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Chapter 7

Transport in Cu2Se and
Cu1.97Ag0.03Se

In the previous chapter I introduced super-ionic materials and band structure mod-

eling of thermoelectrics. In that context I introduced the thermoelectric super-ionic

material Ag2Se, and in analyzing its transport I noted an increase in its Seebeck in

its ordered phase compared to its disordered phase that appeared directly responsible

for an increase in its thermoelectric performance. This change in its Seebeck coef-

ficient was not explained with the band structure models typically used to explain

thermoelectric transport.

In this chapter I will discuss Cu2Se, which also shows an unexplained increased in

its Seebeck and zT at its phase transition. In chapter 5 I noted that Cu2Se shows a

second order transition while Ag2Se shows a first order transition. Its phase transition

thermoelectric behavior reflects that characteristic. Before I discuss the transport

behavior of Cu2Se and Cu1.97Ag0.03Se I will introduce the concept of coupled entropy

transport; this concept can be used to explain the behavior of these materials which

will be done in detail in the concluding chapter.

7.1 Entropy and Charge Transport

A thermoelectric material is treated as a having two principle interacting thermody-

namic quantities: heat and electron current [31]. The equilibrium thermodynamics
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of such a system are described by:

dS =
1

T
dU − µ̃

T
dN, (7.1)

in which S and U are the entropy and internal energy of the system and N is the

number of particles (carriers). Though I will address this part of my analysis in terms

of these extensive quantities, it is often convenient to use the corresponding intensive

quantities of entropy density (s), energy density u, and carrier concentration (n).

Conversion from extensive to intensive quantities in these formulations is simply a

matter of substituting the intensive variable for an extensive variable.

The nature of an irreversible process is that it produces entropy. A thermodynamic

formulation in which the extensible quantities are expressed as differentials, as in

Equation 7.1, will have a simple equivalent in irreversible thermodynamics. The

entropy production associated with a linear process is: Equation 7.1 is [32]:

Ṡ = ∇ 1

T
· JU −∇

µ̃

T
· JN , (7.2)

in which the Jx are thermodynamic fluxes and the gradient terms are thermodynamic

affinities. Under a given set of boundary condition, i.e., a particular resistor acting

as a load and under steady state, the systems properties will be arranged such that

Ṡ is minimized. This theoretical result is known as the minimum entropy principle.

Of course Ṡ is always greater than or equal to zero, or else the second law of ther-

modynamics would be violated. The ratio of the second term in Equation 7.2 to its

first terms describes the reversibility of the heat engine. When the load is varied to

maximize that ratio, that maximal value is zT .

On the micro-foundation of the fluctuation-dissipation theorem Onsager proved

that thermodynamics forces and fluxes associated in entropy production could be

related linearly [147]. Generally:

J1

J2

 = −

L11 L12

L21 L22

∇X1

∇X2

] (7.3)
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The Lxy are known as the Onsager coefficients and they may depend on any set

of thermodynamic quantities that describe the system. By the Onsager reciprocity

theorem L12 = L21. For the specific case of thermoelectricity: J
JS

 = −

Lee Les

 Lse  Lss

∇V
∇T

 (7.4)

Here I use entropy transport instead of heat transport to avoid the confusion between

the two different definitions of heat flux commonly used [49]. The Callen heat flux

Q ≡ TJs describes the heat transport through the material, while the DeGroot

heat flux Jq =≡ µJe + TJs decribes that transporting from one heat reservoir to

another [132] In the case of thermoelectrics that distinction does not lead to any

difference in description of the Onsager coefficients [49].

The Onsager coefficients may be related to σ,α, and κ by:

α = −Les
Lee

(7.5)

σ = Lee (7.6)

κ = T

(
LeeLssL

2
es

Lee

)
(7.7)

While ideal for describing the macroscopic relations between the phenomenolog-

ical transport coefficients, the irreversible thermodynamics of the Onsager relations

cannot actually produce the values of those coefficients. The kinetic theory approach

is therefore preferred for understanding how chemical sturcture, bands structure, and

doping give the values of these coefficients. For this the Boltzmann transport equation

is used:
∂f

∂T
=

(
∂f

∂T

)
force

+

(
∂f

∂T

)
diff

+

(
∂f

∂T

)
coll

(7.8)

Here f is the electron state occupation probability density. When eq (7.8) is solved
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it will generally have the form given by Kubo [112, 113]:

qα = −µ
T
− kbT

Mqe

Mee

(7.9)

Mqe and Mee are transport integrals representing heat transport per electron and

current transported per electron. A comparable expression may be derived from only

non-equilibrium thermodynamics considerations [49].

