyα emission wings in a two-component model, but neither the width of

the narrow Lyα peak nor its offset from the systemic redshift seem to dependon eitherWLyα or vabs. Erb et

al. (2014, submitted) likewise find a strong relationship betweenWLyα and Lyα offset velocity in a combined

sample of LAEs and LBGs, but little or no relation among the Lyα-selected galaxies themselves. A clear

determination of the physical origins and limits of these relationships awaits a more a more comprehensive

characterization of the physical conditions within these LAEs (including further rest-optical spectra), but
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some general conclusions can already be drawn.

It seems obvious that the many factors which can drive Lyα production and escape each play a role

in this process, and these roles likely vary with galaxy properties. The broad Lyα emission profiles with

respect to those of the nebular emission lines Hα and [OIII ] demonstrate that the observed Lyα photons are

significantly scattered before escaping these LAEs. The extent of the wings of the Lyα emission line are

likely to be populated by scattering off of outflowing gas, and thus the wings are sensitive to the gas velocity,

but the relatively low measured covering fractions of theseoutflows and the constancy of the Lyα peak offset

may suggest that the majority of Lyα scatterings in LAEs occur without incurring a large wind-driven velocity

offset. Such an effect would be likely in a scenario where galaxy-scale winds are highly anisotropic and thus

create an orientation-dependent model for Lyα scattering and escape. The anisotropy of galaxy-scale winds

is highly favored by simulations (e.g. Hopkins et al. 2012) and lower-redshift observations (e.g. Kornei et al.

2012), both of which suggest that outflows dominate along theaxis perpindicular to galactic disks, but it

is not clear whether the anisotropy of winds and that of Lyα emissivity coincide. Verhamme et al. (2012)

suggest that the the Lyα flux and equivalent width are also maximized when a galaxy is observed face-on,

but this would naively predict a positive correlation between Lyα velocity offset and equivalent width (rather

than the negative or no correlation observed).

However, Law et al. (2009) find that galaxies atz ∼ 2− 3 are generally not rotationally-supported, and

thus are less likely than low-redshift galaxies to generatecoherent, collimated outflows. The young, faint

populations of LAEs considered here are even less likely to maintain such structural coherence. Therefore,

the KBSS-Lyα LAEs may be best modeled by irregular morphologies in which Lyα photons escape through

a patchy ISM with minimal planar symmetry. Such a model, in which Lyα photons escape through “holes” in

the neutral gas distribution, would similarly explain the strong association between Lyα and LyC emissivity

(e.g. Mostardi et al. 2013). LBGs and other bright star-forming galaxies can have extremely low Lyα and

LyC escape fractions even when low-resolution spectroscopy suggest that the gas covering fractions are< 1;

in many cases, there may be extremely narrow, unresolved absorption components covering the line of sight

that are still capable of absorbing all of the incident LyC flux (e.g. the galaxy Q0000-D6, as discussed by

Shapley et al. 2003 and Giallongo et al. 2002). Only in the smaller galaxies with lower gas surface densities

is it likely for a truly transparent window to penetrate the neutral ISM.

Furthermore, while the scattering of Lyα photons is driven by HI, the eventual absorption and destruction

of these photons is dominated by dust. The apparent breakdown of the correlations of galaxy properties with

WLyα may indicate the transition to a regime where dust formationand mixing into the ISM has not fully

progressed. The faintest LAEs atz ∼ 2− 3 may be most analogous to those observed atz ∼ 6, where the

extremely blue UV slopes suggest that escaping photons encounter very little dust while exiting the galaxy.

More robust fitting of the LAE spectral energy distributions, including deep NIR images from MOSFIRE,

could strongly constrain the dust content of these young galaxies. Similarly, deep NIR spectra may constrain

the metallicity (and thus the chemistry) of their ISM.
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Finally, the decoupling between Lyα emission and galaxy properties in this sample at the highestvalues

of WLyα may be the result of the QSO contribution to their Lyα flux. For fluorescently-illuminated systems,

the total Lyα flux is proportional to the surface area of optically-thick HI and the strength of the local QSO-

generated ionizing field Cantalupo et al. (2005); Kollmeieret al. (2010), with minimal dependence on the

kinematic or chemical properties of the galaxies. Our forthcoming analysis of theHST NIR and optical

images of these fields will shed more light on the physical sizes, morphologies, and stellar components of the

Lyα-emitting regions of these galaxies.

