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Chapter 5

Structural and Phase Transition
Classification

Knowing the order of the structural phase transitions of Ag2Se, Cu2Se, and Cu1.97Ag0.03Se

is essential to understanding their thermoelectric properties in the vicinity of those

phase transitions. Structure effects the transport properties through the mechanism

of the electronic band structure and the phononic band structure. A change in band

structure should always be accompanied by some, though perhaps subtle, change

in structure. In later chapters I will present the transport properties of Ag2Se,

Cu2Se, and Cu1.97Ag0.03Se, and there will be direct correlations between the structural

changes of their phase transitions in their transport property. Understanding the na-

ture of that transformation will allow me to develop the phenomenology necessary to

explain them.

In the case of Cu2Se there is an important scientific question that was answered

by the work presented here. All previous authors considered Cu2Se to be a first

order phase transition [21, 41, 188, 191, 123, 121]. The work presented here shows

it to be definitively second order [23]. This question of is central importance; the

zT of Cu2Se can not be properly calculated without understanding the nature of its

phase transition. The determination of the Differential Scanning Calorimetry (DSC)

data depends on the order of the phase transition. A substantial broad peak is seen

in the DSC for Cu2Se, see Figure 5.1. If the transition is second order the DSC

measurement must be treated as cp. If it were first order, it would be more proper to
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Figure 5.1: Differential Scanning Calorimetry cp for Cu2Se (blue circles) with the
Dulong-Petit contribution as a green dotted line. Determining the order of the phase
transition of Cu2Se determines which of these two curves should be used to calculate
cp.

use the Dulong-Petit heat capacity instead.

As κ is calculated from cp by the formula κ = ρcpDt, and zT from κ by zT =

α2σT/κ, this argument has an order of magnitude impact on the zT calculated.

Treating Cu2Se as a first order transition results in a five-fold overestimate in zT

above its true value. Answering this question is particularly pressing due to recent

published articles, [121, 123], claiming zT s two to five times that published here based

on a first order treatment of cp data.

Ag2Se has a much simpler story. Prior literature shows understanding of its trans-

formation as first order [15, 137, 21]. The work presented below agrees with that

assessment. Still, it serves an excellent contrast to Cu2Se and therefore illuminates

the contrast between first and second order behavior in structural measurements.

Cu1.97Ag0.03Se has the most complex story and one that this thesis does not fully

resolve. As temperature is increased from room temperature it follows a trend similar

to than of its Cu2Se main phase. However, this trend is interrupted by the dissolution

of a secondary phase of CuAgSe, eventually leading to a first order phase transition
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at a temperature lower than Cu2Se’s second order phase transition.

In the next section I will discuss the definitions, different categorizations of, and

phenomenology of structural phase transitions. There will be particular emphasis on

order-disorder phase transitions. In section 5.2 I will discuss the measurements made

on Ag2Se, in section 5.3 I will discuss the characterization made of Cu2Se, and in

section 5.4 I will discuss measurements made on Cu1.97Ag0.03Se.

From understanding of the structure of a material, great insight can be obtained

into its chemical performance can be obtained. For example, if the structure is well-

understood, calculations of the electron and phonon band structure can be accom-

plished by Density Functional Theory (DFT). Super-ionic materials are a particu-

larly challenging and interesting topic for structural studies. The high mobility and

interstitial occupation probabilites of their ions means that determining the average

location of the ions is insufficient for understanding their transport. For this work I

am of course interested primarily in the nature of the superionic phase transition of

Cu2Se, Ag2Se, and related materials.

5.1 Phase Transitions

A phase transition is a transformation in the symmetry of a system. The symmetries

are understood in terms of the mean location or state of the degree of the system (e.g.,

atoms, molecules, spin states). For example, the Arrhenius activation of Frenkel ion

defects does not affect the mean symmetries and so is not a phase transition. Phase

transitions are a very broad category. In a glass transition the symmetry reduction is

purely local [162]. In crystal twinning or martensite transitions the reduction in order

is between large ordered grains rather than due to a local effect [162]. In order-disorder

transitions a local change in coordination results in a long-range transformation in

symmetry [95]. An excellent summary of phase transitions in the solid state is avail-

able in Rao and Rao [162]. Super-ionic phase transitions are order-disorder phase

transitions [21, 151].

The disordering is frequently modeled as due to the creation of Frenkel defects [163,



58

Figure 5.2: Free energy versus temperature for a first order phase transition. At Tc
the free energy of both phases is equal.

22, 70, 34] in the high temperature phase; while this may be true for other super-

ionics, the pair distribution function (PDF) data measured for my publication on

Cu2Se [23] contradicts this explanation. Super-ionics typically have an ionicity close

to the critical value of 0.785 [22] described by Phillips [156]. Therefore there is almost

equal preference for coordination into sites preferred by ionic coordination as those

preferred by electronic coordination. Aniya [4, 5] suggested that it is the fluctuations

between these two co-ordinations that are characteristic of superionic materials; this

explanation is more compatible with our PDF data.