α ≡ −µ
T

+
1

qT
Jq (7.10)

From comparison with Equation 7.10, we see that Equation 7.9 is actually the sum

of two separate thermodynamic transport quantities. The first term represents the

entropy transport due to the change in the number of carrier present. It is the

thermodynamic equivalent of heat transport by mass flow in a liquid-based heat

exchanger. Following Emin [61], we refer to the first term as the presence Seebeck,

αpresence. The presence Seebeck is convenient to work with because it can be expressed

entirely in terms of equilibrium thermodynamics:

αpresence ≡ −
µ

qT
≡ 1

q

(
∂S

∂n

)
U

(7.11)

The second term in Equations 7.9,7.10 represents the part of the Seebeck that

results from the manner in which charge is transported. It reflects contribution from

the scattering interaction of the moving heat and charge and the distortion transport

effects on the state occupations and energies. For this reason, again following Emin,

we refer to it as the transport portion of Seebeck, αtransport.[61] Solving for αtransport

exactly would require a perfect understanding of all electron scattering mechanisms

and the band structure, and its determination is the primary focus of band structure

modeling.
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7.2 Entropy Co-Transport

In the discussion in section 7.1 above we implicitly assumed that the only thermody-

namic quantities that transported were charge and entropy. While the formulations

of eqs.7.4,7.9 are completely phenomenological and general, calculating the Onsager

coefficients under this assumption will lead to a discrepancy with measurement. The

entropy associated with co-transport of the non-electronic thermodynamic flux will

be attribute to αtransport; however, the transport calculations based on a static band

structure will be unable to replicate that effect.

To include the effect of another thermodynamic variable, I first add an additional

term to equation 7.1.

dS =
1

T
dU − µ̃

T
dN + hdm (7.12)

There will be a thermodynamic flux (Jm) associated with m and a thermodynamic

force (∇h) associated with h. If a flux of electrons drags a flux of m, then that the

entropy transported per carrier should be enhanced by the presence entropy of those

units of m. The presence entropy is then:

αpresence =
1

q

(
∂S

∂n

)
U

+
1

q

(
∂S

∂m

)
U,N

(
∂m

∂n

)
U,S

(7.13)

In chapter 8 this relation will be motivated from non-equilibrium thermodynamics.

Entropy co-transport enhancements to Seebeck and zT have been observed in

several material systems. Aselage et. al [7] determined B12+xC3−x4, 0.15 < x <

1.7 to have a Seebeck coefficient of ≈ 200µV/K despite a carrier concentration of

≈ 1021 cm−3. A Seebeck coefficient of 10µV/K would be expected at such a high

carrier concentration. In this material carriers transport as polarizable pairs, called

bipolarons. The presence of these bipolarons modifies by a dipole interaction atomic

vibrational frequencies [62]. By modeling the entropy contribution associated with

this bipolaron mode softening, Emin was able to explain the behavior of these Boron

Carbides as due to phonon entropy co-transport [61] Such vibrational softening en-

hancements of Seebeck are referred to as phonon drag Seebeck effects, and they have
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been observed in other systems [39, 11, 10].

By coupling the spin degree of freedom to entropy transport, increased Seebeck in

NaxCoO2 has been shown [196, 110, 139]. The differing spin degeneracy of electron-

occupied and electron-unoccupied cobalt sites provides the mechanism for this cou-

pling of carrier transport to entropy transport [138]. Here we consider coupling the

carrier transport to degrees of freedom associated with the structural changes of a

phase transition. A phase transition is always associated with an entropy change

because there is always a concurrent transformation in system symmetries [162]. In

continuous (i.e., second order) phase transitions the entropy will change over an ex-

tended temperature range. In chapter 5, we found the phase transition of Cu2Se to

have a substantially elevated heat capacity over a wide temperature range. If some

part of the entropy associated with the phase transition is coupled to transport, a

large Seebeck enhancement may be possible.

7.3 Cu2Se Transport near the Phase Transition

Copper (I) selenide is a p-type semiconductor [54]. Above 410 K Cu2Se becomes

super-ionic, which is characterized by its disordered Cu+ ions, and shows good ther-

moelectric properties [122]. Except at the highest temperatures, charge transport is

dominated by holes rather than Cu+ ions. As the temperature drops below 410 K

the ion mobility decreases [84] and eventually the Cu ions become ordered [96]. It is

known that copper (I) selenide can be copper deficient (Cu2−δSe) with copper vacan-

cies, and this has a large effect on transport properties and the phase structure [194].

