Enhanced Thermoelectric Performance at the Superionic Phase Transitions of Mixed Ion-Electron Conducting Materials

Thesis by

David R. Brown

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

2015 (Defended July 17th, 2014)

© 2015 David R. Brown All Rights Reserved

Acknowledgements

To all who have taken the time to read some or all of this document, please accept my gratitude.

I would first like to thank my adviser, Jeff Snyder. His door was always open, and he was always happy to discuss science with me. I've learned immensely both about the details of thermoelectrics science and about how to conduct myself as a professional scientist from my conversations with him. I will always be grateful to him for opening the door to his lab to me in 2011.

I've worked with many great scientists at Caltech, and I learned a lot from my peers. Tristan Day synthesized most of the samples studied in this thesis. I have benefitted from Nick Heinz's expertise on microstructure; Zachary Gibb's on band structure calculations and python coding; Wolfgang Zeier's on solid state chemistry; and Heng Wang and Yanzhong Pei's expertise on band structure engineering and modeling. Shiho Iwanaga and Aaron Lalonde taught me the basics of thermoelectric instrumentation in the short time I overlapped with them at Caltech. My officemate Fivos Drymiotis is an experienced scientist whose advice I am always keen to hear.

I've had the opportunity to mentor and advise to a greater and lesser degree a number of graduate and undergraduate students. First and foremost I'd like to thank David Neff, who was my undergraduate assistant for one year and an expert at putting any random thing I could imagine together with his hands. Stephen Kang found my work interesting enough that he is pursuing it further for his own Ph.D.

I'd like to thank my colleagues at the JPL thermoelectrics group. In particular I'd like to thank Alex Zevalkink, Pawan Gogna, and Samad Firdosy for assisting with measurements. I'd like to thanks Sabah Bux for helping to organize my collaborations with JPL. I'd like to thank my colleagues in the Haile group. In particular Yoshi Yamazaki always took the time to give me sound professional advice when we shared an office.

I had many collaborators at other institutions. Kasper Borup, Sebastian Christensen, and Bo Iversen from Aarhus University of Denmark found my work interesting enough to perform exquisitely detailed crystallography studies. Kasper Borup in particular has been my primary discussion partner about the physics of thermoelectric materials and methods of thermoelectric measurement. It's also been a pleasure to assist my collaborators at LBNL in their work developing hybrid organic-inorganic thermoelectric materials: Jeff Urban, Nelson Coates, Jared Lynch, and Boris Russ.

This work would not have been possible without my funding sources. I'd like to thank the Resnick Institute for awarding me a two year fellowship, with personal thanks to Neil Fromer and Heidi Rusina for their help and support these last two years. I also recieved funding from the Air Force Office of Science Research under the MURI program for my research supplies.

I'd like to thank my family. My father, Timothy Brown, has been enormously helpful as a copy-editor for my work. My friends at Caltech have always supported me, especially my roommates over the last several years: Sawyer, Aron, Erik, Pratyush, Joe, Matt, Mike, Quin, Daveed, Shaun and Oren. Tucker, Mike, Joe, and Said helped keep me sane by going surfing with me. I'd like to thank Ernie for all the chorizo and lunch-time charm.

Finally, I'd like to thank Ladan Amouzegar for supporting me through these last several months.

Abstract

The quality of a thermoelectric material is judged by the size of its temperature dependent thermoeletric-figure-of-merit (zT). Superionic materials, particularly Zn_4Sb_3 and Cu_2Se , are of current interest for the high zT and low thermal conductivity of their disordered, superionic phase. In this work it is reported that the super-ionic materials Ag₂Se, Cu₂Se and Cu_{1.97}Ag_{0.03}Se show enhanced zT in their ordered, normal ion-conducting phases. The zT of Ag₂Se is increased by 30% in its ordered phase as compared to its disordered phase, as measured just below and above its first order phase transition. The zT's of Cu₂Se and Cu_{1.97}Ag_{0.03}Se both increase by more than 100% over a 30 K temperatures range just below their super-ionic phase transitions. The peak zT of Cu₂Se is 0.7 at 406 K and of Cu_{1.97}Ag_{0.03}Se is 1.0 at 400 K. In all three materials these enhancements are due to anomalous increases in their Seebeck coefficients, beyond that predicted by carrier concentration measurements and band structure modeling. As the Seebeck coefficient is the entropy transported per carrier, this suggests that there is an additional quantity of entropy co-transported with charge carriers. Such co-transport has been previously observed via co-transport of vibrational entropy in bipolaron conductors and spin-state entropy in Na_xCo₂O₄. The correlation of the temperature profile of the increases in each material with the nature of their phase transitions indicates that the entropy is associated with the thermodynamcis of ion-ordering. This suggests a new mechanism by which high thermoelectric performance may be understood and engineered.

