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Chapter 8

Order and Ion Enhanced
Thermoelectrics

In Chapter 6 I presented data showing that the ordered phase of Ag2Se has a larger

zT in its ordered phase than its disordered phase, see Figure 8.1(a). This zT en-

hancement was predicted to within 5% by a corresponding enhancement of Seebeck,

see Figure 8.1(b). The Seebeck change was shown to be neither predicted by the ef-

fective mass determined by Day et al. [46] or the measured Hall carrier concentration

through the phase trasnsition.

In Chapter 7 I presented data showing that just below Cu2Se and Cu1.97Ag0.03Se’s

phase transition an enhancement in their zT s of 100% or more was observed, see

Figure 8.1(c). This enhancement seemed driven by an 80% increase in their Seebecks

over a 60 K temperature range, see Figure 8.1(d). In Cu2Se nH and µH could be mea-

sured through the phase transition in temperature. It was shown that the variation

in nH explained half of the peak in Seebeck, and that the temperature profile of the

remaining part of the Seebeck peak explained the peak in zT . Bipolar conduction

made a similar analysis of Cu1.97Ag0.03Se impractical.

In this chapter I will provide an explanation for this enhancement in thermoelectric

performance. First, I will explain based on the Onsager equations how there might

be additional Seebeck and zT beyond that predicted by band structure modeling.

Second, I will show that the differing behaviors of Ag2Se and Cu2Se can be explained

by the Landau theory of order-disorder phase transitions. Finally, I will present
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Figure 8.1: Key results of this thesis. Concurrent with its first order transition there
is a step change in Ag2Ses zT (a) and Seebeck (c). The second order transition of
Cu2Se results in a sharply peaked zT (a) and Seebeck (d). The zT and Seebeck of
the mixed phase transition of Cu1.97Ag0.03Se resembles that of its Cu2Se main phase.
Dotted lines are guides for the eye.
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in detail a similar analysis on the basis of the ionic nature of the particular order-

disorder phase transitions. This will allow me to present particular literature results

supportive of my hypothesis and provide an experimentally tractable basis for testing

these theories.

8.1 Ordering Entropy Enhancement

In Chapter 7 I presented the Onsager coefficients typically presented [69] for a ther-

moelectric system. It was on the basis of a two term entropy production equation of

form:

T Ṡ = −Js · ∇T − Je · ∇µe (8.1)

In which V ≡ µ̃e
e

and Je is a quantity flux rather than a charge flux, i.e. defined by

J = qJe. This leads an Onsager matrix of form:

Je
Js

 = −

2Lee
2Les

2Lse
2Lss

∇µ̃e
∇T

 (8.2)

In which the subscript 2 is used for didactic purposes. But imagine if there is

a second thermodynamic quantity that transports. Without loss of generality, lets

call it m and lets call its conjugate flux h. Then the corresponding internal energy

differential to that used for Equation 8.2 is:

du = Tds+ µ̃edne + hdm (8.3)

The corresponding entropy production is:

T Ṡ = −Js · ∇T − Je · ∇µe − Jm∇h (8.4)

As a sidenote, if Jm > 0 than Equation 8.4 will apparently not capture the entirety

of the entropy transported, though this problem can be overcome if Js is replaced

with some other entropy-like flux [132]. In this case there would be dissipation from
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a non-electronic transport quantity that must affect the maximal zT and η of the

system. In the analysis below I principally consider the condition of Jm = 0, and so

this complication does not enter in.

The Onsager matrix that corresponds to Equation 8.4 is:
Je

Jm

Js

 = −


3Lee

3Lms
3Les

3Lme
3Lmm

3Lms

3Lse
3Lsm

3Lss



∇µ̃e
∇h

∇T

 (8.5)

The essential complication arises from this: 2Lse 6=3 Lse for all conditions, but

3Lse is that which is calculated by the band structure models presented earlier and

generally calculated from density functional theory. The discrepancy between them

gives the contribution of entropy co-transport to thermoelectric performance. This

is not to say that the kinetic theory that underlies such calculations is incorrect, but

rather that if incomplete information is given to them they cannot provide the correct

results. The measure Seebeck coefficient is always give by:

α =
∇V
∇T Je=0

=
1

q

−2Lse
2Lee

(8.6)

With Je = 0 indicating the material is measured with an open electrical circuit.

