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Abstract

We present the first experimental evidence that the heat capacity of superfluid ‘He,
at temperatures very close to the lambda transition temperature, T), is enhanced by
a constant heat flux, (). The heat capacity at constant (), Cp, is predicted to diverge
at a temperature T.(Q) < T\ at which superflow becomes unstable. In agreement
with previous measurements, we find that dissipation enters our cell at a temperature,
Thas(@), below the theoretical value, T,.((2). Our measurements of Cp were taken
using the discrete pulse method at fourteen different heat flux values in the range
1 ,r.'.\'\'/(tm2 < Q<4 uW /cmz. The excess heat capacity ACy we measure has the
predicted scaling behavior as a function of T and Q: ACy - t* x (Q/Q.)*, where
Q.(T) ~ t** is the critical heat current that results from the inversion of the equation
for T,(€2). We find that if the theoretical value of T,(Q) is correct, then ACy is
considerably larger than anticipated. On the other hand, if T.(Q) =~ Thas(Q), then

Ay is the same magnitude as the theoretically predicted enhancement.
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Chapter 1 Introduction

The superfluid transition in "He is an ideal testing ground for studies of critical phe-
nomena. It is uniquely suited for this enterprise: it is a transition in the liquid state,
so it is not affected by strains or defects that affect transitions in solids; it occurs
at low temperature, so most impurities in the sample are frozen out; and finally, be-
cause helinm has a large thermal conductivity, particularly in the superfluid phase,
its thermal relaxation times are extremely short. making it possible to obtain mea-
surements at equilibrium on reasonable time scales. The lambda transition is, in fact,
the sharpest cooperative transition discovered so far [1]. As a result, it is probably
the best characterized phase transition on earth. And in space: experiments to mea-
sure finite size effects (Confined Helium Experiment—CHEX) and the heat capacity
of "He (Lambda Point Experiment—LPE) [2] were recently flown aboard the space
shuttle, removing the one inhomogencity encountered in earth-bound samples—the
gravitationally induced pressure dependence of the local transition temperature. The
results of this experiment were in remarkable agreement with theoretical predictions.

Above the superfluid transition temperature, Ty, "He is a normal fluid with a finite
thermal conductivity, so the application of a heat flux creates a nonequilibrium state
in which there is a temperature gradient in the sample. Below Ty, "He is a superfluid
with near-infinite thermal conductivity. On this side of the transition it is therefore
possible to apply a heat flux while maintaining a uniform temperature throughout
the sample. This turns out to create an unusual situation in which thermodynamics
may be used to describe a system that is not in equilibrinm. The heat flux therefore
creates an excellent svstem in which to explore the effects of dynamical conditions on
phase transitions.

There have been a number of predictions about the way that a constant heat flux
will affect the superfluid transition. It is expected that Q will depress the transition

temperature [3 7|, and that it will significantly change the thermodynamic properties
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in the vicinity of the transition. In particular, it has been predicted that a constant
heat flux will cause the heat capacity to diverge at the depressed transition tempera-
ture [8, 9]. Tt is expected that it will diverge far more strongly than its near-logrithmic
behavior in the absence of a heat current, and that this divergence occurs while the
superfluid density remains finite.

Although there has been a considerable amount of theoretical work on this topic in
recent years [4,6,9-18], the physics in the vicinity of the non-equilibrium transition is
far from understood. Experimental measurements [19] indicate that the temperature
at which superfluidity vanishes is, indeed, depressed by (2. although the magnitude
of the depression differs significantly from that predicted by current theories [12,18].
The first measurements of the heat capacity comprise the work of this thesis.

One might well ask why such a strong divergence has only now been observed.
After all, over the course of the past sixty vears, there have been numerous experi-
ments investigating the physics of helium under heat flow, and it would seem that if
there were a huge anomaly in the specific heat, one of these experiments might well

have stumbled upon it. There are two main reasons why this did not happen:

1. Although the heat capacity divergence is expected to be quite strong, the
temperature range over which it is predicted to be different from that of the
usual static transition is extremely small. For example, for a heat current of
10 pW /(1:112._ the transition temperature, 7,.(QQ), should be depressed by only
1.1 uK, and the heat capacity should only be measureably enhanced in the
region within approximately 1 gl below T.(Q2). Therefore, in order to con-
clusively observe the effect of a heat current on the heat capacity, extremely
sensitive thermometry is essential. Thermometers of this caliber were only de-
veloped in recent vears [20, 21] for LPE. These instruments have evolved to the
point where they are now limited only by the thermal fluctuations intrinsic to

any finite sample in contact with a heat reservoir (21, 22].

2. Under most conditions, the heat capacity enhancement is masked by various

other phenomena. When high heat currents are applied to "He, it becomes
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dissipative. and thermal gradients appear that interfere with a measurement of
the heat capacity [23,24]. When low heat currents are applied to superfluid
'He. the temperature range of the effect becomes smaller than the variation of

the transition temperature throughout the cell due to gravity.

Therefore, in order to see evidence of the predicted ‘strong divergence’, it was nec-
essary to take our data [25] in an experimental cell that was less than 1 mm high,
over a very specific range of Q. with thermometers that have a resolution better than
10~'% K [26].

Before proceeding to the specific theoretical predictions and experiments that both
motivated and composed this project. I will first outline a few of the essential relations

and concepts that will be used in subsequent derivations and discussions.

1.1 Superfluidity and the two-fluid model

Soon after helium was liquified in 1908 by Heike Kamerlingh Onnes, it became clear
that it had a number of strange properties that are not shared by other substances [27].
For one, helium refuses to freeze under its saturated vapor pressure. In fact, it is the
only substance that remains a liquid all the way down to absolute zero. It is necessary
to apply pressures in excess of 25 atmospheres to produce the solid phase (see Fig. 1.1).

Under a pressure of 1 atmosphere, *He liquifies at 4.21 K. When it is cooled further,
it undergoes another phase transformation from one liquid state to another. This
transition is accompanied by a near-logrithmic divergence in the specific heat that
resembles the Greek letter A. This curve, shown at various reduced temperatures in
Fig. 1.2, is what gives the transition its name. The transition occurs at a temperature
T\ = 2.1768 K' under saturated vapor pressure. The state above T) is known as He |
and the state below T, as He I1.