4.6 Conclusions

This chapter has presented a comprehensive account of the properties of Lyα-emitters in the fields around

hyperluminous QSOs atz ∼ 2.7, taken from the KBSS-Lyα. This unique spectroscopic and photometric

survey provides new insight into several diverse aspects ofgalaxy and black hole evolution at high redshift,

which may be divided into several categories: the environments of the most luminous QSOs, the effect of

these QSOs on their surrounding galaxies and gas, and the properties of faint, nascent galaxies.

Firstly, it is clear that the galaxy overdensities seen in LBGs by Trainor & Steidel (2012) extend to

the continuum-faint population of LAEs. The luminosity function of LAEs is significantly boosted at all

luminosities in the neighborhoods of HLQSOs compared to blank fields at similar redshifts. The redshift

distribution of these objects also shows a strong association with the QSO redshift, with a distribution of

velocities/redshifts comparable to that of LBGs (i.e.σv ≈ 500 km s−1). However, there is substantial diversity

among the eight HLQSO fields considered here; both the luminosity function and redshift distributions show

a range of properties, including some fields with little apparent association between the location of the QSO

and that of the surrounding galaxies. Because LAE surveys are much more effective at selecting objects

in a specific redshift window than LBG surveys, the galaxies included here may provide a much higher-

fidelity probe of the HLQSO bias than the measurements of Trainor & Steidel (2012), given a suitably deep

comparison sample of blank-field LAEs such as those collected by ongoing and forthcoming surveys.

Secondly, some properties of the LAEs appear to be strongly affected by the presence of the nearby

QSO. Specifically, there are several characteristics of theLAEs that indicate a fluorescent contribution to

their Lyα emission: the faint-end slope of the luminosity distribution is brighter than that seen in blank fields

(and consistent with that seen in observations and simulations of bright QSO fields), while the distribution

of Lyα equivalent widths,WLyα, shows an excess of sources with high values ofWLyα with respect to an

exponential distribution. As discussed in Trainor & Steidel 2013, these high-WLyα sources are preferentially

associated with the foreground of the QSO, a natural prediction of fluorescent emission in the presence of

a QSO with a lifetime of∼ 10 Myr. In addition, near-IR (rest-frame optical) spectra of these LAEs reveal

that several of them have Lyα lines that are blueshifted with respect to their systemic redshifts, a property

that is extremely rare in star-forming galaxies and may be associated with inflowing (rather than outflowing)
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gas. In order to avoid being dominated by outflows, such objects would likely have minimal star formation

(“dark galaxies”) and thus be uniquely observable under external, fluorescent illumination. These systemic

redshift measurements further the conclusions of Trainor &Steidel (2013; Chapter 3) in suggesting that these

QSO-associated LAE samples contain some of these “dark galaxies” that may provide new insight into the

pre-stellar evolution of galaxies.

Lastly, despite the faint continuum luminosities and fluorescent illumination of these LAEs, they dis-

play many properties in line with expectations from their continuum-bright analogues. Like LBGs, faint

LAEs show significant evidence for enriched, outflowing winds, though at significantly lower velocities and

smaller covering fractions. Furthermore, the outflow velocity of these winds is inversely correlated with

Lyα emission equivalent width even within the LAE sample. As thehighest-WLyα LAEs are associated with

very little continuum emission, this correlation may indicate that the wind velocity is primarily dependent

on the net star-formation rate, which is the dominant contributor to the UV continuum flux. In either case,

these observations demonstrate that stellar feedback is anessential ingredient in realistic simulations of even

the youngest, least massive galaxies at high redshift. Further work is necessary to analyze the apparent

breakdown the relationships betweenWLyα and covering fraction of ISM absorption at the highest equivalent

widths. This effect may be the result of a qualitative transition in the properties of galaxies to those with min-

imal enrichment and dust, and could also point to the effect of the QSO in picking out galaxies independently

of their star-formation rates.

