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ABSTRACT 

The problem of s-d exchange scattering of conduction electrons 

off localized magnetic moments in dilute magnetic alloys is considered 

employing formal methods of quantum field theoretical scattering. It 

is shown that such a treatment not only allows for the first time, the 

inclusion of multiparticle intermediate states in single particle 

scattering equations but also results in extremely simple and straight 

forward mathematical analysis. These equations are proved to be 

exact in the thermodynamic limit. A self-consistent integral equation 

for electron self energy is derived and approximately solved. The 

ground state and physical parameters of dilute magnetic alloys are 

discussed in terms of the theoretical results. Within the approxi­

mation of single particle intermediate states our results reduce to 

earlier versions. The following additional features are found as a 

consequence of the inclusion of multiparticle intermediate states; 

(i) A non analytic binding energy is present for both, 

antiferromagnetic (J < o) and ferromagnetic (J > o) 

couplings of the electron plus impurity system. 

(U) The correct behavior of the energy difference of the 

conduction electron plus impurity system and the 

free electron system is found which is free of un­

physical singularities present in earlier versions 

of the theories. 



v 

(iii) The ground state of the conduction electron plus 

impurity system is shown to be a many-body con­

densate state for J < o and J > o, both. However, 

a distinction is made between the usual terminology 

of "Singlet" and "Triplet" ground states and nature 

of our ground state. 

(iv) It is shown that a long range ordering, leading to 

an ordering of the magnetic moments can result 

from a contact interaction such as the s-d exchange 

interaction. 

(v) The explicit dependence of the excess specific heat 

of the Kondo systems is obtained and found to be 

linear in temperatures as T--. o and T lnT for 

O. 3 TK ~ T ~ O. 6 TK. A rise in (AC/T) for 

temperatures in the region 0 < T ~ 0. 1 T K is 

predicted. These results are found to be in excel­

lent agreement with experiments. 

(vi) The existence of a critical temperature for Ferro­

magnetic coupling (J > o) is shown. On the basis of 

this the apparent contradiction of the simultaneous 

existence of giant moments and Kondo effect is 

resolved. 
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I.; INTRODUCTION 

The work reported in the following pages has been entitled 

"Theory of s-d Exchange Scattering in Dilute Magnetic Alloys." 

True to the traditions of theoretical work, it is an attempt to solve 

a somewhat idealized model, the so called s-d Exchange model, 

built to represent a very complex realistic system of a magnetic 

impurity placed in a non-magnetic host metal and their consequent 

interaction. The term "Magnetic Alloy" presupposes the existence 

of the magnetic moment of the impurity atom even under the influence 

of the non-magnetic environment of the host metal. Nowhere in the 

present work, therefore, has the very important question of the 

existence of the magnetic moment of the impurity atom been con-

sidered. However, for completeness sake, a few words on this 

question are not only in order, but most necessary to bring about 

the actual physics of the situation. Let us therefore consider the 

following situation; supposing we were to take a single free atom 

which has a magnetic moment e. g. Fe, C , Ni etc. and put it at 
r 

one of the lattice sites of a non-magnetic host metal e. g. Cu. The 

resulting disturbance can significantly affect the characteristics of 

the impurity atom and the host as well. The two basic questions 

with which the field of impurity magnetism is concerned are (1) 

Under what conditions would the impurity atom, which had the pro-

perty of being magnetic in its free state, retain its magnetic moment 

even under the influence of the environment of the non-magnetic host 

metal? (Z) Provided the impurity atom retains its magnetic moment, 
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what are the properties of the resulting system of magnetic impurity 

and the host metal. 

The investigation of the criteria for the impurity atom to 

retain its magnetic moment starts with the pioneering work of 

Friedel. (l) Anderson(Z) and Wolff( 3) proposed models for more 

quantitative and rigorous discus'Sions of the criteria within the 

frame work of Hartree-Fbck approximation. We shall not go into 

the details of these works here, as the pre sent work is concerned 

with the second question raised earlier, namely the effect of the 

magnetic moment and the nature of the resulting magnetic alloy. 

These aspects we shall consider on the basis of the s-d exchange 

model, which finds its justification as a reasonable theoretical 

model describing the interacting system of the localized magnetic 

moment and conduction electrons of the host by virtue of the fact 

that it has been shown to be the limit of the Ander son Model when 

a localized magnetic moment exists in the system. Because of 

the central role played by the Anderson Model (4 ) in the theory of 

impurity magnetism, we shall present a brief discus sian of its 

physical origin and its relationship with the s-d exchange model (S) 

in Section II. This shall also serve to clarify the relationship of 

the s-d exchange model with the realistic system of magnetic 

moments in non-magnetic host metals and alloys. 

Coming to the question of the effect of the magnetic moment 

on the properties of the host, we find that the introduction of a very 

small concentration of magnetic impurities can change the electronic 
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properties of the metal in a very distinct manner. (See fig. 1) 

For example in systems like transition metal impurities such as 

Cr, Mn, Fe in noble metals Cu, Ag and Au, one observes a minimum 

in the electrical resistivity which depends on the impurity concen-. 
tration, a peak in the specific heat, deviations from Curie and 

Curie-Weiss behavior in the low temperature susceptibility, a 

giant thermo-electric power and a strong dependence of the resistivity 

on a, longitudinal or transverse, magnetic field. Similarly, 

anomalies are observed in the line width of NMR and M~ssbauer 

spectra. The details of these experimental works can be found in 

the review articles by Vandenberg, (6 ) Daybell and Steyert, {?) and 

Heeger. (B) 

In an attempt to explain these anomalous properties, Kondo(9 ) 

in 1964 calculated, to second Born approximation, the scattering 

amplitude of the conduction electrons off localized magnetic moments, 

based on the s-d exchange model, and was successful in explaining 

the minimum in resistivity as a function of temperature. However, 

his calculation posed a very interesting problem for the theorists, 

for it showed that the scattering amplitude of an electron at the Fermi 

energy diverges logarithmically at absolute zero of temperature, 

when the statistics of the conduction electrons is duly taken care of. 

Later perturbational calculations have shown that more generally, 

no matter how small the exchange interaction J is, perturbation 

theory breaks down due to the persistence of intrinsically divergent 

term• of the !orm (Jp)"'{.IK ""\r m • O, 1, •• ( J\ ·1). This ha• 
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Fig. 1 Qualitative behavior of the anomalous contribution per at 1. 
to (a) Resistivity (AP/c) (b) Specific Heat ( ACfc) (c) 

Magnetic Susceptibility (~.:X /c) (d) Thermoelectronic Power (S~ 
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come to be known as the "Kondo Problem." 

The Kondo effect, or logarithmic divergence in the scattering 

amplitude arises from the fact that for spin dependent scattering 

the statistical factors in the intermediate states for the particle 

and hole scattering do not cancel each other. The impurity spin 

represents an internal degree of freedom and can change during the 

scattering process, making it dependent upon the order in which 

the system as surnes different intermediate states. This order is 

different for electrons and holes. At T = o a non-cancelled fermi 

factor restricts the intennediate state sums to energies smaller 

than the Fermi energy E = o. The sum over E(q) contains the 

factor and thus becomes proportional to lnE. Thus 

the scattering amplitude for an incoming electron with fermi energy 

diverges at T = o. This divergence is no longer pre sent at finite 

temperatures where the Fermi function is no longer a step function. 

The effect of the Fenni statistics on a single scattering 

process indicates that the anomalies observed in dilute magnetic 

alloys cannot be explained within the frame work of one electron 

theory as they are indeed true many body properties. Physicallyp 

the true nature of the many body phenomenon may be looked upon 

~-s follows; the scattering of an electron depends on the spin state 

in which the impurity atom is. The state of the impurity atom 

however, depends upon the scattering process of an earlier electron. 

In other words, the scattering of an electron depends upon the state 

in which the impurity was left by its predecessor. The scattering 
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of this predecessor in turn depends upon earlie r scattering pro-

cess. The impurity thus correlates different scattering process 

and gene rates an indirect interaction between the conduction elec-

trona. This is reminiscent of the situation in Superconductivity 

where electron-electron interactions are generated via virtual 

phonons. 

Thus it should be clear that the apparent simplicity of the 

seemingly innocent looking s-d exchange interaction is extremely 

deceptive. It's theoretical solution requires full powers of many 

body theory available to us today, and that too, in a non-perturba-

tive way. The work reported in this thesis is an attempt in this 

direction. However, the approach being significantly different 

from any other employed to investigate this problem (and most 

probably different also from the approaches taken in general in 

many body theory). we are forced by our obligation to history to 

say something on the other approaches to this problem. 

Since Kondo's original paper, almost all the we 11 known tech­

niques of many body theory have been used by various people in the 

field with different measures of success. Nagaoka ( lO) introduced 

Zubarev's(ll) double time Green's function technique of stati stical 

physics to derive the equations of motion of the conduction electron. 

Si nce then many people have taken this appr oach, sometimes with 

minor modifications, but perhaps the solutions of Bloomfield and 

Hamman(J Z) and Zittarz and Mueller-Hartmann(lJ) provide the 

most reasonable expression for resistivity and specific heat, of 
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use to the experimentalist. On the other hand Suhl(l 4) borrowed 
. 

the Chew-Low formalism of high energy scattering from elementary 

particle physics and provided us with two coupled non-linear integral 

equations for spin flip and spin non-flip scattering amplitudes, in the 

approximation of single particle intermediate states. The most 

basic assumption in this approach is the one to one correspondence 

between the eigen functions of the unperturbed and total Hamiltonians. 

Suhl and Wong,(lS) Kondo(lb) and others have solved these coupled 

integral equations using dispersion theoretic techniques. It is found 

that the Kondo singularity in the scattering amplitude is replaced 

by a resonance pole occurring at a temperature, known as the 

Kondo temperature, given by 

Thus it is seen once again that TK being non-analytic as a function 

of the exchange interaction strength J, ordinary perturbation theory 

of quantum mechanics cannot provide us with meaningful solutions. 

It is the assertion of Suhl 1 s theory that the true ground state at 

absolute zero is reached by a proper analytic continuation for T < TK. 

The very powerful and perhaps the most popular of many body 

techniques, namely summation of infinite number of Feynman diagrams 

of a given order has also been used by many. Suhl 1 s scattering equa-

tions have been rederived using this method and are shown to be 

correct only to logarithmic accuracy. (l 7 ) Brenig and GHtze< lS) have 

attempted to improve on this by considering next higher order dia-
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grams, which in the language of scattering theory amounts to the 

inclusion of some three particle i.e. a particle plus a particle hole 

pair states in the intermediate states. Besides the conventional 

Feynrnan diagram technique, Abrikosov( 19> and Doniach(20) have used 

their own version of the diagram technique, but there is no improve-

ment upon the results obtained by the previously mentioned techniques. 

In addition to the above mentioned three most commonly 

employed techniques, the variational technique has also been used 

by Kondo and Applebaum(2 l) and by Yosida, (22 ) the latter being essen­

tially based on the idea of Cooper's Model in Superconductivity. (23 ) 

Cooper type of model for s-d exchange scattering was proposed by 

Kondo. (24) On the other hand, Takano and Ogawa( 2 S) proposed a 

decoupling scheme in Nagaoka's equation of motion method corre .. 

sponding to Gorkov1s(26 ) in the case of superconductivity. 

The upshot of these various attempts to solve the problem is 

some approximate results for physical parameters and thermodynamic 

quantities. However, all these results being correct only to the 

leading order singularity, namely logarithmic, they fail to provide 

any theoretical understanding of the situation near the Kondo tempera-

ture, which happens to be the most important region. For example, 

within the existing theoretical solutions, the energy difference 

between the ground state of the total Hamiltonian and the unperturbed 

Hamiltonian is given by the solid lines of Fig. (2). The dashed line 

is the conjectured result. The nature of the ground state of the 

system of impurity and host metal is still an open question. The 
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opinion of the people may be divided into two groups. One group 

feels that the actual ground state of the system is foreign to any 

kind of perturbational treatment and as such, cannot be realized by 

such approaches. The other believes that the analytic continuation 

of the perturbational result for T > T K to regions of T < T K is 

sufficient to obtain the actual ground state. However, one notices 

that the actual ground state energy, within all such approaches, 

has a part which is non-analytic in the exchange interaction J. This 

has been associated with the concept of same kind of binding energy 

associated with the actual ground state. Thus, whether the actual 

ground state corresponds to the ground state of "normal" system or 

is something totally different, is still an open question. 

It has become very well known now that spin life time effects 

play an important role at very low temperatures. In the language of 

scattering theory, this means that below T K' the multi particle 

intermediate states became important. Since the existing results are 

correct at most within single particle intermediate states, it is not 

surprising that they fail to provide reasonable expressions for 

physical parameters at very low temperatures and that their predic-

tion of the ground state is doubtful. 

To conclude this section on existing theories we summarize 

the situation as follows: Although Suhl, Nagaoka or Bloomfield­

Hamman theories(S) correctly predict the leading logarithmic terms, 

it is definitely not clear how far they are correct with regard to Ue 

less divergent terms. as has been noted by Silverstein and Duke. (l?) 
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The leading terms alone do not uniquely determine the low tempera­

ture properties when continued across T K• On the contrary, the 

less divergent terms are as important as the former and determine 

all the physics below T K• 
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Fig. z.. Energy shift (or Free Energy shift) as a function of 
temperature. Solid line represents the case J < o. 
Dashed curve represents the conjectured behaviour 
for J < o, going to ( ~ E J-a}. The dash-dot curve rep-
resents the case J > o. A EJ is the perturbation theory 
result for energy shift. 
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11. FORMATION OF LOCALIZED MAGNETIC MOMENTS: 

ANDERSON MODEL 

The Anderson model(Z) is an attempt to provide a simplified 

picture of handling atomic physics in metallic environment. The 

model approximates this complex system by the following Hamiltonian, 

H 
(II. 1) 

Here H is the Hamiltonian giving the energy levels of the host 
8 

metal; 

(II. 2) 

where E:K's are the single electron energi es and a.+ , Q~. the usual 
J<r ~~ 

creation and anhilation operators. This very simple one-electron 

Hamiltonian i s surely a gross over simplification to a real metal, 

i n which electron-electron, electron-phonon etc. interactions play 

a crucial role. These many body terms are neglected for simplicity 

and becau1e such a nearly free electron model finds formal justific&.• 

tion in the Landau theory of Fermi liquid•• (Z7) 
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The term Hd stands for the atomic physics of the impurity 

atom. It is clear from the outset that if one is interested in impurity 

magnetism one must keep the electron-electron interactions explicitly 

in the problem for it is such terms which cause atomic magnetism 

in the transition series. This is brought about in two ways. a). 

The direct Coulomb interaction U between two electrons on outer 

shell of an atom is of order (e2/a ) where a is the Bohr radius. 
0 0 

This large value ("'" 20 e V) serves to keep the neutral configuration 

of the atom stable i.e., the number of electrons equal to the 

protons. This is non-trivial for it allows the atom to have an 

odd nurn ber of electrons and hence causes atomic magnetism (with.-

out the Coulomb interaction all levels would be doubly occupied and 

hence no magnetism). b). The exchange part of the Coulomb inter-

action, J reduces the energy for two electrons with opposite spin. 

Combining (a) and (b), we find that given a particular number 

of d-electrons as fixed by U in some transition atom, the exchange 

J favors the magnetic spin aligned state; nothing but Hund' s rule of 

atomic physics. 

Even though the true atomic physics is far more complicated 

by effects like spin-orbit coupling etc., our interest being in impurity 

magnetism, we approximate the atomic Hamiltonian by, 

(II. 3) 
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where Ed is the one electron energy level and Ni.··= a~.;~is the 

number operator for the electrons in the ith d orbital. Using a 

single value of Ed neglects any pos 8ible crystal field splitting. 

Finally, H d characterises the metal-impurity interaction 
s-

and i 8 taken to be of the form 

(II. 4) 

The admixture coefficient V d which strictly speaking is k-dependent, 
8-

represents the process in which a d-electron hops off the impurity, 

reducing the number of d-electrons by one, or a band electron hops 

on the impurity with a corresponding increase in the number of d-

electrons. Thus an admixture clearly tends to reduce the impurity 

magnetism. Physically the admixtur~ arises from the d (or 4f) 

electron of the impurity experiencing the attractive potential due 

to the nuclei of the neighboring atoms in the metal and hence trans-

£erring over. Thus one expects V d to be a sensitive function of s-

the spatial extent of the core wave function, being much larger for 

3d electrons than for 4£. The three terms described above thus seem 

to apecify the physics of the problem. The next question then 

obvioualy ia what h the nature of the solution? 

There are two limiting casea where the problem is more or 
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less under stood, although only one of them has been mathematically 

solved. The limiting case in which the problem has been solved is 

when the impurity-metal interaction is the strongest so that one 

can treat the complicated Coulomb term in a self-consistent field 

approximation. Very briefly, one replaces 

this limit the d-states take the simple one electron form, 

in which the averages <f'lj,r) must be determined self-consistently. 

Physically, such an approximation is tantamount to saying that a 

given electron remains in the localized state for a time sufficiently 

short so that it does not obtain detailed information on the occupation 

of the other spin state orbitals. Since the addition of an electron 

raises the energy by an amount of the order of the Coulomb energy U, 

the uncertainty principle requires a one .. electron life time of the 

order of (f../U) in order that the self-consistent field approach 

be valid. Such a life time is indeed provided by the mixing inter­

action, which through Golden Rule yields the transition rate W 1 
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where Ll is the width of the virtual level, p
8 

(Ed} is the density of 

2 states of the host metal evaluated at the d state energy and V is 

the average of the square modulus of the admixture matrix elements. 

It then follows that the region of validity of the Hartree-Fock self 

consistent field approach is limited to a range of parameters such 

that U/A < l. 

For smaller values of the level width the electron-electron 

correlations play an important role and must be taken into account. 

However, it is very important to realize that it is in the opposite 

limit i.e., U/A. > l , that a given electron remains localized on the 

site of the impurity atom for a relatively long time while tending to 

keep other electrons away via the Coulomb interaction and thereby 

is able to form a localized magnetic moment. The actual analysis 

of the mathematical problem and its detailed discussion is easily 

found in the literature, (4 ) and any further discussion here is hardly 

appropriate. However, we quote here the important result that the 

most favorable case for magnetism occurs when the virtual level 

falls self-consistently at the Fermi- energy in which case the condition 

for forming a magnetic moment is, 
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1 
(II. 5) 

Thus, the self-consistent field approximation is valid only in the 

non-magnetic limit, since for larger values of A , the impurity is 

non-magnetic, whereas for smaller values a magnetic moment 

develops. 

