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ABSTRACT

The predictions of the SU(3) flavor symmetry of the strong interactions for the
weak decay of charmed baryons and B-mesons are detailed. It is hoped that compari-
son between these predictions and experiment will shed some light on the underlying
dynamics involved in these weak decays. Although only a few decay modes of the
charmed baryons and B-mesons have been studied experimentally it is hoped that the

next generation of B-factories and even Z-decays at LEP will provide enough events

to test these predictions.
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INTRODUCTION

In the near future it is likely that branching ratios for many of the exclusive decays
of charmed baryon and B-meson will be measured. The decay of B-mesons provides a
unique laboratory for studying weak interactions in so far as they can decay not only
to mesons but more interestingly to charmed and uncharmed baryons. The decays of
D-mesons have been studied extensively and continue to be an active area of research.
For kinematic reasons the D-mesons can decay only to mesonic final states and not
to states containing baryons. Unlike the B-meson decays, the decay of D-mesons
through radiative loop-induced weak operators is highly suppressed. Consequently,

the study of B-meson decays provides a new way to isolate the effects of these one-loop

processes.

Analysis of the available experimental data on D-meson decays indicates that
the predictions of the SU(3)s flavor symmetry are not well satisfied in nature. The
deviations from the predictions are not well understood and are attributed to final
state interactions (FSI), but could conceivably be due to an intrinsic breakdown of
SU(3)s. The data indicates that there are significant final state interactions but is not
precise enough to exclude the possibility of intrinsic violations of SU(3)s. Therefore
it would be useful to look for deviations in the decay of charmed baryons from the

predictions of SU(3)y where it is hoped that the FSI will be smaller than in the

mesonic sector.

The use of SU(3) flavour symmetry in strange decays in the early sixties proved
to be an immensely powerful tool in our understanding of weak interactions and weak
currents. The octet dominance (A = %) rule in such decays was not understood until
the mid seventies when it was realized that short distance strong interactions gave
rise to an enhancement of the octet over the 27 component of the Hamiltonian by a
factor of ~ 5. This is still smaller than the observed enhancement of ~ 20. Below
scale of 1 GeV the strong interactions are not well understood and it is possible that
the enhancement from the strong interactions could in fact be larger than this factor

of ~ 5. Also, one-loop penguin diagrams give rise to a Hamiltonian that transforms



as a 8 with Al = % and it is conceivable that these diagrams dominate the weak
decays below 1 GeV.

In this thesis the predictions of SU(3)s are presented for the decays of charmed
baryons and B-mesons. These relations will be useful in determining the underlying
mechanisms responsible for the weak decays. Analagous to the strange decays, short
distance strong interactions give rise to an enhancement of the sextet component
of the Hamiltonian over the 15 in charm decays. The SU(3)y relations between the
decay modes of charmed baryons may enable this enhancement to be observed. There
are similar observations to be made in the B-meson decays. Penguin diagrams lead
to AI = 0 selection rule for some of the B-meson decay modes. By comparison with
experimental data, the relative importance of such diagrams compared to the tree

level Hamiltonian can be ascertained.

The results in Chapters 4 and 5 are published (with Mark B. Wise) in Nue.
Phys. B326, 15 (1989) and Phys. Rev. D39, 3346 (1989) respectively. The results
of Chapter 3 have been submitted (with Roxanne P. Springer) to Physical Review D.



CHAPTER 1. WEAK INTERACTIONS

The subject of weak interactions covers a vast area of research from the elusive
Higgs boson to determination of the Helium abundance of the universe. In this
chapter I will not attempt to address even a small fraction of this work, but I hope
to introduce the areas relevent to the decay of hadrons containing heavy quarks. The
first section deals with the standard model of electroweak interactions which became
popular in the early to mid seventies after it was shown to be renormalizable. This
theory is not fundamental in the sense that it contains many free parameters that
must be determined experimentally but there is a hope that the ultimate theory
of everything will predict these numbers. On the other hand there is a remarkable
agreement between the experimental observations and theoretical predictions which,
with the possible exception of the Higgs sector and neutrino masses, leads one to
believe that this gives a complete description of electroweak interactions below ~ 100
GeV. The second section introduces the concept of a flavor symmetry when some of
the quarks have masses much smaller or heavier than the scale of strong interactions.
In section 1.3 the methodology for constructing of the predictions of a flavor symmetry
is presented by explicit calculation of the rates for semileptonic hyperon decay in terms
of two reduced matrix elements. These predictions are then compared with the large
body of experimental information on the subject. The agreement between theory and
experiment is surprisingly good, indicating that flavor symmetry may be a useful tool
in understanding weak decays of other hadrons. In section 1.4 the method by which
explicit SU(3)s breaking is implemented is discussed. The breaking is a result of the
inequality of masses of the three light quarks. It is hoped that the relevent expansion
parameter for the breaking is ms/1 GeV. The semileptonic decay of the hyperons is
presented as an explicit example.

1.1 The Standard Model of Electroweak Interactions

The standard model [1.1] for strong, weak and electromagnetic interactions is
based on the gauge group SU(3), @ SU(2);r ® U(1)y. The minimal particle content

consists of the gauge bosons and the matter fields shown in Table 1.1.



Table 1.1: Matter fields in the Standard Model

Field SU(3). SU@2)L U(l)y Spin
= (;i) 3 2 1/3 1/2

uhy 3 1 4/3 1/2
b | 3 1 213 1/2
h=12 1 2 -1 1/2

e 1 1 4 1/2
_ (9t

6= (%) 1 2 1 0

The superscript 2 on the matter fields is a generation index and takes the values
¢ € {1,2,3}. The subscripts L and R denote left handed and right handed respec-
tively. Anomaly cancellation in the fermionic triangle diagrams uniquely constrains
the hypercharge assignment Y of each matter field. The complex scalar field ¢ is
necessary to break the SU(3).® SU(2)r ® U(1)y symmetry to SU(3).® U(1)g which
describes nature at scales below ~ 100 GeV. Electromagnetism is realized in the un-

broken U(I)Q; symmetry and the SU(3), symmetry is that of the strong interactions.

The Lagrange density for the system is composed of five terms
L=Ly+Lg+Lgp+Ly+Lgr . (1.1)

These terms correspond to the contributions from the fermions, Higgs, gauge bosons,

Yukawa interactions and the gauge fixing components respectively.

Firstly, we will examine the Higgs sector which is responsible for the symmetry

breaking [1.2]. The Lagrange density is
Ly=D"¢"Dys—V(9) , (1.2)
where D, is the covariant derivative defined as
= o L 'YB 3
Duzaﬂ—zagr Y, —1-2—g - (1.3)
The Wi(z) and B,(x) are the gauge fields associated with the SU(2)y and U(1)y
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symmetries respectively and 7% are the Pauli spin matrices. The potential V(¢) can

be written as
2
V(g)=A(ele—v?) (1.4)

which has a global minimum at ¢T¢ = v2. The global SU(2); ® U(1)y invariance
of the lagrangian allows us to rotate an arbitrary vacuum expectation value (vev) of
the field (¢) into the form (¢) = (S) Upon the field redefinition ¢t — ¢ and
#° — v+ ¢° Eq. (1.4) becomes

V($) = A (617 ¢F + 6™ 6% + 20Red?)” . (1.5)

Notice that there are no terms quadratic in ¢+ or Im¢? indicating that these are
massless modes. These are the Goldstone bosons associated with the breaking of
the global SU(2); @ U(1)y to U(l)g. However, a local SU(2); @ U(l)y gauge
transformation can be found that removes these fields at the expense of giving mass
to three of the four gauge bosons associated with the SU(2); ® U(1)y symmetry.

The field Reg® cannot be gauged away and is found to have mass of V2\v, this is the
Higgs particle.

The kinetic term for the scalar field in Eq. (1.2) gives rise to the mass term for

the gauge bosons. Evaluating this at the vev it can be shown that
. 1 2 . 2
D¥($) Dy(g) = J0° [ W + W2 + 1gW,i — o' Bul’] . (1.6)

If we define

1 5 1
WE=—W!+W? and 2°= ——=(gWW2-¢'B,) , 1.7a,b
! \/2( I I ) I gz +g,2 (g I g IJ') ( )

then we can rewrite the mass terms as

g
2

1 455 1

MyWIW=r 4 “M2Z,Z" = §g-v~ij-ﬁ i 24 P2, 2P (1.8)



Notice that the combination of fields orthogonal to that of the Z°

1

remains massless, this is identified with the photon field of electromagnetism. The

generator associated with this field is

Ay = (glwﬁ +9Bu) (1.9)

Q=x("*+Y) . (1.10)

N =

This is the only combination of generators that the vacuum doesn’t transform under.
The Weinberg angle éyy is introduced as a free parameter that relates the U(1)y and
SU(2) 1 coupling constants viz ¢’ = gtan

The kinetic term of the scalar field gives rise to interaction terms between the
Goldstone bosons and the longitudinal component of the gauge bosons. These in-

teractions can be removed continuously by addition of the t’'Hooft gauge fixing term

[1.3]

ar = 36 3 (W - igacii@tsns - ¢'roio1)

o ("B, —ig oY o — oy (an) (111)

o
o~

In the unitary gauge where ( = oo the Goldstone bosons have an infinite mass and
therefore decouple from the theory. However, in Feynman gauge where { = 1 they

have the same mass as the corresponding gauge field.

The contribution to the Lagrange density from the gauge fields LgF is given by

Lop = H""“’H e ZB“”B,,,, - —G“”“’G'H,, . (1.12)

The field tensors W2,, By, and G

sors are given by

%

We, = 8,W2 — 8,Wg + g Wiwy (1.13a)



Bﬂy - auBy —_— 6;,3# 3 (1.136)

and
G5, = 0GS — 8,G% + gs f*"GLGS (1.13¢)
where €%¢ is the totally antisymmetric tensor, f®*¢ are the antisymmetric structure
constants of SU(3) and G, are the gluon fields associated with the strong interactions.

The kinetic terms of the fermions in Eq. (1.1) gives rise to a Lagrange density of

Lr = iQ 7" DuQl +ilipy" Dyulp+id gy Dudig +iL11* Dy L +igky* Dyely , (1.14)

where the covariant derivative defined for the quark fields in Eq. (1.3) also has a
strong interaction contribution and becomes

Dy =8, — i%gr“‘Wg ~ i%g'YB,‘ g (T®3GE (1.15)

where (T)F are the generators of SU(3). The color indices will be suppressed for
the rest of this discussion. In terms of the gauge field mass eigenstates, the covariant

derivative can be written

1
cos Oy

: e 1 . o
D, = aﬂ—zgr"'lV;’—ng Wi —i (72-73—s1n2 OwQ)Z,—igsinOwQA, , (1.16)
where 7% = L (7! £ ir?).

The terms discussed above do not give the fermions of the theory mass terms.
To do this we need to introduce Yukawa couplings between the fermions and the

complex scalar field. The most general set of renormalsable Yukawa couplings that

can be written down is
Ly = g/ upe" Q) + g dpo' QY + gPeRe' Ly (1.17)

where the unknown couplings ¢, = give rise to mixing between the generations and

. 1.18
E:(-1 o) ' (1.18)

Mass terms for the fermions are generated when the scalar field develops a vev.



If My 4. are the mass matrices for the “up-type” quarks, “down-type” quarks and

charged leptons respectively then these are related to the Yukawa coupling constants
by

Mi, =g 0 . (1.19)

Assuming that there are only three generations of particles [1.4] and using the gen-

eration basis (u,e,t),(d,s,b) and (e, u,7) we can redefine the fermionic fields and

diagonalize the mass matrices M, 4.. Let
, up o VL dy s VEE, dy o ViRd, , (1.20a,b,¢,d)

and similar transformations for the leptons. These unitary matrices diagonalize the

mass matrices to (M, — VJRMuVuL)

my; 0 0 mg 0
M, = 0 me 0 , Mg= 0 ms 0
0 0 my 0 0 my
and
me 0 0
M, = 0 my, O . (1.21a,b,¢)
0 0 mr

Upon performing this transformation on the fermion kinetic term we see that the
neutral currents remain diagonal by the unitarity of the transformations. However,

the charged currents do not remain diagonal. In the mass eigenstate basis the charged

current interaction becomes

d

where K is the Kobayashi-Maskawa matrix [1.5]. Since this matrix is not determined

theoretically we can parametrize it in terms of four parameters 01,0;,03 and ¢ as



follows

1 —3S1€3 —3S8183

6 cicas3 + sacze’d s (1.23)
é

K = VJLVdL = | sie2 cicacy — saszet

]

8182 c€182¢3 + c283€'  ¢€182583 — cac3€’

where s; = sinf; and c¢x = cos 0. The angles 0. are chosen to lie in the first quadrant
where their sines and cosines are positive. Experimental information on nuclear j-

decay, semileptonic hyperon decays and semileptonic kaon decays [1.6] implies that

The magnitude of the angles 6, 3 are extracted from experimental information on the

lifetime of the B-meson and semileptonic B decays. This gives
(53 + s2 + 2s3s3¢5)7 ~ 0.05 , and s3 < 0.5 . (1.25)

1.2 Flavor Symmetry

Let us now consider the strong interaction between quarks, suppressing elec-

troweak indices the Lagrange density is

Laop = G090 — igs(T2GS) s + miTid' (1.26)

1

For a system of n quarks of equal mass there would be an exact SU(n)y flavor sym-
metry. Further, if m quarks had masses much less than the QCD scale (the scale
at which QCD becomes strong and the scale that determines the dynamics of the
system) then the system would have an approximate SU(m)y flavor symmetry. This
is the situation realized in nature [1.7]. The mass of the three lightest quarks are
my ~ 5 MeV/c?, mg ~ 10 MeV/c? and my ~ 125 MeV/c? while the QCD scale is
~ 1 GeV/c?. Since the difference between the mass of the up and down quarks is
small (~ 5 MeV/c?), as well as being much less than the QCD scale an SU(2)s sym-

metry is expected and indeed one is observed experimentally. This is the well known



isospin symmetry and it is observed to be very good. The mass of the strange quark,
although much bigger than that of both the up and down quarks is still much smaller
than the QCD scale, consequently one expects an approximate SU(3)y symmetry to
exist. Since the dynamics of the system are determined by the QCD scale an SU(4)y
flavor symmetry is not present since the charm quark mass of 1.5 GeV/c? is much
greater than the QCD scale. In systems containing a heavy quark and light quarks
there is a further SU(3)f symmetry involving the charm, bottom and top quarks
[1.8]. The masses of these quarks are all much greater than the QCD scale and as
far as the QCD dynamics are concerned the heavy quark acts as a static color source

[1.9]. Consequently the dynamics is essentially independent of the mass of the heavy

quark.

The weak charged current, whose interaction Lagrange density is given in Eq.
(1.22) in general has non-trivial transformations under the SU(3); group. This be-
comes apparent by examining the strangeness changing process s — ulV ™ which
transforms as a 3 ® 3 under SU(3);. This group structure decomposes to 8 & 1, and
since the quark flavor is changed at this vertex this particular current transforms as
an 8 under SU(3);. We can use the SU(3)s symmetry of the strong interactions
to relate decays rates between reactions if the particles involved lie within the same

SU(3)s multiplets.

1.3 SU(3)s Predictions for Semileptonic Hyperon Decay

The method used in constructing SU(3); predictions between decay rates is
demonstrated by examining semileptonic hyperon decays first discussed by Cabibbo
[1.10]. The convention for SU(3)y representation will be that the triplets are denoted

by column vector with upper indices and the antitriplets are row vectors with lower

indices,
¢=1d and @ = (u,d,3) . (1.27a,b)

All other representations can be constructed from the triplet and antitriplet. The

10



lowest lying baryons are elements of an octet and are represented by

0/v2 + A°//6 T+ P
hi = 5 —X20/V2 4+ A"/\V/6 n : (1.28)
=0 —2A%//6

where the conjugate operator E; can be found by “barring” the elements and trans-

posing. Below the weak scale, the operator responsible for the semileptonic decay of

light quarks is given by

g 1 B
0" (9\/5) M3, ["°S"13°'“r“(1 — 75 )uaTyu(l — 75)e

— sin 0 cos 035%v* (1 — vs5)ua?yu(l — 75)e] + H.C. . (1.29)

There are no QCD corrections to this operator from momentum scales between the
weak scale and the QCD scale as the operator has the form of a conserved current
as far as the color indices are concerned. This operator transforms as an octet under

SU(3)f and is represented by a 3 x 3 matrix as

0 1 —381
Hi=[00 0 ; (1.30)
0 0 0

where we have used the small angle approximation for the mixing angles, ¢; = ¢z =

¢y = L.

We are interested in evaluating matrix elements of the form
(h'|Heg|R) (1.31)

and by using the Wigner-Eckart theorem can decompose this into a Clebsch-Gordan
coeflicient and an irreducible matrix element. The effective Hamiltonian Heg is con-

structed from h;, ?1_3 and H; by forming all the possible tensor contractions of the

11



three operators that transform as singlets under SU(3)s. There are only two distinct

contractions and so the effective Hamiltonian becomes
a7? rrc 71 b r7cC
H.g = ahyh H; 4+ Bhyh H, (1.32)

where a and 3 are the reduced matrix elements. After doing the contractions the

operator involving the Cabibbo-allowed processes can be written as

Ha=a [2— (K°/\/6+§°/\/§) + (AO/\/(_S— 20/\/5) §¥+ﬁn]

+ 6 [5F (A°/VE+5°/v2) + 57 (R°/vV6-5°/v2) +=°59] . (133)

A similar expression can be found for the Cabibbo-suppressed decays. We interpret,
for example, A as an operator that annihilates a A particle and A as an operator that

creates a A particle. We can tabulate the rate for each process in terms of the two

unknown reduced matrix elements

Table 1.2: Rates for the Semileptonic Decay of Hyperons

Process Rate

n — pe~ Ve |of?
- = A7, %|a + B)?
I- — 27, %\a = g
0 Ste7, Y- a+ g
=" > 2V 18]
= = Ale 7, siE| — a+ 28|
- = %7 3%%|—a|2
20 o e 7, s3] — af?
A® — pe~ v, 81512 — B|?
20 = pe~ 7, s(f%|—ﬂ|2
£~ — ne v, s?| - 8)*

12



In such decays there are at most six different Lorentz structures that contribute

to the decay amplitude, which can be written as

M= g\/% (s::)r?g) a(h') [fi(d®)7* +if2()o" q + f3(a%)g"

+ 91(6*)7* s + i92(a%) 0" quvs + g3(q°)a"ys] u(h)

a(e)yu(l —s)o(ve) (1.34)

where 0 is the Cabibbo angle, G is Fermi’s coupling constant and g¢* is the four
momentum transfer in the decay. The transversality of the vector current from CVC
(0,V* — q,V*) means that ¢%f3(¢?) = 0 from which we conclude that f3(¢*) = 0.
The operator o#"~s5 is odd under the G-parity operation (as is v5). Therefore, since the
strong interactions cannot induce G-parity odd operators, the form factor g2(¢?) is set
to zero (for a discussion see ref[1.11]). When this hadronic current is contracted with
a leptonic current (e or p) the contraction involving g3(q*)g" picks up a factor of me .
This term is small compared to the scale of the hyperon system, and we neglect it. The
weak magnetism term f2(¢?)o#¥q, is suppressed by the mass of the hyperon system
and is consequently negligible. This leaves two possible lorentz structures contributing
to the amplitude. They are the vector and axial vector operators. Therefore the

transition amplitude can be written as

= % <C050> a(h') [A1(g*)7" + 91(@%) 7" 5] w(h)a(e)yu(l — vs)u(ve) . (1.35)

’M -
sin @
In the limit as ¢> — 0 we let the form factors become Cy = f1(0) and C4 = g¢1(0).
Both of these form factors can be decomposed into reduced matrix elements and

Clebsch-Gordan coefficients.

The vector charges are generators of the SU(3) s group and so transitions between
octet elements & and j are equal to the structure constants of SU(3) fi;x. Further,

since S50 and A” are in different multiplets of the SU(2) isospin subgroup of SU(3)

13



the vector current must vanish for the transition ¥ — A. This is verified experimen-
tally [1.6] where it is found that the ratio of vector to axialvector contributions to
the decay amplitude is Cy/C4 = 0.01 & 0.1. Consequently, we see from Table 1.2
that this condition determines that ey = —fy but does not constrain the axialvector
parameters. Neutron (-decay is used to determine the the reduced matrix element

for the vector transition. The matrix element for the process is

(plv¥|n) = I +1) - L(I,+1)=1 . (1.36)

Thexl‘efore, we find that ay = 1 and the vector component of all the other transitions
are related. Both the vector and axial vector form factors have been determined
precisely for decay A° — pe~ 7. where it is found that the vector coupling Cy is
|Cy| = 1.229 4 0.035 and the axial vector coupling C4 is |C4| = 0.903 £ 0.016, The
SU(3)y prediction for the vector coupling is Cy = %(—QQ’V + Bv) = —1.22 which
is in remarkable agreement with the experimentally determined value. Theoretically,
this result is not that suprising as it was shown by Ademollo and Gatto [1.12] that

the vector couplings are protected, up to second order in the breaking parameter,

from violations in SU(3);.

The measured value of Cy/C,4 for the n — pe™ 7, and ¥~ — ne~v, decays
determines that a4 = 1.25 and 84 = 0.36 £ 0.05. These values then predict that C4
for the A — pe~7, is —0.87 £ 0.02 which is to be compared with an experimentally
determined value of Cy = —0.903 which is again in very good agreement. In these

decay processes predictions based on SU(3)y are correct at about the 5% level.

