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THE FOUNDATIONS OF GENERAL ARITHMETIC

PART I. PHRELIMINARY NOTIONS FROM FORMAL LOGIC.

SECTION l. INTRODUCTION.

Vle assume as ¥mown the whole machinery of formal logic, such as
the notion of cfla:as, relation, propositional function, cdrrespondence,
formal equivalence, counting, and the like. We shall use this machinsry
to investigate a kind of class called a ™"collection" whose elements con=
sist of"'antities" which in a given collsction are either all "objects"
or all "marks," and certain special types of propositional functions
assoclated with the collection.

The reason for introducing these terms is to avoid confusing the
general use of the words "class" "elsment"™ in our reasoning about col=-
lections and entities with the mrticular collections and entities
themsalves.

Loosely speaking, by "marks" we mean bare symbols which are
distinguishable from one snothsr, but which have no direct connatation.
By an "object" we mean something which can be denoted by & "mark." The
distinction between "mark" and “object" is somevwhat vague; to state 1t
intell igibly would be to solve ome of the major problems of epistemology.

Our ultimate a2im is to lay the foundations for a precise defin-;
ition of an "aritimetic" anal@gous to the postulationel definition of an
abstract group. For the present, by an "“arithmetic" we mean any system
wherein '

1. All operations possible can be carried out in a finite number

Qf -steps.



2¢ Division is not always a possible operation.

3« Unique factorization into primes is always a possible operation.



SECTION 2: ONE T0 ONE CORRESPONDENCE.

PRELIMINARY: In this section, we describe one of the most fundamental

| id.ea.s of logic, that of the oﬁe to one correspondence between two classes.

NOTATION: Consider two coll@&ions of entities C, and C, which

have the same cardinal number, so that they can be put into one to ome

correspondence with each othsr. We shall denote the fact that Cc / amd
C 2 are in one to one correspondence by writing

(1) C, & Ca

which is read ®* (, corresponds to C, "

Let o«

f denote the particular general element of C} and A

"the particular general element of C;,, s then
(2.2) A, e Ha

is a propositional function. If 777 777, 3 77, ¢ 77, Genote core

)
responding entities in the two collections, then the class of trus pro-
positions
7, D 7., P, 7 Tp,

are the vaiues of the propositional function (2.2).
THEOREM 2.1: Fundamental Properties of <7 .
| The relation ¢ is symmstric, reflexive, and transitive.
PROOF: Glear from formal logic.
THEOREM 2.2: The Five Types of Correspondence.

All correspondences (2.1) can be separated into five types accord-
ing as C/ and C,, contain marks or objects, and are the same or
different.

These types are given by the following table:



Elements of - Elements of Relation between

Typs _ CI and C.L
1. objects objects sams

2e ‘ objects objects different
Se objects marks different
4. - marks marks same

5. marks marks different

PROOF: Clear from formal logic.
DEFINITION 2.1: Labelling.

A correspondence of type 3 is called "labelling,®™ or "naming,"
and the marks are called the "labsls" or 'mames" of their corresponding

objects. Each mark is said to denote its corresponding object.



- SECTION 3: FUNCTIONS.

PRELIMINARY: We here describe two kinds of propositional function which
we shall need subsequentlye
EFINITION 3.1: Functions of One Variable.
Let &~ demote the particular general elament of a collection of
antities, C . Suppose we have a rule which assigns to each 'value"
of A ; that is, to each entity of C , a unique second entity of
C  denoted by j + We then say z/ 1s a one-valued function of
A defined over (., ; briefly, a function of 4~ .
NOTATION: :
(38.1) & = 77/
entity enTity
In particular, if the rule assigns to the chgjest /2 the ebjeed
g , W8 write
(3.2) g = 7l
4 1s called the independent, and \y the dependent variable

of the function. /L is said to be the value of 2/  determined by

the valus i of A4 o It need not be distinct from /z .

‘ DEFINITION 3.2: PFunctions of Two Variables.

Let 42¢ and 2 denote particular genersl elements of a col-
lection of entitiss C + Suppose we have a rule which assigns to
sach pair of "“values" of & and 7~ ; that is, to each pair of
entities of C s & unique third entity of C denoted by 4~ .

We then say 4~ 1is a one-valued function of ¢¢ and —»*

defined over (_ , briefly a function of <« amd 7~ .



NOTAT ION: :
(33) = F AV

‘ o . entities .

In particular, if the rule assigns to the obieeds 5 and
' entity '

ofC thsaig‘-.t/i s wa write
(3.4) S = (g )

« and P77  are called the independent, and A4/ the dependent

variables of ths function. /L is said to be the value of 4 deter=

mined by the values 7 and 4 of ¢¢ anmd -2“ . These values
need not be distinet, but in genseral 777/% /) and 74/4,;/
are distinct.

REMARK: (l.l1) and (1.3} are propositional functions, (l.2) and (1l.4)
values of these propositional functions.

REMARK: These two types of function are extremely gemeral. Ths following
pa.rticulé.r kind of function is highly important in what follows.

THEOREM 3.1: Connection between Opsrations and Functions.

Suppose C is a collection of objects denoted by =77, 77 .
and o an operation by which we can combine any two objects and which
éatisfias the following condition, called tha postulate of closure:

“If 57 , 7 denote any tw elements of (C , then the
result of combining thé objects dsnoted by -7 and 77 by means of o
is a unique object of C denoted by /L ot

Then the object denoted by ﬁ is a funetion of the objects
denoted by »» and 27 .

PROOF: Clsar.

REMARK: We may express the hypotheses of Theorem 3.1 in the following form:



el

(388) C [, 7
'(‘306" o 7 —'/L7
(Bl C [

(3.8) /1 is unique.
The ecanclusion then reads, "the conditions (3.5) = (3.8) imply
/—7 - 7;?’?77, ) o
DEFINITION 3.3: Equality of Two Functions.
Two functions are said to be squal when and only when they have the
same number of independent variables and ars identical for all values of

these variables.
Yorarlons FUA) = E(x), Tl A = Gla, 7

- C/m 1is read ® C oontains 7% o Or more accurately, "

C contains the entity denoted by -/ "



SECTION 4: TRANSFORMATIONS.

PRELIMINARY: We here develop amnother fundamental idea of,fofml logic
| which we shall constantly empléy.
THEOREN 4.1t Isomorphism.
Lot C/ and (., be tw collections of entitiss between which
there exists a.definite one to ons correspondence symbolized by
(4e1) C/ 2 C,
and assume that there exists a function
z, = 7(7,.23/) aetined over C'/ as in Df. 3.2

Then we may define a function 2Z,- & /Z},jé/ over C, by

means of
(402) Z,= 7 (%, 4/
and the relations
Z,c7 2, ST, AT

implied by (4.1l) in acaordence with Df. 3.2.
PROOF: Clsar from formal logic.
THEOREM 4.2: The :f‘unc/tion G (7F,, 24/ of The 4.1 depends upon
two factors

(1) the function 7;4(7/\%/ m <,

(ii) the way in which the correspondence (4.l) has been set up;
that is, the values of the propositionmal fumctiom ) ¢ X, .
PROOF: Clear from formal logic.
DEFINITION 4.1: System.

The eollectio_ﬁ C/ and the fumotion 7 (% 27/ are eaid

to form a system.



vomriow: /[ C,. F(H.% /]
'DEFH‘{ITIO};\T 442 Isomorphic Sys tems.
Tha systems / C/ , T(ﬂ'/,\%/] and
[Ca ’ 5/7::/% /,7 are said to be isomorphic.
NOTATION: /C,, F(#%,%/] <> [ Ca. & (.2l
This is read " [C/j 74(71;,%/ J is isomorphic with
[C, 6CHaz5/7 o ~
THEOREM 4.3: Chisf Properties of Isomorphism.
The relation of isomorphism between systems defined in Df. 4.2 is
roflexive, symmetrio, and transitive.
PROOF: Clear from formal logic.
REMARK 1 : We now introduce a concept of great importance in all that is
to follow.
DEFINITION 4.3: Formal Transformation.

The correspondence (3.1) is said to define a formal transformation 7/

of the system [ C/, 7’4/7//\7%/] into [C; , CH, 2],

NOTAT I0N: /(G )—> C, 7T (Y)—>x
T(Fx ) —> G (X,

The olass of all possible correspondences (3.1) betwesn C} and
C, is said to define the class /7 /  of all formal tremsfor-
mations 7 .
HEMARK 2 : The general aim of thié paper may now be concisely forrmlated.
It is to discover and study the invariants of the class [ 7 f of formal
transformations; that is, t0 investigate those properties of 77 / 7\’,% /

and G /?S, %) vhich are independent of the factor (ii) in

Thegram 4e2.
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In view of Theorsm 2.2, we may say that our aim is to study those
‘properties of a system /[ C, F(# 2’/ vhich are independent of
the names we give the entities of C . |
REMARK 3: We shall now give three examples of such propsrties.
DEFINITION 4.4: Symmetry.