Horvatic et al. showed that the ion conductivity of Cu1.99Ses increases from 1 S/m

at 374 K to almost 100 S/m at 410 K [84], demonstrating it to have a super-ionic

phase transition. Below 374 K and above 410 K, he found that the ion conductivity

followed an Arrhenius law with EA = 0.29 eV and EA = 0.07 eV, respectively. Each

of these temperatures had been previously identified as corresponding to a phase

transition in Cu2−δSe (δ < 0.045) [194, 177]. In the intermediate temperature range,

the ion conductivity changed rapidly. This behavior is indicative of a continuous phase
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Figure 7.1: Phase diagram (a) determined by Vucic [194] on the basis of dilatometry
(b) measurements. Adapted from Vucic et al. [192].

transition in a super-ionic material [21, 118]. An observation of not only structural

entropy change at the phase transition but also of structural entropy transport is given

by Korzhuev and Laptev [107]; they measured a sharp peak in the thermodiffusion

of Cu0 in Cu2Se at the 410 K phase transition. From this they calculated a heat of

transport of Cu atoms of 1 eV.

Unusual transport effects have been observed before near the critical temperature

in Cu2Se [54, 122, 143, 144, 123, 200, 27], however, this is the first work that also

considers changes in all thermal transport measurements (Dt,κ,cp) to derive an im-

proved value for zT . Liu et al. report a zT greater than 1 [121], however their work

assumes all the heat released as measured by DSC is due to a first order structural

transformation. In that case it would be appropriate, as is done by Liu et. al., to

calculate κ and zT using the smaller Delong-Petit heat capacity. As discussed in

detail in chapter 5 the elevated peak in calorimetry is an equilibrium rather than

kinetic aspect of the system behavior and must be used to determine zT .
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Figure 7.2: Electrical conductivity (a) and Seebeck Coefficient (b) measured through
the 410K phase transition.

The study of electrical transport near the phase transition of Cu2−δSe owes mostly

to the work of Zlatko Vucic and his collaborators at the University of Zagreb [84, 194,

192, 191, 134, 193]. His measurements spanned the δ = 0 to δ = 0.045 single phase

range [106]. Based on dilatometric measurements he developed a phase diagram for

Cu2−δSe, see Figure 7.1. At all compositions he found a phase transition at ≈410 K

and a second phase transition at a lower temperature with temperature dependent on

δ. The data presented on the sample of Cu2Se presented here corresponds generally

to his observations of his δ = 0.01 sample. WDS data on Cu2Se bounded δ < 0.005

for this sample; the reason for this disagreement is unclear.

Electrical conductivity (Figure 7.2(a)) was measured at a heating rate of 10 K/hr.

It shows three main features: a knee at 355 K, a minimum at 400 K, and a kink at

410 K. The kink at 410 K corresponds to the observed phase transition in my crys-

tallography data (section 5.3). In general shape σ(T ) strongly resembles the data in

Vucic’s studies(Figure 7.1), though it corresponds best to his Cu1.99Se stoichiometric

sample.

The knee in conductivity at Tc2 = 355 K corresponds to the lower temperature

second order phase transition measured by Vucic [192]. He empirically determined a
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power law for σ below Tc2:

σ = σ0

(
1− T

Tc2

)
(7.14)

From the low temperature slope a predicted Tc = 360 K was determined, which is

consistent with the Tc2 determined by inspection. Above the phase transition the con-

ductivity is again linear, though 20% lower than the value predicted by extrapolation

from the low temperature behavior.

Seebeck was measured first by the standard oscillation method as described in

chapter 3, see Figure 7.2(b). This showed a clear peak in the Seebeck, but the rapid

non-linear change raised clear questions about the accuracy of those results. For this

reason the ramp Seebeck approach was developed as described in chapter 3, allowing

for detail temperature-resolved measurement of Seebeck through the phase transition.

The three significant features observed in σ are echoed in α. There is a kink in the

Seebeck at 410 K, corresponding to the main phase transition observed in crystallog-

raphy. Below 360 K α is a linear function of temperature; above it shows non-linear

behavior. There is a maxima in α at 403 K, at a slightly elevated temperature com-

pared to the 400 K minima in electrical conductivity. Above the phase transition the

Seebeck is locally linear, though 10% lower than the value predicted by extension of

the low temperature trend.