Contents

\mathbf{A}	ckno	wledgements	iii
A	bstra	ıct	v
1	Inti	roduction	1
	1.1	Summary of Introduction	1
	1.2	Motivation of Thermoelectric Research	1
	1.3	Thermoelectric Energy Conversion	4
	1.4	Entropy Co-Transport	9
	1.5	Super-ionic Thermoelectrics	14
	1.6	Key Challenges and Results	16
2	Exp	perimental Methods	17
	2.1	Transport Measurements	17
	2.2	Synthesis	21
	2.3	Chemical Characterization	22
3	See	beck Metrology	24
	3.1	Measuring the Seebeck Coefficient	25
	3.2	Apparatus and Protocols	31
	3.3	Challenges of Phase Transition Seebeck	36
	3.4	The Multi-Ramp Seebeck Technique	41
4	Ope	erational Stability	44
	4.1	$Cu_{1.97}Ag_{0.03}Se$ at NASA	45

	4.2	Degradation Testing of Cu_2Se	52
5	Str	actural and Phase Transition Classification	55
	5.1	Phase Transitions	57
		5.1.1 Order-Disorder Phase Transitions Type	59
	5.2	Ag_2Se	63
	5.3	Cu_2Se	67
		5.3.1 Diffractometry	70
		5.3.2 Cu_2Se Calorimetry	78
	5.4	$\mathrm{Cu}_{1.97}\mathrm{Ag}_{0.03}\mathrm{Se}\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	80
		5.4.1 Cu ₂ Se and Cu _{1.97} Ag _{0.03} Se $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	84
6	Tra	nsport in Ag_2Se	86
	6.1	Ion conducting thermoelectrics	87
	6.2	Band Structure Modeling	91
	6.3	Prior Work on Ag_2Se	94
	6.4	Transport Measurements	94
7	Tra	nsport in Cu_2Se and $Cu_{1.97}Ag_{0.03}Se$	101
	7.1	Entropy and Charge Transport	101
	7.2	Entropy Co-Transport	105
	7.3	Cu_2Se Transport near the Phase Transition	106
		7.3.1 Analysis	110
	7.4	$\mathrm{Cu}_{1.97}\mathrm{Ag}_{0.03}\mathrm{Se}\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	117
8	Ord	ler and Ion Enhanced Thermoelectrics	126
	8.1	Ordering Entropy Enhancement	128
	8.2	Ion-mediated Enhancement	133
	8.3	Future work	138

vii

List of Figures

1.1	Sankey diagram of 2013 US energy inputs and outputs. 26 Quadrillion	
	BTU's are lost as waste head in the industrial and transportation. Over	
	1 Quadrillion BTU's would be recoverable with $ZT = 2$ thermolectric	
	materials. Image credit: Lawrence Livernmore National Laboratories	2
1.2	(a) Model of a thermoelectric unicouple including all electronic and ther-	
	mal flows. (b) The thermoelectric effect is the result of thermodiffusion	
	of charged carriers from the hot to cold end	3
1.3	A single thermoelectric leg with all heat and thermal flows. The balance	
	between dissipative thermal conductance and dissipative joule heating	
	leads to constraints on the ideal geometry $\ldots \ldots \ldots \ldots \ldots \ldots$	7
1.4	zT's for representative state of the art thermoelectric materials	7
1.5	Variation of thermoelectric properties with carrier concentration as cal-	
	culated with a single parabolic band model	9
1.6	Ion conductivity of type I super-ionic AgI, type II super-ionic PbF_2 ,	
	and the non-superionic NaCl. Arrow indicates the melting temperature.	
	Superionics have a liquid-like ion conductivity while in the solid phase.	
	Image credit to $[87]$	14
2.1	Schematic (a) of laser flash apparatus (LFA) and graphical representa-	
	tion of differential scanning calorimetry. (DSC) Image credit to Netzch	
	Corporation.	18
2.2	Resistivity and Hall coefficient were measured by the four point Van der	
	Pauw method. Image courtesy of Heng Wang	19