Let [C F(xy) ] be any system. If

F(x) = 7o =)
for all valuses of X e z/ A 2 is said to be
symuetric in A and %/ , or briefly, to have symmetry, snd the
system is said to be commutative.
THEOHEM@.&L: Symmetry is an invariant of the class /7 } of fomal
transformations.

PROOF: If C, <« C

>, then by (2.2)

X, e, 2672,
smee S, ) = Fly w2, T(Z)c 2z,
and S F ) ) — G, H) - 2,

T F ) —> ECH ) - 2

G/%,%/a E( 2, A J » 80 that G/ %, 24/ is
also symmstric.
DEFINITION 4.4: Primitivity.

et / C, F”/XWJ | be any system, and let -#
and { be two values of y -« Then if the functions of the single
variable ' are equal (see Df. 3.3) when and only when /4 - < for

“every pair of values A s £ of j , the fuunction /T'/%y/



is s2id to be primitive with respsct to 2/

. Primitivity with respect to -+ is sﬁﬁnarly defined. A4
function which is primit.ive with respect to both independent variables
1s. said td be "brimitive" without any qualifying phrase.

THEOREM 4.5: Primitivity is an invariant of the class /7 /  of formal
transfomationé,
PROOF: Clear from proof of The 4.4

DEFINITION 4.5: Associativity.

et [ C, Flrz/)] be any system, and let 4 , £ , 77

denote any entities of C e« Suppose
FUAAL) = 71,  F(ln)< £
where 777 and 2 denote known entities of ( .
The function /7 (% z/ 1is said to be associative 1f
[, ) = ?A/%A/
for all sets of three entities 4{ , £ s 77 in C o
THEQOREM 4.6: Associativity is an invariant of the class /7 / of formal
transformations.
PROOF: Clear from proof of Th. 4.4.
DEFINITION 4.6: Semimgroup.

A system consisting of a collection C of entitias and a
primitive associative fuuction 7)/ Z 2 daefined over C/ is said
to form a semi»gfoup. If the entities of C are marks, the semi=-group
is said‘to be abstract.
voparzon: [ C, P AT

REMARK: A largs part of this paper is devoted to developing the properiies

11



of abstract semi-groups.

Part III.)

(See the remark at the beginning of

12



13

SE‘IGTIQI&I 5. COUNT ING.

'.PI‘?ELH&II\'EARIES: In view of the remerks under Df. 4.3, and The 2.2, it
is sufficient to confine our attention to collections of mariks.

We assume hancéforth that the merks in any collsction C are
all distinet anQ. denumerable. We shall continue to refer to such special
collections of marks as "collections" in accordance with the following
definition.

DEFINITION 5.1: Collection of Marks.

A class whose elements consist of marks which are all distinct
and denumerable is called a collsction of marks.

NOTATION: We shall now rsestrict C to denote such a class. We shall
use other letters as the ocoasion arises for collections of objects.

va S e T I denote marks of C , then we write J=J’
if o  and g’ denote ths same mark, and .J’;éf' if S and

5 denote different merks.
DEFINITION 5.2: Set of Marks.

If we count the marks of a collection C , W obtain a set of
marks, Q .

NOTATION: We shall demote the set of mrks (2 4y
CREN/ RN SN

It follows from Df. 5.1, and the definition of counting, that if we regard

J,, Ja, SR as denoting marks,
AN when and only when < =_/ .
Of course J;, =, 5, . . . faar marks are

distinguishable.
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DEFINITION‘E.S: Order of a Set.
A'rhere is a last mrk J, of @ or no last mark according
as the cérdina.l number of (C  is the positive integer A or a, .
We shall ;s.ay in these two cases (& 1is of order )/ or order & .
REMARK: ’Bhe‘ word "type" is usually used instead of the word "order" in
Df. 5.3, but we wish to reserve “typs" for more important purposes.
THECREM 5.1: Counting is a special type of formal transformation.
PROOF: In Df. 4.1, 2 take for C, the collection of mrks C and
for C_z_ the collection of objects consisting of the numbers 7/ 2 J, ...
The theorem is now clear from the definition of counting.
REMARK: Before we can teke advantage of this extromely important theorem,
it will be necessary to dsvelop the j)ropertias of functions of positive
integral variables. This development camnot be dons by specializing
section 3, because the functions of section 3 do not correspond to the

most general type of positive integral functiomn.



PART II. FUNCTIONS OF INTZGERS.
SECTION 1. INTEGRAL FUNCTIONS.

DEFINITION l.1l: Rangse.
The set of /V numbers

/, 2,3,. . ., N

’
is called & finite rangs of order /\/ .

The set of all the mzmbevrs

/, a3 . . . stc.
is called an infinite range of order <« .
NOTATION: A range whose order is unspecified is denoted by
/, 2,83, .

DEFINITION 1.2: Equality of Ranges.

Two ranges are said to be equal when and only when they have the
same order.
REMARK: There is only one range of order </
DEFINITION 1l.3: The P§sitive Integral Variable.

The particular general member A~ of the range

/, &, 3,
is said to be a positive integral variable.
DEFINITION l.4: vIntegral Functione

Suppose wa have a rule whereby we can associate with each value
of the positive integral varisble A a definite integer &=
Then %%/  1is said to be au integral fuuction of A’ .

A is called the independent, and 7/ the dependent variable

of the funobtion.

16
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REMARK: The various valuss of % nesd mot be distinct.
jNOTATIom ' We shall denote j{;( ') by % o We shall use
thruout the paper

aau ’é’/ 4 o) "‘Mu%‘(’ :
to denote integral functioms.
DEFINI?ION 1.4t Order of a Function.

The ordexr of a functlon is defined as the order of the rangs of
its indspendsnt variable.

DEFINITION l.5: Matrix of a Function.

The ordered set of integers
is called the matrix of the function 2z .
vorarion: )| il (c=1,23% .- )
DEFINITION l.6: Equality of Functions.

Two integral functions y = A , Z= Z(A)  are said
to be equal when and only when they are of the same order anml their
matrices are equal. |
THEOREM l.l: Derived Functions.

Let 7/ (7/ be a given integral function. We can define a
unique function \7 , of the positive integral varisble 4 Dby the
following rule: ,

Y = ¥

do = & =3,
.

Y2 % ¥ #HFEI
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Y, Y o Heh

»%: %,@%:%%% or %7{%&%
AR A A A A

and SO One.

/ s 7
Morsover the mumbers %, ., 24 .z , . - - are all distinct.

Clear from Df. le4, and rmle.

DEFINITION l.7: Derived Fuaction.

/
The fumction %/, which is kmown as soon as %/  is

known is called the derived function of % « Note that the ranges

of »# and 4 need not be equale

THEOHEM l.2: Types of Integral Functions.

All functions % fall into thres distinct types given in the

table below according as the ranges of & and 4 are finite or

infinite.

Type Range
X w
1 F F
2 I 7
3 I [

PROOF: Clear.

DEFINITION 1.8: Range of Dependent Variable.

The set of numbers

AN A

r



is called the range of the def{)end/ant variable y .
DEFINITION 1.9: Primitive Functioms |
The function 2/ = y‘(;r/ is said to be primitive 1if
Z. =%,  whenand only wen ¢ =/ for all numbers <, S e
belonging to the rangs of A .
THEOREM 1.3: The necessary and sufficient condition that a function be
primitive is that it should be ‘equal to its derivative.

PROOF: Clsar.

18



SECPION 2. INTEGRAL FUNCTIONS OF TWO VARIABLES.

hmmmmﬂ 2.1: Integral Fumtion.

Let ¢¢ ’ ?)"’ 'deno‘te two independent pésitive integral
variables. |

Suppose we have a rule which assigns to each pair of valkues of ¢¢
and 7~ a definite integer Z=Z(«4, 7Y/ . Then Z is
called an integral function of 4¢ and 7 .
FOTATION: We demote Z (4, 7/ by Zu,. o
DEFINITION 2.2: Matrix of a Function.

The array of integers

z, , z Z,5,

Z.’Z !

/2

s 223/ 23.7

7

z‘?l 2 233/ ZJ.?J

is called t;he matrix of the function Z. .
vorarion: [| Z.; /] (é,j=1,2,3 .. . )
DEFINITION 2.3: Bquality of Functions.

| Two functions are said to be equal when and only when their

matrices are squal.

THECREM 2.1: Derived Function.
By reading the matrix [/ z:j |l vy diagonals, we can define
a function Z ( w) ~ of the positive integral variable 4 . The

. first few valuss of this function are

- — = = Z
z/ - Z’/ ’ Z.Z = ZIZ! ZJ = Z.Z/I Zq Z/J'/ Z{
s o B ot .

+F

.2‘-_2/ . oo

20



PROOF: Clear.
vDEFmITIOH 2+4: The derivative Z l/ w) of Z [/« is called the
‘derived function of Z (/4 /) .
THECREM 2.2: Types of Integral Functions,
Ali functions == /u«, v/  fall into seven types given by the

table below according as the ranges of (¢ , #° and A are finite

or infinite.