In an order-disorder phase transition all high-temperature symmetries are pre-

served in the low temperature phase. Solidification of a liquid, in which the rotational

freedom of the liquid is lost but the chemical coordination maintained, is a very com-

mon instance of an order-disorder transition [31]. In an order-disorder transition the

ordering is typically long range, mathematically defined as a very slow decay of corre-

lations between states of the ordering element with increasing distance. The kinetics

of an order-disorder transition are relatively fast, as they are not limited by atomic
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Figure 5.3: Free energy (F ) versus order parameter (m) for a second order transition.
Each of the curves is on its separate axis. The dotted line represents the equilibrium
order parameter. As T goes to Tc, m goes continuously to zero.

diffusion.

5.1.1 Order-Disorder Phase Transitions Type

There are two principle types of order-disorder phase transitions. First order transi-

tions are characterized by a first derivative discontinuity in a thermodynamic state

parameter. This is typically measured by the instantaneous change in the volume or

enthalpy as a thermodynamic parameter is changed [162]. A second order transition

shows a discontinuity in a second or higher order derivative of the thermodynamic

quantities. Certain second order transitions, including that of Cu2Se, have a deriva-

tive of free energy that diverges to infinity at the phase transition temperature. Under

the old classification system of Ehrenfest these were not considered second order tran-

sitions [53]. Instead they were called λ-transitions for the characteristic λ-shape in

the dependence of their heat capacity on temperature [65, 157]. In more modern clas-

sification systems based on the work of Landau and Ginzburg, all phase transitions

with continuous transformation of free energy are considered to be second order or
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continuous [95].

Thermodynamic stability must be determined by a formulation that includes it.

This formulation is the Free Energy. Without loss of generality, I use the Helmholtz

Free (F) energy rather than Gibbs Free Energy. The difference between these two

formulations is whether the system is held at constant volume (Helmholtz) or constant

pressure (Gibbs); that detail is irrelevant to the argument below. For any given phase,

defined as a set of symmetries obeyed by its degrees of freedom, the free energy is:

Fi = Ui − TSi (5.1)

There are as many phases as one can dream up. Very few are thermodynamically

favorable. At a given set of thermodynamic conditions (e.g., P ,T ) there will be only

one phase or set of phases stable at a temperature. This phase or combination of

phases is that which has minimal Fi. Each of these different phases will have a

different Ui and Si. A phase with higher entropy and high internal energy (i.e., a

gas) will be more stable at high temperatures than phase with low internal energy

and low entropy (i.e., a liquid); the converse is also true. If Ui and Si are known

for both phases the temperature of transition me determined by setting Equation 5.1

equal for each phase. Defining ∆U = Ui−Uj and ∆S = Si−Sj, this is equivalent to:

∆U = T∆S (5.2)

As a very simple example consider the dissociation of diatomic oxygen into monatomic

oxygen. In this hypothetical example ∆S = R/2 where R is the gas constant while

∆U = 495kJ/mol. Therefore the temperature of the phase transition is ≈60,000 K

— and indeed monatomic oxygen is very rarely observed.

In the case of the super-ionic transition ∆U is the energy that prefers the ions

to be ordered in some way — perhaps a bond energy or the effect of alignment of

a dipole with the crystal field — while ∆S is the additional configurational entropy

available to the disordered phase. This may not be straightforward to calculate, as

a substantial portion of the lifetime of super-ionics is spent between lattice sites in
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regions of non-minimal potential [87]. Still, a simple configurational entropy argument

helps to contextualize the scale of the phase transition. Following Korzhuev [103],

if we assume that there are n0 accessible vacancies per mobile ion in the super-ionic

state then ∆S should be:

∆S = R ln(n0) (5.3)

For n0 = 3, ∆S = 9.1 J ·mol−1K−1. This is comparable to the entropy of melting.

If ∆S and ∆U are themselves independent of temperature, than there will be

a first order phase transition. The difference in the free energy between the two

states decreases until the high entropy state becomes more favorable at T = Tc.

(Figure 5.2). Because the high entropy phase requires input of heat equal to T∆S in

order to form, there is frequently hysteresis in measurments through first order phase

transitions. On heating the temperature rises above Tc, but the material remains

ordered until sufficient heat has been absorbed to complete the phase transition.

On cooling at a steady rate, a similar but opposite effect occurs. Measurements on

heating overestimate the phase transition temperature while measurements on cooling

underestimate it.

The assumption that ∆U and ∆S are constant as a function of temperature is

generally invalid. Disordering can occur without a phase transition at all. For a phase

transition to occur there must be a fundamental change in the symmetry of a system.

For example, Arrhenius activation of defects will increase the internal energy and

entropy slightly. This will increase Tc slightly and decrease the enthalpy of formation

of the transition, but it will not eliminate it. That entropy increase is still much

smaller than the entropy increase of the disordering phase transition. It will change

the slopes and perhaps add curvature to the lines in Figure 5.2, but the lines will still

intercept at an angle. That angle represents the entropy of the transition.

In order for the transition to be continuous rather than abrupt the two curves in

Figure 5.2 must intercept tangent to one another, as thermodynamics requires the

free energy by analytic for any given phase [31]. Therefore a continuous transition

requires that the entropy of the ordered phase increases continuously and that its
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internal energy increases continuously to the phase transition temperature. This

requires the disordering process to be continuous rather than abrupt.

