Wastewater Electrolysis Cell for Environmental Pollutants Degradation and Molecular Hydrogen Generation

> Thesis by Kangwoo Cho

In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2015 (Defended August 28, 2014)

© 2015

Kangwoo Cho All Rights Reserved Dedicated to ...

my lovely wife Soojeon

ACKNOWLEDGEMENTS

When I took some coffee breaks with friendly squirrels on campus, I used to imagine the moment I write this section, and that moment is now in front of me. Over the last four years of my graduate study in Caltech, I feel myself getting solid both in theory and experiments with respect to environmental chemistry and energy science. I was sincerely happy and watched my enthusiasm soar as I plowed through these fields. My experience of Caltech deeply encouraged me to devote my entire carrier to enhancing the science and technology for environments. I would like to express my gratitude to a number of people who have helped me to get through the Environmental Science and Engineering PhD program at Caltech

First of all, my foremost gratitude should be given to my academic advisor, Professor Michael R. Hoffmann. Without a doubt, he would be the world's best advisor if the *Times Higher Education* compiled a ranking for advisors. Professor Hoffmann has given me a lot of freedom and inspiration to discover my own path of research. He has been always supportive and encouraged me with excessive compliments which were often more than I deserved. Among many other virtues as a mentor, I have to point out his valuable comments stemming from his boundless knowledge on a variety of topics in environmental science, as well as his friendship and kind consideration for my personal life in Pasadena. Prof. Hoffmann allowed me numerous opportunities to teach graduate level classes and to participate in conferences, which definitely cultivated my academic abilities. I also wish to thank the committee members for my qualification exam, candidacy exam, and thesis defense, which include Prof. William A. Goddard III, Prof. John H. Seinfeld, Prof. Mitchio Okumura, Prof. Jess F. Adkins, Prof. Paul O. Wennberg, and Prof. Jared Renton Leadbetter. It was my great honor to make team efforts with the former, current, and future Hoffmann Group members. I enjoyed collaborating with the 'Gates Team', specifically Daejung Kwon, Dr. Yan Qu, Dr. Pei Xiong, Dr. Su Young Ryu, Clement Cid, Cody Finke, Asghar Aryanfar, Dr. Penvipha Satsanarukkit, and many others. The field experience in India will be especially unforgettable. I believe they will continue to devote their efforts to enhance livability in developing worlds. I was lucky to get helpful advice from visiting professors Prof. Wonyong Choi, Dr. Kyung-Guen Song, Prof. Kwhang-Ho Choo, Prof. Hyunwoong Park, and Prof. Jungwon Kim. It was my pleasure to work with visiting students Jieun Shin, Joycie Jiao, Hanspeter Zöllig, and many others. Novel and penetrating comments by Dr. A. J. Colussi were always impressive during the group meeting. Many thanks are due to Dr. Nathan Dalleska for technical support at the Environmental Analysis Center and Dr. Tae-Kyu Lee in Nano-Pac for the collaboration in preparation of electrodes and reactor systems. My thanks to office mates Rifka Kameel, Francesca Riboni, Dr. Himanshu Mishra, and colleagues Dr. Yi Zhang, Dr. Dr. Yubao Zhao, and many others.

I also want to acknowledge the Bill and Melinda Gates Foundation for the financial support for this study and DOW Chemicals for recognizing my work with the 2012 SISCA award. I owed my graduate study to many people in the Korea Institute of Science and Technology, including Dr. Kyu-Hong Ahn, Dr. Seokheon Lee, Dr. Kyung-Guen Song, and Dr. Seok Won Hong.

Finally, I would like to thank my wife Soojeon Yoo for always being next to me. My parents and parents-in-law gave us constant support and bore the long-distance trip to visit us. None of my academic progress and happy life in Pasadena would have been possible without my family.

ABSTRACT

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H₂ production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO₂ (BiO_x/TiO₂). The BiO_x/TiO₂ anode shows reliable electro-catalytic activity to oxidize Cl⁻ to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH_4^+ , urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H₂ with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N_2 and CO_2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl·/Cl₂⁻) based on *iR*-compensated anodic

potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl⁻] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H₂ production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on $Ir_{0.7}Ta_{0.3}O_y/Bi_xTi_{1-x}O_z$ heterojunction anodes with enhanced rate, current efficiency, and long-term stability compared to the $Ir_{0.7}Ta_{0.3}O_y$ anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.