Table

Type Range

]

A

o©w

-
=
R
F
I

o P

I g
z vl
I L

o

2 a
"
4
z
A
F=
I
A

PROOF: Clear.

DEFINITION 2.5: Range of Dependent Variable.

The numbers

/

/
2)— ’ ZJ + T

/

’

Z, .,
are called the range of the dependent variable Z .
DEFINITION 2,6: Primitive Function,

It is apparent that Z,g ~ where ‘4 is a fixed value of

the range of ¢({ , is an integral function of the variable 7~ .
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If Z_l » is a primitive function of 77 for all values
of A in the range of ¢ , the function Z(/4 /<) 1is said to
be primitive with ‘reépect to . | B

Similarly, if Z, , is a primitive function of <¢  for
all values of £ in the range of £ , Z/¢,v) is said to be
primitive with respect to <4¢&

A function Z /4, /) which is primitive with respect to both
its independent variables is said to be primitive, without any qualifying
phrase.

REMARK: It should be carefully noted that the values of a primitive
function of two variables are not necessarily all distinct; for example,
let the ranges of ¢¢  and /~ be of order 7 and Z,

given by /

2, 3
Jzo 16 (GG tass = 2. 4 7
' 7 5’, Z
Then Z,, = Za, " Z; 5 » but nevertheless “Z /. v/ is
primitive.

THECREM 2.,3: Types of Primitive Functions,
All primitive functions Z / «,1/) fall into four types accord-

ing a8 the ranges of A , 7° and H are finite or infinite,

where # ig the range of the independent variable of the derived

function Z /p/ . These types are given by the following table.

Pable
Type Range
: e 4 n

7
2 F 7 I
’ ya ye 7
F F



DEFINITION 2,7: Symmetric Function.

It Z (¢ j) = 2(), ¢/

for all values of ¢  and ./  in the ranges of s and

then  Z is said to be a symuetric function,

3



SECTION 3. OFERATIONAL FUNCTIONSe

DEFINITION 3.1: Operational Function.

The integral function Z (u«, 7/ is said to be an operational
function provided

l. The ramges of « amnd 7#° are identical.

2¢ The fange of « and 7~ oontains the range of the
derived function Z _
THEOREM 3.1: Types of Operational Functions.

All operational functions Z (4« 7/  £all into five types

according as their orders and ranges ars equal or not, given by the fol-
lowing table:

Zabls

A

o .
L obams L

Order of rder of Range of Rangs of Relation between

Type «w and 7 z’ & and P~ z' ranges
1 N N F F equal
2 N MN F A wequal
3 w N Z F wnequal
4 w e z I unsqual
5 w e r v equal

PROOF: Clear.

REMARK: Operational functions are an example of the functions of Part I,
Seétionks, Df. 3.2,

THEOREM 3.2: No function of type 3, The 3.1 is primitive.

PROOF: Clear.



THEOREM 3.3: A necessary condition that a function Z /&, 7~/ be
'symrmfric is that & and 7 have the same range.
4ll symmetric functions ars of types 1, 6 or 7 under Th. 2.2,
PROOF: Clear. |
DEFINITION 3.2; Associative Function.
Let Z (« 7/ be an operational function, and let 4 ,
£, m be any three numbers in the range of &4¢ and 77 .
Lt z(AL)= 2 . Z Ll m)=S
Then _%Z , J are in the range of ¢4 and 2% ,
since Z (U v/ is operational (Dfe 3el)e
1f now
z(Am) = Z (K 5)
for all sets of mumbers A , £ , 7 in the rangs of <¢ and
o, Z (¢, »~/ is said to be an associative functions
DEFINITION 3.3: Functional.
A primitive associative operational function will be called a
functional and will bev said to generate a semi-group.
DEFINITION 3.4: Types of Functionals.

A functional of type 1 or 5 The 3.1 will be called orthoid, a

functional of type 2 or 4 holoid.



PART 1II. SEMI-GROUPS.

SECTION l. INTRODUCT ION.

The 'postuiates for a semi=group given by Dick.éon ara as follows.*
"Given & function o of two arguments, and a set of elemen;.s,
we say that the elements fom a semi-group with respect t¢ © vhen the
following postulates hold:
(1) For every two elements @ and & of the set, «@o&
is uniquely determined as an elament of ths set.
(2) (aet)eC = aolfoe) whenever @ , £ , C
and all the determinations of ae £ , Lec (aef ) c and
@ s(fee) occur in the set. |
(3) 1f @ , x , A occur in the set, and if there are
equal deteminations in the set of Zo A , @ox’ , them A= A .
(4) 1If thers are equal determinations of Yo , F oz ,
then ﬂ/? 7!" oY
THEOREM l.1: The defi#ition of Dickson and the definition 4.5 of Part I,
Section 4 are identical.
PROOF: Clear from Part I.
REMARK: The only advance we have masde so far is the following: Since we
have shown in Paﬁ I, Section 4 that the defining properties of a semi-

gréup are invariant under ths set { Tf of formal transformations, it

* won Semi~groups and‘ the Gemeral Isomorphism between Infinite Groups,"
" Pransactions, Vol. 6, 19235, pp., 205-208.



follows that if we assume that the elements of our semi-group are denum~
‘erable, it is sufficient to study either the ordered set of marks

7/ ’

@ J J'z, yJ ,

and. an opsration ¢ satisfyling Dickson's postulatés, or the range of
numbers

I /. a2 3,
and a primitive, associative operational function, isomorphic (Df. 4.2)
with @ and ¢ to deduce all the properties of denumerable semi-
- groups. Before embarking upon this program, it is convenient to define
the term “semi=group" to mean denumsrsble semi-group, and to restate

Dickson's postulates as follows:
DEFINITION l.1: The Semi~Group.

A set of marks

G.: 5, g, 5,

and a function Iy e J’y is said to form a semi-group if the fol=~
lowing postplates hold.
POSTULATE I. Closure.

1If J, and J, are any two elements of G y oy
is a uniquely determined element of @ .
POSTULATE II. Assoclativity.

If Je’z'. J, 9 o are any three elemsnts of 6 .

(Spodylode = o o(Sgosey

POSPULATE III. Cancellativity.

I J, J, » . Ja  are any three elements of @ .

"~ %hen

27
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(a) £ Syod, = Lo J'&:wc'
(b) F Lo = Loy, VIN S

DEFINITION 1.2: Left and Right Semi-groups.
| A system /G5 o/ satisfying Postulates I, II, IlI{a) is
called a left semi~group.
Asystem [ (5, 2] satistying Postulates I, 11, III(b) is
called a right semi=group.
DEFIﬁITION l.3: Closed and Closed Associative Systems.
A system [6 0_,7 | consisting of a set of marks @ and a
function L oo Jy vhich satisfies Pos. I is said to be a closed system.
A system [ 6 0_7 satisfying both Pos. I and Pos. II 1s said

to be a closed associative system.

RCOTAT ION:

Closed system [ G, - /1_7

Closed associative system [ G, o / z, 1 ]

Left semi-group v [ @J' . /I, o TIE @ ]

Right semi-group /B, o / Z, 7. Tt |

Seni~group [ 6} o / z 7z, 77 ]

REMARK: Note that these systems are arranged in order of decreasing
generality. It follows thet the properties of [ &, ¢ /Z 7  emd
[ &, o/x 1] doveloped in the next two sections are also

properties of semi-groups.
DEFINITION 1.4: Commutativity.

It is necessary to consider later systems which satisfy a fourth



. postulate, which we shail call the postulate of comnutativity, viz:=
'POSTULATE IV. Commutativity.
£ U, Jg ‘are any two elemsats of G , then
L. Jys Vpeodn
Any bsystem VA G, 0_7 satisfying this postulate is said to
be cmnnutativefk The extension of the notation under Df. 1l.2 is obvious.
DEFINIPION l.5: Abslian Semi-group.
The system [ G, ¢/, =, 7z, 12 ] is called an

Abelian semi=group.

’*Wzau_ Ly 4.4 gp [ .
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SECTION 2. CLOSED SYSTEMS. .

PRELIMINARY: OConsider the system / @J o /I] 80 that we have a
set of merks

RN,

s, Jo, I,

a.nd'a function J, ¢ Jy satisfying Postulate Il.
DEFINITION 2.1: Sequence.
Let Jw denote an integral function of ~7 whose order is
not greater than the order of (5  , and denote the mark S, by u,
Then the orderaed set of marks
U,, ty,, t,

is called a saequence of marks of @ , or, briefly, a sequence. The

range of -»7 is called the range of the sequencse.