The opposite limit U/A >> 1, i.e., where the local Coulombs 

interactions dominate is also in a qualitative sense understood, 

although the problem in this limit is very far from solved. The work 

to be described in the next few sections deals with the solution of 

the problem in this limit i.e., in the magnetic limit. However, 

instead of dealing with the actual Anderson•s Hamiltonian, we shall 

be dealing with the so called s-d exchange model, which was originally 

proposed in the ccntext of ferromagnetism of 3d metals by Zener.(ZS) 

Kasuya(2.9) has derived this Hamiltonian of the exchange interaction 

between localized and conduction electrons for dilute magnetic alloys. 

However, Schrieffer and Wolf£( 30) have shown that by means of a 

canonical transformation it is possible to eliminate the mixing inter-

action to iirst order from the Anderson Hamiltonian, in the limit 

U/A >>1 • The result is the s-d Hamiltonian of the form 
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where 

(II. 6) 

These are simplified expressions for the case of a non-

degenerate d-orbital. The degenerate case is considered by Coglin 

and Schrieffer. (3 l) A close look at Ho reveals that ~states 

represent a complete set of non-interacting fermions with a dis-

persion relation identical to that of the pure host. These states 

thus form a free particle Fermi sea and as such shall contribute 

to the physical properties (magnetic susceptibility, specific heat 

etc.} by an amount numerically equal to the pure host (modified 

perhaps by a trivial potential scattering factor). H dis given by, s-

(II. 7) 
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-5 + s e a~e...- e 

where S is the generating function for the transformation. The 

conditions for the validity of the Schrieffer-Wolff transformation are, 

(II. 8) 

where the convention EF = o is being used. Thus in the limit where 

these conditions are fulfilled, the s-d exchange m cxlel of a well 

defined impurity spin interacting with the conduction electron sea 

is valid: One must however~ be careful to note that the " Spin" il 

not that of the bare impurity, for the canonical transformation 

dresses the spin with a long conduction electron " skirt" i.e. , 

-Oa.-f Q.dr The transformed operators aJ.r and a..c~ are 
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quite different from the initial operators and represent states 

having an infinite life time and thus an infinite-simal level width as 

long as the above condition for validity of the transformation holds. 
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III. THE s-d EXCHANGE MODEL 

We have referred to the s-d exchange model in the historical 

context of the problem of impurity magnetism in the previous 

section. In this section we shall present a concise, yet complete 

in its essential features, description of this model, and its corre-

spondet}ce with reality. 

The s-d exchange model assumes a well defined (recall 

the magnetic limit of the Ander son model) localized, impurity spin 

S interacting with the conduction electron spin s by an interaction of 

the form, 

(III. 1) 

where J is the strength of the exchange coupling, f(r, Q, 4' } represents 

the spatial extent of the localized moment, and .J2. is the atomic vol· 

ume. In the second quantized form the interaction can be written 

where, + 
al'r 

(III. 2.) 

are the usual creation and anhilation 
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operators for electrons in the state with momentum k and Z com-

ponent of the spin being Q"" ; S Z' S ±. = (8,c ±. i Sy) are the 

impurity spin operators, N is the number of electrons, 

the Fourier transform of the product J~ Y, s, cp ), so that the 

dependence of JK K on K 1 and K2 arises from the spatial dependence 
1 z 

off (Y,B,f ). It has been customary to assume an isotropic, zero 

range, 6-lunction potential, f(r) = 6(r). In that case JK K = J, 
1 z 

a constant, and we have at hand the standard "contact s-d exchange 

interaction". However, it is most important to realize that such an 

assumption restricts our consideration of phenomena well outside 

the impurity cell, for it is only in that region that the assumption 

can be expected to be justifiable. The finite range of the s -d 

exchange interaction can be incorporated schematically by assuming 

a momentum space cut-off for JK K of the form, 
1 2 

-- J ; 

= 0 

otherwise. 

(III. 3) 

With this form of JK
1
Kz we obtain the well known contact s-d 

exchange interaction given by, 
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(III. 4) 

which, for J < o characterizes antiferromagnetic coupling and 

corresponds to the case of interest in the Kondo problem. The case 

J > o is also possible and characterizes direct ferromagnetic 

exchange. Although, for the transition atom impurities of primary 

interest in dilute magnetic alloys the antiferromagnetic admixture 

exchange dominates, and as such has been of interest in this field, 

we should keep in mind the possibility of observing something inter-

esting for J > o in our solutions. We shall later see that the case 

of ferromagnetic exchange (i.e., J > o) also has interesting forma-

tion, which has been earlier overlooked in the field simply because 

the approximate solutions available fail to show these characteristics. 

It should be noted that the s-d exchange interaction given in 

(111. 4) characterizes the interaction of conduction electrons with a 

single impurity atom of spin S. Thus it would be a reasonable de- · 

scription of the realistic system of many impurity atoms in the non-

magnetic host only if the total number of impurity atoms is very small 

as compared to th~ total number of host atoms, in which case we may 

safely assume that there is no "direct" interaction between the 
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impurity atoms. Thus for very low impurity concentration, c, 

we shall be justified in treating the quantities to be compared with 

experimental data as c times that obtained from the theoretical 

model. Experimentally the value of c differs from one system to 

another depending upon the particular properties of the system. It 

is therefore difficult to give any precise number for the upper limit 

on c, beyond which the "direct" impurity interactions would become 

important and a cimple linear extrapolation of the results obtained 

from this theoretical model shall no longer hold. However, from the 

accumulated wealth of experimental data, one might be safe in con-

eluding that for crystalline systems C is between 0. 1 at. '/, and max 

0. 5 at • ''• while for amorphous systems C may go as high as 1• max 

1. 5 at. 7. • No theoretical attempt has been made to explain why 

C is higher in amorphous systems as opposed to crystalline max 

system. Although we have not attempted to take up this question with 

any great attention in this work, we shall see in later sections that 

this phenomenon is readily understood as a natural consequence of the 

scattering approach taken here. (We shall therefore put forth, for 

the first time, very physical arguments to explain this phenomenon 

during the course of discussion of our analysis in later sections.) 

The interaction (III. 4) does not have a momentum conserving 

6-function in it. It is a consequence of the fact that in our problem 

one of the interacting particles is localized at the impurity site, and 

hence momentum is not conserved. The interaction does conserve 

the total spin and is rotationally invariant. 
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IV~ FORMULATION OF THE THEORETICAL PROBLEM 

A. The Scattering Equations 

The approach we take is one of formal field theoretic 

scattering. Although the basic scattering equations which we are 

going to use are well known as the Lippmann-Schwinger equations, (32) 

we shall derive them to bring out their nature in the case of field 

theoretic scattering explicitly. Consider the Hamiltonian H = H + V 
0 

where we shall refer to H as the unperturbed Hamiltonian and V 
0 

as the interaction. ·In our case H is the Hamiltonian describing 
0 

the free system of N electrons. Let its ground state be denoted by 

IF >. As we have an impurity of spinS in this gas of free conduction 

electrons, in the absence of any interaction between the conduction 

electrons and the impurity, we can specify the impurity atom state 

by I Sz >, the Z-component of its spin. We shall therefore denote 

the ground manifold of the non-interacting conduction electron and 

impurity system by l F . Sz)• This ground state is obviously (2S+1) 

fold degenerate. 

Consider now an additional electron with energy EK above the 

Fermi level incident on the target, which is in one of the (2S+1) 

ground states, I F . S Z >. With our notation, we may write the 

incident state as, 
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with 

(IV. 1) 

where €. is the ground state energy of the non-interacting system 
0 

of N electrons. 

We now wish to construct exact outgoing and incoming 

scattering states. Let us denote such a state by 1~~ A'.,-~ s;) with 

Here, w characterizes the state of the N electron system after the 

incident electron Kr has scattered to the state j(.'f'' ' , and Sz the 

state of the impurity. In the usual way, we write the exact outgoing 

and incoming states as 

(IV. 3) 

where + and - refer to outgo~ng and incoming states respectively. 

From (Z) and (3), we then have, 
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or 

or 

I J.).t 

Thus, we have from (3) 

t .,. I w, ltr; s,_) = alcf' IF; s,_) + 
~I( _J-C :til 

.(fo + ef( ... £"'.,. v) ·l a;, IF; si )] (IV. 4) 

These are the basic scattering equations. However, it is to be noted 

that in the event that the energy spectrum of Ho and H happen to 

coincide, then and only then shall we have ( €0 1' EK) c e:K t, in 

which case (4) shall reduce to, 

the usual form of Lippman-Schwinger scattering equations to be 

found in the texts. (3Z) 
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It is therefore important to realize that in the case of 

field theoretic scattering, when the energy corrections (self-

energy in the conventional terminology) need not be infinitesimal, 

(4) gives the correct form of the scattering equations. Physically, 

the content of this statement is the following; In the case of field 

theoretic scattering, the interaction extends to infinity, and hence 

the energy of the colliding systems, even at infinite separation is 

not given by, e. g. ( to~ 6-K) in our case, but by EK. Thus in order 

to describe the scattering process correctly, one has to assign the 

correct energy to the incident train, by formally modifying Ho so 

as to coincide its energy spectrum with that of (H + V). 
0 

To bring this out more clearly, we put equation (4) in a 

different form. After a few simple manipulations we may write 

equation (4) in the form 

f ate f" /F; S!> 

+ I Vjw.Jtr; s1)t. 
E~·~.tht 

(IV. 5) 

This is then the final form of the scattering equations we shall be 

using. On operating (e'k·J1..ti' ) on both sides of (IV. 5) one 

immediately sees that ( w. ltf",; .Se )'t are indeed eigen functions 

of H. 
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B. Notation For Many Electrons + Impurity Wave Functions 

As usual we shall write the N-electron wave function of the 

unperturbed Hamiltonian H , as an antisymmetric product of N­
o 

single electron wave functions. At any given temperature T, we 

shall take the occupied single electron states to be determined by 

the most probable distribution, the Fermi distribution at that tempera-

ture. Thus the N-electron wave function which we shall denote by 

4'"' for brevity of notation, is to be taken as, 

--

where A is the usual antisymmetrization operator and If""") denote 

the single electron states. In the second quantized notation we may 

then write, 

where I 0 > is the vacuum state assumed to be normalized to 

unity.(33) Also Q"'rfo):o, andthea anda+obeytheusualanti-

communtation rules. Thus, the unperturbed state of the system of 

N-electron gas, an impurity atom in the state l s
1 

>, with an 
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additional electron incident on this system in the single particle 

state I kr> , shall be denoted by 

(IV. 6) 

During the scattering process, the state of the N-electron 

system can change due to the excitation of particle-hole pairs. 

changes in c/> N shall be denoted by 

Such 

(IV. 7) 

where the Greek suffixes, to ~ , on k and v- denote those states m 

from which el:ectrons are knocked out of their original configuration 

<fN' and kl rr l to km <r m denote the states which are now being 

occupied by these m-electrons. Thus the occurrence of any Greek 

suffix indicates the absence of an electron or what is equivalent, the 

presence of a hole. Thus (1) denotes the mth excited state of the 

unperturbed Hamiltonian Ho and l'epresents a state with m (particle 

+ hole) pairs. 

In the present problem we are interested only in considering 

the scattering of a particle from an initial single p~ticle state to 

a final single particle state, since this scattering amplitude is 

sufficient to calculate the physical properties of the system. In the 

language of Green's !unctions this is equivalent to considering only 
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single particle propagators. (Z 7) But this does not mean that the s·d 

exchange scattering can be treated within one-electron theory, 

for an exact knowledge of even the single particle t o single particle 

scattering amplitudes requires a knowledge of all higher order 

scattering processes, a feature typical of any many body phenomenon. 

The exact scattering state corresponding to the initial state 

we shall denote by 1\ft<. )where / 'I'K) now describes the interacting 

system of N-electron gas. the impurity and the additional electron 

I K,-) • 

With this notation, the scattering equation for our problem 

reads, 

(IV. 8) 

and shall be the starting point of the solution of the problem in the 

next section. 

C. The Exact Single Particle Scattering Equations 

Our scattering equation, still in the operator form. reads 

(IV. 9) 



-32-

From now on we shall drop the (±) on l"t'K). 

Consider the electron kr to be incident in the state K t 

the N-electron system being described by c:j>N and the impurity by 

Sz. After the scattering process the electron K 1 can go into the 

state or K' J , the former corresponding to spin non-

flip scattering and the latter to spin-flip. Also appropriate modifica-

tiona in the final state of the N-electron system and impurity state 

would also result. Our aim is to determine the scattering amplitudes 

for the final states 

For spin flip scattering, conservation of the Z-component of total 

spin requires Sz to change to (Sz + 1). The occurrence of +N 

• 

in final states denotes the fact that we are interested in the scattering 

process where the background medium of N-electrons returns to 

its initial configuration after the scattering process is over. Let 

us now ask for the projection of the exact state /lft<.) on the two 

final states of interest. We then obtain from(IV. 9) the following 

two scattering equations describin'g the above mentioned process; 

(IV. 10) 
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(IV. 11) 

where we have used the fact that /'f'N' K'1' ; Sz > and 

14>N' K'.J. ; (Sz + 1) > are eigenfunctions of Ho with energy 

( Eo -t ~· ). Further using the orthnormality of the eigen function 

of H , we have 
0 

and 

(IV. 1Z) 

(IV. ll) 

We call the quantities <~,1t't Js,_J rf.A-J. { 'l'tc. > and 

< +r-~, k'.J. ;(.Sc~!J/X..A-J.I1f'te. >the spin non-flip and spin-flip scattering 

amplitudes and shall denote them by t ""t and tf respectively. The 

aim of the problem is to obtain solutions for these two scattering 

arnpl itudes. To this effect we introduce a complete set of eigen 

function• of the unperturbed hamiltonian H between H d and '11/',...> o s- .K 
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to obtain, 

and 

t._1 = /_ L 2. (f,..,,k'f;Si}}L,A-~J"KCr,hJ,~c'q-•Js;') 
K k'f'" ;" 

(~Cf.k), tc''r·; s~' /"e.) (IV. 14) 

(IV. 15) 

where fK" cr"; n(p,h); Sz" > refers to an eigen function of 

H with one electron in the state k "cr'' and n (particle+ hole) pairs 
0 

excited, with the impurity in the state Sz"• The sum over n refers 

to a sum over all possible pair excitations. As an illustration (IV. 7) 

gives explicitly the eigen function for a particle + m (particle + holef 

pairs and the sum over n for this particular eigen function means a 

sum over all m k' s and <r' s. 

At this point it is very important to note a simplifying feature 

of our interaction Hamiltonian H d' which restricts the set of s-

intermediate states in (IV. 14) and (IV·l5) to single particle and single 

particle + one (particle + hole) pair states. From the form of 

H d' equation (lll. 4), we note that it is bilinear in the electron a-

creation and anhilation operator. As such, when sandwiched between 

any two eigen states of H , it can give a non-vanishing contribution 
0 

only if the states on either side differ by at most one electron 

+ one {electron + hole} pair. If the states differ by more than 
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one electron + one {electron + hole) pair, the matrix element 

shall vanish because of the orthogonality of the eigen functions of 

H • Thue. in the case of equations (IV. 14).and (IV. 15), where we 
0 

have a single particle state on the left, the only intermediate states 

that can give a non-vanishing contribution are one particle, and one 

particle + one (particle . + hole) pair states. 

To show this behaviour explicitly let us consider the following 

matrix element, 

which would occur in (IV. 14) as the contribution of a one electron + 2 

{electron + hole) pair state. Let us now introduce the explicit form 

of Hs-d' and for purposes of illustration consider one of the terms,a;:, 

~.~of H
8

_d. Then we have the following matrix element a t hand. 

Mere observation of this matrix elements shows that the interaction 

term can at most convert the R. H. S. wave function to a single electron 

+ one (electron + hole) pair state, thus giving the following inner 

product, 
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which is identically zero because of the orthogonality of eigen 

functions of H • It is therefore clear that the contribution of all 
0 

electron + n (electron + hole} pair states for )It ~ Z is identically 

zero in equation (IV. 14) and (IV. 15). 

Introducing single electron and single electron + one {electron 

+ hole) pair states explicitly in (IV. 14)and (IV. 15), we have, 

t;.f t.r~;· < </>.,. n, s"' I H,. •• d.~: ~·~·; s ~ 7 
· ( + N, k r > sl I ¥' ~<- > 

+ L L L L ( +~~~, 1?-'1; 5a I H~.Jit.t ~~" ~~ i~') (IV. 16) 

Klf ~r. Kj~· s;. f 

and, 

. ( t .. ~ ... t r.. ~i.~>S/ I Y'v: I] 

= &v;.~.< t,k't ; ~ 1']} 1 ]{ ,j .c/.r +... k ·v-; Si·~ 
( <PN, k"v-: ~~~ /fK) 

+ ll. Z L ~ i, U; ~ rV/JtA • .tl+ .. ~,. k<fi, ~~ ; s~ ") 
L'~~ tfi ~~ s~ ~ . . . ,, \l . (. i. kr, t rz, ;1'~ ; s~ I "We IJ 

(IV. 17) 
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In these expressions, it is to be noted that neither k. r. nor k. (['". 
1 1 J J 

can be equal to k~ q-~ in the contribution of electron + (electron + 

hole) pair states, for in that case they shall reduce the one electron 

states. Further, k. I k. for 0'". = (1., for in that case the wave 
1 J 1 J 

function is identically zero because of its antisyrnmetry property. 

We are now in a position to evaluate the expressions (IV. 16) 

and (IV. 17} by explicitly introducing H d" Let us first con aider the 
s-

contribution of single electron states in (IV. 16). We have then, 

t~1 c~~:~e'J = z L. (~N,k't;sf/(-J)i: f(a1.t~T-a~:aK,~)s! 
~~»~- ~~ . 

+ a:,t aK,~s- t 0.:., a~c~t s+} It. k"r~ st '? 

where the suffix (1) on J;;(K K'} denotes the fact that we are 

presently considering the contribution of single electron states only. 