TABLE OF CONTENTS

Dedication	iii
Acknowledgements	iv
Abstract	vi
Table of Contents	viii
List of Figures	xi
List of Tables	XV
Chapter 1: Introduction	1
1.1. Human Needs	2
1.2. Technological Background	3
1.2.1. Wastewater Electrolysis Cell	3
1.2.2. Electrochemical Degradation of Environmental Pollutants	4
1.2.3. Molecular H ₂ Production from (PV-Powered) Electrolysis of Wastewat	ter6
1.2.4. Mixed Metal Oxides Anodes	7
1.2.5. Hetero-junction Anodes with BiO _x /TiO ₂ Functionalities	9
1.3. Objectives and Potential Contribution of the Thesis	12
1.4. Thesis Overview	13
1.5. References	14
Chapter 2: Urea Degradation by Electrochemically Generated Reactive Chlorine S Products and Reaction Pathways	pecies:
2.1. Introduction	19
2.2. Experimental Section	21
2.2.1. Preparation of BIO_x/IIO_2 Anode and Electrolysis Cell	21
2.2.2. Potentiostatic Electrolysis of NaCl Solutions with or without Urea	22
2.2.3. Analytical Methods	24
2.3. Results and Discussion.	25
2.5.1. KCS Generation on BIO_x/IIO_2 Anode	23
2.3.2. Aqueous and Gaseous Products Formed During Urea Degradation	20
2.3.3. Urea Degradation Kinetics in a Divided Cell.	
2.3.4. Urea Transformation Characteristics in Single Compartment Cell	
2.3.5. Byproducts Formation.	
2.5.6. Urea Degradation Pathways	42
2.4.1 Operatification of Moler Flow Potes of Cas Products	43
2.4.1. Qualitification of Molar Flow Kates of Gas Products	43
2.4.2. Inteasurement of Urea Concentration	44
	43

	ix
3.1. Introduction	51
3.2. Experimental Section	52
3.2.1. Electrode Module	52
3.2.2. Characterization of the BiO _x /TiO ₂ Anode	53
3.2.3. DC Powered Wastewater Electrolysis	53
3.2.4. Prototype PV Powered Wastewater Electrolysis	54
3.2.5. Analysis	55
3.3. Results and Discussion	55
3.3.1. Characteristics of the BiO _x /TiO ₂ Anodes	55
3.3.2. Impact of E_a and $[Cl^-]_{ext}$ on COD Removal	58
3.3.3. Impact of Cl ^{\cdot} and Cl ₂ ^{$-\cdot$} on COD Removal	61
3.3.4. Nitrogen Species	65
3.3.5. CE and Energy Consumption for Anodic Reactions	67
3.3.6. Hydrogen Production	70
3.3.7. Prototype (20 L) PV Powered Wastewater Electrolysis	71
3.4. Supporting Information	74
3.4.1. Electrochemical Methods	74
3.4.2. Prototype PV-powered Wastewater Electrolysis	74
3.4.3. Analysis of Total and Fecal Coliform Concentration	76
3.5. References	76
Chapter 4: Electrochemical Treatment of Human Waste Coupled with Molecular Hyd Production	1rogen 81 83
4.7 Experimental Section	85
4.2.1 BiO ₂ /TiO ₂ Electrode Preparation	86
4 2 2 Electrochemical Setun	86
4 2 3 Electrode Characterization	80
4.2.4 Wastewater Sample Preparation	
4 2 5 WEC Experiments	80
4.2.6 Chemical Analyses	
4.3 Results and Discussion	90
4.3.1. Voltammetric Characteristics of the WEC	90
4.3.2 Electrochemistry of the BiO_{2}/TiO_{2} Anode in Dilute Chloride Solutions	92
4.3.3. Electrochemical Kinetics in Dilute Chloride Solutions	97
4.3.4. Electrochemical Treatment of Fresh Urine	101
4.3.5. Chlorine Transformation in the WEC with Model STEs	104
4.3.6. COD Removal Characteristics in WEC with Model STEs	109
4.3.7. Nitrogen Removal Characteristics in the WEC with Model STEs	113
4.3.8. Current Efficiency and Energy Consumption of the WEC	115
4.3.9. Hydrogen Production in WEC with Model STEs	120
4.4. Outlook for the Future	123
4.5. Supporting Information	125
4.5.1. Materials	125
4.5.2. BiO _x /TiO ₂ Electrode Preparation	126
1	