2.3	Electron micrographs of $Cu_{1.97}Ag_{0.03}Se$ (a) and Cu_2Se (b). Black fea-	
	tures are cavities. While Cu_2Se is single phase, $Cu_{1.97}Ag_{0.03}Se$ has inclu-	
	sions of a silver rich phase (white) identified as CuAgSe by crystallography.	23
3.1	Seebeck coefficient of Cu_2Se compared with that of $Na_{0.01}Pb_{0.99}Te$. Cu_2Se 's	
	strong peak near its phase transition requires more precise measure-	
	ment than is typical for thermoelectric materials. PbTe data courtesy	
	of Yanzhong Pei [153]	25
3.2	Schematic of a Seebeck measurement. Two thermocouples are placed at	
	two different points on a sample. Both ΔT and ΔV are measured with	
	the thermocouples. In a single point measurement $\Delta V / \Delta T$ is taken as	
	the Seebeck coefficient.	26
3.3	Raw Seebeck data from an oscillation sequence. The slope of the data	
	is taken as the Seebeck coefficient.	27
3.4	The three principle Seebeck geometries. Sample is shown in yellow,	
	heater block in green, and thermocouple in blue. (a) the two point	
	linear design. (b) the four point linear design. (c) the four point co-	
	linear design. Image adapted from Iwanaga et al. [90]	29
3.5	Temperature readings on the sample and in the block as ΔT is varied.	
	Magenta represents thermocouples on the top side. Blue represents ther-	
	mocouples on the bottoms side. Squares represent thermocouples in the	
	heater block while triangles represent thermocouples in direct contact	
	with the sample.	30
3.6	The effect of ambient pressure on measured Seebeck. Seebeck coefficient	
	as a function of helium (circles) and nitrogen (squares) gas pressure at	
	295 K for Bi_2Te_3 SRM 3451 measured under a poor thermal contact	
	(unfilled circles) and the Seebeck coefficient using a graphite-based foil	
	interface (filled circles). Image from Martin <i>et al.</i> [131]	32

3.7	Diagram of Seebeck apparatus in profile (a) and three-quarter view (b).	
	Photograph of apparatus used in this research (c). Figures part (a) and	
	(b) were previously published in Iwanaga $et \ al.[90]$	32
3.8	Schematic of the measurement and control software used	34
3.9	Black body radiation is the dominant thermal loss mechanism at high	
	temperatures. When the apparatus is run at 1000 $^{\circ}\mathrm{C}$ the radiant heat	
	is sufficient to warm the metal bell jar to 50 °C	36
3.10	Literature Seebeck (Thermoelectric Power) data on Cu_2Se . Image ex-	
	tracted from Okamoto (1971) [144]. Data points labeled Junod originally	
	from Bush & Junod [27]. Okamotos data was obtained using a single	
	point technique. Bush $\&$ Junods data was obtained using an oscilla-	
	tion technique. Both were insufficient for correct determination of the	
	Seebeck Coefficient.	37
3.11	Sample oscillation sequence. Magenta and blue triangles are the temper-	
	ature at the top and bottom side of the sample. Black squares are the	
	average temperature. There is a small variation of average temperature	
	that is correlated with the direction of ΔT	39
3.12	Raw Seebeck data for Cu ₂ Se measured at $\overline{T} = 410K$. There is a distinct	
	cubic contribution and deviations from a consistent curve. \ldots .	40
3.13	Data from multiple ramp sequences are combined point by point to	
	create ΔV versus ΔT from which point by point Seebeck values may be	
	extracted	42
3.14	Comparison of oscillation (black triangles) and multi-ramp method data	
	(blue circles) for Cu_2Se in proximity to its phase transition. The ramp	
	data is superior.	43
4.1	zT data for $Cu_{1.97}Ag_{0.03}Se$ (TPM-217) as extracted from JPL status	
	reports. Blue circles are data from 3M Corporation tests. Green squares	
	are data from JPL tests [71]. Red triangles represent data from Liu et	
	al. [122]	46