Thermal conductivity was calculated from measurements of density(ρ), DSC heat

capacity (Cp) and laser flash diffusivity (DT ) as detailed in chapter 2. Density was

measured to be 6.7 g/cm3 by geometric calculation and confirmed by principle of

Archimedes. Thermal diffusivity decreases linearly from 300 K to 360 K, see Fig-

ure 7.3(a). From 360 K to 410 K the thermal diffusivity shows an excellent fit to a

critical power law with Tc = 410 K and critical exponent r = 0.80. Above the 410

K phase transition the thermal diffusivity is again changes only in a steady linear

fashion with temperature.

Heat capacity is presented here in Figure 7.3(b), but it was discussed in great detail

in section 5.3. Below 360 K and above 425 K the heat capacity gives a baseline value

of 0.374 J · g−1K−1, consistent with the Dulong-Petit cp for Cu2Se, 0.361 J · g−1K−1.
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Figure 7.3: Thermal diffusivity (a) and specific heat capacity (b) for Cu2Se from its
room temperature through its 410K phase transition

The 60 K breadth of the peak is indicative of the continuous nature of the transition.

In the transition region there is a lambda-type peak, as is characteristic of continuous

phase transitions in ionic conductors [118].

From the transport properties described above, zT was calculated. (Figure 7.4).

zT doubles over a 30 K range peaking at 0.7 at 406 K. Though strong non-linearity

in each of the individual transport variables onsets at 360 K, there is no non-linear in

zT until 390 K. This suggests that more than different effects — perhaps associated

with the multiple Cu2Se phase transitions — are needed to explain the anomalous

transport behavior between 360 K and 410 K.

7.3.1 Analysis

Excepting the region of elevated zT (390 K to 410 K) all the observed variation in

transport can be explained by a simple band structure model. From knowledge of

the band structure, the energy dependence of scattering, and the reduced chemical

potential, all thermoelectric transport properties can be modeled for typical systems.

Though η cannot be easily measured, it can be inferred from the Seebeck coeffi-

cent from Equation 6.3. In the degenerate (metallic) limit this dependence can be
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Figure 7.4: zT for Cu2Se from its room temperature through its 410 K phase transi-
tion.

Figure 7.5: Hall Carrier Concencentration (a) and Hall Mobility (b) of Cu2Se. The
minimum of nH is at 390 K, while µH decreases until 410 K. µH could be fit to a
power law with critical exponent r = 0.32
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expressed in a simple closed form:

n = 4π

(
2m∗kT

h2

)3/2

F1/2 (7.15)

The Hall coefficient (RH) and electrical conductivity were measured via the Van

der Pauw method using a 1 Tesla magnetic field at the NASA-JPL thermoelectrics lab-

oratory. From these measurements nH and the Hall carrier mobility were extracted,

see Figure 7.5. From 300 K to 360 K nH is constant while µH steadily decreases. The

linear decrease in σ (Figure 7.2a) observed is entirely due to a decrease in mobility.

Given the association with the copper disordering phase transition, it is possible that

a scattering mode like the dumb-bell mode of Zn4Sb3 is steadily activated in this

temperature range [173]. Between 360 K and 410 K, the Hall carrier concentration

dips until it reaches a minimum of 2.7× 1020 cm−3. This minimum occurs at 393 K,

10 K lower than the minimum in electrical conductivity and the maxima in Seebeck

coefficient. This minima is also very close in temperature to where the zT shows

its non-linear increase in temperature, suggesting that the mechanism that causes

the increase in zT also cause the change in trend of nH . During this temperature

range µH could be fit to a power law with critical exponent r = 0.32. The Hall mo-

bility remains low in the high temperature phase — the mobility is 30% below the

value expected from extrapolation of low temperature behavior. This is unsurprising

given the phonon softening observed in the structurally identical room temperature

Cu1.8Se [44].

Equation 7.15 suggests that three factors may cause an anomalous increase in

the Seebeck coefficient: a decrease in the carrier concentration (nH), an increase in

the scattering parameter (λ), or an increase in the band effective mass (m∗). An

increase λ is unlikely. The structural delocalization as presented in our p.d.f. data

in section 5.3 may lead to an increase in the intensity of acoustic phonon scattering,

but it will not alter that effect’s energy dependence. Near a phase transition a low

frequency optical phonon mode — a Goldstone mode — may be present. However,

the energy dependence of optical phonon scattering via lattice deformation is the
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Figure 7.6: Band effective mass need to explain the nH and α data for Cu2Se. The
transient 50% increase in m∗ needed to explain the data is inconsistent with the
continuous transformation observed in crystallography.

same as that for electrons and the dependence via dipole effects is only slightly larger

than that for acoustic phonons [8].