The relation between the Onsager L coefficients from Equation (8.1) and those from

Equation (8.4) will depend on the boundary conditions, i.e. ∇h = 0 or ∇m = 0. The

cases of both ∇h, ∇µ̃e = 0 and Jm = 0, Je = 0 were both considered by DeGroot in

the context of thermodfifusion [132], while the case of Je = 0, ∇m = 0 was recently

consider by Sandbakk et al. [171] in the context of coupled ion and volume transport

in ion-membrane thermoelectrics.

In the case of ∇h = 0, the Seebeck expressed in terms of Equation 8.5 is:

α =
∇V
∇T Je=0,∇h=0

=
−1

q

3Lse
3Lee

(8.7)

This gives the same form as that of Equation 8.6, except that there may be some
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external dissipation due to Jm 6= 0 that limits the heat to electron conversion efficiency

possible. The conditions of a normal thermoelectric may be thought of as having

Lmm = 0, so that Jm = 0 implies∇h = 0 — and there is therefore neither co-transport

or dissipation. The other transport coefficients (σ, κ) will behave similarly [171].

In the case of Jm = 0, the Seebeck expressed in terms of Equation 8.5 is:

α =
∇V
∇T Je=0, Jm=0

=
−1

q

3Lse
3Lee

(
1− 3Lms

3Lmm

3Lme
3Les

1− 3Lme
3Lmm

3Lme
3Lee

)
(8.8)

The expression
3Lms
3Lmm

is the equivalent to the Seebeck coefficient but associated

with transport of m instead of electron transport. That is:

αm ≡
(
∇h
∇T

)
∇µ̃e, Jm=0

=
3Lms
3Lmm

(8.9)

Like α, αm has its own presence contribution and that may be defined as:

αm, presence = −
(
∂s

∂m

)
u,n

(8.10)

The expression
3Lem
3Lee

is the co-transport of Jm with Je when there is no driving force

for direct transport of m. It will have its own presence contribution:

(
Jm
Je

)
∇T=0,∇h=0

≈
(
∂m

∂n

)
u,s

(8.11)

This expression will be most accurate if all transport of m is mediated by transport

of the electrons. This is certainly the case in the spin-state enhancement of Seebeck

observed in oxide thermoelectrics [109, 196]. Due to the independent mobility of ions

in Ag2Se and Cu2Se, Equation 8.11 is here only an approximation.

By combining Equation 8.10 and Equation 8.11 into a single expression, a quasi-

thermodynamics expression for the entropy co-transport Seebeck may be obtained.

Lets call this term αorder−entropy. It can be formulated in terms of the free energy
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density (f) and T as:

αorder−entropy =
−1

q

(
∂f

∂m

)
T,n

(
∂m

∂n

)
T,s

(8.12)

The behavior of the order-entropy contribution to Seebeck near the phase transition

will depend on the behavior of the order parameter (m) near the phase transition.

This is expressed as a polynomial expansion in m with phenomenological thermody-

namic coefficients. For a first order transition the form is [32]:

f1st = am2 + cm3 + bm4 + hm (8.13)

With a, b, and c thermodynamic coefficients The cubic term causes the first order

transition. Equation 8.13 can be solved for m such that f1st(m,h = 0) = 0. For

example, under the condition c� b, a:

m =


−c
b

T < Tc

0 T > Tc

(8.14)

From Equation8.14 ∂m
∂n

will be a value that is dependent on the systems micro-

scopics below Tc as expressed in the quantities b and c. Above the phase transition ∂m
∂n

must be zero, because m is zero. By substituting Equation 8.14 in Equation 8.13 the

relation
(
∂f
∂m

)
T,n

= h is determined. Though there is no externally applied h, there is

an internally induced h. The temperature gradient will induce a gradient in the order

parameter. That order parameter gradient must induce a restoring force through a

non-zero h. Using the functional forms of ∂m
∂n

and ∂f
∂m

described above, Equation 8.12

indicates that a first order transition may have a step change in αorder−entropy at Tc.

An order entropy induced step change in Seebeck would explain the increase in the

Seebeck and zT of Ag2Se in its ordered phase.

Below a second order transition, the order parameter follows a critical power law.