While He I is a normal viscous fluid, He 11 is a superfluid that exhibits a number of

unusual characteristics. It has the peculiar ability to flow without dissipation, and it

Ty = 2.1768 K on the Tyo temperature scale. Many references quoted in this thesis use the
Trg value of T, = 2.1720 K. Reference [30] has compiled all measurements of the equilibrium and
transport properties of "He known at the time of publication, and converted them to the Ty scale,
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has an extremely large thermal conductivity. In addition, experiments investigating
the viscosity of He 1l give different results depending on the way in which they
are performed. Measurements indicate that it can flow through capillaries or small
holes without resistance and therefore has no viscosity at all. However, il an object is
dragged through the liquid, it encounters a small resistance that changes as a function
of temperature, implying that it has a finite, albeit small, viscosity.

This strange inconsistency can be explained by the two-fluid model that was first
introduced in 1938 by Tisza [33]. and considerably modified several vears later by
Landau [34,35]. In this empirical description of superfluidity, He Il is composed of
two completely interpenetrating, inseparable fluids. One, the normal fluid, possesses
an ordinary viscosity, and the other, the so-called superfluid, has no viscosity at all.
The normal fluid has density p,. velocity v,, and entropy S. The superfluid has
density p, and velocity v,. but carries no entropy. The total density p of the helium

is simply the sum of its two separate densities,

p = pn+ pPs. (1.1)

While the total density is more or less independent of temperature, and is equal

- 3 [ ; . - . .
to 0.145 g/em” [30], the superfluid and normal fluid densities change as a function
of temperature. The total mass current density of the helium, j, can be expressed in

terms of the currents of the two fluids

J=pV=p,Vp+ psVs. (1.2)

When helinm is forced to flow through small channels, the normal fluid is held to
the walls by its viscosity, while the superfluid flows through without impedence. An
object dragged through the helium, however, encounters the resistance of the normal
fluid. Experiments of the second kind can therefore be performed to determine the
dependence of p, and p, on temperature. A torsional oscillator experiment of this
sort, performed by Andronikashvili [36]. indicates that the normal fluid fraction,

pn/ p. is equal to unity at the superfluid transition. but decreases to zero at absolute
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Figure 1.3: The superfluid and normal fluid densities as measured in Andronikashvili’s
experiment. (From Donnelly [37], page 17.)

zero. The results of this experiment are shown in Fig. 1.3. Near the lambda point,

the superfluid density vanishes as

Py = po £, (1.3)
where ¢ = 0.671 is a universal exponent, py = 0.38 g/clngﬂ and f is the reduced
temperature,

=T
= 1.4
- (1.4

A theoretical basis for the two-fluid model was provided in 1941 by Landau [34, 35].
He described superfluid helium as a weakly excited quantum system, in which a gas
of excitations, or quasiparticles, moves within a background fluid that lies in an unex-
cited state. At absolute zero, the helium consists entirely of this perfect background
fluid and flows without dissipation. At higher temperatures, excitations are created
that can collide with each other and with the walls of the container, causing the fluid

to exhibit some of the properties of a normal fluid, such as viscosity. These excita-
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Figure 1.4: He Il excitation spectrum obtained from neutron scattering experiments.
(From Tilley and Tilley [41], page 44 — after Henshaw and Woods [40].)

tions are collective excitations of the system, rather than individual excited particles.
In the two fluid model, the normal fluid is identified with the gas of quasiparticles,
while the superfluid is identified with the perfect background fluid.

Landau also presented the essential features of the quasiparticle energy spectrum,
shown in Fig. 1.4, based on phenomenological arguments. He showed that at low ener-
gies the dispersion curve is a straight line and the excitations are phonons. At higher
energies, the curve reaches a local maximum before dipping down to a local minimum.
The excitations in the region of the minimum are called rotons, and they are the only
other major contribution to the thermodvnamic behavior of superfluid helium. The
thermodynamic functions can be calculated very accurately for this distribution, ex-
cept in the vicinity of the lambda point, where the quasiparticle density becomes
extremely high [37]. Landau’s spectrum was later confirmed by neutron-scattering

experiments [38-40].
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1.2 Heat transport in superfluid ‘He

As previously mentioned, superfluid *He has an extremely large thermal conductivity.
When applied heat currents are small, it is impossible to set up any temperature
gradients whatsoever within the bulk liquid. In this limit, its thermal conductivity
is effectively infinite. Heat flow of this kind must clearly be attributed to a different
process than standard conduction. It can, in fact, be explained by the two-fluid
model.

When heat is applied to helium, the normal fluid, which carries all the entropy.
flows from the heated end of the cell to the cold end. Because the total density of
the liquid remains constant, the superfluid component flows in the opposite direction,
towards the heater. When it reaches the hot end of the cell, it heats up. converts to

normal fluid, and then returns once again to the cold end. The heat current density

is
Q=pST v,. (1.5)
When there is no net mass flow, j = 0, and so according to (1.2). p,v, = —pv,. This
implies that
Q = (pn + ps) ST v, = p, ST (v, — vs). (1.6)

A heat current therefore sets up a counterflow, W = v,, — v, between the superfluid
ki

and the normal fluid velocities (see Fig. 1.5).

1.3 The static superfluid transition

When it was first discovered. the superfluid transtion was compared to the conden-
sation of an ideal Bose gas [29]. It was thought that below T}, the helium atoms
start to populate the ground state of the system, forming a condensate. It was this

comparison that lead to Tizsa’s development of the two-fluid model. The atoms in



4He i{ ;
Vn T T & \”s-;
Normal
Component

Superfiuid
Component

IJW\’_I Heater

Figure 1.5: Heat is supplied at the bottom of a cell of He II, establishing a counterflow
W = v, — v, in the superfluid.

the condensate are in a single quantum state, so all that is needed to describe them

is a single ‘condensate wave-function’,

't,-"lf' - <l]}> == 'l/'!/'” P‘im. (1?)

Where ¥ is the Bose field operator and ny = v gives the number density of atoms
in the condensate.

Although this was a compelling suggestion, the lambda transition is clearly not a
direct manifestation of the condensation of an ideal Bose gas. In helium, the forces
between the atoms have a significant effect on the behavior of the fluid, and cannot
be ignored. Theory indicates that these interactions deplete the condensate, so that
even at absolute zero only about ten percent of the helium atoms occupy the zero
momentum state [42,43].