Looking at the matrix element, 

one notices that since the final state is spin non flip, namely li ,lt'f~Sl) 

the only terms in the interaction that can give a non-vanishing 

contribution are those that change the intermediate state 
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lfN, k ' 'V" 11
; Sz" > tothefinal state l<f>N, k ' t ; SZ > 

We have two such terms, ( Q.~ t (l.K t- a~~ (LK ~)Sz 
1 2 1 2 

for which the intermediatr states 1</>N and (t~ faK I S 
1 Zif -

k"f;Sz > 

and lt/>N k"-l ;(Sz+l) > shall give non-vanishing contribution. Thus 

we have, 

+ 
T L (~w k't; ~ JtlUt: C4.t a~· s_jlt.k."(~~i-!}) 

K" ' K,'S, 

. < f..}"J; (So? -r!) ll!k > J 

+ 
Noting that the only non-vanishing contribution from at,, QK,4~ 

can come when this term destroys and creates, in the scune states, 

one of the particles occupying one of the states in +.., we may 

consider the action of the term ~ (a;,f'aiC,f-a«~ ak',,) si which we 
IC,I(... I 

shall henceforth refer to as the static part of the interaction,in two 

parts. First when K 1 and Kz both act on +,., and second when 

K 1 and Kz both act on k 11
• The other possibility namely one of 

k, , IC~ acting on and other creating a new particle in 

a state different from those already in </>,.., , shall give a zero con­

tribution because of the orthogonality of the single particle and other 
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excited statea. 

With these realizations, working out the matrix elements 

in the usual way, we obtain 

Where M is the eigenvalue of Sz andf/'A:~f~~~respectively denote 

the num her of total spin-up and spin-down electrons. 

The second term, a,tt ~z.~ S_ cannot give any non-vanishing 

contribution for IC1 and ~,. acting on <j:>,., because of reasons of 

orthogonality of wave functions. This term contributes when k
2 

becomes k 11 and k
1 

then creates in the state K' giving 

-- ( -J/N) J(s-MJ (.s t M+V 

· L <t k"+. ~t!) 11f'rc/ 
l(tl • I 

where J(S-MJ (S+M+l) is the eigenvalue of S- acting over I(Sz+l)> 

which changes the z- component of impurity spin t'o S the final 
. Z' 
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state Z-component. 

Thus we have the spin non-flip ~ matrix in single particle 

intermediate states as, 

where 

(1) 

t (" ~') l\f . rfN) [ M ~. <+... k.'t ;5~ l'i'K) 

-f" J(.s-M}(.StM.,.!) L <<~>~~~.k"J ;~-l1'J}/'PK) 
#(" 

+ M ('Ylr"" nJ) . (c/>"'. lt't .;s~ /l~K) J 

'"vl.t = ~ 'VI. k~f 

'Yl ~ • t Yl kp+ 

Next, we shall evaluate the contributions of the only other 

intermediate states in equation (IV. 16), namely the single particle 

+ one (electron + hole) pair states. We shall refer to these states 

as three particle states, treating electrons and holds on the same 

footing. The 3 particle contribution to 1:"'1 (I(, 1t. ') is the second 

term of (IV. 16). 

There are four kinds of possible 3 particle intermediate 

state Sg consistent with the conservation requirement on the Z • 

components of the spins. These are, 
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(~) 

1 t. tzr . k , 1. ii t i s 2 > 
I cf>.,~'~ . M, k1 J ; ~~ .,.y) 

I 4>,~1' . u; kj L sl t 

I 
(') 

t. k.~ I ki 1, kj 1 ; (:S"-! -!) > 

We note again that in these intermediate states Ki I kj for 

the first and fourth kind where ~ = G": 
J 

because of the anti-

symmetry of the wave functions. 

A non vanishing contribution from these intermediate states 

can arise only if the 3 particle state is changed to the final one 

particle state lcfN k'1 ; Sz > 
1 

by the action of the interaction H d. 
s-

In other words1 H d must destroy the (electron + hole) pair state 
s-

in the intermediate 3 particle states. As an illustration, let us 

consider the intermediate state 14> ~~JkW kif, kj f ; S z > 

gives the contribution to t~i)(K, K') as, 

• This 

Since no spin changes occur for these states, the only 

+­
contribution comes from the term 5:K aK,f Q.K"1 S~ 

rc.- .. 
and is given by, 

of H d' s-
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( -
31 N) M r~ L ( +N ~t;4 I ~ 1 ~ ~' t J s~ IYK) 

k~ Ri ., I 

+ L L (</> ... ': •• ~ 1 _t~.'t, s~ /'I'"> l I(~~ 'T j 

We have two terms ari sing from the fact that there are direct 

and exchange terms for the two electrons Rc; f .~ kj f . Further, since 

because of antisymmetry, we may write the contribution of the inter-

mediate states I c/>N!~, 
1 

~t...· f.~ It; f; S~) as, 

Similar con side rations give the contributions of the :Z.ndj 

3rd and 4th type of thre~ particle stat es as (in the same order ) 
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and 

Hence, the total cmtribution of the 3 particle intermediate 

states is, 

Combining t ( 1) ( K K 1) and t ( 3 ) ( K K 1 ) 
nf nf ' we have the 

exact scattering equation for spin non-flip scattering as, 
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~ '7 [toe ' (-J{~J) 

<+"'. k'1;5al1f'IC):: EK-~+f"·)ti.1 -t e.., -CtotE"·)+''t. 

n M~.<<P~ .k·f,stllfl") -t j~-H)(~tM+t) 

. r < <~>~~~ . R." ~ ; (~+I) 1 'ftt.) 
~ , 

t M (~t-\'1+) (c#l~~~. k'f; s.t Y' .. ) J 

tZ. ~ M l (. <4'...,~~- kc:f~ ~· f; s~ I 'P-<) 
( ~~I'll ~ ·r 

- M 2 ( (cp::~ ,Rii
1 
k't; S~/"I'K) 

k{' "• (' 

+[~-M)~i'Mtl) LL (cp~~ilA.~.J I k'f;(1.-t.YI1JI~) (IV. 18) 

~~· T 

+ J(stM)(5-Mfv L L <+ .. ~~- J· t. ~~.·t; ~-tl/f..)r ~~~ I ~ 

For spin-flip t-matrix given in (IV. 17), we again have the 

two contributions arising from single particle and three particle 

s t ates. Same considerations as for spin non-flip case lead us to the 

following expressions for these contributions, 
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Notice that for spin-flip scatte ring, the single particle 
t + + 

contribution comes from the terms (a.k,f a.c,f -a_:,. ~~~)Sl , <l~e,_. tl.c.tS~ 

of the interaction. 

t;c~r. ~e') = 1. (-3/wJ{ (M+~ ~~,<t.,~'~.k, f. f((5~+rJj'i'.) 

- (H+l) L L ( <P:~ L k;. ~ kIt ; ~~tlJ} ¥'~ > 
~ k, ·~ I I 

+ Jc.stH+~($--H+t) t: L <+,.,~~4 ,ki.~. ~~~ jcs-ttiJ/rK> 
k(' k.: r 

+ [(s-MJ(s + M .tij ,n: < +~~ .k• t. ~·J; 5! I Y'" I} 
k~ k, 

The first two term 8 here a r e the contribution of 3 par tic l e 

intermediate state 8 for the stati c part of H d• The third i s t he s-
~ a + contribution of aiC,t 1(.~ s_ and the last term from ak,4 aK,1 St • 
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Thus, combining t;(k, It') we have 

the exact scattering equation for single particle to single particle, 
I 

spin-flip scattering as, 

, (- :Jf~) 

<cpA~ I k • J {S~ tV l'f'tc > = ~ K ~ ( t. ·Htc•)+i. ,_ 

• ~- (M+O f.. ( t. k .. ~ ;{S, ttJ llf' .. I 

+ j(s-H)(:st H+l) L (~N f't;~/1fl() 
I< II I 

tfM+I) (K(~~) (cp"'. k'~)~lt!){"tf'K)} 

+ Z f (M+Vrl. ( +:~~ .. k.t.k 'UVYI"I'r.c ~ 
r,s Ri. I 

-(M+/) LZ <<P~~~~~~- k'~ i~tlJf~> 
~~ 

t j(stH-tl)~-H.-ij L I <cf>~~J~ I R;{ k'((Si!-tZ) /lf'.,) 
k~ t fl 

+ j ~-M) ~tM+I) ~ i ( t~~~.M' n; s'l It)~ 

(IV. 19) 
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Equations (IV. 18) and (IV. 19) form the basic set of coupled 

integral equations to be solved for single particle initial state to 

single particle final state, spin non-flip and spin-flip t-matrices. 

It is also seen explicitly that even single particle t-matrix depends 

on the higher intermediate states. This clearly shows the many 

body nature of the present problem, the motion of a single particle 

depending on the motion of others. 
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V. SOLUTION OF THE SCATTERING EQUATIONS 

One cannot hope to solve the coupled pair of equations 

(IV. 18) and (IV. 19) for to know the amplitudes in single particle 

space, we are forced to determine the amplitudes in the three 

particle space. As an attempt in this direction, we may consider 

single particle to three particle scattering processes. But such a 

process would involve, as we shall see in detail later on, t-matrices 

of the form, 

The introduction of a complete set of intermediate states 

between H d and s-
, shall now bring about contributions 

from single particle, single particle + one (electron + hole) pair, 

. and single particle + two (electron + hole} pair states. (In our 

shorter terminology these are single particle, three particle and 

five particle states, respec::tively. From now on we shall always 

use this terminology for brevity). As mentioned earlier, this is 

b H b . b'l' . + d ecause d' e1ng 1 1near 1n a an a, 
s-

can create and destroy 

one particle. Thus we see that an attempt to consider amplitudes in 

three particle space forces us into five particle space. In general 

any consideration of amplitudes in ( .a~+ I ) particle space shall 

require knowledge of amplitude a in ( a Ml\• I ) and ( a. M i' I 

particle space. 
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This dependence of amplitudes in any given number of 

particle space, forces us to write and solve an infinite system of 

coupled integral equations, if we desire exact solutions for any ampli-

tude. Clearly, this is impossible and we are forced to make a cut-

off in our set of integral equations at some point. with the hope that 

the contribution of next higher particle space is much smaller, and 

for even higher number of particle spaces. the contributions converge 

fast. Such cut-off procedures are to be found everywhere in many 

body non-trivial problems. In particular, for the pre sent problem 

of the s-d exchange interaction. Nagaoka 1 s Greens functions 

technique relies on cutting off at two electron Green's function and 

Suhl's S-matrix. dispersion theoretic approach relies on considering 

only the "single"* particle intermediate states. (S) 

It is our aim. and hope, to be able to consider the higher 

order contributions and yet be able to provide meaningful solutions. 

Up to this point we have derived the two basic, exact, coupled 

integral equations, (IV. 18) and (IV. 19), describing the single particle 

to single particle scattering process • . Before we get ourselves involved 

with the basic difficulty of being able to con aider higher order contri-

butions in single particle to single particle scattering process, it 

would be extremely helpful to be able to see the motivation behind 

our choosing the particular approach we would take in this direction 

in later sections . This motivation is best brought to light by con-

sidering the approximate equations obtained from the exact equations 

* The correspondence between Suhl' s ( 
14

) ."Single" particle states and 
our usage of the term "single." is not very clear. 
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(IV. 18) and (IV. 19), when the three particle contributions are 

neglected, and the method of solvi.ng these resulting approximate 

equations. We devote the next section to this. 

A. The Single Particle Intermediate State Approximation 

Neglecting the contribution of the three particle intermediate 

states in equations (IV. 18) and (IV. 19), we obtain the following two 

coupled integral equations describing the scattering from a given 

single particle state to another single particle state, within the 

single particle intennediate state approximation. 

and 

~ <+~~~ k•J.#(~+VIlf.c)t M c )\1 -nJ) 

·(fAI,k'1; ~I 'f:c)] 

f J €5-M)fstHt I} [_ ( </>"' K" 1 j ~ 1 'f'~e) 
k'' • 

+ t-1+1) (\o\r- tt~) <<PN, Jt'.£;~,tYI"P.c)] 

{V. 1) 

(V. Z) 
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Transferring the terms MC\I\t-)1~)(q,_,, ~'1;~/lf.c) and(Mt.!}~fM._1(~ ... n;~ttJIY.) 

to the L. H. S. in (V. 1} and (V. 2), and dividing by the resulting 

coefficients of I+N' k'f ; Sz/1f'k > and J+N' k'~ ; (Sz+l)l 'f K > , 

we obtain, 

and 

where 

+ c-.tt~J[ M · A+ J~-MJ~tM+Y . s] 
Ek- E.- ~tc:· - c-J't~J M . Al1. -t l.'t 

(V. 3) 

(V. 4) 
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and 

An represents the balance of the spin-up and spin-down 

electrons. A look at the terms like therefore 

tells us that it represents the molecular field renormalization of 

the chemical potential and the magnetic moment of the conduction 

electrons. Energy corrections of this form were encountered long 

before, by Frohlic and Nabarro(34) in the case of the nucleus in a 

metal and by Zener(ZB) in the case of the s-d model. Second order 

perturbation calculations of the energy were made by Ruderman and 

Kittel( 35>, Kasuya(Z 9) and Yosida.( 36) This leads to the well known 

R K K Y result for spin polarization of the conduction electrons. 

Equations (V.3) and (V. 4) from the set of two coupled integral 

equations to be solved for the spin non-flip and spin-flip t-matrices 

within the approximation of single particle intermediate states. 

However, the solution of these coupled integral equations in our 

formulation is trivial if we note that the right hand sides of both 

the equations have K' dependence only in the energy denominators 

through EK'" Hence, summing both the equations over K' we 

shall have on the left hand sides of (V. 3) and (V. 4) J{.(cpN' k'f; Szl'f'K) 

and ~~ (c:f>N k'• ;(Sz+l)J'fJK) respectively, which are nothing but 

A and B. Thus we obtain the following two simultaneous algebraic 

equations, 
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and, 

. [ -(M-r!) 13 -t J<S-M)(StM+I) . A] (V. 6) 

· Defining, 

(V. 7) 

and 

_, 

..X2.(t:K-t.) = L { ~K-to-~K.-(-:/N){Mtlj·c1Yl+'1} 
I<' 

(V. 8} 

we have on solving (V. 5) and (V. 6) 
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B = c -~;tJ) [(.s-M)(s-t M +tJ J.1. ( e"·-e.) 
_, 

. [I+ (-J;~)(M+V ].1.(€~< - t.~ ·A 

Knowing these closed form solutions for A and B we have 

· from {V. 3) and (V. 4), 

t:; : (-'JfN) { Mi" (-J{tJ) S(Sti)Jt(Ett-l•)} 

. [t- (-:J;tJ){ M ~. (E~e·t.) -(f'ft!J}.~.(EK .. i.)} 

- (•1/ttJ)z. 5 (.Stt) X,CEtc-l.) . .:X~.CEK- t.J] 
-1 (V. 9) 

and, 
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-~+1)].1(EK-t.)}- (-1/ru)l. .S (.St'l) 

. X,(e~.- ~) ·::X:z. (E~e-l.)] 
-1 (V. 1 0) 

(V. 9 and (V. 10) provide us with the t-matrices in the single particle 

intermediate states approximation. We could discuss the nature of 

these solutions, but it would be better to discuss these after we have 

the solutions for which the higher intermediate states have also been 

considered. We can then make a d irect comparison of the two and 

see how the inclusion of spin life time effects alter the nature of the 

solutions. However, it is perhaps important to point out that the 

Kondo type anomaly already shows up in our solutions (V. 9) and 

(V. 10), because of energy sums like ): , which for continuous 

spectrum (or in other words in the thermodynamic limit of volume 

and the nwnber of particles N, tending to infinity) become 

,-j)z t EK- to- ~It'- ,_,,N) M·4vt +~1r' 
k' 
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where, is the single particle density of states per 

, is the Fermi distri bu-

tion function and refers to difference in nwnber of spin-

up and spin-down electrons, per electron. 

Such integrals show the well known logarithmic singularities 

and consequently, a perturbation expansion in powers of J of our 

results (V. 9) and (V. 10) show these singularities as .fi1lnnT, 

m = 1--- (n-1), and agree with the results obtained by perturbation 

teclmiques. But our results (V. 9) and {V. 10) already provide the 

correct behavior at T = o and Fermi energy, since we have a higher 

power .X sum in the denominator. As a consequence of this we 

shall see that our t-matrices are well behaved at T = o and Fermi-

energy. We shall also find that the blowing up behavior of perturba-

tion theory {at T = o and Fermi energy) is replaced by the occurrence 

of resonances, signifying the onset of some interesting phenomenon, 

which we shall discuss later on. 

To swnrna rize, we have seen in this section on solution of 

the scattering equations in single particle intermediate state approxi-

mation, that a simple summation over the single particle energies 

ttc• reduced the problem of solving two coupled integral equations 

into trivial problem of solving two simultaneous algebraic equations. 

Thus, the equations obtained by Abrikosov and Doniach by their dia-

gram summation procedures and their subsequent solutions, are 

obtained here almost trivially and the results are already correct 

to logarithmic accuracy. Our aim from now on therefore, is to 
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exploit this summation technique of reducing integral equations 

into algebraic equations when we consider scattering to higher inter-

mediate states in the next section. 

It is perhaps worthwhile to mention at this stage that our 

summation technique is valid for a more general class of interactions 

than the contact interaction being considered here. In general, for 

a momentum dependent exchange coupling J (K, K') which can be 

approximated in the mean by a finite sum over factorisable inter-

actions as, 

\11\ 

J ( k, tc') = L R.;. (k) Si. (K. ') ,., 
(V.ll) 

our technique shall still work. This is so because in cur formalism 

the interaction coupling, J(K, K') becomes the kernel of the integral 

equations arrl the form (V. 11} of J{K, K') reduces the kernel to a 

degenerate kernel. The exchange coupling J {K, K') can be approxi-

mated in the "mean" if given 6 > o, these exists a set of Zm functions 

l R.(K) S.(K)J . 
1
m, such that, 

1 I 1 1= 

(V.l2) 
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B. Contribution of Multiparticle Intermediate States 

Returning to the exact scattering equations (IV. 18) and (IV. 19), 

we realize that to obtain a solution for them, we have to somehow 

evaluate three particle contributions. We therefore consider the one 

to three particle scattering processes. We recall that our initial 

single particle state was /</'N kf; Sz > • In the final three par-
' 

ticle states, we have eight possible states corresponding to the four 

possible ways in which the electron-hole pair can be excited each 

for spin non-flip and spin flip scattering of the single particle K'. 