1.4 SU(3)s Breaking

We know from the pattern of masses of the light hadrons that SU(3)y is only an
approximate symmetry. The symmetry is broken by the nondegeneracy of the light
quark masses, mg > my, mg. One may hope that the relevent expansion parameter is
ms/1GeV, and use perturbation theory to estimate the effect of the breaking on the

SU(3)s relations. This will be demonstrated explicitly for the case of semileptonic
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hyperon decays. The mass term in the QCD Lagrange density given in Eq. (1.26)

induces a perturbing term that transforms as an octet under SU(3)s and can be
written as
0 0 0
PP=]10 0 0 y (1.37)
0 0 my
where m is the strange quark mass in units of GeV/c?. The Ademollo-Gatto theorem
[1.12] protects the vector relations from breaking terms, but not the axial vector

relations. To find the effect of the breaking we form all the possible contractions of

y F;, Hj and Pj. Therefore, the effective SU(3)s breaking Hamiltonian is

HYek — o HORP HSPY 4 b REREHSPY 4 Ry HE RS PY

+ d.hSHRSPY 4 e ROTSPSHE + f.hOT PSHY

+ g he PYRSHE + hhEHEPSEY (1.38)

Examining the Cabibbo-allowed decays, we see that H} P! = 0 reducing the number

of contributing elements to four. Expanding Eq. (1.38) gives

9 2—
Hbpak (F:/iﬁ) [c.ﬁn +d='= - g.\/gf*z\" = h.\/;A“E-] . (1.39)

which implies that the isospin relation I'(S~ — X%~ 7,) = I'(£° — Tte~7,) is not
altered to first order in the breaking parameter. This is to be expected since in the
quark model picture the strange quark is merely a spectator in this decay. Therefore,
assuming that the reduced matrix elements are not significantly larger than a and 3,

the axial vector relations are expected to be good at the ~ 10% level.

In general it is found that SU(3); symmetry works typically at the 30% level in
low energy physics. In the subsequent chapters we will investigate the predictions of

SU(3)y for the decays of hadrons containing a bottom or charmed quark.
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CHAPTER 2. D-MESON DECAYS

The D mesons, D¥, DY and D7, are the simplest bound system with a heavy

quark constituent. It is found that the D meson masses are [1.8]

Mp+ = 1869.3+0.6MeV , Mpo = 1864.5+0.6MeV and Mp+ =1969.3+1.1MeV .

(2.1a,b,¢)
The mesons are not heavy enough to decay to final states containing baryons. They
decay nonleptonically to mesonic final states or semileptonically to states with one

or more mesons and either a eve or pv, pair. The lifetime of these mesons has been

observed to be [1.§]

Tp+ = 1.069 £ 0.033ps , 7po = 0.428 4+ 0.011ps and Tpt = .436 £ 0.036ps

(2.2a,b,¢)
2.1 Charm Changing Weak Operators

The interaction Lagrange density in Eq. (1.22) determines the transformation
properties of the effective Hamiltonian for the weak decay of charmed hadrons. The
Ac = —1 nonleptonic decays arise from the weak Hamiltonian with flavor quantum
numbers (c3)(d@) for Cabibbo allowed decays, s1[(cd)(du) — (¢5)(s%)] for Cabibbo
suppressed decays and s (cd)(s@) for doubly Cabibbo suppressed

These operators are different components of the same Hamiltonian which can
be decomposed into irreducible representations of SU(3)s. An example of this is the

decomposition of the component responsible for the Cabibbo-allowed decays (denoted

with a superscript (a)),
(c5)(du) = O + O (2:8)
where

Oy = ~[(c3)(dw) — (cu)(ds)] (2.4a)

SR

transforms as a 6 under flavor SU(3)s and

0 = L((c3)(dm) + (cu)(d5)] (2.4

P
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transforms as a 15 under flavor SU(3)5. The Cabibbo-suppressed operator has a
similar decomposition into Oé") and OSI%), as does the doubly-Cabibbo-suppressed
operator into @gds) and (9%3). Perturbative QCD corrections arising from momen-
tum scales between the W-boson mass and the charmed quark mass give rise to an

enhancement of the coefficient of Og over the coefficient of Oz by

[a,(m;,))] = [as(mc)] B i (2.5)

ag(mw as(mp)

in the effective weak Hamiltonian [2.1]. Consequently it is possible, analagous to
octet dominance in the weak decay of strange particles, that the sextet component of

the Hamiltonian may dominate charmed meson decay.

The operator Oz can be represented in tensor notation as H2(15), which is

traceless and symmetric on its upper indices. It has non-zero elements
HP(15) = H3Y(15) = +1 (2.6a)
for Cabibbo—%llowed decays
Hy*(15) = H3'(15) = —H3*(15) = —H3'(15) = s1 (2.60)
for Cabibbo-suppressed decays and
H3*(T5) = H3'(T5) = —si (2.6¢)

for doubly-Cabibbo-suppressed decays. Similarly, Qg can be represented in tensor

notation as H,;(6) which is symmetric on its indices and has nonzero elements
H33(6) = +2 (2.7a)
for Cabibbo-allowed decays

H13(6) = H32(6) = —2s) (2.70)
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for Cabibbo-suppressed decays and

H33(6) = +2s2 (2.7¢)

for doubly-Cabibbo-suppressed decays. These can be written with the same tensor
structure as the 15 by contracting with the totally antisymmetric tensor €qp.. These
then can be written as H13(6) = —H31(6) = —1 for Cabibbo-allowed decays H3%(6) =
—H2(6) = —H3*(6) = H3'(6) = —s; for Cabibbo-suppressed decays and H3?(6) =
—H31(6) = s? for doubly-Cabibbo-suppressed decays.

The Ac = —1 semileptonic decays arise from the weak Hamiltonian with flavor
quantum numbers [(c3) + s1(cd)](I"7;) where I denotes a lepton (I = e, u but not 7).

This operator transforms as a 3 under SU(3)s and has nonzero elements

H}3)=1 (2.8a)

for Cabibbo-allowed decays and

H*(3) = s1 (2.8b)

for Cabibbo-suppressed decays.
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2.2 Two-Body Nonleptonic D-Meson Decays

First, we will review the predictions for the decay mode D — MM where M
represents a member of the pseudoscalar octet. These results have been derived

previously [2.2]. The D mesons transform as an antitriplet under SU(3) and can be

represented as
D, = (ct,cd,c5) = (D°, DY, D}) . (2.9)
The octet of the lightest pseudoscalar mesons is represented as

7°/v2+n°//6 nt K+
Mg T —7%/v/2 4+ 3°/ /6 K9 . (2.10)
K- K —/2/37°

We have assumed that the SU(3)f octet isoscalar eigenstate is very nearly the mass

Il

eigenstate corresponding to the 7° (i.e. we have neglected n — 5’ mixing). There are
three independent contractions that can be constructed from the two meson octets,
the charmed .meson antitriplet and the Hamiltonian. Therefore we can write the

effective Hamiltonian as
Hegp = a.D H®(T5)MEMS + b.Do ME HS(T5)ME + c. D HE (6)MEMS ,  (2.11)

where a,b and ¢ are unknown reduced matrix elements [Note: We have used the
identity DaMg’ch(G)]\t[C‘l + DaHgb(ﬁ)Ai’glﬁfg = 0 to reduce the number of reduced
matrix elements from four to three]. The results of expanding this Hamiltonian can
be found in Table 2.1. It is interesting to note that the decays D} — #%z* and

D° — T°K?® are forbidden by the SU(3); symmetry.

There is only one relation amongst the Cabibbo-allowed decay rates and it is due

to the full SU(3); symmetry,
=0 1 —0
(D" - Ky’ = §I‘(D° - K %) . (2.12)

However, if we assume that the sextet component of the Hamiltonian dominates the
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decay rates then the following relations arise

I(D° - K~x+) = 6[(D° — Ky°) = 2r(D° » K =)

- gF(Dj S atn®) = T(DF — KEY) . (2.13)

Experimentally, the branching ratio of several of these decay modes have been mea-

sured. It is seen that [1.8, 2.3]

Br(D} - K K+)=(21+0.6)x 1072 , (2.14a)
Br(D® — K~ z%) = (3.77 £ 0.35) x 1072 (2.14b)
Br(D* - K'nt)=(3240.6) x 10~ (2.14¢)
Br(D® > K% = (1.5£0.7) x 102 | (2.14d)
and
Br(D" —» K % = (3.2+£0.6) x 1072 . (2.14e)

0 p—_+

The ratio of the latter two rates is HD—_'A_{'—I
[(D°—F " x°)

with the SU(3)y prediction assuming sextet dominance of 2. The error on this result

~ 1.2 + 0.3 which is to be compared

1s sufliciently large not to allow a definite conclusion to be drawn although it hints

strongly that, in fact, the sextet component of the Hamiltonian is not dominating the

decay amplitude.
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There are several relations amongst the Cabibbo-suppressed decay rates, they are
[1.5]

D - xtn")=T(D° - K*K™) (2.15a)
I(D° = %% =T(D} — »°K*) (2.150)
(DY — 7%%) = gI‘(D” — 7%x%) (2.15¢)

(D - K*K°) =T(DF - ntK°) . (2.15d)

These are all due to the full SU(3); symmetry. Two of the decay modes appearing

in these relations have been observed experimentally. It is found that
Br(D® - at7r~) = (1.34£0.4) x 1073 (2.16a)
and
Br(D® - KTK~)=(45+0.8) x 107 . (2.16b)

0 KR . .
The ratio of the decay rates is then %%——-—0;% = 3.5+ 1.2 which is to be compared
with the SU(3)y prediction of unity. There seems to be a large descrepancy between
these two numbers but they still are within 20 of each other. Amongst the relations

that arise from assuming that the sextet component of the Hamiltonian dominates

the decays is
(Dt > KRR =T(D° — n¥r—) . (2.17)

Experimentally, it is found that
Br(D* > R°K+)= (84 +24)x10~% . (2.18)

Conversion from branching fractions to decay rates is done by multiplying the branch-

ing fraction by the total width, which is equivalent to dividing by the lifetime. There-
+ _ 70 o+ .

fore, the experimentally observed ratio of decay rates is %jl = 2.7%£1.1 which

is to be compared with the sextet dominated SU(3)s prediction of unity.
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There are several relations between Cabibbo-allowed and Cabibbo-suppressed de-

cay rates. One of the relations is

SIT(D° - K~ nH) =T(D° »xtx")=T(D° - KtK™) , (2.19)

and the Cabibbo-suppressed decay mode has been observed to have a branching

fraction
Br(D® - K~ 7%) = (1.3+0.4) x 107° . (2.20)

The ratio SHE=E "7 — 1.4 4 0.4 is compatible with the SU(3); prediction of 1
but is only marginally compatible with the prediction for the ratio to a K+ K~ final
state, (as was discussed above). There are relations involving the doubly-Cabibbo-

suppressed rates but they are too small to be experimentally observable at this time.

The results for the decays D — M M cannot be straightforwardly carried over to

the decays D — V'V where V is the lowest lying vector meson octet

P /N2 + Vo /6 pt B
Vo= p- —po/\/§ + Vg/\/g K0 - (2.21)
K- x —/2/3V%

The octet state |Vz) = (1/V6)(|ut) + |dd) — 2|s5)) mixes with the singlet state
Vi) = (1/v3)(|um) + |dd) + |s3)) because of the near degeneracy in the masses. The
mass eigenstates |¢) = |s3) and |w) = (1/v/2)(|u@) + |dd)) are linear combinations of

these two states. Explicitly, the states can be written as

[Vs) = \/%(Iw) — Va4 (2.220)

and

1

Vi) = \/g(ﬂlw)‘nt 18)) . (2:22b)

In addition to the three reduced matrix elements contributing to this process (found

from D — MM by substituting M — V) there are two from the contraction formed
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with the singlet Vj. The terms are
HY: = e. D, H®(T5) VWi + f.D HR(6)VEV: . (2.23)

Only two of the decays D — V'V have been studied experimentally [1.8, 2.3]. It is

seen that

Br(D® - K = (1.2+1.2) x 107 (2.24a)
Br(D} 5> K K*Y)=(4.6+24)x1072 . . (2.24b)

The effective Hamiltonian describing the decay D — V M is written in terms of

10 reduced matrix elements, it is
Hegr = a.D HE(TB)MEVE + b.D H(T5)VEMS + c. Dy M HiE(T5) VA
+d. DoV HE(T5)ME + . Do H(6) MV + f.Do HP(6) Vi M
+ g.D  MEHY(6)V.E + h.D Vi HY (6) M2
+ 5. D HE(T5)M{V; + t. D HE (6) MV, . (2.25)

Among the Cabibbo-allowed decays, tabulated in Table 2.2, there is only one

relation and it is due to isospin,
I‘(D;” — p+7r0) — 1"(D;F — p01'r+) . (2.26)

There are three more relations when sextet dominance is assumed, they are

T(D° — ptK—)=T(DF —» K°KY) (2.27a)
I(D° — x+K*~) = (D —» K°K**) (2.270)
(DY - »tRK"°) = T(D* = p*K") . (2.27¢)

The branching fraction for ten of these decay modes have been measured to be [1.8,
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2.3]

Br(D} — ¢rt) = (2.0+£0.4) x 1072 | (2.284a)
Br(D® - ptK™)=(82+1.2)x 1072 | (2.280)
Br(DF - K°K+)=(1.71+0.3) x 1072 (2.28¢)
Br(D* - Kz%) = (1.74+08) x 1072 | (2.284)
Br(D* = p*K°) = (6.6 £ 1.7) x 1072 (2.28¢)
Br(D° — K ¢) = (0.99 £ 0.24) x 10~ | (2.281)
Br(D® - R'w) = (3.2+1.5) x 1072 | (2.28¢)
Br(D® - K°p%) = (0.75 £ 0.5) x 1072 , (2.28h)
Br(D® —» K* z%)=(5.2+1.5) x 1072 (2.281)
Br(D® - Kz% = (2.6 £0.8) x 1072 | (2.285)

I'(D°—=p*K )
T(DE—K"K+)
. LD+ —Kxt) £
SU(3)s prediction of 1. Conversely, —~ ~ 4 £+ 2 which is 20 away from
[(D+—ptK")
the SU(3)s prediction of 1. The results for the Cabibbo-suppressed and doubly-

From these we find that ~ 5 % 1 which should be compared with the

Cabibbo-suppressed decays are not tabulated. There are several relations between
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the Cabibbo-suppressed decays, they are

I(D° - ptr)=T(D° - K**K~) (2.29a)
(D° - K'K® = (D® —» K" (2.296)
r(D® = p~x)=T(D° = K*~K*) , (2.29¢)
(Dt - K°K+)=T(DF = K*%+) . (2.294)

Experimentally, several of these decay modes have been studied, and it is found that

Br(D® - K* K%)= (084+0.5)x10"% |, (2.30a)
Br(Dt - n%¢) = (14£0.2) x 1072 (2.300)
Br(DY = p%r%) = (0.240.1)) x 1072 | (2.30¢)
Br(D¥ — K'°K*) = (0.56 + 0.20) x 102 . (2.30d)

2.3 Semileptonic D-Meson Decays to Three-Body Final States

The Hamiltonian for the semileptonic decay of D-mesons is given in Eqs. (2.8).
There is only one singlet in the tensor product 3 ® 3 ® 8 and hence there is only

one reduced matrix element determining the semileptonic decay rates. The effective
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Hamiltonian for the system is
Heg = a.D MEHE(3) . (2.31)
From this Hamiltonian we find the following relations

siIT(D® — K—etv,) = siT(DT — Foe"'ue) = gs%F(D:f — n%%v,)

=T(D° = 7~ etw) = 6T (DT — p%etuv.) = 2I(DF — 7%t re)

=T(D} - K%tv,) . (2.32)

These relations are easily converted to the semileptonic decay to a vector meson and

leptons as was done before. Experimentally, the branching fractions obtained to date
[1.8] are,

Br(D® - K~ety) = (4.1+0.8) x 1072 | (2.33a)
Br(D® — 7=etv,) ~ 0.4 x 102 | (2.330)
Br(Dt - K'etu,) = (5.4 +£2.4) x 1072 . (2.33¢)

This data seems to be in agreement with the SU(3)s predictions. The branching
ratio of the DT decay to a muonic final state is approximately twice that expected
by universality and seems not to satisfy the prediction. This deviation will probably

vanish with better data.

2.4 Large N, Limit and Factorisation of Amplitudes

A model of hadronic interactions that has been extensively studied is one in which
the number of colors N, is treated as an expansion parameter (or rather 1/N;)[2.4,
2.5]. Of the many interesting results of this model in the limit of large N, is the

factorization of weak amplitudes. Let us consider the decay D — ww. The leading
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planar diagram with no gluonic corrections is shown in Figure la. There are counting

rules that apply to these graphs. For each external particle there is a —== that appears

VN
in the amplitude. For each loop there is a factor of N, that arise from the possible
colors circulating in the loop and for each fermion-gluon vertex there is a factor of
7%—. A gluon is represented by two parallel line (colors) that break the fermion line

at the vertex. The N, counting for Figure la gives rise to an amplitude

3 1
A x (\/lﬁ) NZ=NZ . (2.34)

If we examine the diagram in Figure 1b where the gluon is transferred between quarks

in the same meson we find that the amplitude for this diagram is

3 2 .
A x (fiv‘) (\/’;T) N3 = ®NZ (2.35)

which is the same order in N, as the leading graph and hence survives in the limit as

N, — oco. However when we perform the same power counting on the graph shown

in Figure 1lc. which does not allow the amplitudes to factorise we find that

Aoc(\/lj\[_t:)a(\/ivc)ch:ggN;% . (2.36)

This diagram vanishes in the limit N; — oo and hence we find that indeed as the

number of colours becomes large the weak amplitudes factorise. Therefore, in this

limit,
(rxl(cD)v_a(@d)v_alD) = (x|(cDyv_alD)(x|(@dy_al0) ,  (237)

where (¢d)y_4 = ¢*7#(1—~s5)dq. The pion to vacuum matrix element is parametrized

(r(p)|(ud)v_al0) = fap® (2.38)

where fr = 0.94M/; is determined experimentally from the semileptonic = decay and

therefore we find that the amplitude for the process D — nr is proportional to fx.
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We can phenomenologically modify our SU(3)s predictions for the Cabibbo-

R
suppressed decays from Fr %0__I;+ 1{‘_) =1 to

= 2
I(D° — K+K~-) (f_k) iy

T(D° > ntr)  \f«

(2.39)

The leading 1/N, corrections to each of these amplitudes cancels, thereby making
this prediction valid up to 1/N2 [2.6].

However, in phenomenologically correcting for SU(3)y violation in the decay am-
plitudes we must be consistent and include the phase space corrections arising from
the mass difference between the kaon and pion. This gives rise to an additional multi-
plicative factor of ~ 0.7. Hence the modified SU(3)y prediction for this ratio becomes

1.2, which is still significantly different from the experimentally observed value.

2.5 Concluding Remarks on Chapter 2

It is interesting to briefly discuss some of the models employed to try and un-
derstand the weak hédronic decays of D-mesons. The large N, limit and amplitude
factorization provides a starting point for elucidating some of the underlying dym-
namics. The effective Hamiltonian for the system in the large N, limit under the

assumption of factorization is [2.7]

HEWY o [ar(Td) v _ 4y (5e)(v_ay + ax(Gd) v _ay (@) v_ny] (2.40)

where a1 = ¢1 + Nl-:cg and ax = c2 + ﬁ:cl at the quark level. The 31-: arises from
the color mismatch when the hadron is “reformed” after the weak interaction. Since
the color currents in the hadron are not understood this factor of Nl_c is replaced by
an arbitrary parameter ¢ at the hadronic level. It is important to realize that the
assumption that this factor is the same for all decay modes has no firm theoretical
basis. A good discussion of this can be found in ref [2.8]. When the decay rates for
the known modes are fit with this form for the interaction a value of { ~ 0 is found

which indicates that the naive quark estimate of 1/3 is too large. To some extent this
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parametrisation of the weak Hamiltonian reproduces the pattern of lifetimes of the

D-mesons.

Another approach to understanding D-meson decays is in the context of the quark-
diagram scheme [2.9]. In this scheme each topologically different quark line diagram
that can contribute to a decay mode of the D-mesons is assigned an unknown ampli-
tude. SU(3)s breaking effects are incorporated by assigning a different amplitude to
diagrams that have strange quarks appearing in the interaction vertices from those
with up or down quarks. Further, final state interactions (FSI) are accounted for by
introducing phase shifts for each isospin partial wave in the amplitude. These phases
are generally complex as there are resonances at energies near the charm mass. An
example where these FSI are important is in understanding the descrepancy between
the theoretical and experimental branching ratios for D — K+ K~ and D° — =+r—.
If there were a resonance in the K™ K~ system (and not the #*7~ system) with mass
close to the mass of the D° then this would be a natural explanation for the difference.
(It should be noted that FSI can only give rise to deviations from the predictions of
SU(3)y if they violate the symmetry. If the resonance was not close to the mass (de-
pending on the width of the resonance) of the D° then the apparent violation would
be significantly less.) These amplitudes and phase shifts are then fit to the available
data on the branching fraction for D-meson decays and the relative importance of

each type of quark line diagram can be found along with the size of the FSI.

Final state interactions need to be incorporated into our SU(3)s predictions. The
amplitudes at the weak vertex can be decomposed into isospin partial waves as was
discussed in the previous paragraph [2.9]. The FSI will give rise to a phase shift for
each partial wave. One can then fit these amplitudes and phase shifts to the D-meson
decay data, remove the phase shifts and then compare these amplitudes with the
predictions of SU(3)s [2.9,2.10]. Therefore it is not a useless exercise to construct the
predictions for various decay processes, even when the energy of the decay lies in the

resonance region, as these effects can be removed from the data.

Comparison between the predictions of sextet dominance in the nonleptonic
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decay of D-mesons and the experimental results indicate that in fact the sextet is
not dominating the weak decay of the D-mesons. This is despite the fact that short
distance QCD gives rise to an enhancement of the sextet component over the 15 by

a factor of 2.5 in the effective weak Hamiltonian.
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Table 2.1. Rates for the decays D — M M in terms of the three reduced matrix

elements a, b and c.

Process Rate

DY - K—nt la + b — c|?
DO—>T\"0170 %|—-a+b—+—c|2
Do—rforo %|—a+b-}-c|2
Dt 5 Koxt 4|b|?

D} — xty0 2la — b+ c|?
DY — K+ER° la+ b+ c|?
DY — gptx— s?la+b—c|?
DY — %" sizla+b+cf
D% — 7070 sitla—b—cf?
DY — p0x0 .s%%|—a—}-b—+—c|2

D° - K*+K-

s3l—a—b+c]?

Dt — 07t

s¥%|a + 2b + c[2

5 o e K’"Txﬁ)

sila—b+

Dt — gt70

sff?,|b|(3

D} - p°K+

D} — n®K+

D} — ot K©

D - - K+

DO — ,'.]01\'0

D% — gOR0

Dt — 'K+

Dt - 70K+

Dt — gt K©

Df — KtKO

s

st —b)?
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Table 2.2. Rates for the Cabibbo-Allowed decays D — VM in terms of the

reduced matrix elements a, b, ¢, d, e, f,g,h,s and t.