By modeling with a single parabolic band using measured values of temperature,

Seebeck, and nH , the shift in m∗ required to explain the data can be calculated,

see Figure 7.6. Up to 380K the data can be explained entirely with a SPB with

m∗ = 2.3 me (±5%). Above this temperature an increase in m∗ of up to 50% is re-

quired followed by an even more sudden decrease. This is physically inconsistent with

the continuous transformation observed via crystallography, see section 5.3. Effective

mass can be related to the band structure at the Fermi level by the formula:

m∗ = ~2

(
∂2E

∂k2

)−1

(7.16)

Equation 7.16 means that a substantial change in m∗ requires a substantial change

in the reciprocal space band structure. As the reciprocal space band structure is

related by Fourier transformation to the physical spatial representation of the atomic

orbitals and thus the coordination of the atoms. A substantial change in m∗ would

therefore require a significant change in local electron coordination — a change that

is inconsistent with the minor change in band structure seen in temperature-resolve
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Figure 7.7: Measured Seebeck coefficient compared with predictions from band struc-
ture model with m∗ = 2.3 me and measured nH (a). The square of the Seebeck excess
to the band structure prediction (b) explains the zT peaks size and breadth.

PXRD. It would further require this change to be transient, existing only in proximity

to the 410 K. However, the electron bands are dependent on the average structure

rather than the correlation length of the order parameter. Thus we expect the effective

mass and other band structure attributes should vary smoothly from one phase to

the other, rather than peaking at the phase transition.

While the observed shift in carrier concentration cannot explain the peak in See-

beck, it does elucidate one apparent anomaly in the transport data. As discussed in

the previous section the onset of non-linear transport behavior occurs at 360 K, but

the zT shows a visible deviation from a linear trend only at 393 K. In Figure 7.6 it

is seen that deviation from a constant m∗ begins at 380 K to 385 K. The measured

Seebeck coefficient and that predicted by Equation 6.5 and a single parabolic band

model with m∗ = 2.3 me are compared in Figure 7.7. Near 385 K both models show

a increasing deviation from the measured data. This increase is of order of the natu-

ral scale of Seebeck, kb/2q = 43µV/K; the increase corresponds to transport of the

entropy of an additional degree of freedom per electron.

When the square of the measured Seebeck divided by the band structure predicted

Seebeck is compared with zT, as in Figure 7.7b, it is seen that the anomalous increase

in Seebeck almost explains the observed breadth and height of the zT peak. The

measured Seebeck is 48% higher than the prediction of the SPB model and 40% higher
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than the prediction of the degenerate band model at the temperature of peak zT , 406

K. The measured zT is 60% higher at its 406 K peak compared to linear extrapolation

from its increase from 360 K to 385 K. The excess Seebeck (∆α) compared to the

band structure slightly overestimates the height of the zT peak. Both the zT and

∆α are increased noticeably over the exact same temperature range of 393 K to 410

K. This suggests that some aspect of the lambda-type phase transition is increasing

the zT of Cu2Se.

Figure 7.8: Decreasing thermal conductivity does not cause the zT peak. (a) The
decrease in κ is due to the electronic contribution (κe). (b) Electrical properties
decrease slower than thermal properties in the phase transition region and thereby
diminish the zT peak.

The zT increase cannot be explained by a relative improvement of phonon to

electron scattering; that is by the σ/κ contribution to zT . While there is insufficient

data to truly determine the Lorenz number (L) over the entire phase transition region,

single temperature estimates bound it between 1.8 and 2.0 WΩ−1K2. This allows

estimation of κe by the formula, κe = LσT . The estimated electronic portion of the

thermal conductivity qualitatively explains the observed decrease in total thermal

conductivity, see Figure 7.8(a).