Because the lambda transition is second order, it can be described, at least qual-

itatively, by the Landau theory of phase transitions [44]. Its change in state can be
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desceribed in terms of an order parameter that characterizes its distance from critical-
ity. For the lambda transition. the order parameter is identified to be the condensate
wave-function defined by (1.7).
The superfluid motion is a response to order parameter phase twists, and one has

the relation:

v, = —Vo, (1.8)

where my is the "He atomic mass. The change in free energy AF = %p_.,.vf for small v,
then serves to define the equilibrium p,. On the other hand, the condensate density
ng is in general an independent thermodynamic quantity, unrelated to p,.

Many of the elements of the transition can be derived by the application of Landau
mean-field-theory (MFT) in the form of a power-law expansion of ¢ and its gradients.
This description assumes that the system can be accurately described by the average
value of the order parameter, and neglects any fluctuations about this mean value.
In superfluid helinm, fluctuations are always important, and there is no temperature
range for which the MFT is strictly valid. As with other critical point transitions,
these fluctuations lead to singularities in many properties of the system near the
lambda point, and must be treated through proper application of critical scaling

laws. renormalization group (RG) theory, and other theoretical tools.

1.4 Heat flow and the superfluid transition

The application of a heat flux significantly alters the lambda transition. As was
previously mentioned, the most outstanding observable changes are predicted to be a
depression of the transition temperature and a strong divergence of the specific heat.
The gualitative features of these two effects can be derived from extremely simple

argumments.
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1.4.1 The depressed temperature of superfluid breakdown

If a heat flux, 2, is applied to the bottom of a cell of superfluid helium, and heat
is removed from the top at an equal rate, the helium remains isothermal, and a
counterflow is created between the superfluid and the normal fluid. For a closed cell
there is no net mass flow, so according to (1.6), Q = p, STW. We can henceforth
drop the vector notation without ambiguity, since all of the motion in this particular
case is only in one direction (see Fig. 1.5).

The presence of a counterflow gives the system an extra degree of thermodynamic
freedom, so it is therefore expected that the superfluid density, p,, should be a func-
tion of W (at least at larger W) as well as of temperature and pressure. There is
little experimental data to elucidate the dependence of p, on W. The only experi-
ment to date is a measurement by Hess [45] that took place well below T). His results
are consistent with a calculation of the dependence of p, (and by extension p,) on
W derived from the spectrum of elementary excitations [34,46,47]. In the vicinity
of the lambda transition, where no experimental measurements exist and elemen-
tary excitation theory is expected to fail, we must rely on phase transition theory.
Both MET [48] and RG theory [6] predict? that p, will be sufficiently depressed by
W that the quantity ¢ = p, (W)W will eventually decrease with increasing W (see
Figs. 1.6 and 1.8). Because S and 1" are more or less constant in the vicinity of the
transition, () o ¢ according to (1.6). This implies that for any given temperature,
there is a maximum heat current bevond which superflow becomes unstable. This
heat current occurs at the peak, when (0Q/9W ) = 0. We may therefore define a
set of points in the T — ) plane that acts as a boundary beyond which superfluidity
cannot exist. We label this curve as T,(Q), or Q.(T). The fact that T.(Q) < T
follows because p,(W) > 0 at this point.

For experiments in which the heat flux, (2, is held constant, the instability occurs
in the following way. Far below T, the superfluid fraction is relatively large, so

an applied heat flux results in a small counterflow velocity. As the temperature of

2The form of p (W) for these theories will be explicitly discussed in Sec. 1.6.1.
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Figure 1.6: (a) p, depressed by W, calculated using mean-field theory; (b) the result-
ing value of ¢ = p, (W)W



WpS(W. T) (arbitrary units)

q-._-

W (arbitrary units)

Figure 1.7: Fixed ). changing T'. Thick solid lines: the function ¢ = p (W, T)TW
for various values of T'. Dashed line: The value of ¢ = gey = Q/ST fixed in the
experiment. The intersection of a given ¢(7) curve and g, gives the counterflow
velocity induced by the applied heat Hux Q at that temperature T'. When T > T,
no value of W satisfies () = ST p, (W)W and superflow breaks down.

the helium is raised, the system will react by decreasing the superfluid density and
increasing the counterflow velocity. Because @ is fixed, it must do this in such a way
that the product of the two remains constant. When the temperature is raised to
T.(Q), the system reaches a point where it will not be able to increase 11” while keeping
() constant. This happens when p; is sufficiently depressed by the counterflow that
any further increase in " will cause the product pg(W)W to decrease (see Fig. 1.7).
At T,.() the heat flux can no longer be carried by a counterflow, and superfluidity

will break down.

1.4.2 Heat capacity divergence

The divergence of the heat capacity can be understood in similar terms. As the

temperature is raised, the superfluid density decreases, and the counterflow velocity
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must increase in order to carry the heat current. The kinetic energy associated with
this counterflow is equal to %/}SH'Z = (psW)?/2p,. Since the quantity p,V" is held
fixed in any experiment in which @ is fixed, any decrease in p, leads to an increase
in the kinetic energy. Therefore, an increase in the temperature of the system is
accompanied by an increase in the kinetic energy. Since the heat capacity, Cy, is
simply the amount of energy that must be added to raise the temperature of the
fluid at fixed (2, there is an enhancement of the heat capacity. In fact, because p; is
depressed by 1, the counterflow velocity must increase by more and more to keep
() steady as the temperature is incrementally raised towards 7,((2). An increasing
amount of energy is therefore required to raise the temperature, and the heat capacity
ultimately diverges at the instability.

The necessity of the divergence in the heat capacity can be put on a bit firmer
ground with the help of thermodynamics [8]. The presence of a counterflow in su-
perfluid helium introduces a new pair of conjugate variables to the thermodynamic
description of the system. This new pair consists of W and ¢, where W is the coun-
terflow velocity, and ¢ = p,11" is the superfluid momentum in the normal fluid frame.

The free energy at constant density can then be written

dF = —sdT + qdW, (1.9)

where s is the entropy density.
As we have seen before. keeping (2 = ST p, W constant is equivalent to keeping ¢

constant. At constant ¢, the proper free energy to use is ¢(7,q) = F(T,W) — Wy,

vielding d® = —sdT — Wdg. The molar heat capacity at constant @) is:
D
Co=-TV|=—] , 1.10
# (UTz . 1.10)
2
where V7 = 27.38 em® /mol is the molar volume.