Process Rate

D® —» K—pt la+c—e+g|?

Do—rfopo %|—a-l-d-i—e—h|2

DY K w 1—18|ar-26+d—e+2f—h+\/ﬁs—\/1—2t|2
D0—>F0qb _ %l-—a+2b—d-{-e—2f+h-§-3s—3t|2
D — pOK° N —2a+b+c+2—f—g

D — xt K~ |b+d— f+ h|?

DU—>W07?*O %I—b+c+f——g|2

Dt o 2t K lc+d— g+ h|?

D+—)?{]p+ le+d+g—hJ?

D} — 9%+ é-|a+b—2c+e+f—29|2

DF oA TP —E

DF — x+p° %l—a+b—e+f[2

D = ntw Ela+b—2d+e+ f—2h + V125 + V12¢|?
D} — %o %I—a—b+2d—e—f+2h+\/§s+\/gtlr"’
DYt — K+RK" la +c+ e — g|?

D} = KR’ Jgd - F— P
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CHAPTER 3. CHARMED BARYON DECAYS

Measurements of the branching fractions for many exclusive decay modes of
charmed baryons are starting to be made. Although the weak decays of the A} ,Z7, |
=2, and Q? have been observed, only the decays of the A} have been studied in any
detail. The large event sample of B-meson decays that will be collected in the near
future will allow the study of the decay modes of all the charmed baryons. Charmed
baryons belong to one of two representations of flavor SU(3), a 3 or a 6. The A} |=}
and Z); constitute the 3 and the Q2 ,=} 22, ,EF* T} and Y comprise the 6.
Five of the six members of the 6 decay strongly or electromagnetically, for example

St — Afxt, 25, — =14, Only the Q2 of the 6 and the members of the 3 decay

weakly. The lifetime of these four weakly decaying particles have been measured to

be

Tp+ = 0.196 £ 0.016ps. , Tek = 0.57 £0.14ps ,

7zo, = 0.082 £ 0.06ps. and 7o =0.79 +£0.31ps . (3.1)

The masses of these particles have been measured to be

Myy = 2284.9 £ 1.5MeV/c? | Mgy = 2467 £3MeV/c® , Mzo = 2472+ 3MeV/c?

Mg+ = 2452.2 £ 1.7MeV/c® and Mg = 2740 & 20MeV /c? . (3.2)

3.1 SU(3)r Representation of the Charmed Baryons

The lowest lying charmed baryons fall into two representations of SU(3)s. If
the charmed baryon state vector is antisymmetric under interchange of the two light
quark flavors then it is in the 3 representation and if the charmed baryon state vector
is symmetric under the interchange of the two light quark flavors then it is in the

6 representation. In the non-relativistic quark potential model the spin-flavor state
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vectors for the lowest lying J™ = %Jr charmed baryons in the 3 representation of
SU(3)y are

|A;*> (leTuTdl)—lcTuldl)—]lcTdTul)+lcTdluT)) , (3.3q)

[\JIF—'

c12)__(ICTuTSl) leTulsT)—leTsTul)+leTslul)) , (3.30)

%) = (IchTs D—letdlsty—letstdl)+letsldl) . (3.3)

The spin-flavor state vectors for the lowest lying charmed baryons in the 6 represen-
tation of SU(3)s are

S = el lutun —leTutul —letulut) . Gdo

S5 =/ @elutdf —letutdl)—leTuldl)

42cldtut)—letdtul)—letdlut) |, (3.45)

1
225) = \/%(QICldeT)—ICTdel)—IchldTH L (349

:col)—\/g(QlcluTsT)—IcTuTsl)—IcTulsT)

+2lelsTul)—leTsTull—|eTslul)) , (3.4d)

—0 1

Zeagy \/g(Elc,L(lTsT)—deTs,L)—|chlsT)
+2eclsTdl)—|lcTsTdl)—|eTsldT)) , (3.4e)

1
|QS§)=\/g(zlclsTST)“h?TSlsT)—\CTSTSJ,)) . (3.4f)

It is the hyperfine interaction that gives rise to the mass difference between the ¥, and

A baryons and between the =.; and = baryons. Since the state vectors for the lowest
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lying charmed baryons in the 3 representation are antisymmetric under interchange
of the light quark spins while the state vectors for the lowest lying charmed baryons
in the 6 representation are symmetric under interchange of the light quark spins the

hyperfine interaction causes the ¥, to be heavier than the A. and the =.2 to be heavier
than the =.;.

SU(3)y violations in the hyperfine interaction give rise to mixing between the =Z;

and =2 states. Physical mass eigenstates will be the following linear combination of

these two states

1
\/;[cos 0|=c1) + sin0|=c2)] and \/g [cos 0|=c2) — cosb|=4)] . (3.5a,b)

The two-body hyperfine interaction has the form

Hy=4A Y =Sgq o 335 (3.6)

mem; m;m;

j=u,d,s 1 i=uyd;s

where A and A’ are determined by the spatial part of the charmed baryon state vectors
(which are taken to be SU(3)s symmetric). The term proportional to A’ dominates
the hyperfine interaction since it is not suppressed by the heavy charm quark mass.

Using Eqs. (3.3,3.4,3.5,3.6) we find that

34’
ol gl e) == 3.7
(Zc1|Hug|=Zc1) S (3.7a)
= — Al 2A 2A
(2| Hut|Ze2) = — - y (3.7b)

MyMs MMy MeMmg

(Ecz| Hyt|Ze1) = A (ms — m") , (3.7¢)

Me MMy

which gives a small mixing angle

-EE) ()

It is easy to understand why the term proportional to A’ does not contribute to the

mixing between the =. and Z.» states. In the computation of the =.1, =, mass
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matrix the quark masses in this term occur as an overall factor and hence it has the
same effect as an SU(3)s conserving interaction where the two light quarks are taken
to be degenerate with mass /mgymy. Therefore, despite the near degeneracy of the 3
and 6 representations, SU(3) violations in the hyperfine interaction do not give rise

to significant mixing between the multiplets.

From the measured masses of the £, and A, baryons the hyperfine mass splitting

between =1 and =2 can be determined. Using

34! Al 4A
= =2 9a,b
(A ¢l HiglAe) = 2 , (Ec| Hns|Xe) 2 e (3.9a, b)

we find that (with m, = 330MeV and m, = 550MeV) the measured value of my_ —
my, imply

e

mz, —mz,, ~ 100MeV . (3.10)

—c2 Zel

The lowest lying J™ = %+ charmed baryons are also in the 6 representation of

SU(3) . Their spin-flavor state vectors are

) =letutut) (3.11a)
S = MeTutdn e tatun) . EIw)
S0 =le1dTdT) (3110
.—*~+-3 1
=5 5): \/;([chthT)—l—lcTsTuT)) , (3.11d)

=03) = \@ucwrs N4letsTdD) | (3.11¢)

09
95y =leTsTs1) . (3.111)
These states are split in mass from the lowest lying J™ = ‘1?—+ charmed baryons in the
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6 representation by the part of the hyperfine interaction proportional to A. Explicitly,

6A

(X7 | Hut|22) — (Zc|Hye|Be) = ; (3.12)
TMyMe
which implies that
3/ A M
mys: —mgyg, = 5 (E) (mc> (JWEC = MAC) . (3.13)

Since m, > m, and my, it is expected that A will be somewhat larger then A’'.

The remainder of this chapter is divided into two sections, nonleptonic and
semileptonic decays. In the first section we examine the flavor SU(3) predictions for
the decay of charmed baryons in the 3 and 6 representation to %+ or %Jr uncharmed
baryons and one or two mesons. The second section deals with the semileptonic decay
of charmed baryons in both representations to %+ or %+ uncharmed baryons, a (I, 1)
lepton pair and zero or one meson. The matrix elements for the decay processes are

tabulated in terms of unknown reduced matrix elements.

3.2 Nonleptonic Decay Of Charmed Baryons To Two Body Final States

First we examine the process T' — hM where T denotes the 3 repesentation of
charmed baryons, h is the lowest-lying -1:;+ baryon octet and M is the lowest-lying
pscudoscalar meson octet. The Hamiltonian for the decay of charmed baryons is the
same as that for the decay of charmed mesons, which is given in section 2.1 . Some
of the SU(3)s predictions for this set of decays have been considered before in ref.

[2.2]. The effective Hamiltonian for the process is given by
Her = alI*(T5)TyRMS + bHY(T5)Ty MITS + cHY (T5) Ry METy
+ dHY (T5) MERE Ty + e Hop(6)TRe ME

+ fHoy(6)TMERY + gH o (6)R° MET (3.14)
where a,b,¢,d, e, f,g are unknown reduced matrix elements and 7 is the charmed
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baryon anti-triplet

T.= (24, -ZH,AY)  , T =¢T, . (3.15)

The square of the matrix elements for Cabibbo-allowed processes are shown in
Table 3.1. We see that there is only one relation between the matrix elements of
Cabibbo-allowed decays,

IM(A} = 22212 = |[M(A} — ©+20)2 | (3.16)

and this is a result of the SU(2) isospin subgroup of SU(3)y.

There are several relations between squares of matrix elements for Cabibbo-

suppressed decays, as can be seen from table 3.2. They are

IM(ZY - 2= 2 h)2 = |M(EY - = K1)?, (3.17a)
IM(Z% — KO = |M(EY — Z°K)2, (3.17b)
|IM(ZY - ZFa )| = |[MEY — pK7)?, (3.17¢)
IM(ZH - pR*)? = |[M(AF — B RO)2, (3.17d)
IM(ZEH = Z°KH))? = |IM(AF — nat)|?, (3.17¢)
|M(Z — A"°))? = IM(Z; - 2°°))%, (3.171)

which are all a consequence of the full SU(3)s symmetry. From Table 3.3 we see that

there are no relations between squared matrix elements of doubly-Cabibbo-suppressed
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decays. However, there are relations between the squares of Cabibbo-allowed, sup-

pressed and doubly suppressed matrix elements. They are

IM(E% - E-K1)? =si|M(E — =7 h)?, (3.18a)
IM(EY — =trm)? = s} [M(Z4 - ZT K2, (3.18b)
IM(ZH — SHEO)? = sM(AF — pK )2, (3.18¢)
IM(Z} = nat)? = stiM(AY — =Z°KH))2, (3.184)
IM(EY - S~ KH)? = st MEY - =71, (3.18¢)
|M(23, — pr7)|? = s1|M(E — YK 2, (3.18f)
|M(Aj — nKkH)]? = s} M(E}H - ="1))?, (3.18¢)
IM(AF — pEO)|? = s} M(ZH - SHRY)2, (3.18h)

The sum of the masses of the products from charmed baryon decay is not always
negligible compared to the energy release. Therefore, SU(3)y relations between decay
rates, derived from relations between the square of matrix elements, have significant
phase space corrections. The exception to this is when a relation is due to isospin,
where the difference between the sum of the final state masses is small. To find the

relation between the decay rates from the square of the matrix elements we can use

the expression

1 2
dl'(a — be) = 39,2 [M(a — bc)|'|TI:;t~;-l*dQ ; (3.19)

a

where m, is the mass of the decaying particle, py, is the momentum of one of the
final state particles, d2 is its solid angle and M(a — bc) is the matrix element for

the decay a — be. There is also an additional factor of |py,|* occurring in the matrix
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element for decays with final state angular momentum /. Any mass dependence in
the matrix element is not corrected for as this is due to explicit SU(3) violation and

not a kinematical effect. Consequently we find that, for instance,

I+1
_ Me_+M +\2 - Me_—-M +1\2
D(EY - Sorh) _ R | i i,
=0 ——J+Y !
(=3 = = Kt) (1 B (Mr_tiwﬁ )2) (1 - (ij_u—::!m )2)
el 1

. (3.20)

where [ is the angular momentum of the decay channel and I is its contribution to
the rate. For this process both | = 0 and I = 1 partial waves can contribute. The
angular distribution of the decay products from a polarized charmed baryon can be
decomposed to yield the relative magnitude of the | = 0 and ! = 1 partial waves,
to which the phase space corrections can be applied accordingly. If, however, the
angular distribution information is not available (which is probably the case), then
the best estimate of the phase space correction is to say that it lies somewhere in the
range between its value for / = 0 and [ = 1. Thus the flavor SU(3) prediction for the

above process is 1.2I'(ZY, — Z-K+) < I(ZY — Z-7F) < LIT(EY — =-L'H).

Two decay modes of the type under discussion here have been observed so far.
The first Br(A} — A%r*) = (0.63 £ 0.25) x 10~2 [1.6] does not appear in any of the
relations. The second observed is Br(A} — pfo) =(2.0+0.4) x 1072 [3.1, 3.2, 3.3],
from which we predict that Br(Z — S+tK?) ~ 4 x 107°. These expressions can

easily be carried over to decays involving baryons and vector mesons, T' — BV. An

example of this is

|IM(Z2, - S=pH)? = IM(EY - E-K*F(392))]? . (3.21)
Two of the branching ratios for final states containing a vector meson have been
measured. The first is Br(A} — pT\T*O(SQ'Z)) = (5.64+3) x 1073 [3.2, 3.4], from which
we predict that Br(Z}, — ST K*9(892)) ~ 1 x 1075, The second is Br(A} — p¢) =

(24 1) x 10~3 which does not appear in any of the relations.
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Next we look at the process T' — h*M where h* is the decuplet of %Jr baryon

resonances with elements

htlll — A++, h*112 = LA-P htll3 2*-{— p*122 _ LAO h*]33

1
V3T V3 V3 V3

—%
—

= LZ*O h=t222 — A h*223 o 1 ) D h*233 _ I

\/6 ) ] —Tg ) —%

The effective Hamiltonian for the process is

h*123 E*—’ ht333 =0 . (322)

Hep = ahyy T HY (TB)MS + Bhop T HE (15) M

+ Yhop H(TB)MET + Shgy HE? (6)T M | (3.23)

where @, 3,7 and é are unknown reduced matrix elements. The rates for Cabibbo-
allowed decay processes in terms of these reduced matrix elements are given in Table

3.4. There are four relations between Cabibbo-allowed decay rates. They are

|M(AT = =202 = IM(A} — =02, (3.24a)
IM(AF —» ATTRE)? = 3| M(AF - ATE)?, (3.240)

which are due to isospin and

M — SR = IMEH - 202, (3.24¢)

|IMEY - QK =3M(EY, - =«H)2, (3.24d)

which are due to the full SU(3) symmetry. Again, phase space correction factors must

be applied to these equalities giving, for example

[(Zh - @ E*)~TEG -E"%) (3.25)

a modification of (0.69)® due to the differing final state masses and the fact that the

decay is P-wave (neglecting possible D-wave contributions).
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There are several relations between the squares of Cabibbo-suppressed matrix

elements, as seen in Table 3.5. They are

|M(A — A% )2 = |M(EL - =°KH)P (3.26a)
IM(AF = S KO = [M(ZH — ATR))?, (3.26b)
IM(AY = Z°KN))2 = I M(EH — =*%H))?, (3.26¢)
IM(AT = At )2 = IMEN — ATTE)?, (3.26d)
|M(E¢ = =7 )P = |M(E, - = K1))?, (3.26¢)
IM(ZY — A'RO)? = |M(Z°, — =*0K0)2 (3.261)
|M(22, — %) = 3|M(EY; — =%, (3.269)
IM(ZH = =) =  M(EY —» AYK)?, (3.26h)

which are all full SU(3)y relations.

There are also relations between doubly-Cabibbo-suppressed matrix elements as

seen from Table 3.6. They are

|M(AY = ATRY))? = | M(AF - AKH))2, (3.27a)
=4 = AT )R = 3IM(E), - T EY?, (3.27b)
IM(Z) - A== )2 = 3|M(ZY, — = K1)?, (3.27¢)
|M(ES = AP = |M(E) — A%°)2 . (3.27d)

Several relations between Cabibbo-allowed,-suppressed and doubly-suppressed



decay modes are found. They are

IM(A} — A% H)|?2 = 23| M(A} — =202, (3.284)
IM(AY = ATHr)|2 = S IM(AY - AYTE))?, (3.28b)
2M(EH —» 202 = I M(AY - =°K )2, (3.28¢)
IM(Z% — ARY)|? = 22| M(Z%, — SOK)|2, (3.28d)
IM(ZY, - =) = s} M(EY — B K )12, (3.28¢)
|M(2% — 7 h)|? = 4] |M(EY, — )P, (3.28f)

IM(EE, = BYK*)]? = si|M(AF — =202, (3.28¢)
|IM(ZH — At r)|2 = s§IM(AF — ATTE))?, (3.28%)

|IM(Z — A7) = st M(AF = =KH))?, (3.281)

IM(AF — ATE®)? = s{{M(E} — S R)?, (3.285)

IM(Z, — B*OK)2 = s4|M(Z%, — )2, (3.28k)
IM(ZY - Atr)]2 = 4 M(EY — = EK))?, (3.281)

|M(Z4 — A=) = si|M(22, - QK1) (3.28m)

Oune of these decay modes has been observed with a branching ratio of [3.4]
Br(A}Y — AT K™) = (6.0 £2.0) x 1072, (3.29)

and hence we can predict, neglecting possible D-wave contributions, that Br(A} —
Attr=) ~ (3.84+2.0) x 107* (~ (4.8 £ 2.5) x 10~ for a purely D-wave process) and

that Br(Z}, - A**7~) ~ 2.3 x 1075 (~ 3.8 x 107 for a purely D-wave process).
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Next we look at the two-body decays S — hM, where S denotes the 6 represen-
tation of charmed baryons. The element S33 = Qg is the only member of the 6 that
decays weakly, the £F P ™% decay strongly to the AF in the 3 (e.g. Tt — Afxt)
and the _.j; decay electromagnetically (e.g. =% — =%+). By inspection of the Q2
flavor wavefunction we see that the only Cabibbo-allowed final state is =R, We

therefore look for relations between Cabibbo-allowed and Cabibbo-suppressed decay

rates. The effective Hamiltonian for the process is

Hefr = aeapphl H3(T5)SP M2 + beay il H2®(15)S* MY + ceans bl HE®(15)SP M?

+ degpy Y HE(T5)S% M? + eeqphl HI®(15)SSIME + f(Fo ME)(Hoa(6)S)
+ gho ME H,g(68)5% + hMPREH,a(6)S% + kho M Hyy(6)5%

Hlegphl HSE(TB)MESH (3.30)

The squared matrix elements resulting from this effective Hamiltonian are found in
Table 3.7. We see that there are no relations between any of the decay rates involving

Cabibbo-allowed, -suppressed or doubly-suppressed decays.

If we look at the isospin structure of the doubly-Cabibbo-suppressed sextet com-
ponent of the Hamiltonian, O((;da) = %[(ccf)(sﬂ) — (cﬁ)(scf)] , we see that it is an
I = 0 operator, whereas OE_L;S) is an I = 1 operator. Since Q2 has I = 0, we expect
that the decay to A%° proceeds via Og only, and similarly for the £%7° final state,
since the weak Hamiltonian does not have an I = 2 component. Therefore, by mea-
suring the relative rate for an I = 1 decay, for example the £°7% or A°z? final state,
compared to an I = 0 decay, an estimate of the relative contributions from Qg and
O1z can be made. This will not be a strong test of the perturbative QCD prediction
since there could be cancellations between the reduced matrix elements contributing
to the decays, but it will give a rough estimate of the relative contributions. Unfortu-
nately, since these are doubly-Cabibbo-suppressed decays, they will probably be the

last to be measured and hence their predictive power is somewhat limited.
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Consider now the process S — h*M. The only two possible Cabibbo-allowed

final states are Q7+ and E*°K". The effective Hamiltonian for the decay is

He = afigy H (T5)S% MY + B H3® (15)S™ ME + oy, H® (T5)S™ M

+ 6hgy HY (T5) S ME + MY hgy Hye (6) M35 + ne gy Hyo (6) M S
(3.31)
The resulting squared matrix elements are shown in Table 3.8. We see that there are
no relations between any of the Cabibbo-allowed or Cabibbo-suppressed decay modes.

However, there are two relations involving doubly-Cabibbo-suppressed processes, they

are
IM(Q0 — AYE)?2 = |M(Q2 — A'R°?, (3.32q)
IM(Q0 = = K2 = s’;’éw(ng N (3.325)

3.3 Nonleptonic Decay Of Charmed Baryons To Three Body Final States

In this section we will be considering decays of charmed baryons to final states
containing a baryon (either in the lowest lying %+ octet or the %+ decuplet) and two
octet mesons M. As far as SU(3)ys is concerned the two meson octets are identical
and consequently the Hamiltonian must be symmetrized if the mesons are in a rel-
atively even angular momentum state or antisymmetrized if they are in a relatively
odd angular momentum state. When the Hamiltonian is expanded in terms of the in-

dividual particle operators and matrix elements are taken there are symmetry factors

that must be included. This is demonstrated most simply by an example. Consider

the Hamiltonian
Hog =77 4+ 2%° (3.33)

of which matrix elements can be formed to yield

(O|Hegg|7 "7~ ) =1, (3.34a)
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and
(0| Hegg |7°7°%) = 2, (3.34b)

due to the two possible ways of annihilating the two neutral pions. When we form
a rate from these matrix elements there is an additional factor of % multiplying the
7070 phase space integrals from Bose statistics. In the tables this factor of % has been
omitted and so to obtain rate relations from the squared matrix elements a factor of
% must be included for processes involving identical particles. Also, in obtaining rate
relations from the matrix elements, phase space correction factors must be included
just as for the two-body decay modes. However since these factors depend upon the
momentum configuration of the final state we will not calculate them in this work.

Any processes that are not energetically allowed are not included in the tables.

