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ABSTRACT 

The predictions of the SU(3) flavor symmetry of the strong interactions for the 

weak decay of charmed baryons and B-mesons are detailed. It is hoped that compari­

son between these predictions and experiment will shed some light on the underlying 

dynamics involved in these weak decays. Although only a few decay modes of the 

charmed baryons and B-mesons have been studied experimentally it is hoped that the 

next generation of B-factories and even Z-decays at LEP will provide enough events 

to test these predictions. 
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INTRODUCTION 

In the near future it is likely that branching ratios for many of the exclusive decays 

of charmed baryon and B-meson will be measured. The decay of B-mesons provides a 

unique laboratory for studying weak interactions in so far as they can decay not only 

to mesons but more interestingly to charmed and uncharmed baryons. The decays of 

D-mesons have been studied extensively and continue to be an active area of research. 

For kinematic reasons the D-mesons can decay only to mesonic final states and not 

to states containing baryons. Unlike the B-meson decays, the decay of D-mesons 

through radiative loop-induced weak operators is highly suppressed. Consequently, 

the study of B-meson decays provides a new way to isolate the effects of these one-loop 

processes. 

Analysis of the available experimental data on D-meson decays indicates that 

the predictions of the SU(3) f flavor symmetry are not well satisfied in nature. The 

deviations from the predictions are not well understood and are attributed to final 

state interactions (FSI), but could conceivably be due to an intrinsic breakdown of 

SU(3)J· The data indicates that there are significant final state interactions but is not 

precise enough to exclude the possibility of intrinsic violations of SU(3)J. Therefore 

it would be useful to look for deviations in the decay of charmed baryons from the 

predictions of SU(3)J where it is hoped that the FSI will be smaller than in the 

mesonic sector. 

The usc of SU(3) flavour symmetry in strange decays in the early sixties proved 

to be an immensely pO\verful tool in our understanding of weak interactions and weak 

currents. The octet dominance (6.1 = ! ) rule in such decays was not understood until 

the mid seventies when it was realized that short distance strong interactions gave 

rise to an enhancement of the octet over the 27 component of the Hamiltonian by a 

factor of "' 5. This is still smaller than the observed enhancement of "' 20. Below 

scale of 1 GeV the strong interactions are not well understood and it is possible that 

the enhancement from the strong interactions could in fact be larger than this factor 

of"' 5. Also, one-loop penguin diagrams give rise to a Hamiltonian that transforms 
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as a 8 with !11 = t and it IS conceivable that these diagrams dominate the weak 

decays below 1 Ge V. 

In this thesis the predictions of SU(3)t are presented for the decays of charmed 

baryons and B-mesons. These relations will be useful in determining the underlying 

mechanisms responsible for the weak decays. Analagous to the strange decays, short 

distance strong interactions give rise to an enhancement of the sextet component 

of the Hamiltonian over the 15 in charm decays. The SU(3) 1 relations between the 

decay modes of charmed baryons may enable this enhancement to be observed. There 

are similar observations to be made in the B-meson decays. Penguin diagrams lead 

to !11 = 0 selection rule for some of the B-meson decay modes. By comparison with 

experimental data, the relative importance of such diagrams compared to the tree 

level Hamiltonian can be ascertained. 

The results in Chapters 4 and 5 are published (with l\tlark B. Wise) in Nuc. 

Phys. B326, 15 (1989) and Phys. Rev. D39, 3346 (1989) respectively. The results 

of Chapter 3 have been submitted (with Roxanne P. Springer) to Physical Review D. 
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CHAPTER 1. WEAK INTERACTIONS 

The subject of weak interactions covers a vast area of research from the elusive 

Higgs boson to determination of the Helium abundance of the universe. In this 

chapter I will not attempt to address even a small fraction of this work, but I hope 

to introduce the areas relevent to the decay of hadrons containing heavy quarks. The 

first section deals with the standard model of electroweak interactions which became 

popular in the early to mid seventies after it was shown to be renormalizable. This 

theory is not fundamental in the sense that it contains many free parameters that 

must be determined experimentally but there is a hope that the ultimate theory 

of everything will predict these numbers. On the other hand there is a remarkable 

agreement between the experimental observations and theoretical predictions which, 

with the possible exception of the Higgs sector and neutrino masses, leads one to 

believe that this gives a complete description of electroweak interactions below ,...., 100 

GeV. The second section introduces the concept of a flavor symmetry when some of 

the quarks have masses much smaller or heavier than the scale of strong interactions. 

In section 1.3 the methodology for constructing of the predictions of a flavor symmetry 

is presented by explicit calculation of the rates for semileptonic hyperon decay in terms 

of two reduced matrix elements. These predictions are then compared with the large 

body of experimental information on the subject. The agreement between theory and 

experiment is surprisingly good, indicating that flavor symmetry may be a useful tool 

in understanding weak decays of other hadrons. In section 1.4 the method by which 

explicit SU(3)J breaking is implemented is discussed. The breaking is a. result of the 

inequality of masses of the three light quarks. It is hoped that the relevent expansion 

parameter for the breaking is m 5 /1 GeV. The semileptonic decay of the hyperons is 

presented as an explicit example. 

1.1 The Standard Model of Electroweak Interactions 

The standard model [1.1] for strong, weak and electrom.agnetic interactions is 

based on the gauge group SL'(3)c 0 SU(2)L ® U(1)y. The minimal particle content 

consists of the gauge bosons and the matter field s shown in Table 1.1. 
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Table 1.1: Matter fields in the Standard Model 

Field SU(3)c SU(2)L U(1)y Spin 

Q'-L- (~t) 3 2 1/3 1/2 

u' R 3 1 4/3 1/2 

di 
R 3 1 -2/3 1/2 

Li = (v~) L ei_ 1 2 -1 1/2 

e' R 1 1 -2 1/2 

¢ = ( ~:) 1 2 1 0 

The superscript i on the matter fields is a generation index and takes the values 

i E {1,2,3}. The subscripts Land R denote left handed and right handed respec­

tively. Anomaly cancellation in the fermionic triangle diagrams uniquely constrains 

the hypercharge assignment Y of each matter field . The complex scalar field ¢ is 

necessary to break the SU(3)c 0 SU(2)L 0 U(1)y symmetry to SU(3)c 0 U(1)Q which 

describes nature at scales below "' 100 GeV. Electromagnetism is realized in the un­

broken U(1)Q symmetry and the SU(3)c symmetry is that of the strong interactions. 

The Lagrange density for the system is composed of five terms 

( 1.1) 

These terms correspond to the contributions from the fermions, Higgs, gauge bosons, 

Yukawa interactions and the gauge fixing components respecti\·ely. 

Firstly, we will examine the Higgs sector which is responsible for the symmetry 

breaking [1.2]. The Lagrange density is 

(1.2) 

where D 1, is the covariant derivative defined as 

(1.3) 

The lF1~(x) and B 1,(x) are the gauge fields associated with the SU(2)L and U(1)y 
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symmetries respectively and Ta are the Pauli spin matrices. The potential V(4>) can 

be written as 

(1.4) 

which has a global minimum at 4>t4> = v2. The global SU(2)L ® U(l)y invariance 

of the lagrangian allows us to rotate an arbitrary vacuum expectation value (vev) of 

the field (4>) into the form (4>) = (~). Upon the field redefinition 4>+---+ 4>+ and 

4>0 ---+ v + 4>0 Eq. (1.4) becomes 

(1.5) 

Notice that there are no terms quadratic in 4>+ or Im¢>0 indicating that these are 

massless modes. These are the Goldstone bosons associated with the breaking of 

the global SU(2)L ® U(l)y to U(l)Q· However, a local SU(2)L ® U(l)y gauge 

transformation can be found that removes these fields at the expense of giving mass 

to three of the four gauge bosons associated with the SU(2)L ® U(l)y symmetry. 

The field Re</>0 cannot be gauged away and is found to have mass of v'2"Xv, this is the 

Higgs particle. 

The kinetic term for the scalar field in Eq. (1.2) gives rise to the mass term for 

the gauge bosons. Evaluating this at the vev it can be shown that 

(1.6) 

If we define 

zo 1 ( TV3 I B ) 
JL = I ? f ") g JL - g JL v g~ + g ~ 

(1.7a, b) 

then we can rewrite the mass terms as 
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Notice that the combination of fields orthogonal to that of the Z 0 

(1.9) 

remains massless, this is identified with the photon field of electromagnetism. The 

generator associated with this field is 

(1.10) 

This is the only combination of generators that the vacuum doesn't transform under. 

The Weinberg angle Ow is introduced as a free parameter that relates the U(1)y and 

SU(2)L coupling constants viz g' = g tan Ow 

The kinetic term of the scalar field gives rise to interaction terms between the 

Goldstone bosons and the longitudinal component of the gauge bosons. These in­

teractions can be removed continuously by addition of the t'Ilooft gauge fixing term 

[1.3] 

L:cF = ;, L (ottlv:- i~g([(<P}tTa<P- <PtTa(<P}l) 2 
a 

(1.11) 

In the unitary gauge where ( = oo the Goldstone bosons have an infinite mass and 

therefore decouple from the theory. However, in Feynman gauge where ( = 1 they 

have the same mass as the corresponding gauge field. 

The contribution to the Lagrange density from the gauge fields .CcF is given by 

(1.12) 

The field tensors 1V;11 , Bttv and G~11 are given by 

(l.Ua) 
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(1.13b) 

and 

(1.13c) 

where t.abc is the totally antisymmetric tensor, fabc are the antisymmetric structure 

constants of SU(3) and G~ are the gluon fields associated with the strong interactions. 

The kinetic terms of the fermions in Eq. (1.1) gives rise to a Lagrange density of 

where the covariant derivative defined for the quark fields in Eq. (1.3) also has a 

strong interaction contribution and becomes 

(1 .15) 

where (Ta)p are the generators of SU(3). The color indices will be suppressed for 

the rest of this discussion. In terms of the gauge field mass eigenstates, the covariant 

derivative can be written 

where T± = )2-( r 1 ± ir2). 

The terms discussed above do not give the fermions of the theory mass terms. 

To do this we need to introduce Yukawa couplings between the fermions and the 

complex scalar field. The most general set of renormalsable Yukawa couplings that 

can be written down is 

(1.17) 

where the unknown couplings gijd gi\'e rise to mixing between the generations and u, ,e 

(1.18) 

Mass terms for the fermions are generated when the scalar field develops a vev. 
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If Mu,d,e are the mass matrices for the "up-type" quarks, "down-type" quarks and 

charged leptons respectively then these are related to the Yukawa coupling constants 

by 
. . . . 

M'1 = g'1 v u,d,e u,d,e (1.19) 

Assuming that there are only three generations of particles [1.4] and using the gen­

eration basis (u, c, t), (d, s, b) and (e, p, r) we can redefine the fermionic fields and 

diagonalize the mass matrices Mu,d,e· Let 

cfR ---+ v;1d~ , (1.20a, b, c, d) 

and similar transformations for the leptons. These unitary matrices diagonalize the 

mass matrices to (i\rfu ---+ V!RMu VuL) 

and 

(1.2la , b. c) 

Upon performing this transformation on the fermion kinetic term we see that the 

neutral currents remain diagonal by the unitarity of the transformations. However, 

the charged currents do not remain diagonal. In the mass eigenstate basis the charged 

current interaction becomes 

.C" = 2~(u, c,l)-y1'(1- -y5 )J( (:) w: +h. c. , (1.22) 

where f( is the Kobayashi-l\faskawa matrix [1..'5]. Since this matrix is not determined 

theoretically we can parametrize it in terms of four parameters 01, 02,03 and 5 as 
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follows 

( 

C1 

J( = VJL VdL = 81C2 

8182 

-81C3 

CIC2C3 - 8283ei.5 

'6 
C! 82C3 + C283e' 

(1.23) 

where 8k = sin ok and Ck = cos ok. The angles fh are chosen to lie in the first quadrant 

where their sines and cosines are positive. Experimental information on nuclear {3-

decay, semileptonic hyperon decays and semileptonic kaon decays [1.6] implies that 

81 ~ 0.22 (1.24) 

The magnitude of the angles fh,3 are extracted from experimental information on the 

lifetime of the B-mcson and semileptonic B decays. This gives 

(1.25) 

1.2 Flavor Symmetry 

Let us no\\· consider the strong interaction between quarks, suppressmg elec­

troweak indices the Lagrange density is 

(1.26) 

For a system of n quarks of equal mass there would be an exact SU(n)J flavor sym­

metry. Further, if m quarks had masses much less than the QCD scale (the scale 

at which QCD becomes strong and the scale that determines the dynamics of the 

system) then the system would have an approximate SU(m)1 flavor symmetry. This 

is the situation realized in nature [1.7]. The mass of the three lightest quarks are 

mu "' 5 MeV /c2
, md "' 10 l\IeV fc2 and m 5 ,....., 125 MeV /c2 while the QCD scale is 

"" 1 GeV fc2. Since the difference between the mass of the up and down quarks is 

small ("' 5 MeV /c2), as well as being much less than the QCD scale an SU(2)J sym­

metry is expected and indeed one is observed experimentally. This is the well known 
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isospin symmetry and it is observed to be very good. The mass of the strange quark, 

although much bigger than that of both the up and down quarks is still much smaller 

than the QCD scale, consequently one expects an approximate SU(3)J symmetry to 

exist. Since the dynamics of the system are determined by the QCD scale an SU(4)J 

flavor symmetry is not present since the charm quark mass of 1.5 GeV /c2 is much 

greater than the QCD scale. In systems containing a heavy quark and light quarks 

there is a further SU(3)J symmetry involving the charm, bottom and top quarks 

[1.8). The masses of these quarks are all much greater than the QCD scale and as 

far as the QCD dynamics are concerned the heavy quark acts as a static color source 

[1.9). Consequently the dynamics is essentially independent of the mass of the heavy 

quark. 

The weak charged current, whose interaction Lagrange density is given in Eq. 

(1.22) in general has non-trivial transformations under the SU(3)J group. This be­

comes apparent by examining the strangeness changing process s --+ u l v- which 

transforms as a 3 ® 3 under SU(3)J· This group structure decomposes to 8 EB 1, and 

since the quark flavor is changed at this vertex this particular current transforms as 

an 8 under SU(3)J· \Ve can use the SU(3)J symmetry of the strong interactions 

to relate decays rates between reactions if the particles involved lie within the same 

SU(3)J multiplets. 

1.3 SU(3)J Predictions for Semileptonic Hyperon Decay 

The method used in constructing SU(3)J predictions between decay rates is 

demonstrated by examining semileptonic hyperon decays first discussed by Cabibbo 

[1.10). The convention for SU(3)J representation will be that the triplets are denoted 

by column vector with upper indices and the antitriplets are row vectors with lower 

indices, 

" and qi = (u,d,s) q' = (:sit ) (1.27a, b) 

All other representations can be constructed from the triplet and antitriplct . The 
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lowest lying baryons are elements of an octet and are represented by 

i ( Eo I v'2 +_A o I v'6 
hi= E 

~-

E+ 

-Eo IV'i + Ao lv'6 
-=0 

(1.28) 

where the conjugate operator hj can be found by "barring" the elements and trans­

posing. Below the weak scale, the operator responsible for the semileptonic decay of 

light quarks is given by 

(1.29) 

There are no QCD corrections to this operator from momentum scales between the 

weak scale and the QCD scale as the operator has the form of a conserved current 

as far as the color indices are concerned. This operator transforms as an octet under 

SU(3)J and is represented by a 3 x 3 matrix as 

(1.30) 

where we have used the small angle approximation for the mixing angles, c1 = c2 = 

C3 = 1. 

\.Ye are interested in e,·aluating matrix elements of the form 

(1.31) 

and by using the \Vigner-Eckart theorem can decompose this into a Clebsch-Gordan 

coefficient and an irreducible matrix element. The effective Hamiltonian Ileff is con­

structed from h~, ~ and Hj by forming all the possible tensor contractions of the 
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three operators that transform as singlets under SU(3)J· There are only two distinct 

contractions and so the effective Hamiltonian becomes 

(1.32) 

where a and f3 are the reduced matrix elements. After doing the contractions the 

operator involving the Cabibbo-allowed processes can be written as 

(1.33) 

A similar expression can be found for the Cabibbo-suppressed decays. We interpret, 

for example, A as an operator that annihilates a A particle and A as an operator that 

creates a A particle. 'vVe can tabulate the rate for each process in terms of the two 

unknown red_uced matrix elements 

Table 1.2: Rates for the Semileptonic Decay of Hyperons 

Process Rate 

n-+ pe. -Ve ia12 
:E--+ Aoe-ve tia + /312 
)'- :Eo ---'--' -+ e Ve !Ia- /312 
:Eo -+ :E+ e-ve !1-a+/312 
:=:- -+ :=:oe-ve 1/312 
:=:--+ AOe-ve sitl- a+ 2/312 
:=:- -+ :E0 e- ve sHi- ai2 
:;::o -+ :E+ e-ve sil- ai2 
A 0 -+ pe-ve si il2a- /312 

:Eo -+ pe-ve sBi- /312 
:E- -+ne-ve sil-/312 
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In such decays there are at most six different Lorentz structures that contribute 

to the decay amplitude, which can be written as 

(1.34) 

where () is the Cabibbo angle, G F is Fermi's coupling constant and qJJ. is the four 

momentum transfer in the decay. The transversality of the vector current from eve 

(8J1. VJJ. -t qJ.I. VJJ.) means that q2 h(q2 ) = 0 from which we conclude that h(q2 ) = 0. 

The operator aJ.I.v/5 is odd under the G-parity operation (as is /5)· Therefore, since the 

strong interactions cannot induce G-parity odd operators, the form factor 92( q2) is set 

to zero (for a discussion see ref[l.ll]). When this hadronic current is contracted with 

a leptonic current ( e or f..L) the contraction involving 93 ( q2 )q'' picks up a factor of me,JJ.· 

This term is small compared to the scale of the hyperon system, and >Ye neglect it. The 

weak magnetism. term h( q2 )attv qv is suppressed by the mass of the hyperon system 

and is consequently negligible. This leaves two possible lorentz structures contributing 

to the amplitude. They are the vector and axial vector operators. Therefore the 

transition amplitude can be written as 

. (1.35) 

In the limit as q2 
-t 0 we let the form factors become Cv = h (0) and C,-t = 91 (0). 

Both of these form factors can be decomposed into reduced matrix elements and 

elebsch-Gordan coefficients. 

The vector charges are generators of the SU(3)J group and so transitions between 

octet elements 1.: and j are equal to the structure constants of SU(3) fijk · Further, 

since _E±.o and A 0 are in different multiplets of the SU(2) isospin subgroup of SU(3) 

13 



the vector current must vanish for the transition E -t A. This is verified experimen­

tally [1.6] where it is found that the ratio of vector to axialvector contributions to 

the decay amplitude is Cv/CA = 0.01 ± 0.1. Consequently, we see from Table 1.2 

that this condition determines that av = -f3v but does not constrain the axialvector 

parameters. Neutron {3-decay is used to determine the the reduced matrix element 

for the vector transition. The matrix element for the process is 

(1.36) 

Therefore, we find that av = 1 and the vector component of all the other transitions 

are related. Both the vector and axial vector form factors have been determined 

precisely for decay A 0 
-t pe-ve where it is found that the vector coupling Cv is 

ICvl = 1.229 ± 0.035 and the axial vector coupling CA is ICAI = 0.903 ± 0.0-l6, The 

SU(3)J prediction for the vector coupling is Cv = ~( -2av· + f3v) = -1.22 which 

is in remarkable agreement with the experimentally determined value. Theoretically, 

this result is not that suprising as it was shown by Ademollo and Gatto [1.12] that 

the vector couplings are protected, up to second order in the breaking parameter, 

from violations in SU(3)1. 

The measured value of Cv / C A for the n -t pe-ve and I;- -t ne-ve decays 

determines that aA = 1.25 and f3A = 0.36 ± 0.05. These values then predict that C A 

for the A -t pe-ve is -0.87 ± 0.02 which is to be compared with an experimentally 

determined value of CA = -0.903 which is again in very good agreement. In these 

decay processes predictions based on SU(3)1 are correct at about the 5% lewl. 

1.4 SU(3)J Breaking 

We know from the pattern of masses of the light hadrons that SU(3)J is only an 

approximate symmetry. The symmetry is broken by the nondegeneracy of the light 

quark masses, ms >> mu, md. One may hope that the relevent expansion parameter is 

m 8 /lGeV, and use perturbation theory to estimate the effect of the breaking on the 

SU(3)J relations. This will be demonstrated explicitly for the case of semileptonic 
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hyperon decays . The mass term in the QCD Lagrange density given in Eq. (1.26) 

induces a perturbing term that transforms as an octet under SU(3) f and can be 

written as 

(1.37) 

where m8 is the strange quark mass in units of GeV fc2 . The Ademollo-Gatto theorem 

[1.12] protects the vector relations from breaking terms, but not the axial vector 

relations. To find the effect of the breaking we form all the possible contractions of 

hb, x;, Hd and Pb- Therefore, the effective SU(3) f breaking Hamiltonian is 

H break Ha-;-b/ Hcpd b -;-ah hbHcpd -;-ah Hbhc pd 
eff = a. b lc d a + · b c d a + C. b c d a 

I apb-1 c r_{d I haHbpc-:-cl l + 9 · 1b a 1d r:. c + l. b a d 1c (1.38) 

Examining the Cabibbo-allowed decays, we see that II{; P~ = 0 reducing Lhe number 

of contributing elements to four. Expanding Eq. (1.38) gi\·es 

r_{break _ ( ms ) [ - + d ;;:;0:=- _ f!_~Ao _ h f!_Ao~-] 
Leff - 1GeV/c2 c.pn ·~ ~ 9·V3LJ ·V3 LJ (1.39) 

which implies that the isospin relation r(~- -t L:0 e-ile) = r(:E0 
-t I;+e-ile) is not 

altered to first order in the breaking parameter. This is to be expected since in the 

quark model picture the strange quark is merely a spectator in this decay. Therefore, 

assuming that Lhe reduced matrix elements are not significantly larger than a and f3, 
the axial vector relations are expected to be good at the ""' 10% level. 

In general it is found that SU(3)J symmetry works typically at the 30% level in 

low energy physics. In Lhe subsequent chapters we will investigate the predictions of 

SU(3)j for Lhe decays of hadrons containing a bottom or charmed quark. 
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CHAPTER 2. D-MESON DECAYS 

The D mesons, D+, D 0 and D-I, are the simplest bound system with a heavy 

quark constituent. It is found that the D meson masses are (1.8] 

Mn+ = 1869.3±0.6MeV , Mno = 1864.5±0.6MeV and Mnt = 1969.3±1.1MeV 

(2.la, b, c) 

The mesons are not heavy enough to decay to final states containing baryons. They 

decay nonleptonically to mesonic final states or semileptonically to states with one 

or more mesons and either a eve or Jl.VI' pair. The lifetime of these mesons has been 

observed to be (1.8] 

TD+ = 1.069 ± 0.033ps , rno = 0.428 ± O.Ollps and Tnt = .436 ± 0.036ps 

(2.2a, b, c) 

2.1 Charm Changing Weak Operators 

The interaction Lagrange density in Eq. (1.22) dete rmines the transformation 

properties of the effective Hamiltonian for the weak decay of charmed hadrons. The 

6.c = -1 nonleptonic decays arise from the weak Hamiltonian with flavor quanlum 

numbers (cs)(dU) for Cabibbo allowed decays, si[(cd)(dU) - (cs)(su)] for Cabibbo 

suppressed decays and si(cd)(su) for doubly Cabibbo suppressed 

These operators are different components of the same Hamiltonian which can 

be decomposed into irreducible representations of SU(3)J· An example of this is the 

decomposition of the component responsible for the Cabibbo-allowed decays (denoted 

with a superscript (a)), 

( cs)( du) = o6(a) + o(a) 
15 

(2.3) 

where 

o~a) = ~[(cs)(du)- (cu)(dS)] (2.4a) 

transforms as a 6 under flavor SU(3)J and 

0~~) = ~[(cs)(dU) + (cu)(ds)] (2.4b) 
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transforms as a 15 under flavor SU(3)J· The Cabibbo-suppressed operator has a 

similar decomposition into O~s) and oi~), as does the doubly-Cabibbo-suppressed 

operator into O~ds) and oi~s). Perturbative QCD corrections arising from momen­

tum scales between the W-boson mass and the charmed quark mass give rise to an 

enhancement of the coefficient of 06 over the coefficient of Orr by 

(2.5) 

m the effective weak Hamiltonian (2.1]. Consequently it is possible, analagous to 

octet dominance in the weak decay of strange particles, that the sextet component of 

the Hamiltonian may dominate charmed meson decay. 