	Х
4.5.3. Electrochemical Methods	127
4.5.4. Model Septic Tank Effluent Preparation	
4.5.5. Analyses	127
4.5.6. Kinetic Equations in the Absence of Oxidizable Pollutants	
4.5.7. Instantaneous Current Efficiency (ICE) for Free Chlorine (FC) ar	nd Chlorate
without the Presence of Pollutants	130
4.5.8. Kinetic Equations in the Presence of Pollutants	130
4.5.9. Instantaneous Current Efficiency (ICE) for COD degradation	131
4.6. References	132
Thantor 5: Di Ti, O Eunstianalized Hatara junction Anada with an Enhance	d Donative
$\frac{1}{2}$ Lapler 5. $Bi_x \Pi_{1-x} O_z$ Functionalized Hetero-Junction Allower with an Elihance	120
5.1 Introduction	1.39 1/1
5.2 Experimental Section	141 1 <i>11</i>
5.2. Experimental Section	1/14 1/1/
5.2.1. $\Pi_{0.7} \Pi_{0.3} O_y / DI_x \Pi_{1-x} O_z$ Hetero-Junction Anoue Preparation	144
5.2.2. Electrodiallysis	145
5.2.4. Surface Characterization	140 1 <i>1</i> 7
5.2.5. A applemented L ife Test	147
5.2. Degulta	147
5.3. Results	14/ 147
5.3.1. Physico-chemical Properties	14/ 154
5.3.2. Voltammetric Characteristics	134
5.3.3. Reactive Unionne Species Generation	138
5.3.4. Formate fon Degradation	101
5.3.5. Stability	103
5.4. Discussion	16/
5.5. References	1/3
Chapter 6. Outlook for the Future	178
6.1. Reaction Network in Wastewater Electrolysis Cell	
6.2. Application Scenarios of the WEC	
6.2.1. Toilet Wastewater Treatment	181
	182
6.2.2 Treatment of Other High Salinity Wastewater	

LIST OF FIGURES

Number		Pa
Figure 1.1.	Schematic diagram of photovoltaic-powered wastewater electrolysis cell for on-site waste treatment for reuse with simultaneous solar energy storage by hydrogen production	4
Figure 1.2.	A schematic diagram of direct oxidation of organics (R) and indirect oxidation mediated by reactive chlorine species (RCS) on metal oxide (MO ₂) electrodes	8
Figure 1.3.	Volcano plot of the overpotential of oxygen evolution reaction (OER) for various types of metal oxide electrode as a function of enthalpy change for lower to higher oxide	. 9
Figure 1.4.	Detailed fabrication procedure for slurry coat and overcoat described in Table 1.1	. 11
Figure 1.5.	Overall composition of this thesis	. 13
Figure 2.1.	Schematic diagram of electrolysis cells (working volume: 60 mL) used in this study	. 22
Figure 2.2.	Current efficiency (circle) and rate (square) of reactive chlorine generation together with current density (triangle) on average as functions of applied anodic potential during potentiostatic electrolysis of 50 mM NaCl solutions in single compartment cell	26
Figure 2.3.	Time profiles of (a) total nitrogen, (b) total chlorine (Cl_{DPD}), (c) NH_4^+ , and (d) NO_3^- concentration during potentiostatic electrolysis of 41.6 mM urea solutions with 50 mM Cl ⁻ (60 mL) in divided cell.	. 20
Figure 2.4.	Time profiles of urea concentration during control electrolysis of 41.6 mM urea solutions in a divided cell.	. 28
Figure 2.5.	Relative intensities of ion fragments in quadrupole mass spectrometer analysis of gaseous products during potentiostatic electrolysis of 41.6 mM urea solutions with 50 mM Cl ⁻ (60 mL) in single compartment cell	. 30
Figure 2.6.	Time profiles of relative intensities for ion fragments m/z 2 and 28 in quadrupole mass spectrometer analysis during potentiostatic electrolysis of 41.6 mM urea solutions with 50 mM Cl (60 mL) in divided cell	32
Figure 2.7.	Time profiles of total nitrogen (circle), total chlorine (triangle), ammonium (square), and nitrate (diamond) concentration together with molar flow rate of N_2 (solid line) and CO_2 (dotted line) during potentiostatic electrolysis of 41.6 mM urea with 50 mM Cl ⁻ (60 mL) in single compartment cell	36
Figure 2.8.	Total Nitrogen (TN) concentrations as functions of specific passed charges during potentiostatic electrolysis of 41.6 mM urea solutions with 50 mM CI (60 mL) in a divided (triangle) and single compartment (square) cell	. 39
Figure 2.9.	Evolutions of ClO_3^- concentration as functions of electrolysis times and (inset) specific passed charges during potentiostatic electrolysis of 41.6 mM urea solutions with 50 mM Cl ⁻ (60 mL) in a divided (triangle) and single compartment (square) cell	40
Figure 2.10.	Proposed reaction pathways of urea degradation by electrochemically generated reactive chlorine species (RCS)	. 40 ⊿2
	generated reactive enforme species (ICCS)	. + 2