Direct comparison of electron (µH ,σ) and thermal transport (κ,κL) indicates that

the zT is not increased by preferential scattering of phonons over electrons, see Fig-

ure 7.8(b). Though thermal conductivity decreases between 360 K and 410 K, this

decrease is more than counteracted by a decrease in electrical mobility over the same
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range. The observed increase in zT is not due to the reduction of the thermal conduc-

tivity via preferential scattering of phonons over electrons. This trend is particularly

clear when comparison is made with κL instead of κ. This suggests that across the

entire temperature range κL is close to its glass-like minima, such that further in-

creased scattering from thermally activated modes associated with ion disordering

cannot reduce it significantly further. This contradicts the proposal of Liu et al.

that the increase in zT is due to preferential scattering of phonons as compared to

electrons due to interaction with a soft optical (Goldstone) mode [123].

Figure 7.9: Low temperature heat capacity of Cu2Se (a) indicates an Einstein mode
(b) at approx 400 GHz.

It is likely that the measured κ is at or close to its particular glassy limit; this is

a major reason for the excellent thermoelectric performance of Cu2Se. A true glass is

characterized by occupation of localized vibrational states instead of extended phonon

states. These states will be of relatively low frequency — less than a terahertz — and

their occupation will be by the Bose-Einstein distribution:

P =
gi

ehf/kbT − 1
(7.17)
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With resulting heat capacity contribution of:

cV = 3kb

(
hf

kbT

)2
ehf/kbT

(ehf/kbT − 1)
2 (7.18)

When cv/T
3 is plotted as a function of T for a Bose oscilator, it indicates a peak

at approximately hf = −0.2kbT [98]. This peak is known as a Bose peak and it is

characteristic of glassy behavior. A similar feature was observed in the heat capacity

of low-temperature Zn4Sb3. That feature was successfully associated with phonon

softening and that material’s low thermal conductivity [173]. Analysis of low tem-

perature heat capacity data shows Cu2Se to have a pronounced Boson peak at 4 K,

see Figure 7.9. This suggests a vibrational mode at 400 Gigahertz, and it is strongly

indicative of glassy behavior.

We observed a zT peak concurrent with the lamba-type phase transition in Cu2Se.

Simultaneously, there is a dramatic increase in thermopower which cannot be ex-

plained in terms of a single parabolic band model using the measured Hall carrier

concentration and transport data. Transport parameters are strongly affected by the

continuous phase transition, with Hall mobility and thermal diffusivity in particular

clearly following a critical power law, and the heat capacity showing a characteristic

lambda shape. This behavior strongly suggests that Cu2Ses phase transition zT peak

is driven by entropy co-transport.

7.4 Cu1.97Ag0.03Se

In the prior section I explored how at the phase transition the figure-of-merit of Cu2Se

can be measured and a strong enhancement shown. However, it is unlikely that

Cu2Se is the ideal thermoelectric material of its class. In synthesizing the samples

no care was given to the stoichiometry or the grain structuring. In fact, the source

of the intrinsic high carrier concentration we observed in Cu2Se, see Figure 7.5(a),

remains a mystery. And though our understanding of the mechanism behind Cu2Se

phase transition performance is incomplete, we hope that by examining materials with
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Figure 7.10: Comparison of Electrical Conductivity (a) and Seebeck (b) of
Cu1.97Ag0.03Se with Cu2Se.

similar compositions that these properties may be expanded upon. Unfortunately,

substituting a different element for the copper or the selenium may lead to secondary

phase formation; the dissolution of these secondary phases — perhaps more soluble

in α− Cu2Se — may alter the nature of the phase transition and thereby destroy the

effect in question of this study.

An interesting case is that of Cu1.97Ag0.03Se. In Chapter 5, section 5.4 I examined

its structural phase transition through temperature-resolved PXRD. I determined it

to show both a first order transition at 403K, slightly lower than of Cu2Se, but also

to show a similar peak evolution as Cu2Se below 380 K. At 380 K the secondary

phase of CuAgSe dissolves, and while some peaks change with the Cu2Se trend until

the first order phase transitions, others showed quite different behavior. There are

a few other peaks which slowly diminish to the phase transition temperature; it is

unclear if they are an unidentified impurity or additional peaks of a main phase that

is slightly different from Cu2Se.

The transport properties of Cu1.97Ag0.03Se were measured via the same methods

as those described for Cu2Se in section 7.3 as well as in the chapters on experimental

methodology (Chapter 2) and Sebeck metrology techniques (Chapter 3). For the sake
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of comparison I plot the data for Cu2Se and Cu1.97Ag0.03Se together.