The operator Orr can be represented in tensor notation as H~b(15) , which is 

traceless and symmetric on its upper indices. It has non-zero elements 

(2.6a) 

for Cabibbo-allowed decays 

12 - 21 - 13 - 31 -=-H2 (15) = H2 (15) = -H3 (15) = -113 (b)= S! (2.6b) 

for Cabibbo-suppressed decays and 

Hj2(15) = Hj1(15) = -si (2.6c) 

for doubly-Cabibbo-suppressed decays. Similarly, 06 can be represented in tensor 

notation as Hab(6) which is symmetric on its indices and has nonzero elements 

(2. 7 a) 

for Cabibbo-allowed decays 

(2.7b) 
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for Cabibbo-suppressed decays and 

(2.7c) 

for doubly-Cabibbo-suppressed decays. These can be written with the same tensor 

structure as the 15 by contracting with the totally antisymmetric tensor C.abc· These 

then can be written as HJ3(6) = -H~1 (6) = -1 for Cabibbo-allowed decays H:f2(6) = 
-Hi1(6) = -Hj3(6) = Ht1(6) = -s1 for Cabibbo-suppressed decays and HJ2(6) = 
-Hf1(6) = si for doubly-Cabibbo-suppressed decays. 

The ~c = -1 semileptonic decays arise from the weak Hamiltonian with flavor 

quantum numbers [(cs) + s1(cd)](l-vl) where l denotes a lepton (l = e, 1-l but not r). 

This operator transforms as a 3 under SU(3)J and has nonzero elements 

(2.8a) 

for Cabibbo-allowed decays and 

(2.8b) 

for Cabibbo-suppressed decays. 
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2.2 Two-Body Nonleptonic D-Meson Decays 

First, we will review the predictions for the decay mode D --+ M M where M 

represents a member of the pseudoscalar octet. These results have been derived 

previously [2.2]. The D mesons transform as an antitriplet under SU(3)J and can be 

represented as 

The octet of the lightest pseudoscalar mesons is represented as 

Mg = ( 7ro I ..j2 7r~ TJo I y'6 

J(-

7r+ 

(2.9) 

(2.10) 

We have assumed that the SU(3)J octet isoscalar eigenstate is very nearly the mass 

eigenstate corresponding to the ry0 (i.e. we have neglected TJ - ry' mixing). There are 

three independent contractions that can be constructed from the two meson octets, 

the charmed .meson anti triplet and the Hamiltonian. Therefore we can write the 

effective Hamiltonian as 

(2.11) 

where a , b and c are unknown reduced matrix elements [Note: \Ve have used the 

identity DaMb H~c(6)1'v!f + DaHgb(6).Mf l\1d = 0 to reduce the number of reduced 

matrix elements from four to three]. The results of expanding this Hamiltonian can 

be found in Table 2.1. It is interesting to note that the decays D"t --+ 1r01r+ and 

D 0 
- K I\0 are forbidden by the SU(3)J symmetry. 

There is only one relation amongst the Cabibbo-allowed decay rates and it is due 

to the full SU(3)J symmetry, 

(2 .12) 

However, if we assume that the sextet component of the Hamiltonian dominates the 
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decay rates then the following relations arise 

(2.13) 

Experimentally, the branching ratio of several of these decay modes have been mea­

sured. It is seen that [1.8, 2.3] 

Br(Dt -t ~ ](+) = (2.1 ± 0.6) x 10-2 
, (2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

and 

(2.14e) 

The ratio of the latter two rates is f(Do--+~11"+) ......., 1.2 ± 0.3 which is to be compared 
f(D0-K 1r0 ) 

with the SU(3) 1 prediction assuming sextet dominance of 2. The error on this result 

is sufficiently large not to allow a definite conclusion to be drawn although it hints 

strongly that, in fact, the sextet component of the Hamiltonian is not dominating the 

decay amplitude. 
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There are several relations amongst the Cabibbo-suppressed decay rates, they are 

(1.8) 

(2.15a) 

(2.15b) 

(2.15c) 

(2.15d) 

These are all due to the full SU(3)J symmetry. Two of the decay modes appearing 

in these relations have been observed experimentally. It is found that 

(2.16a) 

and 

(2.16b) 

The ratio of the decay rates is then r;,{:;o-:!~:~\7 = 3.5 ± 1.2 which is to be compared 

with the SU(3)J prediction of unity. There seems to be a large descrepancy bet,,·een 

these two numbers but they still are within 2a of each other. Amongst the relations 

that arise from assuming that the sextet component of the Hamiltonian dominates 

the decays is 

(2.17) 

Experimentally, it is found that 

(2.18) 

Conversion from branching fractions to decay rates is done by multiplying the branch­

ing fraction by the total width, which is equivalent to dividing by the lifetime. There­

fore, the experimentally observed ratio of decay rates is rtfn+o=~~\-+/ = 2.7±1.1 which 

is to be compared with the sextet dominated SU(3)J prediction of unity. 
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There are several relations between Cabibbo-allowed and Cabibbo-suppressed de­

cay rates. One of the relations is 

(2.19) 

and the Cabibbo-suppressed decay mode has been observed to have a branching 

fraction 

(2.20) 

The ratio s~[{f}o
0

~.}~~7r;) = 1.4 ± 0.4 is compatible with the SU(3)J prediction of 1 

but is only marginally compatible with the prediction for the ratio to a ](+ ](- final 

state, (as was discussed above). There are relations involving the doubly-Cabibbo­

suppressed rates but they are too small to be experimentally observable at this time. 

The results for the decays D -+ }.1M cannot be straightforwardly carried over to 

the decays D -+ VV, where V is the lowest lying vector meson octet 

v = (P' !.Ji; v.;.J6 

J(*-

p+ 

-p0 I .J2 +Val V6 
K*o 

(2.21) 

The octet state IVa) = (llvf6)(1uu) + idd) - 2iss)) mixes with the singlet state 

IV1) = (1lv'3)(1uu) + idd) +iss)) because of the near degeneracy in the masses. The 

mass eigenstates I</>) = iss) and lw) = (11 .;2)( luu) + idd)) are linear combinations of 

these two states. Explicitly, the states can be written as 

(2.22a) 

and 

(2.22b) 

In addition to the three reduced matrix elements contributing to this process (found 

from D -+ .M AI by substituting AI-+ V) there are two from the contraction formed 
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with the singlet Vi. The terms are 

(2.23) 

Only two of the decays D --+ VV have been studied experimentally [1.8, 2.3]. It is 

seen that 

(2.24a) 

(2.24b) 

The effective Hamiltonian describing the decay D --+ V M is written in terms of 

10 reduced matrix elements, it is 

Among the Cabibbo-allowed decays, tabulated in Table 2.2, there is only one 

relation and it is due to isospin, 

(2.26) 

There are three more relations when sextet dominance is assumed, they are 

(2.27a) 

(~.27b) 

(2.27c) 

The branching fraction for ten of these decay modes haYe been measured to be [1.8, 
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2.3) 

Br(D; --+ <P1r+) = (2.0 ± 0.4) x 10- 2 (2.28a) 

Br(D0 --+ p+ ](-) = (8.2 ± 1.2) x 10-2 , (2.28b) 

(2.28c) 

(2.28d) 

Br(D+ --+ p+ft) = (6.6 ± 1.7) x 10-2 , (2.28e) 

B1·(D0 --+ ft <P) = (0.99 ± 0.24) x 10-2 , (2.28!) 

Br(D0
--+ Kw) = (3.2 ± 1.5) x 10-2 (2.28g) 

(2.28h) 

(2.28i) 

(2.28j) 

f(D 0 + r-) From these we find that + -P •0 \ ,....., 5 ± 1 which should be compared with the 
r(D. -+K l\"+) 

qn+ A .• o +) 
SU(3)J prediction of 1. Conversely, -+ ~ ,....., 4 ± 2 which is 2o- away from 

r(D+--p+ l\- ) 
the SU(3)j prediction of 1. The results for the Cabibbo-suppressed and doubly-

Cabibbo-suppressed decays are not tabulated. There a re se\·eral relations between 
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the Cabibbo-suppressed decays, they are 

(2.29a) 

(2.29b) 

(2.29c) 

(2.29d) 

Experimentally, several of these decay modes have been studied, and it is found that 

(2.30a) 

Br(D+ -4 rr+ ¢) = (1 ± 0.2) x 10-2 (2.30b) 

(2.30c) 

(2.30d) 

2.3 Semileptonic D-Meson Decays to Three-Body Final States 

The Hamiltonian for the semileptonic decay of D-mesons is gi ,·en in Eqs. (2.8). 

There is only one singlet in the tensor product 3 0 3 0 8 and hence there is only 

one reduced matrix clement determining the semileptonic decay rates . The effective 
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Hamiltonian for the system is 

(2.31) 

From this Hamiltonian we find the following relations 

(2.32) 

These relations are easily converted to the semileptonic decay to a vector meson and 

leptons as was done before. Experimentally, the branching fractions obtained to date 

[1.8] are, 

(2.33a) 

(2.33b) 

(2.33c) 

This data seems to be in agreement with the SU(3)J predictions. The branching 

ratio of the n+ decay to a muonic final state is approximately twice that expected 

by universality and seems not to satisfy the prediction. This deviation will probably 

vanish with better data. 

2.4 Large Nc Limit and Factorisation of Amplitudes 

A model of hadronic interactions that has been extensively studied is one in which 

the number of colors Nc is treated as an expansion parameter (or rather 1/ Nc)[2.4, 

2.5]. Of the many inte resting results of this model in the limit of large Nc is the 

factorization of weak amplitudes. Let us consider the decay D ~ 1r1r. The leading 

27 



planar diagram with no gluonic corrections is shown in Figure la. There are counting 

rules that apply to these graphs. For each external particle there is a )N; that appears 

in the amplitude. For each loop there is a factor of Nc that arise from the possible 

colors circulating in the loop and for each fermion-gluon vertex there is a factor of 

-:;/Jr:. A gluon is represented by two parallel line (colors) that break the fermion line 

at the vertex. The Nc counting for Figure la gives rise to an amplitude 

2 2 
( 

1 
)

3 1 

A ex: ~ Nc = Nc (2.34) 

If we examine the diagram in Figure lb where the gluon is transferred between quarks 

in the same meson we find that the amplitude for this diagram is 

(2.35) 

which is the same order in Nc as the leading graph and hence survives in the limit as 

Nc -+ (X). However when we perform the same power counting on the graph shown 

in Figure lc. which does not allow the amplitudes to factorise we find that 

(2.36) 

This diagram vanishes in the limit Nc -+ (X) and hence we find that indeed as the 

number of colours becomes large the weak amplitudes factorise. Therefore, in this 

limit, 

(2.37) 

where (cd)v -A = ca1 1'(1-15)da. The pion to vacuum matrix element is parametrized 

as 

(r.(p)l(ud)v-AIO) = f-rrP1' (2.38) 

where f-rr = 0.94JH-rr is determined experimentally from the semileptonic r. decay and 

therefore we find that the amplitude for the process D -+ r.r. is proportional to f-rr· 
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We can phenomenologically modify our SU(3)J predictions for the Cabibbo­
r(D0-+K+ K-) 

suppressed decays from r(Do-+11"+ 1!" ) = 1 to 

r(Do -+ ](+ K-) 
f(D0 -+ 1r+1r-) 

(2.39) 

The leading 1/ Nc corrections to each of these amplitudes cancels, thereby making 

this prediction valid up to 1/ N? [2.6]. 

However, in phenomenologically correcting for SU(3)J violation in the decay am­

plitudes we must be consistent and include the phase space corrections arising from 

the mass difference between the kaon and pion. This gives rise to an additional multi­

plicat ive factor of'""' 0.7. Hence the modified SU(3)J prediction for this ratio becomes 

1.2, which is still significantly different from the experimentally observed value. 

2.5 Concluding Remarks on Chapter 2 

It is interesting to briefly discuss some of the models employed to try and un­

derstand the weak hadronic decays of D-mesons. The large Nc limit and amplitude 

factorization provides a starting point for elucidating some of the underlying dym­

namics. The effective Harniltonian for the system in the large Nc limit under the 

assumption of factori zation is [2.7] 

(2.40) 

where a1 = q + -Jr;c2 and a2 = c2 + -Jr;c1 at the quark level. The -Jr; arises from 

the color mismatch when the hadron is "reformed" after the weak interaction. Since 

the color currents in the hadron are not understood this factor of tc is replaced by 

an arbitrary parameter ( at the hadronic level. It is important to realize that the 

assumption that this factor is the same for all decay modes has no firm theoretical 

basis. A good discussion of this can be found in ref [2.8]. When the decay rates for 

the known modes are fit with this form for the interaction a value of ( '""' 0 is found 

which indicates that the naive quark estimate of 1/3 is too large. To some extent this 
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parametrisation of the weak Hamiltonian reproduces the pattern of lifetimes of the 

D-mesons. 

Another approach to understanding D-meson decays is in the context of the quark­

diagram scheme [2.9). In this scheme each topologically different quark line diagram 

that can contribute to a decay mode of the D-mesons is assigned an unknown ampli­

tude. SU(3)J breaking effects are incorporated by assigning a different amplitude to 

diagrams that have strange quarks appearing in the interaction vertices from those 

with up or down quarks. Further, final state interactions (FSI) are accounted for by 

introducing phase shifts for each isospin partial wave in the amplitude. These phases 

are generally complex as there are resonances at energies near the charm mass. An 

example where these FSI are important is in understanding the descrepancy between 

the theoretical and experimental branching ratios for D0 ---+ J(+ J(- and D0 ---+ 7r+7r- . 

If there were a resonance in the J(+ f{- system (and not the 7r+7r- system) with mass 

close to the mass of the D0 then this would be a natural explanation for the difference. 

(It should be noted that FSI can only give rise to deviations from the predictions of 

SU(3) I if they violate the symmetry. If the resonance was not close to the mass (de­

pending on the width of the resonance) of the D 0 then the apparent violation would 

be significantly less.) These amplitudes and phase shifts are then fit to the available 

data on the branching fraction for D-meson decays and the relative importance of 

each type of quark line diagram can be found along with the size of the FSI. 

Final state interactions need to be incorporated into our SU(3) 1 predictions. The 

amplitudes at the weak vertex can be decomposed into isospin partial waves as was 

discussed in the previous paragraph [2.9]. The FSI will giYe rise to a phase shift for 

each partial wave. One can then fit these amplitudes and phase shifts to the D-meson 

decay data, remoYe the phase shifts and then compare these amplitudes with the 

predictions of SU(3)J [2.9,2.10]. Therefore it is not a useless exercise to construct the 

predictions for various decay processes, even when the energy of the decay lies in the 

resonance region, as these effects can be removed from the data. 

Comparison between the predictions of sextet dominance in the nonleptonic 

30 



decay of D-mesons and the experimental results indicate that in fact the sextet is 

not dominating the weak decay of the D-mesons. This is despite the fact that short 

distance QCD gives rise to an enhancement of the sextet component over the 15 by 

a factor of 2.5 in the effective weak Hamiltonian. 
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Table 2.1. Rates for the decays n ~ M Min terms of the three reduced matrix 

elements a, b and c. 

Process Rate 

no~ ](-7r+ Ia + b- c12 
no~ X01]o tl- a+ b + cl2 

no~ Jt17ro tl- a+ b + cl2 

n+ ~ Jt17r+ 4lbl2 
n; ~ 1r+1Jo ila- b + cl2 

n+ ~ K+-K s Ia + b + cl2 
no~ 7r+7r- sila + b- cl2 

no ~ 1]01]0 sitla + b + cl2 

no ~ 7ro7ro sitla- b - cl 2 

no ~ 1]01r0 sitl- a+ b + cl2 

no~](+]{- sil- a- b + cf 
n+ ~ 11°1r+ snia + 2b + cl 2 

n+ ~ J(+~ si Ia- b + cl2 

n+ ~ 7r+7ro si2lbl2 

n; ~ 17° K+ sitla + 5b + cl2 

n+ ~ 7ro ]{+ s sitl -a- b- cl 2 

n+ ~ 7r+ Ko 
s sil-a+b -cl2 

no ~ 7r- J(+ s11 - a - b + cl2 

no ~ 1]0 J{O s1ila- b- cl 2 

no ~ 7ro ]{0 s4 lla-b-cl2 
1 2 

n+ ~ 11° K+ s1ila- b + cl2 

n+ ~ 7ro ]{+ s1 ~~ -a+ b- cl2 

n+ ~ rr+ J\0 s11 - a - b - cl2 

n+ ~ J\+ I\0 
s s141- bl 2 

33 



Table 2.2. Rates for the Cabibbo-Allowed decays D ~ V M in terms of the 

reduced matrix elements a, b, c, d, e, f, 9, h, s and t. 

Process Rate 

no~ f(-p+ Ia + c- e + 912 

Do~ Jt1 Po il -a+ d + e- hl 2 

D0 ~Kw l8 1a- 2b +d-e+ 2f- h + v'I2s- v'I2tl2 

D 0 ~ KrP ~~-a+ 2b- d + e- 2f + h + 3s- 3tl2 

Do~ TJof{*o tl- 2a + b + c + 2e- f- 912 

Do~ 11"+7{*- lb + d- f + hl2 

Do ~ 7ro ](*o tl- b + c + f- 91 2 

n+ ~ 71"+ K*u ic + d- 9 + hl2 
-:-;{) 

n+ ~ K p+ lc + d + 9- hl 2 

n; ~ "'o p+ ila + b- 2c + e + f- 2912 

n; ~ 1rop+ tla- b + e- !12 

Dt ~ 7r+ Po tl -a+ b-e+ !12 

n+ ~ 7r+w s 1
1
8 la + b- 2d + e + f - 2h + v'f2s + Ji2t j2 

n; ~ 1r+rP il -a- b + 2d- e- f + 2h + v'3s + v'3t12 

n+ y+y*o s ~ \ \. Ia + c + e- 912 
n+ y•+r s ~ \. \ lb + d + f- hi2 
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CHAPTER 3. CHARMED BARYON DECAYS 

Measurements of the branching fractions for many exclusive decay modes of 

charmed baryons are starting to be made. Although the weak decays of the At , :=:~ , 
::::~1 and n~ have been observed, only the decays of the At have been studied in any 

detail. The large event sample of B-meson decays that will be collected in the near 

future will allow the study of the decay modes of all the charmed baryons. Charmed 

baryons belong to one of two representations of flavor SU(3), a 3 or a 6. The At , :=:~ 
and :=:~1 constitute the 3 and the n~ , :=:;t; , :=:~2 , ~t+ , ~t and ~~ comprise the 6. 

Five of the six members of the 6 decay strongly or electromagnetically, for example 

~t+ --+ At 1r+, :=:;!z -t ::::~I · Only the n~ of the 6 and the members of the 3 decay 

weakly. The lifetime of these four weakly decaying particles have been measured to 

be 

TA+ = 0.196 ± 0.016ps. , T=+ = 0.57 ± 0.1•1ps , 
c '-cl 

T=o = 0.082 ± 0.06ps. and Tr.o = 0. 79 ± 0.3-1ps 
-cl . ;\£c 

(3.1) 

The masses of these particles have been measured to be 

Mr:,t+ = 2-152.2 ± 1.71\IeV jc2 and !lfn~ = 2740 ± 2011eV jc2 (3.2) 

3.1 SU(3)J Representation of the Charmed Baryons 

The lowest lying charmed baryons fall into two representations of SU(3)1. If 

the charmed baryon state vector is antisymmetric under interchange of the two light 

quark flavors then it is in the 3 representation and if the charmed baryon state vector 

is symmetric under the interchange of the two light quark flavors then it is in the 

6 representation. In the non-relativistic quark potential model the spin-flavor state 
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vectors for the lowest lying J7r = ~ + charmed baryons in the 3 representation of 

SU(3)J are 

1 1 
IAt-2) = 2 (lc i u i d 1) -lc i u 1 d i)- ic i diu 1) + lc j d 1 u i)) (3.3a) 

l:=:;i~) = ~ (lc i u is 1) -lc i u 1 s i) -lc is i u 1) + lc is 1 u i)) (3.3b) 

- 1 1.::,~1) = 2 (lc i dis 1) - ic i d 1 s i) - lc is i d 1) + lc j s 1 d i)) (3.3c) 

The spin-flavor state vectors for the lowest lying charmed baryons in the 6 represen­

tation of SU(3)J are 

1 fl 
IE7+ 2) = y 6 (2lc 1 u i u i) - lc i u i u 1) - lc j u 1 u i)) (3.4a) 

1VA IE7 -) = - (2lc 1 u i d i)- ic i u i d 1)- lc i u 1 d i) 
2 12 

+ 2lc 1 diu i) -lc i diu 1) -lc i d 1 u i)) (3.4b) 

IE~~) = /I (2lc 1 did i)- lc i did 1)- lc i d 1 d i)) (3.4c) 

1:=:~l) = VA (2lc 1 u is i)- lc i u is 1)- lc i u 1 s j) 

+ 2lc 1 s i u i) - lc i s i u 1) - lc i s 1 u i)) (3.4d) 

1::::~2~) = VA (2lc 1 dis i)- lc i dis 1)- lc i d 1 s i) 

+ 2lc 1 s i d i) - lc i s i d 1) - ic j s 1 d i)) (3.4e) 

(3Af) 

It is the hyperfine interaction that gives rise to the mass difference between the :Sc and 

Ac baryons and between the :=:c1 and :=:c2 baryons. Since the state vectors for the lowest 

37 



lying charmed baryons in the 3 representation are antisymmetric under interchange 

of the light quark spins while the state vectors for the lowest lying charmed baryons 

in the 6 representation are symmetric under interchange of the light quark spins the 

hyperfine interaction causes the ~c to be heavier than the Ac and the 3c2 to be heavier 

than the :=:c1. 

SU(3)t violations in the hyperfine interaction give rise to mixing between the :=:cl 

and :=:c2 states. Physical mass eigenstates will be the following linear combination of 

these two states 

(3.5a, b) 

The two-body hyperfine interaction has the form 

Hhr = 4A L Sc . Sj + 4A' L Si . Sj 
. fficffij . . ffiiffij 

J=u,d,s ,,J=u,d,s 

(3.6) 

where A and A' are determined by the spatial part of the charmed baryon state vectors 

(which are taken to be SU(3)t symmetric). The term proportional to A' dominates 

the hyperfine interaction since it is not suppressed by the heavy charm quark mass. 

Using Eqs. (3.3,3.4,3.5,3.6) we find that 

(3./a) 

2A 2A 
(3.7b) -------

(-::- . IH I-::- ) __ -/3A (ms - m 11) 
~d hf ~cl -

rnc m 5 1Tiu 
(3.7c) 

which gives a small mixing angle 

O = _ -/3 (~) (ms- 7Tiu) 
4 A' me 

(3.8) 

It is easy to understand why the term proportional to A' does not contribute to the 

mixing between the :=:c1 and :=:c2 states. In the computation of the :=:ci, :=:c2 mass 
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matrix the quark masses in this term occur as an overall factor and hence it has the 

same effect as an SU(3) f conserving interaction where the two light quarks are taken 

to be degenerate with mass y'msmu. Therefore, despite the near degeneracy of the 3 

and 6 representations, SU(3)t violations in the hyperfine interaction do not give rise 

to significant mixing between the multiplets. 

From the measured masses of the Ec and Ac baryons the hyperfine mass splitting 

between :=:c1 and :=:c2 can be determined. Using 

(3.9a, b) 

we find that (with mu = 330MeV and m 5 = 550MeV) the measured value of mEc­

ffiAc imply 

(3.10) 

The lowest lying J7r = ~ + charmed baryons are a lso in the 6 representation of 

SU(3)J· Their spin-flavor state vectors are 

(3.lla) 

(3.11b) 

(3.llc) 

(3.lld) 

(3.11e) 

1n;o ~) = lc i s i s i) (3 .11!) 

These states are split in mass from the lowest lying J7r = 1 + charmed baryons in the 
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6 representation by the part of the hyperfine interaction proportional to A. Explicitly, 

(3.12) 

which implies that 

(3.13) 

Since me~ mu and m 8 , it is expected that A will be somewhat larger then A'. 

The remainder of this chapter is divided into two sections, nonleptonic and 

semileptonic decays. In the first section we examine the flavor SU(3) predictions for 

the decay of charmed baryons in the 3 and 6 representation to t + or ! + uncharmed 

baryons and one or two mesons. The second section deals with the semileptonic decay 

of charmed baryons in both representations to ! + or ~ + uncharmed baryons, a ( z+, vz) 

lepton pair and zero or one meson. The matrix elements for the decay processes are 

tabulated in terms of unknown reduced matrix elements. 