Page

xi

		xii
Figure 2.11.	Time profiles of urea concentration during potentiostatic electrolysis of 41.6 mM urea solutions with 50 mM Cl ⁻ (60 mL) as control	45
Figure 3.1.	Cyclic voltammetry of the BiO_x/TiO_2 anode in 30 mM NaCl solution with three repetitive scans at a scan rate of 5 mV sec ⁻¹	56
Figure 3.2.	Evolution of current densities along with variations in CI^- concentration under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added CI^- concentration (0, 10, 30, 50 mM) in electrolysis experiments using	
Figure 3.3.	domestic wastewater samples Time profiles of COD concentration under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added Cl ⁻ concentration (0, 10, 30, 50 mM) in electrolysis experiments using domestic wastewater samples	59 60
Figure 3.4.	Evolutions of (a) total chlorine (Cl_{DPD}) and (b) Cl^- concentration as functions of variations in COD concentration under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added Cl^- concentration (10, 30, 50 mM) in electrolysis experiments using domestic wastewater samples	63
Figure 3.5.	Time profiles of ClO_3^- concentration in electrolysis experiments using domestic wastewater samples under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added Cl ⁻ concentration (0, 10, 30, 50 mM)	65
Figure 3.6.	Time profiles of (a) NH_4^+ and (b) NO_3^- concentration under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added Cl ⁻ concentration (0, 10, 30, 50 mM) in electrolysis experiments using domestic wastewater	"
Figure 3.7.	General current efficiencies for anodic reactions including COD oxidation, formation of N ₂ , NO ₃ ⁻ , ClO ₃ ⁻ , and free chlorine under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added Cl ⁻ concentration (10, 30, 50 mM) in electrolysis experiments using domestic wastewater samples	67
Figure 3.8.	Time profiles for normalized concentration of total and fecal coliform during the photovoltaic-powered wastewater electrolysis cell (PWEC, 20 L) experiment using domestic wastewater (cell voltage: 4.9 V, added Cl ⁻ concentration: 50 mM)	73
Figure 3.9.	Ohmic resistance between anode and reference electrode (R) and electric conductivity of bulk electrolyte as functions of added CI^- concentration ($[CI^-]_{ext}$) in bench-top electrolysis experiments using domestic wastewater samples	75
Figure 4.1.	Dependence of (a) <i>iR</i> compensated anodic potential $(E_a - iR)$ on applied anodic potential (E_a) , (b) cell potential $(E_a - E_c)$ on E_a , and (c) logarithmic current density (<i>J</i>) on the $E_a - iR$ during chronoamperometric experiment in a single compartment electrolysis cell with 10 mM (square, <i>R</i> : 21.9 Ω), 30 mM (triangle, <i>R</i> : 6.8 Ω), and 50 mM (circle, <i>R</i> : 4.8 Ω) NaCl solution (275 mL).	91
Figure 4.2.	Cyclic voltammetry (CV) of a single compartment electrolysis cell with 50 mM NaCl (σ : 5.5 mS cm ⁻¹ , R : 4.5 Ω , pH: 6.6) or 50 mM NaClO ₄ (inset, σ : 5.1 mS cm ⁻¹ , R : 4.6 Ω , pH: 6.6) solution (275 mL)	93
Figure 4.3.	(a) Evolution of the formate concentration and (b) current variation under sequential substitution (2 mL, arrows) with 10 mM NaCOOH (σ : 0.92 mS/cm) in a potentiostatic (E_a : 3 V), single compartment electrolysis cell	95