In proximity to an order-disorder phase transition the free energy is described in

terms of an order parameter. For example, in the canonical case of a spin-ordering

transition the order parameter is the average spin magnetization. The super-ionic

order parameter is theorized to relate to the relative population of different sites by

the mobile ion [151, 70]. The free energy contribution associated with the ordering

— which is the only free energy terms that differentiates the ordered and disordered

phase — is for a first order transition:

F = am2 + bm4 + cm3 (5.4)

The cubic term leads to a discontinuity in the value of m at T = Tc.

For a second order transition the Landau Free Energy is:

F = am2 + bm4 (5.5)

As the phase transition is approached thermodynamic quantities follow critical power

laws. For example, the order parameter decreases to zero continuously:

m = m0

(
Tc − T
Tc

)β
(5.6)

In which β is called the critical exponent. Order parameter in a structural trans-

formation is related to the diffractogram peaks, so a related power law should be

discoverable by analyzing those peaks. A similar power law is expected for heat

capacity.

Another type of phase transition is a co-existence phase transformation. This is

a temperature extended first order phase transtion. some interaction (i.e., pressure)

between the concentration of the two phases elongates the region over which the low-

temperature phase transforms into the high temperature phase. This sort of phase

is easily distinguished from a true second order transition by diffractogram. In a
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coexistence transition the intensities will vary as one phase steadily appears and the

other steadily disappears, but the angles at which they have diffraction peaks will

remain steady.

A final type of phase transition is a weakly first-order phase transition [16]. In

this type the symmetry between the multiple minima in free energy is weakly broken

so that the two minima in Figure 5.3 are slightly displaced from one another. At

temperatures well below the phase transition temperature the symmetry breaking

appears very similar to a second order transition, except that one minima is global and

so slightly preferred. At temperature near the phase transition this tiny offset is large

compared to the difference between the ordered state’s minimum and the disordered

states minimum, and a first-order aspect of the transition appears. Whenever a

lambda type second order transition is heated or cooled through its phase transition

at a finite rate, it is to some degree weakly first order. The heat capacity at Tc is

infinite and so for even a very slow heating rate and very good connection of the

sample to a thermal bath, there will be a moment at which the correct heat cannot

be supplied.

5.2 Ag2Se

The high temperature structure and phase transition of Ag2Se were first noted by

Rahlfs in 1934 [161]. In the high temperature structure (Im3m̄) the selenium is body-

centered cubic, while silver ions occupy the interstitial sites. The more complex low

temperature phase was described by Wiegers [198]. The silver sits on two sites in

the low temperature phase. One of the silver sites is coordinated tetrahedrally by

four selenium atoms and the other is coordinated trigonally planar to three selenium

atoms.

A diffractogram was measured at room temperature from 2θ = 10◦ to 2θ = 100◦.

The sample was then heated at 1K per minute to 450 K (well above the nominal phase

transition temperature of 413 K [136]. A diffractogram was measured at that tem-

perature as well. The sample was cooled at 1K per minute to room temperature and
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Figure 5.4: Low Temperature (a) [15] and high temperature (b) [18] structure of
Ag2Se

Figure 5.5: Powder X-Ray Diffractogram for Ag2Se above and below its phase transi-
tion. All symmetries of the high temperature phase are present in the low temperature
phase.
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Figure 5.6: Temperature dependent X-ray diffractograms measured on heating (a)
and on cooling (b) of Ag2Se. A first order transition is seen at 415 K on heating and
401 K on cooling.

a third diffractrogram measured. All three diffractograms are shown in Figure 5.5(a).

Both above [145] and below [207] the transition the measured peaks index to

previously published data, however large intensity mismatches are observed. These

intensity mismatches were also observed by Billeter et al. [15] and ascribed to Se

precipitation. This problem is likely more significant in the powder XRD as compared

to bulk samples due to their larger surface area to volume ratio. No Ag is visible

in the diffraction patterns at any temperature. Since a bulk synthesis product was

used, large grain sizes are expected and the observed intensity mismatch is ascribed to

this. The low temperature modification is orthorhombic (Space group P212121) which

explains the different dependences of the peak positions below the transition. The

low temperature space group maps homomorphically to the high temperature space

group (Im3̄m); that is, all symmetries of the low temperature phase are preserved in

the high temperature phase.

During the heating and cooling process diffractograms were measured from 2θ = 20◦

to 2θ = 52◦ in order to determine the nature of the phase transition. The duration

of each scan was three minutes and consequently the temperature changed by 3 K

from start to end of each scan. From inspection of a color map of this data there is a

first order phase transition observed at 415 K on heating (Figure 5.6(a)) and 401 K

on cooling (Figure 5.6(a)), with the phase transition temperature halfway in between
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Figure 5.7: Differential Scanning Calorimetry data for Ag2Se

at Tc = 408K. This is consistent with literature reports [15, 136]. The discrepancy

of the phase transition on heating and cooling is characteristic of a first order process

and a consequence of the non-adiabatic heating.