3.2 Nonleptonic Decay Of Charrned Baryons To Two Body Final States 

First we examine the process T ---+ hll1 where T denotes the 3 repesentation of 

charmed baryons, h is the lowest-lying t + baryon octet and M is the lowest-lying 

pscudoscalar meson octet. The Hamiltonian for the decay of charmed baryons is the 

same as that for the decay of charmed mesons, which is given in section 2.1 . Some 

of the SU(3)J predictions for this set of decays have been considered before in ref. 

[2.2]. The effectiYe Hamiltonian for the process is given by 

(3.14) 

where a, b, c, d, e, f, 9 are unknown reduced matrix elements and ra is the charmed 
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baryon anti-triplet 

T - (=o ::-+ A+) a- ~cl• -~cl' c (3.15) 

The square of the matrix elements for Cabibbo-allowed processes are shown in 

Table 3.1. We see that there is only one relation between the matrix elements of 

Cabibbo-allowed decays, 

(3.16) 

and this is a result of the SU(2) isospin subgroup of SU(3)J· 

There are several relations between squares of matrix elements for Cabibbo­

suppressed decays, as can be seen from table 3.2. They are 

(3.17a) 

(3.17b) 

(3.17c) 

(3 .17d) 

(3.17e) 

(3.17f) 

which are all a consequence of the full SU(3)J symmetry. From Table 3.3 ,,.e see that 

there are no relations between squared matrix elements of doubly-Cabibbo-suppressed 
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decays. However, there are relations between the squares of Cabibbo-allowed, sup­

pressed and doubly suppressed matrix elements. They are 

IM(-o --J(+)I2 2IM(-o -- +)l2 .=.cl -t .=.. = S 1 .=.cl -t .=.. 7r ' (3.18a) 

(3.18b) 

(3.18c) 

(3.18d) 

(3.18e) 

(3.18!) 

(3.18g) 

(3.18h) 

The sum of the masses of the products from charmed baryon decay is not always 

negligible compared to the energy release. Therefore, SU(3)t relations between decay 

rates, derived from relations between the square of matrix elements, have significant 

phase space corrections. The exception to this is when a relat ion is due to isospin, 

where the difference between the sum of t he final state masses is sm all. To find the 

relation between the decay rates from lhe square of the matrix elements we can use 

the expression 

1 ? IPbl 
dr(a--+ be)=-.-? IAI(a--+ bc)l--? dD. , 

32r.- ffi(i 
(3.19) 

where ma is the mass of the decaying particle, Pb is the momentum of one of t he 

final state particles, dD. is its solid angle and Af(a --+ be) is the m atrix element for 

the decay a --+ be. There is a lso an additional factor of IPJJ?I occurring in the matrix 
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element for decays with final state angular momentum l. Any mass dependence in 

the matrix element is not corrected for as this is due to explicit SU(3) violation and 

not a kinematical effect. Consequently we find that, for instance, 

(3.20) 

where l is the angular momentum of the decay channel and r, is its contribution to 

the rate. For this process both l = 0 and l = 1 partial waves can contribute. The 

angular distribution of the decay products from a polarized charmed baryon can be 

decomposed to yield the relative magnitude of the I = 0 and l = 1 partial waves, 

to which the phase space corrections can be applied accordingly. If, however, the 

angular distribution information is not available (which is probably the case), then 

the best estimate of the phase space correction is to say that it lies somewhere in the 

range between its value for l = 0 and l = 1. Thus the flavor SU(3) prediction for the 

above process is 1.2r(::::~l --t ::::- ]{+) < r(::::~l --t I:-7r+) < 1.7f(::::~l --t ::::- f\+) . 

Two decay modes of the type under discussion here have been obsen·ed so far. 

The first BT(A"t --t A 01r+) = (0.63 ± 0.25) x 10-2 [1.6] does not appear in any of the 

relations. The second observed is BT(A"t --t p!\
0

) = (2.0 ± 0.4) x 10-2 (3.1, 3.2, 3.3], 

from which we predict that B1·(:=:~ --t I:+ ]{0 ) "' 4 x 10-5 . These expressions can 

easily be carried over to decays involving baryons and vector mesons, T --t BV. An 

example of this is 

(3.21) 

Two of the branching ratios for final states containing a vector m eson have been 

measured. The first is B1·(A"j: --t pl\*
0

(892)) = (5.6±3) x 10-3 [3.2, 3.4], from which 

we predict that Br(:=:~ --t E+ ]{*0 (892)) "'1 x 10-5 . The second is B1·(A"j: --t p¢) = 

(2 ± 1) x 10-3 which does not appear in any of the relations. 
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Next we look at the process T -+ h* !11 where h* is the decuplet of ~+ baryon 

resonances with elements 

h*lll = ~ ++ h*ll2 = _1_~ + h*l13 = _1_E*+ h*122 = _1_~ o h*l33 = _1_::::*o 
' v'3 ' v'3 ' v'3 ' v'3 

h•123 __ 1_'<:'*0 h*222 _ "- 1 •223 __ 1_'<:'*- h*233 __ 1_=•- h*333 = n- (3 22) - V6LJ ' - u ' ~ - v'3L..J ' - v'3~ ' ~~ . . 

The effective Hamiltonian for the process is 

-h* ad be(-) e {3..,.....h Tad}:rbe (-)Me Herr = 0' abeT He 15 _A,[d + abc ~d 15 e 

(3.23) 

where a, {3, 1 and 8 are unknown reduced matrix elements. The rates for Cabibbo­

allowed decay processes in terms of these reduced matrix elements are given in Table 

3.4. There are four relations between Cabibbo-allowed decay rates. They are 

(3.2-ia) 

(3.24b) 

which are due to isospin and 

I ·'!(=+ \'*+....,..,..J, )12 - I ~I(=+ '::'*0 +)12 • ~cl --t -' \ - 11 ~cl --t ~ 7r ' (3.24c) 

(3.2-ld) 

which are due to the full SU(3) symmetry. Again, phase space correction factors must 

be applied to these equalities giving, for example 

(3.25) 

a modification of (0.69)3 due to the differing final state masses and the fact that the 

decay is P-wave (neglecting possible D-wave contributions). 
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There are several relations between the squares of Cabibbo-suppresscd matrix 

elements, as seen in Table 3.5. They are 

(3.26a) 

(3.26b) 

(3.26c) 

(3.26d) 

(3.26e) 

(3.26!) 

(3.26g) 

(3.26h) 

which are all full SU(3)t relations. 

There are also relations between doubly-Cabibbo-suppressed matrix elements as 

seen from Table 3.6. They are 

(3.27a) 

(3.27b) 

(3 .27c) 

(3.27d) 

Several relations between Cabibbo-allowed,-suppressed and doubly-suppressed 

45 



decay modes are found. They are 

(3.28a) 

(3.28b) 

(3.28c) 

(3.28d) 

(3.28e) 

(3.28!) 

(3.28g) 

(3.28h) 

(3.28i) 

(3.28j) 

(3.28k) 

(3.281) 

(3.28m) 

One of these decay modes has been observed with a branching ratio of [3.4] 

(3.29) 

and hence we can predict, neglecting possible D-wave contributions, that Br(At ---+ 

_6++7r - ) ""(3.8±2.0) x 10- 4 ("" (4.8±2.5) x 10-4 for a purely D-wave process) and 

that B1·(=.~---+ _6++7r-) ,...__ 2.3 x 10- 5 ("" 3.8 x 10- 5 for a purely D-wave process). 
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Next we look at the two-body decays S---+ hM, where S denotes the 6 represen­

tation of charmed baryons. The element S33 = n~ is the only member of the 6 that 

decays weakly, the E;t+,+,O decay strongly to the A;t" in the 3 (e.g. E;t+ ---+ A;t"1r+) 

and the :::::/ decay electromagnetically (e.g. ::::~2 ---+ ::::~0). By inspection of the n~ 

flavor wavefunction we see that the only Cabibbo-allowed final state is :=:°K. We 

therefore look for relations between Cabibbo-allowed and Cabibbo-suppressed decay 

rates. The effective Hamiltonian for the process is 

(3.30) 

The squared matrix elements resulting from this effective Hamiltonian are found in 

Table 3. 7. vVe see that there are no relations between any of the decay rates involving 

Cabibbo-allowed, -suppressed or doubly-suppressed decays. 

If we look at the isospin structure of the doubly-Cabibbo-suppressed sextet com­

ponent of the Hamiltonian, O~ds) = ~ [(cd)(su)- (cu)(sd)] , we see that it is an 

I = 0 operator, whereas O~~s) is an I = 1 operator. Since n~ has I = 0, we expect 

that the decay to A 0 ry0 proceeds via 0 6 only, and similarly for the ~0 
1r

0 final state, 

since the weak Hamiltonian does not haYe an I = 2 component. Therefore, by mea­

suring the relative rate for an I = 1 decay, for example the E 0 ry0 or A 0 1r
0 final state, 

compared to an I = 0 decay, an estimate of the relative contributions from 06 and 

015 can be made. This will not be a strong test of the perturbative QCD prediction 

since there could be cancellations between the reduced matrix elements contributing 

to the decays, but it will give a rough estimate of the relative contributions. Unfortu­

nately, since these are doubly-Cabibbo-suppressed decays, they will probably be the 

last to be measured and hence their predictive power is somewhat limited. 
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Consider now the process S ~ h* M. The only two possible Cabibbo-allowed 

final states are n-7r+ and =._•0~. The effective Hamiltonian for the decay is 

+ 8h* Hab (15)Sde .Me + >.tadfh,* H (6)Mb see + 1Jtadfh,* H (6)1\P sbc abc d e abc de f abc de f 

(3.31) 

The resulting squared matrix elements are shown in Table 3.8. We see that there are 

no relations between any of the Cabibbo-allowed or Cabibbo-suppressed decay modes. 

However, there are two relations involving doubly-Cabibbo-suppressed processes, they 

are 

(3.32a) 

(3.32b) 

3.3 Nonleptonic Decay Of Charmed Baryons To Three Body Final States 

In this section we will be considering decays of charmed baryons to final states 

containing a baryon (either in the lowest lying t + octet or the ~+ decuplet) and two 

octet mesons 1\1. As far as SU(3)t is concerned the two meson octets are identical 

and consequently the Hamiltonian must be symmetrized if the mesons are in a rel­

atively even angular momentum state or anti symmetrized if they are in a relatively 

odd angular momentum state. \Vhen the Hamiltonian is expanded in terms of the in­

dividual particle operators and matrix elements are taken there are symmetry factors 

that must be included. This is demonstrated most simply by an example. Consider 

the Hamiltonian 

l'J + -+ 0 0 
1 elf = 7r ir 7r ir , (3.33) 

of which matrix elements can be formed to yield 

(3.3-la) 
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and 

(3.34b) 

due to the two possible ways of annihilating the two neutral pions. When we form 

a rate from these matrix elements there is an additional factor of t multiplying the 

1r
0

1r
0 phase space integrals from Bose statistics. In the tables this factor of ! has been 

omitted and so to obtain rate relations from the squared matrix elements a factor of 

t must be included for processes involving identical particles. Also, in obtaining rate 

relations from the matrix elements, phase space correction factors must be included 

just as for the two-body decay modes. However since these factors depend upon the 

momentum configuration of the final state we will not calculate them in this work. 

Any processes that are not energetically allowed are not included in the tables. 

The first three-body decay process examined is T --+ hi\! !vf for which there are 

nineteen reduced matrix elements. The operator Orr contributes eleven reduced 

matrix elements and 06 contributes eight. The Hamiltonian for the process is 

(3.35) 

The matrix elements resulting from this Hamiltonian are NOT tabulated in this paper 

as there are"' 121 possible decay modes for either angular momentum state. 
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Despite this large number of operators there are still relations between some 

matrix elements for various decay modes. The relations between Cabibbo-allowed 

decays are all due to isospin, examples of which are 

IM(~o ~- o +) 12 IM(~+ ~o o +) 12 
.::.cl ---+ .::. 7r 7r (L=0,2, ... ) = .::.cl ---+ .::. 7r 7r (L=0,2, ... ) ' (3.36a) 

(3.36b) 

for even and odd angular momentum channels respectively, and 

(3.36c) 

(3.36d) 

which are independent of the relative angular momentum between the mesons. The 

inequality arises from the fact that processes involving identical mesons in the final 

state can only proceed through even angular momentum channels. There is a rela tion 

be tween a Cabibbo-allowed process and a Cabibbo-suppressed process that holds only 

for odd relative angular momentum states which is 

I ~!(-=-+ ~-}'+ +) 12 2 1 \I(A+ ~-}'+ +) 12 
1 1 ~cl ---+ .::. \ 7r (L=l,3, ... ) = 8 1 1 c ---+ .::. \ 7r (L=1,3, ... ) (3.36e) 

l\fore interesting are the Cabibbo-suppressed decays where there are relations due to 

the full SU(3) symmetry which are independent of the relative angular momentum 

between the mesons. They are 

(3.37 a) 

(3.3/b) 

(3.37c) 
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2 
jM(3~ ---t L:-7r+7r+)j2 :::; sd jM(i\~ ---t :::;-J(+?r+)j2 ' (3.37d) 

(3.37e) 

(3.37 f) 

(3.37g) 

(3.37h) 

Experimentally, branching ratios for some of these processes have been measured, 

Br(i\~ ---t pK-1r+) = (2.6 ± 0.9) x 10-2 [3.5] and Br(i\~ ---t E+1r+1r-) = (10 ± 8) x 

10-2 [3.6], of which the latter appears in an isospin relation between Cabibbo-allowed 

decays. 

There are twenty-n ine reduced matrix elements contributing to the process S ---t 

B!lf !If, twenty of which are from 015 and the remaining nine from 06. Only two 

relations are found, 

(3.38a) 

(3.38b) 

The first is between Cabibbo-allowed decays and the second between Cabibbo- sup­

pressed decays . They are both consequences of isospin. The matrix elements for the 

various decay modes are not tabulated. 

We consider now the process T ---t h* 1H !If. There a re twelve reduced matrix 

elements contributing to the decays. The effective Hamiltonian for the process is 
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given by 

(3.39) 

The results for Cabibbo-allowed decays with the mesons in an even (odd) angular 

momentum state are shown in Table 3.9 (Table 3.1). Cabibbo-suppressed decays 

with the mesons in an even (odd) angular momentum state are shown in Table 3.11 

(Table 3.12). 'vVe see that there are many relations between squared matrix elements 

for various processes. For Cabibbo-allowed decays, we find that there are relations 

between matrix elements when the mesons in an even or odd angular momentum 

state. They are 

I ~1' (-=-+ -::-•0 0 +) 12 - 11 ~1('="+ -==-·- + +) 12 
l V, ~cl --t ~ 7r 7r (L=0.2 ... ) - S ll ~cl --t ~ 7r 7r (L=0,2, ... ) 

(3.40a) 

1 ~!('="0 A+~}- }"-) 12 11~!('="+ A++~J( }'-) 12 1 • ~c1 --t u. \ \ (L=l,3, ... ) = 3 l • ~cl --t u. \ (L=l,3, ... ) , (3.40b) 

I ~!(\+ -::-*-}' + +) 12 - 11 ~£('="+ n-}' + +) 12 
l l - c --t ~ \ 7r (L=l,3, ... ) - 3 l l ~cl --t H \ 7r (L=l,3, ... ) . (3.40c) 

There arc a lso many relations that arc independent of the relative angular momentum 
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between the mesons, they are 

(3.40d) 

(3.40e) 

(3.40!) 

(3.40g) 

IM(::::~ - ::::*07r0 7r+)l 2 
= ~11\f(::::~ - n-K+1r+)l2 2: ~I .M(::::~ - ::::*-7r+7r+)l2 

. 

(3.40h) 

Turning now to the Cabibbo-suppressed decays, again there are many relations 

between squared matrix elements. All except one of the relations between the squared 

matrix elements are independent of the relative angular momentum between the 

mesons. The relations are 

(3.41a) 

(3.41b) 

(3.41c) 

(3.41d) 

Also, there is a large number of relations between Cabibbo-allowed and Cabibbo­

suppressed squared matrix elements. The relations between matrix elements when 
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the mesons are either in a relatively even or odd angular momentum state are 

+ ++ 0 2 3 2 + 0~ +) 12 IM(Ac -t /:). 7r-7r )(£=0,2, ... )1 = 2s1IM(Ac -t /:). J( 7r (£=0,2, ... ) ' (3.42a) 

IM(-o -*o}(o o) 12 2 2IM(-o "'*o~}( o) 12 .::.cl -t .::. 7r (£=0,2, ... ) = sl .::.cl -t LJ 7r (£=0,2, ... ) ' (3.42b) 

There are also a few relations that are independent of the relative angular momentum 

between the mesons, they are 

(3.42d) 

(3.42e) 

(3.42!) 

Through a cancellation within each operator comprising the Hamiltonian we find 

that the Cabibbo-suppressed decay :=:~1 -t L:*0ry0rr0 proceeds entirely through even 

angular momentum channels. 

There are sixteen reduced matrix elements contributing to the process S -t 

h* M 1\J, ten are from 0 15 and the remaining six are from 06. We find that there is 

only one relation between matrix elements and it is between Cabibbo-allowed decays 

with the mesons in an even angular momentum state (IJf(D~ -t L;*+K K-)1 2 = 
2I JH(D~ -t L:*°KK)I2). There are no relations between decays with the mesons in 

a relatively odd angular momentum state. Consequently the only relation is 

(3.43) 

and this is due to isospin. The matrix elements for these decays arc not tabulated . 
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3.4 Semileptonic Decay Of Charmed Baryons To Three Body Final States 

For the process T--+ hZ+vl there is only one SU(3) singlet possible from 3 ® 3 ® 8 

and consequently only one reduced matrix element. Thus, the effective Hamiltonian 

for semileptonic decay can be written 

(3.44) 

where the weak Hamiltonian is given in Eq. (2.8 a,b ). All the matrix elements are 

related and we find that 

(3.45) 

Experimentally, only a few inclusive branching ratios have been measured [3. 7], 

they are 

(3.46a) 

Br(At --+ pe+ X) = (1.8 ± 0.9) x 10-2 , (3.46b) 

Br(At--+ e+ X)= (4.5 ± 1.7) x 10-2 , (3.46c) 

where X denotes unidentified hadrons and Ve. 

The only SU(:3) singlets that can be constructed for the process T--+ h* z+vl are 

(3.4 7) 

both of which vanish since h* is totally symmetric on its three indices . l-Ienee we 

would not expect to sec any lone decupleL resonances produced in the semileptonic 

decay of the charmed baryons in the 3 representation. 
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Turning now to the 6 representation and the process S -+ hl+v/, we see that 

only one non-zero SU(3) singlet can be formed from the available tensors, giving the 

effective Hamiltonian 

(3.48) 

It is obvious from the flavor wavefunction of the n~ that it cannot Cabibbo-allowed 

decay to a member of the baryon octet and that it will only decay via a Cabibbo­

suppressed mode to =:.-z+v/, consequently there are no relations possible. This, how­

ever, is not the case for the process S -+ h*[+vl where both Cabibbo-allowed and 

suppressed decays are possible. The effective Hamiltonian for the process is 

(3.49) 

from which we find that 

(3.50) 

3.5 Semileptonic Decay Of Charmed Baryons To Four Body Final States 

Returning to the 3 representation of charmed baryons and looking at the de­

cays T -+ hJo.Jl+ v1, we find that there are three reduced matrix elements that can 

contribute to the decay process. The effective Hamiltonian for such decays is 

Herr= a (TalfU(3)) (!i: J\!3) [+vi+ bTa~A1~Hc(3)l+vl + cTaA1t~Hc(3)!+vl 
(3.51) 

There are many relations between the squared matrix elements for vanous decay 

modes, as shown in Table 3.13 for Cabibbo-allowcd decays and in Table 3.14 for 
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Cabibbo-suppressed decays. Many are due to isospin, for instance 

but some are due to the full SU(3) symmetry, for example 

(3.53) 

There is only one non-zero matrix element that can be constructed for the decays 

T---+ h* Mi+vl, and so the matrix elements for all the decay modes are related. The 

effective Hamiltonian is 

(3.54) 

where a is the unknown reduced matrix element. The relative squared matrix ele­

ments for Cabibbo-allowed (suppressed) decays can be found in Table 3.15 (3.16). 

Phase space correction factors must be applied as in the previous cases. By coinci­

dence, the Cabibbo-allowed processes with the largest matrix elements are those that 

will be modified the most by these corrections. 

Turning now to the 6 representation and the decay process S---+ B.f\1/+vl, we find 

that there are three reduced matrix elements that can contribute and so the effective 

Hamiltonian for the process is 

(3.55) 

The results of which are shown in Table 3.17, from which we see that the only relations 
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between matrix elements are those due to isospin, such that 

(3.56a) 

(3.56b) 

(3.56c) 

Two reduced matrix elements contribute to the process S ~ h* [+vi for which the 

effective Hamiltonian is 

(3.57) 

the matrix elements of which are shown in Table 3.18. 'vVe see that there are relations 

not only due> to isospin but some due to the full SU(3)J symmetry. We find that 

2IM(n~ ~ :=:*0 J(-J+vl)l 2 = 2IAI(O~-+ :=:•-ftl[+vt)l2 = I .Mn~-+ n-7]0z+v,)l2 
' 

(3.58a) 

3IA1(0~ ~ :=:*0 7r-z+vt)l 2 = 61 1\I(O~-+ :=:*-7r0l+vi)l2 = IAI(O~-+ n-J\0 /+v,)l2
' 

(3.5Sb) 

and a lso one purely isospin relation 

(3.5Sc) 

3.6 Concluding Remarks On Chapter 3. 

\'Ve have examined the predictions of flavor SU(3)J for the weak nonleptonic and 

semileptonic decay of charmed baryons both in the 3 and 6 representation of SU(3). 

The matrix elements for Cabibbo-allowed, -suppressed and doubly-suppressed decay 

modes were parameterized in terms of reduced matrix elements which have been 

tabulated explicitly. At the present time only a few decay modes (Cabibbo-allowed) 

have been experimentally obsen·ed; in the future when a larger event sample has been 

collected the relations derived in this work can be tested and/or used to reveal some 

of the underlying dynamics responsible for charmed baryon decay. 
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The predictive power of the SU(3)J invariance is, in some cases, somewhat limited 

due to phase space correction factors that must be included. However, these uncer­

tainties can be eliminated by experimentally determining the relative contributions 

from different angular momentum channels. 

If the sextet component of the Hamiltonian dominates nonleptonic decay pro­

cesses, as hinted at by perturbative QCD, then this will be directly observable by 

the absence of I = 1 final states in the doubly-Cabibbo-suppressed decay of the D~. 

Sextet dominance will also give rise to new relations between decay rates. These new 

relations between two-body decay modes have been considered previously in ref. [2.2, 

3.8, 3.9] and can be derived from this work for all nonleptonic processes by neglecting 

the contribution from 0 15 . 

An interesting prediction of SU(3)t is that the 3 cannot semileptonically decay 

to an h*L+vl final state because a non-zero SU(3)J invariant cannot be constructed. 

Also, all the matrix elements for the semileptonic decay of the 3 to B t+ v1 final states 

are related. This is also true for the decays of the 3 to h* fiJI+ vi final states. 

Final state interactions (FSI) will be important for these decays. \Ve discussed 

their inclusion in the decay rates forD-mesons and the same arguements apply in this 

case. Consider the final state :\ 01r+, this proceeds entirely in a I = 1 partial wave and 

therfore E*+ resonances can be excited in the final state. For hyperon decays, this 

effect will be very small as the energy of the decay is substantially below the mass 

of the first E*+ resonance. However, in the decay of charmed baryons the energy 

release lies in the regime where these resonances could give rise to substantial phase 

shifts. As was done for D-mesons [2.8] these phase shifts can be fit to the data and 

removed from the SU(3)t amplitudes before a comparison is made between theory 

and experiment . It is possible that the de,·iation from the predictions of SU(3)J for 

charmed baryon decays will be less significant than forD-meson decays as SU(3)J is 

a better symmetry for baryons than for mesons. 
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Table 3.1. Squared matrix elements for Cabibbo-allowed decays T ---+ hM in 

terms of the reduced matrix elements a, b, c, d, e, f and g. 