Explicitly, these four possibilities are e. g., for spin non-flip 

scattering of K't 
" 

I.P~~r ,k ... U't, sl), 14>~~-f} ... ( rr ,t5it~), I</!~~, Lt k'fA"!I) 

and / +"'~~ k._ •. lt'f; St) Similar four possibilities 

exist for spin-flip scattering of k',&., namely lc/>~-kW kmf' k'• ;(Sz+l}>, 

jcp~:lq3,km t,k'~ ;(Sz+Z)), lcfN(~~Wkm+ ,k'~;(Sz+l) > and 

lc:f>rf-1q3• kmf , k'+ ;S Z > • 

Let us consider the case where the three particle state is 

lcf>~t!kf3' kmt, k'-l-, (Sz+l) >. Going back to our basic scattering 

equation (IV. 8}, we have upon taking the three particle projection 

of J 'f'~e >, the following equation, 

+ 
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< c:P~~)/1", kw. i, k'fi sl /lt_.d -J./ ~2 
!x. - (fo_"t f1<'-t tK_- ~) +i.f.. 

(V. 13) 

Because of the orthogonality of the single and three particle 

wave functions, the first term on the R. H. S. is zero. This is, of 

course, true of any scattering process where the number of particles 

is not the same in the initial and final states. Thus all single particle 

to higher nurn ber of particle state scattering equations shall be homo-

geneous. 

Now,. consider the quantity <<f>~~lt~,k-.'f)z'f;~~/1-l.,..J.[lfK) 
which is the t-matrix element in three particle space. If, as in the 

case oft-matrix in single particle space, we introduce a complete 

set of eigenstate s between H d and /1fK:. >, we find that the bilinear s-

character of the interaction H d' explained in detail earlier, shows s-

up by giving non-vanishing contributions for single, three and five 

particle intermediate states only. Considering the general three 

particle t-matrix element 

( +.,~~ ,k- r,_, k.. v-.., s~ /H ... ;. I 'l'~e ) 
we have, 
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+'[_'[_/__ '[_ <+:~~ ,ks .... k,.q;.; si!/:H •. .t It~~~ k,r,,~~A') 
k,l< Itt'.· *j ~ Sl" 

til L2 L L ~4:.~~-L• .... k .. q;,;s~IJ-L .... d 
k,,r., ({f.t!''' ~'3· k,r; s~ 

Thus we see that the consideration of three particle space contribution 

has forced us into the five particle space. We therefore at this stage 

again make a cut-off at the three particle contribution. This shall 

make the problem consistent in the three particle .space. We are 

neglecting the five particle contributions in one to three particle 

scattering processes only for the time being, and because this 

enables us to use our summation technique to again obtain a closed 

eet of algebraic equations from which we can evaluate the three par-
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ticle projections. Substitution of these three particle contributions 

in terms of the single particle matrix elements in our exact scattering 

equations (IV. 18) and (IV. 19) shall provide us with a closed pair of 

equations in single particle space, which can again be solved by our 

summation technique. 

In short then, we shall show in this section that the neglect 

of five particle space contributions in one to three particle scattering 

process, enables us to evaluate the three particle projection sums of 

the type occurring in our exact single particle to single particle 

scattering equations (IV. 18) and (IV. 19) in terms of the single particle 

projections. Then later on we generalize this mathematical structure 

of the contribution of higher particle space to all higher order inter-

mediate states. 

Returning to equation (V. 13), we have on evaluating 

< 4>N~1'~, kmj, k'1; Sz Hs-df "o/K) in the standard way as done 

before for single particle t-matrix elements, the following equation, 
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{V.l4) 

We have two swns in each curly bracket on the R. H. S. corresponding 

to the direct and exchange terms. It is also seen immediately thatfor 

~ = k' the R . H. S. becomes inentically zero, as is required of the 

L. H. S. because of the anti-symmetry of the wave function. 

Similar considerations provide the following equations for 

the other possible three particle projections 

(- :!/ N) 
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(V. 15) 

+ (M-'} Alt < .p~~Jr.l', L r, ~ ·1, (s-l-tJ t1fK) 

+ (/-1-!} { ~ ( c/>.,~1' • ki t, ld i ~~ -1) I '/', ) -J ( t ~~,' ~ f.l-t)Sf -1) {'1:.)} 
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..,. J cs-tMJ (s- M+ 1) f f: ( t:~r. V k'1; s~: IY:c) 
'J 
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<tJ (-1/,;) 

( +,. k~, *- f, ft 'J )Sz. -tl} /'/',) " $H- (f.-1- £,.' t ~~)til 

[f 'M+f) <~. k '( "~-tf} I~> -Jl.s-M}(.St 1-t+t}(~k- f;.>~/YK) 1 

(V. 18) 

i lf) I I (- :1/AJ) < N-kt' ' k- J, k. fA.,. Z) ~) = £K-(f.+(..' t €K.: f"''') ti 1 

[R.s t 1'11'1 )~-H•l) k <(>.,). '( ~l-t-1) I Y:c.) - ( .P.,,J._ t,. ~ -tl) /'f'K ~ 
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(V. 19) 

(.J) (- :1/AJ) 

< '~'~~~- *ra )-J. 1t. 'JA~-tJ tr... > = $ ... _ r f.+ 4c. + 0c..: ""''J ~"'Z 

[-v-t+tJ l (.~Ill,~ 't; (S~-tl} /Y'") - ( 4>~ *""" (lf~-r!) ('fl(,)} 

-t (Hrl) 11.1.1. <fN~, k-J, i.'t ,~rl} JY:.> 

(.JJ . 
+ (/"t+l) {f. ( c/>.,. (I', k; J, k-1/12 -t-!} /'f .. ) 

3 

- ~ ( f,.,~~,.. .k; ~ k vs~r I} /V'v. >} 
(~ . 

+.f'i·HJ(.s+M+I) { ~ (t/>111.~ .~t)'J ;s~; /'f,.) 

-~ (4>.,~~~,, ~~ LJ' ~/'!:.)} 1 
(V. Z.O) 
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+ M(</>,.,_ k-1; ~t'f .. ~+ M llK(fJ.~,Lt, k ~; ~/ Yf.) 

+ M t ~ (f,./~~, *if, It' J; S! /'fK) 

-~ < <f!ifl' k- tki t; s! flf,,.)} 

+ J(S-H)(S-tM+I} '[_ <<?:_~~ h·t /t,'/,.~;R+IJ{~IC) 1tj 1{.(3 I "1 J J "c; 

(V. Z 1) 

Equations (V. 14) to (V. 17) characterize the three parti cle 

projections when the state k't i s always occupied by one of the 

electrons while equations (V. 18) to (V. Z 1) characterize the situation 

where the state k' ~ is always occupied by one of the electrons. 
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The pair of equations (IV. 18) and (IV;19) along with the set 

of the eight three particle scattering equations (V. 14) to (V. Z1) form 

a closed set of ten coupled integral equations which describe our 

scattering process correctly within the approximation of retaining 

terms only up to three particles in the intermediate states. 

The occurrence of ten coupled integral equations within the 

three particle intermediate states seems to pose a formidable prob­

lem in any attempt to solve this system of equations. However, 

our summation technique of reducing these integral equations into 

algebraic equations comes in very handy and considerably simplifies 

the mathematical nature of the problem. Solution of the resulting 

system of simultaneous algebraic equations presents no complica­

tions, although the process is somewhat tedious. As we shall see 

shortly, fortunately we do not have to even consider the entire system 

of simultaneous algebraic equations explicitly, for by considering 

just a suitable pair of these equations we can show a certain math­

ematical structure of the nature of three particle contributions to 

single particle scattering equations namely (IV. 18) and (IV. 19). 

This mathematical structure is all we need to realize to consider 

the contribution of higher particle intermediate states. 

To see this simplifying feature of the higher particle contribu­

tions, let us consider equations (V. 14) and (V. 15) describing one to 

three particle scattering processes, where we have neglected the 

contribution of five particle intermediate states in such scattering 

processes as mentioned before. Transferring the diagonal terms 
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(52-1'1) J ¥'k) to the L. H. S. of the respective equations, dividing 

by the resulting coefficients of the two three particle projections 

involved on the L. H. s. namely (t/JN~f';fl .. It- r~ k'f; .s~ I V'~) 

and (fN~~I' .. .k._.J, le'f;{s~-f'l)/1/;c') and then swnming the 

resulting equations over k , we obtain the following two equations, m 

. [ M<f.,, k't; ~/We/+ Mj. (t/>.,~~r~ f. k'~siff~) 
'J 

+JC5-HXS·tr'1+V ~ (f .. ~~ .... ki J. k.'T; C,-tV j v:.J 

t t-}1f ~ .. -(£.+ i..•-t(c,: t~J-(-:1/w) N·l.t'll ... !'I.. r 
i 'J.. (f) 

• -M(cf>.v,Ujsl{f)- M L. <~~-··, k1 r L f. sl (fK) 
~· ·~ 4 • ~ 

-J<s- M)(S-tl'f+l} ~ <+:~~ Ji J. L 1; (\11) I~) ll 
(V. ZZ) 
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L < ~~~.. LJ, t't; {s~-rv/ ~~ 
k.- "r, 

= (- o/,., \~ f f I< - (E. t 6,.• ttK..: t "I')- (-:tt .. ) V"f-tl} AMt'l_fJ 

; {Jls-M)(.stH+V (<f~'~. k'f:.S~/Y:r_) - (H+I) 

~.<4>~~~- ~( k't; ~~+1}/'f.,) 
1 

+Jls-Hj(stH +!) ~ <-f>J:il'.ki f, f7A./'i't<)j 

+ 2:. r (- :rAI*I< _ct. H ... • + €",: t"f')-(-i:,)h+IJ " ..... +i'{,r 

k* 
[ -6'1+V ( f 111, k._ ~ i ~l.t!) f"'fiC) 

-t (Mi-t} 2.. ( +:J;., k._ J., k; 1; (sl-r!) IY'J(.) 
let "7 

+ %m+z)6i-M -1} f. ( t,~~l' ,k ... J, kj J 1 (;l +Z) f Y:.) E (V. z 3 J 

~ 

The terms in the second square brackets of equations (V. ZZ) 

and(V. Z3) can be looked upon as the contribution of the exchange 

terms because of the antisymmetric nature of the many electron 

wave functions. The presence of these terms does not allow these 

equations to become algebraic equations as simply as we saw in 

the case of single particle intermediate states in the previous section. 

However, we note that in these terms, since they involve a summation 



over km, the only free indices left are EK, ~, and ~K • Thus 
f3 

we define two functions F l (EK, € K'' € Iq3 ) ar.d F 2 (EK, E' K" EK ) . f3 
as, 

~(£1( , f~e·, l~eF) . (<P~.k't;s~ /1f.c) 

and, 

= 'k.fc-1!"')1 E,. -r ~ +t • •• f~(k,.J-(~,.,)M·Jl ... +i7 r 
. {- M (4>.,, L fA 1'1' .. )- M ~.<t~~l'.llj~f-1; Sl/Y:,) 

1 

-)(S-M){stM+I) ~ (f~~, ,kjt, k-f; ~ +!J/'f:.)g 

F;. (Eit, €1<·, t.K,;. (i, lc'f; sl I Y:c> 

= L. [ (- 3/.,J{ £1<- (' t f..· 1'€)c.: €"!')- (4
/ .. )fr-t~J <111 '~-'7 r' 

/(.,_ 

· i -(H·n)(~~~~. kw.J; (S~ tl)/lfK.) t (M+t) 

' ,;.. (tJ 
. ~- ( 'r,.,. k, I iw.J ); f; ~~/)I Y:c) 

3 I 

(V. 24) 

-tj(.sm-tz)(s-H·!) ~ < f,.,:.~~ .i-~ .kj t; (5"~ riJ I Y:c>U (V. zs J 

Thus equations (V. 22) and (V. 23) become, 
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f_ < .P:!~~ .k-1, k't ,s, /11' .. ) 

::: X 3 (~ .. , f,.., e~<,a )[{ M < f.,,lt' 1, ~I'/',.:) 

+ M ~ < + .. ~\. ' kj 1 X 1; s i-1 "/' .. ) . 

1-J( s-M) ($ tM.+V i. ( +J~~. 'kjl, k'J, ~ +!Jit >E 
kj ·; 

(V. 26) 

and 

t. < +N~t~f , k,.. +, n; (5~ +1) /lJ'rc) . 

. = X4 (Iii<, €,.·, elcr) [J t< -M)(.s tM +!) i( t,k'f,S~ /1/f.) 

+ l <: +N~~r . ~ r ,/1.' t; sa I V' rc > j 
J 

- (H +J} ~ (tpN:~, , ~ t, k'f; ~+!) /1/'K~ 

t !;. (EIC, t"' I e~<p) ·<. +N, k.' f 1 si-J 1/:c) 
(V.27) 

where 

.X.s (f.K, 6M', 6~f) 

=~! £"- ( f.+Ctc' +~~e--l~)-C·3f~~J)M·lll'\-t\l1~ (· 1/N) 
~- . 
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X4 (£1( I ttc', f~r) 

= (·~IN) I { Ek- ( {. t tiC' -rtk..: t,.,f)-(...1/,.)fM~4)1-tif 
k~ 

Now we can solve the algebraic equations (V. 26) and (V. 27) 
.J.. CIJ , ~ Cf J 

for the sums J. ..... (.~l'tl·/(,, k-f, )t f; .S~/lf,c) and "f_<.,..,.,-~,., 

11-.J, lz' f; (.s~+U I ~.) 

ti on ( tP~ If,' t ; .S•/lfK ) 
• 

in terms of the single particle projec­

and the functions F, (tl(, 6j(,1
, £1(~) 

• We obtain the following 

results, 

f...< 4?..1%, . L t, k 'r, s~t ¥1.1 

= [.[(6 -t1) (,S tH+iJ ],_ {I+ M x.J . <'}-A~·<+., k '1; s~ I 'f.:) 

+A1 [Gf-M){.rfM+!) Xy ·a(,-! F, (tl<, f~e', ~~<!') (t/J,.,,It '1;.s-l (7{1") 

+ F. {£,. 6<: fKI') · (.4,_ A'1 J s'! /1',.) l} 
(V. 28) 

and 



where 

and 
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:: nM):3 +-(S-M)(stMT(} ]3Xt,. (it M'J3· o(,-?p,-'} 

· c<, -f < tf>w. k 'f J s~ I lfK) -t {I+ (,r-r"'t) ($rf1-ff} JJ "Xtt 

· 1(, -I ft _, J t{, -t f, ( E 1C, 6c: ¥ (. <PI'tl, /l. 'f; S~/ lf'K.) 

+J c.s-HJ(.srH+I) ~3 · 11(,-~ f' ~, fz (£~<, t~c', f~erJ 

· <<P..,A'fJ-l/1/k)] 

f>, = [ 1t (M+V ]~{Ew, fk', !~~:r) - (.s-M)(.s+M+!) 

. ~a (Er, 6t; ~) ·X,. (EK, "~ 6yt) · <, -•J 

(V. 29) 

From the expressions (V. 28) and (V. 29) we immediately 
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observe that the three particle projection. swns,r_<t,~~ Lf 
ftJ /(- ~ / , 

lt'f; of~ llfiC) and ~-<~-Itt' , k-1, J-.'f; f.f~ f-f} f1f'K) are of 

the form A,CI'K. ~·. (KI') (.t/J,.,, fe'f1 5e/1f~e) and 

A, (t"K, fJc ', 6<1') (f/>1'1, lt.'f; .r. I lf~e) I where the functions A, ce I(. 6c~ ~) 
and A,.(trK, ~·, ~{') involve two unknown functions F,(f •. &..~t~ 

and F,. {€~e, Qc-•, €J<I') • As was pointed out earlier, the 

functions F 
1 

and F 
2 

in effect give the contribution of exchange terms. 

The contribution of direct terms is explicitly given in terms of the 

functions X.3(6~r,!K'. !l<,c) and which 

can be evaluated. A lack of knowledge of the functions F 1 and F 
2 

does not present any difficulty for our purposes, for our aim was to 

show the fact that the contribution of the three particle projection 

swns of the form (V. Z8) is simply some function of the energies 

~ICI' times the single particle amplitude 

(~,., k'f; .Sa/lf~<.) • This mathematical structure is sufficient to 

simplify the problem tremendously by allowing us to eliminate the 

three particle contributions from our single particle to single 

particle scattering equations (IV. 18) and (IV. 19). 

At this point it seems important to point out that the mathe-

matical structure of the three particle projection sums that we have 

shown just now, could have been seen to be the case by simply 

looking at the nature of the three particle projection sums occurring 

in our exact single particle to single particle scattering equations 

(IV.l8) and (IV.19}. Returning to these equations, we notice that the . 

three particle swn s involved correspond to processes where one of 

the electrons goes unscattered, while a particle+ hole pair is created 



;..CtJ 
by the action of the interaction. For example, the sum r ~ <'t'N- h .. 

' It_ tel' "'r ' 

~t,lt'f; S~ f'l'te)refer s to the sum over all those intermediate states where 

one of the particles is already in the final state K' f (i.e. has gone 

unscattered) while the effect of the interaction has been to excite 

a particle + hole pair. It is a well known result in field theoretic 

scattering formulations that the contribution of such processes is 

always proportional to the scattering amplitude. More explicitly, 

considering the situation in terms of diagrams, we have schemati-

cally, for a process of three particles coming in and three going out 

for instance 

-~~0= = { ==Q=+Permutations} -t==r=J= 
where the first part on the right hand side is called the "Disconnected 11 

part and the second the "Connected 11 part, in the conventional term in-

ology of diagrammatic techniques. In this language then, we have the 

well known result that the "Disconnected" part (i.e., where one 

particle goes unscattered) is proportional to a scattering amplitude. 

Hence it also follows that this part is not really an analytic function 

of the energies etc. Because of the part icular nature of our inter-

action H d we find that the three particle projection sums involved 
s-

are only of this form. We shall later on see that their contribution 

is not analytic. (For further discussion of this point, see ref. (37) ). 

Consideration of equations (V. 14) and (V. 15) led us to show 

explicitly that the three particle projection sums being considered 

can be written as. 
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[ ( <k~~ . k.,. 1, /1. '1, Szf¥'"') 

::: A, { !K, 6<', ~~) ( t/>N, lt'f; Sa I 1f~><) 
(V.30} 

t ( tj>N~~ } ... ~ ft' t;(Sz f'!}j '/:.) 

== A1 C £~. & ~ &I')-(. <l>tv. k '1 ,·.S~/ 'tfk) (V.31} 

Returning to our single particle to single particle scattering 

equations (IV. 18) and (IV. 19) we not ice that we need to know three 

particle projection sums of the kind, I: f_(</>~~kl' )- ~ t'f; S~ /lfK) ..... (-

etc. Thus from expressions (V. 30) and (V. 31) we find that, 

) A, Cctc, cK' J 6~e11 ) = A, (el(' f:~·J 
~ . 