As dicussed in Chapter 5 it is characterized by a critical exponent, m = m0τ
β
r , with

reduced temperature τr ≡ (TcT )/Tc and β > 0. The Seebeck coefficient should also
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include a critical exponent contribution and be of form:

α = α0 + α1τ
r
r , (8.15)

in which α0 and α1 may have a separate temperature dependence.

Laguesse et al [115] suggested that Seebeck should have a critical exponent of

r = 1 − λ, where λ is the critical exponent for heat capacity. As λ is less than

unity, Laguesse et al. predicted r to be greater than 0. This would imply no Seebeck

peak and thereby contradict both our observations in Cu2Se [23] and also the critical

exponent of r = −1 that Laguesse et al. measured in YBa2Ca3O7−y [115]. If h is

large (relative to τ∆
r , where ∆ is the gap exponent) [95], then the critical exponent

for Seebeck will be larger than 1− λ. The free energy can be expressed as [95]:

f2nd =

f0τ
2−λ
r h small

f1τ
β
r h large

(8.16)

A form for ∂f
∂n

can be obtained from Equation 8.16:

αorder−entropy = −∂f2nd

q∂n
=

α1τ
1−λ
r

∂Tc
∂n

h small

α2τ
β−1
r

∂Tc
∂n

h large

(8.17)

From Equation 8.17b if h is large enough, the critical exponent for Seebeck is

r = β − 1. As β is typically a small fraction of unity, r should be slightly more

than -1. That critical exponent is consistent with that measured in both our work

on Cu2Se and the work by Laguesse et al. on YBa2Ca3O7−y [115]. The form in of

Equation 8.17b can also be determined from our Equation 8.13 and the definition of

m(T ):
∂m

∂n
= m0τ

β−1
r

T

T 2
c

∂Tc
∂n

(8.18)

As per our discussion of the first order transition, the temperature gradient will induce

h 6= 0. Therefore
(
∂f
∂m

)
T,n

= h is non-zero. If this is applied with Equation 8.18 to
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Figure 8.2: Ion conductivity of Cu2Se [84] and Ag2Se [136] through their phase tran-
sitions. Ag2Se shows a step increase in ion conductivity at its phase transition, while
Cu2Se shows a super-exponential increase in ion conductivity to the phase transi-
tion temperature. The dotted line corresponds to 374 K, at which temperature the
super-exponential increase begins.

Equation 8.12, the form and critical exponent of Equation 8.17b are obtained.

8.2 Ion-mediated Enhancement

When considering the specific case of super-ionic transitions, ionic transport proper-

ties may function as a convenient and metrologically tractable proxy for measurements

of the order parameter. A super-ionic transition is a disordering of mobile ions that

results in a substantial change in ionic transport properties. The enhancements in

ionic transport may be much more significant than those of electronic transport, and
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the phase transition may act on the electrons indirectly through the ions. In this case

we have:
∂Tc
∂n

=
∂Tc
∂ni

∂ni
∂n

(8.19)

Where ni is the concentration of mobile ions. If ionic transport is directly enhanced by

the phase transition, ∂Tc
∂ni

will be non-zero.. Such a variation has been observed in both

Cu2Se [194] and Ag2Se [15] as well as other super-ionics [111, 114]. Electrons and ions

may interact through both chemical and electrostatic processes; their co-transport

interaction would indicate a significant value for ∂ni

∂n
. Polarization measurements of

some oxygen conductors have revealed such coupled transport [205, 119, 36], which

has been explained as being due to a long range electrostatic interaction changing

the effective charge of the transported ions [99]. As ∂Tc
∂n

and ∂α
∂n

may be obtainable

via gated transport measurements [172], future studies may be able to precisely test

Equation 8.17b.

Super-ionic materials are defined phenomenologically as those with ion conductiv-

ity greater than 1 S/cm at elevated temperatures [21, 87, 163]. They are divided into

three classes by the manner in which they achieve high ion conductivity. Type III

super-ionics are those without a phase transition (e.g. β-Alumina) [21] and therefore

are not of interest here. This study is of the ordered or non-superionic phase of both

Ag2Se and Cu2Se and therefore their classification within the broader contexts will

be helpful in finding similar materials.

Type I and type II super-ionic conductors are characterized by a structural phase

transition with an entropy change close to that of melting (i.e. order 10 JK−1mol−1

and a concurrent increase in ion conductivity [151]. For type I super-ionic conductors

there is a sudden enthalpy release at the phase transition temperature (i.e. a first order

phase transition) and a concurrent discontinuous increase in ionic conductivity [21].