NOPATION: (o) &t ,, /o or . L
() (4, ) e, ey, tty, . . ,
DEFIRITION 2.2: Equality’of Sequences.
Two sequences .
(el ) i, ey, Ay, - . .. &y, . -
(K 1 ¥, #, %5, - -, Ta, -

are said to be equal when and ofly when they have the same rangs, and

-

U, = 7, for all numbers -z in their raunge.
NoRaTION: (¢4 ) = ()
DEFINIT ION 2.3: The Displacement Symbol.
Let '« be a number. Denote the operation of replacing in (2.1)
the mark <4, Dby the mark ' 4(,,., by |

e

a
(2e2) £, = “isa (a % > 7/



_a |
Then L is called a displacement symbol.*

'DEFINITION 2.4: The Symbol Z

" If we allow @ to assume the valus O in (2.2), we have

‘o
[ U, = Uy
0
so that [/ leaves any mark of (2.1} unchanged.

4
We denote £ by Z , so that
Ead./z - :Z L{d = Lé‘é-
DEFINITION 2.5: Multiplication of Displacement Symbolse.

@ 4
et £ y £ be two displacement symbols, where it is

understood henceforth that o, € > o e By (2.2)
__ Corta

o Z <«
£ (E“ﬂ/ = Ea/tf-é = ‘(/zrzw-‘: £ ow, bdd

a Lta

CE EJ' are said to be multiplied to form the product /A
THEOREM R.1: Multiplication of displacement symbols is associative and
commutative.

PROOF: Clear froam Dfs. 2.3, 2.5.

DEFINITICN 2.6: Powers of a Displacement Symbol.

na
The displacement symbol  /_ (77,2 > o) is called the
+5 @
71~ power of £ .-
2 4
THEOREM 2.2: Any displacemnt symbol /_ is the power of

the fundamental displacement symbol [~  defined by

./
£ = £
Stefansson: Interpolation, Chap. 1, Baltimore, 1927.
We tacitly assume - is laess than or equal to the order of the
86QUSeNCe .

%% Aoain, we assume b £ ra < the order of the sequence.
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PROOF: Clear from Dfse 2.3, 2¢4, 2¢6¢

'QHEOR‘E}E 2.5: Assume that the order of (B  and of J» inDfe 2.1

is «) . If after a certain value % of _%4 , the set of marks
.a/', uf,‘, Hy, oL Uy 4y, |

in the sequence ( e, ) repeats itself indefinitely in the sequence,

there will be a least valus % = ¢ for which this is the case.

PROOF: | Clear.

REMARK: If the order of j_” is NV s Wo consider the set of marks

e L{J ’ MJ

/ 7

where oL = J

27 J;” 7?75777770%/\///\(7—;(

W

and apply Theorem 2.3 to it.
DEFINITION 2.,7: With the hypotheses of The 2.3, the 4« marks
“,, HUa, H;, .y

are said to form a cycle of period ,¢ , and the sequence (., /) 1is
said to be recurring with I_)_e_xli_od e
ROTATION: We write ( U, / e for a recurring sequence of period

po |
THEOREM 2.4: A recurring sequence is completely determined by its cycle,
and to every recurring sequence there corresponds a finite ordered set of
marks of 6 .
PROOF: Clear from Df. 2.7.
THEOREM 2.5: If (M/z/ recurs for % =_%~ Vas is a divisor
of 42 .
PROOF: Clear from Dfe 247
DEFDIITIOI{ 2482 Di#pladement of a Cycle.

From (2.3) it follows that if / U, / . is a recurring sequence

32
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of ppriod L«
. =2 4
EL//Z:'Ea/‘,: > @2 = £ = ¢ P70 f
' (7 < ¢C & ey
- Hence
. EQM /
¢, 24 &
XAy .-
WOTATION /‘Q ’ e ',M/"l' “e u”qlx S A
OTATION: Yl (é{ﬂ//& = (e, . Jie

‘ /4(/21«4 //" is called a displacemsnt of («, //‘ .

THEOREM 2.6: The operations
2 3
£, E L E, . . L, E

’

3

associated with the recurring sequence ( 4, / of period fe form a
eyclic group of which £ is the gensrator and 15/(' the identity.
PROOF: Clear from the definition of a cyclic groupe.

NOTATION: We shall demote a cyclic group of order M by [C&]# .

We note for future referemce the following important properties
of a eyclic group.

Properties of a Cyclic Group.*

l. ZBvery element of a [56]/,,7 is soms power of a single
element of period M, and there is ome and only one cyclic group
whose order is an arbitrary natural number o e Furthermore, if Jft
is a prims %~ , the only group of order 7  is the [CG /- .
and thers is one and only ome cyclic group of infinite order.

2. The '[C GJ# contains one and only ome sub-group (also
cyclic)‘mose order is a given divisor of S 9 80 that the determination

of all the factors of 4+ gives all the sub-groups of the [C é]ﬁ .

* Finite Groups, Miller, Blichfeldt and Dickson, ppe. 54-57, New York, 1916.



| 3. 1If =M, the sub=group of order /4 contains

¢//() generators, and if El generates [CG&J, . .

EAF’ generates €67,  when and only when Z (5 /%/= /.
4. The group of cyclic substitutions on M letters, the group

of least positive residues modulo /¢ with the operation addition, and

. h
the group of the roots of unity with the operation of multiplica=-

tion are simply isomorphic with the [C&J, .

DEFINITION 2.9: The Cyclic Group of a Cycle.

The cyclic group

el E,ETE. -

£

is called the cyclic group of displacements associated with the cycle
74
( 4/# .
DEFINITICK 2.10: Equivalent Cycles.
let (“ﬂ/,u ’ (//,‘; //L be two cycles of the same period Lo .
Then (7, /,u is said to be equivalent to ([ «, /ye ~ When and only
when it is a displacemsnt of ( @, ) A
NoRATION: (45 ), 0 (4, ),
THEOREM 2.7: The class of all cycles eguivalent to ( e, //(_ forms
the set of cyclic substitutions on the (¢ marks
(/(// azl ”J 7 : cy, “/‘
PROOF: Clear from Dfse. 2.10, 2.8 and properties of the [Cé_//c .
THEOHEM 2.8: The relation (o of Dfe 2.10 is symmetric, transitive
and reflexive.

PROOF: Clear from Dfs. 2.8, 2.10.
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REMARK: We have developed the section above as the simplest example of
- the *',equivalence relation” which appears continually in general
arithmetic.

MOREM 2.9: assume (5 contains precisely ./ marks

\S‘I ’v J; , \{}} . . . , JA/
and let
77 e s 7%

/,( = / - 777 | .
be the factorization of 4 , where V7, 7, o7 are
distinot prime numbers. Then éj contains precisely

H #= 7 s
N(r) = N = ZNT 2 ZNT e

cycles of period /€ .
PROOF: Let ¥ (7) be the number of sequences (4{. ) which recur
for 4= A and A %/  the number which have a period of exactly

% « Then by Th. 2.5,

Mgl = 2/2 A(2)

But clearly if A/ is the mmber of marks of (&
/(.

Mir) = N

The result stated now follows by DedeRind's inversion theorem*,
the summations extending over the combinations /, 2 . . . ,J ata
time of the distinct prime factors 7, ., 7L , - - 7s of f¢ &
THEOREM 2.10: There are A/ /) distinct sets of equivalent cycles
of period 4¢ in G .

PROOF: Clear from The 2.8, Dfe 2.10.

‘ Dickson's History, Vole 1, De 441, eq. (2).



‘HEFR@ITIGK 2.11: Product oi‘ Recurring Sequences.

Lot [M,Z{H

( Yy ) / “be two recurring sequences of
periods ¢ and V“ respectively. The seguence / Uyo Py / is

called the product of the sequences (4444‘ and (7//:// .
votarion: (Hpers )<= (4 )eo (%)

REMARK: It is scarcely necessary to sdd &( o7,  denotes a definite

mark of 6 determined by

oz Vo , P Y2,
Hrne vy = L, edp

THEOREM 2.11: With the hypotheses of Dfe 2,11, [, ¢7,/ 1is also

a recurring sequence, whose order is the least common multiple of 4 and
v

PROOF: Cleare.

REMARK: This theorem is fundamental in the general theory of recurring

series.

REMARK

e

. Any finite sequence
W, U, U, , . L, L Ay
can be written as a recurring sequence, by letting
M-m"J:/;z;LQ 27 = S gt VN (/I EALEN)
80 that Df. 2.11 gives us a method for defining the product of any two

S64quences.
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SECTION 3. CLOSED ASSOCIATIVE SYSTEMS.

| PROLIMINARY: Gomsider the system [ (5, ¢ /Z,IZ.] o tat we
have a set of marks ; | |
G S Y, S,
and a function Iy oSy satisfying Postulates I and II.
DEFINITION 3.1: Power of an Element. |
If < 1is any element of 6 s -2 eany positive integer,

=3
the gymbol defined by

27 -

(501) J = J oJ

J'/:d"

is called the _Z # powsr of Y .

2t
THEOREM 3.1: 6’ contains the ¢ power of any element in it.
PROOF: Clear from Df. 3.1, Pose I and induction.