The first three-body decay process examined is T' — hM M for which there are
nineteen reduced matrix elements. The operator Oz contributes eleven reduced

maftrix elements and Og contributes eight. The Hamiltonian for the process is
Hep = AfTohy HY (T5)MEME + ByTohy HE(T5) MEMS + CTohy HE(T5) ML M
+ D Tohy HEP (T5) MEMY + Ep(Tahy H (T5))(M§MI) + FyTohy H3 (T5) MM
+G fTahy H5 (T5) MEM] + 1T, Ty HY (TB) M2 MS + JTohy HE (T5) M M
+ Ky Tohy HE(T5)MEME + LTohy H3 (T5) M2 M2 + As(T®*R, Hyo(6))(MEMS)
+BsT®h, Ho4(6)MEME 4 Cs Tk, Hyg(6)MEME + D, TR, Hyo(6) ME ME
TR Hog(6)MEME + I,TR Hoe (6) MEMSE + J, TR Hoe (6) Mg MS

+ K TR Hy(6) MEME . (3.35)

The matrix elements resulting from this Hamiltonian are NOT tabulated in this paper

as there are ~ 121 possible decay modes for either angular momentum state.
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Despite this large number of operators there are still relations between some
matrix elements for various decay modes. The relations between Cabibbo-allowed

decays are all due to isospin, examples of which are
|M(Z% = E- 7% ) 1m0, F = IMER - E° 77 ) (p=02,.91% (3.36a)

IM(AF — E%7%7 ) (15,017 = IM(AT = S*ateT) o), (3.360)

for even and odd angular momentum channels respectively, and

IM(AF — E09° )2 = [M(A} — E+9°x%)2 (3.36¢)

MAY - 2%%H)2 > ZIM(AY - S ot2 )2, 3.36d
c c

which are independent of the relative angular momentum between the mesons. The
inequality arises from the fact that processes involving identical mesons in the final
state can only proceed through even angular momentum channels. There is a relation
between a Cabibbo-allowed process and a Cabibbo-suppressed process that holds only

for odd relative angular momentum states which is
— 9 2 e i 2
M(ES = K+ gy g,0ff = ST = K 5 ) o, off - (3360
More interesting are the Cabibbo-suppressed decays where there are relations due to

the full SU(3) symmetry which are independent of the relative angular momentum

between the mesons. They are

IM(AY - St )2 = IMEL - ph 7 1), (3.37a)
IM(AF — pR° KO = IM(EH - STROKY)?, (3.37b)
IM(AF = 2K K2 = |M(EH - 22K )2, (3.37¢)
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2
IM(ZH — S=xtrt)? < %1|M(Aj S = Kteh)?, (3.37d)

IM(ZY — pK )2 = |M(EY - STK-K)?, (3.37¢)
IM(EY — nK=r )P = [M(EY — =K +x7)2, (3.377)
IMEY - S R = [M(EY - 2 K7 )2, (3.379)
IM(EY, = 2°K°KO)? = |MEY, — AR KO . (3.37h)

Experimentally, branching ratios for some of these processes have been measured,
Br(A} — pK—nt) = (2.6 £0.9) x 1072 [3.5] and Br(A} — Statr~) = (10 £ 8) x
1072 [3.6], of which the latter appears in an isospin relation between Cabibbo-allowed

decays.

There are twenty-nine reduced matrix elements contributing to the process S —
BMM, twenty of which are from Ofz and the remaining nine from Og. Only two

relations are found,

IM(Q0 — SYROK-)? 2 2|M(Q° — PR KY)?, and (3.38a)
IM(Q0 = pROK-)? > ip\f(ng — 2 REY) . (3.380)

The first is between Cabibbo-allowed decays and the second between Cabibbo- sup-

pressed decays. They are both consequences of isospin. The matrix elements for the

various decay modes are not tabulated.

We consider now the process T' — h*M M. There are twelve reduced matrix

elements contributing to the decays. The effective Hamiltonian for the process is
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given by

Hep = Aghop Hif(T5)MEMGT + Byhoy Hi' (15) M MT

=%

+Chgy HY" (T5)MEMT + Dy (hgy Hyf (T5)T*4) (Mg MY)

abe
+Eshy HP(TB)MEMET + Fyhy HY (T5) M2 M{T

+Ghy HYE (TB)MEMET + IR,

abc

HY(T5)MIMET

+Cshpy H3 (6)MEMET Y + Eghyy, H(6) MEMET

abe

+Fohgy HIY (6) MEMET + Gk,

abc

HP(6)MEMET (3.39)

The results for Cabibbo-allowed decays with the mesons in an even (odd) angular
momentum state are shown in Table 3.9 (Table 3.1). Cabibbo-suppressed decays
with the mesons in an even (odd) angular momentum state are shown in Table 3.11
(Table 3.12). We see that there are many relations between squared matrix elements
for various processes. For Cabibbo-allowed decays, we find that there are relations

between matrix elements when the mesons in an even or odd angular momentum

state. They are

- = 9 1 - —
|M(E4 — E°07% ) 10.2.)° = g[M(:;ﬁ — Z T 7 ) =02,/

[ . 2 - —

= gW(:ELl = O KTxt) g, )P = IMEY - 7" ) (1m0, I, (3.40a)
= =0 = 1 - i

|M(Z; — AYRK K )(L=1,3,...)|2 = §|M(:~j1 — ATTKK )(L=1,3,..,)|2 , (3.400)

IM(AF = 27K ¥ ) o = SIMES - @ K¥at) s )2 (3:400)

Lo =

There are also many relations that are independent of the relative angular momentum
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between the mesons, they are

IM(AY — A+ K-10)? = g|M(Aj o ATK-TH)2, (3.40d)
M(AF — TR0 = [M(AF — D002 (3.400)
IM(AF = SO0 > ZM(AF — Bt (3.401)
IM(ES — AT K 2 SMEF — ARROP, (3.40)
IM(ES - =2%%H)2 = éw(zg O Ktz H)’ > |M(_C1 — =t ).
(3.40h)

Turning now to the Cabibbo-suppressed decays, again there are many relations
between squared matrix elements. All except one of the relations between the squared

matrix elements are independent of the relative angular momentum between the

mesons. The relations are

IM(EY - A°K—xH)]> = |IM(EL - E0K+x7)|?, (3.41a)
IM(AF - Z*YKtr7)2 = IMEH - ATK—«h)?, (3.41b)
IM(AY = Z*-K+rt)? = |M(EH - 2 K*ah)?, (3.41¢)
IM(AT — A* 7)1, = IMER = 242" 118,017 (3.41d)

Also, there is a large number of relations between Cabibbo-allowed and Cabibbo-

suppressed squared matrix elements. The relations between matrix elements when
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the mesons are either in a relatively even or odd angular momentum state are

IM(AF — A=) o, P = SSIM(AT — AR 1) mos, o, (3420)

—* +0==0
|M(Z% — ZK7%) (1o, = 283 |M(EY — K 7°)(1=0,.)° s (3.420)

IM(ZY — AT K77 ) (o022 = s]IM(EY = AYYEKTK ™) (1—0,.)1* - (3.42¢)

There are also a few relations that are independent of the relative angular momentum

between the mesons, they are

IM(A} = A~=xtrh)? <1283\ M(AY — %% 1)?, (3.42d)
IM(Z%, — AR a2 = 32 M(Z0, - ==+ R)?, (3.42¢)
IM(ZY, - A°K—71)? = 23| M(Z%, — =% T K)2. (3.42f)

Through a cancellation within each operator comprising the Hamiltonian we find
that the Cabibbo-suppressed decay =2, — T*05%%% proceeds entirely through even

angular momentum channels.

There are sixteen reduced matrix elements contributing to the process § —
h*M M, ten are from Oz and the remaining six are from Og. We find that there is
only one relation between matrix elements and it is between Cabibbo-allowed decays
with the mesons in an even angular momentum state (|M(Q) — E**FOK—)]? =
2|M (02 — SRR )|?). There are no relations between decays with the mesons in
a relatively odd angular momentum state. Consequently the only relation is

IM(Q° - SHRPK)? > 2 M(Q° — SRR, (3.43)

and this is due to isospin. The matrix elements for these decays are not tabulated.
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3.4 Semileptonic Decay Of Charmed Baryons To Three Body Final States

For the process T' — hity; there is only one SU(3) singlet possible from 3 @3 ® 8
and consequently only one reduced matrix element. Thus, the effective Hamiltonian

for semileptonic decay can be written
R
Hef[' = QHQ(3)Tbhal+V1 s (344)

where the weak Hamiltonian is given in Eq. (2.8 a,b). All the matrix elements are

related and we find that

= o - i 3 2
IM(EY — E- 1 y)|? = IMEH - =% w)? = §lM(A: — A%ty

1 _ N 6 _
= S—2|A1(;21 - Yy = g|M(_:;; — A’ty))?
1

[ —

|IM(AF — nltu)? . (3.45)

2 5
= Z|MEE - 2% =
S%I ( cl I)I o

— D

Experimentally, only a few inclusive branching ratios have been measured [3.7],

they are
Br(A}Y = A%t X)=(1.1+£08) x 1072, (3.46a)
Br(A} — petX) = (1.8 4£0.9) x 1072, (3.46b)
Br(Af — et X)=(4.5+1.7) x 1072, (3.46¢)

where X denotes unidentified hadrons and ve.

The only SU(3) singlets that can be constructed for the process 7' — h*{ty; are

=%

S HY(3)Tyhoy, and R, HY(3)Ty , (3.47)

both of which vanish since h* is totally symmetric on its three indices. Hence we
would not expect to see any lone decuplet resonances produced in the semileptonic

decay of the charmed baryons in the 3 representation.
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Turning now to the 6 representation and the process S — hity), we see that
only one non-zero SU(3) singlet can be formed from the available tensors, giving the

effective Hamiltonian

Heg = BearsHY (3)S°hlF7; . (3.48)

It is obvious from the flavor wavefunction of the Q0 that it cannot Cabibbo-allowed
decay to a member of the baryon octet and that it will only decay via a Cabibbo-
suppressed mode to =~ It y;, consequently there are no relations possible. This, how-
ever, is not the case for the process § — h*i*y; where both Cabibbo-allowed and

suppressed decays are possible. The effective Hamiltonian for the process is

Heg = vH*(3)S"hy T 7y (3.49)
from which we find that
IM(Q0 = Q=T = S M@0 = = 1tu? (3.50)
S1

3.5 Semileptonic Decay Of Charmed Baryons To Four Body Final States

Returning to the 3 representation of charmed baryons and looking at the de-
cays T' — hMIty, we find that there are three reduced matrix elements that can

contribute to the decay process. The effective Hamiltonian for such decays is

Her = a (T H*(3)) (H‘fﬂ;) 5, + bTohy MPHC(3)F5; + cTa MER HE(3) 5y
(3.51)
There are many relations between the squared matrix elements for various decay

modes, as shown in Table 3.13 for Cabibbo-allowed decays and in Table 3.14 for
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Cabibbo-suppressed decays. Many are due to isospin, for instance

IM(AF = =070t = IM(AY - Ste—Tty|2 = IM(AF - 2=t ty))?, (3.52)

L

but some are due to the full SU(3) symmetry, for example

IMEY - A% TP = |MEY - S0 )P (3.53)

There is only one non-zero matrix element that can be constructed for the decays

T — h*Mlty,, and so the matrix elements for all the decay modes are related. The

effective Hamiltonian is
Het = ae®hyg TyMEH (3)F w1 (3.54)

where « is the unknown reduced matrix element. The relative squared matrix ele-
ments for Cabibbo-allowed (suppressed) decays can be found in Table 3.15 (3.16).
Phase space correction factors must be applied as in the previous cases. By coinci-
dence, the Cabibbo-allowed processes with the largest matrix elements are those that

will be modified the most by these corrections.

Turning now to the 6 representation and the decay process S — BM Iy, we find

that there are three reduced matrix elements that can contribute and so the effective

Hamiltonian for the process is
He = aeae S HI (B)R) MSTFD) + Beae s S HY (3) MIRSTF 5,

+yecar S H! B)hg M, . (3.55)

The results of which are shown in Table 3.17, from which we see that the only relations
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between matrix elements are those due to isospin, such that

IM(Q = =R )| = |IM@Q2 - 2K 112, (3.56a)
2M(Q° — == 7%t y)|? = | M(Q2 — =1t y)|?, (3.56b)
2AM(Q0 — SOK— 1+ = |M(Q2 — SR Itu)? . (3.56¢)

Two reduced matrix elements contribute to the process S — h*ITy; for which the

effective Hamiltonian is
Hegp = 6hyy S MSHA(3)F 0 + Choy S HAB)MSTFT; (3.57)

the matrix elements of which are shown in Table 3.18. We see that there are relations

not only due to isospin but some due to the full SU(3)s symmetry. We find that

2M(Q0 — ZOK—I*u) |2 = 2]M(Q0 - =K 1F )2 = |MQY — QI+ u)?

(3.58a)
3IM(Y — =01ty = 6| M(Q°2 — =z ) |? = |M(Q2 - QKT y))?,
(3.58b)
and also one purely isospin relation
2M(Q0 — SOK-IFy)? = IM(Q0 - SR )2 . (3.58¢)

3.6 Concluding Remarks On Chapter 3.

We have examined the predictions of flavor SU(3)y for the weak nonleptonic and
semileptonic decay of charmed baryons both in the 3 and 6 representation of SU(3).
The matrix elements for Cabibbo-allowed, -suppressed and doubly-suppressed decay
modes were parameterized in terms of reduced matrix elements which have been
tabulated explicitly. At the present time only a few decay modes (Cabibbo-allowed)
have been experimentally observed; in the future when a larger event sample has been
collected the relations derived in this work can be tested and/or used to reveal some

of the underlying dynamics responsible for charmed baryon decay.

58



The predictive power of the SU(3)y invariance is, in some cases, somewhat limited
due to phase space correction factors that must be included. However, these uncer-
tainties can be eliminated by experimentally determining the relative contributions

from different angular momentum channels.

If the sextet component of the Hamiltonian dominates nonleptonic decay pro-
cesses, as hinted at by perturbative QCD, then this will be directly observable by
the absence of I = 1 final states in the doubly-Cabibbo-suppressed decay of the Q2.
Sextet dominance will also give rise to new relations between decay rates. These new
relations between two-body decay modes have been considered previously in ref. [2.2,
3.8, 3.9] and can be derived from this work for all nonleptonic processes by neglecting

the contribution from Ofz.

An interesting prediction of SU(3)y is that the 3 cannot semileptonically decay
to an h*I*y; final state because a non-zero SU(3)s invariant cannot be constructed.
Also, all the matrix elements for the semileptonic decay of the 3 to Blty; final states

are related. This is also true for the decays of the 3 to h* M1ty final states.

Final state interactions (FSI) will be important for these decays. We discussed
their inclusion in the decay rates for D-mesons and the same arguements apply in this
case. Consider the final state A%z, this proceeds entirely in a I = 1 partial wave and
therfore ¥** resonances can be excited in the final state. For hyperon decays, this
effect will be very small as the energy of the decay is substantially below the mass
of the first ¥** resonance. However, in the decay of charmed baryons the energy
release lies in the regime where these resonances could give rise to substantial phase
shifts. As was done for D-mesons [2.8] these phase shifts can be fit to the data and
removed from the SU(3)y amplitudes before a comparison is made between theory
and experiment. It is possible that the deviation from the predictions of SU(3)y for
charmed baryon decays will be less significant than for D-meson decays as SU(3)y is

a better symmetry for baryons than for mesons.
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Table 3.1. Squared matrix elements for Cabibbo-allowed decays T' — hAM in

terms of the reduced matrix elements a, b, ¢, d, e, f and g.

Process Squared Matrix Element
AY — Alx+t la+b—2c—2e—2f—2g|?
Af - X0t Fla—b—2e+2f +2¢|?
A - Tta0 H—a+b+2e—2f—2¢g
AF — THy0 gla+b—2d —2e—2f + 29|
AF —>p70 la + ¢ — 2e|?

AF - 20K+ b+ d—2f|?

20— E-at la + ¢ + 2¢|?

2L = Ela? —%—|—a+d—26+2g|2
£% — 2" %|a—2b-|—a'+26—Ll:f—.‘?gl2
20— AR Ll _ 24+ b+ c— de+ 2f + 2g|?
= - TtK- |6+ d+2f|?
ESIHEOFO H—b+c—2f—2g[
EH — E0%t | = ¢ —d —2g/?
E;"I—)E"'-KG | — ¢ —d + 2¢g/?
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Table 3.2. Squared matrix elements for Cabibbo-suppressed decays T" — hM

in terms of the reduced matrix elements a, b, ¢, d, e, f and g.

Process Squared Matrix Element (Modulo s%)
A o AOKH L —a+2b+2c+3d + 2 —4f + 2g|?
A — 0K+ 3l —a—d+2e—2g]

AF — THEKO | —a+d+2e—2¢|?

AF = L19a — b+ 3¢ + 2d — de + 2f — 2g|?
AT — pr? 3l—b—c+2f+2g
[ | —b+c+2f + 29

=0 L st la + ¢+ 2e|?
521—”\0‘”0 %|_a__b—c+3d—?,e—Qf-l-“lglf'2
=0 £0x0 Ha4b—c—d+2e+2f?
=0 — A%p0 l—a—b+c+d—2e—2f
EE;HEOWO %I—a—b+36—d——26—2f‘—4g|2
=TI la = b+ 2e — 2f — 2¢|?

2l 5 E-EF | =5 = ¢ = 2al?

=0, =00 | —a+b— 2+ 2f 4 292

E0 — Sta |b+d+2f|

Egl—>pK_ |“b_d"_2f]2

=F o Ayt §l—a—b—c—3d+2e+2f —4g]
Ej‘l—>207r+ %|—a+b+c+d+2€—2f|2
=+, g0 la—b+c+d—2e+2f]
=+ o nty0 tH—a—b—3c—d+2e+2f +4g]?
= _, JF | —a+d+ 2 —2g|?

=+ o =K+ | —b+c+2f +2g/°
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Table 3.3. Squared matrix elements for the doubly-Cabibbo- suppressed decays

T — hM in terms of the reduced matrix elements a, b, c,d, e, f and g.

Process Squared Matrix Element (Modulo s})
A — pK® le+d —2g]
A} - nK* lc + d + 2g|?
Egl T e la + ¢+ 26'2

EY — AOKO

Lla—2b+c+2e+4f —4g|?

E) — B°K°

%l—a+c—26|2

0
Sel TN

H—2a+b+d—4e+2f +4g/°

Ea — pr” |I;r+d+2f|2
Egl—rmro %|—b+d—2f|2

=t A0

%|—a—i—?b—c+‘.2<2—4f—4g'|2

=t L 20t

%|—a+c+‘2c|2

=t — S+KO

| —a — ¢+ 2e¢|?

Ej-l '_"PUD —é—l2a—b—d—46+2f+4g|2
=+ — pr? %I—b+d+2f|2
=5 - nrt |—b—d+2/T°
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Table 3.4. Squared matrix elements for Cabibbo-allowed decays T' — h*M in

terms of the reduced matrix elements a, 3, and 6.

Process

Squared Matrix Element

AF — Tr+q0

%|—2a+ﬂ—27—6|2

A;{- — E*+n0

L2a — B — 2y —36)?

Af — T¥0rt

%;|—2a+/3—2')r—6|2

AF = AHHE- 18+ 8/

A — AYE LB + 6%

AF — = 0K+ 118 — 2y — 82
Eh — WK 3lal?

Ejl — =0t %|0_|2

=Y — =K H2a - B+2y - 8]
=0, — E*040 §2a — B+ 6
=0, — =00 5| = 20+ B — 47 + 35|
Bl - S K- M—B+2y -6
=0 - Ept %|—ﬁ+5|?‘
=0, - QK+ | -8+ 8
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Table 3.5. Squared matrix elements for Cabibbo-suppressed decays 7' — h* M

in terms of the reduced matrix elements «, 3,7 and §.

Process Squared Matrix Element (Modulo s%)
A} — Atz0 2 —a— v -6
A — Aty° gla+ B8 —7l?

AF — A+

Q| it

—2a+ 8 -2y —§?

A — S KO

L —2a+ B+ 52

A} - TR+

F2a+ B —2y— 62

AF — At+r-

1B + 6]

’_jl -3 A+1\

§|2a — ﬂ = (5'2

= *0,_+
=24 — I

E;Fl - Frbpl

|
fclda + B+ 2v + 387

=t —*0
B —rE KT

3120 — B+ 27 + 6

'—;"1 — ATHK-

|~ — 8

T =y 2*+7r0

g —B+2y+ 6P

= —0
.:21 — AOK

=i —y E*OTFO

*0_0
1 X

=0 — E*OI(O

EEI — Y- 3|— + 2y — 6]?
=Y - Bt 4§|—ﬁ+6|2
S = p+el

25— ATK-

H—B+2y -6




Table 3.6. Squared matrix elements for the doubly-Cabibbo- suppressed decays

T — h*M in terms of the reduced matrix a, 3,7 and é.

Process Squared Matrix Element (Modulo s?)
AF - ATKDO $al?

AF — AK+ 4§|c\:l2

= — Aty® 3 —2a+ 81/

EL - EOK+ H—2a+p8—-2v-6

= — Atta- 1B+ 817

Ef — DK 318 + 8|2

=5 — A%+ 318 — 2y — 6|

EH - Ata? 21y + 6|2

2 — A%° 2| —2a+ B —9|?

=0, — ZH KO & —2a+ B —2y+ 8|
=0 - At %|/3—2’7+5|2

=0 - A-xt 18— 8

B o IRt 318 — 61

=%, — A% 2|y - 82
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Table 3.7. Squared matrix elements for the decays S — hM in terms of the

reduced matrix elements a, b,¢,d, e, f,g,h and k.

Process Squared Matrix Element

0 — =%’ | —a— b+ 2k

Q0 - 2K’ s22a —c4+ d 4 2h — |2

N2 — =0p0 s3%| —2a —3b—2c —2d — 3e — 29 + 4h + 4k + I|?
Qg — =050 .<3%%|b—e—i—2g+l'|2

QW =gt s2lb+e—2g -1

W s THK- sile—d—2h +1|?

Q0 — AR s2l|c+ 3d + 2¢ + 4g — 2k + 4k — 1|2
Q0 — T0y° st3l—2a+c—2d+1?

Q0 — =0K0 s —b=ec—=2f — e —2¢[?

QE S E-KT .'5'§|l;v-}-c—2f—i-e——2g|2

09 — Ax0 s‘{%|c+2e—t’|'2

Q - x—rt stle—=2f +1?
Qg—+2+7r_ s‘f|c+2f+l|2

00 - i si|d —2f — 2h)?

Q0 — pK- sjld +2f + 2h)?

0 — A% s‘}%|3f + 29 + 2k + 2k|?

N2 — xorx0 sta|f)?

67



Table 3.8. Squared matrix elements for the decays S — h*M in terms of the

reduced matrix elements «, 3,7, 6, A and 7.