In order to see why this quantity necessarily diverges, we can employ a proof that
is identical to the one that relates C'p and -, shown in all standard thermodynamics

texts [49]. We start with the entropy density s(7,117). and find that



s s "
Therefore,
f Os ds oW
Co=TV | — = Cw Wl —— — : 12
= (f)T)Q ) (a]]')_l_((')’]‘)(, t)

From (1.9), we obtain the Maxwell relation

dq _ [ 09s i
(0—1‘)“._ (e)n'),,,‘ L

and the expression for the heat capacity becomes

| Oq o
i Oy - [ il A
Q " (i)T)”. (8]‘")”' (1.14)

where we have used the fact that fixing @ is equivalent to fixing ¢. We now simply

L T L (1.15)
ar ), \aw ) \aq ), = o

(9q/0T)3,
(Dg/OW ),

employ the identity,

to find

Co=Cw+TV (1.16)

We have already seen that superflow breaks down when (dq/0W ) = 0. The fact
that this quantity appears in the denominator of (1.16) implies that (' also diverges
at this point. This result will be true so long as p, is depressed sufficiently by W that

q = ps(W)W eventually decreases with W [see Figs. 1.6(b) and 1.8(b)].



16
1.5 The exponents related to the superfluid tran-

sition under heat flow

1.5.1 The exponent of the transition temperature depression

For finite values of Q, T,(Q) lies below T\.* As Q approaches zero, T,.(QQ) approaches
T,(QQ = 0). In order to determine a more precise relationship between these two
temperatures, we can employ scaling arguments to determine the singular behavior
of the heat flux [7]. The idea behind the scaling hypothesis is that all singularities
that occur in the vicinity of the critical point are caused by fluctuations that are
correlated over a length of order £ As the svstem approaches the transition, and
& — oo, microscopic length scales are no longer important. The only length that
matters is &.

Near Ty, Q = p,WST ~ —p,0,ST. Since S and T are constants, the only terms

that exhibit singular behavior are p, and v,. For the purpose of calculating exponents,

2
sc

we may therefore write Q. ~ (ps.vi.)/vse. The numerator is a singular term in the

free energy density that is inversely proportional to the correlation volume,

2
SC

" Igel! i -
[ Prese o gd, (1.17)

The scaling properties of the denominator can be determined from the properties of
the superfluid order parameter. According to (1.8) and (1.7),
Vi
Voe ~ Vp ~v —. (1.18)

)
Therefore, v, has the character of an inverse length. Since the correlation length is
the only relevant length near the critical point, vy ~ £ '. Putting all these relations
together, we find @, ~ £79€"'. The correlation length diverges as ¢, where v =
0.6705 [50,51] is the correlation length exponent and ¢ is the reduced temperature.

Therefore, Q. ~ t*'=Y_ Inverting this equation and substituting d = 3, we find that

3Some of the text in this section appears in Goodstein, Chui, and Harter [7].
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T — T :
to= D=T@) oL (1.19)
Iy

1.5.2 The exponent of the heat capacity divergence

In the vicinity of the divergence, (1.16) indicates that Cg ~ 1/ (dq/0W),;.. We can

expand ¢ about g, the value of ¢ at the transition:

dq . s o b Y : - :
et (ot W —Myes ot W — W.)2+ ... 2
S (0“ )n‘,.( rE 2 (8” 2)\1;( A —

Since (Jg/OW )y, = 0, and (9%q/OW?)y, < 0, this implies that gq. — g ~ (W, — W)2,

and (dq/IW )y ~ W, — W. Therefore. for measurements at fixed 7' < T,

, 1 1 i

For measurements at fixed ¢ > 0, with 7,.(Q) defined by Q.(7,) = @2, one has

cz(-('r)cg,.mw(@) T =T % ... (1.22)
oT T=T.

Since 9Q,./0T is finite at T =T,, Q. — () ~ T, — T to leading order, and
Co~ 072, (1.23)

where # is the reduced temperature with respect to 7,.((2),

T.-T

0=
T

(1.24)

The heat capacity divergence at fixed () is therefore considerably stronger than its
near-logrithmic behavior with no heat current.
This analysis neglects the fluctuations in W, which are predicted to diverge at

T.(Q). The exponent will be influenced by these fluctuations.
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1.6 Predictions for the magnitude of the heat ca-

pacity enhancement

The magnitude of the heat capacity enhancement can be derived from the expression
for the free energy.’ From (1.9). in experiments where the counterflow velocity is held

constant, the change in the free energy is

w
AF = F(T,W) - F(T,0) = f ps(WHW!'dW", (1.25)
]
Likewise, when () is held constant, the change in the relevant free energy is
- - & g T .y ,
AP =&(T,q) — ®(T,0) = — Wdg = — —dq'. (1.26)
0 L0 B

In order to use these two expressions to calculate the change in the heat capacity, we

need to know the dependance of p, on 1.

1.6.1 The depression of p, with I

We will calculate py(7. W) using three different theories: the MFT [48], which we
modify by using empirical exponents, the ¢ theory [52], and RG theory.” These

theories all start from a mean-field expansion,

Fut = al|* + Blv|! + J|Vu|* + M|, {(1-27)

which is written in the frame of reference of the normal fluid. Here o, 3, J and M
are expansion coefficients, M is zero except in the ¢ theory, the macroscopic wave
function is given by ¢ = ¥y e, and v, = (h/m)V¢ (equal to the laboratory frame
W = v, — v,), and m is the mass of a "He atom. The parameter o plays the role of

the reduced temperature, with the equilibrium mean field transition to superfluidity

4Some of the text in the next section appear in Chui, Goodstein, Harter, and Mukhopadhyay [8].

"We will explicitly use the results of HD [6] in this discussion. More recently, Haussmann has
modified this theory to obtain another prediction for C¢ that includes the effects of vortices. The
results of Haussmann’s theory will also be compared to our data.
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occurring when o become negative. For a uniform v, one obtains
o 2N 12 | 3l 6 .
For = (o 4+ Jkg)g + By + My, (1.28)

where ky = mu,/h.
The expression for ¢z (117) is obtained by minimizing F,; with respect to v. The
superfluid density is obtained by substituting v (117) back into F,;; and computing

ps = (1 v )(OF e /0vs) All three theories give p (W.T) in the form
p(W,T) = pAW = 0,T) fir), (1.29)

where x = W/W and W, is a characteristic velocity given by W, = h/mé&. Within
mean field theory, for o < 0, one has £ = \/—.J/2a. For comparison with experimental
data we will use the substitutions £ = & (2¢) ", where & = 1.43 x 107® em [53]. The
characteristic velocity W, can be expressed as W, = Wy t”, where W, = h2"/mé&, =
175.4 m/sec.