- 4.2Weight loss rates for TPM-217 as a function of temperature. Figures 6, 7, and 8 from reference [183]. (a) Comparison between unprotected and baffled TPM-217. (b) Comparison between TPM-217 in vacuum and in 750 mbar argon atmosphere. (c) Loss rates at different applied currents. Il/A ranges from 0 A/cm to 16.6 A/cm. 474.3Degradation of segmented modules. Data from General Atomics final report [57], representing Figure 2-21 and Figure 2-31. (a) Depiction of chemical degradation after isothermal test of p-type leg after 2490 hr at a 1027 K/380 K thermal gradient. (b) Depiction of resistivity ratcheting under conditions of applied current. iL=A is in units of A/cm. $T_{\rm h} = 1023\,{\rm K},\, T_{\rm c} = 473\,{\rm K}.~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots$ 48 4.4(a) Thermopower measurement apparatus with modification to allow operation with applied current. Conductive graphite contacts are used for the current source and sink. (b) Seebeck coefficient stability during measurement of sample under conditions of applied current and temperature gradient. It is unclear whether the transients represent instrument error or relaxation of the concentration gradient produced by turning off the current source immediately before the measurement. 504.5(a) Sample after applying current for 24 h. (b) Optical microscopy image of the current-sink face of the sample after applying a current for 24 h. Copper can be clearly seen precipitated on the surface. (c) SEM micrograph of top surface of sample after applying current for 24 h. The electromigrated copper grows into nanowire bundles (whiskers). . . . 515.1Differential Scanning Calorimetry c_p for Cu₂Se (blue circles) with the Dulong-Petit contribution as a green dotted line. Determining the order of the phase transition of Cu₂Se determines which of these two curves should be used to calculate c_p 565.2Free energy versus temperature for a first order phase transition. At T_c 58

Free energy (F) versus order parameter (m) for a second order transition.	
Each of the curves is on its separate axis. The dotted line represents the	
equilibrium order parameter. As T goes to T_c , m goes continuously to	
zero	59
Low Temperature (a) [15] and high temperature (b) [18] structure of	
Ag_2Se	64
Powder X-Ray Diffractogram for Ag_2Se above and below its phase tran-	
sition. All symmetries of the high temperature phase are present in the	
low temperature phase.	64
Temperature dependent X-ray diffractograms measured on heating (a)	
and on cooling (b) of Ag_2Se . A first order transition is seen at 415 K on	
heating and 401 K on cooling	65
Differential Scanning Calorimetry data for Ag_2Se	66
Phase diagram (a) of Cu-Se system in the vicinity of Cu_2Se adapted	
from Heyding [78]. The phase transition is between the $\beta - Cu_2Se(RT)$	
phase and the $\alpha - Cu_2Se(ht)$ phase. Anti-fluorite structure (b) of which	
$\alpha - Cu_2Se$ is a modification. Se is coordinated FCC and is represented	
in red. Ground state Cu is tetrahedral coordinated to the Se though	
significant occupation of trigonal planar and octahedral interstitials has	
been measured. The structure of β – Cu ₂ Se is unknown	67
The phase diagram of Cu_2Se in its single phase region by Vucic.[194] This	
diagram was established by dilatometry. Notably, there are multiple	
phase transitions	69
Left:PXRD of Cu ₂ Se at 300 K and 425 K from $2\theta = 10^{\circ}$ to 90° .	
Right: Zoom in near the 26° peak set. Peaks positions as identified in	
literature were observed [96]. The sample is single phase	70
	Free energy (F) versus order parameter (m) for a second order transition. Each of the curves is on its separate axis. The dotted line represents the equilibrium order parameter. As T goes to T_c , m goes continuously to zero

5.11	High flux low angle synchotron data of Cu_2Se (a) shows significant strong	
	reflections, indicating that a large unit cell to explain the data. The	
	recent models of Liu $et al.$ [123] show a better fit than those previously	
	published, [134, 96] but cannot explain all the low angles peaks observed	
	(b). In (b) the black line is the data, the red line the model, and the	
	blue line their discrepancy. Courtesy of Kasper Borup	71
5.12	Temperature varied diffractograms of Cu_2Se . Data is presented as stacked	
	diffractograms (a) and as a color map (b). The peak intensities and an-	
	gles shift continuously from the low temperature to the high temperature	
	phase	72
5.13	Peak intensities versus temperature (a) for selected peaks of Cu_2Se .	
	These peaks were chosen because they only appear in the low temper-	
	ature phase. They show a continuous decrease to the phase transition	
	temperature. This decrease corresponds well with a critical power law,	
	as seen by the linearity of log-intensity versus log-reduced temperature.	73
5.14	Temperature dependence of the peak shift for representative diffraction	
	peaks of Cu_2Se . The peak shifts are incompatible with a coexistence	
	transformation.	74
5.15	Pair distribution function data for Cu_2Se . The unit cell size is 5.8 Å. The	
	coordination number remains the same through the phase transition (a)	
	but correlations between high temperature equivalent unit cells breaks	
	down.(b) Full data set. (c)	76
5.16	Calorimetry data for Cu_2Se under differing measurement condition. As	
	the diffusive time scale is decreased, the data converges to the quasi-	
	static heat capacity measured by Quantum Design Physical Property	
	Measurements System (PPMS). The phase transition temperature is	
	marked with a black dotted line. Data courtesy of SIC-CAS and the	
	JPL Thermoelectrics Group	77