Process Squared Matrix Element
0 — =R’ 112a + B + 2|2
00— 0t 18— 20"

Q0 — SO

sit|2a —y — 26 — 2)°

0 —*0.0
Q, = ="

sitlda+ 38+ +48 + 6X + 69|

Qg — =*0,0

s3i — B —v+2x —2q|?

Q0 =gt

s318 — v 42X — 2|2

00— Q-K+

=B —7+2\+ 29

00— THK-

s3ly +26 + 22

0 0,0
Qc — I

s‘}%l —2a 4 v — 26|

00 — SO0

s1318 + 7 +2) + 29/

Q0 =K+

styB + 4 —2) — 21|

Q0 — Tty

staly +2A2

0 — yr—gt

stily — 2\

N - ATK- 3‘11%|6|2
-0

Qg — AR S«}i%w'z

QS — T*0,0 s‘{%])\r"
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Table 3.9. Squared matrix elements for the Cabibbo-allowed decays T' —
h* MM where the mesons are in a relatively even angular momentum state in
terms of the reduced matrix elements As, By, Cy, Dy, Ey, Fy, Gy, 15, Cs, Es, Fs
and Gj.

Process Squared Matrix Element

A} — B+ 070 11245 + 2By — Cy + 4Dy — Fy — 25 + Cs + Fy|?
A — T+ a0y0 | = 2By + Fy — 2G5 — 2I5 + 2Cs + F|?
Af - Trrpt L|12A; + 2Bf 4+ 4Dj + Ef — 21 — E,|?
AT — T 00t %I—C’f—Ef—Ff+Cs+E3+F3|2
A} — H0xty0 1| - 2B + Ff — 2G5 — 2I; + 2C, + Fi|?
AF — EO[Hq0 2|A;—Cyp—AF; — I; + Cs + LF,)?
AF - =K+ H2Af + Ef — 215 — E|?

A - AttK—x° %|—C'f—Ff+2Gf—C'3—F33

Ay - ATK-xt L - Cp— Fs+2Gf — Cs — Fy?

AF — AYK x° 1 = @y =8By = Fy 4 06 =10, = 2, — BP
AF — AR xt L — Op— By — Ppt+ 205 — Oy — By — Fi?
Af - Er—gtgpt %I—Cf——Ef—Ff-FCs—}-ES—I-FSF
AF - = ntKT N —2C; — Ef — Fy +2C, + Es + Fy?
At — At |Ej + E4|?

=H — 0K L= 2Ar =8By — By + Fy = By = P
=4 - DR 2| — 245 — BB r— 38y — Fr— BBy — 35
Ef = K-t Y2A; + 2By + Ef — Fy — Eg — Fy|?
=2 - SOt %|E3 + Fy|?

= — =0y 0g+ il —4Af — 4By — 3Ef + Fy + 3E, + 3F|?
= - ATE-R |Ef + Ff + Es + Fs|?

=H - ATRR YEf + Fy+ Es + Fuf?

Zh —» EMplyt H—Ef—Fr+ Es + Fo|?
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Table 3.9. Continued

Process Squared Matrix Element

=h > = atat 3l = Ef - Fr+ Es + F|°

=h - Q- K+xt | By — Fp+Ei+ Bf’

=0 SR Y =245 — Ef + 215 — E,

=0, — B+ K70 L —24; + Cf + Ff — 2Gy + 215 — Cs + Fy|?

=0 — Bt K0 L|24; — 3C; — Fy — 2G — 215 — 5C, — F,|?

=0, — BOE 70 15l —2Bj + Cy+ Ef + 2F; — 2G5 — 215 — Cs + E;|?

E% — SUK P il = 3By — Cy— By — 3F; — 3Gy
—215— 3C, — B, — $F|?

=0 s T#0,070 %|2‘4}-+2_Bf—Cf—Ff+2Gf+Cs—Fs|2

=0 — AHK-K- 4|Cy + Cs|?

=0 — AYK-R’ 312Cs + Ef + Fy + 2C, + E; + Fy|?

=0 Lt R LCs + Ef + Fy — 2G5 — Cy — Eq — F|?

=0 — Sty | —2C; — 3E; — Fy + 4Gy + 20, + 3E, + F|?

20, — SOt §12Bf+ Cp + Ef —2Gp + 215 — Cy — E*

=0 L AR HCr+ Ef+ Fy+ Co+ Es + Fi?

E0 — E0ptgr— %l — 2By — 4Dy — Ey + E,?

20 s B Ont §|Es + Fy — Es — Fy|°

=) - Q- K%t | - Ef + Es|?

=0 Z4050,0 1| — 2B, — 4Dy 4 Fy — Fyl?

3?1 — Q- K+70 %|Ff - Fs]g




Table 3.10. Squared matrix elements for the Cabibbo-allowed decays T —

h* MM where the two mesons are in a relatively odd angular momentum state

in terms of reduced matrix elements A'}-,B},C'f, },E},F}, },I},CL,E;,F;

and GY,.

Process

Squared Matrix Element

A;" = 2*+ﬂ.0n0

5|12A4% + O} + C5 + 2F; + 2G|

AY - gt

3| — 24} — 2B} — E}; + 2I; + E|?

AC+ — 0070+

1124 + 2B} + E; — 2I; — E;?

A;i- - E*0ﬂ+7]0

§124% + O} + Cf + 2F; 4+ 2G| ]?

AF - ZOK+R0

|24 — Fp — 21} + F?

AF < ZOROp+ 124% + B} — 21} — Ej|?

AF — AT K70 LG+ Fp + Co + Fy + 2G|

AY - AYK—xt %IC’} o+ Fy+ g+ Py 247

AF - ATKx0 1| — O} +2E} — FL — C, + 2B, — F} — 2G.|?
A - ARr+ Y —C\+ E)— F} - Ci+ E, — F} - 2G\|*
A - AT R |E} + E|?

A} > S Kot {— &y - F} + B+ F]?

= — DO \|—24! + 2B — E, + F, — E, — FI|?

—_ U
= — oK

15124 + 6B} + 3E) 4+ F} 4+ 3E, + 3F,|?

=h o DRt

32A% + 2B} + E}; — F{ — E, — F,?

=, —{
.:j'l = PR

$l =247 — B + Fi?

Ef — 2%t 5| — 44 — 3E} + F; + 3E, + 3F,
=H > ATTR-R |E}; + F} + E} + Fi|?
=5 — S0 0+ é|—4B}—E}—F}+E;+Fg|2

5:1 — Q- Ktrt

| — By — F} + Ey + Fy|?

= ==l
:gl — B K

1 2
Lj—24; — E. +-2F, — E||

= = It K-a?

Y = 24% — C} + Fj — 20} + C} + Fy + 2G|
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Table 3.10. Continued.

Process

Squared Matrix Element

20 —» ErH K0

15124 — Cf — F} — 615 + C, — Fy + 2G,?

i —0
.:gl — DK A0

1714A4% 4+ 2B} + C; + E} — 21}
—C!l + E. — 2F! - 2.2

= p—
:21 — B0

1 1 1 1 ! ]
4Cy —3E, +2F, + 2G|*

=0 —=x0,.0_0
Sl TFPET

L|24) + C} — C, — 2F} — 2G,?

S0y =gt T

L, — Bt 7~ Ol B = FL— 06

= = = ptxt

15| — 2C; + 3B — F; + 2C, — 3E{ + F; + 4G’

=0 - A+K-K

gq+n+a+ﬂp

531 — T K—gt

§| — 2By +C; — E} +2I; — Cy + By — 2G|

— Z 0=t

il — 2B} — E} + E,|?

=]

=t

| = = algt

%IE} == E' + F!|?

=0, = Q- K%+

= - Q- Ktg0

| — E} + E5|?
1F; — FyF
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Table 3.11. Squared matrix elements for the Cabibbo-suppressed decays 7' —
h*M M where the mesons are in a relatively even angular momentum state in

terms of reduced matrix elements Ay, By, Cy, Dy, E¢, Fp,Gy,15,Cs, Es, Fs and

Gs:

Process

Squared Matrix Element (Modulo s?)

A} — Ata0x0

%‘—‘Af—i—Bf—}—QDf—l-Ef—Gf—If+Cs+E3+F5|2

AF — ATx0p0

§12Br + Cs+3E5 + Fy + 215 — Cs + 3Es + F|?

A - Atgtg—

31245 +2Bf — Cy+4Ds + Ey — Fy
+2G5 —2I; — Cy — E; — F|?

A > AYK+E-

-};l’-lDf—i—Ff—?If—}-Fsl

AY = AYRKCKO

3|12Bf +4Dj — Fy — F|

Af — AVrOxt

é‘—Cf—Ef—Ff—QGf—I—BCS+3E3+3F5|

At — Algxtp0

5| — 4By —3Cy — 3E; — Fy + 2Gy
—4I5 + Cy — 3E, — F|

AF - ARUKH

N —2By+ Fp—2Ip+ F

At — B0 +70

Ll4A; + 285 — Cp + 385 — 905 — Tl + 30, — By?

A} — SOROx+

L4A; + 2By — Cs+ Ef — 2F; + 2G5 — 215 — Cs — E,|?

AY - S K+gr-

%|—2Af—23f—c_f—Ef-’rQGf—C_.,-i—EsI?

A} — B KO0

-IG“IQA_[—FQB_{—C! — Ef—QFf-}-?Gf — Oy — Esiz

At — Attg—z0

H—Cy—Ef— Fy+2Gy — Cy — E; — Fy?

A} = AT R-KO

|Fy + Fs|?

Af — A++plr—

Y —Cy+3Ef+ Fr+2Gy — Cy + 3B + Fi|?

AT = A—xtpt

c

4 —C5—E; — Fy + Cs + Eq + Fi|?

Ae = E~Ktrgt

%|Cf ——C'3|2

— -0
=Eh - ATK &0

§l =245 — 2B+ Cy — Ef — 2G5 + C; — E; — 2F|?

— =l
:.:‘l — ATK 1;0

15l — 245 —2B; + Cy 4+ 3E; + 4Fy
—2Gs + Cs + 3E, + 28|
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Table 3.11. Continued

Process Squared Matrix Element (Modulo s%)
= - AtK—x+t %12Af+23f+CI+Ef—2Gf+Cs_Esl2
= = AR A HCr+ Ef + Ff — 2G§ 4 Cs — Ey — Fy|?

=on
“cl

—0 >
— SO K+

%|_4Af—23f+0f—Ef+2Ff
~2Gy + 215 + Cs + E|?

E;{-}_)Et(]nﬂﬂ.+ 7 %|_4Af—23f—3Ef+2Gj+2]f—205_F3|2
=4 - S KKt 3| —2A¢— 2By + Cp — 4Dy = By + Fy

—2Gy +2I; + Cs + Es + Fy|?

=} — TrpOx0 gl — 247+ Fy +2Gy + 21y — 2C, — Fi|?
= s ATTR -0 LCp— Ep — 2G;+ 0y — E

=h = AR §|Cs +3Ef +2Ff — 2G5 + Cs + 3E, + 2|
2 — B*rale? 3|Cs — 4Dy + Ep + 21 — Cs + B’
=+ _, 500+ 3ICs — Cs + E; + Fi|?

=h - 0K a0 §|2By +2Cs +2Ey + Fy + 21y — 2C,s — F5|?
s 40— By — Fp—Cy £ By + Fi?

St B Khpt 510 = Csl?

=H = AR r |Fy + F,?

=t o D ROKO 1) — 2By —dDg+ Py 4 FJP

=h - Sttrgt Y —4Dj — Fy — Fs +2I4)?

Sh — SO+ %|QBI—FI+QI)«—F3]2

=0 AYRn- N =247 +2C) + Fy + 21 + 2Cs + Fo|?
=0, — ATK -0 5l =247 — Cp — By — 2G; + 21y = 3C, — B[
=0 AYK—q° 181245 4+ 3Cs + 3E5 + 2F; — 2Gy

—2I7 + Cs + 3Es + 2F,|?

—=0
— AR 70

%|—2Bf——Cf——Ef—'2Gf—2]f—3cs—Es—2F3|2
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Table 3.11. Continued

Process Squared Matrix Element (Modulo s%)
=0 — AR O 5| —2Bj +3Cs + 3E5 + 4Ff — 2Gy
—2If + Cy + 3B, + 2F,|?
EEIHE*GFOKO %l_QA!._QBf_}_Cf—ZlDf+Ff—l—2[j+ca+F32
Egl_}ztoﬂono 11_8|4Af+23f+0f+3Ef+2Ff
92 — A5 30, + BEy
=0 B+ K-KO L =245 +2Cs + Fy + 215 + 2C, + Fy|?
=0, — Srtr—p0 35| —4Ay —3Cy — 3Ef — Fy — 2Gy
+4I5 — 5Cs — 3E, — Fy|?
=0 — AT K- 4|Cy + C,?
=0 — ot xO HCs+ Ef+ Ff — 2G5 — Cs + E, + F?
=0 AVK—xt 2B+ Cr+ Ef —2Gy + 215 — Cs — ESJ?
=0 SOkt Y — 2B + C; — 8Dy — Ef —2Gg + 215 — Co + E,|?
20, — 05070 Y| —2Bf — Cy — 8Dy — Ef + 2G5
+2I5 + Cs — By — 2F|?
20, — S 0gr—gt §|—2By+ Cy—8Ds — Ef — 2G5 + 215 — Cs + E|?
=0 ARt |G+ B + Py — 3Gy — Cx — By — B
=0 2K Kt L0y — By Fr— 307 - G+ B, = P
S T—— L|—Cy;—3E;+ Fy+2G; + Cs + 3E, — F.|?
=0 s St g0nt W=Cy+Ef+Fr+2Gs+Cs — Es — Fi|?
=0 — E 0K trm Y2By + Cs + By = 2Gy + 217 — Cy — Eyf?
=0 =000 1 — 2By + Gy + Ep +2Fp — 2G5 — 28 — Cs + Es|?
=0 E*-K+a? 1)~ Cps B+ Fyp4 20y + Q4 B — B2
=0 = ROt Ligs — Brd By — 205 ~ Ou+ By — Bl
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Table 3.12. Squared matrix elements for the Cabibbo-suppressed decays T' —
h* MM where the mesons are in a relatively odd angular momentum state in
terms of reduced matrix elements A'f, B}, C}, 'f, E'}, F}, '}, I}, C!,E., F! and
G".

Process Squared Matrix Element (Modulo s%)
A} — A+ap® 5|24 — C; +3E} — F; — C, + 3E, + F, — 2G'?
A} - Atrtr- %|2A’lf 4 QB} — C'f + E} = F} = 21}]
' ~C! — E, - F! - 2G"|?
AF — AFREEE— 3|Fp — 21 + Fj|
At = ATRKO 2B, + F} + Fl|
0.0 1
Af - A7t §|4A}+4B}—C}+3E}—F}—4I}
— 0 — By — ¥, — 2G|
AF — Alzty0 11—8|4A'f—C}+3E}—3F}—CQ+3E;+F;'—-‘2G's
AF - ARK+ Y|~ 2B} — F} +2I, - Fl|
+ *0 7. 0 1 |
A - Z¥VK*x ﬁIZB}+C}+E}+2F}+21}
1 — 8B —2F Lot )?
AF — TOKOgt §12B} + C; — B} + 215 + Cy + E| +2F, + 2G|
A} - S+ K+r- L2A4" + 2B} + C} + E} + Cl — B} + 2G.
A} — T K00 %|‘2A’f + 2B+ Cy + Ey + Cy + E, +2F; + 2G" |2
AF - Attr—g0 LCY + EY + Fj + Cl + B4 + Fl + 2Gy?
AF - ATHE-KO |F} + FiI?
AF — AttyOr- %|C}—3E} —F}-+C§ — 3E! — F! 4+ 2G?
A} — S Ktgt $E} + Fy— By — FiJ?
=h - AYR 70 24 — 2B + C} — Ef + C} — E| + 2F, + 2G,?
— 0
=h = ATEK p® il —24% — 6B} — C; — 3E%
—C! —3E. —2F) - 2G.|?
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Table 3.12. Continued

Process Squared Matrix Element (Modulo s%)

Eh — AYK 3| — 24y — 2B} — Cj — By — Oy + B, — 26,
=+ & ARt L4A, + C + B} — Fj + Cy — Ey + Fy + 2G|
=t & SR K+ t12B + Cf — E + 21 + C, + E, + 2F, + 2G|
S 1|~ C} —2F} — C} + 3E}, + F} — 2G,|?

= o KKt %[2’4} + ZB} — C} =+ E} - F}

—af, - €~ B, ~ Fi = 3G, ?

—3 Et—{»nOﬂ.O

§124" — C} + 3B} — F; — C, + 3E, 4+ F, — 2G| |?

—61} — 2C, — Fi — 4G, ?

— AttK—x0

1| — C + B} — C) + E, — 26

— AtTHK 0

¢l — C} —38E} —2F; — C, — 3E; — 2F; — 2G| |?

=+ b 500t L| — 4B} — 2B — 4l + 2F}|?
= S oo M) + £} 21y 2, FyP
E;"I — S~ Ktxt %lElf + F} — K, - FS’IQ

=h - AR - |y + FP?

=t — SR KO §12B% + F; + F}|

=5 - Srtpgt 3|y — 20 + I
o B} + By 20 + P
= - AR 3124y — Fy —21) — Fyf?

—s AT EK—#"

§124% + Cy + E} + 2y — C, + E| — 2G|

- ATK—°

2 gl — 24 + C; — 3E; — 2F;
+61; — C, — 3E, — 2F; — 2G|
20, — AR x §l4A% + 2B + Cy + Ef — 215 — Cy + Ey — 2F; — 2G|




Table 3.12. Continued

Process

Squared Matrix Element (Modulo s%)

f—8| —4A', — 6B} + C; — 3E} + 61}
—Cy — 3E, — 2F} — 2G'|?

=0, = DK K°

3124 — Fp — 21} — F,|?

=0 E*+7r—7;0

1 ! (] ] 1
15/4A% + Cp +3E; + Fj
—C! +3E. + F! - 2G.|?

=0 ortp—p0

§l—Ci+ E} + Ff — 41, + C, + E, + F, + 2G|

=0 0 fr—mt
Eo = AK ™7

312B} — C; + By — 21 + C, — E, 4+ 2G,|?

=0, — SOK-K+

=0 —y E*OTF—TP+

1| - 2B} — C\ — B, — oI, + C} + E, + 26,
§| — 2B} — C} — B} — 215 + C + E; + 2G|

— —=0
=0 5 A-K =t

| - C;+ Ef — Fi+ C; — Ey + F; + 2G|

—_ =0 .,
=0, 2K K+

3| = C;— E; — F; + Ci + E{ + Fy + 2G,|?

=0 E*‘ﬂ'+n°

16/Cy — 3E} — F; — Cy 4+ 3E, + F, — 2G|

=0 T g 0pt

¢ICh + By — Ff — C} — E{ + Fy — 2G,|?

=0 5 =0 K+

1)¢ 2
3|2B; — C; + E} — 21 4+ C, — E, + 2G|

=0 —=%0 770 .0
=5 =SS K

§l — 2B} +Cf — E} + 21, — C, — E} — 2F; - 2G?

=0 —*— 1o+ ..0
g =& KT

§|Cy — By — F; — Ci + E{ + Fy — 2G\|?

=0 - E-KO0rt

3| = Cs— Ef — Fr+ Ci + B, + F} + 2G,|°
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Table 3.13. Squared matrix elements for the Cabibbo-allowed decays T' —

BMI*y; in terms of the reduced matix elements a, b and c.

Process Squared Matrix Element
AF — A%ty 13a + 2b + 2¢|?
AF — E0x01ty, la|?
AF = Ttr—ity |la|?
AY - oottty la|?
AY — pK~IlTy la + b|?
AF — nK’OI"'w la + b]?
A}y -5 =" K+ity la 4 c|?
A} = ZOK 1y, la + ¢|?
=5 o STK- Ity |5
= = AR Iy Lip — 2c|?
=t o DK Ity Lip|?
=5 — E0%0ty 1126 — ¢|?
=F - E-rtity le]
EC+1 — =070y, :1,_-]c|2
=0 = AK-1ty, £1b — 2¢)?
Y - BOK-1ty, AL
=0, - 2K Ity ||
20 = =%ty 26— c|?
20 = = xlity, %|c|2
20, = Elr-ity le|?




Table 3.14. Squared matrix elements for the Cabibbo-suppressed decays 7' —

BMI*y; in terms of the reduced matrix elements a, b and c.

Process Squared Matrix Element (Modulo 5%
A — prlty |o]®

A — nplity +1b —2¢|?

AF — nnllty, 3102

AF — AOKO1ty, 2126 — ¢f?

Af - - K*ity |c|?

AT — ZUK Ity lef?

=t ADTIOI+W

=cl

=t — 20x0ty,

el

T2a+ b+ cl?

Eh — Ttr—lty, la + b]*
EL - E-xtlty la + ¢|?
=5 — pK-lty |la|?
25 — K *y la + ¢|?
=L - =Kty |la|?
=5 - =Ky, la + b|*
=H — 2090ty =1b+ cf?
=5 — A0ty b+ cf?
521 — Alr—Ity %lb +¢f?
29, — 20—ty %|b —cf?
=g — ZT Fb+ cf?
=0 - T xlty, %lb — e}
=Y — =K%ty b
=0 — nK- Ity |c|?
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Table 3.15. Squared matrix elements for the Cabibbo-allowed decays T' —

h* M1* v normalized with respect to the process =0 — S* K1ty

Process Squared Matrix Element

A} — 20701y, 2

AF — Tntity

AF = T K+Ity

AF — SOOIy,

2
2
A} — Tt ety 2
2
2

E:l - S K-ty

=t — E*Ofol"'u; 1

=H = =200y, 3

— =001+, 1

— Sttty

e Q_I\’+l+ul

|| N

20— B0ty

— =¥ 70y, 1

=0, - 20ty

=0, — Q- Kty

20 - BRIty

| = S| W

= =0
=0 S K Ity
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Table 3.16. Squared matrix elements for the Cabibbo-suppressed decays T" —

h* MI* v normalized with respect to the process =0, — Z*~701* .

Process Squared Matrix Element (Modulo s%)

AF - Atr—ity 2

A} — A0y, 1

AF — DOROy,

[a—

AF — A—ntity

AF = T K+t

=EH - ATK-Ity

— —0
:_jl — AYK Ity

WlN|[N| N D

=H - 200ty

=+ *0__07+
2 — X0 Ty

[ S i ST

=t - Sty

—cl

EL = E-Ktty,

o

531 — AN -1y,

o

— el
B — A=K I+U1

D

=0 - B0ty 1

— 0ty 3

=0, — Tty

(="

20, — KOy,

[SV]
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Table 3.17. Squared matrix elements for the decays S — BMI% v in terms of

the reduced matrix elements «, 3 and ~.