The color maps show strongly diffuse background scattering. While significant in

the low temperature phase, in the high temperature phase it makes distinguishing

the peaks visually almost impossible. This suggests diffuse scattering, much like in a

glass, that may cause phonon scattering and low thermal conductivity. The exception

is a sharp peak at 2θ = 37.2◦ that is visible on cooling but not on heating.

Differential scanning calorimetry data for Ag2Se(Figure 5.7(a)) shows a sharp sym-

metric peak centered at 414 K. This peak is characteristic of a first order transition.

Due to the preponderance of literature [15, 137, 21] evidence and the crystallographic

evidence presented above for Ag2Se’s first order transition, it was unnecessary to con-

firm the order of the phase transition via altering the heating rate. The region of

elevated calorimetry data extends from 402 K to 426 K. The DSC curve of a first

order transition should begin to increase at the phase transition temperature. By
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Figure 5.8: Phase diagram (a) of Cu-Se system in the vicinity of Cu2Se adapted from
Heyding [78]. The phase transition is between the β − Cu2Se(RT) phase and the
α− Cu2Se(ht) phase. Anti-fluorite structure (b) of which α− Cu2Se is a modification.
Se is coordinated FCC and is represented in red. Ground state Cu is tetrahedral
coordinated to the Se though significant occupation of trigonal planar and octahedral
interstitials has been measured. The structure of β − Cu2Se is unknown.

drawing intercepting tangents to the behavior before and during the rise, the phase

transition temperature is determined to be approximately 407 K. This agrees with

the temperature of 408 K determined above by crystallography.

Both crystallographic and calorimetric studies indicate Ag2Se to have a phase

transition at 408K.

5.3 Cu2Se

The description of the phase transition behavior of Cu2Se is complicated by the un-

settled argument over the nature of that phase transition and the structure of the

low temperature phase. The high temperature phase is at this point fairly well un-

derstood. The material is a known, if not abundant, mineral under the name of

Berzelianite. During the same work in which he indexed high temperature Ag2Se,

Rahlfs also indexed high temperature Cu1.85Se [161]. All the compositions of Cu2−δSe
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from δ = 0 to δ = 0.2 appear to have the same high temperature anti-fluorite cubic

structure [78, 194, 201]. (Figure 5.8) Though that phase is on average anti-fluorite, sig-

nificant Cu+ occupation of trigonal planar and octahedral interstices is observed [201].

Hopping through these interstices is the mechanism of fast copper ion transport; the

ion transport pathways have been successfully determined to be along the [111] di-

rection from tetrahedral to trigonal planar intersticies [43, 42].

Despite Cu2Se presence in mineral form and its binary compositon, the ordered

low temperature structure is yet unknown. This is not for lack of trying. In 1987

Milat et al. [134] proposed a monoclinic supercell and in the course of that work noted

eleven other proposed structures. They proposed a structure that assumed significant

octahedral occupation. Later authors proposed more complex superstructures [123,

96]. These structures are insufficiently complex to explain the crystallography data

presented below.

Multiple authors have proposed a co-existence transformation between the α and

β phase with a temperature width of 10’s of Kelvins [41, 188, 121]. This hypothesis,

though reasonable, is contradicted by the data presented in this chapter. There are

three reasons for this. The Cu1.8Se is commensurate with the α Cu2Se. In the region

δ = .05 to δ = .2 there actually is a coexistence of the β-Cu2Se phase and the Cu1.8Se;

if the phase diagram is determined imprecisely, the single phase region goes unnoticed.

Finally, unknown errors in synthesis have led to samples showing impurity phases of

Cu1.8Se [121]. As room temperature Cu1.8Se has the same structure as α− Cu2Se [78],

this is an easy confusion to make. There is indeed co-existence of β − Cu2Se and

α− Cu1.8Se in such samples, but it is a co-existence of admixture rather than that

of synthesis. Vengalis et al. [190] observed that this phase tends to form on the grain

boundaries of copper rich phases.

Prior to this work the 410 K phase transition was believed to be first order.

This is unsurprising, as it takes careful measurement and analysis to differentiate a

lambda second order transition from a first order transition. The difficulties of this

determination are well illustrated in the case of the lambda transition of β quartz [184,

82]. As late as 1980 authors were still confused about the lambda nature of its
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Figure 5.9: The phase diagram of Cu2Se in its single phase region by Vucic.[194] This
diagram was established by dilatometry. Notably, there are multiple phase transitions.

phase transition [82]. While structural second order transitions with diverging heat

capacity are of interest to the physics community, they are far less common than

first order transitions. Korzhuev determined Cu2Se’s transition to be first order on

the basis of the Clausius-Clapeyron relations [105]. However, Pippard showed than

an analagous relation holds for lambda-type transitions [157]. Vucic determined it

to be first order on the basis of its sharp feature in their dilatometry data [191];

again, such sharp features are also expected in the case of a lambda-type second

order transition [157]. Qualitative assesment of sharpness of thermophysical peak

at a phase transition temperature can differentiate a first order transition from a

second order transition without diverging heat capacity [140]; it is insufficient for

differentiating a first order transition from a lambda-type second order transition.