5.17	Heat capacity minus Dulong-Petit heat capacity below the phase tran-	
	sition temperature. Data is shown both for the DSC measurement and	
	the quas-static PPMS measurement. The non-linear elevation in heat	
	capacity begins at $355K$	80
5.18	Room temperature (a) and 450 K (b) diffractograms of $Cu_{1.97}Ag_{0.03}Se$.	
	Impurity peaks marked v disappear at the phase transition, while those	
	marked \ast remain. Peaks marked with an arrow correspond to CuAgSe.	
	Courtesy of Kasper Borup.	81
5.19	Scanning electron micrograph of $Cu_{1.97}Ag_{0.03}Se$ courtesy of Tristan Day.	
	Gray areas are Cu_2Se phase, black areas are voids and white areas are	
	CuAgSe	82
5.20	Left: Color map of temperature varied diffact rograms of $Cu_{1.97}Ag_{0.03}Se$.	
	Right: Slower diffractograms were performed at 20 K intervals. Impurity	
	peaks marked v disappear at the phase transition, while those marked $*$	
	remain. Peaks marked with an arrow correspond to CuAgSe and dissolve	
	at 380 K. The high temperature reflections of Cu_2Se are labeled on top	
	of the graph. Courtesy of Kasper Borup	83
5.21	Comparison of the $2\Theta = 26.2^{\circ}$ peaks of both Cu ₂ Se and Cu _{1.97} Ag _{0.03} Se.	
	All units are arbitrary and scaled to be identical at $T = 300$ K. Up to 380	
	K the peak of $Cu_{1.97}Ag_{0.03}Se$ follows the second order trend of Cu_2Se . On	
	dissolution of CuAgSe at 380 K its intensity stabilizes while temperature	
	increases, until the first order transition at $\approx 400\mathrm{K}$ eliminates the peak	
	entirely.	84
5.22	Differential scanning calorimetry for $Cu_{1.97}Ag_{0.03}Se$ in comparison with	
	that of Cu_2Se	85
6.1	Heat capacity of liquid lead and rubidium with fit to theory. As temper-	
	ature increases low frequence transverse modes disappear and thereby	
	reduce c_V . Figure from Bolmatov <i>et al.</i> (2012) [17]	89

- 6.2 The fluctuations of ions between interstitial sites causes phonon mode to soften and scatter. In Zn_4Sb_3 Schwelka *et al.* [173] observed a strong anharmonic ratting of an Sb-dimer that they found could explain its anomalously low thermal conductivity. This behavior was found to effect the heat capacity even in the ordered phase, as evidenced by an Einstein peak in the heat capacity. If this behavior is a more general attribute of super-ionic materials in both their ordered and disordered phases, it may cause their low thermal conductivity. In his studies on single crystal $Cu_{1.8}$ Se Danilkin found substantial mode softening in $Cu_{1.8}$ Se [44]...
- 6.3 Left: Example of a single parabolic band. The band shown is a valence band as for a p-type conductor. The effective mass (m^*) determines the curvature of the band. The carrier concentration is the number of carriers between the band edge and the Fermi level. Right: Example α versus n_H or *Pisarenko* plot. As m^* increases at

90

	constant n_H , α increases	92
6.4	Seebeck Coefficient (a) and Electrical Conductivity of Ag_2Se measured	
	on both heating and cooling.	95
6.5	Thermal diffusivity (a) and Calorimetry data (b) for Ag ₂ Se measured	