We find that for MFT, p,(W = 0) = 2a*m?€%/h*3. f(k) = 1 — 2x2, and, using

this same form for p, (" = 0), for ¢» theory,

2(1 — &%) 2u(1 — 2K2)* .
f(x) = = _ ’q( ) _ . (1.30)
L+ /1—p(1=262) /1= p(1 = 262)[1 + /1 — p(1 — 262)]2
where 1 = —3Ma /3% is the scaling combination for M which vanishes as o — 0.

indicating that M plays no role near the transition.
For HD theory, f(r) is given by equations (5.12), (C11), and (C3) in [6], and is
shown in Fig. 1.8. All three theories predict that pg is sufliciently depressed to cause

superflow to break down.

1.6.2 The calculation of 'y

Next we compute the heat capacity enhancement using these expressions for p,(W).

We first treat the case where the counterflow velocity, W, is held constant. This
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experiment has not vet been performed, but the expression for 'y is embedded
within the expression for (g, the quantity measured in our experiment. From (1.25).

the change in the free energy due to the presence of a counterflow is:
-l &
AF = p_.,.(l))H,z/ wfi{x) de. (1.31)
0

The heat capacity is changed by
I ] g )

[ OPAF(T, W)
ACy = TV | ————— g 1.32
" ("2 ). (1.32)
where V7' = 27.38 em?®/mol is the molar volume. Using p.(0) = pot¢, where py, =

0.370 g/em” [54]. together with the scaling relation ( = v = (2 — a)/3. we obtain

ACw t* = —Cyv [3(3:} ~ 1)/ zf(z)dr — (4v — 1) K*f (k) + :/h“*%(—h—)] . (1.33)
0 [
where 'y = VpoWE/T\ = 143 J/mol K. For MFT, this reduces to
. e Covk? .,
ACwt* = ——[(1-») + (1 +v)&]. (1.34)

For v theory and for HD theory, (1.33) is evaluated using numerical differentiation
and integration. The results are shown in Fig. 1.9(a). Cy approaches a finite constant

at k. = W,./W, in all three theories.

1.6.3 The calculation of ('
The divergence of C'y occurs because p, is depressed by W. However, the heat capacity
would still be enhanced by the presence of a heat flux even if p, were not depressed

at all. In this limit, p, = py t¢, and

(I 1 7@\ § et -
ae o P 20, \ST 2p0 \ST (1.35)
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Mean field | HD theory | H theory

Ko 1/V6 0.397 ?
f(re) 2/3 0.790 ?
Qo = Q./t* (W/cm?) 6082 7395 6571

Table 1.1: A summary of #,., f(x.), and Q./t*.

Therefore,
[ OPAD Q*¢C(C + 1) i
ACy = -T1 = f‘““’. 1.36
@ ( ()TZ ) 2[)().5‘!T,\ { ))
Since Q, = Qut*”, ¢ = v, and a = 2 — 3r, we can rewrite this expression as
v+ )V [ Q)
t"ACop=——— | =] , 1.37
QT TS \Q. (1.37)

which gives a finite enhancement for all Q@ < Q.(7T) or all T < T,.(Q).
When p, is depressed by W, the heat capacity is given by (1.16), and the heat
capacity enhancement is

: (aq/DT)'f‘, '

ACQ = ACw + T} (aq/()”)r

(1.38)

Substituting the expression defined in (1.29) for py(W), ¢ = p,WW = pof (k)W

the heat capacity enhancement becomes:

) ) 5 o Al dkf
A '() = ACw + Cj 122 2 [ ﬁh( - )] / . (]_,39)
7
These results can be expressed in terms of the variable p = /(.. by using the

relation o = k f(r)/[k.f(K.)] obtained from the expression Q = p (W)W ST. The
values for .. f(r.). and Q./t?" are listed in Table 1.1.

For the mean-field theory,

1" ACq = Covic® (1.40)

(v + 1)+ 5 — 1)K% + 2(v — 3)x*
2(1 — 6K2) '




At small o, this reduces to:

y

O L . .
1" AC = <tw(v + 1)K f2(ke) o [140.9650° + O(0")] . (1.41)

By comparing this expression to (1.36), we see that the first term in this expansion is
the enhancement in C'y that would result from a counterflow if p, were not depressed
by W. Figure 1.9(b) shows that all three theories give a divergent Cg. Again, the
results for the ¢/ theory and the HD theory are obtained numerically. Because Q). is
different for the three theories, we have used Q/QM" as the x axis, so that all three
theories can be plotted on the same scale. Here Q' is the critical heat current given
by HD. Figure 1.10 shows the divergence based on HD theory as a function of ¢ for

various values of Q.
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Figure 1.10: Solid lines: ACYy, as calculated for HD theory [6,8]. for various values
of (. The units of @ are [l\'\"/l‘lllz. Dotted-dashed lines: the temperatures at which
superflow was observed to break down at these () values by Duncan. Ahlers, and
Steinberg [19] [This temperature will be called tpa5(Q)]. These lines indicate how
much of the enhancement our experiment expected to measure. Shaded region: the
area cut off by the gravity width of our 0.064 cm high cell.



()
(b |

Haussmann’s theory

Haussmann recently performed another RG calculation based on model F. His ap-
proach permits the order parameter (/) to equal zero both above and below T), and
includes the effect of vortices [18]. He found 7,.(Q) to be at a slightly lower tempera-
ture than the value calculated previously by Haussmann and Dohm [6]. He also found
a stronger enhancement of C'g. His function reaches a maximum at 7.(Q) instead of

showing a divergence® (see Fig. 1.11).
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Figure 1.11: Cgp for Q = 42.9 uW /em?. Solid line: theory of Haussmann [18]. Dashed
line: previous theories [8, 9], where vortices were neglected. Dotted line: specific heat
with @ = 0. The arrow indicates AT.(Q). (From Haussmann (18], Fig. 7.)