Process

Squared Matrix Element

0 — E_I_(ol‘*‘w lv|2
Q0 - 0Kty |y|2
Q0 — =70ty si3lal?

Qg — Z 9ty

s%%|a — 28 + 2v|?

Q) - Z0x-ity s2|a|?
Q0 5 AOK-Ity, sitl —2a+ B — 29
00 = BOK=1+y s211B)?
—0 3
W - S-K Ity 53182

Table 3.18.

the reduced matrix elements é and (.

Squared matrix elements for the decays S — h* Mty in terms of

Process Squared Matrix Element
Q0 — ZOR -ty 16+ ¢

Q0 =R Ity 16+ ¢

a2 — 9l 26+ ¢P

Q0 - Z*0r—1ty, s2116)?

Q0 - =ty 5%11—8|6 — Bl

Q2 — =70ty s3L6)?

Q0 — QKO+, s16]%

Qg 5 D=ty 5(13%|C|2

P s3L¢?
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CHAPTER 4. B-MESON DECAYS TO CHARMED BARYONS

B-mesons, for the first time, offer an opportunity to study the weak nonleptonic
decays of mesons to baryons. Experimentally, it is known that [1.6] Br (B — p +
anything) > 2x10~2 and Br (B — A 4+ anything) > 1x1072. It is likely that, in the
future, branching ratios will be measured for many of the exclusive B-meson decays
to baryons. In this chapter we explore the implications of the approximate SU(3)y
flavor symmetry of the strong interactions for the decays of B mesons to the lowest—
lying charmed baryons. Some of the relations implied by SU(3) s may provide insight
into the nature of various competing dynamical effects that can occur in nonleptonic

B decays.

The effective Hamiltonian for Ab = —1 Ac¢ = +1 nonleptonic B-meson decays
has the flavor quantum numbers of the operator (b¢)(ud) for the Cabibbo-allowed de-
cays and of the operator (b¢)(us) for the Cabibbo-suppressed decays. These are two
different components of the same octet representation of SU(3)s. Using this trans-
formation property we derive, in Section 4.1, relations between two body B meson
decays to a charmed baryon plus an antibaryon. The consequences of SU(3)s for
some of the two body B-meson decays to charmed baryons in the 3 representation
have been considered in ref. [4.1]. The effective Hamiltonian for Ab = —1, Ac = —1
weak nonleptonic decays has the flavor quantum numbers of the operator (bu)(es).
Note that these decays vanish if s3 is zero. This operator transforms as 3 @ 6 under
flavor SU(3)s. Using this transformation property we derive, in Section 4.2, relations
between two-body B meson decays to a baryon and a charmed antibaryon. Sec-
tion 4.3 contains concluding remarks, which include some SU(3)¢ relations for weak

nonleptonic decays of bottom baryons.

4.1. Two Body B Decays to Charmed Baryons

The B meson fields come in three types, B~, B® and BY which transform under

SU(3)s as a 3 representation with components B;:

Bi=B~ , By=B" and B3 =B} . (4.1)
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We begin by considering two body decays of the B-mesons to charmed baryons in
the lowest-lying antitriplet representation and antibaryons in the charge conjugate
octet of nucleons and hyperons. As far as group theory factors are concerned, we can

take for the effective Hamiltonian for nonleptonic decays, B — T'h,

Her = oT HPWIB, + BT H!WIB,
=]
+ AT B (HPRS) . (4.2)

where hj- is given in Eq. (1.28), T' is given in Eq. (3.15) and H} are components of

the matrix

0 0
H = 1 0 o0 . (4.3)
—s1 0

Table 4.1 presents the predictions for B — Th decays which follow from the effective

Hamiltonian in Eq. (4.2). There is a simple relation amongst the Cabibbo-allowed

decays

(B —-Z28% 4+ 3r(B* - =2A) = I(BY - Atp) + I(B° - =220 . (4.4)
Li and Wu [4.1] have also considered the predictions of SU(3) for the Cabibbo-allowed
B — Th decays. These results agree with theirs. There are several simple relations

between Cabibbo-allowed and Cabibbo-suppressed decays. For example,

(B~ — Zp) =si0(B~ - =57) (4.5a)

I(B® - =) a) =siM(B? - =220 (4.5b)
and

(B = Efp) = si0(B? — ATE) . (4.5¢)

Next we consider two-body decays of the B-mesons to the lowest-lying charmed

baryons in the 6 representation and antibaryons in the charge conjugate of the octet
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of nucleons and hyperons. The sextuplet of charmed baryon fields is denoted by a

two index symmetric tensor S* with components

1 Ii
Sl] = E++ , 5-12 = 2+ , 522 — ES . 513 = E+ :
c \/i c \/‘2‘ c2
§% = 1 =0 anad 5% = Qb . (4.6)

ﬁ'_'(!'g c

As far as group theory factors are concerned we can use, as the effective Hamiltonian

for weak nonleptonic B — Sh decays,

+c 7P By H{fhf Sik » (4.7)

with H]’F given by Eq. (4.3). The decay rates for Cabibbo allowed decays, which follow

from Eq. (4.7), are presented in Table 4.2. There are several simple relations amongst

the Cabibbo allowed decays. For example

(B~ —=%57) = =I(B~ — %) , (4.80)

B = o =

I(B® = =£87) = =I(B° - Q=) . (4.8b)
Table 4.3 presents the results that follow from the effective Hamiltonian in Eq. (4.7) for
the Cabibbo-suppressed decays. In addition to there being several relations between
the Cabibbo-suppressed decays, there are also some simple relations between the
Cabibbo-allowed and the Cabibbo-suppressed decays. For example, inspection of

Tables 4.2 and 4.3 reveals that

(B~ — Q") = siI(B~ = =p) (4.9a)
P(B® - =n) = $I(B) - EL27) (4:8)

The results of Tables 4.2 and 4.3 trivially generalize to decays B — S*h, where S*

denotes a member of the lowest-lying 6 of J¥ = 3/2% charmed baryons.
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There is only one singlet representation in the product 3 ® 10 ® 3 ® 8 (i.e.,
quh‘quHfBj) so all the decays B — Th* are related by SU(3)s symmetry. Ta-
ble 4.4 presents the relative rates for these decays normalized to the rate for the
decay B~ — ATA—,

For the decays B — Sh* we can take, as far as group theory factors are concerned,

the following effective Hamiltonian
Heg = 771h,.‘pqegpqfIgBj = W?h*qugpkH(fo C (410)

The term proportional to 77 only effects Cabibbo allowed B® decays and Cabibbo sup-
pressed BY decays. So all the Cabibbo allowed B~ and B? decays and the Cabibbo
suppressed B~ and B decays are related by SU(3)y flavor. Tables 4.5 and 4.6 present
rates, which follow from the effective Hamiltonian in Eq. (4.10), for the Cabibbo al-
lowed and Cabibbo suppressed B — Sh* decays. These results generalize straight-
forwardly to decays B — S*h*, where S* denotes a member of the lowest-lying 6 of

J¥ = 3/2% charmed baryons.

4.2. Two Body B-Decays to Charmed Anti—-Baryons

The Ab = —1, Ac = —1 part of the effective Hamiltonian for weak nonleptonic
B-decays arises from the b — u weak coupling and has the flavor quantum numbers
of the operator (bu)(cs). This operator transforms as 6 @ 3 with respect to flavor

SU(3). Decomposing it into irreducible operators

(b&)(c.‘s’) = 0(6) + 0(3) . (411)
where
O@) = %[(b&)(cé) + (bS)(cﬁ)} , (4.12q)
transforms as a 6 and
Oy = %[(bu)(cg) - (bs)(ca)] , (4.120)

transforms as a 3. There is a small dynamical enhancement of the coefficient of O3y,
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in the effective weak Hamiltonian, over that of Oy coming from perturbative strong
interaction corrections which take into account effects coming from loop momenta p

in the range My > p > my. It is equal to [2.1]

aealiny) 18/23 N
{_as(Mw) ~ 1.5 . (4.13)

For the two-body decays B — T'h we can use, as far as group theory factors are

concerned, the following effective Hamiltonian.

He = ny Bibi T H(3Y* + nzs)Bgi—szkH(S)ij
+15) Bil; T H(6)* + (5 BiTuhi H(6) . (4.14)

In Eq. (4.14) H(3) is a two index antisymmetric tensor that takes into account the

transformation properties of O(3)- It has non-zero components
H3)B =1, H@=-1 . (4.15)

H(G) is a two index symmetric tensor that takes into account the transformation

properties of O). It has non-zero components

HB3®)=1 , H*6)=1 . (4.16)

Table 4.7 presents the predictions for B — Th decays that follow from the effective
Hamiltonian in Eq. (4.14). The Hamiltonian is I = 1/2 and it follows that the

relations
_ ll .

(B~ = ARy = ;I‘(BO = FTETY (4.17a)

1

2

F

I(B] - 205" = SI(B; — E;51) , (4.17b)

are consequences of isospin invariance. There are no simple SU(3); relations that

are not consequences of isospin. However if, for dynamical reasons, matrix elements
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of O3y dominate over those of O(g), then there would be additional relations. For

example, either 3 or 6 dominance implies that

(B = AISH)=I(B* - E2=") . (4.18)

Next we consider decays of the type B — Sh. As far as group theory factors are

concerned, we can take as the effective Hamiltonian for these decays

Hegp = Fg)€xpg Bih ST  H(3)"" + G(3yerpg Bih§ S H(3)P
+ Figy€iju BehE SPH(6) + G gy€i;x BeS H(6)Ph)y (4.19)

Rates for B — Sh decays that follow from this effective Hamiltonian are presented

in Table 4.8. Most of the simple relations are consequences of isospin. These are

” 1
I(B~ — £;A% = -T(B® — £2A") , (4.20a)
I(B® — 305% = n(B® — E; 8%} (4.200)
- 1 _
N(By — £7p) = 5T(By — £n) (4.20¢)
= 1 - ‘
(By — =¢,5%) = 5T(By —» =55%) . (4.20d)

There is a simple relation that is not a consequence of isospin.

| —

B~ - Z0=7)=

(B~ — 82v7) . (4.21)

¢

N

t

The results in Table 4.7 generalize straightforwardly to B — S*h decays, where S*

is a member of the lowest-lying J¥ = 3/2% multiplet of charmed baryons.

Since the product 3 ® 10 ® 3 ® 3 does not contain a singlet, the decays B — T'h*
only proceed via the 6 part of the effective Hamiltonian. In addition, the product

3 ® 10 ® 3 ® 6 contains only one singlet (i.e., BgTifi_z}A_[H(G)k() and so the relative
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rates for all the B — Th* are determined by SU(3); symmetry. Table 4.9 gives the

relative rates. Note that the relations

D(B~ — AfE™) = ST(B" - ArS™) (4.220)

I(BY — 50 £+0) = %F(Bg LB (4.220)

are consequences of isospin.

Finally we consider the decays B — Sh*. As far as group theory factors are

concerned, we can use

Hcﬂ' = Q(S)B,'H(B)Ufl;kgske + 6(6)B;H(6)L£B;L£SU
+ a3 BiH(3)7 R}, S* (4.23)

as the effective Hamiltonian for these decays. Note that the terms proportional to
a3y and agg) only cause B~ and B? decays. It follows that the rates for B — Sh*
decays are related by SU(3) s symmetry. Table 4.10 shows the results that follow from
expanding the effective Hamiltonian in Eq. (4.23). There are several simple relations

that are not consequences of isospin. For example:

(B~ — £75%) = %I‘(B‘ Sty (4.24a)
= 1 =

(B~ — £lv ) = sT(B™ — S22 (4.240)

T8 = L 2 ) =T(BE* = SL =) . (4.24¢)

The results in Table 4.10 gencralize straightforwardly to the decays B — S*h*.

4.3 Concluding Remarks On Chapter 4

In this chapter we have examined the consequences of the approximate SU(3)y
flavor symmetry of the strong interactions for nonleptonic B meson decays that pro-

duce low lying charmed baryons. Many simple SU(3)y relations were found. For
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example, all the rates for two body decays, to a JP = 1/2% charmed baryon in the
lowest-lying 3 representation and a JP = 3/2% antibaryon in the 10 representation,

are related by the SU(3)s flavor symmetry of the strong interactions.

The hadronic spectrum contains bottom baryons analogous to charmed baryons.
In fact, if we approximate my and m. as very heavy compared with the QCD scale,
then the heavy quarks act essentially as static color sources in these baryons [1.9] and
the hyperfine splitting between the lowest-lying three and six J¥ = 1/2% multiplets

in the charm case is related to that in the bottom case. For example, one expects
my, —MmMpA, 2 my,_ — MA_ .- (4.25)

If color suppression [4.2] does not diminish the rate, the decay chain, Ag — A J /) —
pr~ete™, may prove to be a useful way to detect the A) baryon. There are SU(3)y
relations for weak bottom baryon decays. For example, the decays of the lowest-lying

J¥ = 1/2% bottom baryons in the 3 representation to hJ/v are related by SU(3)y.
Explicitly

| &

[(Z;, = E-J/¢) =T(5}, - E°J/¢) = ST(A] — A°J/y). (4.26)

SV}

The decays of the lowest-lying 3 bottom baryons to h*J/1> are forbidden by SU(3)
flavor because the product 3@3® 10 doesn’t contain a singlet. Note that the decays of
the lowest-lying J¥ = 1/2% bottom baryons in the 3 representation, to h*D (where
D denotes one of the three lowest-lying pseudoscalar D-mesons) are also determined
by a single reduced matrix element, because the product 3 ®3 ® 8 ® 10 only contains
one singlet. Normalizing to the rate for Ay, — A~ D% we find that:

T(Ay — £*= D) = [(Ay — ADO) = = (4.274)

2

o

2I'(E), — =2*°D°%) =1(Z), - =* DY =TI (=) - ="D}) = (4.27b)

W
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Table4.1. SU(3)s predictions for decays B — T'h, where T denotes a member of
the lowest-lying SU(3) antitriplet of charmed baryons and h denotes a member
of the lowest—lying octet of hyperons and nucleons. Rates are expressed in terms

of three reduced matrix elements «, 8 and ~.

Decay Rate
B =5 &~ 18+~
B~ — 27 s318 + 12
B® — =0 50 Ha—pJ?
B » =0 A o+ B2
B - =fE- o + ]?
B — Acp |of®
B = Eglﬁ s1181*
B - =fp s2ly]?
By =2 Ik
BY = AS- NE
B? — =0 0 %sf]alz
B — E3,A §sila — 2512
BY - E;ﬁi_ silal?
By — Acp sila + 7]
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Table 4.2. SU(3)s predictions for Cabibbo-allowed decays B — Sh where §
denotes a member of the lowest-lying J¥ = 1/2% sextuplet of charmed baryons
and h denotes a member of the lowest-lying octet of hyperon and nucleons.

Rates are expressed in terms of the three reduced matrix elements a,b and c.

Decay Rate
B~ —Tip le]?
B~ —=),%- 3lef?
B - %15 tla —c|?
Bt — 20 59 b —cf?
B — =0 A 5| —2a+ b+ cf?
B — 0.=° |62
B® — =5~ 3161
B? — 507 |a|?
BY — £+ sl—a—b+cf
B? — 5050 ta+b—cf?
BY — £0A %|—a—b—c]“
BY — =0 =0 3la+ b
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Table 4.3. SU(3)y predictions for Cabibbo-suppressed decays B — Sh where S
denotes a member of the lowest—lying J¥ = 1/2% sextuplet of charmed baryons
and h denotes a member of the lowest-lying octet of hyperons and nucleons.

Rates are expressed in terms of the three reduced matrix elements a, b and c.

Decay Rate (divided by s%)
B —=ep lel?
B~ = Q.2 |e|?
B - Q.20 el
BY — QA %|—2a—2b+c|2
BY =y Zr P %|a+b—c|'
B - =2 n a+b)?
BY - S5 zla—cf?
BY — =0 50 ila—c?
Bg—»EgQI—\ 11—2]—a+21)—c|2
B - £+p 3107
B — T¢n 0]
BY - .20 la|?




Table 4.4. SU(3)s predictions for Cabibbo decays B — Th* where T' denotes
a member of the lowest-lying antitriplet of charmed baryons and A* denotes a

member of the lowest-lying decouplet of JF = 3/2% baryons.

Decay Rate

[y

B~ = A A=

= =0 $*—
B~ — S %

W=

B— = =SFrA——

—cy

wn
—1o

— =0 A —
B~ — &5 4

o
W
-0

BY — KA

B[) —y =0 2*0

—cy

S| | G

0 =+t K=
B — 50 A&

e el R e
=D | =0

BO = =0 AO

L=

BY — NB*—

38

o= | cap=

0 =0 =0
B; — e, =

0 S TE—
BS = ‘_(.‘1"‘

= | |
-t | =D

BS — =0 E*O
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Table 4.5. SU(3)¢ predictions for Cabibbo-allowed decays B — Sh* where S
denotes a member of the lowest-lying J¥ = 1/2% sextuplet of charmed baryons
and h* denotes a member of the lowest-lying decouplet of J¥ = 3/2% baryons.

Rates are expressed in terms of the two reduced matrix elements n; and 72.

Decay Rate
B~ - TFA—— %|U2|2
B~ — LA~ 3lm2/?
B~ — =l 5+ slnz|?
B% - E¥+tA- |m|?

B - T+A- §12m + n2|?
B = =t 5= 2m |
B® — 22,50 2m + 92
B® — $OA0 HUEE S
B - Q. =0 %|Tll|2
BY — B5+- gln2l
Bl — 7IE %l’hlz
B? — E?zé*o §lm2|?




Table 4.6. SU(3)y predictions for Cabibbo-suppressed decays B — Sh*, where
S denotes a member of the lowest-lying J¥ = 1/2% sextuplet of charmed
baryons and h* denotes a member of the lowest-lying decouplet of J¥ = 3/27F

baryons. Rates are expressed in terms of the two reduced matrix elements 7;

and 72.

Decay Rate (divided by s)
o i T
B~ - ELA- gln2l?
B~ — Q.2* HUER
BY — Eﬁ;ﬁ‘ %‘IW?'Q
BY - =2 A° %|’72|2
B0 0.8 Lnal?

B} = SHA— Im|?
B? — TrA- %i7}1|2
BE —3 Egi'_ %|2q1 b r]g|2
BS — ELEY 1312m + 2|
By — EZA° R
B — Q.= Y+ 2|




Table 4.7. SU(3)s predictions for decays B — Th, where T denotes a member
of the lowest-lying antitriplet of charmed baryons and h denotes a member of
the lowest-lying octet of hyperons and nucleons. Rates are expressed in terms

of the four reduced matrix elements 73, nzs), () and 7726)'

Decay Rate
B~ — A X? 3@y + 0@l
B~ — A §ln(3) — 203y + 18) — 2n(g)
B- L ElE- | = 13) + () + 166) + gy
B~ —»=;=° In{ay + gy
BY - A2t 73y + 135)1°
5 B0 2P n(3) = 1&) I
BY - A.p n(3) — M3y + M6) + Me)
Bl — =2 A §1203) = n5) — 20) + i)’
BY 22 50 %W(s) - ’7f6)|.2
BY — =g 1 |7723) - 7IEG)|2
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Table 4.8. SU(3) predictions for decays B — Sh, where S denotes a member of
the lowest-lying SU(3)y sextuplet of charmed baryons and h denotes a member
of the lowest-lying SU(3)y octet of hyperons and nucleons. Rates are expressed

in terms of the four reduced matrix elements Fig), G(s), F(3) and G(3).

Decay Rate
B- - 5o-5+ |Fs) + Ge) +2G ()
B~ — ;%0 |Fis) + 3Ge) — Fla) + Gy
B~ — ;=" 31Fe) — Gy +2G ) I°
B~ —=0=- 31Fey — 2F 3
B~ - 505~ |Fey) — 2F(3) |
B~ — $2A 11G@) — 3F 3 — 3G P
BY . Bz 531G +2Fs) +2G )
B® — $IA Gy — 3F5) — 3G
B - Boxm# 131Gy + 2F3) + 2G5
B° — =0 =0 21Ge) — 2F3) — 2G )’
By — E7p 31 Fs) + 2F s
B? — £0n |Fisy + 2F ()
B - E° A 113F() +3G(5) + 4F3) — 2G(y)|°
BY s &zt 31Fe) — G@) — 2G )l
BY — 24,50 il = Flo) + G + 263
B — 0,20 |Fs) + G5y — 2G (g
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Table 4.9. Relative rates for decays B — Th*, where T denotes a member
of the lowest-lying SU(3)s antitriplet of charmed baryons and A* denotes a
member of the lowest-lying SU(3)s decouplet of JP = 3/2% baryons.

Decay Rate
B~ — A5 %
B — :c_l:*o 1
BY = R It 1
BY = 2215*0 1
BY — e Ty 1
BO :(C)lvwo %
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Table 4.10. Implications of SU(3)f for decays B — Sh*, where S denotes
a member of the lowest-lying SU(3)s sextuplet of charmed baryons and A*

denotes a member of the lowest-lying J¥ = 3/2% SU(3); decouplet of baryons.

Decay

Rate

3la) + a@) + 261

B~ — 50X 3le@) + a)l?

B = Eo I 3la@) + @) + Be I

B~ — == sla) +a@) + Be) I
] loe) + a3 ”

slag) +agl?

2

B o sonet 3181

BY — £05%0 318 ?

BO — £0 =0 21817

BY = Bo-At+t o) — ags)l?

B! — £;A* sl — a@)l’

B — ZIA° ilo) — el

BY — Q.=*0 3lag) — a@) + 281
BY — =z $la@) — a@) + Be)
BO _, =0 w0 sle@ —a@) + Be)
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CHAPTER 5. NON-BARYONIC B-MESON DECAYS

In this chapter we investigate the prediction of SU(3)s for the decay of B-mesons
to final states that do not contain baryons. In section 5.1 the B-meson decays to two
lower mass mesons are explored. In particular we look at the final states DM, DV,
DD, J/J)M and MM, where D represents a D-Meson and M denotes a member of the
lowest lying pseudoscalar octet of mesons. The three body decay modes are examined
in section 5.2. The decay to final states J/1, DMM and DDM are discussed. In
the last section of the chapter, section 5.3, closing remarks concerning non-baryonic

B-meson decays are made.