Process Squared Matrix Element 

A+-+A01r+ c tla + b- 2c- 2e- 2f- 2gl2 

A+---+ r;o7r+ c !Ia- b- 2e + 2f + 2gl2 

A+---+ r;+7ro 
c !I -a+ b + 2e- 2f- 2gl2 

At---+ r;+7JO tla + b- 2d- 2e- 2f + 2gl 2 

At---+ pl(u Ia + c- 2el2 

At ---+ :=;o J(+ lb + d- 2fl2 

=0 ---+ =-'lr+ 
~cl ~ Ia + c + 2el 2 

=0 ---+ =07r0 
~cl ~ !I- a+ d- 2e + 2gl2 

=0 ---+ =0170 
~cl ~ !Ia- 2b + d + 2e- 4f- 2gl 2 

=o Aor ~cl ---+ \ tl- 2a + b + c- 4e + 2f + 2gl2 

:=:~1 ---+ r;+ f{- lb + d + 2fl2 

=o ')'.or ~cl ---+ <..J \ !I - b + c- 2f- 29 12 

=+ ---+ =07r+ 
~cl ~ 1- c- d- 2gl 2 

=+ ')'.+r ~cl ---+ .:..J \ 1- c- d + 2gl2 
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Table 3.2. Squared matrix elements for Cabibbo-suppressed decays T ~ hM 

in terms of the reduced matrix elements a, b, c, d, e, f and g. 

Process Squared Matrix Element (Modulo si) 

A+~ A0 ](+ c ~~-a+ 2b + 2c +3d+ 2e- 4f + 2gl 2 

A+~ 'Eo J(+ 
c il -a-d+ 2e- 2gl2 

A+~ E+ K 0 
c I -a+ d + 2e- 2gl 2 

At~ PTJo ~12a- b + 3c + 2d- 4e + 2f- 2gl2 

At~ p;rro il- b- c + 2f + 2gl2 

A+~n;rr+ 
c I - b + c + 21 + 2gl 2 

-::-o ~ E-;rr+ 
~cl Ia + c + 2el2 

-::-o ~ Ao;rro 
~cl / 2 1- a-b-c+ 3d- 2e- 2f + 4gl2 

-::-0 ~ 'Eo;rro 
~cl ila + b- c- d + 2e + 2/12 

-;:-0 ~ AOT]O 
~cl il- a- b + c + d- 2e- 2fl2 

-;:-0 ~ 'EOTJO 
~cl / 2 1 -a- b + 3c- d- 2e- 2f- 4gl 2 

~o r .::..cl ~ n \ Ia - b + 2e- 2/- 2gl 2 

::-0 ~ ::--!{+ 
~cl ~ 1- a- c- 2el2 

::-0 ~ ::-0 J(O 
~cl ~ I -a+ b- 2e + 2f + 2gl 2 

::-o ~ E+;rr-
~cl lb + d + 2fl2 

:=:~1 ~ p](- 1- b- d- 2/12 

3~ ~ i\ O;rr+ ~~-a-b-c- 3d+ 2e + 2f- 4gl2 

::-+ ~ >:O;rr+ 
~cl "-' 1-1- a+ b + c + d + 2e- 2/1 2 

::-+ ~ "+;rrO 
~cl -' !Ia - b + c + d- 2e + 2/12 

::-+ ~ "+TJO 
~cl -' il- a- b- 3c- d + 2e + 2/ + 4gl2 

~+ To 
.::..cl ~ p \ 1- a+ d + 2e- 2gl2 

::-+ ~ ::-0 !{+ 
~cl ~ I - b + c + 21 + 29 12 
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Table 3.3. Squared matrix elements for the doubly-Cabibbo- suppressed decays 

T-+ hM in terms of the reduced matrix elements a, b, c, d, e, f and g. 

Process Squared Matrix Element (11odulo st) 

At-+ pJ(O lc + d- 2gl2 

A+-+ nJ(+ c lc + d + 2gl2 

::-o E- J(+ 
~cl-+ Ia + c + 2el2 

::::~1 -+ A 0 J(O ~Ia- 2b + c + 2e + 4f- 4gl2 

::::~1 -+ Eo J(o ~~-a+ c- 2el2 

::-0 -+ nryo 
~cl ~~- 2a + b + d- 4e + 2f + 4gl2 

::-0 -+ p7r - lb + d + 2fl2 
~c1 

::-0 -+ n1ro 
~cl ~I - b + d- 2!1 2 

:=:;;+i-+ Ao J(+ 1 12 61- a+ 2b- c + 2e- 4f- 4g 

:=:;;+i -+Eo J(+ ~~ -a+ c + 2el2 

:=:;;+i -+ E+ J(O 1- a- c + 2el2 

::-+ -+ PT/o ~cl ~l2a- b- d- 4e + 2f + 4gl2 

=+ -+ p7ro 
~c1 ~I - b + d + 2!1 2 

::-+ -+ n7r+ 
~c1 1- b- d + 2fl2 
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Table 3.4. Squared matrix elements for Cabibbo-allowed decays T ---t h* 111 in 

terms of the reduced matrix elements a, (3, 1 and 8. 

Process Squared Matrix Element 

A+ ---t ~·+71'0 c tl - 2a + (3- 21- 812 

At ---t ~·+770 11812a- (3- 21- 3812 
A+ ---t ~·o7!'+ c tl - 2a + (3- 21- 812 

A+ ---t 6++ ](-
c if3 + 812 

A+ ---t 6+ft3 c ilf3 + 812 

At ---t :=:•O ](+ kif3- 2,- 812 
-=+ ~·+r ~c1 ---t \ 1iai2 

-::-+ ---t -::-•07!'+ 
~c1 ~ 11ui2 

=o ~·or ~c1 ---t \ i"i2a- (3 + 21- 812 

=0 ---t -::-•07!'0 
~c1 ~ tl2a- (3 + 812 

-:;0 ---t =•01]0 
~c1 ~ 1

1
81 - 2a + j3 - 41 + 381 2 

:=:~1 ---t ~·+ ](- !1-(3+2,-8,2 
-:;0 ---t =•-7!'+ 
~c1 ~ !1-(3+812 

:=:~1 ---t n- ](+ I - f3 + 812 
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Table 3.5. Squared matrix elements for Cabibbo-suppressed decays T --+ h* M 

in terms of the reduced matrix elements a, {3, 1 and 8. 

Process Squared Matrix Element (Modulo si) 

A+ --+ .6. +7ro c il- a- I- 81 2 

At --+ .6. +770 ~Ia + f3- 1l2 

A+ --+ .6. o7r+ c il - 2a + f3- 21- 812 

A+ --t ~*+ J(O c i I - 2a + f3 + 81 2 

A+ --+ ~*o ](+ c tl2a+f3-21-8l2 

A+ --+ .6. ++7r-
c 1!3 + 81 2 

-==+ .6. +r ~cl --t \ !l2a- f3- 812 

-=+ --t ~*071"+ 
~cl tl- 2a- f3 + 21 + 81 2 

-=+ --t ~*+7]0 
~cl / 8 J.ia: + f3 + 2~1 + 381 2 

-=+ --t '='*0 ](+ 
~cl ~ !l2a- f3 + 21 +of 
::::~ --t .6. ++ ](- I - f3- 81 2 

-=+ --t ~*+7r0 
~cl !1-/3+21+812 

-=O ,6.oy0 
~cl --t \ !12a-f3+21-812 

-=0 --t ~*071"0 
~cl l212a- f3- 21 + 3812 

-=0 --t '):*0770 
~cl ~ ] 6 12a- f3- 21 + 3812 

-=0 --t '='*0 ](0 
~cl ~ !12a:- f3 + 21- 81 2 

-=0 --t ~*+7r-
~cl !1-/3+21-812 

-=0 --t ~*-7r+ 
~cl 11 - f3 + 012 

-=0 --t '='*- ]{+ 
~cl ~ 11 - f3 + 012 

::::~1 --t .6. + ]( - t I- f3 + 21- 812 
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Table 3.6. Squared matrix elements for the doubly-Cabibbo- suppressed decays 

T ~ h* M in terms of the reduced matrix a:, {3, 1 and 8. 

Process Squared Matrix Element (Modulo si) 

A+~~+ J(O c tla:l 2 

A+~ ~o ](+ c tla:12 

-:=+ ~ ~ +7]0 
~c1 %I - 2a: + f3 - 112 
::::~ ~ E*o ](+ il- 2a: + f3- 2/- 812 

-:=+ ~ ~ ++7!"-
~c1 l/3 + 812 

::::~ ~ E*+ f{o ~1/3 + 812 

-:=+ ~ ~07!"+ 
~c1 ~1/3- 2/- 812 

-:=+ ~ ~ +7!"0 
~cl ~~~ + 812 

-:=0 ~ ~ 07]0 
~cl ~I - 2a: + f3 -~12 
::::~1 ~ E*o ](o il - 2a: + f3- 2/ + 81 2 

-:=0 ~ ~ +7!"-
~c1 ~1/3- 2, + 81 2 

-:=0 ~ ~ -7!"+ 
~cl l/3- 812 

::::~1 ~ E*- ]{+ ~1/3-81 2 

-:=0 ~ ~ 07!"0 
~cl jb- 81 2 
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Table 3. 7. Squared matrix elements for the decays S ---t hM in terms of the 

reduced matrix elements a, b, c, d, e, J, g, h and k. 

Process Squared Matrix Element 

n~- :=.o-K I- a- b + 2kl2 

no- ~oK c sB-I2a - c + d + 2h - W 
n~ - :=.o,o ? 11 I') sr 6 - 2a- 3b- 2c- 2d- 3e- 2g + 4h + 41.: + l -

n~ - :=,o7ro si~lb- e + 2g + W 
n~ - :=.-7r+ silb+e-2g-w 
n~- ~+ K- siic- d- 2h + W 
no---tAo J(o 

c sUic +3d+ 2e + 4g- 2h + 41.:- 11 2 

n~- ~o,o sitl-2a+c-2d+W 
n~ ---t :=,O J(O sil- b- c- 2/- e- 2gl 2 

n~ - :=.- J(+ silb + c- 2/ + e- 2gl2 

no---t Ao1ro c siklc+2e-W 
no- ~-7r+ c siic- 2/ + W 
no- ~+7r-c silc + 2/ + ll2 

n~ ---t nK
0 

sild- 2f- 2hj2 

n~- pi\- sjld + 2/ + 2hl2 

n~ ---t Ao,o sHI3f + 2g + 2h + 21.:1 2 

no - ~o7ro c si4lfl 2 
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Table 3.8. Squared matrix elements for the decays S -+ h* !vi in terms of the 

reduced matrix elements a, /3, 1, 8, >. and"'· 

Process Squared Matrix Element 

n~-+ =.·o~ ~12a + f3 + 2TJI2 

n°-+ n-7r+ c l/3- 2,12 
no-+ ~*0~ c s~ii2a -~- 28- 2.>.12 

n~ -+ =.·o,o s~ /8 14a + 3/3 + 1 + 48 + 6>. + 6TJI2 

n~ -+ =.•o1ro sUi - f3- I+ 2.>.- 2TJI2 

n~ -+ =:•-7r+ s~ ~i/3- 1 + 2.>.- 2TJI2 

n°-+ n- ](+ c s~i - f3- 1 + 2.>. + 2TJI2 

n~-+ ~·+ J{- s~ ~~~ + 28 + 2.AI2 

n~ -+ ~·o,o sHi- 2a + 1- 2812 

n~ -+ =.•o Ko sftl/3 + 1 + 2.>. + 2TJI2 

n~ -+ =:•- ](+ sf~i/3 +I- 2.>.- 2TJI2 

no -+ ~·+7r-c sf 1h + 2.>.12 

no -+ ~·-7r+ c sfth- 2.>.12 
n~-+ ~+ K- sf11812 

no-+ ~oftl 
c sf1181 2 

no -+ ~·07r0 c sf!i>-12 
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Table 3.9. Squared matrix elements for the Cabibbo-allowed decays T ~ 

h* M M where the mesons are in a relatively even angular momentum state in 

terms of the reduced matrix elements AJ,BJ,CJ , DJ,Ef,FJ,GJ,IJ,Cs,Es, Fs 

and G8 • 

Process Squared Matrix Element 

A+ ~ E*+7ro7ro 
c ti2AJ + 2BJ- CJ + 4DJ- FJ- 2IJ + Cs + Fsl 2 

At ~ E*+ 7ro7Jo ~~- 2B J + Ff- 2G J- 2IJ + 2Cs + Fsl2 

A+ ~ E*+1r-1r+ 
c ti2AJ + 2BJ + 4DJ + EJ- 2IJ- Esl 2 

A+ ~ E*o7ro7r+ 
c 11- CJ- EJ- FJ + Cs + Es + Fsl2 

At ~ E*07r+7JO ~~- 2BJ + F1- 2GJ- 2IJ + 2Cs + Fsl2 

At ~ :=:*o J(+7ro ~IAJ- C1- !FJ- !1 + Cs + !Fsl2 

At ~ :=:*o KO?r+ ti2AJ + EJ- 2IJ- Esl 2 

A+ ~ 6. ++ J(-7ro 
c tl- CJ- F1 + 2GJ- Cs- Fsl 2 

A+~ 6_+ K-7r+ 
c tl- CJ- Ff + 2GJ- Cs- Fsl 2 

A+~ D,.+K1r0 
c f;l- CJ- 2EJ- F1 + 2GJ- Cs- 2Es- Fsl 2 

A+~ 6.°K7r+ c tl- CJ- EJ- F1 + 2GJ- Cs- Es- Fsl 2 

A+ ~ E*-1r+1r+ c 41 - C J - E J - F1 + C s + E s + Fs 12 

At ~ :=:*-7r+ J(+ 11- 2CJ- EJ- F1 + 2Cs + Es + Fsl2 

A+~ 6_++7r-K 
c IE!+ Esl 2 

:=:~ ~ E*+1r°K il- 2.4/- 2BJ- EJ + F1- Es- Fsl2 

:=:~ ~ L;*+TJO J{o 
1
1
8 1- 2AJ- 2BJ- 3EJ- F1- 3Es- 3Fsl 2 

::-+ ~ '\'*+ f{-1r+ 
'--'cl ---J ' 

1 I I'~ 3 2A f + 2B f + E f - Ff - Es - Fs -

-=+ "'*0 + r ~cl ~ --' 7r \ ~IEs + Fsl 2 

::-+ ~ '::'*0770 7r+ 
~c1 ~ / 8 1-4.4/- 4BJ- 3EJ + Ff + 3Es + 3I'.sl2 

-::-+ D,.++y-y?J ~cl ~ \ \ IEJ+FJ+Es+Fsl 2 

-=+ D,.+rr ~cl ~ \ \ tiEJ + Ff + Es + Fsl
2 

-::-+ ~ '::'*07r07r+ 
~c1 ~ tl- Ef- Ff + Es + Fsl2 
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Table 3.9. Continued 

Process Squared Matrix Element 

-::+ ---+ '::"*-7r+7r+ 
~c1 ~ il- EJ- Ff + Es + Fsl 2 

-=+ - n- J(+7r+ 
~c1 I - E J - Ff + Es + Fs 12 

::::~1 - ~*+7r-Jtl 11- 2AJ- EJ + 2IJ- Esl 2 

::::~1 ---+ ~*+ J(-7r0 tl- 2AJ + Ct + Ft- 2GJ +2ft- Cs + Fsl 2 

:::;~1 ---+ ~*+ J(-TJO / 8 12AJ- 3CJ- Ff- 2GJ- 21!- 5Cs- Fsl 2 

::::~1 ---+ ~*o J(o 7ro / 2 1- 2BJ + CJ + Et + 2FJ- 2G t- 2ft- Cs + Esl 2 

:::;~1 ---+ ~*o J{u T'Jo tl- ~Bt- CJ- Et- ~Ft- ~OJ 

-~If- iCs- Es- tFsl 2 

-::-0 ---+ -::-*OTJ01r0 
~cl ~ ~I2AJ + 2BJ- CJ- Ff + 2GJ + Cs- Fsl 2 

-:;0 ,6. ++ J(- y-
~cl ---+ .. 4ICJ + Csl2 

-=0 ,6. + J(- r ~cl ---+ \. ti2Ct + EJ + Ff + 2Cs + Es + Fsl 2 

-=0 ~*- +r ~cl ---+ 7r .. 1ICJ + EJ + Ft- 2GJ- Cs- Es- Fsl 2 

-::-0 ---+ '::"*-7r+TJO 
~cl ~ lsi- 2Ct- 3Et- Ft + 4GJ + 2Cs + 3Es + Fsl2 

::::~1 ---+ ~*07r+ J{- ii2BJ + CJ + Et- 2GJ + 2IJ- Cs- Esl 2 

-=0 b.orr ~c1 ---+ \ \ tiCJ + EJ + Ff + Cs + Es + Fsl 2 

-::-0 ---+ '::"*07r+7r-
~c1 ~ 11- 2BJ- 4DJ- EJ + E sl2 

-::-0 ---+ -=*-7r07r+ 
~c1 ~ iiEJ + Ff- Es - Fsl 2 

::::~1 - n-Ko7r+ 1- Ef + Esl2 

-::-o ---+ -=*O _o7ro 
~c1 ~ 1' 11- 2BJ- 4DJ + Ff- Fsl2 

::::~1 ---+ n- ]{+ 1ro ~IF!- Fsl
2 
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Table 3.10. Squared matrix elements for the Cabibbo-allowed decays T ----+ 

h* M M where the two mesons are in a relatively odd angular momentum state 

in terms of reduced matrix elements Aj, B/, C/, Dj, E/, Fj, Gj, 1j, C~, E~, F~ 
and G~. 

Process Squared Matrix Element 

At ----+ L:*+ 7ro7Jo ~I2Aj + Cj + C~ + 2F; + 2G~I2 

A+ ----+ E*+1r-1r+ c il- 2Aj- 2Bj- Ej + 21j + E~l2 

A+ ----+ E*o7ro7r+ c ii2Aj + 2Bj + Ej- 21j- E~l2 

At ----+ L:*07r+7JO ~I2Aj + Cj + C~ + 2F~ + 2G~I2 

At ----+ ::::•o J(+7ro ti2Aj- Fj- 21j + F~l2 

A"'d ----+ ::::*o J(07r+ li')A' + E' - 21' - E' 12 
3-1 I I s 

A+ ----+ 6. ++ K-7ro c liC' + F' + C' + F' + 2G' 1
2 

2 1 1 ' s s s 

A+ ----+ 6. + K-7r+ c iiCj + Fj + C~ + F~ + 2G~I2 

A+ ----+ 6. + J(o 7ro 
c 11- C' + 2E' - F'- C' + 2E'- F'- 2G' 12 

6 I I f s s s 7
S 

A+ ----+ 6. oft 1r+ c 11- C' + E' - F'- C' + E'- F'- ')Q' 12 
3 f f f s s s -s 

A+ ----+ 6. ++7r- ftl c IE/+ E~l2 

A"'d ----+ ::::•- J(+7r+ t I - E/ - Fj + E~ + F~ 12 

::::~ ----+ E*+ 7ro~ 11 - 2A' + 2B' - E' + F' - E' - F' 12 
6 f f f f s s 

::::~ ----+ E*+ry°K li2A' + 6B' + 3E' + F' + 3E' + 3F'I2 
18 f f f f s s 

::::~ ----+ L;*+ J(-7r+ li2A' + 2B' + E' - F'- E'- F'l2 
3 f f f f s s 

-=-+ L;*O +r ~cl ----+ 7r \ ~~ - 2Aj- Ej + Fjl 2 

-::-+ ----+ '::"*07]07r+ 
~c1 ~ ll- 4A' - 3E' + F' + 3E' + 3F'I2 

18 f f f s s 

-=-+ 6_++r-r ~cl ----+ \ \. IE' + F' + E' + F' 12 
f f s s 

-::-+ ----+ '::"*07r07r+ 
~c1 ~ ' tl- 4B/- Ej- Fj + E~ + F~l2 

::::~ ----+ n- K+7r+ I ~ E/ - Fj + E~ + F~ 12 

::::~1----+ E*+7r-JC1 il- 2Aj- E/ + 21/- E~l 2 

::::~1 ----+ E*+ K-7ro tl - 2Aj- Cj + Fj- 21/ + C~ + F~ + 2G~ 12 
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Table 3.10. Continued. 

Process Squared Matrix Element 

::::~1 --+ E*+ K-.,.,o ..l..I2A' - C' - F' - 61' + C' - F' + 2G' 12 
18 f f f f s s s 

::::~1 --+ E*o~ 7ro l2 14A/ + 2B/ + Cj + E/ - 2Ij -
-C' + E' - 2F' - 2G' 12 

s s s s 

::::~1--+ E*o.,.,o-ytJ ] 6 14A/ + 6B/ - Cj + 3E/ - 6Ij 

__ +C~- 3E~ + 2F~ + 2G~I2 

=o --+ =·o.,.,o7ro 
~c1 ~ ti2A/ + Cj- C~- 2F~- 2G~I2 

::::~1 - E*-7r+K liC' -E' +F' -C' +E' -F'-2G'I2 
3/ f f s s s s 

':;'0 - =•-.,.,07r+ 
~c1 ~ ..1...1 - 2C' + 3E' - F' + 2C' - 3E' + F' + 4G' 12 

18 f f f s s s s 

::::~1- 6_+ K-K liE' + F' + E' + F'l2 3 f f s s 

::::~1 --+ E*o K-7r+ i I - 2B/ + Cj - E/ + 2Ij - C~ + E~ - 2G~ 12 

':;'0 - '::'*07r-7r+ 
~c1 ~ ~~- 2B/- E/ + £~12 

':;'0 - =•-7r07r+ 
~c1 ~ liE' - F'- E' + F'l2 6 f f s s 

::::~1 - n-Ko7r+ 1- E/ + E~l 2 

::::~1 - n- J(+7ro 11F'- FT 2 f s 
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Table 3.11. Squared matrix elements for the Cabibbo-suppressed decays T ---+ 

h* }vf M where the mesons are in a relatively even angular momentum state in 

terms of reduced matrix elements Af, Bf, Cj, Df, Ej, Fp, Gf, If, Cs, Es, Fs and 

Gs. 