THEOREM 3.2t 1f «° 1is any element of (&

(3.2) olsfs vlet S5
PROOF: o vlesc ges | by (3.1)
Assume
ogho - ges®
Then
so 0¥l s trts) by Dfe 3el
. @ost)as by The 3.1, Pos. 1I
| = (J’gd"} o by hyp.
5. by :nf; 3el.
Hence by induotion ~
- (A) Jer i uts
R e e by (3.1)

/-A:‘ // ;2' '71 . s " /



Assume

J{aJ‘ - vhr®t U
' Then
B) oLt o ok
= JAJ(J’aJ'{/
- (f”a.ﬂ/aﬂ’é
= (ros? )
e T
JolFort)
:gfaf{/w"’L
or
) oot ot
Now .J'/zf’f ) ard st
and
J/de* = (d’/fw“%/‘f
- J'/;/J’Ia\}‘/
AN
C s
or
J/‘z—f»(*’ _ J_A(,;J'/: J4
Hence by induction
. AT S

fixed  /

by Df. 3el

by (&) for 2 - A&
by The 3.1, Pose. II
by (4)

by Pos. 1I

by hyp.
by Pos. 11

by (4) and Df. 3.1

by Df. 3.1

by hype
by Pos. 11
by (B)

by (C)
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DEFINITION 3.3: One-dimensional Spread.

‘ A sequence o
{/K/L / . %/, ’A.z., %J/ g s : "44,

wixere_ - ‘

(3.3) A, = I,

end  is an element of (5  1is called a one-dimensional spread,
of which ¢ is a generatf)r.

NOTATION: [ 57

THEOREM 3+3:. Any one-dimensional spread is an instance of a system which

is closed, associative, and commutative;

(3e4) %ﬂa% = 74_,074_;2: éﬂ (s 52 7,2.3 . - J

PROOF: Clear from The 3.1, 3.2, Dfe 342,
PHEOREM 3.4: If a one-dimensional spread contains an infinite number of

different elements, they ars all distinct.
R A 2 g
PROOF: Let /7  be a one-dimensional spread, so that J =
in the sequence (/é 72 ).
If the é o ara not all distinct, there exist positive integers
¢ and / such that
(505) ' —/Iéc’ = 74?',5/’

Then _
’4(/)? = 744% 2+ J o & .2 £ -1
4 ( -/

ooy - A ey e

4

by (3.2), (3.3), (3.4), (3.5) end induction, so that %l/ consists

of at most £,/ different elements

Ay, Fas H e A A A A
'/A/,. "4.2/ %.J 7 ‘ A‘—); C—v s ¢ Cr s 7(’.‘/‘711

Ery



REMARK: Although the general theory of spreads of any number of dimen-
' sions‘ whose gemsrators belong to a closed associative system, a semi-
group, or & commutative semi-group, is a subject of extreme interest
and imporilzanca,' it will not be developed here, as it would take us too
far from ozir original aim of defining an arithmsetic. Such a definition
is, indeed, an indispensible preliminary to the theory of spreads
itself. Suffice it to say that in the theory of spreads we have ths
key to the whole problem of ideals and ideal numbers in any conceivable

1

arithmetic, in the wider sense.

)



SECTION 4. THE IDENTIPY.

DEFINITION 4.1: Identity of a Left Semi-groupe
et [ &, o /=, I, e ] be a left semi-group.
i (7 contains an element < such that for at least one

element J . of 6

(401) Jo ¢ = I, » @ / 5, ¢
then ¢ 1s called an identity of (5

THEOREM 4.1: If the identity < in (4.1) exists,

/

(4.2) Lo = &

where g’ is any element of @ .

PROOF': Jos 'z goos’ : .
N mguﬁc;:: V@ ’ . 'by hyp.

(Fo t)os'sros’
J e [{af’/—:fdfl

by substitution
by Pos. 11
Lor'= v by Pos. 11I(a)
THEQOREM 4. 2: 1If U is any element of (3  commtative with the
element .5 of (4+1), so that

JeoeS /: J"mf

then
J ,’ L' = J ‘
PROOF: Jel =8 | by Hype

o (Jot) = FoJ

Cos)et = Sos

by Pos. 11
‘ ’ 7
Gou Jet ffw”‘ by hype
P2 9e ’:J.f/
Jo (sot) =T by Pos. II

S0l = & 4 by Pos. III{a)



THEOREM 4.3: If the element. ¢ of (4.1) exists, it is unique.

"PROOF: Suppose there were a second element J such that

(4.3’ . Jad‘zJ : g /J’/\/
By hyPe, Uoc¢ = S s hence ¢ =/ by Pos. 1II{a).
REMARK: It seems impossible to infer from (4,1) that o o7 =5 for

every element J of (5  without the use of Pos. III(b)s To prove
this conjecture it would be necessary to construct an actual example,
which I have not yet been able to do.

THEOREM 4e4: Theorems 4.1, 4¢2, 4.3 remain true if the & in (4.1)

is replaced by the ¢  of (4.1).

PROOF: Clear,

REMARK: The corresponding theorems and definition for & right semi-group

are gprarent.

THROREM 4.5: Lot [ G _U ¢ /Z,7ZL, 77 7  tbe a semi-group.
Then if @ contains an element « sach that c¢oc¢ -¢ , then

for any element S of G ,

Sl - (oS = T
and, moreover, ¢ 1is unique.
PROOF: Clear from The 4el =~ 444 and the remarks abovee.
DEFINITION:442: If the ¢ of Theorem 4.5 exists, it is called the
identity of the sémi-group. A
THEOREM 4.6: Lot [ (&, o / =, 7z, Tt tas ] be a left semi-
groupk.‘ ir (Z  conteins en element .  such that (4.1) holds for
every element JS  of @ -y then fo;' every §

Joetl = (o5 -~ §

and ¢ is unique.



PROOF': ,C;lear from The 4el = 4ede
' EEMABK: The corresponding theorem for a right semi-group is spparente
: Hsreaffér, we shall state all definitions and theorsms for left ‘semi~- |
groups alone; 1';ha corresponding definitions and theorems for right semi-
groups are | easily inferred.

REMARK: The substance of these theorems on the identity are given in
Dickson's paper, but they are proved only for a semi-group, on much
stronger assumptions.

REMARK: Although it is unnscessary to postulate the existence of an
identity element in a system in order for it to be an "arithmetic" in
the narrow sense of the definition given at the closs of Part I, See.tion
1*, nevertheless instances of systems in which an identity exists are

of frequent occurrence, and the abstract theory of such systems is of
considerable interest.
We accordingly frame the following postulates:
POSTULATE V. The set. (5  ocontains an element « such that
(a) for every element < in the set,
Joe = &8
.(b) for every element . in the set,
Ceos = T
(¢) oo - ¢
TIEOEEM 4.,7: The pfoperties expressed in Pos. V are invariants of the

class [ ‘7‘ f of formal transfomations defined in Part I, Section 4.
PROOF: Clear.

* E‘or example, the set of all numbers of ths form 2% J"G.fy vhere

X sy F s y Tumover all the positive integers form an arithmetic in
the sense of Part I, Section 1, but the set does not contain an identity.
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PART IV. THE OBSRATION OF DIVISION.
SECTION 1. INVERSE OFERATIONS.

DEFINITION l.1: Table of Entry of a System.

et [ G, /T be any closed systeme. The matrix
/| Jies 1 (¢ J =/t 235 . . .

where we write for each J 2J} its wnique determimation in (&
is calléd the table of euntry of the system.
Rﬁmz‘ Ths table of entry is simply isomorphic with the matrix [z, /
of the oprational function Z /X /) associated with J, 0. .
DEFISITION 1le2: Inversion Problems.

Lot [ C / z / be any closed system. In the function
(1) Sy s Ty Sy
we regard J, as kmown when J, and J,/ are given. Iet us
suppose instead now that ‘fz. is knmown; thers are three conceivsble
cases.

(1) Given ’J’Z » o find &L, ad V., .

(i1) Given Y, amd J, , to find J, .

(iii) Given J, amd % , to fimd Jx .

Phese three cases are said to comnstitute the inversion problem for the
function (1). Obviously (i) includes (11) and (iii).
@HEGM 1.1: Tﬁpes of Solutione.

There are six types of solution conceivable for an inversion pro-

blem, according as we can find an infinite number, a finite number, or no

Ty -

's and f_,/ 's to satisfy (1) for a given J. + These types

rare glven by the following table:



Table

Tyre Number of Number of
| Sy oy

1 T T

2 T Fa

3 = s

4 F F

5 none -

6 —_— none

PROOF: Clsar.

PHEOREM le2: The necessary and sufficient conditiom that all possible
solutions of the inverse problem be of type 4 in Th. l.l, is that any
particular element 5 of (5  appear in the tabls of entry of the
system at most a finite number of tirﬁss.

PROOF: Clear.