Despite this confusion there is some certainty about the phase diagram at room

temperature. By electrochemical determination [197] Korzhuev et al. found there to

be a single phase region of Cu2−δSe [101] for δ = 0 to δ = 0.05 and a range of co-
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Figure 5.10: Left:PXRD of Cu2Se at 300 K and 425 K from 2θ = 10◦ to 90◦.
Right: Zoom in near the 26◦ peak set. Peaks positions as identified in literature were
observed [96]. The sample is single phase.

existence of Cu1.95Se and Cu1.8Se from δ = 0.05 to δ = 0.20. Temperature dependent

dilatometry was performed by Vucic et al. in the single-phase region, and he developed

a phase diagram on this basis, see Figure 5.9. Vucic’s collaboration made follow

up transport measurements [194, 134, 84, 192]. In general our sample shows the

properties that Vucic observed in his samples of nominal composition Cu1.99Se.

5.3.1 Diffractometry

A diffractogram was measured at room temperature from 2θ = 10◦ to 2θ = 90◦. The

sample was then heated at 1 K per minute to 425 K (above the nominal phase tran-

sition temperature of 410 K. A second diffractogram was taken at 425 K. These

diffractograms are shown in Figure 5.10. The low temperature diffractogram is con-

sistent with literature reports [96]. The bifurcation of the major α− Cu2Se peaks in

the β − Cu2Se phase is consistent with the β phase being a monoclinic or orthrhombic

modification of the anti-fluorites structure. Cu1.8Se impurity phase observed by Liu

et al. was not observed here [121].
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Figure 5.11: High flux low angle synchotron data of Cu2Se (a) shows significant strong
reflections, indicating that a large unit cell to explain the data. The recent models of
Liu et al. [123] show a better fit than those previously published, [134, 96] but cannot
explain all the low angles peaks observed (b). In (b) the black line is the data, the
red line the model, and the blue line their discrepancy. Courtesy of Kasper Borup.

My crystallography collaborators were unable to resolve the low temperature

structure. They determined that though many authors have proposed structures

for Cu2Se, these structures use a large enough unit cell to explain all of our ob-

served peaks and their intensities. Many of these proposed structures are based on

analysis of lower signal to noise diffraction data than that presented here; conse-

quently, those authors propose structures that are too simple. Kashida and Akai [96]

proposed a monoclinic unit cell (a = c = 7.14 Å, b = 81.9 Å, β = 120◦) with order-

ing of copper vacancies, while Milat et al. proposed an even larger monoclinic cell

(a = c = 12.30 Å, b = 40.74 Å, β = 120± 1◦). [134] Neither of these unit cells were

able to describe the position of all reflections at low angles observed via high flux

synchrotron.(Figure 5.11(a)). This indicates the structure to be even more compli-

cated. These low angle peaks were not measured previously with the precision done

in this experiment. Since publication of my paper [23], Liu et al. [123] proposed a tri-

clinic unit cell (a = 7.12 Å, b = 7.14 Å, c = 7.51 Å, α = 98.6◦, β = 107.6◦, γ = 60.1◦)

and a monoclinic unit cell (a = 7.13 Å, b = 12.36 Å, c = 14.47 Å, β = 100.4◦) with

larger unit cells than that proposed before. These structures were also unable to clar-
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Figure 5.12: Temperature varied diffractograms of Cu2Se. Data is presented as
stacked diffractograms (a) and as a color map (b). The peak intensities and angles
shift continuously from the low temperature to the high temperature phase.

ify all of our observed peaks nor determine their intensities correctly. This is shown

for the proposed monoclinic structure in Figure 5.11(b). Therefore, no structural re-

finement below the phase transition is possible from PXRD at present, and the order

parameter is not easily obtained from this method.

The 425 K diffractogram (Figure 5.10) is well fit by an anti-fluorite structure with

the exception of a few anomalous peaks. These anomalous peaks are not present in

the synchotron data from 450 K, see Figure 5.11, suggesting that either the phase

transition is not fully complete at 425 K or that insufficient time was taken to let the

kinetics stabilize at 425 K before measuring the diffractogram. Based on the PXRD

and synchrotron data I conclude that the Cu2Se measured for this study is single

phase and in concordance with other single phase samples synthesized for literature

studies.

For crystallographic determination of the nature of the phase transition, diffrac-

tometry must be performed at a series of temperatures that transverse that transi-

tion. During the heating process to 425 K for obtainment of the diffractogram of

α− Cu2Se (Figure 5.10), diffractograms were continuously measured from 2θ = 23◦

to 2θ = 45◦. The duration of each scan was three minutes and consequently the tem-

perature changed by 3 K from start to end of each scan. The 2θ range was chosen
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Figure 5.13: Peak intensities versus temperature (a) for selected peaks of Cu2Se.
These peaks were chosen because they only appear in the low temperature phase.
They show a continuous decrease to the phase transition temperature. This decrease
corresponds well with a critical power law, as seen by the linearity of log-intensity
versus log-reduced temperature.

because of the excellent signal intensity and the two separate bifurcated peaks seen.