For type II super-ionic conductors the ionic conductivity increases super-exponentially

up to the phase transition temperature, the structure changes continuously, and there

is a lambda-shaped peak in heat capacity like that characteristic of a second order

phase transitions [87].
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Figure 8.3: Calorimetry data (a) for Ag2Se (solid line) and Cu2Se (dotted line) on
heating. Ag2Se shows a characteristic symmetric peak in its DSC curve due to the
enthalpy release of its first order phase transition. Cu2Se shows an extended asym-
metric elevation in its heat capacity due to its second order phase transition.
Temperature resolved powder X-ray diffractograms of Ag2Se (b) and Cu2Se (c). The
structural transformation of Ag2Se is first order, while that of Cu2Se is second order.

To determine whether a material in this study has a type I or type II super-ionic

phase transition, three physical properties are examined through the phase transi-

tion: ionic conductivity, calorimetry, and crystallographic structure. A type I super-

ionic transition (typically first order) is characterized by a sudden disordering of the

ions [21, 87, 151]. As the number of mobile ions and their diffusivity increase sud-

denly, they show a concurrent step increase in ion conductivity. Literature results

show that Ag2Se ion conductivity increases by four orders of magnitude at 412 K, see

Figure 8.2 [136] The disordering of the ions requires the absorption of enthalpy. DSC

data for Ag2Se shows a sharp symmetric peak centered at 414 K, see Figure 8.3(b).

As the ordering of the ions is lost suddenly, there should be a corresponding change in

the crystal symmetries represented by disappearance of peaks in the diffractogram.

Temperature resolved PXRD shows numerous strong crystallographic peaks disap-

pearing at the phase transition temperature, see Figure 8.3(b), indicative of a sudden

disordering of the Ag ions.

In a type II super-ionic phase transition the ions disorder continuously (as in

a second order transition) until the phase transition temperature is reached. The

ionic conductivity increases super-exponentially below the phase transition temper-

ature [21, 87, 151]. Horvatic et al. measured such a super-exponential increase in
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the ionic conductivity of Cu2Se, see Figure 8.2 [84] As the ionic disordering occurs

continuously over a significant temperature range, the heat capacity is elevated over

that range [151]. The DSC data for CuSe shows a broad asymmetric lambda peak, see

Figure 8.3(a). Its crystal structure indicates gradual disordering and a second order

phase transition, see Figure 8.3(c). From the behavior of its ionic conductivity, heat

capacity and crystallography through its phase transition temperature, we conclude

that Cu2Se has a type II super-ionic phase transition.

Experimentally, we have seen an example of the contrast between a type II and

type I super-ionic thermoelectric material in Ag2Se and Cu2Se. Consider transport

of heat, ions, and electrons:

du = Tds− µ̃edne − µ̃idni (8.20)

The corresponding entropy production is:

T Ṡ = −Js · ∇TJe · ∇µ̃eJi · ∇µ̃i (8.21)

The corresponding Onsager relationships are [132]:


Je

Ji

Js

 = −


3Lee

3Lis
3Les

3Lie
3Lii

3Lis

3Lse
3Lsi

3Lss



∇µ̃e
∇µ̃e
∇T

 (8.22)

If the Seebeck coefficient is measured in an open circuit system with ion blocking

electrodes (i.e. Ji = 0, Je = 0):

α =
∇V
∇T Je=0, Ji=0

=
−1

q

3Lse
3Lee

1−
3Liq
3Lii

3Lie
3Leq

1− 3Lie
3Lii

3Lie
3Lee

 (8.23)

The first term in the numerator is the band structure electronic Seebeck. The

second term in the numerator is the Seebeck enhancement due to the ions. The term

in the denominator is an ionic drag term. The ionic drag term will be small because
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Lii � Lee and Lie is even in the largest measured case only on the order of Lii. If Lis

and Lie are significant compared to Les and Lee, analysis of only electronic properties

will lead to an incomplete description of the thermoelectric properties.