THEOREM l.3: The necessary and mfficignt cond ition that the inverse
problem alms have a solution is that every element .y of G ap=
pear in the table of entry of the system at least once.

PROOF: Clear.

THEOREM 1.4: Solutions of Types 1, 2, 3 can occur only when the set

is of order (O

PROOF: Otherwise the table of enﬁry is finite.

THEOREM 1l.5: A suffiocient condition that the problem of inversion always
be solvable in a fixiite ‘nmnbezl' of steps is that (o Dbe of finite order.
PROOP: (}_l.sar. |

THEOREM l.6: If the inversion problem in [ G » 0/ I,] has the property



that all its solutions are of typs 4, The l.2, this property is an invar-

: ‘iant‘of the set /7 } of formal transformations of (3  defined in
 Part I, Section 4 for (5  of order .V or order & .

PROOF: Clea.r.. |

THEORENM 1.’7: 1t (G is of order <’ , a necessary and sufficient
condition that all the solutions of the inversion problem for

be of type IV is that in the operational function = = Z (4, ) = Flev)
associated with the system,

(101) Z —> &L as U —F L
and Z —>e ag VvV —><

Moreover when this condition is satisfied, the inversion problem
can always be solved for any given value A of Z in a finite number
of steps.
PROCF: Let 4@ be any fixed valus of Z , and comsider the solutions g
(1) £~ F 4 )
Assume first Z > 2 as M —>o0
Then we csn find two f ixed numbers Z and. L{ such that
(11) z < Z for all values of « )//C 3 i.0., for an
infinite number of values of <¢ .

Hence if we comsider ths solutions of

/= Flav), 2 Flar/), . . ., Z=7Flav/
there is at leaét one value A4 (7 < £ < Z )  such that (i)
has an infinite number of solutioms ¢¢ , so that the inversion problem

for this ’){ is not of type 4. Similarly, it is necessary that

Z—> L as VvV 2« .
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Now assume that the conditions (l.1) are satisfied, and let us
‘cons'ider' the solution of the inversion problem (1) for z -4 , a
fized .nun'xbe‘r. |

From (1l.1), we can find a fixed mumber 1= A/#£ )  such that

when.o(’>/\/ ’ > A, z > A .

It follows that all possible splutions of (i) lie in ths matrix
formed of the first .}/ rows and AV colums of Vz, /80
that they are necessarily finite in number and can be found in a finite
number of steps.
ERAWPIE: Comsider this instance of L G, o/ ] s
the set of numbsrs !/, 2 4 J e and ¢ ordinary
maltiplication. Then Z = 7\’-3/ and the condition (l.l) is ful-
filled. It is not difficult to make the extension to algebraic integers
and multiplication, unit faotors disregarded, by thinking of them rangsd
in order of iizcreasing norms.
REMARK: It should be carefully noted that if (5  is of order oo ,
it is not sufficient that the solutions of the inversion problem be all
figite for us to find them in a finite number of steps without the use
of Th. 1.7; for if £ - 7{u v) has no solutions, we must be able
to assign limits to «¢ and —* beyond vhich we need not look for .
solutions, in order to be able ‘to solve the inversion problem in this
special case in a finite number of steps; but this is precisely what (lel)

gives us.



48

SECTION 2. DIVISION.

PRELmMOURIES: Lt G = [ G o /I IE, I7E (a), Eias ]

denote henceforth a left semi~group with elements
g‘/ / j.Z s 2
and an identity element Z .

We use 2 g /f . occasionally for particular general elements

of & . The notation G/glj:jj’ mans ( contalns the

1

elements F 7 and Gy e

DEFINITION 2.1: Left Divisors.
If for two particular elements &, , G, of &, thera

exists a Gy in & such that®

we say that ¢, is a left divisor of _4%¥ , or that it left divides
j£ . 9, is called the "quotient” obtained by left division of
G by Gy o or when there is no ambiguity possible, the "quotient."
vomraw: g, - L ly) . g, [ o
DEFINITION 2.2: Right Divisors.
If for two particular elements j# v Yz of (& , there

axists a .-?y in G such that

Gy Tt TR
we say that 9., is a right divisor of ¢, .
NOTATION: 7 74 C_/£ J

* Compara Section 1, Df. l.2.



DEFR‘_II’I.‘.ION 2¢3: Divisor.
If at least one of the two statements (7, - ,Z{ (e ) ,
,97,7 = 24 C?{/ is true, we say that Gy isa divisor of Gr s
or that it divides &, .
NOTAT ION: '»ﬁ% < () T4 /ﬁﬁ - :
DEFINITION 2.4: Multiplese.
Under the conditions of Df. 2.1, (2.2) Gy 1is called a right
(left) multiple of _9#, . é.nd is said to right multiply (left mml-
tiply) G, :
NOTATION: gy - M) (= M (/)
If at least ona of the two statements Gy = M, /T%/ R
Gy "e(gs) 1is true, we say g, is amltiple of g, 3
or that &/, xﬁg_]f}gl_(.}as Gy e
NOTAT ION; G - M)

THEOREM 2.1t The ,.77!’ of Df. 2.1 is unigue.

PROOF: G / L TL ﬁ?,j£ , s ° 7. = Ty by hype
Assume G/,Q%' such that .-Zé"j,éy/:,.?{
Then

Th oGy s Dh oG
T Gy by Pos. III{a).



SECTION 3. UNITS.

PRELIMINARY: The results of this section are due in the maiia to Dickson,

who, howévéf, proved them for a semi=-group onlye.

THEOREM 3.1: If for any element ¢, of &  there exists an element

v such that

(3e1) Gy 9y | /C/Z by Pos. V(a) /

then
G4 e T4 L

Furthermore, if such a __9% exists, it is uniqus.

PROOF: & / Gy Gu, GreGy - L by hype

Gp T
(EZ/I Oﬂ/"jh = A djﬁ
Gpe (Geody) =T o1
Gpoe gy = 4 by Pos. I1I(a)

j{ vis unique. For suppose there were a sescond elemsnt G ’
such that g, a_ﬂ/; < . Then
Gy e G = G4 oI
Gy = s by Pos. I1I(a).
DEFINITION 3.1: Inverse.

The element ’gi of (3.1) if it exists is called the inverse

of '-974 .
THEOREM 3.2: (i) If g, is the imverse of g, , <, is the
~inverse of ¢y . (ii) 4 is its own inverse.

 PROOF: Clear from Th. 3.1, Dfs 3.1, and The 4.5, Part IIL

50

by Pos. II and I1I, The4.b6
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THEOREM 3.3: Every left divisor of Z  is a right divisor of

" and conversely.

OB Lot g, M, (1) . Gy L (1)

9, 9_72/ - 4 snd 7, 097 G’/y,,,,% by Dfe 241,242

.94 v ﬁ/? - j‘/‘ and ./(/( cjy = 7 by The Jel
<, ;]/;(1/ and g, -4, (1/ by Df. 2.2,2.1

We may henceforth speak simply of the divisors of 7 without ambiguity.

DEFINITION 3¢2: The Unitse

The class of divisors of 2/ in & is denoted by

Lo e, e, . ., €,
Any member of it, &, , 18 called a unite.

THEOREM 5.4% £ is not a nmull-class.

PROOF: Lot -4, 2/Z Z  is a unit.

’

THEOREM 3.5: The class /£ of wnits of (  fomn a group with
respact to' .
PROOF: (i) If &, , <&, are any two elaments of £ _ , C e,
is uniquely determined as an element of . .

For C,e € o is uniquely determined as an element of &
since G / &, , &  byDf. 3.2, by Pos. I

Moreover, / / €, - gJ‘ , for by Dfe 3.2, 2.1, The 3.1

Cace€y- 4 P €y ey L -(;/“[7’ “y

(€, < & /o€y ey = Lok 2o

gﬁq('g},)/gjagx// - 4 by Pos. II

Eho(Excey/oe =1 by Pos. II



(€ s (€, @& /‘/1 ¢ €y = A o by Pos. II
Cro (€qeléac) )= X - by The 3.1
’&3; ‘. / Z ;_?—:’/ "n E, by Dfs 2.3, a2

11) ¥ €, , & , €, areany tnres elemsnts of Yol
(6‘496'5/056 = é:/?é(gd.oéz/

for G/ €y, &,&,  and Pos. 11 holds.

s

(111) £ conteine an element &, - sach that o7 awy elemenl &,
€ o€, - é;/zﬂ Ep = €,
for £ /i' 52/5/.“ A&, EyoF T
by The 4.6, Part I11. ‘
{iv) Por avémr é/z © %here ia- gn & sach t.'hat'
€4 by = EroE,: £, 4
from Df. Ba2, 203, Tha 3ala
But (1) =~ {iv) are the pGSmlatas for an abstiract group.
THLOWTM B.63 The product of any number of walts 1s a wmit.
PROOF: OCloar from The 5.5.