8Since the divergence of C'g is predicted by thermodynamics, Haussmann’s failure to predict a
divergence is due to the fact that his calculation takes into account dissipative effects, and therefore
smears out the transition in much the same way as gravity smears out the zero @@ transition. In
particular his calculation accounts for a finite temperature gradient in the superfluid phase.
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1.7 The nature of the superfluid transition under

heat flow

The critical heat flux, Q.. reflects a thermodynamic instability in the counterflow ve-
locity. It is the point at which convective heat transport can no longer be supported
by the fluid, and superfluidity must break down. This transition is clearly not the
same as the ordinary superfluid transition, since the superfluid density p, is not equal
to zero at T,((2). It has been considered to be analogous to the spinodal line of a first
order phase transition, where a homogeneous metastable state becomes unstable at
a finite value of the order parameter (and the superfluid density) [4,6]. The singu-
lar objects produced by this instability are vortices [14]. This transition also bears
some resemblance to a distinet phase transformation, even though thermal gradients
preclude there from being an equilibrium normal phase of finite () on the other side
of the transition [8]. When a system is characterized by a pair of conjugate variables
(pressure-volume, concentration-chemical potential, magnetization-magnetic field), a
phase transition usually occurs when the generalized susceptibility diverges (gas-liquid
critical point, binary mixture phase separation, Curie point). In this particular case,
g and W are a new conjugate pair whose susceptibility, (9W/dq), ~ (dq/OW ),
diverges at T.((2). By analogy to other cases, W, instead of p,, might be the order
parameter for this transition, and ¢ the conjugate field.

According to the fluctuation-dissipation relation [55], the mean square fluctna-
tions in W are equal to (AW?) = kgT(0W/dq)p, and therefore diverge at T,.(Q).
It is these fluctuations that must spontaneously generate vortices, and hence tem-
perature gradients, before one actually reaches T,.((0). leading to a breakdown of
the thermodynamic approximation to nonequilibrium superfluidity and smearing the
transition. It is vet to be determined how close to T.(Q) one can approach before
this happens, and hence exactly how sharp the critical singularities discussed in this

thesis reallyv are.



Chapter 2 The Superfluid Transition in
the ()-1" Plane

This chapter presents a review of many of the experiments and theories that investi-
gate the physics of *He in the presence of a heat flux. It is comprised of the complete
text of an article written for Reviews of Modern Physics by Peter Weichman. David
Goodstein, and myself [56]. It should provide the necessary background and relevant
context for this project. The article concludes with a brief review of the experiment
described in the remaining chapters of this thesis. Although most of the information
in this section will be repeated later on, it is included here in order to maintain the
integrity of the original text. Perhaps it should be considered as a preview of things
to come.

Some of the svinbols used in this article are different than those used for the
other chapters of this thesis. A few of the differences result from the fact that this
experiment is performed extremely near Ty, where the superfluid density p, and the
normal fluid velocity v, are both extremely small. This implies that in our range of
interest, W =v,, — v, = —v,, and ¢ = p,W = —J; = —p,Vv,.

Most of the other discrepancies are simply due to differences in notation. Unfor-
tunately, this is symptomatic of the field in general, where there are a plethora of
notational conventions floating around in the literature. One of the more disturbing
(and confusing) differences is the terminology used for the temperature of superfluid
breakdown: a number of papers refer to the theoretical temperature of superfluid
breakdown as 7,(Q) and the experimental temperature as Tpag(€2), while others re-
fer to the ezperimentally measured temperature of superfluid breakdown as T,.((2),

and the theoretical temperature as T)((2)."! The most significant notation differences

'"This entire thesis, and all of the papers published out of our research group, sticks to the first
convention. It is our belief that since the transition under heatflow is of a very different nature, it
should be distinguished in a significant way from the traditional transition at T'.
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are summarized in Table 2.1.

Abstract

The behavior of liquid *He in a heat flux, @, close to the superfluid transition, can be
represented by a phase diagram in the Q-1 plane and described by means of a new set
of critical point exponents, which we introduce. We review a striking array of recent
experiments and their theoretical interpretations. The excitement that surrounds this
field arises from the fact that advanced thermometry and the future availability of a
microgravity experimental platform aboard the International Space Station will soon
open to experimental exploration a new frontier of decades of reduced temperatures
that were previously inaccessible.

2.1 Introduction

Due to its extraordinary purity and insensitivity to external perturbations, superfluid
He has long been the best system for accurate, detailed experimental investigations
of phase transitions and critical phenomena. The essence of superfluidity, however,
lies in the dynamics of flowing helium, rather than in equilibrium properties such
as the specific heat and the superfluid density. In recent years, considerable experi-
mental attention has been focused on the behavior of liquid helium, near the lambda
transition temperature, Ty, when a flux of heat, Q, is passed through it [19, 25,57
59]. This article reviews the wealth of exciting new physical phenomena uncovered by
these experiments and by the parallel theoretical investigations [4, 11,12, 17,60, 61].
At sufficiently small Q, superfluid ‘He transports heat essentially without dis-
sipation, by means of superfluid-normal fluid counterflow. At higher Q, or as T’
approaches T), this transport mode breaks down. In Sec. 2.2 we discuss the phase
diagram of helium in the Q-7 plane. In this plane, the superfluid state is bounded
by a transition curve, QQ.(71'), outside of which dissipative flow takes over. We also
introduce and evaluate a new set of eritical exponents that arise as a consequence of

superflow.



A | B C D E F G
This chapter —e | NA —, Toas(Q) | Te(Q) | —Js = —psvs | @F
-U, =W
Other chapters | 1 f \"\% Tpas(Q) | Te(Q) q=p,W Qo
Group «o 1 0 W Tpas(Q) | T.(Q) P=pW Qo
—€ -V, q
Group t | NA W T.(Q) 75\ (Q) —Js o
_u“i

Table 2.1: A list of the different notation conventions used in this thesis and the
literature. Group a: The notation convention used in the papers of D. L. Goodstein,
P. B. Weichman. R. V. Duncan. and their collaborators. Group J: The notation
convention used in the papers of G. Ahlers, R. Haussmann, V. Dohm and their
collaborators. NA: not applicable.

The above table What they refer to:
headings:
A The reduced temperature with respect to the static

transition temperature: (T — T7) /T,

B The reduced temperature with respect to the dynamic
transition temperature: (7, — T) /T,

C The counterflow velocity

D The experimentally measured temperature
of superfluid breakdown [19]

E The theoretically predicted temperature
of superfluid breakdown [6, 18]

F The superfluid momentum density

G The amplitude of the critical heat current
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In Sec. 2.3 we describe an inhomogeneous phase where the heat flows through
both normal and superfluid regions, separated by an interface region that is neither
normal nor superfluid. In the normal region the heat flux produces a static tem-
perature gradient. In the superfiuid region, the heat Hows at constant temperature.
In the interface region, a transition between these types of behavior is mediated by
fluctuations in a way that is not yet accessible either to experiment or to theory.