[ Al (E "J Etc' I €1<~) ;:. Az. (E K, tl<) 
R(i 

respecti vely, we finally 

find that the three particle projection sums in equations (IV. 18} and 

(IV. 19) have the general structure, 



It is clear that similar considerations of the pairs of equations 

(V. 16) and (V. 17), (V. 18) and (V. 19), and (V. ZO) and (V. Zl) shall 

yield the other three particle projection swn s involved in the single 

particle to single particle spin non-flip and spin-flip scattering 

equations (IV. 18) and (IV. 19). Thus without repeating the detailed 

analysis for these pairs of equations, we simply state that the 

structure of the remaining two three particle projection sums occurring 

in (IV.l8)" is of the form, 

The three particle projection swns occurring in the spin-flip 

scattering equation (IV. 19) are found, from (V. 18) and (V. 19), and 

(V.ZO) and (V.Zl), to be of the form, 
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2:. < 4>.,~~~' LU~ l (s"lfJ)Il/' ... ) .. B, (E ... ,€.·) <i. ,k:~; ~~.,.j) lfl() 
kf k.""' 

Thus far in this section, we have succeeded in showing the 

general mathematical structure of the three particle projection 

sums involved in our exact scattering equations (IV. 18) and (IV. 19), 

by resorting to a cut off procedure at the three particle intermediate 

states in writing down our equations for one to three particle 

scattering process. Thus it may appear that this mathematical 

structure of the ccntribution of three particle intermediate states 

in single particle to single particle scattering equations is true within 

the cut off procedure used in writing down higher scattering processes, 

namely, neglect of five and higher particle scattering proces sea . 

However, a careful thought on the analysis involved in arriving at 

this nature of contribution of the three particle projection sums 

within the approximation for which we have shown it. explicitly, 
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immediately tells us that this analysis can be generalized to any 

higher order with our conclusion remaining the same. Also, instead 

of doing the same analysis for higher order scattering process 

involved, we may at this point make use of the .well known result in 

high energy scattering theory quoted earlier which tells us that the 

mathematical structure at which we have arrived here, within our 

cut off procedure, remains valid in general. Let us therefore at 

this point make the ansatz that the nature of contribution of the three 

particle projection sums involved in our single particle to single 

particle scattering equation (IV. 18) . and (IV. 19) is of the form, 

(V. 3Z) 

so that spin conservation is satisfied. 

Even though the use of the theorem on the "Disconnected" 

part tells us that our ansatz is in fact correct to all orders, for an 

explicit exposition of this fact, we generalize our result to all orders 

in Appendix 1. 

C. Solution of the Exact Single Particle Scattering Equations. 

In the beginning of the previous section we stated the motiva­

tion for considering the mathematical nature of the contribution of 

the three particle projection aum s involved in the two, single 
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particle initial state to single particle final state1 spin non-flip and 

spin-flip scattering equations (IV. 18) and (IV. 19). Having shown 

that this mathematical structure is given to all orders by (V. 32), 

we are now in a position to incorporate the effect of all higher 

order intermediate states in single particle scattering processes. 

With the help of (V. 32), we replace the three particle contributions 

in fJY. 18 }"t and (IV. 19) by and 

re specti vel y, to obtain, 

+ M L < 4>N, k" 1. ~ { tfK-l t j(9-M) (§"tM-t!} 
/IC" J 

· L ( </>w, k. • ~; (,S~+!) /1/'~<.) J 
#< ,, 

(V .• 33) 

and, 
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I 

[{ G"1 +I} Ll~ ( t "· k' L s-l • I ) - (/'1-rU 

(V. 34) 

The functions ).., (E~e 1 6<'.) are of 

course unknown at this point. However, we shall soon obtain 

equations to determine them by exploiting self-consistent boundary 

conditions to be satisfied by our scattering amplitudes, These 

functions have been introduced to take into account the effect of 

higher order intermediate states. In other words, )., (EN 1 t-i< 1) 

and .A.,{!N, fk') take into account the contributions of (par ticle + 

hole) pair excitations, due to spontaneous spin fluctuations of the 

impurity atom in spin non-flip and spin-flip scattering processes 

of the conduction electrons. It is seen from equations (V. 33) and 
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(V. 34} that (-JfN) A1(EK,€~') and (-J/N) · ;l.z. (Ef(.~~') have dimen~ions 

of energy. Thus it seems natural to interpret them as exchange 

correlation energies, for in our discussion in the previous section 

we had seen explicitly that we had to deal with both, direct and 

exchange terms, with the additional requirement of Pauli Exclusion 

principle for the intermediate state sums. Furthermore, it is 

are in general complex 

functions. Hence, another way to interpret the introduction of 

;t1 and A1. would be to consider the scattering of electrons 

from a complex effective potential. With this interpretation of A1 

and :<. 'Z. we find that we are close to Doniach's(ZO) introduction 

of effective potentials in summing up his infinite class of diagrams. 

However, Doniach has summed up only leading order diagrams in 

an attempt to evaluate quantities analogous to our Ar and .A1 and 

we shall later on show that his results are the second order expansion 

of an approximate solution of the equation we shall obtain for these 

exchange correlation energies in the next section. 

The physical implication of the complex nature of ). 1 (!,.~·) and 

l.,(h,tj<') is simply reflecting what we already knew intuitively, namely 

that in the scattering of an electron off an isolated impurity atom, 

the generation of particle + hole excitations leads to inelastic 

contributions to the cross section. As such, we find that the effect 

of the interaction between the a-electrons of the conduction band 

and the localized d-electrons of the magnetic impurity is to change 

the energy of the single electron levels and to give these states a 

certC~.in width at the same time. This width is related to the imaginary 
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part of the now complex energy while the energy shift is the real 

part. The broadening of the single particle energy levels is equiva-

lent to giving a life time to the single particle electronic levels. 

Thus we find that our particles are now better looked upon as 

"quasi-particles" in the presence of the interaction. However, 

we would like to use the term "quasi-particle" with a little caution. 

From the plethora of work done on interacting many fermion 

systems we now know that the term "quasi- particle" in the conven-

tional sense has a well defined meaning only near the fermi energy. 

Anticipating this to be so for our interacting fermion system too, 

we should like to reserve the interpretation of our electronic states 

as quasi-particles, only near the fermi energy. 

For the present we limit our remarks on the functions ,1.., 

and A2. , and proceed with the solution of equations (Y. 33) and 

(V. 34}. During the analysis we shall have occasions to consider 

further the physical and theoretical implications of these functions 

which are perhaps best discussed side by side with the analysis. 

Transfer ring the terms containing (tPN, 1<'1 ;!~/ if,c ) and 

to the left hand side of equations (V. 33) and 

(V. 34) respectively and dividing the equations by the resulting coef·-

ficients of these amplitudes, we obtain in a straight forward manner, 
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(V. 35} 

and 

( ~. k'J; (5~-t-V /~) 

= (- 3fN) t ~J(.- (fo -tt.c')-C-~I,vJl~+i)Lln. -t At(EK,6t')J+it] 
_, 

T j (,5 -K) (,S tiHI} . L < 4> ... It "1 ; .s~ 11/',.) J 
k'' 

(V.36) 

A look at the energy denominators occurring in equations 

(V. 35) and (V. 36} immediately tells us that the effect of the inclusion 

of higher particle intermediate states is essentially to modify the 

energy levels of the system. In the language of Greens function or 
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propagato rs, we have seen here the modification of unperturbed 

propagator, 

r~ 1<.- ( 4 + ~~e.·)- c- =rNJ i M· Lllt -t A,(eK,f~t-•)} +i.,] 
_, 

and 

[~K- (~+ t~<•)-(-3/NJl (Mt!}l:.~-+ A~(Ex1 ~·)}+i1} 
_, 

characterizing the propagation of the particle in the spin non-flipped 

and spin-flipped states respectively. In more sophisticated terms, 

we find that the presence of the interaction amongst all the e lectrons, 

brought about via the exchange interaction of each electron with the 

magnetic impurity (which is another way of simply stating the effect 

of higher particle intermediate states) calls for a "renormalization", 

(to use the standard terminology of field theory) of the energies. 

Let us write, for brevity, ( ~14- f. )) = t.JK, (-1t111JlH4K +.A,(EI<,t,<')} 

= A, CEK. ~·) and c-:l~>i (fi1't) ·!J)1. .,. It,. (EI(,f..,•J}~ !h(61t., ftc•) • Then our full 

~ }~ propagators become /WK- e-~~-!I,(W~e,6"')} and{WJc."ti<'-/I,_{.W.C.~·). 

It is clear by now that summing equations (V. 35) and (V. 36) 

over k' we obtain two algebraic equations for the closed sums 

and , n e eded 

to know the spin non-flip and spin-flip, single particle t-matrices . 

This step is identical with the one shown in section (V. A), where 

we solved the scattering equations within the single particle inter­

mediate states, except for one crucial difference. There the propa-

gators involved were the unpe rturbed propagators while now we have 

the full propagators in our scattering equations. 
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Solving the simultaneous algebraic equations obtained from 

(V. 35) and (V. 36) we obtain in a straight forward fashion, the 

following, 

where, 

-( 
J.1(Wk) := 2_ 1 WK- tK'- 1\,(W~.tK').ri.L} 

K' 

(V. 3 7) 

(V. 38) 
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Let us define the quantities (·'INJ{M·A +J&-M](.S-t~t!)· B] 
occurring in equations 

(V. 35) and (V. 36) as T fl' and Tfl' respectively. Then using non- 1p 1p 

(V. 37) and (V. 38), we have after a few straight forward sirnplifica-

tiona, 

--

-[-'!fiJ),.s(s-tl) :t;,(w";. Xz.(WI()J 
-L 

'[t-(-JfN){ M 11(w,J- (!1-+.!}X~(W~e)} 

- r:--t.i· sf$-ti) :.::, c W~e) x .. ( WK) r 1 

Equations (V. 35) and (V. 36) now become 

(V. 39) 

(V. 40) 
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(V. 41) 

< <PtV
1 
It' .J, ~ (S~+!) /1fK) 

--

(V. 42) 

Equations (V. 41) and (V. 42), along with the expressions (V. 39) 

and (V. 40) constitute the "Formal" solution for the spin non-flip and 

spin-flip scattering amplitudes. We have called the solution "Formal" 

for it still remains to determine the functions and 

We proceed to do this in the next section. It 

seems proper to mention though, that as we would expect, /\1 (w.,, 6t') 

and are not independent of each other. 
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D. Self Consistent Equation for Self Energy 

It is well known now that the self-energy, usually denoted 

by !;(w, It) in many body theory, is given by the forward 

scattering amplitude. This standard result of field theory, has been 

made use of by many authors in considering the present problem 

by various methods. However, almost always, the attempt invariably 

has been to sum up infinite classes of Feynman diagrams to evaluate 

it. Using such a procedure Brenig and Gl;tze (lB) have provided an 

expression for self energy of the present problem in terms of the 

spin non-flip scattering amplitude. It is to be noted though that 

their expression does not include all the diagrams corresponding 

even to three particle scattering states, let alone any higher contribu-

tions. We could make use of the standard result mentioned above to 

obtain an expression for our self-energy in terms of the spin non-

flip scattering amplitude, for it shall immediately give us a relation 

between and which itself 

involves A1 (w~, €~e'J through the function :t, ( G..J~e} Hence 

we shall have an integral equation to determine A1 (14Jif, t") in a self-

consistent way. However, instead of making use of this standard 

result, we shall derive the same from first principles by invoking 

the boundary ccnditions to be satisfied by the quantities we defined 

as t-matrices in section (IV. C). This shall give us a greater insight 

into concepts of formal field theoretic scattering as applied to 

thermodynamic systems. 
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For details of what is involved here, we refer to a beautiful 

paper by Gell-Mann and Goldberger~38 ) For the purposes of 

discussion here, let us recall the basic definition of our spin 

non· flip matrix, (equation V. 33), 

where we have made use of definition of Tnf(K, K'). Using equation 

(V. 41), we finally obtain, 

t..,1 (IC. ic') = [ T ..... f (1<, i<.') t /1.1 (w"· €,, .. ) 

~ (Ll b"~e' +T,.1(k.l<'>} 

. (WI< - € I< • -A, (t.J,., €•.') +;. .'l Jil J 

Simplifying we have, 

(V. 43) 
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The second term on the right involves a Kronecker delta, 

which we recall arises from the orthonormalized character of the 

eigen functions of the unperturbed hamiltonian. We know that in 

the limit of an infinite normalizing volume, V--. oo, the Kronecker 

delta is replaced by a Dirac delta function. Hence taking the 

thermodynamic limit N,--.oo, V---.oo such that (N/y) remain s a 

constant, 'our Kronecker delta shall get replaced by a Dirac delta 

function, o(K-K'), which for the one value of K=K' tends to blow up. 

However, from formal field theoretic scattering theory we know 

that as · v~ oo and + 1---. 0 J tnf(K, K') must tend to zero, 

since otherwise the cross section would be infinite, {for reasons 

just explained) or at least dependent upon the normalization volume. 

Hence for an interaction that produces self-energy effects which 

are not infinitesimal, the term must be 

cancelled by a portion of the other term on the right hand side of 

(V. 43}. Thus the expression (V. 43), must be of the form of an 

infinitesimal plus a term proportional to oKK' that does not vanish 

+ as l ~ o and V---. oo • Direct application of this results 

to (V. 43) for K = K' immediately gives us, 

(V. 44) 

where Wee and are related by the equality, w .. a fK +A CW. ~) 
" I • 

Making use of our expression (V. 39) for Tnf(K, K') we obtain the 
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following equation to determine /\1 ("-'~e, €~~t) self-consistently; 

(V. 45) 

This is an integral equation for 11, {WK1 6kJ since it involves 

,11(W.C, ~·) in the integral X1 ( ~~<.) through its definition, 

E. ,Some Properties of the Functions Involved 

In the foregoing sections we obtained a formal solution for 

the spin non-flip and spin-flip scattering amplitudes in terms of the 

self energy. We then provided a self-consistent equation to deter-

mine the self-energy. It now remains to solve this equation for the 

self-energy. However, to do this we shall have to invoke certain 

mathematical properties of the functions involved. We, therefore, 

1hall devote this section to such an investigation. 

Let u1 £ir1t lnve1tigate the propertie1 o£ the function X,C~K) 



given by, 

-( 

X, ( WK) = ~ 1 WK .. tK'- 1\,(wK, ~K') "tll_I 
K' 

In the thermodynamic limit of volume going to infinity, 

such that the number of electrons per unit volume remains constant, 

the summation over I< ' goes over to an integral, characteris-

tic of continuous spectrum. Thus, using the standard procedure 

of replacing a discrete sum by an integral, we have, 

X, (wtt) 

where f( ~~~) is the single particle density of states andfCttc'-~ 

is the Fermi distribution function,~eing the chemical potential. 

More explicitly we must write ~1 (w .. ) as f,(w~e, i) since it depends 

on temperature through its dependence on the fermi function. Thus, 

.0 

I 
/(tk) "W { (3 (~., .. ~J/z J · e/,~1<.' 
1!../~e- ~K'- A, (.~VIf. ~') +i7 

-lfJ 
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_, 
where ~:{)!8T) ,~ k~ being Boltzman's constant. Changing the 

origin to the chemical potential, we have, 

( /(EK' -t £f) ~ 1 f'"' •f, J . J..t,., 

J WK - ~A' - /l1 (WK,. EK') +c.~ 
... .,o 

(V. 46) 

with the definition Wlc ::r f -(t. -1-fFJ • Thus t.JA:.characterize s the 

single particle energies of the interacting system as opposed to 

~. which corresponds to the unperturbed single particle level s. 

Although the integral in (V. 46) runs from -oo to oo, we may make 

a finite cut off based on the physical limitations on the energies in 

the conduction band. We may for instance limit the integral from 

-D to D, where 2D is the conduction band width, by defining the 

density of single particle states to be nonvanishing only in this 

energy range. We shall consider the explicit form of the choice of 

our density of states later on, but may remark here that there is 

no loss of generality in the mathematical properties of X , by 

restricting ourselves to the energy range -I> to :D , in which 

case we have, 



Let us consider .X.1 as a function of complex energy z. 
We define, 

X,(l,T) ::: J fCt') ~(fl'/1-J dl' 
'l- ~·-1\,(~1 ~')+'-~ 

{V.47) 

To consider the analytic properties of X 1 {Z,j3) , we have to first 

consider the basic density of states function p (Z) • We have already 

considered it to be non-vanishing only between -D and +D. We 

further aasume the following properties for p(Z). 

1). 
) 

J f ( t J J t - finite 

-]) 

11). All singularities of p (Z) in the complex plane are outside a 

large circle of radius D around the origin. 

The first property is always satisfied fo~ realistic bands, 

The second feature is characteristic of the conduction bands of 
I 

metals. Since D corresponds to a temperature of the order of 

104 °K to to5°K, the condition KB T < < D is always satisfied for 

all temperatures of any possible interest. Thus it follows that 

p (Z) is a smoothly varying function for all Z < <D, such that 
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an appreciable change from the value p(O) at the origin occurs for 

energies of the order of D only. 

According to Van Hove's theorem( 39>, p('->) has a square 

root singularity at the band edges. The simplest function having 

these properties is 

The function p ("') can be considered as the boundary 

value of the function, 

f(Z) 

at the real axis. p (Z) has two branch points at :t_ D and the branch 

cut is chosen along the real axis between -D and D. Except for 

this branch cut, p (Z) is holomorphic on the whole complex plane 

behaving at infinity like 

For EZ < DZ one finds that 
I 



-98-

(V. 48) 

Such a density of states has been considered by Brenig and 

Gtltze.(l8 ) Treatments for more generalized density of states 

function have been given by Mueller-Hartrnann and Zittarz. (l 3 ) 

However, we thould like to point out that the often' used square 

well or Lorentzian density states, (lS) both of which violate Van Hove's 

theorem, cannot be considered as boundary values of holomorphic 

function obeying (V.47) at the cut. 

With these properties of p(Z), it follows that the function 

X1(e, T) is holormorphic everywhere, excluding the branch cut 

from -D to +D. It decreases at infinity like Z -l. Furthermore, it 

is easily seen that the reflection principle, 'J ,*' (Z, i) = X, (l~ T) 

where • meant complex conJugate, h tath£ied, which immediately 

gives U& 11 

thus providing us with the discontinuity o! 'X 1 acrose the branch cut 

aa, 
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[X, (w-t~1 , T) - X, ( w-<.~ , T) J 

= - 2 rr i j'- X , ( LAl .. T} 

which is purely imaginary. 