Figure 4.4.	The variation of chloride (circle), free chlorine (triangle), and chlorate (square) concentration as a function of (a) electrolysis time and (b) specific	
	charge passed during potentiostatic (E_a : 3 V) electrolysis in 30 mM (filled, <i>R</i> : 7.0 Ω) and 50 mM (empty, <i>R</i> : 5.0 Ω) NaCl solution (55 mL)	99
Figure 4.5.	Evolution of (a) chlorine species, (b) organic species, (c) nitrogen species, and (b inlet) cations (Ca ²⁺ , Mg ²⁺) concentration in a potentiostatic (E_a : 3 V) WEC experiment (J: 247 ± 6 A m ⁻² , $E_a - iR$: 2.15 ± 0.02 V, $E_a - E_c$: 5.41 ±	102
Figure 4.6.	Evolution of (a) current density (<i>J</i>), (b) <i>iR</i> -compensated anodic potential $(E_a - iR)$, and (c) cell voltage $(E_a - E_c)$ in potentiostatic $(E_a: 3 \text{ V})$ WEC experiment with model sentic tank effluents	103
Figure 4.7.	Time profiles of (a) chloride, (b) chlorate, and (c) Cl_{DPD} concentration together with (b, inset) scatter plots of increase of chlorate versus decrease of chloride concentration, (d) COD versus chloride concentration, and (e) ammonium ion versus chloride concentration in potentiostatic (E_a : 3 V) WEC experiments with model septic tank effluents	107
Figure 4.8.	Time profiles of COD concentration in potentiostatic (E_a : 3 V) WEC experiments with model septic tank effluents	110
Figure 4.9.	Scatter plot for (a) protein, (b) carbohydrate, and (c) carboxylates concentration versus COD concentration together with (a, inlet) pseudo-first-order rate constants for protein degradation in potentiostatic (E_a : 3 V) WEC experiments with model septic tank effluents	112
Figure 4.10.	Time profiles of (a) TN, (b) NH_4^+ , and (c) NO_3^- concentration together with scatter plots for (a, inlet) TN versus NH_4^+ concentration and (c, inlet) NO_3^- versus removed NH_4^+ concentration in potentiostatic (E_a : 3 V) WEC experiments with model septic tank effluents	112
Figure 4.11.	Variations in (a) COD concentration, (b) TN concentration, (c) nitrate concentration, and (d) chlorate concentration as a function of specific passed charge in potentiostatic (E_a : 3 V) WEC experiments with model septic tank effluents.	117
Figure 4.12.	Average current efficiency for COD, nitrogen, and chlorine conversion, and (b) specific energy consumption for COD and total nitrogen on average in potentiostatic (E_a : 3 V) WEC experiments with model septic tank effluents	118
Figure 4.13.	Dependency of (a) generation rate of total gaseous products (Q , solid circle), (b) volumetric fraction of hydrogen (X_{H2} , void circle), (c) molar generation rate of hydrogen (F_{H2} , square), (d) current and energy efficiency (CE in triangle and EE in diamond) for hydrogen generation on average current density (J) during gas collection (80 – 110 min and 300 – 330 min) in potentiostatic (E_a : 3 V) WEC experiments with model septic tank	101
Figure 4.14.	ensurements	121
Figure 5.1.	Scanning Electron Microscopy (SEM) images of horizontal view for $Ir_{0.7}Ta_{0.3}O_y/Bi_xTi_{1-x}O_z$ hetero-junction anode with variable molar fraction of Bi with magnification of ×5000 (a – e) or ×1000 (f)	124