TH B.T: I ,7 jﬁ aj;&- is a unit, ﬁﬁ and Gz are
bobh mnits. -

FROOF: ot jﬁ - e , and let &, be the inverss of
| &, . Tmen |
(g 20p Jo€s s & o€ = 2 by The 35
e e, ’CfZg‘,Zg/= éz'ag/: » by e 3.5
o . | |



(g_z”.?# /09—(_
Gy o(Gy e€)

4
Z

1 n

Gy (27, gy -7l )

 E /94 92
THEOREM 3.8: If g « g, ¢ = - = <,
Q., , 2,, - - - G are all units.

PROOF: Clear from Pos. 1I and The 3.7.

53
by Pos. 11

by Dfe 243

: by Df. 302-

is a unit,
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SECTICN 4. INTEGRALITY.

PRELIMINARY: Let G - LG, - )T, = gra, B ]
it may happen that £ coincides with G « It follows then that
| G’ is av group by Th. 3.5 But in a group, the problem of inversion
of Section 1 is trivial; for

THEOREM 4.1l: If &G, . 9¢ are any two elements of a group &

’
then &, left divides ¢, and g, right divides g, .
- PROOF: Let &, ° be the inverse of g . Then
’
(G’ )Gy = £ °G, = ¢
But also

C9¢ O Yo I/ °Fy c Ye ’(_74, ,‘,_7_4,/

Hence

F= :jL (7e )

\
and similarly

G = Tw (Gs)

It followé that in a group, every elemsnt divides every other slement,
michmbtates ons of our fundamental conditions for an arithmetic (Part I,
Section 1) To insure that our syste@ shall not be a group, we frame the
following postulate:
POSTULATE VI. Integrality.

The set ('93 contains two elements ), and Jg  such that

(a) J_gaf«: JL
is satisfied for ﬂqielensnt Iy of G .

(b) Ty e J‘g = JR

is satisfied for o element  J,  of G .
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A.ssumiﬁg G contains the element ( of Postulate V,
- the system contains an element J, such that
B OV R A S
is satisfied for no elemsnt Q’q, ot G .
(a) Sy a Jg, = 2
is saﬁisﬁad for no element J‘y of @ .
DEFINITION 4.1: Integral Left Semi~Group.
The system /[ 6; o /I,ﬂ:,:’/’f@,’: VI tar |
is cslled an integrzal left semi-group.
NOTATION: We shall continue to use & and ¢  for this system.
THEOREM 4.2: (>  contains an infinite number of distinct elements.
PROOF: Consider the element _gp  of Pos. VI(a).
It g,, _9#"‘,’ 3143 . . are all distinct, the theorem
is pmve'd. Assume they are not all distinct. Then there exist integers
A2 anmd U such that

-

4 AR
95 = 9z A4, 5= 1)

X+
Now Py

L
Sz
TH e T s T Gy e g (9,7 0g, )

T4 = G ’/jﬁfbo:g& Y.
contradicting Pos. VI(a).

THEOREM 4.3: If Pos. VI(a) is trus in a left semi-group, then VI(b]},
(¢), (a) are also all truey if 7he SPmi-fzrocF cornl i ¢
PROOF: Clear.

THEOREM 4+4: If Pos. VI(a) is false, the left semi-group is a group.

- PROOF: Clear.
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3
THEOREM 4.5: If g 1is mot a unit, Y9, g y 9 . . . - are
"all distinct.
' PROOF: - Needless to say, this theorem assumes the system contains at

least one wnit Z .

S Jr 2
It g =9 (522
J g4
g L= 9 °9
z‘-»,_gj'

A A T N S A S

- 80 that j is a unit.

THECREM 4.6t If G /4 , G  contains no element ¢, such that
GGG F % foray g i £74 .

PROOF: If 6: /,gg/ ;z ! —7¢ = ja pj
Supposs for soms g Z £
.70-7& = j" djzjo
.Then '
GG, = Fo°F: Fo°Z, F-ZL
REMARK: If & is the class of vositive integers and ¢ is mal~-

tiplication, _ & is zero.
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SECTION 5. TYPES OF SEMI-GROUPS.

PRELIMINARY: We are nbw in a position to classify the possible types of
semi-groups. The first obvious classification is into those which contain
an idsntity element and those which do not. Consider now the system
G =/v6/' e /f,jﬁ,ﬂ(cc/, e, pr e |

DEFINITION 5.,1: The Three cméses of Elements in G .
CLASS 1. Contains all élements g such that we can find a positive
integer % for which
(541) 9 7- 1

g is called a root of u_g_:l}y. (This class is not null, since /L: _{/ .

CLASS 2. Contains all elements K% such that

(5.2) g / Z

the g o0f (5e2) is called a unit. Class 1 is a sub-class of Class 2.
CLASS 3. Contains all elements for vwiich neither (5.1) nor (5.2) hold.
These elements are called integral elements. (Thisclass-is-not-null-by
Posr—V¥I{a}-and the--theorems 6T Section-4).

THEQOREM 5.1: Classes 1, 2, 3 are closed under ¢ and J £ belongs
to the sams class as J , and conversely.

PROOF: Clear.

THEOREM 5.2: A sufficient condition for g to belong to Class 1 is that

o
.-9 / = j&l’- é/?/fL

PROOF: Clear.

'THEOREM 5.3: The powers of an integral element are all distinct.

PROOFZ 01331'0
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DEFINITION 5.2: Unitary (Semi-) Groups.

A semi-group which contains only elements of Class 1, that 1is,
such that the inverse of any element in it may be expressed as
posiﬁive power of that element, defines a type of group which includes
finite discrete groups as a speciasl case. Such groups are called unitary.
THEQREM B.4: Thers are an indefinite number of infinite discrets groups
which are uaitary.

PROOF: Let 77 run through any infinite sequence of numbers whlich are

all relatively prime to each other; for exampls,

7 A, S 4 % 2,
FAAAEC SN S A A/ S
where (e, ) is any seguence of pos itive numbers whatsoever, so that
. 2, .
T Sy S the ¢ prime.
Take =t
a. >
\f,?l = £

The totality of elements

v/ N/ Vi .
NACIVECIPE iiridss - mo

form just such a group, and moreover, no two groups of this type are simply
isomorphic.
DEFINITION 5.3: Rational (Semi-) Groupse.

A semi-group which contains no elements of Class 3 and at least one
qlement of Class 2 is called a rational semi-group. A& rational group G
necessarily include$ at least one root of unity; namely, the identity
elemsnt // o« If this is the only unitary element uunit, ( 1is called

pure; otherwise mixed.
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THEOREM 5.5: Every rational group contains an infinite number of
' alemémts;
’ P»ROOF:Y Clear.
EXAMPIE: The ﬁositive and negative powers of L | s With the opration
of ordinary multiplication, form a pure rational group; the positive and
negative powers of + 2 and of —/ with the same operation form a
mixed rational groupe.
DEFINITION 5.4: Integral Semi-group®.
A semi=-group G vhich éontains at least ons integral element

_g 1is called an integrsl semi-groupe. If it contains no elements of
Class 1 and Class 2, it is ocglled pure. Those elements of Class 1 and
Class 2 contained in &  are called its units; their detailed study
is the subject matter of the theory of discrete groups. Ths detailed
study of integral semi-groups is one of the chief objects of the thsory of

general arithmetic.

* Gompare Section 4.
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SECTION 6. BQUIVALENGE.

PRELLIIEARY: In this sectiom %za @avai@ the relations be;z;séy’éézxz, an integral
| lefs semi-grovp G 7 L 6/ o/, &, LT s, T ms, o
and itﬁ wnits A : s In the proofe, we have omitted tha ressons for
the simpler stenBs
DEFINICION 6.1: The Genersl zf:qlli#alema Relation.

Let &€, , &, Ybe any two ualts and Fp o Gg omy two
elemsats of G . _g, is sald to be equivalent to g, vihen

and only when

(8a1) Gpe €, = €s° 94
| WOTATION: G gy
CTHAOTEN 6.1: The relation &2  of eculvalence is

(1) symmetric, (1i) trensitive, (iii) reflexiva,
PROCE: & hat by Dfs B
PROCPs  (4)  Suwvpose _Gae7 Gp 80 that by Df. 6.1,
’“9;‘:'74; o é@ - 6_}' ag-z‘f-
Llet £, and &, be the ianverses of <, and &, respectively.

Then Cnoe(Gpeocs)cC,= EnolCeogisoe,
(C%y ¢G4 s E o2 L ’QZ{""{-‘”’
Cu Gy - agpog,

’g’% cEp = 0 gy

e Q'A' by Dfs Bal.
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(11} Sug:};@aam' G 98 . Gy <7 GE » Then by Df. 6.1,
Gt o Ch = E5e Gy k
Gh o Ep = €a°Ge
(G4 «€s /o €p = (EreFp /7 oz ErolGue

» = dfa(é“aj(/r
_9_/7 o (éd ‘oéc,/ = (é‘,-a‘uﬁ,é /ﬂj’(

But €po&p, E5¢Cu are unlts
'E?herefqm G4 7 Gy , by Dfa Bals

| (111) £ 1i1s = xmiti, Gy ed = 2 o G4
THTOMEN 6.23 (1) ALl units are eguivalent. (11) If an olement R~
of & is equivalent to & unit, it ecuals & unit.
PROCFs (i) Let €, + & be two uwalts, &, , &, their Invarses.