5.1 Two—-Body Non-Baryonic B-Meson Decays

We first consider Ab = —1, Ac = 1 decays of the type B — DM where D denotes
one of the D-mesons D°, Dt and DF. M is one of the eight lowest-lying 0~ mesons
7, K, K,n. As we discussed in section 4.1 of Chapter 4, the B mesons like the D
mesons transform as anti-triplets under SU(3)s. They are written as row vectors

with components B;, as in Eq (4.1). As a reminder we write them again,

B = (B_,BO,BS) N (5’1)

We are interested in the transition amplitudes A(B — DM ) = (DM |Heg|B). As

far as the group theory is concerned we can imagine these amplitudes arising from

the effective Hamiltonian
Her = a(BiD')(M{H) + WBiM{HYD?) + o(BiHLMFD?) (5.2)

with H,’: given by Eq. (4.3). Expanding out these three terms gives the results for the
Cabibbo-allowed decays shown in Table 5.1 and for the Cabibbo-suppressed decays

shown in Table 5.2.
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There is one SU(3)y relation amongst the decay amplitudes, A(B — DM), for
the Cabibbo allowed decays

|A(B® — D°x°%)|? + 3|A(B® — D°n°)|® = |A(B® = K~ D)
+|A(B? - DK% . (5.3)

There are several simple relations between the Cabibbo-allowed and the Cabibbo-

suppressed decay rates. For example, SU(3) symmetry implies that

A(B~ — D%~)
A(B- — D°K-)

= —1/s; . (5.4)

The large value of the B-meson mass (compared with the QCD scale) suggests
that relative complex phases between the reduced matrix elements a, b and ¢, which
can be generated by final state strong interactions, are small. If this is the case then,
up to sign ambiguities, measuring three of the Cabibbo-allowed decays determines
a,b and c. At the present time there are measurements of the branching ratios for

two of the decays in Table 5.1. Experimentally [5.2, 5.2]:

Br(B~ — D7) = (3.0 £ 1.4) x 1073, (
Br(B® - DY x™) = (3.6 £ 1.4) x 1073, (

ot

ot

Q
S—

(&)
T
o
o

Although we have focussed on decays of the type B — DM our results can be
trivially taken over for the decays of the form B — D*M. Also, for decays not
involving the n we can use the results in Tables 5.1 and 5.2 for the corresponding
decays B — DV and B — D*V where V is one of the 17 p or K* vector mesons. So,

for example, generalizations of Eq. (5.4) of the type

A(B~ — D*°z") ABB- = D%")  A(B~ — D)

= = = -1 5.
A(B- — DK-) = A(B- — D'K*-) _ A(B- — DK*) for (3.6)

hold. Experimentally [5.1, 5.2, 5.3, 5.4, 5.5]

. - 1.2
Br(B® — D*(2010)*7~) = (3.3+1 0) x 1073, (5.7a)
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Br(B® — D*(2010)*p™) = (8+7) x 1072, (5.7b)

4

Br(B~ — D*(2010)°77) = (34 4) x 1073, (5.7¢)
Br(B~ — D% ™) = (2.1+1.2) x 1072, (5.7d)
Br(B® - DTp™) = (2.24+1.5) x 1072 (5.7€)

Two-body decays of the type B — DD arise from weak Hamiltonians with
flavor quantum numbers (b¢)(cs) for the Cabibbo-allowed decays and (b¢)(ed) for
the Cabibbo-suppressed decays. These Hamiltonians are different components of the
same anti-triplet representation. So, as far as group theory is concerned, the decays

B — DD can be thought of as arising from an effective Hamiltonian
Ha = o(BH)(D;DY) + B(B.DY)(HID;) (5.8)

where for the Cabibbo allowed decays

0
H = 0 (5.9a)
and for the Cabibbo suppressed decays
0
H = |3 . (5.9b)
0

Table 5.3 presents results for decays B — DD which follow from Eq. (5.8). Some
of the relations that follow from Table 5.3 are just consequences of SU(2) isospin

symmetry. They are, for the Cabibbo-allowed decays [5.6]

"B~ — D°Dy) = I'(B" - D*D7) , (5.10a)
r(B? - Dp°D% =B - D*D™) . (5.100)

For the Cabibbo suppressed decays there are no isospin relations. Table 5.3 indicates

that there are several SU(3); relations between the Cabibbo-allowed and the
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Cabibbo-suppressed B — DD decays (e.g., (B~ — D°D~) = $3I'(B~ — D°D7)).
The Cabibbo suppressed B — DD decays also get contributions from terms in the
effective weak Hamiltonian that have no charm quarks. For example, the operator
(biz)(ud) which transforms under SU(3) as 3 & 6 @& 15 contributes to the Cabibbo-

suppressed B — DD decays and if s3 is near its experimental limit, this could alter

the results in Table 5.3.

The same Hamiltonians which give rise to the decays B — DD also cause the
decays B — J/¢¥ M. Since there is only one way to combine the product of a triplet,
antitriplet and octet representations (J/i transforms as a singlet) into a singlet, these
decays are characterized by a single reduced matrix element. SU(3) predictions for
these decays are presented in Table 5.4. The contributions of operators without charm
quarks (e.g., (but)(ud)) to the Cabibbo-suppressed decays B — J/M are negligible
because they violate the Okubo-Zweig-lizuka (OZI) rule. For the Cabibbo allowed

decays the relation
I(B® - J/¢K°) =T(B™ = J/$K~) (5.11)

is a consequence of isospin invariance. It has previously been noted that a comparison
of branching ratios for these modes would determine the ratio of B® and B~ lifetimes

[5.7]. At the present time it is known that [1.6] 0.4 < 7go/7p- < 2.1. One of the

relevant branching ratios has been measured:®)14):15)
Br(B™ = J/{*K~) = (8.0 £28) x 107* . (5.12)
For the Cabibbo suppressed decays the relation

I(B° - J/yx®) = = (B~ — J/vr~) (5.13)

o -

is also a consequence of isospin invariance.
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The results of Table 5.4 generalize trivially to other ¢¢ resonances and also to

decays B — J/¢¥V, where V is a 17 p or K* meson. There is also some experimental

information on these decays [5.2, 5.8]:

Br(B~™ — $(28)K™) = (2.2 +1.7) x 1073, (5.14a)
Br(B® — J/$K*(892)%) = (3.7 £1.3) x 1073, (5.14b)

We consider next the SU(3)s relations between the decay amplitudes which can
arise from the b — uW ™~ weak coupling. For final states without charm the effective
Hamiltonian has the flavor quantum numbers of the operator (bu)(ud) which trans-
forms as 15 @ 6 @ 3. Explicitly, the decomposition of (bi)(ud) into operators that are

in irreducible SU(3) s representations is

(bﬁ)(ucz) — -;_O(E <k i‘O(G) 0(3) + 20(3) (5.15)
where
Oas) = 3(bu)(ud) + 3(bd)(uw) — 2(bd)(dd) — (b3)(sd) — (bd)(s5)  (5.16a)
O6) = (bu)(ud) — (bd)(ur) — (b5)(sd) + (bd)(s5) (5.16b)
Oz = (bd)(ut) + (bd)(dd) + (bd)(s5) (5.16¢)
O,(E) = (ba)(ud) + (bd)(dd) + (b3)(sd) . (5.16d)

In Eqgs. (5.15) and (5.16) the subscripts on the operators denote the irreducible rep-
resentation of SU(3)s to which they belong. As far as group theory factors are

concerned we can take as the effective Hamiltonian for B-meson decays B — MM

He = Ay BiH(3)' (M{ Mf) + CgBiM{ M} H(3Y
+ Aqsy BiH(15) M{ME + Cgz)BiM; H(15)) Mf
+ A@g)BiH(6) MEMF (5.17)
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In eq. (24) #(3) is a vector with non-zero component
H3)? =1 . (5.18a)

H(15) is a traceless three-index tensor that is symmetric on its upper indices and has

non-—zero components

HTB)2 =3, HI) =3, HIHE =2, HIP =1, HIHF = -1
(5.180)
Finally, in Eq. (5.17), H(6) is a traceless three-index tensor that is antisymmetric on

its upper indices and has non-zero components
HO)? =1, H6? =—-1, HB) =-1, HE)P =1 . (5.18¢)

The parameters Aa) C(g), A(1_5)7 C(l_f;) and A are the reduced matrix elements in

terms of which the B — M M decay amplitudes are expressed. Note that since
B;H(6)) MIMF + BiM{H(6)7MF =0 (5.19)

there is only one reduced matrix element, A() parametrizing the contribution of the

part of the Hamiltonian that transforms as a 6.
Table 5.5 summarizes the SU(3)s predictions that follow from expanding the

effective Hamiltonian in Eq. (5.17). There is only one simple relation

A(B? —» K%Y
A(B? — K%%)

=3 . (5.20)

There are no simple isospin relations between the B — MM decay rates in
Table 5.5. The effective Hamiltonian has both I = 1/2 and I = 3/2 pieces. The
I = 3/2 piece arises solely from the operator O(15)- In the decays B — =7 the two-

pion final state is a linear combination of I = 0 and I = 2 states. The I = 2 state can
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only be reached through the I = 3/2 part of the effective Hamiltonian while the I = 0
state gets contributions from both the I = 1/2 and I = 3/2 parts. Since the 7%z~
state is charged it is pure I = 2, consequently the rate for B~ — =%z~ originates

only from the matrix element of O(ﬁ).

There are contributions to the decays B — M M listed in Table 5.5, which survive
in the limit s3 — 0 (where the b — uW ™ coupling is absent). They come from
penguin-type Feynman diagrams with a charm or top quark in the loop (see Fig. 1).

Writing

A@ = —5133/10 = e'-aslszfi"(n) , (5.21a)
C(g) = —31330(3 — ¢ 31320(3) , (5.21b)

it 1s /1'(§) and C'Eg) that characterize these contributions, since the penguin-type di-
agrams only give rise to terms that transform as a 3 in the effective Hamiltonian of
Eq. (5.17). The contribution of penguin-type Feynman diagrams is probably sup-
pressed by [as(myp)/7], so unless (s3/s2) is very small (a prospect that is unlikely
if the standard six-quark model is to describe the CP violation observed in kaon
decays)[5.10] AI(?. and C(§ are unimportant for the B — MM decays in Table 5.5.
However, if we examine B — MM decays that change strangeness by one unit, the
situation is quite different. Here the penguin-type diagrams are again suppressed by
as(my)/m but they are enhanced (over operators like (br)(u3)) by the ratio of weak
mixing angles
(83 + s+ 2s953c6)1/?

J2
8183

(5.22)

These decays may be dominated by the penguin-type diagrams with a charm or top
quark in the loop. Assuming this is the case we can use, as far as group theory

factors are concerned, the following effective Hamiltonian to describe the As = —1
B — MM decays

Hep = —(s2¢™ + s3) [%) (B:H(3)") (M}‘M,f) 1\[L1\["H(§)j] . (5.23)

(&)

(3)
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where now the non-zero component of H(3) is
H3B?=1 . (5.24)

Table 5.6 gives the SU(3); predictions that follow from Eqs. (5.23) and (5.24). Note
that since ./i'(g) only effects the BY decays, the ratios of the various As = —1 B? —
MM and B~ — MM decay rates are determined by SU(3)y.

Our assumption that penguin-type diagrams dominate the As = -1 B - MM
decays implies that the effective Hamiltonian is I = 0. Since there is only one way to
combine two I = 1/2 states into an [ = 1 state, all the relations between B — K=
decays in Table 5.6 are consequences of isospin. Similar isospin relations hold for

decays of the type B — Kp, B — K*nw and B — K*p. The relations

I'B° - K%)=T(B~ — K™n) (5.25a)
I(B? - K*K~)=T(B? - K°K") (5.25b)
F(Bg — 7r07r0) = %—I‘(BS - 7tr) (5.25¢)

are also consequences of isospin symmetry. The (bu)(u3) operator has both I = 0
and [ =1 pieces. Verifying some of the above isospin relations would provide strong

evidence that penguin-type diagrams dominate the As = —1 B — MM decays.

The b — ulW~ coupling also causes Ab = —1, Ac = —1 decays B — DA . To
leading order in weak mixing angles the effective Hamiltonian for such decays has the
flavor quantum numbers of (biz)(¢s). Under SU(3) this operator transforms as 3 & 6.

Explicitly, the decomposition in terms of operators in irreducible representations is

(b&)(cé) = 0(3) + O(g) (5.26)

where

Oy = 5 [(bu)(e5) — (b5)(cu)] (5.27a)

B | =
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O :% [(b@)(c3) + (b3)(ca)] . (5.275)

As far as group theory factors are concerned we can take as the effective Hamiltonian

for the Ab= —1, Ac = —1 decays B - DM

‘Heft = aDiH(6)" By Mf + B BiH(6)" D M}
+ a3 Di H(3) Bk M} + B(3)BiH (3) D M} . (5.

ot
o
[#7]
SN—

Here H(6) is a two-index symmetric tensor with non-zero components
HBB =1 , H®? =1 (5.29)
and f(3) is a two-index antisymmetric tensor with non-zero components
H3)B¥ =1, HB3)=-1 . (5.30)

Table 5.7 shows the results which follow from the effective Hamiltonian in Eq. (5.28).

There are two simple relations

I'(B? - D~x%) = 2I'(B? — D°=") (5.31a)

I'(B® - D;yn%) = 2I(B~ — D7 =) (5.31b)

and they are a consequence of isospin invariance.

There is a small dynamical enchancement of the Wilson coefficient of O3y over
that of O 5y coming from perturbative QCD corrections. In the effective Hamiltonian
for Ab = —1, Ac = —1 decays the ratio of Wilson coefficients for Oz and O(ﬁ—) is [2.1]
[0‘3(mb)/as(mw)](ls/m) ~ 1.5. If either the matrix elements of O(3) or O5) dominate
the B — DM decays, then Table 5.7 indicates that there would be some SU3) ¢

relations. For example, either 3 or 6 dominances implies that

|A(B® — D°R®)| = |A(B® — Dy=%)| . (5.32)

Of course, generalizations of Table 5.7s results to decays B — D*M, B — DV and
B — D*V hold.
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5.2 Three—Body Non-Baryonic B-Meson Decays

The three-body decays, B — J/)M M, can have the relative orbital angular
momentum, L, of the two M-mesons be either even or odd. For the case L even we

can take, as far as group theory factors are concerned,
Heg = [F(B:HY)(MFM]) + G(BiMIMEHR)(I/9) (5.33)

as the effective Hamiltonian (Lorentz indices are suppressed). In Eq. (5.33)

0
H — S1 . (534)

Table 5.8 presents the results that follow from the effective Hamiltonian in Eq. (5.33).
For the case L odd the effective Hamiltonian must be change sign under interchange
of the SU(3)y quantum numbers of the two M mesons. Only the second term in
Eq. (5.33) can be antisymmetrized and so the rates for B — J/i)(MM)p—y 3. are
determined in terms of a single reduced matrix element. Table 5.9 presents the relative
B — J/¢)M M decay rates for odd L. With L odd the amplitudes for B~ — J/vnx~n°

and B® — J/7%° vanish by SU(3)y symmetry and therefore these processes don’t
appear in Table 5.9.

The Cabibbo allowed B — J/¢)MM decays arise from an effective Hamiltonian

that is an isosinglet. There are several isospin relations among the Cabibbo allowed

decays that hold independent of L. They are

(B = J/yrtK~)=T(B~ — J/yr~K°)

=2I(B° — J/4pn°K°) = 2T(B~ — J/4px"K ) (5.35a)
(B - J/yn°K®) = T(B~ — J/yn° K ™) (5.35b)
(B - J/pK°R®) =T(B? - J/pKTK™) (5.35¢)
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and

% T(B? — J/¢ynta~) = T(B? — J/x°x%) . (41d)

In the case B — J/¢¥7wn (Eq. (5.35d)) isospin invariance forces the two pions to be
in an even L state. The effective Hamiltonian for Cabibbo-suppressed B — J/{ MM

decays is I = 1/2. Again, there are isospin relations which are L independent. They

are

T(B® = J/$x"®) = % (B~ — J/pr—1°) (5.36)

[(B° — J/$KOx°) = % (B — J/pK+r™) . (5.365)

Some isospin relations that hold only for L even are

I(B° — J/yr2%) = % I'(B® - J/¢(rt7n )=o) (5.37a)

yaryene

I'(B® = J/i(x°7 )02, ) =0 . (5.37b)

There are also SU(3); relations between the Cabibbo-allowed and Cabibbo-

suppressed decay amplitudes that are L independent. For example, two such relations

are

s}|A(B™ — J/¢n~KY|? = |[A(B~ = J/H K~ K%))? (5.38a)
si|A(B® = J/ontK)? = |A(B? — J/oK+x7))? . (5.38b)

All the L odd B — J/¢¥MM decays are related by SU(3), flavor symmetry.
However, there is an important source of SU(3)y violation for resonant MM pairs.
There is significant mixing between the lowest-lying SU(3)y singlet and octet 1~
mesons resulting in the ¢ and w mass eigenstates with flavor quantum numbers s3
and —ﬁ(uﬁ + dd), respectively. This occurs not because of an anomalously large

SU(3)s violating mass mixing element, but rather because of the near degeneracy
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of the SU(3)s singlet and octet states. Nonetheless, because the decay of the w to
K K is kinematically forbidden, this mass mixing can result in large violations of our

SU(3)s predictions for decays B — J/¢¥(M M)p—; when the MM pair is resonant.

Next we consider the implications of SU(3)y symmetry for decays B — DM M.
As was noted in section 5.1, the effective Hamiltonian for these decays transforms
as an octet under flavor SU(3)s. Again, we shall separately treat the cases where
the relative orbital angular momentum L of the M M pair is even and odd. As far

as group theory factors are concerned, when L is even we can take as our effective

Hamiltonian

Heg = aB;M: M} H] D + bB; M} M] Hf D* + cB; H: M} M} D*
+d(B;M:D?)(MEHE) + e(BiHID?)(MFM{) + f(B:D')(M] M} HY).(5.39)

In Eq. (5.39) H;: are elements of the 3 x 3 matrix (upper index labelling rows and

lower index labelling columns)

0 0 0
H = 1 0 0 ’ (5.40)

—s1 0 0
Table 5.10 presents the results that follow from this effective Hamiltonian for the
Cabibbo allowed decays. Under isospin the effective Hamiltonian for the Cabibbo

allowed decays is I = 1. When two pions possessing a net charge are in an even

partial wave they form an I = 2 state. This implies the following isospin relation

(1/4) (B~ — D*x=xn")

[(B~ = Dz 7% 1=02.)
=T(B° - D* (7)) p=0p2,.) - (5-41)

The first process that appears in Eq. (5.41) has been observed. Experimentally [5.2]

4.
Br(B~ - DYr—77) = (2.5+2€;) x107% . (5.42)

Since the amplitudes with L odd don’t interfere with those with L even, we conclude
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that

4T(B~ — D°z%x~) >I(B~ —» DYn~ ™) (5.43a)
4T(B® - DY~ 2% >I'(B~ - D*n~ ™) . (5.43b)

Of course, the results in Table 5.10 generalize to decays involving a D* instead of

a D. Experimentally [5.2, 5.3]

Br(B~ — D*(2010)*r—7n~) = (2.5+i'g) x 1073 (5.44q)
Br(B® — D*(2010) 7~ 7% = (1.5 4+ 1.1) x 1072 (5.44b)

which is consistent with the generalization of Eq. (5.43b) and indicates that the
B® — D** 7~ 70 rate is dominated by L odd.

There are also some SU(3)y relations between the Cabibbo allowed amplitudes

with L even. They are

A (B® = D (K% 103,.) I = 3(B° = DX (K~n%)102)?  (5.450)

|4 (B~ = D} (x~K™)1m02,.) I = 5A(B~ — D¥a=a)P (5.45b)
1

A (B — D (K5 )1m0,.) = 5|A(B™ = Dt a~x) (5.45¢)
1

A (BS = DY(K°n°)1=02,..) I = 3lA (Bs = DY(K°7%)1=02..) . (5.45d)

For the case L odd, the effective Hamiltonian must be antisymmetric under in-
terchange of the flavor quantum numbers of the M mesons. For example, an anti-

symmetric version the term proportional to a in Eq. (5.39) is
(0" B:)[(8, MM} — Mi(9,MF)|DCH] . (5.46)

Only the term proportional to the reduced matrix element e has no antisymmetric

analog. So the B — DMM decay amplitudes with L odd are parametrized by
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five reduced matrix elements which we denote by o', ¥/, ¢/, d', and f'. Table 5.11
presents the implications of the SU(3) flavor symmetry of the strong interactions
for the Cabibbo-allowed decays B — D(MM);—y3, .. There are several SU(3)s

relations. For example
_ _ 1 _ -
|A(B~ = D’ (n7)p=13..)* = 6|A(B > DHx"K )13 ) . (547)

Tables 5.12 and 5.13 present the predictions of SU(3) flavor symmetry for the
Cabibbo-suppressed B — DM M decays with L even and L odd, respectively. Since
the Hamiltonian for the Cabibbo-suppressed decays is part of the same octet as the
Hamiltonian for the Cabibbo-allowed decays, we can express the Cabibbo-suppressed
decay rates in terms of the same reduced matrix elements as were used for the
Cabibbo-allowed decays. An inspection of tables 5.10, 5.11, 5.12, and 5.13 reveals
that there are simple SU(3)s relations between the Cabibbo-allowed decays and the
Cabibbo-suppressed decays which hold independent of the value of L. They are

|A(B® — Dt~ K% = $2|A(B? - D} K~ K°)| (5.48a)
|A(B® —» DFK°K)|? = $3|A(B? —» DY R°z7))? (5.48b)
|A(B~ = DK~ K7)|* = s}|A(B~ — D7) (5.48¢)
|A(B~ - Dz~ K%)|? = s}|A(B~ — DK~ K°)? (5.48d)
2|A(B? —» DFn'K)|? = s}|A(B° — DT K~ K°)? (5.48¢)
|A(B? = Dz Fn7)|? = s3|A(B® - D°K—K™)|? (5.48f)
|A(BY - D°ROK%))? = s3|A(B® — D°KOK?)? (5.489)
|A(B? - D°KYK7)|2 = s}|A(B® — DxFa™)|? (5.48h)
|A(BY - DYKOK)|? = $2|A(B° —» DFR=)* . (5.481)

There are important sources of SU(3)y violation in the decays B — DM M which
can occur when two of the final state particles arise from the decay of a resonance. In

addition to the consequences of the mixing of the SU(3) singlet and SU(3) octet 1~

116



vector mesons mentioned earlier, large SU(3) violations can arise because the D* can

decay to Dm while the D} is kinematically forbidden from decaying to Ds7 or DK.