In an exactly analogous fashion we also obtain that J.1 (z, T) 

is analytic everywrere except from -D to +D on the real axis, 

where it has a branch cut. Also ') 1*(-:e, i) c ]. 2 (c*., T) 

Making use of these properties of X1('f;, I) and _A,_(eJ 1) 

along with the equation (V. 45) for !\ 
1 

(Z, 13), we immediately 

conclude that 1\ 1 (Z, 13) being a combination of the sectionally 

holomorphic(4 0) functions J. 
1
(Z, 13), and X2 (Z, 13), must itself 

be at l east sectionally holomorphic. Thus it follows that 1\ 1 (Z, 13) 

is analytic everywhere, with the possible exception of the real 

axis from -D to +D. The reflection principle for X 
1 

and X 2 

provides us with the information that, 

which also implies that 
I 
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and 

It is perhaps worthwhile to point out that the functions X 
1 

and X 2 are nothing but the sums over the full single particle 

propagators. The analytic properties we have just proved above 

therefore involved nothing more than the analytic properties of 

single particle propagators which ha. ve been investigated quite 

intensively by many body theorists interested in the Green's 

function approach to many particle systems. We have made use 

of some of such concepts as proved by J. M. Luttinger{4 l) for the 

single particle propagators in many fermion systems. 

We now investigate limiting behavior of our functions . We 

see that functions X 1 (Z,~) and j..2 {Z,I3) go to zero as z-l in the 

limit Z __, ao. This is in keeping with the well known behavior of 

single particle propagators. With this result applied to our 

expressions (V. 39) and (V. 40) for Tnf and Tf we immediately obtain, 

L~,w.. T~i (Z, f) = (- tj,J M 
i- _, ao 

(V.49) 

and 

L:- lfCe.p) - (- :TfN)J(.s-M)(S-tM-tt) -
l-9 GO 

(V. 50) 

These are nothing but the first Born approximation terms for spin 

non-flip and spin flip t-matrices. 
1 

For the case of spin S = 'I 
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impurity, we find that for scattering from S Z = M = l state the 

non-flip t-matrix becomes (If~) (- :t/ N) in the 

Born approximation, while the spin-flip t-matrix is zero. This is 

in agreement with the limiting behavior for t-m atrice s as obtained 

from Suhl's dispersion theoretic formulation of the problem. By 

virtue of (V. 44) and (V. 49), it also follows that 

Thus we see that the exchange-correlation energy, lt1 (~)~) 

instead of going to zero for large energies, goes to a real 

constant (~/~o~J-M Recalling the result of our solution written 

the single particle intermediate states in section (V. A) we find 

that (J/N) M was associated with the molecular field renormalization 

of the chemical potential and of the magnetic moments of the conduc-

tion electrons. 
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VI. EVALUATION OF SELF ENERGY 

A. Approximate Evaluation and Comparison With Previous 

Results 

To know the self energy exactly, we have to solve equation 

{V. 45) exactly. The aim of our theoretical work is to. be able to 

improve the existing results on the self energy in the hope that its 

unphysical behavior can be removed by a better treatment of the 

problem. This shall also allow us to consider the nature of the 

ground state. Furthermore, to obtain physical parameters a 

knowledge of the self-energy is necessary as well as sufficient 

because determination of the self-energy for small values of the 

complex energy Z, yields directly the relevant non-equilibrium para­

meters like electrical conductivity, thermo-electric power, magneto­

resistence etc. Also, the thermodynamic properties of the system 

are given by the asymptotic behavior of the electron self-energy for 

large z. Thus, ideally one would like to know the nature of the 

self-energy without any approximations. We would be successful 

in realizing our aim provided we can solve the integral equation 

(V. 45) for our self-energy without any approximations. 

we notice that if the electron self-energy /\, CWt, ~"' ,~) 

in the definition of the full propagators through, 

Fortunately, 

occurring 
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is considered to be independent of fK,in the integration rang e 

-D to D for the function X, (W..:, f') , then the integral equation 

(V. 45) reduces to a transcendental equation. We have been able 

to solve this transcendental equation. .Although it is not very 

satisfying to obtain the self-energy under this approximation, we 

may take some consolation in the fact that our results under this 

approximation are already a considerable improvement over 

existing results. In particular we only mention here (and shall 

show later on) that the quantity analogous to our 1\ 1 which 

Doniach (ZO) in his formulation has called effective potential, 

turns out to be the second order perturbation expansion in powers 

of J, of the first order iterative solution of the integral equation 

(V. 45) for /\ 1 (Z, 13). 

Before we proceed, a word of caution on our approximation 

is necessary. It is well known that the poles of the propagators 

provide the single particle excitation energies. Thus for the exact 

propagator we see that poles occur whenever the relation,· 

is satisfied, fl< being the root of this equati on. Since the function 
y 

is unknown at this point, we cannot aprion say how 

many roots, €Ky , we may have. Restricting /\ 1 to be a function 

of WK alone thus imposes the condition that there is one and only 



-104-

one root given by, 

Physically this amounts to an apriori restriction that one 

and only one unperturbed single particle state EK goes into the 
)' 

exact state of energy ~K. In this sense then, treating /\1 as 

a function of WK alone restricts the behavior of our system to 

"Normal" systems. (4 Z) If more than one root €- K is a possibility, 
y 

physically it would imply a collective phenomenon of some sort in 

which many unperturbed single particle states go into a final state 

of energy WK. Thus it is well to keep in mind that wr approxima­

tion may be leading us away from such a phenomenon. 

Under the approximation t.,CwK,iK•): A1(wK,itc.J we obtain from 

(V. 45) the fo llowing transcendental equation, 

(VI. 1) 
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where X 
1 

and X2 are given by, 

and 

) 

X ,I w ... - A,(IJK ,fJf ::: I 
-j 

In these expressions we have written 1\ 1 and A 2 only 

as a function of '-'K for because of the energy conservation rela-

immediately see that it is redundant to write them as functions 

of W K and 6 K both. It also follows from these relations 

that under our approximation of treating 1\ 1 and 1\ 
2 

to be inde­

pendent of tK' , /I,U..JI<,~) = /tl (Ww,(S) • Thus we find that 

say, and equation ( VJ • 1) reduces to 

1\{W~c, f)::: - c-~/tJ) l N-r (-~/,.;} s ~1'1) }.(t,.J.c-A(W~e,~J)j 

. [t-r(-:lfrV) X(W~<.-f\(Wt<,rJ)-(-'1(N)'L 

. s~-rl) .X .. (wj(-A(w~,fl)r 1 (VI. 2) 
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where X is given by, 

(VI. 3) 

At this stage we should like to put our results in a form 

which would ease comparison with previously obtained results. 

We find that this is best achieved by transforming our results to 

the total angular momentum representation. Defining the total 

. s 1 angular momentum as j, we have J = .!. 'i· 

Thus using Clebsch-Gordon coefficients we find that for the 

total angular momentum channel j = (S + j-) we have, 

· [11- c- 3
/"') X - c- ~IN)'-.sc.s-ro X,.] 

1 and for total angular momentum channel J = S - 1, 

_, 

(VI. 4) 
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(VI. 5) 

where we have made use of the rotational invariance of the 

Hamiltonian. In the total angular momentum channel a further 

. simplification of the expressions for /\j c: S+i- and Aj = s-i­
results. The denominators of (VI. 4) and (VI.S) are the same and 

can be factorized as, 

We notice that in equations (VI.4} and (VI.S) one of the 

factors in the denominator is the same as the nwnerator and hence 

cancels out, providing us with the following results, 

A. (w, ~) 
J: S+ Yz. 

(VI. 6) 

and 
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(VI. 7) 

Before we get involved in a discussion of the numerical 

solution of the transcendental equations (VI. 6) and (VI. 7), let us 

II · .. consider the first iterative solution for "" by setting A (W, 13)=0 

in the definition of the integral X(w,f) (equation VI. 3). We do this, 

for we find that the other various results for the energy difference 

between the unperturbed and the perturbed ground states happen 

to be approximations of our first iterative solution for 1\ 

Thus a comparison oi our first order iterative solution (for which 

we can provide explicit expressions without resorting to numerical 

analysis) with the existing results not only checks our results in 

limiting cases but also shows convincingly that the numerical 

results obtained from the full transcendental equations are a 

considerable improvement over these existing results. 

Thus, setting /\ ( W , 13) = 0 in the definition of the 

integral :X{w, ~) we obtain the following equations for the first 

order iterative solution for A 's , 

(VI. 8) 
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and 

(VI. 9) 

where 

(VI. 10) 

At this point we should like to compare our results with 

Doniach' s. (ZO) Expanding the expression (VI. 8) and (VI. 9) in 

powers of J, we obtain, up to the second order in J, 

his 

(VI. 11) 

(VI. 1 Z) 

These are the same as the results obtained by Doniach for 

.ki=S+_t 
v~f! (equation 33, Ref. ZO), with one minor difference in 
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the constants. Our second order terms have the coefficients 

s2 
and (5+1)

2 
while his terms have S and (S+l}. 

A(l) ( MJ, A) 
To obtain explicit expressions for '' ~"' 1 we have j=.stY2. 

to evaluate the all important integral X (WI fJ (equation Vl ·lO). 

Because of the fact that the experimentally observed physical 

parameters do not show any marked dependence on the band 

structure, there shall be no loss of qualitative information 

on the nature of solution in taking the density of states fo(!:~t~F) 

to be equal to fo elF), the density of states at the fermi energy, 

in the range -D to +D. Also, we have already pointed out in the 

previous section that the density of states function is different 

from p
0

( EF) only for energies of the order of D. Treating the 

density of states as a slowly varying function of energy, we replace 

p
0 

( €1(•+ €F) by p
0 

( €F) and are thus able to evaluate the integral 

(VI·JO) quite simply. 

We evaluate (VI. 10) in appendix Z, under the condition 

kB T < < D, which is satisfied for all temperatures of interest. The 

result is, 

x ( w. r) - -z r. c € F > [ * · 1-.t l ~·~ .f ~ i" 1 

. - "'/'{f + (:o~~ffl)] (VI. 13) 
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where 1.( (Z) is the di-gamma function. <
43) Combining the 

expression (VI. 13) for X. (W, p ) with equations (VI. 8 ) and (VI. 9 ) 

we have now an explicit expression for the first order iterative 

solutions for 1\ ~~b~J ( C.U, j3) • We now investigate the behavior 

of these solutions in the asymptotic limits of the di-gamma function. 

The asymptotic form of the di-gamma function lf (Z) for Z~ oo 

in larg Z I < w is given by, (ref. 43, equation 6. 3.18). 

- .. ·- . 

Thus for the low temperature limit ( W /kB T) > > 1, we have 

From the expression (VI. 13) for A we have, 
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. d h -li Where we have reta1ne terms only to t e order Z n 

Rearranging terms, we have, 

+ Jl + ll"~~T rJ 
(VI. 14) 

We may further simplify this expression to obtain, 

In the limit of T __.., o, we have finally, 

(VI. 15) 

From (VI. 8) 
' 

(VI. 9) and (VI. 15), we obtain the following 

expressions !or A's at absolute zero, 



II. (LV) 
1 r:z .S+ ,,. 

1\. (w) 
J= .s-'12. 
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= (1/tJ) $ [ 1- fo CEp)(':tfw) P 

. J.,. { ~·:~ .) r 
(VI. 16) 

= -(JitJ)(s+y [1..,. I. (~f) (~/N)(s -tl} 

. J- ( ;p~~w~) J -I 

(VI. 17) 

These expressions for 1\ J=S±J at absolute zero develop poles at 

values of W given by, 

(VI. 18) 

and 

(VI. 19) 

From these we obtain, 

i'JYl S -¥2. 
G.) 8 ( j :: s ... y, J :::: t :D 1 ~ + 1 1 (VI. ZO) 
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(VI. 21) 

where Y is the dimensionless constant. fo(tf) · (:1/N} • 

From the expressions (V. 70) and {V. 71) it is seen that the 

w 1 s are non-analytic functions of the interaction strength J. 

Thus we find that the interacting ground state, for both the channels, 

j= (S:t_i). developes a kind of "Binding Energy" corresponding to 

the negative sign in {VI. 20) and (VI. 21). This again reflects the 

fact that the pre sent problem cannot be treated within the realm of 

perturbation theory. The binding energy corresponds to the 

reduction of the entropy of the conduction electrons. In expressions 

(VI. 20) and (VI. 21 ). if the con aider the limit Y' very small, the 

"Weak Coupling" limit, we obtain the results obtained by others;(S) 

(VI. 22) 

(VI. 23) 
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Let us now consider the other asymptotic limit kB T )) G..J , 

subject to the condition D >) kB T under which we have the 

expression for Y. (W1 T) as, 

J Dz.- w • 
X(W, T) ~ -Zf.(fF)t(Y,Jl"' (2n~t,TJ,_ 

- 1f ( j + 2.:;• T} J 
Thus, in the high temperature limit ( ""/ /t8 T ) < < 1 we have, 

which ccznbined with (VI. 8) and (VI. 9) gives us 

(VI. 24) 

(VI. 25) 
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These expressions for the energy corrections in the two 

channels j = 5 :t. i develop poles at temperatures, 

(VI. Z6) 

and, 

(VI. Z 7) 

where '/' ( ! ) = -1. 9635 and J ~ 0 is under stood for j = 5! i 
respectively. Such poles have been obtained by the other approaches 

as well and the critical temperature for J < o which occurs for the 

antiferornagnetically coupled channel j = (S-!) bas become known as 

the Kondo temperature in the literature. 

The occurrence of these critical temperatures however 

shows that the high temperature results (VI. Z4) and (VI. ZS) are 

valid only for temperature regions much above the critical tempera­

ture. In the region around the critical ternperatur es for the two 

channels, we have to take the full form of di-garnrna function in 

our expression for '1. ( W , T), equation ( V1·13). If we were to corn bine 

the explicit expressions for energy corrections obtained for zero 

temperature and very high temperatures, and extrapolate them 



toward the critical temperatures, one would obtain the qualitative 

blowing up behavior of energy change as a function of temperature 

obtained within the limitations of other theoretical work. (5) 

However, from our exact self-consistent transcendental equations 

(VI. 6) and (VI. 7), one can immediately see that the energy correc-

tions can never blow up, since the right hand side tends to reach 

a constant value as 1\ ~ ao, contradicting the left hand side and 

thus violating the self-consistent determining equations for /1 's 

themselves. This behavior clearly shows that the energy corre c­

tion instead of blowing up at some critical temperature, and having 

an infinite discontinuity at that temperature, (results obtained by 

others up till now) shall show a maximum as a function of tempera­

ture with a smooth continuous behavior all through. A nwnerical 

evaluation of A for both the channels j = (S ;t i> performed by us 

shows this behavior and confirms our qualitative interpretation of 

our results. Based on the physical nature of the present problem 

and the experimental results available, such a behavior for J < o 

bas often been speculated and conjectured by many. (5) We show 

here, for the first ' time, that the inclusion of the higher particle 

intermediate states (or exchange-correlation effects) and its self­

consistent evaluation even within the approximation where (\ (w., ~·) 

is considered to be the same for all the unperturbed single particle 

states . by putting /ICIAJK,fl(•)=.j\(WI( ~~ removes the blowing up 

character of the energy correction to the unperturbed ground state 

energy, as a function of temperature, thus providing meaningful 

result a. 
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An additional new feature of our solution for the s-d 

exchange model is related to the case J > o. It is important to 

note that the ferromagnetically coupled case (i.e., J > o) is 

believed to be free of any peculiar behavior and is assumed to be 

adequately and correctly treated within perturbation theory. We 

have shown that this belief is unfounded. The s-d exchange model 

is capable of giving rise to ferromagnetically coupled resonant 

state and is consequently capable of describing impurity ferro-

magnetism. 

B. Numerical Analysis 

We present here some details of the numerical analysis 

of the transcendental equations for 11 1 To evaluate 
" j= s :t_-a· 

the integral, 

we separate it into its real and imaginary parts by using the 

Pmelj identities, (ref. 40, page 4Z) commonly known as, 

f. f. I 

As discussed in the previous section the physical parameters of . 
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the dilute magnetic alloys being rather insensitive to details 

of the band structure, we take the density a states to be 

essentially constant at its Fermi energy value in the conduction 

band. Wechosea .l.a.ndofhalfwidth, IDI, = 5eV. Using 

Simpson's rule we have evaluated the principle part of XCW,f) 

for temperatures in the range 1°K to 300°K and for energies 

in the range -D to D. 

Knowing J(w, ~) 

equations for 11. (w~ ') 
J=sJYJ. 

for impurity spin, S = ~ 

we solve numerically the transcendental 

• The numerical analysis was done 

and for various fixed values of the 

density of states at Fermi energy, .f. (Gp) • 

In figs. (3) and (4) we have shown the real t-'arts of the 

self-energies, corresponding to the antiferromagnetically and 

ferromagnetically coupled channels respectively, as a function of 

temperature, at the Fermi energy. In figs. (5) and (6) we plot 

the corresponding imaginary parts. The critical temperatures 

are taken to be the temperatures where the real parts become 

zero. These lead to resonances in the scattering amplitudes and 

hence justify their interpretation as temperatures where the 

resonant state starts building up. 

Figs. (7) and (8) show the real and imaginary parts of 

1\ for the ferromagnetically coupled channel, evaluated for 

the same values of the parameter f.(~f) and I J I as for 

the antiferromagnetic case plotted in figs. (3) and (5). Note the 

absence of a critical temperature in fig. (6) down to 1 °K. We 
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shall discuss this behavior in the section on interpretation o£ 

results. 

Figs. (9) and (10) show the behavior of the critical 

temperature as a function o£ the magnitude of interaction strength, 

for given values of fo (6p) • Figs. (11} and (12) give a plot 

of the critical temperatures as a function of J!C~,J for 

givenvaluesof /~/. 
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Fig. 3. 
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Real part of the self-energy for anti-ferroma~netic1 couphng, J =-0. 02.1 ev, p = ( lo/f ·G" ) atom J.ev- • 
0 

The lower curve corresponds to Fermi energy while 
the upper curve is evaluated for x = 0. 001 ev, x. 
being measured from Fermi energy. 
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< -0.020 

-0.040 

Fig. 4 Real part of sel£-ener~y for ferr~agne\ic ·coupling 
J a 0. 045 ev, Po= (10/1•5'11) atom· ev. • lower curve 
h evaluated at fermi energy white the upper h !or 

X. • 0. 001 ev away !rom fermi energy. 



-1 Z.3-

0. 100 

t:. 0 .080 -< 

0.060 

Fig. 5 Imaginary/art of the self-energy f or anti fefromtgnetic 
couPling, =-Q. 02.1 ev, p0 = (I0/1•6 rr) atom· ev,-
evaluated at the fermi energy. 
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Fig. 6 Imaginary part of the self-energy for ferrom:'\gne_tfc 
coupling, J a O. 045 ev, p

0 
= (IO/I•Sft ) atom· ev , 

evaluated at the fermi energy. 