A recurring theme throughout the article is the fundamental limitation imposed
by the Earth’s acceleration due to gravity, g., on the resolution of Earth-based experi-
ments. Gravity produces a pressure gradient across the sample, leading to a variation

in the local lambda transition temperature 7y(z) with height = according to

&Th(z) = —y=, 7=~1.27—. (2.1)

For generality, the possibility of gravity g different from that on Earth is included.
For g = g. the transition temperature therefore decreases by 1.27 pIK per centimeter
of column height. If 7" is tuned so that, say, the center of the cell is at the local lambda
point, the upper region will be superfluid while the lower region will be normal fluid.
The interface between, defined as the region over which the local properties differ
significantly from those of a bulk system at the same local temperature and pressure,
is about 0.1 mm wide on Earth [62]. This figure also estimates the maximum possible
critical correlation length in the system.

The inhomogeneity induced by g. causes the critical singularities to be rounded on
a scale set by the height of the cell. Balancing gravity effects against finite size effects,
which enter if the cell is too small, the optimal cell height is about 0.3 mm, leading to
rounding on a scale € = (T — Ty)/T\ ~ 1077, Present thermometry [2.59] is capable
of resolving reduced temperatures € 3-4 orders of magnitude smaller than this. In
essence there is a new [rontier, consisting of decades of previously unavailable reduced
temperature around T\, that can only be explored in microgravity. Experiments
measuring equilibrium specific heat (Lambda Point Experiment LPE) [2] and finite

size effects (Confined Helium Experiment— CHEX) have recently flown aboard the



space shuttle.

Gravity also has a strong effect on the interface region discussed in Sec. 2.3. As we
have seen above, the interface is compressed by gravity to a width of about 0.1 mm.
too small to be studied experimentally. The interface region will be studied in an
experiment (Critical Dynamics Experiment—DYNAMX) presently being prepared
for a low temperature microgravity platform (Low Temperature Microgravity Physics
Facility—LTMPF) that is to be part of the International Space Station (ISS).

Although gravity is detrimental to some measurements. there can also be inter-
esting new physics when both gravity and heat current are present. In Sec. 2.4 we
describe the so-called self-organized critical (SOC) state, in which g and () conspire
to produce a new, essentially homogeneous, nonequilibrium state where the temper-
ature T'(z) precisely parallels Ty(z) at a fixed QQ-dependent distance. At larger ().
this state undergoes a transition from normal to superfluid, with the temperature
gradient supported by a stream of vortices in the latter.

Finally, in Sec. 2.5 we discuss the specific heats under heat flow, predicted [8,9.
12], and subsequently confirmed [25], to be enhanced above the equilibrium form,
with a singularity predicted at the phase boundary Q.(7T). This experiment too
ultimately needs to be performed at very low (), and the required microgravity version

is currently being proposed.

2.2 Nonequilibrium critical phenomena and scal-

g
Under conditions where a uniform heat flux Q is applied to superfluid "He, a thermal
counterflow is created in which the normal fluid moves along with Q at velocity u,,,
and the superfluid moves oppositely with velocity u,. For sufficiently small heat
current not too close to Ty [more precisely, one requires Q < Q.(7'), with Q.(T")

defined in Fig. 2.2 and (2.21) below| the temperature T < T} is essentially uniform
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and the heat flux is

Q =T Souy; (:

o
o
e

where S is the entropy per unit mass. p = p, + p, is the total mass density, composed
of superfluid and normal fluid parts, and u,, is the normal fluid velocity. Since there
is no net mass flow, one has j, = —j.. where j, = p,u, and j, = p,u, are, respec-
tively, the superfluid and normal fluid mass current densities, and uy is the superfluid
velocity. Close to Ty one finds experimentally S ~ S, = 1.58 J/gK, p, & pyle|¢, with
po =~ 0.37 g/em?, critical exponent ¢ ~ 0.671, and p, ~ p ~ 0.14 g/em*. Thus, in

experimentally motivated units,

. Q 10-6\ ¢
o~ T9x1078 ‘m/s 2.8
i 7.9 x 1 1!"\'\'/('1“2( A ) cm/s (2.3)
Q

up ~ 2.1x107° cm/s. (2.4)

1p4W /em?

At experimentally accessible values @@ = 1 pyW /em? and |e] = 1075, u, is a modest

80 pm/s and u,, is nearly four orders of magnitude smaller.

2.2.1 Thermodynamic formalism

The isothermal condition allows an effective thermodynamic description of the finite
Q state [63]. Although nonequilibrium scaling does not rely on this, a more intuitive
description of a number of phenomena special to superfluidity results, and so it is
worthwhile presenting the theory in this context.

In the frame of reference moving with the normal fluid (in which there is no heat

flow). the differential of the free energy density F(7T,U,) may be written,
dF = —SdT + J, - dUj,, (2.5)

in which U, = u, — u,, and
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with the second equality serving as a definition of p(T,U,) when U, is not small.
Near Ty the smallness of u, implies that U, ~ u, and J, =~ j,. In this frame one has

the defining relation U, = (h/m)V ¢, where m is the 'He atomic mass, and

‘ m .
¢(r) = —U;-r (2.7)

I
is the phase of the superfluid order parameter v = |¢2|e’?, vielding the usual helical

structure of ¢+ aligned along U,. The effective thermodynamic description (2.5) relies
on the existence of a time-independent ¢ in the presence of a finite phase gradient. In
fact. thermally nucleated phase slips in the helical structure (interpreted as tunneling
between different metastable local minima of the free energy) lead to small temper-
ature gradients and decay of superflow. However, the decay time is extremely large
at low heat currents and temperatures not too close to Ty [64]. The thermodynamic
description (2.5) is valid on time scales smaller than this. As U, increases, both
the order parameter magnitude |¢(U,, T')| and the superfluid density are suppressed
relative to their equilibrium values at U, = 0, QQ = 0.