In each of these topics, further progress will be driven by the continued near-IR observations of faint

galaxy populations. Rest-frame optical spectra are the only way to effectively constrain the star-formation

rates and metal enrichment of these newborn galaxies, thereby establishing a relationship between their stellar

and gaseous properties and making a complete case for the presence of truly “dark” galaxies made visible by

the reprocessed QSO light.
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Chapter 5

Summary and Future Directions

This thesis has attempted to encompass a diverse set of astrophysical phenomena using an equally expansive

range of observational tools. Using narrowband and broadband imaging from ground-based and space-based

observatories, spectroscopy across the visible and near-infrared spectrum, and a variety of statistical tools,

we have worked to characterize the complex interplay of black holes, galaxies, dark matter, and gas at high

redshift. The unifying feature of the studies included herein is the laboratory in which they were conducted:

the unique and rare regions around some of the brightest QSOsin the universe. Like any good laboratory, the

QSO environments provide specialized tools unavailable ina typical corner of the universe: a high density

of galaxy-QSO pairs, a bright background light for absorption studies, an illuminating source of ionizing

radiation, and means of selecting large numbers of Lyα-emitting galaxies and gas with high efficiency.

Using these tools, we have demonstrated that the most luminous QSOs do not inhabit particularly unique

or massive dark matter halos, but live in small group-like environments suitable for efficient merging and

galaxy growth. We find that the local relationships between galaxy and black hole mass do not seem to apply

to objects at these mass scales at high redshift, suggestingthat the most massive black holes atz ∼ 3 grow

very little between that time andz ∼ 0, despite residing in halos that must grow by orders of magnitude if

they eventually fall onto these low-redshift relationships. Such an imbalanced QSO/galaxy growth history

both before and afterz ∼ 3 is challenging for theories of black hole and galaxy accretion. These results are

discussed at length in Chapter 2 (Trainor & Steidel 2012) andrely primarily on the distribution of continuum-

bright galaxies (LBGs) near the QSO redshifts and optical photometry of the QSOs themselves, data that is

taken from the Keck Baryonic Structure Survey (KBSS; Rudie et al. 2012).

In Chapters 3 & 4, we have used a new survey (KBSS-Lyα), conducted in large part for this thesis, to

find and characterize hundreds of Lyα-emitters (LAEs) in these same QSO fields. Chapter 3 focuses on the

utility of selecting individual LAEs with high values of theLyα equivalent width, denoted byW0, and using

them as tracers of the QSO-generated ionizing emission field. While the small number of high-W0 sources

yield a relatively coarse measurement of the shape and scaleof this field, they are suffient to constrain both

the lifetime of the QSO ionizing phases and their isotropy. We find that the QSO lifetimes must be within

a factor of∼ 2 of 10 Myr and that the ionizing emission must extend to largeangles from the line of sight
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(& 30◦). These results provide further constraints on the accretion history of the supermassive black holes,

demonstrating that they cannot (or at least, do not atz ∼ 3) sustain Eddington-level accretion for the very

long timescales required for exponential black hole growth.

Chapter 4 uses the KBSS-Lyα data to describe the properties of faint galaxies and the role the nearby

QSO may play in both their detection and evolution. We find that the luminosity function and equivalent-

width distribution are substantially different from non-QSO-associated LAE populations. This discrepancy is

posited to be driven by a combination of the cosmologically biased environments of QSOs and the effect of the

ionizing QSO flux that bathes the surrounding galaxies and gas. This ionizing radiation may likewise cause

the detection of several sources in which the peak and flux-weighted average of the Lyα flux is blueshifted

with respect to the systemic LAE redshift, an effect rarely seen in galaxy spectra, but theoretically associated

with the emission from inflowing HI gas. When the total sample of LAE spectra are stacked, however,

they reveal (on average) the presence of metal-enriched outflowing gas qualitatively similar to that seen

ubiquitously around the brighter galaxies at similar redshifts. Whatever unique, gaseous objects are revealed

by the QSO light in these samples, the bulk of the detected LAEs represent typical star-forming galaxies and

therefore extend our knowledge of star formation and the concommitant stellar feedback to fainter, younger,

and smaller galaxies than ever before at these redshifts.