Then

é/z L/’}'éd.

by Dfs Bals
(11] Suppose ¢ ¢2 € . The by Dfa 6.l
e €4 = Ey0€ ~ a unit.
C g is & uuit, by The 3.7
DOPTHTITICN 6.2: Left and Right Soulvalence.
1 in (6.11, e,~ 41 ) ﬁ%’ is said to be left
equiﬂmlaﬁz t.(a =73 .
HOARION: g L9y
If in (6.1}, €, ,,~,‘ £ » G4 is said %2 Dbe right
aguivalent to T4 '
THROREM 6.B: Tha reletion IZ_‘:??_ of laft squivalence is symmetrias,

“tremsitive and raflexive.
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PROOF: élear from proof of The 6.1 on taking c; - L in (1) end
&5 €. 4 in (1), |
 DHEOREM 644t (1) ALl uaits are left squivalemt. (i) If an slemsut
9 df | G is left equivalent to s unit, it equals a unit.
PROOF: Clear.
THE’.GREM 6.5: The mnecessary and sufficisnt condition that two elements
Gy » G of G ve left equivalent is that they left divide
each other.
FROOF: 1f g, [ gy, Gp° € -4 . Gy, (T )
But if g/t L= gx Gy L5 g4 by The 6.3.
Gt = A (F4)
1t G4 4, (q9.,) wmd gy -l (o, . thm

.9740.94-‘? gs g){ajyf’qvé
L1 °9, )5, 949, - o,
Sty (Freg,) - 5,01
: are units,
Txre Ty = 7. gv. Dy
DEFINITION 6.3: Conjugate Equivalence.

If in Df. 6.1, Cyr°- €, sy _Gp 1is said to be conjugate

equivalent to ¢4 in the first sense.

NOTATION: Gr T2 Gp

If in Df. 6e1 C, 0 €4 = , G4 is said to be conjugate
7o 9y S
aquivalant/’ in the second sense.
NOTAT 10w: G4, = 92
Ifian- 6.1, éJ: &, , and Gfoé.? = L . 9_&
V 7‘0_9.,({

~ is said to be conjugate equivalentAin the third sense.
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NOMRION: &y =2 Gy
| REMARK: Conjugate equivalence m the thi;'d sense is the simplest
ganeralization. conceivable of ordinary equalitye It corresponds to integsrs
having the same absolute value in ordinary aritl:xnétic.
NOTATION: We shall use G, 7 G4 to denote that @, is
conjugate to G4  in at least one of the senses above.
THEOREM 646: The reiation oy of conjugate equivalence is symmetric,
transitive, and reflexive.
PROOF: Clear, '
TH2OREM 647 (7 ., 1If /g is conjugate equivalent to a wnit, ¢ isa
unite.
PROOF: Clear.
REMARK: There is no analogy with Th. 6.2 (i) in gensral; it is obvious we
are here encroaching upon one of the most important ideas of group thsory,
that of the transform of one element by snothsr. For if

G4 Cn S Tp and &, ' is the imverse of &,

G4 2 EacGg

If g_g o 64 = 6/)_ léj'i
,9’_79 = 5/4 égidé/t ’
if ' .
T4 €r: Cacy S =,
g‘ﬁ - é-/l g_74 051

REMARK: All these relations of equivalence share a remarksbls property:

Y9, 9. g, » Fhen

we camnot infer g o g, e g, e, unless

. the un,'its of (~ are commutative with all the elements of (& .

s



64
4gain, if Gy / G4 . Gty ©° Geo, Fg 7 G
- then we camot infer &, /gm without assuming the units of
(G are commutative with all the elements of & « Vo 'thus have
two properties of the integers (and for that matter of the algsbraic

numbers) winich have to be sscrificed if we give up the commtative law.



SECTION 7. DIVISORS AND MULTIPLES.

, » CLeopl
PRELIMINARY: We are w rking throughout this section in an integral/\semi-

group G CGntaining a unit, G = [ @J. O/Ij LL, TIL £/, JZ (as, _Wa/]
THEOREM 7.1: If & is any element of & 5 (i) G left divides gy

(i1} Z left divides & . (iii) If ¢ left divides a unit, ¥

is a unit. (iv) If g7 g, left divides o , _g, isa unit.
(v) Every unit left divides every other unit.

PROOF: Clear.
THEOREM 7.2: If Gy left divides g, and @, left divides

., G4 left divides g .

BOR Gy- Y, (e . Ge A (P by hyp.
,_gﬁaj,},: GE£ 7 ' > P @/jﬁ,_@

(Gty e ) o9y = (<G, /x7.,
.9/7 = "WL /,-?‘m/

THECREM 7.3: If ..9,4, left divides g, , all the left divisors

of ¢, are left divisors of &4 .

PROOF: Clear from Th. 7.2.

THEOREM 7.4: 1f = ‘has a finite number of left divisors, and
G4 left divides g, , and is not left aquivalent to o,
.9+ has fewer left divisors than G4 N

PROOF: Gy E L (o4  for 18 gy -2 (95
since gt - ,Zé {_77{ /,  Gr Z.ﬁ’_j{ by The. 6.5, contrary
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" to hypothesis. But G4 L. (94 ) by The 7.1

G4 has one less divisor than _772 s by The 7436

: m:ozm‘ nh 1f g, leftawides g, g, left divides
'9{ ij .

PROOF: gy = L, o/, Gk L, (%%, ) bY hyp. and Df. 2.1

G = L, (G427, ) by The 7.2.
THEOREM 7.6: I1f g, left divides fg% . Gogy left
divides G o g, and conversely.
PROOF: G- /Z/L /,f%,/ by hype.
T4 oI = T4 by Df. 2.1

G (Gpom) =994
G eIt = —74 /Ejf,&/

by Df. 2.1

Conversely, if g ,5%7 - :Z/A (j ° Gy )
jﬂjﬂégz = Fe gy C—"/jz by Df. 2.1
409, - Tt
Gt = L, (¢ )

THEORZM 7.7: If ¢ is any element of (& (i) & right multiplies

g ,v (‘ii) _@ right miltiplies Z , (1ii) 1if a unit right
m_ulﬁiplies g g isa wit, (iv) if ¢  rigat mlti;c;lies
_Fo gy v Gp is a unit, (v) every unit .right multiplies every
other unit.

PROOF: Clear from Df. 2.4.



THEOﬁBM 7.8: If 9, right mltiplies G and Gt right
' multipliés G R G Tight multipliss &, ..

PROOF{ Clear from Dfe 2.4, The 7e2e

THEOREM 7.9: If j% right multiplies G s 8ll the right
multiples of —fZ{ are right multiples of Gt .

PROOF: See The 7e3.

THZOREM 7.10: If j{ rignt mltipliss Gt y G T
right multiplies /5@4 .

PROOF: See The 7.5.

THEOREM 7.11: If  &p  right miltiplies &g , Y7
right multiplies :9'4£744 and converselye.

PROOF: Sea The 7.6

REMARK: Note the strict analogy between the theoremson divisors and

multiples.

67



SECTION 8. CONCLUSION AND SULMARY.

‘e have now feachsd a logical stopping pléce. In Part 1, ws have
subjected ﬁhe concept of a ciass and a hinary operation to a careful
secrutiny, and shown that for the purposes of general arithmetic, where all
classes are denumerable, we can assume the class ordered without amny loss
of gensrality, or replaced by thse numbsrs one, two, thres, |,
We have thus "arithmetized" general arithmetic in Kmgmecker's sense. In
Part II, we have skestched the theory of arithmetized gemeral arithmetic,
without, however, any attempt at a systematic treatment. In Part III, we
hay;'developed some of the properties of an abstract semi-group, a concept
indispensable botk in group theory and arithmetic.

Finally, in Part IV, we have given a fairly complete analysis of
the condept of an inverse omration in a semi-group, using the langusge of

ordinary arithmetice The linking together of the ideas in Part II and
Part 111 remains a desiderata.

Pfobably the most important comsequence of our work is that we
now ¥xnow the problem of defining "arithmetio™ in the narrow sense of the
introduction has alrsady besn solved, providod we assume our "multiplication”
is commutative. TFor in view of the theory of formal éransformations
developsd in Part I, the complete holoid realm of Julius Koenig* is an
abstract arithmetic, provided we interpret his "GrWsse" as "marks" and
his "Verknupfungen'" as “functions" in ths sense of our paper.

In conclusion, 1 should like to thank Professor E. T. Beli for

criticism and advice in writing this paper.

 * See Algebraische Grdssem, Chap. I
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