The first condition for the ion transport enhancing Seebeck is that Lie

Lee
= σie

σee

be large. Lie

Lee
= σie

σee
is the ratio between ions transported and electrons transported

under a gradient in µ̃e but no gradient in µ̃i. Mixed ion-electron conductors can

show electron-ion transport coupling. Electrons and ions may interact through both

chemical and electrostatic processes. Polarization measurements of some oxygen con-

ductors have revealed such a coupling [205, 119], which has been explained as due to

a long range electrostatic interaction changing the effective charge of the transported

ions [99]. Thus in both low temperature type I Ag2Se and type II Cu2Se Lie

Lee
may be

significant. In the high temperature phase of Ag2Se Lie

Lee
has been measured to be less

than 10−2 [137]. This has been explained by Ogawa and Kobayashi [141, 142] to be

due to the high concentration of ionic carriers. In the super-ionic limit they found

that Lie

Lii
< ne

ni
. ni is much larger in the superionic phase than the ordered phase [142].

The second condition is that ionic Seebeck, αi = −Lis
Lii

be significant. The cou-

pling of concentration of Ag and Cu to the thermodynamics of disordering has been

observed via the dependence of Tc on composition in Cu2Se [194] and Ag2Se [15].

Mechanistically this may function through a dependence of occupation of soft modes

(e.g. the Zn4Sb3 rattler) [173] on the concentration of Ag+ and Cu+. An observation

of not only structural entropy change at the phase transition but also of structural

entropy transport is given by Korzhuev and Laptev [107]; they measured a sharp

peak in the thermodiffusion of Cu0 in Cu2Se at the 410 K phase transition. From

this they calculated a heat of transport of Q∗Cu0 of Cu atoms of 1 eV. Conservation

of particles and charge requires that:

Q∗Cu0 = Q∗Cu+Q
∗
p = qT (αCu+ − α) (8.24)

Therefore Q∗Cu0 = 1 eV corresponds to αCu+ ≈ 2500µV/K at the phase transition. If

even 2% small fraction of this copper entropy were co-transported with Cu2Se, than
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the Seebeck and zT enhancement observed would be completely explained.

8.3 Future work

Other super-ionic materials should be evaluated for their phase transition thermo-

electric properties. The thermoelectric materials Ag2S, Ag2Te, Cu2S, and Cu2Te are

all type I super-ionics [87]; like Ag2Se, they are not expected to show phase transition

enhanced Seebeck. There are many other known type II super-ionic conductors [21]

such as PbF2 [9, 34] and K2S [51]. Like Cu2Se they have a modified fluorite (or

anti-fluorite) structure. Because of their large band gaps, their thermoelectrics prop-

erties are unexamined. It may be possible to change Ag2Se from a type I to a type

II superionic material. The order of the phase transition has been changed in certain

super-ionic materials by alloying. PbF2 is type II super-ionic. Alloying it with KF

changes the temperature dependence of its ionic conductivity. At 10% KF and above

it becomes a type I super-ionic [86]. Though AgI is type I, RbAg4I5 has both a type

I and type II super-ionic transition [93]. Additionally, when a pressure of 2.6 GPa is

applied to AgI, it becomes a type II super-ionic conductor [97].

Critically increased entropy may be present in other materials systems. AgCrSe2

[66] which is also an ion transporting materials shows a small Seebeck enhancement

near a phase transition, though there is no evidence that this is associated with critical

phenomena. The temperature of the continuous transition in the CuI-AgI system

shows a composition dependence [114]. The effect on Seebeck from order entropy is

likely not limited to mixed ion-electron conductors. Any material in which the entropy

associated with a phase transition might be coupled to transport is a candidate.

For example, the magnetic ordering phase transition associated with giant magneto-

resistance is often accompanied by a corresponding significant Seebeck change [91,

120]. Applying a magnetic field to these materials induces ordering and results in a

corresponding reduction in Seebeck.

In order to understand and engineer this phenomenon, substantial future work

needs to be done. The ionic properties, both the conductivity [107] and the See-
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beck, [12] may need to be measured and considered when engineering these materi-

als. Further synchotron and neutron crystallographic work may be able to uncover

the structure and order parameter. The Onsager coefficient analysis above may be

used to relate separate measurements of ion and electronic properties, in order to

directly test the hypothesis of ion-mediated or perhaps even order-mediated Seebeck

enhancment.

The best thermoelectric performing materials in this class of compound are yet

to be synthesized. Through such future work a greater understanding of the excel-

lent thermoelectric properties of the ordered phases of super-ionic materials may be

understood and engineered.