Visualization of this data (Figure 5.12) shows a continuous evolution of the bifur-

cated peaks at low temperature into the single peaks at high temperature. Both the

peak intensities and angles shift continuously from the low temperature to the high

temperature phase. This strongly contrasts with the abrupt change that would be

seen as in a first order transition (i.e., that of Ag2Se presented above in Figure 5.6).

Cu2Se does not have a first order transition.

Detailed analysis of the temperature resolved PXRD data confirms Cu2Se’s phase

transformation to be continuous. For a second order phase transition, it is expected

that a crystallographic order parameter should go to zero with some exponent of the

reduced temperature τr = (Tc − T )/Tc. To examine this effect, we plot the peaks

that disappear at the phase transition temperature (Figure 5.13(a)). These peaks

show critical power law behavior as the phase transition temperature is appraoched

(Figure 5.13(b)). The data at the phase transition is insufficiently detailed to ex-
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Figure 5.14: Temperature dependence of the peak shift for representative diffraction
peaks of Cu2Se. The peak shifts are incompatible with a coexistence transformation.

tract a precise critical exponent; the data resolution for such a fit must be increase

exponentially higher as the phase transition temperature is approached. The criti-

cal exponents so obtained would be far larger than unity. This is greater than the

critical exponent expected for the Ising model [95] and found in other super-ionic

transitions [118]. It is therefore likely that while the critical exponents of the peaks

are related to the order parameter, their critical exponent is not that of the order

parameter (canonically labeled β). Tc was determined to be 408 K, as that temper-

ature gave approximately the some slope in Figure 5.13(b) for angles analyzed. This

critical temperature is consistent with that found in the literature and determined by

other thermophysical measurements for this thesis. The noise floor near the phase

transition temperature prevented analysis of the critical exponent for the 2Θ = 37.9◦

peak.

The shift in peak angles with temperature is inconsistent with an α→ α+β → β

coexistence transformation. In a coexistence transformation the secondary peak in

the bifurcation should be stable in peak position as its intensity increases, varying

only due to thermal expansion. In contrast a second order transition the peaks will

bifurcate smoothly from one another. The peak positions of Cu2Se show such shifts

in the temperature range from 360 K to 410 K. (Figure 5.14) Notably the 2Θ = 25.2◦
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and 26.4◦ shift in opposite directions; this is inconsistent with thermal expansion.

The phase diagram of Vucic (Figure 5.9) anticipates a (non-lambda) second order

transition at a lower temperature. At 360 K there is a point of inflection in the peak

shift of the 2Θ = 25.2◦ and 26.4◦ peaks. The peak intensity and shifts in general begin

to shift significantly at this temperature. While that is not definitive evidence of a

second order transition at 360 K, more data relevant to that point will be presented

later in this document.

A pair distribution function (p.d.f.) was obtained from total scattering data. It

describes the distribution of distances between pairs of atoms in the structure. The

changes of the p.d.f. are gradual, indicating that the ordering of Cu-interstitials occurs

over a wide temperature range. There is no evidence of a first order discontinuity in

peak positions nor of the β phase being present below 410 K. The phase transition

does not appear to be complete until 450 K; transformation above the phase transition

temperature is characteristic of second order transitions. The Qmax = 26Å used is

insufficient for truly accurate quantitative fitting, as indicated by the presence of

substantial integration error ripples below the first peak maxima.

Even without modeling the data it is possible to extract qualitative information.

By studying the high-temperature structure of Cu2Se it is clear that the peak at 4.1 Å

(Figure 5.15(a)) is a superposition of the shortest Cu-Cu and Se-Se distances in the

[110]-direction. Above 300 K the peak becomes increasingly asymmetric, indicative

of multiple Cu-Cu distances in the high-temperature phase related to the disorder of

Cu interstitials. At low temperature the Cu order to form a superstructure. The su-

perstructure formation is most clearly seen in the region 8 Å to 9.5 Å (Figure 5.15(b)).

This range corresponds to Cu-Cu distances in the [110]-direction in adjacent cubic

unit cells. Below 410 K there are two distinct peaks at 8.2 Å and 9.3 Å. However

in the high temperature phase the same region is a continuum of overlapping peaks

arising from the disorder of Cu.

Theoretical models of super-ionic conductivity assume that it is due to Frenkel

defect formation — that a number of interstitial sites similar to the number of ions

become occupiable in the higher temperature phase [21, 163, 70]. Such significant
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Figure 5.15: Pair distribution function data for Cu2Se. The unit cell size is 5.8 Å.
The coordination number remains the same through the phase transition (a) but
correlations between high temperature equivalent unit cells breaks down.(b) Full data
set. (c)
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Figure 5.16: Calorimetry data for Cu2Se under differing measurement condition. As
the diffusive time scale is decreased, the data converges to the quasi-static heat capac-
ity measured by Quantum Design Physical Property Measurements System (PPMS).
The phase transition temperature is marked with a black dotted line. Data courtesy
of SIC-CAS and the JPL Thermoelectrics Group.

Frenkel defect formation should result in new peaks in g(r) for r less than the lat-

tice spacing of the high temperature phase (5.8Å). While the peaks in this range are

broadened, Figure 5.15(a), there is nothing to suggest significant new site occupation.