Despite this progress, there is much work still to be done. Many related theoretical and observational

efforts are already coming to fruition through advances in technique and technology. On the theoretical

side, numerical hydrodynamical simulations of stellar andblack-hole driven feedback are coming ever closer

to reproducing the signatures of feedback seen in high-redshift galaxy spectra and the local galaxy mass

function. Stellar feedback, in particular, is experiencing a transformative renaissance through simulations at

scales ranging from stellar atmospheres to cosmological volumes. While a detailed understanding of black

hole accretion and the coupling of the related energetics togalaxy formation is still forthcoming, substantial

brain- and CPU-power is being devoted to a physically-motivated, observationally-consistent model for AGN

and stellar feedback , and progress must soon be forthcoming. The author1 of this thesis is fortunate to

be moving from one institution2 working to tackle these theoretical isses to another3 equally involved. A

synthesis of simulation-derived insight and observational data will be necessary to unlock the puzzles of

galaxy and black hole evolution, and the author looks forward to continued collaboration to these ends.

Of course, much of our understanding of galaxy and black holegrowth must come from observations at

high redshift, and new technology is driving substantial progress in this realm as well. New observatories

spanning sub-mm wavelengths (the Atacama Large MillimeterArray; ALMA) to high-energy x-rays (the

Nuclear Spectroscopic Telescope Array; NuSTAR) are providing new insights into the growth of stars and

black holes at low- and high-redshifts, while the future Thirty-Meter Telescope and James Webb Space Tele-

scope will push galaxy evolution into yet younger, fainter,and more distant galaxy populations. However,

1Ryan Trainor
2Caltech
3UC Berkeley, as a Miller Fellow
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some of the most exciting technological advancements are occuring at the increasingly-venerable W. M. Keck

Observatory and Palomar Observatory. Near-IR spectra fromKeck/MOSFIRE are included in this thesis, and

future observations will make systemic redshift determinations feasible for the first time among large sam-

ples of faint, high-redshift galaxies. As demonstrated in Chapter 4, these precise redshift measurements are

crucial for understanding the kinematic properties of forming galaxies, including the inflows and outflows by

which they feed star-formation and enrich their surrounding intergalactic and circumgalactic media.

Furthermore, the extension of the KBSS into the KBSS-MOSFIRE (Steidel et al. 2014) has already

demonstrated the complexity of the chemical and physical properties of interstellar gas in high-redshift galax-

ies. Indeed,z ∼ 2−3 LBGs occupy an almost completely disjoint region of the phase space defined by strong

emission lines with respect to local galaxies, suggesting substantial evolution in the temperature, ionization

state, and metallicity of HII regions sincez ∼ 3. The establishment of the high-redshift mass-metallicity

relation (MZR), an essential tool for matching hydrodynamical simulations to the real universe, depends crit-

ically on a thorough understanding of the correspondence ofthese measurements to the physical properties

of the gas. New models for stellar properties, including rapidly rotating massive stars that may dominate the

ionizing radiation field of high-redshift galaxies (Eldridge & Stanway 2009; de Mink et al. 2013), are likely

to play a role, but hydrodynamical simulations and larger samples of galaxies encompassing a broader range

of physical properties, such as LAEs, will be necessary to understand the evolution of galaxy properties with

age, mass, metallicity, and redshift.

Another ongoing technical revolution involves the development of wide-area integral-field spectrometers

for large telescopes. While effective at identifying line emission at specific, predefined wavelengths in the ob-

served frame, narrowband photometry is inefficient for identifying LAEs surrounding targets that span broad

ranges of redshift. Wide-area integral-field spectrographs such as the Cosmic Web Imager (CWI) at Palomar

Observatory and the upcoming Keck Cosmic Web Imager (KCWI) provide a much more flexible mechanism

for such a survey by simultaneously measuring the redshift and position of LAEs over a relatively broad

range of redshift in a single exposure. For instance, the blue grating of CWI can measure a 150−450Å spec-

tral slice anywhere between 4500Å and 5400Å in rest-frame wavelength, allowing it to detect Lyα emission

for 2.70< z < 3.44 with a redshift resolution∼100x finer than narrowband surveys.

IFU observations produce a datacube with two spatial dimensions and one of wavelength; the spaxels can

then be integrated over small slices of the wavelength dimension to produce narrowband images with effective

band-passes far smaller than those achievable through physical filter fabrication. Similarly, spaxels may be

combined in the spatial direction in order to increase the signal-to-noise ratio in the spectra of extended

objects, such as those often seen in Lyα surveys (Steidel et al. 2000; Matsuda et al. 2011). In particular,

QSOs have long been known to be associated with extended nebulosities visible in emission lines (e.g. Balick