Finally, we consider the three-body decays B — DDM. As far as group theory

factors are concerned we can take as the effective Hamiltonian for these processes

Hegr = m(B;H")(Dx Mg D) + n2(B:D") (D Mg H)

+ n3(B; M} D*)(Dy H*) + na( B: M} H)(D* Dy,) (5.49a)
where
0
H = S1 s (5491))
1

Tables 5.14 and 5.15 present the predictions that follow from the Hamiltonian for
Cabibbo-allowed and Cabibbo-suppressed decays, respectively. Cautionary remarks,
similar to those given in the case of B — DM M decays, concerning possible large

SU(3) violations induced from resonance effects also apply here.

The effective Hamiltonian for Cabibbo-suppressed decays given by Eq.(5.49) ne-
glects the contribution of operators like (ba)(ud), which arise from the b — ulV~
coupling and transform as 3 @ 6 @ 15. Since the 15 representation contains an
I = 3/2 picce, isospin relations for the Cabibbo-suppressed modes which follow
from the I = 1/2 Hamiltonian in Eq. (5.49) are useful for testing the dominance of

the operators with charm quarks. Table 5.15 contains two isospin relations

I'(B~ — Dy D}x~) =2r(B° — D; D} x%) (5.

(S5

o

2
St

I'(B) - DFD°%—)=2I(BY — DD~ =% . (5.500)

Fig. 2 shows quark line diagrams which illustrate how the two operators (b¢)(cd) and

(bw)(ud) can contribute to the decay BY — DF D0x—.
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For the Cabibbo-allowed decays, the effective Hamiltonian transforms as an isos-

inglet. The following relations in Table 5.14 follow from isospin symmetry:

I'(B~ - D°D-K°) =T(B" - D¥D°K™) (5.51a)

I'(B° - D°D°K®) =1(B~ — DY¥D~K") (5.51)
2I'(B~ — D7 D°z%) =T(B® - D°D;n*) =T(B~ — D; D*r™)

=2I(B® —» D*D; x°) (5.51c)

(B~ — DfD;K~) =T(B° - D} D; K°) (5.51d)
I'(B? - D°D*r~) = T(B? — D~ D°x*) = 2I'(B? — D°D°x%)

=2I(B? —» DD~ =% (5.51¢€)

I'(B® —» D; D°K+) =T(B? —» Dy DY K°) (5.51f)

I(B? —» D~D}R°) =T(B? — D°D} K~) (5.51g)

I(By — D*D ") =T(B{ — D"D°,°) (5.51h)

Comparison of Tables 5.14 and 5.15 reveals that there are many simple SU(3)y
relations between the Cabibbo-allowed and the Cabibbo-suppressed B — DDM

decays. Some of them are

|A(B- — D°D; K°)? = s}|A(B~ — D°D~K%))? (5.52a)
|A(B~= = DFD~K7)|* = s})|A(B~ — D; D x7)|? (5.52b)
|A(B~ — D¥D;x7)|? = s}|A(B® — D°D°K9)|? (5.52¢)
|A(B~ = DY D~x~)|? = s2|A(B~ — D} D7 K-)? (5.52d)

5.3 Concluding Remarks On Chapter 5

In this chapter we have used the transformation properties of the weak Hamilto-
nian for nonleptonic B—meson decays to derive SU(3) relations amongst many of the

possible two- and three-body B-meson decays. Since the SU(2) isospin symmetry
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works much better than the full SU(3) emphasise has been placed on the predictions
that follow from isospin. The isospin relations provide useful tools for discerning

the importance of various competing effects that can occur in nonleptonic B-meson

decays.

As we have discussed previously, it is possible to include, in a phenomenological
fashion, some SU(3)s breaking effects and hence improve upon the results of this
chapter. For example, in section 5.1 it was noted that generalizing the predictions
for B — DM to B — DV where V is one of the low-lying 1~ mesons is not straight-
forward because of mixing of the SU(3)s octet state |V3) = —\}E(|uﬁ) + |dcf> — 2s3))
with the SU(3)y singlet |V}) = %(luﬁ)+ |daD+|s.§)). This was discussed in Chapter
2.

As far as group theory is concerned we can take as our effective Hamiltonian for
the decays B — DV

Heg = o' (BiD')(VF HE) 4+ V(BiVEHED?) 4+ ¢ (BiHLVED?) + €' (B: HI D))V, (5.53)

where Hf given by Eq. (4.3). The amplitude A(B° — D%¢) is expected to be very
small since the decay B — D% is forbidden by the Okubo-Zweig-lizuka (OZI) rule.

Setting this amplitude to zero implies the relation

o b+
V3

between reduced matrix elements. So the B — DV decay amplitudes are expressible

(5.54)

in terms of the three reduced matrix elements, o', ' and ¢'. Using these expressions

we find that the generalization of Eq. (5.3) is

|A(B — D°p%)* + |A(B® — D°w)|* = |A(B® — DF K*~)?
+ [ A(BY — DKM (5.55)

As we discussed in Chapter 1, in the large N, limit matrix elements for nonleptonic

B-decays factorize. This provides a pattern of SU(3); breaking that might be used
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to improve some of our results. For example, factorization suggests that

A(B~ - D°K-) (f}(
A(B- - D'7—) fT) L

would be an improvement over Eq. (5.4).

In this chapter we have focussed on SU(3)s predictions for nonleptonic B-meson
decays to final states with mesons. It is also possible to consider SU(3)s predictions
for B—-meson decays to final states involving uncharmed baryons. For example, there
may be SU(3)y relations between the Cabibbo allowed and the Cabibbo suppressed
decays B — DNN, where N denotes a member of the lowest-lying baryon octet
(consisting of the nucleons and hyperons). It is also possible to consider the conse-
quences of SU(3) flavor symmetry for semileptonic B-meson decays. For example,
since the effective Hamiltonian for Ac = 1 B — Dew, decays is an SU(3) singlet, it

follows that
I'(B® — D%ep,) = T'(B~ — Dw) =T(B? — Dfew,) . (5.57)

The first equality in Eq. (5.57) follows from isospin. For semileptonic decays B —
Meve that don’t change charm, the effective Hamiltonian transforms as an antitriplet.
Since there is only one way to combine the product of a triplet, an antitriplet and an

octet into a singlet, these decays are also related by SU(3); flavor symmetry. In this

case

I(B° - ntere) = 2T(B~ — 7%w,) = T(B? — Kten,)
6T (B~ — %) . (5.58)
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Table 5.1. Rates for Cabibbo-allowed decays B — DM in terms of the three

reduced matrix elements a, b and c.

Process Rate (divided by s?%)
BY - Dtzx— la + ¢|?
B® — D% 316 —c|?
BY — DOy L4 cf?
B - D} K- |c|?
B~ — D% la + b|?
B? — DYKPO |b]?
B? — Dix— la|”

Table 5.2. Rates for Cabibbo-suppressed decays B — DM in terms of the

three reduced matrix elements a, b and c.

Process Rate
B® —» DtK- s3|al?
B® - DK s3|b?
B~ — DK~ sila + b
B? — D070 s31|c|?
BY — DOy0 sit|e — 20)°
BY —» D} K- s2la + c|?
BY — D*rn- s7)c)?
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Table 5.3. Rates for B-meson decays of the type B — DD in terms of the two

reduced matrix elements o and S.

Process Rate
B® — D*Dy 1812
BY - p'p® s2|a)?
B° - D*D- sila + B2
BY - D} D o’
B-— D'D; F
B— — DD~ s%|/3|2
B" — DO la|?
B? — D*D- la|?
By — D¥D; o + B2
BY — D} D- 11
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Table 5.4. SU(3)y predictions for rates for B — J/¢M normalized to the decay
rate for B~ — J/Y K.

Process Rate
B® — J/$K° 1
BY — J/¢=® 822
B® — J[n° s1/6
B- — JpK- 1
B~ — J/¢m~ &
By — Jfyn° 2/3
BY — J{¢ KO 87




Table 5.5. SU(3)y predictions for decays B — MM that do not change

strangeness.

Process Rate
S i 24 + C@ + Ams) +3Cs) — A’
B 2124 + Ca) + Ags) — 5C(s) — A *
C 3124@ + 5C@ — Ags) + Caas) + 4wl
B¢ Sty 5l = C) + 545 + C(r5) — Ao’
BY —~ K°K 243) + C) — 3435 — Cis) + A
B — KK~ 243 + 2415 °
B— — 70n— 3‘2](](1—5)]2
B~ — - L1205 + 643, + 6C15) + 24(5)|?
B~ — KO9K- |C(§) 4 3_‘4(ﬁ) _ C(ﬁ) & A(6)|2
BY - K+r— ICa) — Ags) +3Cs) — A2
B = ot 3l = Ca@y + Ags) +5C() + A
B Iy sl = Ca) + Aws) +5Cas) + Al




Table 5.6. SU(3)ys predictions for B — M M decays that change strangeness.
Here it is assumed that penguin-type diagrams with a charm quark or top quark
in the loop dominate. Entries in the second column should be multiplied by

|s2e* + s3] if compared with Table 5.5 using Eq. (5.21).

Process Rate (divided by |s2e*® 4 s3]?)
B - ztK- [CE§)|2
B — x0[© 31Cl5 17
BO — {'OUO %IC'EE)IQ
B~ — K—x0 %lqg)]z
B~ — K—q" §1C 17
B~ — K%~ |C'£§)|2
B —» KtK- 24(5 + Ci)I°
B - K°R° 24(5, + Ci5)I°
BY — 7070 2[fi’(§)|2
BY — 500 2| Alz, + 3Ci51°
BY — gtx- 4|r’i’(§)|2

126




Table 5.7. SU(3)s predictions for decays B — DM.

Process Rate
B~ = DYK- loggy + agsy + By + Beyl?
B~ — Dyq° slag — a@) — 28 — 28)1°
B- - D-K° 1B@) + Ba)?
B~ — Dyx" tlo@) —a@l*
B — D°R?® lag + a@)l®
BY — Dyt lery — a)|®
BY — D0 %lﬁ(a) — Byl
BY — DK+ legy — a3y + B — By l?
BY — D" sl =20 — 20 + By — B’
BY - D—rt 1By — Bl
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Table 5.8. SU(3)y predictions for decays B — J/¢¥MM, when the

angular momentum of the two pseudoscalar mesons is even.

relative

Process Rate
B® — Jjynt K- |G
B® — J/¢7'K° 7IG?
B° = J/¥n K HGP
B — J/yrta— sI2F + G?
B — J/nOx® s32F + G)?

B — J/¢nn° 1si2F + 1GJ?
B® — Jf4pn'n° 3511GI?
B® = JJyKTK~- s?|2F|?
BY = J/YpKOKO® s}2F + G|
B~ — J/¢y7° K- 31GI?
B~ — J/¢n K~ slG?
B~ — J/yr~K° |G|

B~ — J[¢r—n° 33161
B~ — JJpK-K° s?|G)?
B? — J/¢n0x0 L2F|?
BY — J[{n°n° 3[2F + 3G
BY — J/¢YKOK® |2F + G|?
BY - J/p KT K- |2F + G|?
BY - J/yrtn— |2F|?

BY — J/YyK*n— s?|GJ?
BY — J/ypKOx® 121G
BY — I/ K LGP




Table 5.9. SU(3)s predictions for decays B — J/¥»M M, when the relative
orbital angular momentum of the two pseudoscalar mesons is odd. Rates are
normalized to that for B — J/yntK—.

Process Rate
B - J/yprt K- 1
B — J /[y K® 4
B® — J/yn°K° 4
B - J/ypntn— s
B = J/yp KK 53
B~ — J/¢y7° K~ %
B~ — J/yn—K° 1
B~ — J/yn° K~ g
B~ — J/[¢prn— 28
B~ — JJ$KOK- 53
B » J/wKtK- 1
BY - J/p KK 1
BY = J/pKtn— st
BY — J/pK%° 353
BY — J/¢4K%° %s'f
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Table 5.10. Implications of SU(3)s symmetry for Cabibbo-allowed decays B —

DM M, where the relative angular momentum of the M mesons is even.

Process Rate
B — D7 %i26+c+b—a|?‘
B® — D000 H2e+ tc+ 16+ 1af?
B — DOy070 Lic— b2
B — DVrtg— |2¢ + d + ¢ + b|?
B° — DYK°K° [2e + b2
B - D°K+K— |2¢ + c|?
B® — Dtp0x— -16—|‘.2f+d—{-‘.2c+a|2
B® - Dtn—x0 2ld + al?
B - D*K-K° |If +¢|?
B — Df K%~ |d + ¢|?
B® » DfK—=° e — al?
BY — Df¥K—3° sle—al?
B~ — DOr— %|d+ al?
B~ — D%~ gl2f +d+2b+al?
B — D'K— K" |f + b2
B~ - DYr—g— 312d + 2al?
B~ — D}~ K~ |d + al?
BY - D'K+n— |d + b]?
BY — DOKO70 %Ib—a|2
BY — DOK%)° %]b—a|2
BY — DK% |d + af?
B¢ — Dfy’n- slf —dP?
B? - D}K-K?° |f 4+ al?
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Table 5.11. Implications of SU(3)s symmetry for Cabibbo-allowed decays B —

DM M, where the relative orbital angular momentum of the M mesons is odd.

Rates are expressed in terms of five reduced matrix elements; @', ¥, ¢, d' and

£
Process Rate
BO — DO’I]OWO %ia'lg
B — DVptg— |d' — & + ¥]?
B® — D'K°K°® o'
BY s DK+K- |c|?
B® — DtypOzn— é|d’ +a'|?
B — Dtgr—x0 H=2f+d -2 +d|?
B — DtK-K© |f’ + c'|2
B - D} K%~ |&' — ¢|?

B - D K70

%I —CI +all2

B - DFK—3° %|3c' + a'|?

B~ — D%z%~ L2f +d +20 —d|?
B —y Donar_ _lgldf o a'|2

B= — D'K—K° |f + o)

B~ — Dfr~K- |d' — d'|?

BY — DOK+x— |d' + |

Bg — DOK050 %I ~ I ]

BY - DOKOUO

%l3b’ + a'|?

BY - D¥K%%— |d' +d'|?
B? — Dinr= %|(1'|2
B? - DYK-K° | = &'
BY - DFxOx— 2| f'|?
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Table 5.12. Implications of SU(3)y symmetry for Cabibbo-suppressed B —

DM M decays when the relative angular momentum of the M mesons is even.

Process Rate (divided by s7)
B® - D0k~ 3If —dl?
BY - Dtr—K?© |f + a|?
B - Dtyp0K- H—f+d?
BY - Dzt K- |d + b|?
BY —s DY KOK— |d + a|?
B® — DY'2°K0 H—b+al?
B s D% K0 %|—b-+—a|2

B — D'z0K- Hf+d+b+al?
B~ — D%~ K° |f +0f?

B~ — D% K— el = f+d—b+al
B~ — Dtg~ K~ |d + a|?

B~ — DYK-K— 2|d + al?

B? - D}rOK- 3If+ <

B; = Dfr~ K° |f + ef?

BY - DK — FIf +2d + c+ 2a]?
BY — Dg0g0 312e + ¢|?

BY — D%,;090 %l26+c/3+4b/3—2a/3|2
BY - DVxtr— 12e + c|?

B! — D'KORO |2e + b]*

BY - D'K+K-

|2¢ + d + c+ b)?

B - DYKOK-

|d + ¢|?

BY — D070

3l —a+cf?

BY - DTyOz—

S

%|c—a|2
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Table 5.13. Implications of SU(3)s symmetry for Cabibbo-suppressed decays

B — DMM where the relative orbital angular momentum of the M mesons

is odd. Rates are expressed in terms of the same five reduced matrix elements

(a', V', ', d' and f') as the Cabibbo-allowed case.

Process Rate (divided by s%)
B - Dt70K— sIff —d?
B® — D*n—K° |fF — a2
B - Dtp'K- 3 +d?
B® — Dzt K- |d' + ')
B’ = DFROK- d + a'|?
B% — DOx0 K0 %Ib’ 4 a'|2
B® — D0 K° 130" — a'|?
B~ — D°n°K~ sl +d +0 —d)?
B~ — D'z K" |f'+v)°
B~ — D% K~ 3 +d + 30 —d|?
B~ — Dta= K~ |df — '
BY - D}nOK- Hf+ )
BY — Dfr—K° P
BY — DEgOK- t13f —2d +3c' —2d'|?
BY — DOxtg— ||
BY — DOROKO ]2
B? - DK+ K- |d' — & 4+ ¥')?
BY - DYROK~- ld" =
BY — D0y)0x0 TTE
BY - Dt n%z- 2|2
BY  Dtyx— 2la'|?
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Table 5.14. Implications of flavor SU(3)y for Cabibbo-allowed decays B —

DDM assuming the effective Hamiltonian transforms as a 3.

Process Rate
B — DO DVR - 2 + na|?
B~ = Drp-g- 4]
B~ — D'D-K?° |m2 |

B~ — DOD;y° L] — 23 + al?
B~ — D°D;7° 3ln3l?

B~ — DD K- I3 + nal?
B~ — Dy Dtn— Ins

B® — DD+ K- nal?

B° - D+D- RO 72 + 74

BO => D+Ds_r]0

3 — 2n2 + n3?

B® - D'Drrt |n3
B — D*D;x° %[77312
B® D} D; K 73+ mal?

Continued . . .
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Table 5.14. Continued.

Process Rate
BY — DYDY RO |m4?
BS — D'DOx0 %‘Ml]z
B® — D°DOy0 §lm — 2n4?
B — D'Dtx— |n1]?
BY — D°DF K- Im + n2]?
B? — D~ D%zt In1]?
BY — D+ D70 zlm/?
B? — D* D glm — 2n4?
BY - DD} R?° Iy + 12|
BY — D7 DK+ Im + n3?
B? — Dy D*K? Im + n3|?
B — DDy qy° Flm 4 2 + ns + nal?




Table 5.15. Implications of flavor SU(3)s for Cabibbo-suppressed decays B —
DDM. The effective Hamiltonian is assumed to transform as a 3. Entries in

the second column should be multiplied by s? when comparing with the results
of Table XIV.

Process Rate (divided by s%)

B~ — D°Dx~ In2 + n4]?
B~ — D°D—x° =2+ n3)?
B~ — D¥*D~ 7~ I3 + nal?
B~ — D'D—y" %I’?Z + n3?
B~ — DD; K 2]

B~ — DFD-K- 3|

B~ — Dy D;n— |n4*

B® — DOPOx0 T — nal?
BY - DO D%%y0 glm + nal?
BY - D= Dx+ m + n3|?
BY - DD K- Im |

B - DtD— Im + n2]?

Continued . . .
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Table 5.15. Continued.

Process Rate (divided by s%)
B® — D+ D70 Lm + n2 + 03 + na]?
BY — D+D—° o + 2 + n3 + nal?
B — D-D}K® In1 + n3?
B - D; DK+ |71
B® - Dy D*K?° Im + n2|?
B® — D} D 7" 3nal?
B — DF¥D;n° ¢l —2m + ml?
B® - D Dr— |172]?
BY - D} D~ =" 3Imal?
B® — DF D" lm2 — 2n3)?
B® — D+ D7 K° 2 + nal?
B - D°D- K+ [n3]?
B? — D* D~ K In3 + 4|
BY — DOPO KO |94
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ADDENDUM

In deriving our results for charmed baryon, B-meson and D-meson decays we
neglected the mixing between the pseudoscalar mesons in the octet and the SU(3)
singlet. The isosinglet octet meson, the 5°, mixes slightly with the isosinglet SU(3)
singlet meson, the 5"°. The mixing angle between the mass eigestates and the SU(3)
eigenstates is approximately 13°. We will again assume that the SU(3) eigenstates
are the mass eigenstates and derive relations between the decay rates to final states

containing an 7’ meson.

Let us begin by considering the process D — M7', where M is a pseudoscalar

octet meson. The effective Hamiltonian for the process is
Heg = a.D H(T5) M§ + B.D,H®(6)Mf (6.1)

From this effective Hamiltonian we find that there are the following relations

9

~

R Eonm) —
3s

2 1 5
I\(DO nﬂnlﬂ) %I‘(DO WOUIO) S? I—\(DO hﬂ IO)
((;.2({)

-0

1
(D} — nty?) = (DY - Kt9%) = (Dt — K1y?)

5
(6.2b)

F(D+ — 7r+1]'0) =

7]
i—ll\" P
¥2)
HlJl k=2

We can also derive relations for B-meson decays. In the case of B — Dn' we find

that only one SU(3) singlet can be formed, consequently
I(B® — D) = S T(B® — D) (6.3)
Sy

The same is true for the decays B — J/¢'n' where we find

=

L(B; — J/yn") = 5T(B° — J[¢y1') (6.4)

S

b D

There are two reduced matrix elements that contribute to the decay B — Dp/,

and there are no relations between the decay modes. However, if either the 3 or the
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6 components of the Hamiltonian dominates the decay then

(B~ — D, 5"°) =T(B? — D'1") (6.5)

Finally, we consider the decays B — Mpn' which are induced by the b — u
coupling. There are three reduced matrix elements that contribute to the decay

process and the effective Hamiltonian is
Het = Az.BaM{H*(3)n' + A B.H (T5)MEn' + Ae.B.H (6) Min' (6.6)

There are no relations between the Cabibbo-allowed decay rates. The decay rates for

the modes are

B~ -7 n% A5+ 343 + Ael (6.7a)
B} — =% %] — A3+ 5A5 — Al (6.70)
BY — %0 é|A3+ 3As — 346/° (6.7¢)
BY = K%  |Az— Ap — Agl? (6.7d)

As we previously discussed, the Cabibbo—suppressed decay could be dominated by
the penguin diagrams. If the penguin diagrams do dominate the decay process then

the following relations are found

I(B~ — K~7") = [(BY - K1) = (B! — n°7°) (6.8)
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