Process Squared Matrix Element (Modulo si) 

A+ ---+ .6. +7ro7ro c !IAJ + BJ + 2DJ + EJ- GJ- If+ Cs + Es + Fsl
2 

At ---+ .6. + 7ro7Jo il2BJ + CJ + 3EJ + F1 + 21!- Cs + 3Es + Fsl2 

A+ ---+ .6. +7r+7r-c !l2AJ + 2BJ- CJ + 4Df + Ef- FJ 

+2GJ- 21!- Cs- Es- Fsl2 

A+ ---+ .6. + J(+ J(-c !I4DJ + Ff- 21! + Fsl 

A+ ---+ .6. + Jt3 J(o c ll2BJ + 4DJ- Ff- Fsl 

A+ ---+ .6. o1ro1r+ c ~~- CJ- EJ- FJ- 2GJ + 3Cs + 3Es + 3Fsl 

At ---+ /). 01r+1JO lsi- 4Bf- 3Cf- 3E1 - F1 + 2G1 

-4ft+ Cs- 3Es- Fsl 

A+ ---+ .6. oftl J(+ c !1- 2Bt + Ff- 21! + Fsl 

A+ ---+ E*o K+7ro c l214AJ + 2BJ- CJ + 3EJ- 2GJ- 2IJ + 3Cs- Esl2 

A+ ---+ E*o J\07r+ c ~I4AJ + 2BJ- CJ + EJ- 2FJ + 2GJ- 21!- Cs- Esl 2 

A+ ---+ E*+ K+1r-c !1- 2AJ- 2BJ- CJ- EJ + 2GJ- Cs + Esl2 

A+ ---+ E*+ Ko7ro c ~I2At + 2Bf- CJ- Et- 2Ft+ 2Gf- Cs- Esl2 

A+ ---+ .6. ++7r-7ro c ~~- Ct- Et- Ft + 2Gt- Cs- Es- Fsl 2 

A+ ---+ .6. ++ !{- J(O c 1Ft+ Fsl2 

At ---+ ~ ++7J07r- ~~- CJ + 3Et + Ft + 2Gt- Cs + 3Es + Fsl2 

At ---+ .6. -7r+~o+ 41- Ct- EJ- Ft + Cs + Es + Fsl2 

Ac---+ E*- K+1r+ 11Ct- Csl2 

::+ ---+ /). + K ~o 
"-'c l '' ~~- 2At- 2Bt + Ct- EJ- 2Gt + Cs- Es- 2Fsl 2 

:=:~ ---+ /). + Jt1 ,,o /sl - 2A t - 2B t + C t + 3E t + 4Ff 

-2Gt + Cs + 3Es + 2Fsl2 
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Table 3.11. Continued 

Process Squared Matrix Element (Modulo sD 
:=:~ -+ .6. + J(-1!"+ l12AJ + 2BJ + Cf + Ef- 2GJ + Cs- Esl2 

:=:~ -+ .6. o-gD 7r+ !ICJ + E1 + Ff- 2GJ + Cs- Es- Fsl 2 

:=:~ -+ L,*oK J(+ ~~- 4Af- 2BJ + CJ- Ef + 2FJ 

-2GJ + 2IJ + Cs + Esl2 

:=:~ -+ L,*01J01r+ ~~- 4Af- 2BJ- 3Ef + 2GJ + 2IJ- 2Cs- Fsl2 

:=:~ -+ L,*+ J(- J(+ !1- 2AJ- 2BJ + CJ- 4Df- EJ + Ff 

-2GJ + 2IJ + Cs + Es + Fsl 2 

=+ -+ L,*+1J01r0 
~c1 ~~- 2AJ + Ff + 2GJ + 2IJ- 2Cs- Fsl 2 

:=:~ -+ .6. ++ J{-1!"0 !ICJ- E1- 2Gf + Cs- Esl 2 

:=:~ -+ .6. ++ K-17° iiCJ + 3EJ + 2Fj- 2GJ + Cs + 3Es + 2Fsl2 

=+ -+ L,*+7r07r0 
~c1 !ICJ- 4DJ + Ef + 21!- Cs + Esl2 

::+ -+ L,*07r07r+ 
~cl iiCJ- Cs + Es + Fsl2 

=+ -+ '=*0 J(+1r0 
~c1 ~ ii2BJ + 2CJ + 2EJ + FJ + 21J- 2Cs- Fsl 2 

:=:~ -+ L,*-7r+7r+ tiCJ- EJ- Ff- Cs + Es + Fsl2 

=+ -+ =*-J{+1r+ 
~cl ~ 1ICJ- Csl2 

::::~ -+ .6. ++ -K 7r- IFJ + Fsl2 

:=:~-+ L,*+~ J{o 1 10 31- 2BJ- 4DJ + Ff + Fs ~ 

=+ -+ ~*+7r-7r+ 
~cl .:__J 

1 I') 31- 4DJ- Ff- Fs + 21! ~ 

=+ -+ '=*0 1{01!"+ 
~cl ~ ii2BJ- Ff + 21J- Fsl2 

::::~1-+ .6_+~7!"- tl- 2.4! + 2CJ + Ff + 21! + 2Cs + Fsl2 

::::~1 -+ .6. + ]{-1!"0 il- 2AJ- CJ - EJ - 2GJ + 2IJ- 3Cs- Esl 2 

::::~1 -+ 6. + ]{-1]0 { 8 12AJ + 3CJ + 3EJ + 2FJ- 2GJ 

-21! + Cs + 3Es + 2Fsl2 

::::~1 -+ 6. or 7ro ~~- 2BJ- CJ- EJ- 2GJ- 2IJ- 3Cs- Es- 2Fsl2 
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Table 3.11. Continued 

Process Squared Matrix Element (:Modulo sf) 

:=:~1 -+ 6 oytJ 7Jo 1
1
8 1- 2Bt + 3Ct + 3Et +4Ft- 2Gt 

-2ft+ Cs + 3E8 + 2Fsl2 

2~1 -+ ~*oftl J(o jl- 2At- 2Bt + Ct- 4Dt + Ft +2ft+ Cs + Fsl 2 

:=:~1 -+ ~*071"07]0 
1
1
8 14At + 2Bt + Ct + 3Et +2Ft 

2Gt- 2ft+ 3Cs + 3Esl2 

2~1 -+ ~*+ J(- J(O tl- 2At + 2Ct + Ft +2ft+ 2Cs + Fsl 2 

:=:~1 -+ ~*+7r-7]0 1
1
8 1- 4At- 3Ct- 3Et- Ft- 2Gt 

+4ft- 5Cs - 3E8 - Fsl 2 

:=:~1 -+ 6 ++ J(-11"- 4ICt + Csl2 

:=:~1 -+ ~*+7r-7ro tiCt + Et + Ft- 2Gt- Cs + Es + Fsl 2 

:=:~1 -+ 6 0 J(-11"+ ti2Bt + Ct + Et- 2Gt +2ft- Cs- Esl2 

:=:~1 -+ ~*0 J(- J(+ tl- 2Bt + Ct- 8Dt- Et- 2Gt +2ft- Cs + Esl 2 

:=:~1 -+ ~*o 7ro7ro ~I - 2B t - c t - SD t - E t + 2G t 

+2ft+ Cs- Es- 2Fsl 2 

:=:~1 -+ ~*07r-7r+ tl- 2Bt + Ct- SDt- Et- 2Gt +2ft- Cs + Esl2 

:=:~1 -+ 6-Jt1 1r+ ICt + Et + Ff- 2Gt- Cs- Es- Fsl 2 

:=:~] -+ ~*-Jtl J(+ tiCt- Et + Ft- 2Gt- Cs + Es- Fsl 2 

:=:~1 -+ ~*-7r+7]0 1 I'' ISI- Ct- 3Et + Ft + 2GJ + Cs + 3Es- Fs-

:::-0 -+ '):*-7r07r+ 
~c1 -'-' tl- Ct + EJ + Ff + 2Gt + Cs- Es- Fsl 2 

-;:::-0 -+ '::"*0 f{+1r-
~c1 ~ ti2BJ + Ct + Et- 2Gt + 2fJ- Cs- Esl 2 

:::-0 -+ '::"*0 J{01r0 
~c1 ~ tl- 2Bt + Ct + Et +2Ft- 2Gt- 2fJ- Cs + Esl2 

::-o -+ :::-*- J{+ 7ro 
~c1 ~ t I - C t - E t + F t + 2G t + C s + E s - Fs 12 

-o -*~yo + .::.cl -+ .::. \ 7r tiCJ- Et + Ft- 2GJ- Cs + Es- Fsl 2 
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Table 3.12. Squared matrix elements for the Cabibbo-suppressed decays T--+ 

h* M M where the mesons are in a relatively odd angular momentum state in 

terms of reduced matrix elements Aj, Bj, Cj, Dj, Ej, F}, Oj, I/, C~, E~, F~ and 

0~. 

Process Squared Matrix Element (Modulo si) 

At --+ .6. +7ro7Jo li2A' - C' + 3E' - F' - C' + 3E' + F' - ?G' 1
2 

9 f f f f s s s ~s 

A+ --+ .6. +7!"+7!"-c ii2Aj + 2Bj- C/ + Ej- F}- 2Ijl 

-C' - E' - F'- 20' 1
2 

s s s s 

A+ --+ .6. + J(+ J(-
c .!.IF'- 21' + F'l 3 f f s 

A+--+ ~+K K 0 
c li?B' + F' + F'l 3 ~ f f s 

A+ --+ ~ o7ro7r+ 
c 

1 I4A' + 4B' C' + 3E' F' 41' 6 f !- f !- !- f 

-C' - E' - F' - 20' I s s s s 

At --+ ~ o7r+7Jo ..!...I4A' - C' + 3E' - 3F' - C' + 3E' + F' - ?0' 18 f f f f S S S ~ T S 

A+--+ ~°K J(+ c i I - 2Bj - F} + 21/ - F~ I 
A+ --+ E*o J{+ ?ro 

c 1
1
2 I2Bj + C/ + Ej + 2F} + 21/ 

+C' - 3E' - 2F' + 20' 12 
s s s s 

A+ --+ E*o J(O?r+ 
c li?B' + C' - E' + ?J' + C' + E' + 2F' + 2G' 1

2 
6~ f f f ~~ s s s s 

At --+ E*+ K+1r- .!.I? A' + 2B' + C' + E' + C'- E' + 2G' f 3~! f f f s s s 

A+ --+ E*+ Ko?ro c ti2Aj + 2B/ + C/ + E/ + C~ + E~ + 2F~ + 2G~I2 

A+--+ ~++7!"-?ro c 1.1 C' + E' + F' + C' + E' + F' + ?G' 12 
2 f f f s s s ~ Ts 

A+ --t ~ ++ J{- J(O 
c IF/+ F~l2 

At --+ .6. ++1Jo1r- .!.IC' - 3E' - F' + C' - 3E' - F' + 2G' 1
2 

6! f f s s s s 

At --+ 2:*- J{+?r+ iiE' + F'- E'- F'l 2 
3 f f s s 

::::~--+ ~+Jtl~.o ii2Aj- 2B/ + C/- Ej + C~- E~ + 2F~ + 2G~I 2 

::::~--+ ~+Kryo / 8 1- 2Aj- 6B/- C/- 3E/ 

-C~- 3E~- 2F;- 2G~I 2 
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Table 3.12. Continued 

Process Squared Matrix Element (Modulo si) 

::::~ ~ /:}. + J(-7r+ !1- 2A/- 2Bj- Cj- E/- C~ + E~- 2G~I2 

::::~ ~ /:}. 0 ](0 7r+ 114A' + C' + E' - F' + C' - E' + F' + 2G' 12 
3 f f f f s s s s 

::::~ ~ E*°K ](+ 112B' + C' - E' + ? I' + C' + E' + 2F' + 2G' I 6 f f f -J s s s s 

::::~ ~ E*o 77 o7r+ 11- C' - 2F'- C' + 3E' + F'- 2G' 12 
9 f f s s s s 

::::~ ~ E*+ ](- ](+ 1 12A' +2B' C' +E' F' 3 f f- f f- f 

-2Ij- C'- E'- F'- 2G' 12 
s s s s 

::::~ ~ E*+ 77o7ro 112A' - C' + 3E' - F'- C' + 3E' + F'- 2G' 12 
9 f f f f s s s s 

-6Ij - 2C~ - F~ - 4G~ 12 

::::~ ~ /:}. ++ J(-7r0 11 - C' + E' - C' + E' - 2G' 12 
2 f f s s s 

::::~ ~ /:}. ++ ](-1]0 11- C' - 3E' - ?F'- C'- 3£'- 2F'- ?G' 12 
6 f f -! s s s - s 

::::~ ~ E*o1ro1r+ t~l- 4B/ - 2E/- 4Ij + 2F~I 2 

'::'+ ~ '::'•0 J\+7r0 
~cl ~ 11?B' + F'- 21' - 2E'- F'l2 

6-f f f s s 

'::'+ ~ '::'*- J\+7r+ "--'cl ..._, 
1 1E' + F'- E'- F'l2 
3 f f s s 

::::~ ~ /:}.++Jtl7r- IF/+ F~l2 
'='+ E*+pyo ~cl ~ \ \ 11?B' + F' + F'l 3 - f f s 

'='+ ~ E*+7r-7r+ 
~c1 11F' - ?J' + F'l2 3 f - f s 

'::'+ ~ '::'*0 ]{01r+ 
~c1 ~ ~I2B/ + F/- 2Ij + F~l2 

::::~1 ~ /:}. + K 1r- li?A' -F' -21' -F'I2 
3-f f f s 

::::~1 ~ /:}. + J(-1r0 ti2A/ + Cj + E/ + 2Ij - C~ + E~- 2G'~I2 

::::~1 ~ !:}. + K -1/o / 8 1 - 2A/ + Cj - 3Ej - 2F/ 
+61' - C' - 3E' - 2F' - ?G' 12 

f s s s - s 

::::~1 ~ !:}. o 1\o 7ro ti4A/ + 2Bj + Cj + Ej- 2Ij- C~ + E~ - 2F~ - 2G~I2 
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Table 3.12. Continued 

Process Squared Matrix Element (Modulo si) 

::::~1 -+ .6. oJtl TJo ~J-4A~-6B~+C~-3E~+6~ 

-C' - 3E' - 2F' - 2G' J2 
s s s s 

::::~1 -+ E*+ ](- J(O iJ2A~- Fj- 21~- F~J2 

::::~1 -+ E*+7r-TJo 118 J4A~ + Cj + 3E~ + Fj 

-C' +3E' +F'-2G'J2 
s s s s 

::::~1 -+ E*+7r-7ro lJ- C' + E' + F'- 41' + C' + E' + F' + 2G'J2 
6 f f f f s s s s 

::::~1 -+ .6. o K-1r+ lJ?B' - C' + E' - 21' + C' - E' + 2G' 1
2 

3~/ f f f s s s 

::::~1 -+ E*o K- J(+ lJ - ? B' - C' - E' - 21' + C' + E' + 2G' 1
2 

6-, f f f s s s 

::::~1 -+ E*o7r-7r+ lJ-2B' -C' -E' -?I' +C' +E' +?G'J2 
6 f f f -f s s ~s 

::::~1 -+ .6.-Jt1 7r+ I - C' + E' - F' + C' - E' + F' + ?G' 1
2 

f f f s s s -s 

::::~1 -+ E*-K J(+ lJ- C'- E' - F' + C' + E' + F' + 2G'J2 
3 f f f s s s s 

::::~1 -+ E*-1r+T)O _l_JC' - 3E' - F'- C' + 3E' + F'- 2G' 1
2 

18 f f f s s s s 

::::~1 -+ E*-7ro7r+ lJC' + E' - F'- C'- E' + F'- ?Q'J2 
6/ f f s s s -s 

-::0 -+ "::'*0 J{+Jr-
~c1 ~ tJ2B/- Cj + E~- 21~ + C~- E~ + 2G~J2 

-::o -+ -=*o J{o 7ro 
~c1 ~ lJ - 2B' + C' - E' + ? I' - C' - E' - 2F' - ?0' 1

2 
6 f f f -, s s s - s 

-::o -+ -=*- ]{+ 1ro 
~c1 ~ lJC' - E' - F' - C' + E' + F' - 2G' 1

2 
6/ f f s s s s 

-::0 -+ "::'*- J{01r+ 
~cl ~ lJ - C' - E' - F' + C' + E' + F' + ?Q' 1

2 
3 f f f s s s -s 
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Table 3.13. Squared matrix elements for the Cabibbo-allowed decays T ~ 

BMl+vl in terms of the reduced matix elements a, band c. 

Process Squared Matrix Element 

At~ AOryO[+vl ~l3a + 2b + 2cl2 

At ~ E 01r0l+v1 lal2 

At~ E+1r-Z+v1 lal2 

At~ E-1r+I+v1 lal2 

At ~ pK-z+ v1 Ia + bl2 
-;-;{) At ~ nK z+vl Ia + bl2 

At ~ :=:-J(+ [+VI Ia + c12 

At ~ :=;0 J(O [+Vi Ia + c12 

:=:~ ~ E+ ](-[+Vi lbl2 

:=:~ ~ A oft[+ v1 ~lb- 2cl2 

:=:~ ~ E°K [+ v1 tlbl
2 

:=;~ ~ :=;OTJO [+Vi il2b- cl2 

:=;~ ~ :=;-1!"+ [+VI lcl2 

:=:~ ~ :=;01!"0[+v1 ~lcl2 

:=:~1 ~ A 0 ](-[+ V( ilb- 2cl 2 

:=:~ 1 ~ E° K-z+vl tlbl
2 

:=:~ 1 ~ E- K z+ v1 lbl 2 

:=;~1 ~ :=;-TJO [+Vi il2b- cl2 

:=:~1 ~ :=:-7!"0 [+Vi ~lcl2 

:=:~1 ~ =:_01!" - [+ V/ lcl 2 

79 



Table 3.14. Squared matrix elements for the Cabibbo-suppressed decays T -+ 
BM!+vl in terms of the reduced matrix elements a, band c. 

Process Squared Matrix Element (Modulo si) 

At-+ p1r-z+v1 lbl2 
At-+ nry0 [+vl tlb- 2cl2 

At-+ n7rO[+vl ~lbl2 

At-+ A° K 0 l+v1 tl2b- cl2 

At - :E- ](+ z+ v1 icl2 

At -t :Eo J(O z+ V[ ~lcl 2 

::::~-+ A0 ry0 l+v1 31616a + b + cl2 
::::~ -t :EO 7r0 [+ V[ tl2a + b + cl2 

::::~-+ :E+1r-l+v1 Ia + bl2 

::::~-+ :E-7r+z+vl Ia + c12 
::::~ - pK-z+ v1 la12 
::::~-+ n~[+vl Ia + c12 
::::~ - ::::-K+ z+ v1 lal2 

::::~ -t :::;O ](0 z+ V[ Ia + bl2 

::::~ -t :EOryO [+ V[ 1 I 12 12 b + c 

:::;~-+ Ao7roz+vl l21b + c12 
::::~1 - A 0 1r - z+ v1 tlb + c12 
::::~1 -+ :Eo7r-[+vl !lb- cl2 

::::~1 -+ :E-17°l+v1 tlb + cl2 
::::~1-+ :E-7rO[+vl ~lb- c12 
::::~1 - ::::- I\o z+ V[ lbl2 

::::~1 -t nK-z+ V[ lcl2 
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Table 3.15. Squared matrix elements for the Cabibbo-allowed decays T -t 

h* Ml+vi normalized with respect to the process ::::~1 -t E*° K-z+vi. 

Process Squared Matrix Element 

At -t E*o?roz+vi 2 

At -t E*-1r+ z+vi 2 

At -t ::::*-J(+ z+ VI 2 

At -t E*+?r-z+vi 2 

A"t -t ::::*o ](o [+vi 2 

::::;j -t E*+ ](-[+VI 2 

::::;j -t E*°K z+ VI 1 

=+ -t =*o77o z+ v ~c1 ~ I 3 

:=:;j -t ;:::*0 7r0 z+ VI 1 

::::;j -t ::::*-7r+ [+vi 2 

:=:;j -t n- ](+[+vi 6 

::::~1 -t ::::*o 7r -z+ VI 2 

::::~1 -t :=:*-?rO[+vi 1 

::::~1 -t :=:*-77oz+vi 3 

::::~1 -t n-K 0 z+ VI 6 

::::~ 1 -t E*° K - z+ vi 1 

::::~1 -t E*--go z+ VI 2 
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Table 3.16. Squared matrix elements for the Cabibbo-suppressed decays T ~ 

h* Mf+vl normalized with respect to the process :=:~1 ~ E*-1r0 l+v1. 

Process Squared Matrix Element (Modulo si) 

At~ ~+1r-1+v1 2 

At~ ~o'lrof+vl 4 

At ~ E*0 !(0 z+ V[ 1 

At~ ~-1r+[+vl 6 

At~ E*-J(+[+vl 2 

:=:~ ~ ~+ K-z+vl 2 

:=:~ ~ ~°KZ+v1 2 

:=:~ ~ E*OryO[+vl 3 

::::~ ~ E*0 1r0 Z+v1 1 
2 

:=:~ ~ E*-7r+f+vl 2 

::::~ ~ ::::*-J(+ f+ V[ 2 

:=:~1 ~ ~0 J{-f+vl 2 

::::~ 1 ~ ~-Kf+vl 6 

::::~1 ~ E*-7rO[+vl 1 

::::~ 1 ~ E*-ry0 l+vl 3 

::::~1 ~ E*o7r-f+vl 1 

::::~1 ~ ::::*-J{O [+ V[ 2 
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Table 3.17. Squared matrix elements for the decays S---+ BMZ+vl in terms of 

the reduced matrix elements a, f3 and I· 

--
Process Squared Matrix Element 

n~ ---+ =.-Jt1 z+v, 1112 

f2~ ---+ '3° ](-[+ VJ 1112 

n~ ---+ =.-7ro z+ v1 si!la12 
n~ ---+ =.- TJo z+ v1 sH-Ia- 2/3 + 2112 

n~ ---+ =.01r-z+ v1 sila12 
n~ ---+ A ° K-z+v, sH-1- 2a + f3- 2112 

n~ ---+ E° K-z+ VJ si!l/312 
n~---+ E-Jt1z+v1 si 1/312 

Table 3.18. Squared matrix elements for the decays S---+ h* JVJL+vl in terms of 

the reduced matrix elements 8 and (. 

Process Squared t>.Iatrix Element 

n~ ---+ '3*° K-z+ v1 tl8 + (12 
n~ ---+ =.•-Jt1 z+ v, tiS+ (12 
n~---+ n-TJoz+v1 tl8 + (12 
n~ ---+ =.•01r-z+ v1 sitl812 
n~ ---+ =.*-TJ0 z+ vz si lsl8- 2(12 
n~---+ =.·-7r0 [+v, snl812 
n~ ---+ n-J\ 0 z+ vz sil812 
n~ ---+ E*0 J(-t+ V[ si tl(l2 

n~ ---+ E*-Jt1 z+ v1 si k1CI2 
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CHAPTER 4. B-MESON DECAYS TO CHARMED BARYONS 

B-mesons, for the first time, offer an opportunity to study the weak nonleptonic 

decays of mesons to baryons. Experimentally, it is known that (1.6] Br (B --+ j5 + 
anything) ;::: 2 x IQ-2 and Br (B --+ A + anything) ;::: 1 x 10-2 . It is likely that, in the 

future, branching ratios will be measured for many of the exclusive B-meson decays 

to baryons. In this chapter we explore the implications of the approximate SU(3)J 

flavor symmetry of the strong interactions for the decays of B mesons to the lowest­

lying charmed baryons. Some of the relations implied by SU(3)J may provide insight 

into the nature of various competing dynamical effects that can occur in nonleptonic 

B decays. 

The effective Hamiltonian for .6..b = -1 .6..c = +1 nonleptonic B-meson decays 

has the flavor quantum numbers of the operator (bc)(ud) for the Cabibbo-allowed de­

cays and of the operator (bc)(us) for the Cabibbo-suppressed decays. These are two 

different components of the same octet representation of SU(3)J· Using this trans­

formation property we derive, in Section 4.1, relations between two body B meson 

decays to a charmed baryon plus an antibaryon. The consequences of SU(3)J for 

some of the two body B-meson decays to charmed baryons in the 3 representation 

have been considered in ref. (4.1]. The effective Hamiltonian for .6..b = -1, .6..c = -1 

weak nonleptonic decays has the flavor quantum numbers of the operator (bu)(cs). 

Note that these decays vanish if s3 is zero. This operator transforms as 3 EB 6 under 

flavor SU(3)J· Using this transformation property we derive, in Section 4.2, relations 

between two-body B meson decays to a baryon and a charmed antibaryon. Sec­

tion 4.3 contains concluding remarks, which include some SU(3)J relations for weak 

nonleptonic decays of bottom baryons. 

4.1. Two Body B Decays to Charmed Baryons 

The B meson fields come in three types, B-, B 0 and B2 \Yhich transform under 

SU(3)J as a 3 representation with components B;: 

(-!.1) 
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We begin by considering two body decays of the B - mesons to charmed baryons in 

the lowest- lying antitriplet representation and antibaryons in the charge conjugate 

octet of nucleons and hyperons. As far as group theory factors are concerned, we can 

take for the effective Hamiltonian for nonleptonic decays, B -+ Th, 

-1 p q - 1 q p 
Herr = aT Hq heBP + f3T He hqBP 

+ 1T
1
Be (H:h~) (4.2) 

where h~ is given in Eq. (1.28), T 1 is given in Eq. (3.15) and Hj are components of 

the matrix 

H ( 4.3) 

Table 4.1 presents the predictions for B -+ TIL decays which follow from the effective 

Hamiltonian in Eq. ( 4.2). There is a simple relation amongst the Cabibbo-allowed 

decays 

Li and Wu [4.1) have also considered the predictions of SU(:3) for the Cabibbo-allowed 

B -+ Th decays. These results agree with theirs. There are several simple relations 

between Cabibbo-allowed and Cabibbo-suppressed decays. For example, 

r(B- ~o -) 2f(B- ~o f:-) -+ .::.C1 p = S 1 -+ .::.Ci ..._, ' 

and 

( 4.5a) 

(4.5b) 

(4.5c) 

Next we consider two- body decays of the B - mesons to the lowest- lying charmed 

baryons in the 6 representation and antibaryons in the charge conjugate of the octet 
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of nucleons and hyperons. The sextuplet of charmed baryon fields is denoted by a 

two index symmetric tensor Sii with components 

S12 __ 1_"+ 5 22 "o 
- V2,LJc ' = LJc 

s23 = ~::::oc and s33 = nco . 
v2 2 

1 

V2 
(4.6) 

As far as group theory factors are concerned we can use, as the effective Hamiltonian 

for weak nonleptonic B ---+ Sh decays, 

H ijp B Hk S- he + b ijp B Hk he S-eff = at p j ke i € p j k if 

+ iip B Hkhe S-· c t P e i 1k , ( 4.7) 

with Hj given by Eq. (4.3). The decay rates for Cabibbo allowed decays, which follow 

from Eq. (4.7), are presented in Table 4.2. There are several simple relations amongst 

the Cabibbo allowed decays. For example 

r(B- ---+ ::::~):-) = ~r(B- ---+ E~p) , 

f(B0
---+ ::::~t-) = ~T(B0 

---+ n~~0 ) . 