... X111

Figure 5.2.	Scanning Electron Microscopy (SEM) image (a) of cross-section view for	
	$Ir_{0.7}Ia_{0.3}O_y$ /Bi _{0.3} Ii _{0.7} O _z hetero-junction anode with Energy Dispersive	140
Figure 5.3.	X-ray diffraction patterns of hetero-junction anodes $Ir_{0.7}Ta_{0.3}O_y / Bi_xTi_{1.x}O_z$ with variable molar fraction (x) of Bi (a) referenced with a library for metal avides of interacts (b)	149
Figure 5.4.	Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) analysis of $Ir_{0.73}Ta_{0.27}O_y/Bi_xTi_{1-x}O_z$ hetero-junction anodes with variable molar fraction (x)	151
Figure 5.5.	(a) Current generation during linear sweep voltammetry (scan rate: 5 mV sec ⁻¹) together with (a, inset) ohmic resistance measured by current interruption and (b) integrated charge (Q*) during cyclic voltammetry (scan range: $0.2 \sim 1.0$ V NHE, scan rate: 20 mV sec ⁻¹) with Ir _{0.73} Ta _{0.27} O _y (Pi Ti O hetero innertion and can be the second	155
Figure 5.6.	$G_{x_1}^{T_{1-x}}O_z$ hetero-junction anodes with variable motal fraction (x) Cyclic voltammogram of $Ir_{0.7}Ta_{0.3}O_y/Bi_xTi_{1-x}O_z$ hetero-junction anode with variable molar fraction of Bi (x) referenced with $Ir_{0.7}Ta_{0.3}O_y$ anode	150
Figure 5.7.	(a) Mean current density together with (b) specific rate and (c) current efficiency of reactive chlorine species generation during the course of potentiostatic electrolysis with $Ir_{0.7}Ta_{0.3}O_y/Bi_xTi_{1-x}O_z$ hetero-junction	1.00
Figure 5.8.	anodes with variable molar fraction (x) Time profiles of formate ion oxidation during the course of potentiostatic electrolysis with $Ir_{0.7}Ta_{0.3}O_y/Bi_xTi_{1-x}O_z$ hetero-junction anodes with variable molar fraction (x)	160
Figure 5.9.	Observed pseudo-first-order rate constant of formate ion oxidation with corresponding surface hydroxyl radical concentration during the course of potentiostatic electrolysis with $Ir_{0.7}Ta_{0.3}O_y/Bi_xTi_{1-x}O_z$ hetero-junction anodes with variable molar fraction (x)	164
Figure 5.10.	Variations of cell voltage (a) together with cumulative molar amounts of dissociated Ti (b) and Bi (c) during the course of galvanostatic electrolysis with $Ir_{0.7}Ta_{0.3}O_y/Bi_xTi_{1-x}O_z$ hetero-junction anodes with variable molar fraction (x)	166
Figure 5.11.	Relationship between Q* as a parameter of electrochemically active surface area and crystalline dimension estimated from XRD intensity by Scherer equation.	168
Figure 5.12.	Estimated rate constant for transition from surface bound hydroxyl radical to higher oxide in 50 mM NaCOOH solutions	171
Figure 6.1.	Reaction network in wastewater electrolysis cell	179
Figure 6.2.	Application scenario of wastewater electrolysis cell for treatment of wastewater from a 30 capita public toilet	181

xiv

LIST OF TABLES

Number		Page
Table 1.1.	Fabrication procedure of BiO_x/TiO_2 hetero-junction electrodes used in this study (Chapter 2 – 4).	10
Table 2.1.	The ohmic drop compensated anodic potential $(E_a - iR)$ and current density (<i>J</i>) on average during the electrolysis of 41.6 mM urea solutions with 50 mM the block of $(E_a - iR)$ and $(E_a - iR)$ are solutions with 50 mM to $(E_a - iR)$ and	24
Table 3-1	mM chloride (60 mM) under variable cell types and applied potentials (E_a) Composition of residential-strength wastewater used in this study	34 54
Table 3.2.	Reduction potential (E) at pH 7 and standard reduction potential (E^0) at pH	54
	0 for several redox couples involved in the electrochemical reactions	56
Table 3.3.	The <i>iR</i> -compensated anodic potential $(E_a - IR)$, cell voltage $(E_a - E_c)$, current density (<i>J</i>), and power consumption (<i>P</i>) on average under variable applied anodic potential (E_a ; L: 2.2 V, H: 3.0 V NHE) and added Cl ⁻ concentration ([Cl ⁻] _{ext} ; 0, 10, 30, 50 mM) in electrolysis experiments using	
	domestic wastewater samples	58
Table 3.4.	Sampling time when COD below 30 mg L ⁻¹ was observed (t_{COD30}), concentration of COD, NO ₃ ⁻ , ClO ₃ ⁻ and total chlorine at t_{COD30} , and specific energy consumption (SEC) for unit COD removal at t_{COD30} under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added Cl ⁻ concentration (10, 30, 50 mM) in electrolysis experiments using domestic wastewater samples	69
Table 3.5.	Hydrogen evolution for a given duration $(200 - 230 \text{ min})$ under variable applied anodic potential (L: 2.2 V, H: 3.0 V NHE) and added Cl ⁻ concentration (10, 30, 50 mM) in electrolysis experiments using domestic wastewater samples.	70
Table 4.1.	Composition of the as-received domestic wastewater (DWW), urine, and model septic tank effluent	88

XV