The electrical conductivity of Cu1.97Ag0.03Se, see Figure 7.10(a), is visually sim-

ilar to that of Cu2Se, showing all three characteristic features: a knee at 370 K, a

minimum at 395 K, and a kink at 403 K. All three of these features occur at slightly

different temperatures for the two samples. The decrease in temperature for the

kink corresponds to the suddent first order transition observed. The slope of the

conductivity below the knee at 370 K does not follow the power law described by Vu-

cic; the temperature his empirical model predicts for Cu2Se is 270 K. The concavity

of the conductivity of Cu1.97Ag0.03Se changes sign near 380 K, coincident with the

dissolution of the CuAgSe secondary phase into the matrix.

While the value of electrical conductivity is similar for both compositions in the

phase transition range, the Seebeck of Cu1.97Ag0.03Se, see Figure 7.10(b), is markedly

higher than that of Cu2Se from 370 K to 400 K. In its increase it is broadened and

shows an inhomogeneous shape. While its increase compared to Cu2Se from 370 K

to 380 K is correlated with the faster decrease in electrical conductivity, the increase

and broadening above that temperature are likely due to the complicated interaction

of the dissolved Ag with the Cu2Se main phase. Above the phase transition, the

Seebeck coefficient of Cu2Se is slightly higher than of Cu1.97Ag0.03Se, but the electrical

conductivity is correspondingly lower.

Comparison of the thermal properties of Cu1.97Ag0.03Se and Cu2Se are particu-

larly illustrative. Just as in Cu2Se the region of decreasing slope in σ matches a

corresponding region in the thermal diffusivity, see Figure 7.11(a). The diffusivity

decrease in Cu1.97Ag0.03Se from 320 K to 360 K is much less than that in the same

temperature range for Cu2Se. Most notably there are two distinct minima in the

diffusivity. The minima at 385 K resembles a critical power law decrease, as seen at

the 410 K phase transition of Cu2Se. Between 390 K and 410 K there is a steady

decrease in the diffusivity, suggesting that the dissolution of the secondary phases is

broadening out the phase transition region. As expected the phase transition tem-

perature in thermal diffusivity occurs at a lower temperature for Cu1.97Ag0.03Se than

for Cu2Se. In the high temperature phase DT for Cu2Se is slightly higher than that
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Figure 7.11: Comparison of Dt (a) and Cp(b) of Cu1.97Ag0.03Se with Cu2Se.

of Cu1.97Ag0.03Se. As this difference is similar to that of Cu2Se, it is probably driven

by a corresponding decrease in electronic thermal conductivity.

The double minima in DT corresponds to a doubled peak in cp, see Figure 7.11(b).

The heat capacity baseline of Cu1.97Ag.03Se is slightly higher than that of Cu2Se —

0.42 J/gK as compared to 0.37 J/gK. As the compositions are nearly identical, the

Dulong-Petit heat capacity should be nearly the same, so this difference is due to

systematic measurement error or from a higher coefficient of thermal expansion. The

heat capacity from 320 K to 360 K is greater than he high temperature baseline, and

it shows a linear increasing trend. At 360 K there is a kink in the heat capacity

above which the data is non-linear. This kink exactly mirrors that seen in Cu2Se,

suggesting that though the middle temperature second order transition is more dif-

ficult to observe in Cu1.97Ag0.03Se than Cu2Se, it is a feature of both systems. The

403 K peak, representing in part a first order transition, must include a discrete en-

thalpy of formation. As I cannot determine which portion of the DSC curve is due

to the enthalpy release of a first order phase transition, I treat all of it as a portion

of the specific heat capacity. This will result in an unknown underestimate of the zT

between 400 K and 420 K.

The zT of Cu1.97Ag0.03Se dwarfs that of Cu2Se, reaching a maximum of 0.95 at



121

Figure 7.12: Comparison of zT of Cu1.97Ag0.03Se with Cu2Se.

402 K, see Figure 7.12. The maximum zT is reached just prior to the 1st order

phase transition temperature. The zT shows a kink at 385 K, corresponding to the

temperature of the secondary diffusivity minima and heat capacity peak as well as the

dissolution of the CuAgSe phase. This is the same temperature at which the measured

Seebeck for Cu2Se begins to exceed the value predicted by the single parabolic band.

This correlation may be causal. The disordering of the main phase may decrease the

chemical potential for additional Ag or Cu to be added to it. By doing so it may

instigate the dissolution.