7.1	Phase diagram (a) determined by Vucic [194] on the basis of dilatometry	
	(b) measurements. Adapted from Vucic <i>et al.</i> [192]	107
7.2	Electrical conductivity (a) and Seebeck Coefficient (b) measured through	
	the $410K$ phase transition	108
7.3	Thermal diffusivity (a) and specific heat capacity (b) for Cu_2Se from its	
	room temperature through its $410K$ phase transition $\ldots \ldots \ldots \ldots$	110
7.4	zT for Cu_2Se from its room temperature through its 410 K phase transition	.111
7.5	Hall Carrier Concencentration (a) and Hall Mobility (b) of Cu_2Se . The	
	minimum of n_H is at 390 K, while μ_H decreases until 410 K. μ_H could	
	be fit to a power law with critical exponent $r = 0.32$	111
7.6	Band effective mass need to explain the n_H and α data for Cu ₂ Se. The	
	transient 50% increase in m^* needed to explain the data is inconsistent	
	with the continuous transformation observed in crystallography	113
7.7	Measured Seebeck coefficient compared with predictions from band struc-	
	ture model with $m^* = 2.3 m_e$ and measured n_H (a). The square of the	
	See beck excess to the band structure prediction (b) explains the $\boldsymbol{z}\boldsymbol{T}$	
	peaks size and breadth.	114
7.8	Decreasing thermal conductivity does not cause the zT peak. (a) The	
	decrease in κ is due to the electronic contribution (κ_e). (b) Electrical	
	properties decrease slower than thermal properties in the phase transi-	
	tion region and thereby diminish the zT peak	115
7.9	Low temperature heat capacity of Cu_2Se (a) indicates an Einstein mode	
	(b) at approx 400 GHz	116
7.10	Comparison of Electrical Conductivity (a) and Seebeck (b) of $Cu_{1.97}Ag_{0.03}S_{1.97}$	Se
	with $Cu_2Se.$	118
7.11	Comparison of D_t (a) and C_p (b) of Cu _{1.97} Ag _{0.03} Se with Cu ₂ Se	120
7.12	Comparison of zT of $Cu_{1.97}Ag_{0.03}Se$ with $Cu_2Se. \ldots \ldots \ldots$	121
7.13	Hall coefficient for $Cu_{1.97}Ag_{0.03}Se$ at 2 T and varying temperature (a)	
	and at 293 K with varying magnetic field.	122

7.14	Ramp Seebeck fits for the cooling data (blue) and heating data (red)	
	separately in Cu ₂ Se (a) and Cu _{1.97} Ag _{0.03} Se (b)	123
7.15	Measured Seebeck voltage of Cu_2Se at $\overline{T} = 390$ K and $\Delta T = 16$ K. There	
	was a variation of less than 1% in the measured values. After the tem-	
	perature gradient stabilized there was no variation. \ldots \ldots \ldots \ldots	124
8.1	Key results of this thesis. Concurrent with its first order transition there	
	is a step change in Ag ₂ Ses zT (a) and Seebeck (c). The second order	
	transition of Cu ₂ Se results in a sharply peaked zT (a) and Seebeck (d).	
	The zT and Seebeck of the mixed phase transition of $\rm Cu_{1.97}Ag_{0.03}Se$	
	resembles that of its Cu_2Se main phase. Dotted lines are guides for the	
	eye	127
8.2	Ion conductivity of Cu_2Se [84] and Ag_2Se [136] through their phase tran-	
	sitions. Ag_2Se shows a step increase in ion conductivity at its phase	
	transition, while Cu_2Se shows a super-exponential increase in ion con-	
	ductivity to the phase transition temperature. The dotted line corre-	
	sponds to 374 K, at which temperature the super-exponential increase	
	begins	133
8.3	Calorimetry data (a) for Ag_2Se (solid line) and Cu_2Se (dotted line) on	
	heating. Ag ₂ Se shows a characteristic symmetric peak in its DSC curve	
	due to the enthalpy release of its first order phase transition. Cu_2Se	
	shows an extended asymmetric elevation in its heat capacity due to its	
	second order phase transition.	
	Temperature resolved powder X-ray diffractograms of Ag ₂ Se (b) and	
	Cu_2Se (c). The structural transformation of Ag_2Se is first order, while	
	that of Cu_2Se is second order	135

xviii

List of Tables

2.1	Temperature Shifts for Transport Properties	20
4.1	Electromigration Experiments on Cu_2Se . No electomigration was ob-	
	served below the phase transition temperature. When tested slightly	
	above the phase transition temperature there was no plate out observed	
	but there was copper observed on the side of the sample near the hot end.	53