(4.8a) 

( 4.8b) 

Table 4.3 presents the results that follow from the effecti\·e Hamiltonian in Eq. ( 4. 7) for 

the Cabibbo-suppressed decays. In addition to there being several relations between 

the Cabibbo-suppressed decays, there are also some simple relations between the 

Cabibbo-allowed and the Cabibbo-suppressed decays. For example, inspection of 

Tables 4.2 and 4.3 reveals that 

r(B- nO f'-) 2f(B- "o -) ---+ He ...J = sl ---+ <.JcP ' ( 4.9a) 

( 4.96) 

The results of Tables 4.2 and 4.3 trivially generalize to decays B ---+ S*h, where S* 

denotes a member of the lowest- lying 6 of ]P = 3/2+ charmed baryons. 
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There is only one singlet representation in the product 3 @ 10 @ 3 @ 8 (i.e., 

Tpqh*qlj HJ Bj) so all the decays B -+ Th* are related by SU(3) f symmetry. Ta­

ble 4.4 presents the relative rates for these decays normalized to the rate for the 

decay B- -+ A"d ~ --. 

For the decays B-+ Sh* we can take, as far as group theory factors are concerned, 

the following effective Hamiltonian 

H h•pqes- HiE h*pqes- LfkB eff=TJl pq f j+TJ2 pkLq l ( 4.10) 

The term proportional to 111 only effects Cabibbo allowed B 0 decays and Cabibbo sup­

pressed B2 decays. So all the Cabibbo allowed B- and B2 decays and the Cabibbo 

suppressed B-and B 0 decays are related by SU(3)J flavor. Tables 4.5 and 4.6 present 

rates, which follow from the effective Hamiltonian in Eq. (4.10), for the Cabibbo al­

lowed and Cabibbo suppressed B -+ Sh* decays. These results generalize straight­

forwardly to decays B-+ S*h*, where S* denotes a member of the lowest- lying 6 of 

JP = 3/2+ charmed baryons. 

4.2. Two Body B-Decays to Charmed Anti-Baryons 

The 6-b = -1, D.c = -1 part of the effective Hamiltonian for weak nonleptonic 

B - decays arises from the b-+ u weak coupling and has the flavor quantum numbers 

of the operator (bu)(cs). This operator transforms as 6 E9 3 with respect to flavor 

SU(3). Decomposing it into irreducible operators 

(bu)(cs) = 0(6) + 0(3) (4.11) 

where 

(4.12a) 

transforms as a 6 and 

(4.12b) 

transforms as a 3. There is a small dynamical enhancement of the coefficient of 0(3)• 
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in the effective weak Hamiltonian, over that of 0(6) coming from perturbative strong 

interaction corrections which take into account effects coming from loop momenta p 

in the range Mw > p > mb. It is equal to (2.1] 

(4.13) 

For the two-body decays B-+ Th we can use, as far as group theory factors are 

concerned, the following effective Hamiltonian. 

( 4.14) 

In Eq. ( 4.14) H(3) is a two index antisymmetric tensor that takes into account the 

transformation properties of 0(3)· It has non-zero components 

H(3)13 = 1 H(3)31 = -1 ( 4.15) 

H(6) is a two index symmetric tensor that takes into account the transformation 

properties of 0(8)· It has non-zero components 

( 4.16) 

Table 1.7 presents the predictions for B -+ Th decays that follow from the effective 

Hamiltonian in Eq. (Ll.H). The Hamiltonian is I = 1/2 and it follows that the 

relations 

r(B- -+ i\t~0 ) = ~ r(B0 -+ At~+) , 

r(Bo-+ ::-o "o) = ~r(Bo-+ -=-"+) 
S ~Cl-" 2 S ~C1-" l 

(4.17a) 

(4.176) 

are consequences of isospin invariance. There are no simple SU(3)J relations that 

arc not consequences of isospin. However if, for dynamical reasons, matrix clements 
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of 0(3) dominate over those of 0(6), then there would be additional relations. For 

example, either 3 or 6 dominance implies that 

( 4.18) 

Next we consider decays of the type B---+ Sh. As far as group theory factors are 

concerned, we can take as the effective Hamiltonian for these decays 

(·1.19) 

Rates for B ---+ Sh decays that follow from this effective Hamiltonian are presented 

in Table 4.8. Most of the simple relations are consequences of isospin. These arc 

r(B----+ t; A0
) = ~r(B0 ---+ ~~ ,\ 0 ) , 

f(B0 ---+ f:~I:0 ) = f(B0 ---+ !:;~+) , 
0 - - 1 0 ~0 f(B5 ---+ Ec p) = 2r(B5 ---+~en) , 

f(B0 ---+ :::o E0)- ~f(B0 ---+ :::- "+) s ~c2 - 2 s ~c2 ~ 

There is a simple relation that is not a consequence of isospin. 

r(B- :::o -=--)- ~r(B- ~o"-) ---+ ~c .......... - --+ -.Jc ~ • 
2 2 

(4.20a) 

(4.206) 

(4.20c) 

( 4.20d) 

(4.21) 

The results in Table 4. 7 generalize straightforwardly to B ---+ S* h decays, where S* 

is a member of the lowest- lying JP = 3/2+ multiplet of charmed baryons. 

Since the product 3 0 fO 0 3 0 3 does not contain a singlet, the decays B ---+ 1,h* 

only proceed via the 6 part of the effective Hamiltonian. In addition, the product 

3 0 10 0 3 0 6 contains only one singlet (i.e., BiTijh_jkcH(6)ke) and so the relative 
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rates for all the B --+ Th* are determined by SU(3)J symmetry. Table 4.9 gives the 

relative rates. Note that the relations 

f(B- --+ Kt~*0 ) = ~f(B0 --+ At~*+) , 

f(Bo --+ ::-o ~*o) = ~r(Bo --+ :::- ~*+) 
s ~c1 2 s ~c1 ' 

are consequences of isospin. 

(4.22a) 

( 4.22b) 

Finally we consider the decays B --+ Sh*. As far as group theory factors are 

concerned, we can use 

Herr = a(6)BiH(6)iihjklSkl + f3(6)BJ1(6)klhjklSii 

+ a(3)BiH(3)iihjkeSkl , (4.23) 

as the effective Hamiltonian for these decays. Note that the terms proportional to 

a(3) and a(6) only cause B- and B2 decays. It follows that the rates for B 0 --+ S h* 

decays are related by SU(3)J symmetry. Table 4.10 shows the results that follow from 

expanding the effective Hamiltonian in Eq. ( 4.23). There are several simple relations 

that are not consequences of isospin. For example: 

f(B- --+ t;~*0 ) = ~f(B- --+ ~;;:=:*0 ) , 

f(B- --+ E~I:*-) = ~r(B- --+ ~~2 :=:*-) , 

f(B0 --+ t;~*+) = f(B0 --+ ~~2 :=:*0 ) . 

( 4.24a) 

( 4.24b) 

( 4.24c) 

The results in Table -!.10 generalize straightforwardly to the decays B--+ S*h*. 

4.3 Concluding Remarks On Chapter 4 

In this chapter we ha,·e examined the consequences of the approximate SU(3)J 

:flavor symmetry of the strong interactions for nonleptonic B meson decays that pro­

duce low lying charmed baryons. !\!any simple SU(3)J relations were found. For 
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example, all the rates for two body decays, to a ]P = 1/2+ charmed baryon in the 

lowest-lying 3 representation and a ]P = 3j2+ antibaryon in the fO representation, 

are related by the SU(3) 1 flavor symmetry of the strong interactions. 

The hadronic spectrum contains bottom baryons analogous to charmed baryons. 

In fact, if we approximate mb and me as very heavy compared with the QCD scale, 

then the heavy quarks act essentially as static color sources in these baryons [1.9] and 

the hyperfine splitting between the lowest-lying three and six ]P = 1/2+ multiplets 

in the charm case is related to that in the bottom case. For example, one expects 

( 4.25) 

If color suppression [4.2] does not diminish the rate, the decay chain, Ag -t i\ 0 J j'lj; -t 

prr-e+e-, may prove to be a useful way to detect the Ag baryon. There are SU(3)t 

relations for weak bottom baryon decays. For example, the decays of the lowest-lying 

]P = 1/2+ bottom baryons in the 3 representation to hJj'lj; are related by SU(3)t· 

Explicitly 

( 4.26) 

The decays of the lowest- lying 3 bottom baryons to h* 1/1/-· are forbidden by SU(3) 

flavor because the product 3® 3® f0 doesn't contain a singlet. :\Tote that the decays of 

the lowest- lying ]P = 1/2+ bottom baryons in the 3 representation , to h* D (where 

D denotes one of the three lowest-lying pseudoscalar D-mesons) are also determined 

by a single reduced matrix element, because the product 3 @ 3 0 8 @ ro only contains 

one singlet. Normalizing to the rate for Ab -t 6-D+ we find that: 

(4.27a) 

( 4.27b) 
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Table 4.1. SU(3)J predictions for decays E---+ Th, where T denotes a member of 

the lowest- lying SU(3) antitriplet of charmed baryons and h denotes a member 

of the lowest-lying octet of hyperons and nucleons. Rates are expressed in terms 

of three reduced matrix elements a, f3 and /· 

Decay Rate 

E- ---+ 3~1 !;- 1/3 + 112 

E- ---+ ::-o f5 
~C! silf3 + 1l2 

Eo ---+ ::-o ~o 
~C! !Ia- /31 2 

Eo ---+ ::-o A 
~c1 tla + /31 2 

Eo ---+ ::-+ ~-
~c1 Ia + 112 

E 0 ---+ AcP la12 
Eo ---+ ::-o n 

~C! siiPI2 

Eo ---+ -=+ f5 
~C! siltl2 

Eo ---+ ::-o :::o 
S ~C!~ IPI2 

E~ ---+ Ac!:- 1112 

Eo ---+ ::-o !;O 
S ~C! ~siial 2 

Eo ---+ ::-o A 
S ~C! i-sila- 2/312 

Eo ---+ -=+ !;-s '--'ci sila12 
E~ ---+ AcfJ sila + ~11 2 
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Table 4.2. SU(3)t predictions for Cabibbo-allowed decays B -t Sh where S 

denotes a member of the lowest- lying JP = 1/2+ sextuplet of charmed baryons 

and h denotes a member of the lowest-lying octet of hyperon and nucleons. 

Rates are expressed in terms of the three reduced matrix elements a, b and c. 

Decay Rate 

B- -t E~p lcl 2 

B- -t :=:~2f;- !icl2 

B 0 
-t Etfi !Ia- cj2 

Bo-t -:;O f:O 
~c2 tlb- cj2 

Bo-t -:;o A 
~C2 {21 - 2a + b + cl2 

Bo -t nc:=;o lbl2 
B 0 -t -=+ E-

~C2 ~lbl 2 

E 0 
-t E0n c la12 

E 0 -t E+E-
s c ~~-a- b + cj2 

Eo -t EOf'O s c.:..J ~Ia + b- cl2 

E 0 
-t E0 A s c il- a- b- cl2 

Eo -t -:;O -:::-o 
S ~C2~ !Ia + bj2 
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Table 4.3. SU(3)J predictions for Cabibbo-suppressed decays B ~ Sh where S 

denotes a member of the lowest-lying JP = 1/2+ sextuplet of charmed baryons 

and h denotes a member of the lowest-lying octet of hyperons and nucleons. 

Rates are expressed in terms of the three reduced matrix elements a, b and c. 

Decay Rate (divided by si) 
B- ~o -
~ ;:;,c2P !icl2 

B- ~ f!c~- icl2 

Bo ~ f!c~o !ici2 
B 0 ~ f!cA tl- 2a- 2b + ci2 

Bo ~ :::+p 
~C2 !la+b-cl2 

Bo ~ :::o fi 
~C2 !Ia + bl2 

B 0 :::+ t-
S ~ ~C2 !Ia- ci2 

Bo ~ :::o Eo 
S ~C2 tia- c12 

Bo ~ :::o A 
S ~C2 1121 - a + 2b - ci2 

Bo ~ );+p 
s -'-'c !lbl2 

Bo ~ );On s "--'c lbl2 

Bo ~ n :::-o s c~ lal2 
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Table 4.4. SU(3)J predictions for Cabibbo decays B ---+ Th* where T denotes 

a member of the lowest- lying antitriplet of charmed baryons and h* denotes a 

member of the lowest- lying decouplet of JP = 3/2+ baryons. 

Decay Rate 

B----+ Ac~-- 1 

B- -::-o L;*- 1 
---+ ~C! 3 

B----+ =:~b.-- 82 
1 

B- -::-o b.----+ ~C! 
1 8 2 
3 1 

B 0 ---+ Acb.- 1 
3 

Bo---+ -::-o t•O 1 
~C! 6 

Bo -=+b.----+ ~C! 
1 8 2 
3 1 

Bo---+ -::-o b.O 
~c1 

1 8 2 
3 1 

B 0 ---+ A t•- 1 
s c 3 

Bo ---+ -::-o -:;-.o 1 
S ~C!~ 3 

Bo -=+ ~·-s---+ ~c1.__, 18 2 
3 1 

Bo---+ -::-o t•O s ~c1 
1 8 2 
6 1 
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Table 4.5. SU(3)J predictions for Cabibbo- allowed decays B --+ Sh* where S 

denotes a member of the lowest-lying JP = 1/2+ sextuplet of charmed baryons 

and h* denotes a member of the lowest- lying decouplet of JP = 3/2+ baryons . 

Rates are expressed in terms of the two reduced matrix elements "11 and "12. 

Decay Rate 

B- --+ ~t 6.-- !1"1212 

B- --+ ~~Li- i 1"1212 

B---+ ::-o ~*-
~C2 t 1"1212 

Bo --+ ~t+ 6.-- 1"1112 

Bo--+ ~+t::,.-c ti2TJ1 + "1212 

Bo -=+~*---+ ~C2 i 1"1112 

Bo --+ ::-o ~*o 
~c2 l212TJ1 + "1212 

Bo --+ ~oLio c i 1"11 + "1212 

Bo --+ nc=:;*o iiTJ1I2 

Bo--+ ~+~*-s c iiTJ212 

Bo --+ ~o~*o s c~ tl"l212 

Bo --+ ::-o '=*o 
S ~C2 ~ iiTJ212 
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Table 4.6. SU(3)J predictions for Cabibbo-suppressed decays B --t Sh*, where 

S denotes a member of the lowest-lying ]P = 1/2+ sextuplet of charmed 

baryons and h* denotes a member of the lowest-lying decouplet of ]P = 3/2+ 

baryons. Rates are expressed in terms of the two reduced matrix elements "71 
and "72· 

Decay Rate (divided by sn 
B- -=+ .6. ----t ~C2 tl"7212 

B- --t :=:~2 .6.- il"7212 

B- --t Oct•- !1"7212 

B 0 --t -=+ li-
~C2 

11 12 6 "72 
Bo --t -::-o li o 

~C2 il"7212 

B 0 --t nct*0 tl"7212 

B~ --t Et+ li -- 1"7112 

B 0 --t ~+ li-s "-'c ~ 177112 

Bo -=+ f:*-S ..__. .......,C2 .:....J i 12'71 + "7212 

Bo --t -::-o ~·o 
s ~c2-' /2121]1 + "7212 

Bo --t Eo li o 
s c ki17II2 

Bo --t n -::-•0 s c~ !1"71 + "721 2 
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Table 4. 7. SU(3)J predictions for decays E --t Th, where T denotes a member 

of the lowest-lying antitriplet of charmed baryons and h denotes a member of 

the lowest- lying octet of hyperons and nucleons. Rates are expressed in terms 

of the four reduced matrix elements 17(3)• 11(3), 77(6) and 77(o)" 

Decay Rate 

E - --t AcL;0 ~ 177(3) + 77(o) 1
2 

E- --t AcA !-177(3) - 277(3) + 77(o) - 277(ol 

E- --t -::-o -::--
~CJ~ 

I I I 12 - 77(3) + 11(3) + 77(o) + TJcs) 
E- --t -::---::-0 

~cl ........ I I I I? 11(3) + 11(6) -

E 0 
--t AcL;+ ir7(3) + 17(6) 1

2 

Eo --t -::-o -::-o 
.......,Cl......., 177(3) - 77(6) 1

2 

0 -Es --t AcP I I I 12 7](3) - 17(3) + 77(6) + 11(6) 

Eo --t -::-o A 
s ~c1 

I I? I ') I 12 6 ~77(3) - 17p) - ~IJ(6) + 17(6) 

Eo --t -::-o >;O 
S ........ C1 .:...J 

11 I I 12 
2 71(3) - 17(6) 

Eo -:::--L;+ 
S --t ~CJ I I I I? 17(3) - 77(6) -
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Table 4.8. SU(3)t predictions for decays E--+ Sh, where S denotes a member of 

the lowest- lying SU(3)t sextuplet of charmed baryons and h denotes a member 

of the lowest- lying SU(3)t octet of hyperons and nucleons. Rates are expressed 

in terms of the four reduced matrix elements Fun' Gp;;), F(3) and G(3)· 

Decay Rate 

E---+ t~-L;+ IF(6) + G(6) + 2G(3) 1
2 

E---+ E~E0 
IF(6) + ~G(6) - F(3) + G(3) 1

2 

E- --+ ::---::o 
~c2~ ~IF(6) - G(6) + 2G(3) 1

2 

E- --+ -::o -::-
~C2~ ~IF(6)- 2F(3)1

2 

E---+ E~E- IF(6) - 2F(3) 1
2 

E---+ 'E~A tiG(6)- ~F(3)- ~G(3)1 2 

Eo--+ EoEo 
c ~IG(6) + 2F(3) + 2G(3) 1

2 

E 0 --+ 'E0 A c 
31 2 ') G I? 2 G(6)- 3F(3)- 3 (3)-

Eo--+ L;-L;+ 
c ~ IG(6) + 2F(3) + 2G(3) 1

2 

Eo --+ ::-o -::o 
~C2~ ~IG(6)- 2F(3)- 2G(3)1

2 

0 -
E 5 --+ E~p ! IF(6) + 2F(3) 1

2 

E 0 --+ E 0n s c IF(6) + 2F(3) 1
2 

Eo --+ -::o A 
S ~C2 / 2 I3F(6) + 3G(6) + 4F(3) - 2G(3) 1

2 

Eo --+ -::- ');+ 
S ......,C2 ..:......J !IF(6) - G(6) - 2G(3) 1

2 

Eo --+ -::o "o s ---c2 ~ tl - F(6) + G(6) + 2G(3) 1
2 

Eo --+ n -::o s c~ IF(6) + G(6) - 2G(3) 1
2 
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Table 4.9. Relative rates for decays E ---+ Th*, where T denotes a member 

of the lowest-lying SU(3)t antitriplet of charmed baryons and h* denotes a 

member of the lowest- lying SU(3)J decouplet of JP = 3/2+ baryons. 

Decay Rate 

E- ---+ AcE*0 1 
2 

E- -=-=•0 ---+ ~c~~ 1 

E 0 ---+ Ac~*+ 1 

Eo---+ ::-o =•O 
~c~~ 1 

E 0 ---+ ::-- E*+ 
S ~C! 1 

Eo ---+ ::-o ~·o 1 
S ~C1 4-J 2 
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Table 4.10. Implications of SU(3)J for decays B ----+ Sh*, where S denotes 

a member of the lowest- lying SU(3)J sextuplet of charmed baryons and h* 

denotes a member of the lowest-lying ]P = 3/2+ SU(3)J decouplet of baryons. 

Decay Rate 

B- ----+ f;~-E*+ t 1°(6) + 0(3) + 2,8(6) 1
2 

B- ----+ ~~ E*- ilo(6) + o(3) 1
2 

B- ----+ E;;- E*0 t lo(6) + o(3) + ,8(6) 1
2 

B- ::-- :::*o ----+ ~c2~ jlo(6) + 0(3) + ,8(6)1
2 

B- ----+ OcO lo(6) + 0(3)1
2 

B- .=.o ~*-
----T .::,C2.::, ~lo(6) + 0(3) 1

2 

B 0 ----+ f;- E*+ c i 1,8(6) 1
2 

Bo ----+ f;O E*o 
c ilf3(6)1

2 

Bo .=.o ~*o 
---+ ~C2.::. ilf3(6) 1

2 

B~ ----+ f;~- 6 ++ 1°(6)-- 0 (3)1
2 

B 0 ----+ f;- 6 + 
s c iln(6) -- o(3J 1

2 

Bo ----+ 'f'O 6 o 
S LJC 1 I 12 3 0(6) -- 0(3) 

Bo ----+ n :::*o s c~ !1°(6)-- 0(3) + 2,8(6)1
2 

B 0 ----+ ::-- E*+ s ~c2 j lo(6) -- 0(3) + !3(6) 1
2 

Bo ----+ :::o "*o s ~c2'-' t ln(6) -- 0 (3) + ,8(6) 1
2 
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CHAPTER 5. NON-BARYONIC B-MESON DECAYS 

In this chapter we investigate the prediction of SU(3)J for the decay of B-mesons 

to final states that do not contain baryons. In section 5.1 the B-meson decays to two 

lower mass mesons are explored. In particular we look at the final states Dlv!, DV, 

DD, J / '1/J M and M M, where D represents aD-Meson and M denotes a member of the 

lowest lying pseudoscalar octet of mesons. The three body decay modes are examined 

in section 5.2. The decay to final states J / '1/J, Dlvf M and DD AI are discussed. In 

the last section of the chapter, section 5.3, closing remarks concerning non-baryonic 

B-meson decays are made. 

5.1 Two- Body Non-Baryonic B-Meson D ecays 

We first consider b.b = - 1, b.c = 1 decays of the type B -t D.M where D denotes 

one of the D - mesons D 0 , D+ and Dt. Af is one of the eight lowest- lying o- mesons 

1r ,!(, J(, "'· As we discussed in section 4.1 of Chapter 4, the B mesons like the D 

mesons transform as anti-triplets under SU(3)J· They are written as row vectors 

with components Bi, as in Eq (4.1). As a reminder we write them again, 

B (5 .1 ) 

vVe are interested in the transition amplitudes A(B -t D.M) = (D.MIHerriB). As 

far as t he group theory is concerned we can imagine these amplitudes arising from 

the effective Hamiltonian 

(5.2) 

with II£ gi\·en by Eq. ( 4.3). Expanding out these three terms gives the results for the 

Cabihbo a llowed decays shown in Table 5.1 and for the Cabibbo suppressed decays 

shown in Table 5.2. 
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There is one SU(3)J relation amongst the decay amplitudes, A(B ---+ DM), for 

the Cabibbo allowed decays 

IA(Bo---+ Do7ro)l2 + 3IA(Bo---+ Do7Jo)l2 = IA(Bo---+ J(-D;-)12 

+ IA(B2 ---t DOKO)I2 (5.3) 

There are several simple relations between the Cabibbo-allowed and the Cabibbo­

suppressed decay rates. For example, SU(3) symmetry implies that 

A(B- ---+ D 0 1r-) 
A(B----+ DOJ(-) = -1/sl (5.4) 

The large value of the B - meson mass (compared with the QCD scale) suggests 

that relative complex phases between the reduced matrix elements a , band c, which 

can be generated by final state strong interactions, arc small. If this is the case then, 

up to sign ambiguities, measuring three of the Cabibbo-allowed decays determines 

a, b and c. At the present time there are measurements of the branching ratios for 

two of the decays in Table 5.1. Experimentally [5.2, 5.2]: 

Br(B- ---+ D 01r-) = (3.0 ± 1.4) x 10- 3
, 

Br(B0 ---+ D+1r-) = (3 .6 ± 1.4) x 10-3 . 

(5.5a) 

(5.5b) 

Although we have focussed on decays of the type B ---+ D ,\1 our results can be 

trivially taken over for the decays of the form B ---+ D* AI. Also, for decays not 

involving the 1J we can use the results in Tables 5.1 and 5.2 for the corresponding 

decays B ---+ DV and B ---+ D* V where il is one of the 1-p or f{* vector mesons. So, 

for example, generalizations of Eq. (5...!) of the type 

A( B- ---+ D 0 p-) 
A(B- ---+ D 0 J..:•-) 

hold. Experimentally [5.1, 5.2, 5.3, 5.4, 5.5] 

Br(B0 ---+ D *(2010)+7r -) = (3.3 +1.
2

) x 10- 3 , 
- 1.0 

10·1 

-1/sl (5.6) 

(5.7a) 



Br(B0 
-t D*(2010)+ p-) = ( 8 ~:) x 10-2, 

Br(B- -t D*(2010)07r-) = (3 ± 4) x 10-3
, 

Br(B- - D 0 p-) = (2.1 ± 1.2) x 10-2
, 

Br(B0 - D+ p-) = (2.2 ± 1.5) X 10-2
. 