For unit cells greater than 5.8 Å a much more substantial change is observed. (Fig-

ure 5.15(b)) This suggests that the correlations between high temperature unit cells

breaks down substantially. The implication of this is that rather than the disordering

being due to Frenkel defect formation, it is primarily due to a breakdown of correla-

tions between unit cells, as represented by the 8.2 Å and 9.3 Å peaks. It is unclear at

this time what the microscopic mechanism for correlations between unit cells is. One

possibility is that the order state of the super-ionic transition is supported by a local

electronic polarization like in a ferroelectric.
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5.3.2 Cu2Se Calorimetry

Calorimetry data also supports Cu2Se being a second order transition. In order for a

DSC measurement to accurately represent a material’s heat capacity, the heating rate

should be much faster than the timescale of thermal equilibriation. At a first order

transition there is an instantaneous enthalpy release. This enthalpy cannot be trans-

ported out of the material instantaneously, and so a temporary difference between the

temperature of the bath and the temperature of the sample occurs. Therefore, a first

order phase transition will show a peak of finite width at its phase transition. For

example, in the Ag2Se calorimetry curve presented above.(Figure 5.7(a)), the heat

capacity is elevated over the Dulong-Petit baseline from 405K to 420K. Over this

temperature range the sample is not in thermodynamic equilibrium with the bath.

For the phase transformation to be complete a quantity of heat equal to the enthalpy

of formation may be added, but the rate at which heat may be added is limited by

the material’s thermal diffusion time scale (tD) and its heating rate (Ṫ ). This can be

written mathematically as:

δT = AtDṪ , (5.7)

in which A is a constant term that serves as a catch-all for the geometric configuration

of the apparatus and sample. As discussed in Chapter 2 in the context of thermal

diffusvity measurements, the diffusion time scale is related to the diffusion length (lD)

by tD = lD ·D−1
t . This provides a scaling relation by which measurements on different

size samples and heating rates can be compared.

δT = A
l2D
DT

Ṫ (5.8)

Because of the smearing of the enthalpy of formation, it is easy to accidentally

mistake a second order transition with diverging heat capacity for a first order tran-

sition. The historical case of the β-quartz transition exemplifies this difficulty [85].

Considerations based on heating rate and sample size have proved successful in the

past for differentiating first and second order phase transitions [140].
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The enthalpy released per unit temperature of a lambda-type transition is always

finite. However, the low thermal diffusivity and non-linearity in the heat capacity may

still lead to errors in the DSC derived heat capacity. A fixed temperature rate induces

an error in the heat capacity resolution due to the sample’s thermal diffusivity. Two

separate samples were sent to SIC-CAS and JPL for DSC measurement. The heat

capacity measured at these two facilities showed markedly different calorimetry curves

(Figure 5.16) that can be explained by Equation 5.7. The JPL sample had a thickness

of 2.5 mm, while the SIC-CAS sample had dimensions of approximately 0.8 mm. On

this basis the 5 Kelvin per minute and 10 Kelvin per minute JPL measurements are

expected to have a temeprature errors 10 and 20 times that of the SIC-CAS sample.

The maximum of three curves are at 412 K, 420 K, and 427 K, which corresponds well

to the predicted trend and indicates an error on the SIC-CAS temperature resolution

of less than 1 Kelvin.

On this basis the cp derived from the SIC-CAS DSC measurement is judged to be

accurate enough for calculating transport data. The DSC heat capacity was further

confirmed via the quasi-static method of the Quantum Design Physical Property

Measurement System to 400 K with the assistance of Dr. Xun Shi of SIC-CAS. In

this methodology the temperature is stabilized before the heat capacity is measured.

Within each three point set the variation in measured heat capacity is less than 1%,

indicating that the equilibrium condition was met. These measurements confirm that

the heat capacity is increased at the phase transition temperature.

At 355 K there is a distinct change in the slope of the heat capacity.(Figure 5.17)

This is consistent with a (non-lambda) second order phase transition and the predic-

tions of Vucic. This extended elevation is inconsistent with a first order transition and

consistent with a second order transition. There is a distinct change in the slope of cp

with T at 355 K. That feature is indicative of another second order phase transition

and accords with the phase diagram of Vucic. A feature near this temperature was

observed in the temperature crystallographic measurements discussed in the previous

subsection. The calorimetry data is consistent with two second order phase transi-

tions at 360 K and 410 K. The transition at 360 K has a heat capacity that converges
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Figure 5.17: Heat capacity minus Dulong-Petit heat capacity below the phase transi-
tion temperature. Data is shown both for the DSC measurement and the quas-static
PPMS measurement. The non-linear elevation in heat capacity begins at 355K.

to zero, while the transition at 410 K has a divergent heat capacity.