& Heckman 1979; McCarthy et al. 1987), and such extended emission is clearly visible in many of our

narrowband Lyα images of the HLQSO fields. One of the HLQSO fields in our LAE survey (HS1549+1919)

has already been observed with CWI (Martin et al. 2014, submitted), and the results reveal filamentary Lyα
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emission with a complex velocity structure extending beyond the 130 kpc virial radius of the Mh ∼ 1012.5 M⊙

dark matter halo. This extended emission is likely to be a combination of QSO-induced fluorescence and/or

gravitational cooling radiation from the infalling gaseous filaments predicted by simulations of gas accretion

onto halos (e.g. Rosdahl & Blaizot 2012). In either case, thegas flows that presumably feed star-formation

and black hole growth are revealed in these data in the context of the extreme ionizing field of the QSO (more

than 104 times the metagalactic UV background on virial scales). Theeffect of QSO emission on infalling gas

has direct consequences for the effectiveness of AGN feedback in modulating galaxy and black-hole growth,

and the physics affecting these uniquely energetic HLQSO systems is likely to be relevant at a scaled-down

level in the hosts of lower-luminosity QSOs. Several other HLQSOs in our KBSS sample lie at suitable

redshifts for CWI observations, including one with no previous Lyα imaging, and observations in these fields

would build upon the existing HS1549+1919 data in quantifying the potentially diverse demographics of

gaseous QSO environments.

In addition to targeting optically-bright HLQSOs, an exciting possibility exists in the detection of Lyα

emission around obscured QSOs at high redshift. The largely-successful unified model of AGN suggests that

obscuration is primarily a function of QSO inclination, butthere are hints that many obscured and reddened

QSOs may represent a younger, more massive, and/or more actively star-forming population (e.g. Glikman

et al. 2012; Hickox et al. 2011; Sanders et al. 1988, respectively). Comparing the gaseous environments

of these systems to unobscured QSOs could constrain the lifecycle of black hole feeding, obscuration, and

feedback. Furthermore, the detection of fluorescent emission around obscured QSOs would provide a means

of measuring their ionizing field perpendicular to our line of sight, thus providing a direct test of anisotropic

AGN unification models. The selection of QSOs independentlyof obscuration is now possible with mid-IR

photometry from the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010). For instance, Bridge

et al. (2013) find a population optically-faint, MIR-red sources at 1.6 < z < 4.6 that show strong evidence

of luminous, obscured AGN activity and extended Lyα emission. The gaseous environments and ionizing

fields of such high-redshift obscured systems are completely unexplored, and the new capabilities of CWI

and KCWI can provide the first glimpses of their physics and geometries.

All together, the future is bright (as bright as an HLQSO, figuratively speaking?) for the study of faint

galaxies, luminous black holes, and a cohesive picture of the astrophysical processes that drive their co-

evolution. With so many computational and observational tools, as well as experienced minds, at our disposal,

it is tempting to think that there will be little left to discover by the time the next generation of astrophysicists

(perhaps including the author himself) reaches maturity. History, of course, tells a different story. The

results of Schmidt (1963) and Steidel et al. (2014), to name but two, must lead us to conclude that each

mystery solved brings as many questions as answers, providing material for many more telescopes, theses,

and curious minds to come. We look forward to the challenge.
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Appendix A

MOSFIRE

A.1 Instrument Summary

Some of the most interesting results and future plans of Chapters 4 and 5 rely on data from the new Multi-

Object Spectrometer For Infra-Red Exploration (MOSFIRE),so it seems prudent to describe some of the

unique and powerful capabilities of that instrument here. Furthermore, the MOSFIRE project comprised an

intermittent, but significant, component of the author’s work for the first few years of his PhD, so this appendix

will provide a written record of his contributions to the project. Detailed information on the design, technical

specifications, and as-built performance of MOSFIRE are given in McLean et al. (2010) and McLean et al.

(2012), but a summary will follow here.

MOSFIRE is a wide-field (6.1′× 6.1′) near-infrared (NIR) spectrometer and imager that covers theY ,

J, H, and K (or Ks) bands for a total observed wavelength range 0.97µm < λ < 2.41µm. It sits at the

Cassegrain focus of the Keck 1 telescope at the W. M. Keck Observatory on Mauna Kea, Hawaii. The concept

and specifications of the instrument were designed to be an ideal complement to the optical wavelength

(0.3− 1µm) Low Resolution Imaging Spectrometer (LRIS; Oke et al. 1995; Steidel et al. 2004), also at the

Cassegrain focus of Keck 1. The two instruments share similar field sizes and multi-object capabilities,

enabling combined imaging and spectroscopic surveys (suchas those of this thesis) covering nearly an order

of magnitude in wavelength space.