(5. 7b) 

(5.7c) 

( 5. 7d) 

(5 .7e) 

Two- body decays of the type B -t DD arise from weak Hamiltonians with 

flavor quantum numbers (bc)(cs) for the Cabibbo- allowed decays and (bc)(cd) for 

the Cabibbo-suppressed decays. These Hamiltonians are different components of the 

same anti- triplet representation. So, as far as group theory is concerned, the decays 

B -t DD can be thought of as arising from an effective Hamiltonian 

(5.8) 

where for the Cabibbo allowed decays 

H = (D (5.9a) 

and for Lhe Cabibbo suppressed decays 

(5 .9b) 

Table 5.3 presents results for decays B -t DD which follow from Eq. (5.8). Some 

of the relations that follow from Table 5.3 are just consequences of SU(2) 1sospm 

symmetry. They are, for the Cabibbo-allowed decays [5.6] 

f(B - - D 0 D-;) f(B 0
- D+ D -;) 

r(B~ - D 0 D0
) = r(B~ - D+ D-) 

(5.10a) 

(5.10b) 

For the Cabibbo suppressed decays there are no isospin relations. Table 5.3 indicates 

Lhat Lhere are several SU(3)j re lations between the Cabibbo- a llowed and the 
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Cabibbo-suppressed B----+ ntJ decays (e.g., f(B- ----+ n° n-) = sir(B- ----+ n° n;-)). 
The Cabibbo suppressed B ----+ ntJ decays also get contributions from terms in the 

effective weak Hamiltonian that have no charm quarks. For example, the operator 

(bu)(uJ) which transforms under SU(3) as 3 EB 6 EB 15 contributes to the Cabibbo­

suppressed B ----+ ntJ decays and if s3 is near its experimental limit, this could alter 

the results in Table 5.3. 

The same Hamiltonians which give rise to the decays B ----+ ntJ also cause the 

decays B----+ J /,PM. Since there is only one way to combine the product of a triplet, 

anti triplet and octet representations ( J /7/J transforms as a singlet) into a singlet, these 

decays are characterized by a single reduced matrix element. SU(3) predictions for 

these decays are presented in Table 5.4. The contributions of operators without charm 

quarks (e.g., ( bu)( uJ)) to the Cabibbo- suppressed decays B ----+ J j,Pl\f are negligible 

because they violate the Okubo- Zweig-Iizuka (OZI) rule. For the Cabibbo allowed 

decays the relation 

(5.11) 

is a consequence of isospin invariance. It has previously been noted that a comparison 

of branching ratios for these modes would determine the ratio of B 0 and B- lifetimes 

[5.7]. At the present time it is known that [1.6] 0.4 < Tno/Tn- < 2.1. One of the 

relevant branching ratios has been mcasured:8),l4),lS) 

(5.12) 

For the Cabibbo suppressed decays the relation 

(5.13) 

is also a consequence of isospin invariance. 
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The results of Table 5.4 generalize trivially to other cc resonances and also to 

decays B---+ Jj'lj;V, where Vis a 1-p or](* meson. There is also some experimental 

information on these decays [5.2, 5.8]: 

Br(B- ---+ 'lj;(2S)K-) = (2.2 ± 1.7) x 10-3 , 

Br(B0 ---+ Jj'lj;R*(892)0
) = (3.7 ± 1.3) x 10-3

. 

(5.14a) 

(5.14b) 

We consider next the SU(3)J relations between the decay amplitudes which can 

arise from the b---+ u w- weak coupling. For final states without charm the effective 

Hamiltonian has the flavor quantum numbers of the operator ( bu)( ud) which trans­

forms as 15 EB 6 EB 3. Explicitly, the decomposition of ( bu)( ud) into operators that are 

in irreducible SU(3)J representations is 

where 

0(15) = 3(bu)(ud) + 3(bd)(uu)- 2(bd)(dd)- (bs)(scl)- (bd)(ss) 

0(6) = (bu)(1td)- (bd)(uu)- (bs)(scl) + (bd)(ss) 

0(3) = (bd)(uu) + (bd)(dd) + (bd)(ss) 

0~3) = (bu)(ucl) + (bd)(dd) + (bs)(scl) 

(5.15) 

(5.16a) 

(5.16b) 

(5.16c) 

(5.16d) 

In Eqs. (5.15) and (5.16) the subscripts on the operators denote the irreducible rep­

resentation of SU(3)J to which they belong. As far as group theory factors are 

concerned \Ve can take as the efTectiYe Hamiltonian for B - meson decays B ---+ !II 1H 

Iferr = A(i)Bd!(3)i(M1 1U£) + C(3)Bi11ILJ\If II(3)J 

+ Ac15 )BJI(15)1i\!J!II1 + Cc 15 )Bi!IIJII(15){k 1\fk 

+ A(6 )BJI(6)1 !l!f !lit 
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In eq. (24) H(3) is a vector with non-zero component 

(5.18a) 

H(15) is a traceless three-index tensor that is symmetric on its upper indices and has 

non-zero components 

- 12 - ?} - 22 - 32 (- 23 H(15h = 3 , H(15)i = 3 , H(15)z = -2 , H(15)J = -1 , H 15h = -1 

(5.18b) 

Finally, in Eq. (5.17), H(6) is a traceless three-index tensor that is antisymmetric on 

its upper indices and has non-zero components 

H(6)~2 = 1 , H(6)i1 = -1 , H(6)~2 = -1 , H(6)53 = 1 ( 5.18c) 

The parameters A(3)• C(3)• A(ls)• C(IS) and A(6) are the reduced matrix elements in 

terms of which the B ---+ M A1 decay amplitudes are expressed. Note that since 

(.5.19) 

there is only one reduced matrix element, A(6 ) parametrizing the contribution of the 

part of the Hamiltonian that transforms as a 6. 

Table 5.5 summarizes the SU(3)J predictions that follow from expanding the 

effectiYe Hamiltonian in Eq. (5.17). There is only one simple relation 

(5.20) 

There are no simple isospin relations between the B ---+ AI AI decay rates in 

Table 5.5. The effective Hamiltonian has both I = 1/2 and I = 3/2 pieces. The 

I= 3/2 piece arises solely from the operator O(lS)· In the decays B---+ r.1r the two­

pion final state is a linear combination of I = 0 and I = 2 states. The I = 2 state can 
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only be reached through the I = 3/2 part of the effective Hamiltonian while the I = 0 

state gets contributions from both the I = 1/2 and I = 3/2 parts. Since the ?r
07r­

state is charged it is pure I = 2, consequently the rate for B- ---+ 1r
0
1r- originates 

only from the matrix element of O(ls)· 

There are contributions to the decays B ---+ M M listed in Table 5.5, which survive 

m the limit s3 ---+ 0 (where the b ---+ uw- coupling is absent). They come from 

penguin-type Feynman diagrams with a charm or top quark in the loop (see Fig. 1). 

Writing 

(5.21a) 

(5.2lb) 

it is A(3) and C(3) that characterize these contributions, since the penguin- type di­

agrams only give rise to terms that transform as a 3 in the effective Hamiltonian of 

Eq. (5.17). The contribution of penguin-type Feynman diagrams is probably sup­

pressed by [as(mb)/7r], so unless (s3/sz) is very small (a prospect that is unlikely 

if the standard six- quark model is to describe the CP violation observed in kaon 

decays)[5.10] A.(3) and 6(3) are unimportant for the B ---+ !II"H decays in Table 5.5. 

However, if we examine B ---+ !11 Jif decays that change strangeness by one unit, the 

situation is quite different. Here the penguin- type diagrams are again suppressed by 

as(mb)/?r but they arc enhanced (over operators like (bU)(us)) by the ratio of weak 

mixing angles 

(s~ + s5 + 2szs3c0 )
1

/
2 

') 

Sj"S3 
(5.22) 

These decays may be dominated by the penguin- type diagrams with a charm or top 

quark in the loop. Assuming this is the case we can use, as far as group theory 

factors arc concerned, the following effective Hamiltonian to describe the 6.s = -1 

B ---+ !II !II decays 

(5.23) 
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where now the non-zero component of H(3) is 

(5.24) 

Table 5.6 gives the SU(3)J predictions that follow from Eqs. (5.23) and (5.24). Note 

that since A(3) only effects the B2 decays, the ratios of the various 6s = -1 B 0 ---+ 

Mill[ and B----+ MM decay rates are determined by SU(3)J· 

Our assumption that penguin- type diagrams dominate the 6s = -1 B ---+ M M 

decays implies that the effective Hamiltonian is I = 0. Since there is only one way to 

combine two I = 1/2 states into an I = 1 state, all the relations between B ---+ J( 1r 

decays in Table 5.6 are consequences of isospin. Similar isospin relations hold for 

decays of the type B ---+ J( p, B ---+ J(*7r and B ---+ !\* p. The relations 

r(B0 ---+ R 0
17 ) = r(B----+ K - ry) 

r( B2 ---+ K+ !\-) = r( B2 ---+ I\o Ro) 
1 

r(B2---+ 7ro7ro) = -r(B2---+ 7r+7r-) 
2 

( 5.25a) 

(5.256) 

(5.2.5c) 

are also consequences of isospin symmetry. The (bu)(us) operator has both I = 0 

and I = 1 pieces. Verifying some of the above isospin relations would prO\·ide strong 

evidence that penguin- type diagrams dominate the 6s = -1 B ---+ /1/ 11! decays. 

The b---+ ulV- coupling also causes 6b = -1, 6c = -1 decays B---+ D .M. To 

leading order in weak mixing angles the effective Hamiltonian for such decays has the 

flavor quantum numbers of (bu)(cs). Under SU(3) this operator transforms as 3 EB 6. 
Explicitly, the decomposition in terms of operators in irreducible representations is 

(5.26) 

where 

1 
0(3) = 2 [(bu)(cs)- (bs)(cu)] (5.27a) 
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1 
0(6) = 2 [(bu)(cs) + (bs)(cu)] (5.27b) 

As far as group theory factors are concerned we can take as the effective Hamiltonian 

for the ~b = -1, ~c = -1 decays B-+ D.M 

. Heff = a(6)DiH(6)ii BkMj + f3(6)BiH(6)ii Dk!I!Jj 
. . k . . k 

+ a(3)DiH(3)'1 Bk!l1i + f3(3)BiH(3)' 1 Dd'llfi. (5.28) 

Here H(6) is a two- index symmetric tensor with non- zero components 

H(6)13 = 1 H(6)31 = 1 (5.29) 

and 11(3) is a two- index antisymmetric tensor with non-zero components 

H(3) 13 = 1 H(3)31 = -1 (5.30) 

Table 5. 7 shows the results which follow from the effective Hamiltonian in Eq. (5.28). 

There are two simple relations 

f(B2 -+ D-1r+) = 2f(B2 -+ D0 1r0
) 

f(B0
-+ D-;1r+) = 2r(B- -+ D-;1r0

) 

and they are a consequence of isospin invariance. 

(5.31a) 

(5.31b) 

There is a small dynamical enchancement of the \Vilson coefficient of 0(3) o\·er 

that of 0(6) coming from perturbative QCD corrections. In the effecti,,e Hamil tonian 

for D.b = - 1, ~c = - 1 decays the ratio of \Vilson coefficients for 0(3) and 0(6) is [2.1] 

[as(mb)/as(mlV)](lS/:23) ~ 1.5. If either the matrix elements of 0(3) or 0(6) dominate 

the B -+ D!II decays, then Table 5.7 indicates that there would be some SU(3)J 

relations . For example, either 3 or 6 dominances implies that 

(5.32) 

Of course, generalizations of Table 5.7's results to dC'cays B -+ D* .~V, B -+ DV and 

B -+ D* V hold . 
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5.2 Three-Body Non-Baryonic B-Meson Decays 

The three-body decays, B ---+ 1/1/;1\11\1, can have the relative orbital angular 

momentum, L, of the two M - mesons be either even or odd. For the case Leven we 

can take, as far as group theory factors are concerned, 

(5 .33) 

as the effective Hamiltonian (Lorentz indices are suppressed). In Eq. (5.33) 

H=(] (5.34) 

Table 5.8 presents the results that follow from the effective Hamiltonian in Eq. (5.33). 

For the case L odd the effective Hamiltonian must be change sign under interchange 

of the SU(3)J quantum numbers of the two 1\I mesons. Only the second term in 

Eq. (5 .33) can be antisymmetrized and so the rates for B ---+ 1 /lf;(!II !lf)L=l,3 ... are 

determi ned in terms of a single reduced matrix element. Table 5.9 presents the relative 

B ---+ 1 /1/Jlvfl\I decay rates for odd L. With L odd the amplitudes forB- ---+ 1 /1/J1r-T/o 

and B 0 
---+ 1 j 'lj;1r 0ry0 vanish by SU(3) f symmetry and therefore these processes don't 

appear in Table 5.9. 

The Cabibbo allowed B ---+ 1 /1/J.U 1\I decays arise from an effective Hamiltonian 

that is an isosinglet. There are se\·eral isospin relations among the Cabibbo allowed 

decays that hold independent of L. They are 

f(B0 
---+ 1 j1/;1r+ K -) = r(B - ---+ 1 j1/;1r- R 0 ) 

= 2r(B0 
---+ 1 j1/;1r0 R 0

) = 2f(B- ---+ 1 j'lj;1r0 I\ -) 

f(B0
---+ 1/1/Jr7° R0

) = r(n----+ 1/1/J r/ 0 I\-) 

r(n~ ---+ 1/1/J I\ 0 R 0
) = r(n~ - 1/1/J K+ I\ -) 
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and 

( 41d) 

In the case B~ ----+ J /'l/nr7r (Eq. (5.35d)) isospin invariance forces the two pions to be 

in an even L state. The effective Hamiltonian for Cabibbo-suppressed B ----+ J j'lj;lvf M 

decays is I = 1/2. Again, there are isospin relations which are L independent. They 

are 

f(Bo ----+ J j'l/;7ro1Jo) = ~ f(B- ----+ J j'l/;7r-1Jo) 

f(B2----+ Jj'lj;K0 1r0
) = ~ f(B2----+ Jj'lj;K+1r-) 

Some isospin relations that hold only for L even are 

1 
f(B0 ----+ Jj'lj;rr01r0

) = 2 f(B0 ----+ Jj'lj;(7r+rr-)L=o,2, . ..) 

f(B0 ----+ J/'l/-'(7r0rr-)L=o,2, ... ) = 0 

(5.36a) 

(5.36b) 

(5.37a) 

(5.37b) 

There are also SU(3)J relations between the Cabibbo-allowed and Cabibbo­

suppressed decay amplitudes that are L independent. For example, two such relations 

are 

sfiA(B-----+ Jj1/;7r-R 0 )12 = IA(B-----+ Jj'lj;J{-!(0 )1 2 

siiA(B0 ----+ Jj'lj;1r+ J\-)12 = IA(B2----+ Jj'lj;K+1r-)l 2 

(.5.3Sa) 

(5.3Sb) 

All the L odd B ----+ Jj'lj;Af i\! decays are related by SU(3)J flavor symmetry. 

However, there is an important source of SU(3)j violation for resonant 1H 111 pairs. 

There is significant mixing between the lowest- lying SU(3)J singlet and octet 1-

mcsons resulting in the ¢ and w mass eigenstates with flavor quantum numbers ss 
and )2(uu + dd), respectively. This occurs not because of an anomalously large 

SU(3)J violating mass mixing element, but rather because of the near degeneracy 
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of the SU(3)J singlet and octet states. Nonetheless, because the decay of the w to 

J( R is kinematically forbidden, this mass mixing can result in large violations of our 

SU(3)J predictions for decays B-+ Jj'ljJ(MM)L=l when the MM pair is resonant. 

Next we consider the implications of SU(3)J symmetry for decays B -+ DM M. 

As was noted in section 5.1, the effective Hamiltonian for these decays transforms 

as an octet under flavor SU(3)J· Again, we shall separately treat the cases where 

the relative orbital angular momentum L of the M M pair is even and odd. As far 

as group theory factors are concerned, when L is even we can take as our effective 

Hamiltonian 

_ . i k j -e . i . i k -e . i i k - e Herr - aB,A1iA1e HkD + bB,A1iAfkHe D + cB,HiA1kAfe D 

+ d(BiMjiJi)(Mf H£) + e(BiiijiJi)(Mf Mf) + J(BiiJi)(AifA1f HJ). (5.39) 

In Eq. (5.39) Hj are elements of the 3 x 3 matrix (upper index labelling rows and 

lower index labelling columns) 

(5.-10) 

Table 5.10 presents the results that follow from this effective Hamiltonian for the 

Cabibbo allowed decays. Under isospin the effective Hamiltonian for the Cabibbo 

allowed decays is I = 1. \Vhen two pions possessing a net charge are in an even 

partial wave they form an I = 2 state. This implies the following isospin relation 

(1/4)f(B- -+ D+1r-1r-) = f(B- -+ D0 (7r-7r0)L=0,2 ... ) 

= r(B0 -+ n+c7r-7r0)L=o,2, . ..) (5.41) 

The first process that appears in Eq. (5.41) has been observed. Experimentally (5.2] 

(5.42) 

Since the amplitudes with L odd don ' t interfere with those with Leven, we conclude 
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that 

4f(E- ~ D01r01r-) >f(E- ~ D+1r-1r-) 

4f(E0 ~ D+1r-1r0) >f(E- ~ D+1r-1r-) 

(5.43a) 

( 5.43b) 

Of course, the results in Table 5.10 generalize to decays involving aD* instead of 

a D. Experimentally [5.2, 5.3) 

Er(E- ~ D*(2010)+7r-7r-) = (2.5~~:~) x 10-3 

Er(E0 ~ D*(2010)+7r-7r0 ) = (1.5 ± 1.1) x 10-2 

(5.44a) 

(5.44b) 

which is consistent with the generalization of Eq. (5.43b) and indicates that the 

E 0 ~ D*+1r-1ro rate is dominated by L odd. 

There are also some SU(3)J relations between the Cabibbo allowed amplitudes 

with L even. They are 

lA (E0 ~ D"}"(K-7r0)L=0,2, ... ) 1
2 = 3I(B0 ~ D"}"(K-7J0)L=o,2)12 

1 
lA (E- ~ D"}"(1r-K-)L=o,2, ... ) 1

2 = 21A(B- ~ D+1r-1r-)l2 

1 
lA (B~ ~ D+(I{07r-)L=0,2, ... ) 1

2 = 21A(B- ~ D+1r-1r-)l2 

lA (B2 ~ D0(!{0
7]

0)L=o,2, ... ) 1
2 = liA (B~ ~ D0(1{07r0)L=o,2 ... ) 1

2
-

(5.45a) 

(5.45b) 

(5.45c) 

(5.45d) 

For the case L odd, the effective Hamiltonian must be antisyrnmetric under in­

terchange of the flavor quantum numbers of the !vi m.esons. For example, an anti­

symmetric version the term proportional to a in Eq. (5.39) is 

( 5.-16) 

Only the term proportional to the reduced matrix element e has no antisymmetric 

analog. So the B ~ D 1UJ! decay amplitudes with L odd are parametrized by 
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five reduced matrix elements which we denote by a', b', c1
, d', and f'. Table 5.11 

presents the implications of the SU(3) flavor symmetry of the strong interactions 

for the Cabibbo-allowed decays B ~ D(M !llf)L=l,3,.... There are several SU(3)J 

relations. For example 

(5.47) 

Tables 5.12 and 5.13 present the predictions of SU(3) flavor symmetry for the 

Cabibbo- suppressed B ~ DA1 M decays with L even and L odd, respecti,·ely. Since 

the Hamiltonian for the Cabibbo- suppressed decays is part of the same octet as the 

Hamiltonian for the Cabibbo- allowed decays, we can express the Cabibbo-suppressed 

decay rates in terms of the same reduced matrix elements as were used for the 

Cabibbo- allowed decays. An inspection of tables 5.10, 5.11, 5.12, and 5.13 reveals 

that there are simple SU(3)J relations between the Cabibbo- allowed decays and the 

Cabibbo-suppressed decays which hold independent of the value of L. They are 

IA(B0 ~ D+7r-R 0 )1 2 = siiA(B2 ~ D"I I\ - J\0 )1 2 

IA(B0 ~ D"I R 0 J\-)12 = siiA(B~ ~ D+ J{0 7r- )l 2 

IA(B- ~ D"I J( - J(-)12 = siiA(B- ~ D+7r-7r-)l 2 

IA(B- ~ D 01r-!?0 )1 2 = siiA(B- ~ D 0 f{- K 0 )1 2 

2IA(B2 ~ D"I1r° K-)1 2 = siiA(B0 ~ D+ K- K 0 )1 2 

IA(B2 ~ D 0 1r+1r-)l2 = siiA(B0 ~ D 0 f{- J(+)l2 

IA(B~ ~Do Ro J\o)l2 = siiA(Bo ~ Do J\.·O Ko)l2 

IA(B~ ~ D 0 J(+ K-)1 2 = siiA(B0 ~ D 01r+1r-)l 2 

IA(B~ ~ D+ !{0 f{-)1 2 = siiA(B0 ~ D"I R 0 7r-)1 2 

( 5.4Sa) 

(5A8b) 

(5.4Sc) 

(.5.4Sd) 

(5.4Se) 

(5.48!) 

(5.4Sg) 

(5.4Sh) 

(5.4Si) 

There are important sources of SU(3)J violation in the decays B ~ D 1H 1H which 

can occur when two of the final state particles arise from the decay of a resonance. In 

addition to the consequences of the mixing of the SU(3) singlet and SU(3) octet 1-
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vector mesons mentioned earlier, large SU(3) violations can arise because the D* can 

decay to Dr. while the D; is kinematically forbidden from decaying to Dsr. or DK. 

Finally, we consider the three- body decays B --t DDM. As far as group theory 

factors are concerned we can take as the effective Hamiltonian for these processes 

where 

Hetr = rn (BiHi)(DkMf De)+ m(BitJi)(DkMf He) 

+ 7J3(BiM~De)(DkHk) + 7J4(BiM~He)(fJk Dk) ( 5.49a) 

(5.49b) 

Tables 5.14 and 5.15 present the predictions that follow from the Hamiltonian for 

Cabibbo- allowed and Cabibbo- suppressed decays, respectively. Cautionary remarks, 

similar to those given in the case of B --t Dlvf AI decays, concerning possible large 

SU(3)J violations induced from resonance effects also apply here. 

The effective Hamiltonian for Cabibbo-suppressed decays given by Eq.(5.49) ne­

glects the contribution of operators like (bu)(ud), which arise from the b --t urv­

coupling and transform as 3 EB 6 EB 15. Since the 15 representation contains an 

I = 3/2 piece, isospin relations for the Cabibbo- suppressed modes which follow 

from the I = 1/2 Hamiltonian in Eq. (5.49) are useful for testing the dominance of 

the operators with charm quarks. Table 5.15 contains two isospin relations 

r(B- --t D; DJr.-) = 2f(B0 
--t D; DJr.0

) 

f(fl~ --t DJ lJ0 r.-) = 2f(B~ --t DJ D-r.0 ) 

(5.50a) 

(5.50b) 

Fig. 2 shows quark line diagrams which illustrate how the two operators (be) ( cd) and 

(bu)(ud) can contribute to the decay B2 --t Dt D0 r. - . 
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For the Cabibbo-allowed decays, the effective Hamiltonian transforms as an isos­

inglet. The following relations in Table 5.14 follow from isospin symmetry: 

r(B- ~ D 0 n-K 0
) = f(B0 ~ n+ fJ° K-) 

f(B0 ~ D 0 fJ 0 R 0 ) = f(B- ~ n+ n- ](-) 

2f(B- ~ D-; D0 1r0 ) = f(B0 ~ D0 D-;1r+) = f(B- ~ D-; D+1r-) 

= 2f(B0 ~ n+ D-;1r0
) 

f(B- ~ n; D-; K-) = f(B 0 ~ n; D-; !?0 ) 

r(B~ ~ D0 D+1r-) = f(B2 ~ n-D 01r+) = 2f(B2 ~ D 0 D 0 1r0
) 

= 2f(B2 ~ n+ n-1r0
) 

r(B2 ~ n-; D° K+) = r(B2 ~ n-; n+ K 0
) 

f(B2 ~ n-n; !?0 ) = f(B2 ~ D 0 n; ](-) 

f(B2 ~ n+ D-ry0 ) = f(B2 ~ D0 iJ0 ry 0
) 

(5.51a) 

(5.51b) 

(5.51c) 

(5.51d) 

(5.51e) 

(5.51!) 