Variations at constant Q = —7'SJ, are most conveniently performed by defining

the Legendre transformed free energy ®(7.J,) = F — J, - U, with differential

d® = —SdT — U, - dJ,. (2.8)

Close to Ty, where TS ~ T,5, is essentially constant, variations at constant Q are
asvmptotically the same as those at constant J,. For example, the specific heat at

fixed Q may be taken as

as
B T} 2.9
(Q * ((.)r]‘).l-: { )
where S(T,Jg) = —(0®/9T) . With the above observation in mind, we shall hence-

forth treat J, and Q as differing only by a constant factor.
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2.2.2 Nonequilibrium scaling

The fact that U, and J, (or Q) may be treated as thermodynamically conjugate vari-
ables has important consequences for the structure of the thermodynamic functions
near T [65]. We proceed by analogy with the conjugate variables h and m at conven-
tional critical points, where /i is the external magnetic field and m the magnetization
at a Curie point, or h is the difference from critical pressure and m the difference
from critical density at a liquid-vapor critical point. There the free energy A(T, h),
analogous to @, has differential dA = —SdT — mdh and its singular part A, obeys an

asymptotic scaling form [see, e.g.. [66]],

.4,(7‘. h) = E‘n

fFﬂhA([%h). (2.10)

le[*

in which a is the specific heat exponent, A is the “gap exponent,” A(r) is a universal
scaling function, and FEy, Dy are nonuniversal scale factors. specified uniquely via.
say, the normalizations A(0) = A'(0) = 1. There are actually two scaling functions.
Ay () for £¢ > 0. but we shall primarily be interested in the ordered phase ¢ < 0
and consider only A_ = A.

Similarly, the singular part of the superfluid free energy, @, is expected to obey
the scaling form,

W Q
P(T,Q) = Aole|* Y | =——— ], (2.11)
(QU|F |A")

in which o =~ —0.013 [2] is again the usual equilibrium specific heat exponent, A
is the gap exponent for 2, Y (y) is the € < 0 universal scaling function, and A, ()
are nonuniversal scale factors, specified uniquely via, say, the normalizations Y (0) =
Y"(0) =1 [¥Y(y) must be an even function of y due to the obvious symmetry under
sign reversal of ()]

The derivative of (2.10) with respect to h yields

m(T, h) = —EoDyle|’ A’ (M) (2.12)

le]®

where the prime denotes derivative with respect to argument and the order parameter
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Figure 2.1: Comparison of phase diagrams in (a) conventional T-h and T-m spaces
and (b) superfluid 7-Q and T-U, spaces. Here, my(7) is the spontaneous magneti-
zation, or the liquid density minus the critical density. The critical lines Q.(7") and
U, (1), enclose the region of stable superflow, which corresponds also to the region
of validity of the thermodynamic description, and like the thermodynamic descrip-
tion itself are sharp only in the absence of phase slips. The different shapes of these
curves near 1), are determined by the fact that Ag > 1, while 3y < 1 [see equations
(2.19) (2.22) below|. The nature of the critical behavior as @ approaches Q. from
below, and the nature of the inhomogeneous dissipative phase for Q > @Q,., will be
discussed in later sections. A major difference between (a) and (b) is the lack of a first
order line below Ty in the latter. Thus, i vanishes throughout the phase coexistence
region in the T-m plane, whereas () o J, = p,/, varies continuously throughout the
superfluid phase in the T-U, plane.
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exponent 3 obeys the scaling relation 3 = 2—a—A. The second h derivative yields the
order parameter susceptibility (compressibility, in the case of a liquid-vapor critical
point)
Duh

x(T,h) = —EoDj|e|~7 A" (W) (2.18)

with v = a + 2A — 2, which then yields the famous Essam-Fisher scaling law o +
208+ = 2 [66].

Similarly, the derivative of ®, with respect to J, yields U, in the form

U (T, Q) = =Bgle|?Y’ (—— 3 2.14
(1.Q) = =By’ ( 5t (214)
where By = AyT\5y/Qu, and one has the generalized order parameter exponent
scaling relation

,3(3 =2—a— AQ. (21:))

The equilibrium superfluid density enters the free energy F' via a term AF, = %/)SUf
for small U;. The Legendre transform yields a term Ad, = —J? /2ps for small J,,
and the inverse of the superfluid density now appears in the theory as a generalized

susceptibility:

41k e o (a‘,!q)s ) o (6[:’5 )
ps(T,Q = 0) 93 T, Js=0 aJ; Tids=0
- _I{ﬂ}r"(()) (2 16)
€ |

where Ry = Ag(T,S\/Qo)? and the generalized susceptibility exponent 7 obeys the

Essam-Fisher relation [66],

a+ 200+ =2 (2.18)

Generally the gap exponent is independent of v and must be separately determined.

However, in the superfluid problem the Josephson relation [see, e.g., [67] and refer-
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ences therein] yields ¢ =2 — a — 2v = (d — 2)v. Here £ = &/|¢|” with, in dimension
d =3, v=(>~0671 and & ~ 3.4 A [68], describes the divergence of the superfluid
coherence length, &€ = (m%kgT /h?p,)"/ 2 and the second equality follows from the

hyperscaling relation 2 — o = dr [65,66]. We therefore identify
Ag=2—-a-v=(d-1)w. (2.19)

This scaling law implies that (Q scales with the cross-sectional area £4-! of a correlation
volume £%: () becomes significant when the power incident on a correlation area is of

order QU&:{{'*'.Q From (2.15) one obtains
?J’Q = . (2.20}

This relation has the interpretation that (mn/h)U,, which has dimensions of inverse
length, scales with the inverse correlation length €' the phase gradient has a signif-
icant effect when its wavelength 27h/mU, becomes comparable to &. Note that, more
typically, one begins with the latter assumption and reverses the above argument to
derive the Josephson relation.

Just as arbitrarily small A smears the singular behavior near a Curie point, one
expects an arbitrarily small ) to either smear or drastically alter the lambda point
critical behavior. This is consistent with Ay > 0, implying that the scaling argument
y diverges as |¢| — 0 at any finite Q. serving to define QQ as a relevant perturbation
to the lambda point [65]. In Fig. 2.1 a schematic of the expected phase diagram is
shown, contrasting it with that for a conventional critical point. The lines .(7") and

U, .(T) are the boundaries beyond which superfluidity breaks down: for 2 > ()., due

2One may estimate @y as follows. Two scale factor universality yields a form ¢y =
kp(Re/€)?/ale]® for the singular part of the equilibrium specific heat below Ty, where the hy-
peruniversal ratio ¢ =~ 0.90 in d = 3 [69]. This must match the scaling form (2.11) at = 0
and determines Agle|* ™ = [kpThy/a(l — a)(2 — a)](Be/€)? [with the choice Y (0) = 1]. Equat-
ing the quadratic terms Agle|>~*(Q/Qule|*2)? = —J2/ps [with the choice Y"(0) = 1], one
obtains finally Qo = TaSxv—Aopo, and ()g;f,{