T (° K) 
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T (°K) 

Fig. 7 Real part of self-energy for ferromagnetic coupling using 
the same magnitude of J = 0. 02.1 ev as for antiferromag­
ne tic coupling shown in Fig. 3. Note the absence of a 
critical temperature down to 1°K. 
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< 
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Fig. 8 Imaginary part of self-energy for ferromagnetic coupling 
using the same magnitude of J = 0. 021 ev as for antiferro­
magnetic coupling shown in Fig. 5. 
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Fig. 9 Critical temperature plotted against exchange interaction 
strength. Solid curves correspond to J < o and dashed 
curves to J > o. 
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Fig. 10 Critical temperature against exchange interaction 
strength. Solid and dashed curves correspond to 
J < o and J > o respectively. 
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Fig. 11 Critical temperature against the density of states of 
the host. Solid and dashed curves represent the cases 
J < o and J > o respectively. 
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Fig. ll Critical temperature against the density of states of 
the host. Solid and dashed curves correspond to J < o 
and J > o respectively. 
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VII. ON DENSITY OF STATES 

From the work done on the single particle states in inter­

acting many particle systems, we know that the spectral density(4 Z) 

of single particle states in the interacting system is given by, 

A ( w, ttl = - rr.-1 J~ r (w, ~t) 

(VII • l) 

where I;< w .. k.} is the self-energy of the electrons. We can make 

use of the spectral density to calculate the density of single particle 

states in the interacting system, for we have already obtained 

results for the self-energy A( W 1 R.) • In terms of the spectral 

density, the density of states is given by, 

(VII • 2) 

where p ( W ) is the density of state function of the non-interacting 
0 

system. For the pre sent problem then p (£.l) corresponds to 

the density of states of the magnetic alloy while p 
0 

( c,..) ) character· 
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izes the density of states of the pure host. 

As we mentioned in sec. III of the text, for "dilute" magnetic 

alloys, all the theoretical expressions for various quantities 

obtained from the idealized theoretical model of a single magnetic 

impurity interacting with the conduction electrons, are simply 

multiplied by the impurity concentration, c, to calculate physically 

observable parameters. Conversely one might consider this to be 

a limit on the term "dilute". Thus, to lowest order in impurity 

concentration, 

(VII • 3) 

Where /\ (W,/t) is the self-energy we obtained from our single 

impurity model. We have already seen that our interaction H d s-

being a contact interaction, the scattering amplitude, and hence 

the self-energy /1 (~,It) are independent of the momentum, K, 

of the electron, giving 1\ ( W, It) = A ( t.J ). However, it is 

dependent on the temperature and thus we write it as A ( W, T ). 

From equation (Vlll. 2) we then obtain the change in density 

of states as, 

IJ.f(w,T) --
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J 

- J !.{€") nJ-c J._ A{WJJ} 
-~ 

(VII. 4) 

For consistency, let us evaluate this integral for a constant 

density of states of the host and let us as before take this to be the 

value at the fermi energy. We obtain the result, 

(VII. 5) 

where ll~ and Ar characterize the real and imaginary parts 

of A • We recall immediately that A1 ( W, T ) is positive for 

all energies and temperatures since the inverse of A1 gives the 

life time of the single particle states. This is also seen from the 

numerically evaluated t1z , plotted in Figs. (5, 6). Hence Jf{w,T) 

is always positive. Physically, then, it is simply saying that the 

introduction of the magnetic impurities results in the creation of 
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additional electronic states. 

This increase in the density of states is extremely sensitive 

to changes of energy and temperature because of the rapid varia­

tion of l1z {IN; r) with energy and temperature. In general, the 

magnitude of the argument of arc tan on the R. H. S. of the 

expression for Af( I..J1 r) , equation (VII. 5 ), is small so that 

as a first approximation one may say that [Af(W, r) / !IJ (~p)] 

the change in density of states normalized with respect to the 

density of states of the host, is proportional to the impurity con­

centration. Hence for usual dilute magnetic alloys where the im­

purity concentration is of the order of 10~ 3, the magnitude of the 

change in density of states would also be small, and as such would 

require great efforts on the part of the experimentalist to measure 

it. However, one can, we believe, detect the rapid variation of 

(~!/f.) with temperature and energy. 
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Vlll. INTERPRETATION OF THE RESULTS 

~ Long Range Ordering 

In section ( V. C } we explained the physical origin of 

{\ ( ~J I ) and provided an interpretation for it as an effective 

complex potential under whose influence the particles are moving. 

This effective potential we have seen to be energy dependent and 

consequently characterizes an effective interaction which is non­

local in time. We know that "bare" particles can interact 

instantaneously only while "quasi-particles" can have retarded 

interactions. Thus we find that a simple and natural outcome 

of our theoretical formalism is the very physical interpretation 

of the "ideal" problem of scattering of bare electrons off localized 

magnetic moments in tenns of the "realistic" situation wherein 

"dressed" or "quasi-particles" are moving under the influence 

of an effective non-local complex potential. 

The non-local character of the interaction is of great 

significance because it provides the essential mechanism by which 

even a short range interaction can give rise to lo~ range effects. 

To under stand thi. s phenomenon, let us con aider the scattering 

process of a particle. We have seen during the course oi our 

analysis of the scattering equations that a given particle can scatter 

repeatedly during the course of its motion. It is therefore impor­

tant to realize that in a multiple scattering process a particle can 

travel over distances much larger than the range cl the interaction. 

Thus for quasi-particles of reasonably large life times, which we 
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know to be the case for energies near the fermi energy, the effect 

of non local interaction can persist over distances much larger 

than the range of the interaction. Consequently, information can 

be carried in the system over large distances. Thus, even though 

in the present case, the exchange scattering of conduction electrons 

off localized magnetic moments was being characterized by a 

"contact" inter action (i. e., zero range interaction) the occurrence 

of non-local effective potential is telling us that our system is 

experiencing long range effects. We can readily understand this 

phenomenon if we consider the spin polarization of the conduction 

electrons caused by the magnetic impurity. We have already seen 

that the temperature at which 1\p. (W, T) becomes zero corresponds 

to a resonant state being formed by a strong clustering of the conduc­

tion electrons around the magnetic impurity with their spins 

aligned antiparallel to the impurity spin for the case J < o, the 

Kondo system, and with their spins parallel to the impurity spin 

for J > o, the case we would henceforth call the "ferromagnetic 

case." Below these temperatures the potential becomes attractive, 

Figs. { 3 ) and ( it ), thus confirming the formation of clusters. 

These resonant states have a finite life time and thus particles come 

in the go out of the clusters. Since, as we just mentioned, these 

particles can carry information over distances large as compared 

to the range of. interaction, we find that in the realistic system of 

more than one magnetic impurity atom, . the two clusters can 

effectively interact with each other by exchanging real particles. 
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Furthermore, such long range interactions would be of considerable 

significance since the probability for all the particles to cluster 

within the range of interaction at the same time is extremely small 

in general, and in particular; for zero range interaction (of type 

H d e. g.} cannot make sense. 
s-

In this way we then find that an indirect long range correla-

tion between the impurity spins can be set up due to the polarization 

of the conduction electrons by the zero range s-d exchange inter -

action. This long range indirect correlation between the impurity 

atoms would increase with increasing impurity concentration. 

The point at which the long range correlation effects become im-

portant enough to bring about some kind of interlocking of the 

impurity spins themselves, so that the motion of the impurity 

spins cannot be considered to be independent of each other anymore, 

we believe to be the critical concentration. In terms of this picture 

then, we can under stand the observation that the critical impurity 

concentration is higher in the amorphous state than in the crystalline 

state of the same system. The electronic mean free path is much 

shorter in the amorphous state as opposed to the crystalline state. 

Consequently, we expect the electron to be able to carry the informa-

tion of the state of a given impurity spin to shorter distances on 

the avera·ge before it loses the information due to its finite life 

time now. There is therefore a less probability of transfer of 

information of the state of one impurity atom to another through 

the electrons in the amorphous state as opposed t o crystalline 
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state of the same material. Hence the critical concentration in 

the amorphous state would be higher than the crystalline case. 

B. The Ground State 

A further point of interest concerns the interpretation of 

the resonant state formed in the Kondo problem. We have seen 

in our formalism that the resonant state is a consequence of the 

effective potential itself beccxning large and attractive below a 

certain critical temperature. This we believe to be a more 

appropriate interpretation, rather than its earlier interpretation 

as being a consequence of the Pauli exclusion principle effect of 

the kind involved in superconductivity. (2.4 ) The controversial 

theoretical question of whether or not one is to expect a many-body 

condensed state for the magnetic impurity problem has been quite 

clearly answered by us. Within the lowest order approximation 

for evaluati-:-• n of the energy correction to the non-interacting 

ground state, we have shown the existence of a non-analytic binding 

energy for both, antiferromagnetic (J < o) and ferromagnetic (J > o) 

couplings in the limit of temperature going to zero. Such results 

were obtained by variational treatments of the problem using singlet 

or triplet many-body wave functions as well as by other approaches. 

However, because of the approximations involved in these treatments 

and the divergent behavior of resulting physical par arne ter s such 

treatments were no solution of the Kondo problem in as much as 

they raised the question of the effects of particle + hole excita• 
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tion s in the system. The self consistent evaluation of the self 

energy from our transcendental equation continues to show the 

presence of a finite energy correction in the limit of temperature 

going to zero, both for J < o a nd J > o. This result, · for J < o , 

has been conjectured before, but for J > o it is believed that no 

such binding energy occ:urs when .multiparticle intermediate states 

are taken into account. Our results show that this belief is in-

correct. 

The occurrence of these binding energies does not however 

imply a sharp phase transition (at the critical temperature for the 

present problem), of the kind observed in a normal state going to 

the superconducting state. Although, as we pointed out in section 

( VI. A) dealing with the evaluation of self energy, approximating 

the exact integral equation for self-energy by a transcendental 

equation eliminates any cooperative phenomenon, we believe our 

present results for the ground state are correct, for such a coopera-

tive phenomenon is virtually impossible in a system like ours with 

very small number of degrees of freedom. (44) One rather expects 

a gradual break up of the spin correlations with increasing tempera­

ture, which is confirmed by the decreasing nature of the self-energy 

at temperatures near the critical temperature. This theoretical 

nature of our result is in perfect agreement with the observed 

experimental results. NMR studies(4 S} on various systems like 

Cu Cr, Cu Fe etc., have shown that the condensation to many body 

state occurs gradually as temperature is lowered so that the 
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correlated state has not fully formed until T < < T k" 

The binding energies we have obtained here are to be 

interpreted as the energy difference between ground states con­

taining a "bound" state and a ground state which is normal and has 

a (25+1) fold spin degeneracy. However, we do not interpret these 

ground states as forming a singlet or triplet (for J < o and J > o 

respectively) with the localized moment, for we have shown them 

to be a consequence of the many- body nature of the conduction 

electron spin polarization around the impurity. Rather, we regard 

these states as ones arising out of resonant states being formed in 

the total angular momentum channels j = S _:t i for J > o and J < o 

respectively. Even for the simple case of S = i we believe it is 

erroneous to interpret these states as being formed by a conduction 

electron being bound to the localized spin with its spin aligned paral­

lel or antiparallel. Consequently the use of the terminology singlet 

or triplet is not only confusing but clearly undermines the true 

many- body nature of the ground state of the magnetic impurity + 

conduction electron syste~. 

C. Negative J vs Positive J: Resolution of an Apparent 

Contradiction 

We would like to point out that although our results give 

a non-analytic binding energy for both antiferromagnetic and ferro­

magnetic exchange interactions, there are differences worth noting. 

First of all, we notice that one cannot obtain the energy correction 
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to the ground state of the problem for one case by replacing J 

by -J in the result for the other, at any temperature. The treat­

ment of the problem within other theories has lead people to 

believe(S) that one can do so for temperatures above the Kondo 

temperature (the critical temperature for J < o in our case), as 

their results do not show a critical temperature for J > o. Below 

the Kondo temperature however, because ci. the occurrence of a 

binding energy for J < o, it was recognized that one cannot obtain 

results for one case from the other by a mere replacement of J 

by -J. 

Furthermore, for the same value of the critical temperatures 

in both the cases our results show that one requires a much higher 

magnitude of the exchange interaction strength, 1 Jl , for ferro-

magnetic coupling as compared to antiferromagnetic coupling (Fig. 

7)o The same is reflected in the binding energy at absolute zero, 

where we find that it is higher for antiferromagnetic coupling, for 

the same magnitude of the exchange interaction strength. However, 

the higher magnitude of J required for ferromagnetic coupling 

(J > o) is definitely not , unreasonable, for in systems with J > o e. g. 

Fe, Co in Pd, the polarization of the a-electrons of the host by the 

impurity enhances the effective magnitude of the exchange inter­

action considerably. Consequently the effective strength of the 

exchange interaction as felt by the s electrons of the conduction band 

is much higher than the original bare J value. This enhancement of 

the moment is further increased by the polarization of the a electrons 
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themselves resulting in giant moments observed in such systems. 

The existence of a critical temperature for J > o is of 

great significance. Cottet et al. (SO) have observed the simul-

taneous existence of giant momenta and a Curie-Weiss behavior of 

susceptibility in Ni 1 Rh host with Fe as impurity, for Rh con­-x x 

centration, x,above 38 1. . The existence of a giant moment, 

along with the observed absence of resistivity minimum, requires 

J > o. On the other hand, the susceptibility behavior, if inter-

preted in terms of the existing theories of Kondo systems requires 

J < o. This clearly shows that the critical temperature obtained 

from the susceptibility behavior cannct be regarded as a Kondo 

temperature, which exists only for J < o. We resolve this apparent 

contradiction by interpreting this critical temperature as the one 

corresponding to J > o in our theory. 

The observed linear increase of ·this critical temperature 

with increasing Rh content can qualitatively be understood by putting 

together the facts that the magnetic moment is decreasing while the 

density of states is increasing almost linearly, information obtained 

from band structure of Rh, as we p.lt in more and more of Rh in 

Ni. The reduction in magnetic moment implies a reduction in the 

effective J value. A look at the behavior of the critical temperature 

for J > o as a function of the density of states, p, for fixed values 

of J (Figs. 11, 12) clearly shows that if we let J decrease as p 

increases, then for the right combination of J and p a linear 

increase in T, with p is possible. 
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A direct quantitative comparison of our theoretical results 

with experimental results must unfortunately await progress in 

experimental results on various quantities involved. 
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IX. ON PHYSICAL PARAMETERS OF KONDO SYSTEMS 

As mentioned in the introduction, the consequences of the 

magnetic impurity-conduction electron interaction manifest them­

selves in various anomalous behaviors in the physical parameters 

of the dilute magnetic alloy. (see Fig. 1) No theory exists today 

which can account for these behaviors in a complete and compre­

hensive way. We have for the first time been able to consider the 

contribution of (particle + hole) excitations in the theoretical 

treatment of the problem and have shown that the resulting solutions 

are free of unphysical singularities. One could now make use of 

our results of the electron self-energy to calculate these physical 

parameters. Unfortunately, because of lack of explicit analytic 

expressions for the self-energy, one would have to resort to a 

nwne rical study of these parameters. 

Since the aim of the present work was primarily to be able 

to provide a theoretical formalism which could in a simple way 

inc or por ate the multi partie le intermediate states, thus enabling 

us to answer the most open question of the ground state of the 

magnetic impurity conduction electron system, we have not per­

formed a numerical study of the physical parameters. However, we 

would discuss them briefly on the basis of our theoretical results 

in the following pages, in so far as they shed some light on the grouni 

state of the problem, 

A. Resistivity and Thermoelectric Power 

Of all the physical parameters calculated from the existing 
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theoretical formalism, there is a general consensus on the resis­

tivity approaching and remaining at the unitarity limit at low 

temperatures, with a logarithmic variation with temperature in 

the region near the Kondo temperature. Similarly, there is 

general agreement on the giant thermo-electric power. Consequently, 

the transport properties at low temperatures do not seem to provide 

a critical test of the proper low temperature treatment of the 

problem. On the other hand, specific heat does seem to provide 

such a test. Our main interest here being in the experimental 

results on physical parameters which can provide suitable information 

on the ground state of the system so that we can check our theoretical 

results and their interpretation, we discuss resistivity and thermo­

electric power very briefly and shall go into specific heat at 

some length. 

We showed in section (VI • .A) that the second order expansion 

in powers of J of the first iterative solution for the electron self­

energy is the same as obtained by Doniach(ZO) for what he calls 

effective potential in his diagram summation formalism. Doniach(ZO) 

has performed a numerical study of the electrical resistivity and 

thermoelectric power using these results and compared them with 

the experimental results on various systems (e. g. Rh Fe, Pd Fe 

etc.}. He finds an extremely good agreement between the theoretical 

and experimental results. It is to be noted that the results obtained 

by using the expressions (VI. 11) and (VI. lZ) for the electron self­

energy are already a considerable improvement over Kondo's 



original expression. Furthermore, under appropriate approxima­

tions these results reduce to the Kondo results with the famous 

logarithmic dependence of resistivity on temperature. Thus we 

find that even expressions (VI. 11) and (VI. 12) for the electron self­

energy provide the correct behavior of electrical resistivity and 

thermoelectric power. 

However, the main point of interest for us is understanding 

the mechanism behind the observed flattening of resistivity at very 

low temperatures, for the case of J < o. A popular explanation for 

this phenomenon is based on the concept of "spin compensation" 

of the magnetic impurity spin by the antiparallel spin polarization 

of the conduction electrons. The idea is that because of the spin 

compensation of the magnetic moment there is no more a chance 

for electrons to see the magnetic moment and hence no Kondo 

scattering. If this were really the mechanism, one should observe 

a quenched moment in other experiments also e. g . magnetic 

susceptibility. Unfortunately this has almost never been the case. 

Hence this mechanism cannot be solely responsible for flattening 

of the resistivity. 