5.4 Cu1.97Ag0.03Se

At room temperature the material’s main phase has a structure related to the room

temperature structure of Cu2Se. This structure has not been satisfactorily solved in

the literature but it is believed to be equivalent to the high temperature structure but

with ordered Cu vacancies and interstitials. The ordering is believed to depend highly

on the exact stoichiometry, which may explain the lack of a unit cell that describes the

low temperature structure. Of the peaks that could not be related to Cu2Se peaks,

CuAgSe and at least two distinct impurity phases are identified. At least one impurity

phase is still present at high temperature and at least one impurity phase dissolves at

the phase transition at 400 K, see Figure 5.18. The CuAgSe impurity phase is clearly

visible in scanning electron micrographs of the sample, see Figure 5.19. The impurity

peaks that dissolve do not have corresponding peaks in Cu2Se and are hence believed

to be impurities; however, it is possible that they belong to the main phase if this has
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Figure 5.18: Room temperature (a) and 450 K (b) diffractograms of Cu1.97Ag0.03Se.
Impurity peaks marked v disappear at the phase transition, while those marked *
remain. Peaks marked with an arrow correspond to CuAgSe. Courtesy of Kasper
Borup.
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Figure 5.19: Scanning electron micrograph of Cu1.97Ag0.03Se courtesy of Tristan Day.
Gray areas are Cu2Se phase, black areas are voids and white areas are CuAgSe
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Figure 5.20: Left: Color map of temperature varied diffactrograms of Cu1.97Ag0.03Se.
Right: Slower diffractograms were performed at 20 K intervals. Impurity peaks
marked v disappear at the phase transition, while those marked * remain. Peaks
marked with an arrow correspond to CuAgSe and dissolve at 380 K. The high tem-
perature reflections of Cu2Se are labeled on top of the graph. Courtesy of Kasper
Borup.

a structure different from Cu2Se.

Diffractograms were measured on constant heating continuously from 2θ = 24◦ to

2θ = 55◦. A color map is presented in Figure 5.20(a). The duration of each scan was

three minutes and consequently the temperature changes by 3 K from start to end of

each scan. During heating, dissolution of CuAgSe was observed at 380 K. At ≈400 K

there was a structural transition of the primary phase to a high temperature structure,

which remained present and unchanged to 500 K. All peaks except few low intensity

impurity peaks (also present at room temperature) can be indexed and refined with

the high temperature Cu2Se structure. Every 20 K higher quality diffractograms were

recorded, during which the sample was held at constant temperature for at least 45

minutes. At 380 K, CuAgSe was present and unchanged both before and after the

45 minute scan, and hence this is not believed to affect the dissolution. No change in

CuAgSe is observed until the diffractogram labeled 384 K (scans are labeled according

to the sample temperature when they are started). The same is true for the primary

phase and dissolved impurity at 400 K.

The structural phase transition has both a first and second order component. The
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Figure 5.21: Comparison of the 2Θ = 26.2◦ peaks of both Cu2Se and Cu1.97Ag0.03Se.
All units are arbitrary and scaled to be identical at T = 300 K. Up to 380 K the
peak of Cu1.97Ag0.03Se follows the second order trend of Cu2Se. On dissolution of
CuAgSe at 380 K its intensity stabilizes while temperature increases, until the first
order transition at ≈ 400 K eliminates the peak entirely.

structure is gradually changing from room temperature and up. This is evidenced

by the peaks moving relative to each other while the intensities also change. At the

dissolution of CuAgSe there is a strong change, and again this appears not to be due

to the 45 minute rest at 380 K. The dissolution of CuAgSe seems to result in a faster

rate of transition. Contrary to pure Cu2Se, many peaks seem to be shifting position,

while others seem to only change intensity (except for a slight shift due to thermal

expansion).

5.4.1 Cu2Se and Cu1.97Ag0.03Se

From the crystallography data Cu1.97Ag0.03Se appears to have an interrupted and dis-

torted version of the second order transition of Cu2Se, i.e., it appears to be a weakly

first order transition .The distortion occurs on dissolution of the secondary CuAgSe

phase near 380 K. The interruption occurs at 403 K at which point the transition

becomes first order. This behavior is best seen by comparing the temperature depen-

dence of peak intensity of the 2Θ = 26.2◦ peaks of both Cu2Se and Cu1.97Ag0.03Se.
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Figure 5.22: Differential scanning calorimetry for Cu1.97Ag0.03Se in comparison with
that of Cu2Se.

Up to 380 K the peak of Cu1.97Ag0.03Se follows the second order trend of Cu2Se. On

dissolution of CuAgSe at 380 K its intensity stabilizes while temperature increases,

until the first order transition at ≈ 400 K eliminates the peak entirely. These trends

strongly affect the temperature dependence of Cu1.97Ag0.03Se’s transport behavior, as

is to be discussed later in this thesis.

The heat capacity of Cu1.97Ag0.03Se shows a doubled peak, see Figure 5.22 The

temperature of the first peak corresponds to the temperature dissolution of the

CuAgSe phase observed by crystallography. The temperature of the second peak

corresponds to the first order transition. Some of what is labeled as specific heat in

Figure 5.22 is surely enthalpy of formation due to the first order component of the

phase transition. However, at this time I am unable to distinguish which portion

belongs to the second order transition and which to the fist order transition. I will

treat all the measured enthalpy from the DSC measurement as if it were due to a

second order transition. This will lead to an overestimate in cp and therefore an

underestimate of zT , but I feel it is best to be conservative in my calculation.