Understanding the profound scientific advancements enabled by the MOSFIRE instrument requires a de-

scription of several key technological improvements over previous NIR spectrometers. Firstly, MOSFIRE

detector consists of a state-of-the-art Teledyne Hawaii 2RG 2K×2K HgCdTe array, which provides an un-

precedentedly low dark current (<0.008 e−/s/pix over a typical 1800 s exposure) and low read noise (4.9

e− rms for 16 Fowler-sampled read pairs). The low noise characteristics of the detector allow background-

limited observations even in short exposures, significantly improving the sky-subtraction capabilities of the

instrument. Secondly, the spectral resolution (R ∼ 3500) is optimized to resolve the night-sky lines (OH) that

blanket the NIR bands, particularly inH. This high resolution produces an extremely faint sky background

between the lines, estimated to be∼2.7 magnitudes fainter than the broadband integrated sky background in
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Figure A.1: The internal optical layout of MOSFIRE (reproduced from McLean et al. 2010). Physical
components are labeled, including the flexure compensationsystem (FCS) mirror and the unique configurable
slit unit (CSU).
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H. These two capabilities give MOSFIRE an efficiency that is∼ 5− 10× that of the previous generation of

NIR spectrometers for individual objects.

Perhaps the most significant improvement of MOSFIRE over previous NIR spectrometers is its multiplex-

ing capability: MOSFIRE can observe up to 46 objects simultaneously on individual slits. This capacity is

due to a unique configurable, cryogenic slit unit (CSU) developed by the Swiss Centre for Micro-Electronics

(CSEM). The CSU covers the field of view with 92 roboticized bars, paired to produce up to 46 slits of ar-

bitrary width and location along the dispersion axis, or withdrawn completely in the imaging mode.1 Each

bar subtends 7′′ perpindicular to the dispersion axis, and adjacent bars maybe combined to form longer slits

up to the entire length of the field. The primary utility of this unit is to enable the configuration of masks

without temperture-cycling the instrument, which is embeded in a 120 K cryostat. Typical observations of

extragalactic fields include∼ 25−30 object per mask. Combined with the increased sensitivityfor individual

object spectra, the multiplexing capabilities of MOSFIRE produce an overall increase in survey efficiency of

∼ 150− 300× over previous NIR spectrometers, a transformative advantage for accumulating large numbers

of faint object spectra and enabling ambitious surveys suchas the KBSS-MOSFIRE (Steidel et al. 2014).

As described above, the ability to take short exposures (typically ∼120 s in theH band) is crucial for

optimal sky subtraction because of the short timescale of variation in the OH line background. This means

that faint objects require many (&30) exposures that must be stacked without reference to the detection of flux

from the science targets, which typically are undetected inindividual exposures. Because of this requirement,

the pixel position of objects on the detector must be highly repeatable among many exposures. Furthermore,

the location of an object on the detector must be highly predictable in order for flat-field calibrations obtained

during the afternoon or morning to be appropriately appliedto observations taken during the night. MOSFIRE

is attached to the moving Keck 1 mirror assembly at the Cassegrain focus, and it suffers significant internal

flexure as a result of the varying gravity vector over the course of extended observations. In order to predict

and maintain the position of a science object on the detector, a tip-tilt flexure compensation system (FCS) was

designed and calibrated to correct for this flexure at nearlyall potential telescope and instrument orientations.

The modeling of this flexure and calibration of the FCS was theprinciple contribution of the author of this

thesis to the MOSFIRE project, and this process is describedbelow.

A.2 Flexure Modeling and Correction

The FCS consists of a round flat mirror backed by piezo transducers that lies along the optical path (Fig.

A.1). By flexing one or more of the piezo transducers, the mirror provides tip/tilt control over the optical

beam in order to compensate for deflections caused by the the shifting of optical components under gravity.