(5.51g) 

(5.51h) 

Comparison of Tables 5.14 and 5.15 reveals that there are many simple SU(3)J 

relations between the Cabibbo-allowed and the Cabibbo- suppressed B ~ DD1\1 

decays. Some of them are 

IA(B- ~ D0 D-; !(0 )1 2 = siiA(B- ~ D0 n- J\0 )1 2 

IA(B- ~ n; n-J(-)12 = siiA(B- ~ D-; n+'Tr-)12 

IA(B- ~ n; D-;1r-)l 2 = si iA(B0 ~ D0 fJ0 R 0 )1 2 

IA(B- ~ n+ n-7r-)l2 = si iA(B- ~ n; D-; f{-)1 2 

5.3 Concluding Remarks On Chapter 5 

(5.52a) 

(5.526) 

(5.52c) 

(5.52d) 

In this chapter we have used the transformation properties of the weak Hamilto­

nian for nonleptonic B - meson decays to derive SU(3)J relations amongst many of the 

possible two- and three-body B - meson decays. Since the SU(2) isospin symmetry 
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works much better than the full SU(3) emphasise has been placed on the predictions 

that follow from isospin. The isospin relations provide useful tools for discerning 

the importance of various competing effects that can occur in nonleptonic B - meson 

decays. 

As we have discussed previously, it is possible to include, in a phenomenological 

fashion, some SU(3)J breaking effects and hence improve upon the results of this 

chapter. For example, in section 5.1 it was noted that generalizing the predictions 

forB-+ DM to B-+ DV where Vis one of the low-lying 1- mesons is not straight­

forward because of mixing of the SU(3)t octet state IVs) = )6-(iuu) + ldd)- 2jss)) 

with the SU(3)J singlet IV1) = )3-(iuu) + ldd) +iss)). This was discussed in Chapter 

2. 

As far as group theory is concerned we can take as our effective Hamiltonian for 

the decays B-+ DV 

where II£ given by Eq. (4.3). The amplitude A(B0 -+ D 0 ¢) is expected to be Ycry 

small since the decay B 0 -+ D 0 ¢ is forbidden by the Okubo- Zweig-Iizuka (OZI) rule. 

Setting this amplitude to zero implies the relation 

1 b' + c' 
e =--

v'3 
(5.54) 

between reduced matrix elements. So the B -+ DV decay amplitudes are expressible 

in terms of the three reduced matrix elements, a', b' and c'. Using these expressions 

we find that the generalization of Eq. (5.3) is 

IA(B0 
-t D 0 p0 )1 2 + IA(B0 -+ D 0w)l 2 = IA(B0 -+ Dt I\*-)12 

+ IA(B~ -+Do K*o)l2 (5.55) 

As we discussed in Chapter 1, in the large Nc limit matrix elements for nonleptonic 

B - decays factorize. This prO\·ides a pattern of SU(3)J breaking that might be used 
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to improve some of our results. For example, factorization suggests that 

(5.56) 

would be an improvement over Eq. (5.4). 

In this chapter we have focussed on SU(3)J predictions for nonleptonic B - m eson 

decays to final states with mesons. It is also possible to consider SU(3)J predictions 

for B - meson decays to final states involving uncharmed baryons. For example, there 

may be SU(3)J relations between the Cabibbo allowed and the Cabibbo suppressed 

decays B ---+ D N N, where N denotes a member of the lowest- lying baryon octet 

(consisting of the nucleons and hyperons). It is also possible to consider the conse­

quences of SU(3) flavor symmetry for semileptonic B - meson decays. For example, 

since the effective Hamiltonian for .6.c = 1 B ---+ D cDe decays is an SU(3) singlet, it 

follows that 

(5.57) 

The first equality in Eq. (5 .57) follows from isospin. For scmileptonic decays B ---+ 

111 eve that don't change charm, the effective Hamiltonian transforms as an anti triplet. 

Since there is only one way to combine the product of a triplet, an antitriplet and an 

octet into a singlet, these decays are also related by SU(3)J flavor symmetry. In this 

case 

r(B0 ---+ ?r+eve) = 2f(B----+ 1r
0 eDe) = f(B~---+ K+eve) 

= 6f(B- ---+ ry 0 eDe) 
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Table 5.1. Rates for Cabibbo-allowed decays E ---+ DM in terms of the three 

reduced matrix elements a, b and c. 

Process Rate (divided by si) 

E 0 ---+ D+7r- Ia + c12 
Eo ---+ Do1ro ~lb- cl 2 

Eo---+ DoTJo ilb + cl2 

E 0 ---+ D+ J(-s Jcl2 
E----+ D01r- Ia + bl2 
Eo---+ Do J(O 

s lbl2 
E 0 ---+ D+1r-s s la12 

Table 5.2. Rates for Cabibbo- suppressed decays E ---+ D/11 in terms of the 

three reduced matrix elements a, b and c. 

Process Rate 

E 0 ---+ D+ J(- sflai2 

Eo---+ Do f{O sr lbl2 

E----+ D0 ]{- sila + bl2 

Eo---+ Do1ro 
s si ~lc12 

E2---+ Do17o siilc- 2bl2 

E 0 D+r-s -t s \ srla+cl2 

E 0 ---+ D+rr-s si lcl2 
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Table 5.3. Rates forB- meson decays of the type B --t DD in terms of the two 

reduced matrix elements a and (3. 

Process Rate 

B 0 --t n+ n-s l/312 

Bo--t Do [JO silal2 

B 0 --t n+ n- sfla + /312 

B 0 --t n+ n-s s silal2 

B- --t D 0 D-; 1/31 2 

B- --t D 0 n- sil/31 2 

Bo --t no [JO 
s lol2 

B 0 --t n+ n-s I of 

B~ --t Dt D-; Ia + /312 

B 0 --t n+ n-s s sil/31 2 

123 



Table 5.4. SU(3)J predictions for rates forB-+ Jj'!j;M normalized to the decay 

rate for E- -+ J j'lj;J(-. 

Process Rate 

Eo -+ J j'lj;Ro 1 

Eo-+ Jf'!j;rro si/2 

Eo -+ J !V->TJo si/6 

E- -+ J /'1/JK- 1 

E- -+ J /'1/Jrr- 82 
1 

E~ -+ J I V->TJO 2/3 

E~ -+ J / V-> K 0 ') s-1 
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Table 5.5. SU(3)J predictions for decays E ----+ M !11 that do not change 

strangeness. 

Process Rate 

Eo ----+ 7r+7r- I2Ac3) + cc3> + AcTS) + 3Cc1s) - Ac6) 1
2 

Eo ----+ 7ro7ro ti2Ac3) + C(3) + A(TS)- 5C(ls)- A(6)1
2 

Eo ----+ fJofJo ti2A(J) + tc(3) - A(TS) + C(TS) + A(6) 1
2 

Eo ----+ 7rofJo t 1 - Cc3> + sA ciS) + c(ls) - Ac6> 1
2 

Eo ----+ J(O j{O I2Ac3> + cc3) - 3Ac15> - c(ls) + A(6) 1
2 

Eo ----+ f{+ J(- I2A(3) + 2A(15) 12 

E- ----+ 7ro7r- 32ICcis) 1
2 

E - ----+ fJo7r- i-I2C(3) + 6A(is) + 6C(i5) + 2Ac6) 1
2 

E- ----+ I\o ](- ICc3> + 3.4(15) - c(ls) + A(6) 1
2 

Bo ----+ f{+ 7r-
s IC(J) - A(l5) + 3C(l5) - A(6) 1

2 

Eo ----+ I\o1ro 
s ~I - c(3) + Ac1s) + .sc(E) + A(6) 1

2 

E~ ----+ f{o1lo t I - Cc3> + Ac15) + scc15> + A(6) 1
2 
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Table 5.6. SU(3)J predictions for E --+ M }.1 decays that change strangeness. 

Here it is assumed that penguin-type diagrams with a charm quark or top quark 

in the loop dominate. Entries in the second column should be multiplied by 

ls2ei8 + s3l2 if compared with Table 5.5 using Eq. (5.21). 

Process Rate (divided by ls2ei8 + s3l2 ) 

Eo--+ ?r+ J(- 16(3) 1
2 

Eo -t ?ro J?O 1 A I 2 
2IC<3) I 

Eo -t J?OTJo ~16(3)12 

E- -t J(-?ro ! 10(3) 12 

E- -t J(-TJO 1 IC' 12 
6 (3) 

E- -t J?07r- IC''-12 
(3) 

E~ -t J(+ I\- I2A(3) + 6(3) 12 

Eo -t f{o ]{O A I A I 2 
s I2AC3) + c<3) I 

no -t 7ro7ro s ')lA' 12 
- (3) 

BJ --+ 77o77o 2ll' 26' 12 
I (3) + 3 (3) 

Eo --+ 7r+7r-s 4lrl(3) 2 
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Table 5.7. SU(3)J predictions for decays B---+ D.M. 

Process Rate 

B- ---+ [)OJ(- la(6) + a(3) + /3(6) + !3(3) 12 

B- ---+ D-;ry0 t la(6) - a(3) - 2/3(6) - 2/3(3) 1
2 

B- ---+ n- f<0 
1/3(6) + !3(3) 1

2 

B- n- 0 
---t s1r ~la(6) - a(3) 1

2 

Bo---+ [)O J(O la(6) + a(3) 1
2 

B 0 ---+ D-1r+ s la(6) - a(3) 12 

Bo ---+ Do1ro s tl /3(6) - !3(3)1
2 

B 0 n- y+ s---t s\ la(6) - a{3) + /3(6) - /3{3) 1
2 

B~ ---t [)OTJO t I - 2a(6) - 2a(3) + /3(6) - !3(3) I~ 

B 0 ---+ D-1r+ s 1/3(6) - !3{3) 1
2 
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Table 5.8. SU(3)J predictions for decays B --+ J 1'1/JAI 1\1, when the relative 

angular momentum of the two pseudoscalar mesons is even. 

Process Rate 

Bo --+ J I'I/J7r+ J(- IGI2 

Bo --+ J I'I/J1ro [(O ~IGI2 

Bo --+ JI'I/JTJKo iiGI2 

Bo --+ J I'I/J7r+7r- sii2F + Gl2 

Bo--+ Jl'l/;1ro1ro sii2F + Gl2 

Bo --+ J 1'1/JTJoTJo ~sii2F + tGI2 

Bo --+ J I 'lj;1roTJo tsiiGI2 

Bo--+ JI 'I/J K+J{- sil2FI2 

Bo --+ JI'I/;Ko J{O sii2F + Gl2 

B- --+ J I'I/J7ro J(- ~ I GI 2 

B- --+ JI'I/JTJo ]{- ilC:l 2 

B- --+ Jl'l/.'1r - Ro IGI2 

B- --+ J I '1/;rr- TJo ~ :2IGI2 
3 ·'I 

B- --+ J 1'1/J K- ]{0 siiGI2 

B~ --+ JI 'I/J rro7ro ~I2FI2 

B~ --+ J 1'1/J TJOTJO ~ I2F + tGI2 

B~ --+ j 1'1/J Ko J{o I2F + Gl2 

B~--+ J/'lj•K+ f(- I2F + Gl2 

B~ --+ J f'lj;rr+rr- I2FI2 
B~--+ Jl l/; J\+7r- siiGI2 

B~ --+ JI'I/'Ko7ro ~si IGI2 

B~ --+ J N,Ko1lo isilGI2 
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Table 5.9. SU(3)J predictions for decays E -+ J 17/JM !vf, when the relative 

orbital angular momentum of the two pseudoscalar mesons is odd. Rates are 

normalized to that for E 0 -+ J I'I/J1r+ ](-. 

Process Rate 

Eo-+ JI'I/J7r+J(- 1 

Bo -+ J I 7/J1ro J(o 1 
2 

Eo-+ JI'I/Jryo](o 3 
2 

Eo -+ J I'I/J7r+7r- s2 
1 

Eo-+ JI'I/JKORO s2 
1 

E--+ JI'I/J7r0](- 1 
2 

E- -+ J I'I/J1r- J{O 1 

B--+ JI'I/Jryof{- 3 
2 

E- -+ J I'I/J7ro7r- 2s2 
1 

B- -+ J I'I/JK0 J(- s2 
1 

B~ -+ J 17/JK+ K- 1 

E~ -+ J I 1/J Ko [(O 1 

B~ -+ J I'I/JK+1r- s2 
1 

B~-+ JI'I/JI\oryo ~s2 
2 1 

B~-+ JI'I/JKo7ro .!.s2 
2 ] 
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Table 5.10. Implications of SU(3)J symmetry for Cabibbo-al1owed decays E-+ 

Dlvf M, where the relative angular momentum of the i\1 mesons is even. 

Process Rate 

Eo -+ no7ro7ro ~J2e + c + b- aJ2 

Bo -+ no1Jo1Jo lJ2e + lc + lb + laJ2 2 3 3 3 

Eo -+ norJo7ro tJc- bJ2 
Eo -+ no7r+7r- J2e + d + c + bJ 2 

Eo -+ no J(O J(O J2e + bJ2 

Eo-+ no J(+ J(- J2e + cJ2 

Eo -+ n+1J07r- tl2f + d + 2c + aJ2 

Eo -+ n+7r-7ro ~Jd + aJ2 

Eo-+ n+ J(- J(O If+ cJ2 
Eo -+ n+ J?07r-

s Jd + cJ2 

Eo -+ n+ K-7ro 
s ~Jc- aJ2 

Eo -+ nt K-Tfo tic- aJ2 

E- -+ no7ro7r- ~Jd + aJ2 

E- -+ no1Jo7r- tl2f + d + 2b + aJ2 

B- -+ n° K- !{0 If+ bJ2 

E- -+ n+1r- 1r- ~J2d + 2aJ2 

E--+ n;1r-f{- Jd + aJ2 

E 0 -+ n° h·+7r-s Jd + bJ2 

Eo -+ no f{o 7ro 
s ~lb- aJ2 

E~ -+ no 1\.o ,1o tlb- aJ2 
E~ -+ n+ J\0,.- Jd + aJ2 

E 0 -+ n+17°1r-s s tlf- dJ2 

Eo n+y-yo s-+ s\ \ If+ aJ2 
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Table 5.11. Implications of SU(3)J symmetry for Cabibbo-allowed decays B ~ 

DM M, where the relative orbital angular momentum of the !If mesons is odd. 

Rates are expressed in terms of five reduced matrix elements; a', b', c', d' and 

f'. 

Process Rate 

Eo ~ Do 17 o7ro tla'12 
Bo ~ Do7r+7r- ld'- c' + b'l2 

Bo ~Do J(OJ?.O lb'l2 
Eo ~ Do J(+ J(- lc'l2 
Eo ~ D+1Jo7r- tid'+ a'l2 
Eo ~ D+7r-7ro !I- 2/' + d'- 2c' + a'l2 

Eo ~ D+ J(- f{o If'+ c'l2 
Eo~ D+ J?.07r-

s ld'- c'l2 

Bo ~ D+ K-7ro s !l-c'+a'12 

E 0 ~ Dt K-17° tl3c' + a'12 

E- ~ Do7ro7r- tl2f' + d' + 2b'- a'l2 

E- ~ Dor,orr- tid'- a'12 
E- ~ Do]{- f{o If'+ b'l2 
E- ~ D;1r- K- ld'- a'12 

E 0 ~ D0 J(+rr-s ld' + b'l2 
Bo ~Do f{orro 

s !I- b' + a'l2 
Bo ~ Do f{o 17o tl3b' + a'l2 
B 0 ~ D+ K 0 rr-s ld' + a'l2 

Bo ~ D+1Jo7r-s s ~ld'l2 

Bo D+r-Fo s ~ s \ \ If'- a'l2 
Eo ~ D+7rorr-

s s 21/'12 
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Table 5.12. Implications of SU(3)J symmetry for Cabibbo- suppressed B --? 

nM !11 decays when the relative angular momentum of the Jf mesons is cYen. 

Process Rate (divided by si} 

Bo --? n+ 7ro ](- !if- dl2 

Eo --? n+7r- J{O If+ ai2 

Bo- n+.,o ](- ~1- f + dl2 

Bo - no 7r+ ](- ld + bl2 

Bo --? n+ J(O ](-
s ld + ai2 

Bo --? no7ro j{O !I- b + ai2 
Bo --? no .,o J(O ~~- b + ai2 

B- --? no7ro ](- tlf + d + b + ai 2 

E-- no7r- J(O if+ bl2 

B- - no.,o ](- il - f +d-b+ ai2 

B-- n+7r-x- id + ai2 

E- - n; K- K- 2ld + ai 2 

B~ --? n-}r.° K- !if+ ci2 

B~- n;1r-R 0 If+ ci2 

Bo --? n+'T]O ](-
s s tlf + 2d + c + 2al2 

Eo --? no rro1ro 
s !12e + ci2 

B~ --? no 1lo7Jo ! l2e + c/3 + L!b/3 - 2a/312 

B~- n°r.+rr- l2e + ci2 
Bo - no t. .. ·o !\o s l2e + bl 2 

Eo - no f{+ I\-s l2e + d + c + bl 2 

Bo - n+ 1\.o I\-s ld + ci2 

B~ --? no ryo1ro ~i-a+ci2 

B~ --? n+ '7°1r- ~ic- ai 2 
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Table 5.13. Implications of SU(3)J symmetry for Cabibbo-suppressed decays 

B - nAI M where the relative orbital angular momentum of the 111 mesons 

is odd. Rates are expressed in terms of the same five reduced matrix elements 

(a', b', c', d' and J') as the Cabi b bo-allowed case. 

Process Rate (divided by si) 

Eo- n+7ro K- tlf'- d'l2 

Eo - n+7r- J?O If'- a'l2 
Eo- n+.,o J(- !13!' + d'l2 

Eo- no7r+ ](- ld' + b'l2 
Eo - n+ J?O ](-s ld' + a'12 
Eo - no7ro J?O !lb'+a'l2 
Eo- no77o J?O il3b'- a'l2 
E- - no7ro f{_- tlf' + d' + b'- a'l2 
E- - n°rr- ]{0 If'+ b'l2 

E- - no.,o ](- il3f' + d' + 3b'- a'l2 

E - - n+7r-K- ld'- a'12 
Eo - n+7ro ]{-s s tlf' + c'12 

E2- n;7r-Ko If'+ c'l2 

Eo - n+.,o ]{-s s !13!'- 2d' + 3c'- 2a'1 2 

Eo - no7r+7r-s lc'12 
Eo - no 1.;o 1\-o s lb'l2 

E~- n° f{+ f{- ld' - c' + b'l2 
Eo - n+ 1\o I\-s ld'- c'l2 
E~ - Do1Jorro !la'l2 
Eo - n+7r07r-s 2lc'12 
E~ - n+.,0rr- ~la'l 2 
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Table 5.14. Implications of flavor SU(3)J for Cabibbo- allowed decays B -t 

nlJM assuming the effective Hamiltonian transforms as a 3. 

Process Rate 

B- -t no [JO ](- lrJ2 + 77412 

B- -t n+ n-K- 17741
2 

B- -t n°n-R0 lr12l2 

B- -t n° n;ry0 il- 27]2 + 7]312 

B- -t n° n;1r0 ~ITJ31 2 

B- -t nt n; ](- ITJ3 + TJ41
2 

B- -t n; n+1f- ITJ31
2 

Bo -t [JOn+ J(- ITJ21 2 

B0 
-t n+ n- J\0 1772 + 7]41 2 

B0 
-t n+ D; 17° i I - 2ryz + 173!2 

B0 
-t n° n-; r.+ ITJ31 2 

B0 
-t D+ n;r.0 

117J31
2 

B0 
-t n+ n-R0 

s s ITJ3 + 174!2 

Continued ... 



Table 5.14. Continued. 

Process Rate 

Bo --+ no tJO [(0 177412 

Bo --+ no jj01fo 
s !l77tl

2 

B~ --+ no jjo 17o ~1771- 27741 2 

Bo --+ tJO n+ 1f-s 17711 2 

Bo --+ jjO n+ J(-
s s 1771 + 77212 

B 0 --+ n-n°1r+ s 177112 

B 0 --+ n+ n-1fo 
s !l77tl2 

B~ --+ n+ n-17° ~1771 - 277·tl 2 

B 0 --+ n-n+ R0 
s s 17Jl + 112l

2 

B~ --+ n; n° J{+ 1771 + 77312 

B 0 --+ n-n+ I\0 
s s lrn + 7731 2 

B 0 --+ n+ n-q0 
s s s 21 12 3 '71 + 772 + 173 + 774 



Table 5.15. Implications of flavor SU(3)J for Cabibbo-suppressed decays B--+ 

DDJ\1. The effective Hamiltonian is assumed to transform as a 3. Entries in 

the second column should be multiplied by si when comparing with the results 

of Table XIV. 

Process Rate (divided by si) 

B- --+ Do jj07r- 1772 + 7741
2 

B- --+ D 0 D-1ro ~1- 772 + 7731
2 

B---+ D+ D_1r_ 1773 + 7741
2 

B- --+ D 0 D-77° i 1772 + 7731
2 

B- --+ D 0 D-; ]{ 0 
17721

2 

B- --+ DJ D-1\·- 17J31
2 

B- --+ DJ D-; 1r- l77-tl
2 

Bo --+ Do jjO 7ro ~17Jl - 7741
2 

Bo --+ Do jj0 17o 1 I 12 6 771 + 774 

B 0 --+ n- D 01r+ 1771 + 7731
2 

Bo --+ j)O DJ ]{- irJ1I
2 

Bo --+ n+ jj07r- 1771 + 7721
2 

Continued ... 
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Table 5.15. Continued. 

Process Rate (divided by si) 

B 0 ---+ n+ n-'ll"o tlr]l + T/2 + T/3 + T/41
2 

B 0 ---+ n+ n-TJo tiTJI + T/2 + T/3 + T/41
2 

B 0 ---+ n-n+ R0 
s ITJI + T/31

2 

B 0 ---+ n-n° ](+ s ITJtl
2 

B 0 ---+ n-; n+ ]{0 
ITJI + T/21

2 

B 0 ---+ n+ n-'ll"o s s t ITJ41
2 

B 0 ---+ n+ n-ry0 
s s tl- 2TJ1 + T/412 

Bo ---+ n+ [J01i-
s s ITJ2I

2 

B~ ---+ n; n-"iro t ITJ2I
2 

B0 ---+ n+ n-TJo s s {; ITJ2 - 2TJ31 2 

B 0 n+n-r0 
s--t s s\ ITJ2 + TJ41

2 

B~ ---+ n° n- ]{+ ITJ31
2 

B 0 ---+ n+ n-I\0 
s ITJ3 + TJ41

2 

Bo --t no j)O J(O 
s ITJ41

2 
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ADDENDUM 

In deriving our results for charmed baryon, B-meson and D-mcson decays we 

neglected the mixing between the pseudoscalar mesons in the octet and the SU(3) 

singlet. The isosinglet octet meson, the T] 0, mixes slightly with the isosinglet SU(3) 

singlet meson, the TJ'0 . The mixing angle between the mass eigestates and the SU (3) 

eigenstates is approximately 13°. We will again assume that the SU(3) eigenstates 

are the mass eigenstates and derive relations between the decay rates to final states 

containing an TJ10 meson. 

Let us begin by considering the process D ---+ MTJ', where M is a pseudoscalar 

octet meson. The effective Hamiltonian for the process is 

(6.1) 

From this effective Hamiltonian we find that there are the following relations 

f(DO---+ Jt1TJ'O) = _;f(DO---+ T]o 1110) = 2?f(DO---+ 1f0T}10) = --;.r(Do---+ ](OTJ'o) 
3sr sr sl 

(6.2a) 

r(n;- 1f+TJ'0) = \r(n+- 1f+TJ'0) = 1
2r(n;- K+17'0) = _.;.r(v+- K+TJ'0) 

sl sl sl 

(G.2b) 

\Ve can also derive relations for B-meson decays. In the case of B ---+ DTJ' we find 

that only one SU(3) singlet can be formed, consequently 

(6 .3) 

The same is true for the decays B---+ Jj'lj•ry' where we find 

(6.4) 

There are two reduced matrix elements that contribute to the decay B ---+ Dry', 

and there are no relations bebveen the decay modes. However, if either the 3 or the 
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6 components of the Hamiltonian dominates the decay then 

(6.5) 

Finally, we consider the decays B -t Mr/ which are induced by the b -t u 

coupling. There are three reduced matrix elements that contribute to the decay 

process and the effective Hamiltonian is 

There are no relations between the Cabibbo-allowed decay rates. The decay rates for 

the modes are 

B- - 10 
-t 7r TJ IA3+ 3AI5 + A61 2 (6.7a) 

B~ -t 'lrOTJIO 1 2 21- A3+ 5AIT- A61 (6.7b) 

B~ -t ,.,o,.,,o 1 2 6IA3+ 3AIT- 3A61 (6.7c) 

Eo yo 10 s -t \. TJ IA3- AIT- A61 2 (6.7 d) 

As we previously discussed, the Cabibbo-suppressed decay could be dominated by 

the penguin diagrams. If the penguin diagrams do dominate the decay process then 

the following relations are found 

(6.8) 
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