One can understand the flattening of resistivity without a 

.complete compensation of the magnetic impurity spin if one looks 

into the factors responsible for the magnitude of transition proba­

bility which is directly related to the resistivity. The transition 

probability not only depends on the magnitude of the rna trix elements 

of the interaction but also on the density of states of the final states. 

Thus the reduction in the rate of increase of resistivity and its 
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flattening off not only depends upon the reduction of the effective 

magnetic moment through spin compensation but also on the be­

havior of the density of states as the temperature is lowered. 

From the expression for the incremental density of states, equa­

tion (VIII. 5), we find that it essentially behaves like A 1(T). 

Fig. (5) for /\ 1 (T) clearly shows that it reaches its peak value 

near the Kondo temperature and then decreases as the temperature 

is further lowered. Thus we find that the density of states itself 

decreases with decrease in temperature below the Kondo tempera­

ture, thereby supressing the rate of increase of the resistivity. 

Thus we see that the flattening of resistivity must necessarily be 

considered as the combined effect of reduction of the magnetic 

moment and the density of states. Previous attempts to explain 

it on the basis of reduction of magnetic moment alone not only 

lead to conceptual contradictions and are inadequate, but also miss 

an as fundamental a mechanism, namely the behavior of density 

of states. 

B. Specific Heat 

As opposed to transport properties, thermodynamic pro­

perties like specific heat apparently provide better information on 

the ground state of the system. As such they seem to provide a 

better test for the existing theories. Since the energy of a system 

is such a fundamental quantity, specific heat measurements are 

expected to reveal much about the formation of the resonant state 

and consequently the ground atate of the system. Unfortunately, 
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arriving at numerical values for specific heat based on its defini­

tion involves more uncertainty than any other physical parameter. 

This is so for two essential reasons. First, the measurements 

must all be performed at extremely low temperatures e. g. for 

a typical Kondo system like Cu Fe measurements below 1°K are 

considered essential to obtain any worthwhile information. Second, 

the impurity concentration must be high so that the incremental 

specific heat is not completely over shadowed by the host specific 

heat. This latter requirement has in the past always cast doubt 

on the observed specific heat data for it is hard to be free of 

impurity-impurity interactions for the high impurity concentrations 

involved in these experiments. Thus in the past any observed 

deviations in specific heat behavior from those predicted by the 

existing approximate theories of the s-d exchange scattering have 

been associated with the impurity-impurity interactions. However, 

even for impurity concentrations in the range where impurity­

impurity interactions are shown to be absent, specific data show 

behavior which are outside the scope of the existing results. We 

show later on in this section that such departures can be explained 

by our results. 

Before we present the details of the calculations of specific 

heat let us consider qualitatively the general features of a typical 

specific heat curve (Fig. 1) in light of our theoretical result H for 

electron self-energy. We provided an interpretation for 1\ R (Fig. 

3) as an effective potential. The temperature at which it becorn es 
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zero we saw leads to the onset of a resonant state. Below this 

temperature we find that the resonant state becomes more and 

more strongly bound. However~ A. R (T) instead of monotonically 

increasing in magnitude with lowering in temperature~ reaches 

a maximum value and then turns around. Thus we find that the 

resonant state is most strongly bound at some temperature between 

zero and the critical temperature. Consequently, one should 

observe a peak in the specific heat around this temperature associa­

ted with the thermal destruction of the resonant state. This then 

qualitatively and physically explains the typical behavior of 

specific heat (Fig. 1. ). 

Let us now turn to a more quantitative and rigorous dis­

cussion of the specific heat. For this we have to calculate the 

total change in the energy of the system which is give n by the well 

known result, 

fl~ = J w · /Jf(~, T) fCw.,T ) J..w 

(IX. 1) 

In fact (A E)represents the change in the free energy of tre system 

if the single particle energies are measured with respect to the 

Fermi energy. Ap(W, T) and f (W, T) refer to the incremental 

density of states of the conduction electron + impurity system 

and the Fermi distribution function respectively. The incl"emental 

specific heat is then given by, 
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!JC --

(IX. 2) 

To get an explicit curve for fjC one could evaluate D..E 

by brute force .,numerically, and then its temperature derivative. 

However, we can extract all the interesting information on the 

behavior of the incremental specific heat without having to resort 

to such a numerical computation. 

We can evaluate ,aE by considering the follow ng integral, 

c_, 

I -- j fcw .. r)i ~ F(w.rJ}·J.k> 
o J.w 

(IX. 3) 

where F( ~, T) is such a function of the energy "'-> that as W-'PO , 

F( W, T)_, o. Expanding F (c..:> , T) about the Fermi energy we 

have, 

(IX. 4) 
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where F', F" etc. refer to the first, second, derivatives of the 

function F with respect to 

Now, from (IX. 3) we have, 

~ 

I u f(<-l, T) F (t.l, T) J..., J. 
.,., 

j F(~~rJ{jw fcw,rJj · J.w 
0 

(IX. 5) 

The first term on the R. H. S. of (IX. 5) is zero since 

lim w~ ao of f( «A> , T) = 0 and lim w-. o of F( w , T) = o. 

Therefore, 

.0 

I = J f(W~ r) ! fw fcC#.>~TJ} J."' 
0 

(IX. 6) 

Substituting for F( W, T) from (IX. 4) in (IX. 6) we obtain, 

of) 

I ::. - f [ F( GF,T) 1- (W-Gp) F'(~p, T) + 
0 
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Changing the origin to Fermi energy in the integral, the lower 

limit changes from 0 to ( - 6Fj#,8T), which for the very low 

temperatures, k 6 · T < < fF may be replaced by -oo. Thus we 

have, 

I =[Lo F(~F~T)-f L, P
1
(€p,T) 

-+ l.,. F" ( ~r. T) + - ·- -) 

(IX. 7) 

where, 

~ 

Lo - - j tid f(,w~ T) ·k = t. -,~> ~ 

.() · 

L, - - I (w- 6F) l. few, rrd~ - _,. dw 

0 since(£} is even 

and 
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Let us now identify F' ( w, T) with { w . Af(w, T)} occurring 

in the integral for A. E, equation (IX. 1) • . From the section on 

density of states we find that !Jf (w~T) behaves essentially like 

llz(lo), T) which goes to a constant value as w goes to the 

Fermi energy. Also, 

(IX. 8) 

Thus we expect F ( w, T) defined by (IX.8) to go to zero as W goes 

to zero. (It can at the most go to a constant value if a peculiar 

cancellation in the rate change of w and 11/(w~ T) takes place). 

Combining (IX. 8) with (IX. 1) we obtain by the standard method 

given by Mott and Jones, (46> 

(IX. 9) 

where we have retained terms only up to L 2 in (IX. 7). Using 

(IX. 2.) we obtain the incremental specific heat as, 
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LlC .£... J.f (f.F T) aT , 

(IX. 1 0) 

Realizing that the incremental density of states is essentially 

given by, 

(IX. 11) 

we obtain from (IX. 10), 

!J.C rr foCer) ~e; . ' [.l r 1 l A (t T) t T A (E r)·ll 
3 J) 2. 1T ".t f', I. F, ~ 

(IX. 1 Z) 

Let us call the firs t and second terms on the R. H. S. AC 1 
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and ACz• Then from Fig. (5) we find their relative magnitude, 

(AC 1 / ~C~) 
1 

for temperatures in the range of 1°K, as, 

jC, 

To consider the temperature dependence of the incremental 

specific heat let us analyze the two terms on the R. H. S. of {IX. lZ) 

separately. To start with, it is important to realize that even 

though Ar (t,:,i) as a function of temperature, plotted in Fig. 5 

shows a dip as temperature increases from zero with a maximum 

near the critical temperature, it is not the cause of the observed 

anomalous behavior of the incremental specific heat shown in 

Fig. 1. This is confirmed by a monotomic increase in T·llz(~~.T) 

plotted against Tin Fig. (13). Thus we find that the second term 

in (IX. 1Z), which corresponds to the contribution of the incremental 

density of states at the Fermi energy, leads to a "normal" contribu-

tion to the incremental specific heat of the dilute magnetic alloy. 

As opposed to this, we find that the anomalous behavior of AC 

is due to the first term in (IX. lZ). 
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As the first term explicitly shows, its origin lies in the 

rate of change of the incremental density of states at the Fermi 

energy with respect to the change in temperature. Since Fig. (5) 

for shows that it reaches its maximum value very 

near the critical temperature and has a minimum at a temperature 

around one seventh of the critical temperature it's derivative 

with respect to temperature shall be zero at these two tempera-

tures, reaching it's maximum value between ~ T and T • ( c c From 

Fig. (5), we find that this peak would occur between } T c 

This then clearly explains the anomalous behavior of increment al 

specific heat shown in Fig. 1. 

It is important to mention at this point that in the past 

this anomalous behavior has generally been interpreted from the 

band theory point of view as due to the temperature variation of 

the incremental density of electronic states at the Fermi surface.(?) 

The foregoing discussion of our result has unambiguously shown 

that this interpretation is incorrect. The origin of the anomalous 

part is in the temperature variation of the rate of change, with 

respect to temperature, of incremental density of electronic states. 

Besides explaining the usual anomalous peak in incremental 

specific heat of the dilute magnetic alloy, our results predict 

another interesting phenomenon at extremely low temperatures. 

From our expression (IX. lZ) for .AC we find that its temperature 

variation is essentially the combined effect of the two terms 6C 1 

and lJ c
2

• From (IX. 1Z) and Fig. (5) for A, U,~ T) we infer 
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Incremental specific heat as a function of temperature . 
AC1 and Ac 2 correspond to the contributions of the 

two terms of equation (IX. lZ). Ac 1 curve has been 
greatly exaggerated for the sake of clarity. 
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that at extremely low temperatures AC 1 shall tend to zero much 

faster than Ll c 2• From (IX. 12) we know that ~ c
1 

is of the 

order of ( .1 c2/10). Thus below the lower temperature where 

fl c
1 

is zero, it is negative but vanishingly small so that the 

temperature variation of AC in this temperature region is 

essentially governed by A c2 • Hence, if one plots ( .AC /T) 

against T one should expect a behavior governed essentially by 

( ~ C2/T) which is the behavior of llr (f:F, r) Going 

back to Fig. (5) for ll: (~~, r) we find that in this temperature 

region it shows a rise as temperature is lowered. Thus our 

results predict a rise in ( A C/T) at temperatures much below the 

temperatures where the usual peak in the incremental specific 

heat is observed. 

There are not many systems on which accurate measure-

ments have been reported at temperatures in this range, which 

for our numerical results is around one tenth of the critical tempera-

ture. However, we do have results available on one of the most 

typical, and hence most extensively studied, of the Kondo systems, 

namely CuFe. Franck, Manchester and Martin(4?) have performed 

measurements of specific heat of the CuFe system, going to 

0 temperatures as low as 0. 5 K. These results have been analyzed 

by Heeger et al (45 ) and they find a clear upturn in (A C/T) at 

temperatures below 1°K. It is important to mention that the 

Kondo temperature of the CuFe system is taken to be 16°K and 

that the usual peak in incremental epecific heat is observed around 



-159-

5°K, corresponding to the typical qualitative behavior shown in 

Fig. 1. The upturn in ( AC/T) below 1°K is clearly separate 

from this and confirms the predictions of our results. 

It is quite difficult to predict an explicit temperature 

dependence of AC from the numerically obtained curve for 

111 (l:F, I) for all ranges of temperature. However, Fig. 5 plotted 

against lnT, shown in Fig. 14, shows a linear dependence in the 

0 0 temperature range of about 8 K to 2.5 K. The critical temperature 

we remind is 37°K. Expecting that this behavior shall remain 

unmodified for different values of the parameters J, impurity spin 

S and density of states of the host p , we may infer that in the 
0 

temperature range o. 3T c to 0. 6T c ' Araf~ T) depends on tempera­

ture logaritlunically. Thus from (IX. 12.) we find that in this 

temperature range ( A C/T) shall essentially show the dependence, 

(IX. 13) 

For temperatures around the minimum point of ltzt•,.r) we have not 

been able to extract any explicit temperature dependence. In the 

extremely low temperature region, T < 0. 1°K, our results show 

that the incremental specific heat AC shall tend to zero almost 

linearly with T. This we infer on the basis of the alznost constant 

nature of llrU,.r) as temperature approaches these values in 

Fig. (14). The lowest temperature at which we have performed 

numerical evaluation is 1°K which is roughly ( 1/40) T c ' and 
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Fig. 14. 1\ 1( tF• T) plotted against temperature on 

logarithmic scale. Note the linear depend­
ence for 0. 3 T < T < 0. 6 T where T is c- - c c around 40°K. 
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the curve below this temperature is extrapolation, anticipating no 

pecularities in the nume,rically evaluated, llx c~o,.. T'} in this region. 

Thus, 

AC ""' T for T < 10-2. T • 
~ c 

(IX. 14) 

We conclude our discussion of the incremental specific 

heat of the dilute magnetic alloy by comparing our results with 

those provided by other theories for T < < T and summarized in c 

the table below; 

Applebaum, Kondo 

Abrikosov, Suhl, Klein, 

Levine 

Bloomfield, Hamman, 

MUeller-Hartmann, 

Zittarz 

Anderson 

AC ... T .ln T 

forT...-. o 
1 

dC""' T~ 

Comparing these expressions with our results we find 

that the Applebaum-Kindo expression is valid not for all tempera-

tures below T but in a region approximately 0. 2. T to 0. 6 T • c c c 

In the limit T,... o our result appears to be closest to that of 

Abrikosov etc., showing an essentially linear dependence. Thus, 

we find that the previously obtained results are of limited validity 

and it would be erroneous to extend any one of them out of their 
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temperature limits. As a final remark we mention that our 

results (IX.l3} and (IX. 14} are in excellent agreement with the 

experimental results of typical Kondo systems like CuFe and 

AuV.(48• 49} Realizing that the Kondo temperatures for the se 

systems are around 15°K and 300°K respectively, we find that 

our results are indeed capable of describing the specific heat 

behavior over a wide range of temperatures. 
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APPENDIX 1 

We have already shown in the text that because of the 

bilinear nature of the interaction H d' a given state of the system a-

with m electrons knocked out of the background c:fN , can be 

coupled only to states with (m-1},l'l,and (m+l} electrons knocked out 

of 4:., • Represented mathematically (in short but self evident 

notation) the scattering equations from a single particle to (2m +1} 

particle states would thus be of the form, 

( cfw-M. M , k'<r~ S/ ft /=-

= [ ~ ... -{(E. r ~, .... Ek, ... -- -- +!K_)- (tj., ... - -- [j.r-10 
_, 

(A l . 1} 

The summations over m and (m+l) on the R. H. S. of 

equation (Al . 1) correepond to the possible combinations of el ectrons 
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and holes in the intermediate states, similar to situation we had 

in considering one to three particle scattering equations in the 

text. The first term, as we mentioned above does not involve any 

swn over electron + hole combinations in the intermediate states 

for there is one and only one way in which a electron + hole pair 

can be created from this state and is specified by our final m 

electron state. This corresponds to the situation with single 

particle intermediate states in single particle to three particle 

scattering equations. 

As before, the neglect of (2m+ 3) particle contributions in 

single particle to (2m+ 1) particle scattering equations of the form 

(A. 1.) shall provide a closed system of equations for (2m + 1) 

particle projections. We can again solve this system by our summa­

tion technique and obtain the (2m + 1) particle projection sums in 

terms of the single (2m - 1) particle projections. 

This procedure is in principle true for any m. Thus, if we 

put m = N, the total nwnber of electrons, we shall again have 

equations of the form (Al. 1) with one very critical difference. We 

shall no longer have intermediate states with (N + 1) electrons, for 

there are only N electrons in the system. Thus, in principle, one 

can obtain the (2 N + 1) particle projection sums in terms of the 

single (2 N - 1) particle projection sum occurring in the highest 

order equations of the form, 
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. _, 
= [1',.-{ (f..-t€~· .. €, .. . . . . .. t,.~)-(f"f; --- ~Eoep)~ 

(Al. Z) 

Knowing (Z N + 1) partiole projection sums, one can 

eliminate them from the scattering equation for (Z N - 1} particle 

projections which would involve (Z N- 3), (Z N- 1) and (Z N + 1) 

particle projection sums. This shall leave us with equations 

involving (Z N- 3) and (Z N- 1} particle projection sums. This 

reduction technique can in principle be continued until we obtain 

the exact contribution of the three particle projection sums involved 

in our exact single particle to single particle scattering equations, 

(IV. 18) and (IV. 19), in terms of the single particle projections 

This 

proves our anaatz. 
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APPENDIX Z 

We evaluate the integral .X ( w , p ) in this appendix. tet 

us consider the following integral, 

J 

l(x.) =f 
-J 

f ( px.') - y3. d.~ 
x-x.'+i.7 

where f(fx.') is the fermi function. Then, 

(AZ. 1) 

(AZ. Z) 

Putting JG ": (x ' - z.rriftsJ and using the periodicity of the fermi 

function in the imaginary direction. 

we find 

(AZ. 3) 
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We now deform the contour indicated by (AZ. 3) and shown in 

Fig. (15) by the dashed line to one shown by the solid line. 

However, in doing so we pick up a contribution from one of t he 

poles of the f'ermi function, which all lie on the imaginary axis 

• Thus we obtain, 

I ( x -t :J.rri.ff) == I (x)-

(AZ. 4) 

At this point, to evaluate the integrals over the vertical 

parts of the solid contour, we assume. that kB T < < D, replace (f-i) 

by:!: i in the first and second integrands respectively and obtain, 

(AZ . 5) 



-168-

Next, we make use of the Digamma function, defined (to within 

a constant) by the recurrence formula, <43} 

'f(l+l) 

We notice that equation (AZ. 5) is a similar recurrence formula, 

[-

(AZ. 6} 

Examination of (AZ. 6) and the asymptotic form<43) of the digamma 

function Y'f rl + x~/z.rri.} , we find that we have chosen the 

constant of separation (2-rrij{A)Z. • Thus, each of the terms 

in square brackets in (AZ. 6) is a digamma function and we have 

(AZ. 7) 



Equation (AZ. 7) is essentially exact. It describes the 

end point singularities col;'rectly within terms of order exp. (-~D). 

Since D > > kBT' our assertion is essentially correct. 

Now we find that the integral of interest to us is given by, 

~(fx.'f,_) d.x' 
w - ;c.'-t-i..l 

Since, 

we have, 

Thus, 

(A2. 8) 

(A2. 9) 
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Fig. 15 Contour of integration for (A3), dashed line and the 
deformed contour, solid line. The )( 1s are the poles 
of the integrand. 
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