Band structure analysis could not be performed on Cu1.97Ag0.03Se due to bipolar

affects from the secondary phase of CuAgSe. Measurements of Hall coefficient in the

low temperature phase (Figure 7.13(a)) show it to be negative. For a single band

thermoelectric the Hall coefficient and the Seebeck should have the same sign — that

of the majority carrier. As discussed in detail in chapter 2, the effect of a minority

carrier band is linear with its mobility in Seebeck but quadratic in the Hall coef-

ficient. The CuAgSe secondary phase high mobility n-type bands with mobility of

order 104 cm2/V · S [88]. As a band’s Hall coefficient characteristic field is the inverse

of its field, this indicates a transformation from electron to hole dominated behavior

should occur in the 1 to 10 T range.
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Figure 7.13: Hall coefficient for Cu1.97Ag0.03Se at 2 T and varying temperature (a)
and at 293 K with varying magnetic field.

The Hall coefficient was measured under magnetic fields varying from 0.1 T

to 2.2 T in steps of 0.1 T below 1 T and in steps of 0.2 T above it. Though

low field measurements were below the noise floor, data above 0.3 T showed a

clear increasing trend, see Figure 7.13(b). This trend is consistent with two sin-

gle carrier bands with n = 1× 1017 cm−3, µn = 1440 cm2V−1s−1, p = 4× 1020 cm−3,

and µp = 11cm2V−1s−1. The p-type characteristics were chosen to be similar to that

of Cu2Se and the n-type parameters adjusted until a visual fit could be made. This

fit is shown as a black line in Figure 7.13(b).

When examining the transport properties near a phase transition, it is of utmost

importance to verify that they are stable. When measuring the Seebeck coefficient

via the ramp method, half of the data used was measured while the average sample

temperature was increasing (on heating), and half the data was measured while the

average sample temperature was decreasing (on cooling). From all of the voltage ∆T

points measured at a given temperature, the Seebeck data shown in Figure 7.10 were

determined. If the phase transitions are interfering with the transport properties, this

should be visible in a difference between the Seebeck of the data from heating and

cooling.
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Figure 7.14: Ramp Seebeck fits for the cooling data (blue) and heating data (red)
separately in Cu2Se (a) and Cu1.97Ag0.03Se (b)

The ramp method Seebeck determined for both the heating and cooling data is

show in Figure 7.14(a) for Cu2Se and in Figure 7.14(b) for Cu1.97Ag0.03Se. The data

for Cu2Se shows an offset of less than 5% between heating and cooling across the

temperature range. The value at the 406 L zT peak is identical on both heating and

cooling. The average value is midway between the heating and cooling curves. The

differences between the curves are within systematic measurement uncertainty; they

are probably due to a slight alteration in thermal contact resistance on heating and

on cooling.

The data for Cu1.97Ag0.03Se shows values that are within 10% on heating and

cooling, other than in the small tempearture range above the 403 K phase transition.

A small hysteresis in the data is observed. The line shapes of the curve are slightly

different. The average Seebeck shown in Figure 7.14(b) is much closer to the date

measured on heating than that measured on cooling. This suggests that the visually

notable 5% discrepancy in the data at 400 K is driven by greater noise in the data

on cooling than on heating. Another possibility is that there is a longer time-scale

required for precipitation of an impurity phase than there is for its dissolution at

the 403 K phase transition. The discrepant range corresponds to the temperatures

between the first order phase transition and the dissolution of the CuAgSe secondary
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phase. The precipitation and dissolution of the CuAgSe phase may increase the

kinetics of secondary phase restructuring.

Figure 7.15: Measured Seebeck voltage of Cu2Se at T̄ = 390 K and ∆T = 16 K. There
was a variation of less than 1% in the measured values. After the temperature gradient
stabilized there was no variation.

The Seebeck coefficient of Cu2Se just below its phase transition temeprature is

very stable, indicating it is a steady state property of the material, see Figure 7.15.

The sample was held at an average temperature of 390 K and a temperature difference

of 16 K for 13 hours. The measured thermopower, 152 µV/K, varied by less than

1% during this time period. The predicted average thermopower for this range was

calculated by integration of the data show in Figure 7.2(a) as 143 µV/K. This 6%

discrepenacy between the predicted and measured value is consistent with the repition

error of Seebeck measurements. As the discrepancy would suggest that Seebeck and

zT are underestimated, it does not undermine the conclusion of phase transition

enhanced thermopower.

In the next and concluding chapter I will summarize the experimental results in

the context of super-ionic phase transitions. I will present a suggestion for how the
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data for Ag2Se and Cu2Se may be explained based on the irreversible thermodynamics

of phase transitions.




