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Abstract

The quality of a thermoelectric material is judged by the size of its temperature de-

pendent thermoeletric-figure-of-merit (zT ). Superionic materials, particularly Zn4Sb3

and Cu2Se, are of current interest for the high zT and low thermal conductivity of

their disordered, superionic phase. In this work it is reported that the super-ionic

materials Ag2Se, Cu2Se and Cu1.97Ag0.03Se show enhanced zT in their ordered, nor-

mal ion-conducting phases. The zT of Ag2Se is increased by 30% in its ordered phase

as compared to its disordered phase, as measured just below and above its first order

phase transition. The zT ’s of Cu2Se and Cu1.97Ag0.03Se both increase by more than

100% over a 30 K temperatures range just below their super-ionic phase transitions.

The peak zT of Cu2Se is 0.7 at 406 K and of Cu1.97Ag0.03Se is 1.0 at 400 K. In all

three materials these enhancements are due to anomalous increases in their Seebeck

coefficients, beyond that predicted by carrier concentration measurements and band

structure modeling. As the Seebeck coefficient is the entropy transported per car-

rier, this suggests that there is an additional quantity of entropy co-transported with

charge carriers. Such co-transport has been previously observed via co-transport of

vibrational entropy in bipolaron conductors and spin-state entropy in NaxCo2O4. The

correlation of the temperature profile of the increases in each material with the nature

of their phase transitions indicates that the entropy is associated with the thermody-

namcis of ion-ordering. This suggests a new mechanism by which high thermoelectric

performance may be understood and engineered.
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