As the gravity vector is uniquely determined by the elevation angle of the telescope (EL) and rotator angle

of the instrument (ROT), the FCS operates via an open loop in which the tip/tilt correction necessary at any

1In the imaging mode, the grating turret is also rotated so that the optical path includes a flat mirror rather than a dispersiongrating.
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Figure A.2: Left: The modeled flexure in the HK spectroscopic grating mode as calibrated during MOSFIRE
commissioning in March 2012. The yellow dot is the fiducial location of a slit image on the detector with the
telescope pointed at zenith (EL = 90◦). The black curves show the deflected (uncorrected) position of a slit
on the detector with respect to its fiducial zenith location;each curve corresponds to a 360◦ rotation of the
instrument in ROT at a fixed EL value. Dashed curved show 5◦ increments in EL, while solid curves are given
for 30◦ increments. The green hexagon shows the correctable range of flexure due to the three-piezo FCS
mirror. All black curves for EL> 22◦ fall within the correctable range. The red hexagon shows thepotential
effect of a reduced piezo range, in which case the ability to corre at lower EL angles would be compromised.
Right: Residuals to the corrected flexure deflections with the FCS turned on, again in HK spectroscopic mode.
Black stars denote the mean deflection of an image determinedby averaging the deflections of slits across the
entire field; error bars show the rms dispersion among these slit deflections. The mean residuals have an rms
dispersion of 0.07 pixels in the dispersion (X) direction and 0.11 pixels in the spatial (Y) dimension, of order
the slit-to-slit variations in deflection (0.07 pixels and 0.09 pixels, respectively).

instrument orientation is computed from the modeled two-dimensional flexure function, parameterized by

(EL, ROT).

In order to model the instrument flexure, a slit mask was designed to create small illuminated slits across

the entire detector. Images were then taken of this slit maskin a grid of values in (EL, ROT) space. A python

script was used to automatically measure the position of each illuminated slit on the mask and compare these

positions to a fiducial reference image. The field-averaged movements of the slit images as a function of

instrument orientation thus define the two dimensional deflection of the optical axis between the CSU and

the detector planes.

The measured flexure at the detector plane was found to vary among the imaging and spectroscopic modes

in a complex manner. This effect was not wholly unexpected, given that flexure can occur both before and

after the dispersion grating, and the apparent flexure that occurs prior to the grating along the optical axis is

affected by an anamorphic stretch/compression factor in the dispersion direction in the pixel coordinates of

the detector. Because of these effects, the flexure was calibrated independently in the imaging mode and in

both spectroscopic grating positions.2

After initial lab measurements of these deflections, it was determined that the internal instrument flexure

exhibited very little hysteresis; that is, the measured deflection was solely a function of instrument orientation

2MOSFIRE uses a single dispersion grating with two positionsfor spectroscopy, one of which is used forY andJ band spectroscopy
while the other is used forH andK spectroscopy. For a given grating configuration, a band is chosen via an order-sorting filter.
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Figure A.3: The author (green jacket, determined face) working on MOSFIRE (blue, large) during commis-
sioning at the summit of Mauna Kea. He has since lost the jacket, which had previously been one of his
favorites. In the background is the assembly for attaching MOSFIRE to the Cassegrain focus of Keck 1.

with minimal dependence on the direction of rotation or the previous instrument orientation. Furthermore, the

flexure exhibited highly elastic behavior (i.e. a linear stress-strain curve) such that the measured flexure in the

x-y plane of the detector traced an ellipse when either EL or ROT was turned through an entire 360◦ rotation

with the other angle held constant (Fig. A.2). Because of this ideal flexure behavior, the flexure model was

able to be parameterized as a simple analytic function of (EL, ROT). The total uncorrected flexure in the

detector plane was found to be∼ 14 pixels peak-to-peak for values of EL> 0, slightly exceeding the 11.8

pixel range of the piezo mirror. However, the flexure is correctable for any instrument orientation with EL>

22◦, corresponding to all possible science observations with airmass less than 2.67. While the flexure is not

fully correctable within a∼ 80◦ range of ROT at EL = 0, the judicious choice of a horizon stow orientation

(with EL = 0 and the CSU bars horizontal) ensures that calibration images made in the stow position may be

obtained with full flexure compensation.

After initial lab testing and modeling, the final parametersof the flexure function were calibrated prior

to instrument commisioning on site at Keck 1 over a three-dayperiod (21-23 March 2012; Fig. A.3). The

final, FCS-corrected flexure residuals were found to be∼0.1 pixel rms (Fig. A.2, right panel), in line with

the instrument design specifications.
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