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Abstract

Several important thermal growth problems involve a solid growing into an under-
cooled liquid. The heat that is released at the interface diffuses into both the solid and
the liquid phases. This is a free boundary problem where the position of the interface
is an unknown which must be found as part of the solution. The problem can conve-
niently be represented as an integral equation for the unknown interface. However, a
history integral must be evaluated at each time step which requires information about
the boundary position at all previous times. The time and memory required to per-
form this calculation quickly becomes unreasonable. We develop an alternative way
to deal with the problems that the history integral presents. By taking advantage of
properties of the diffusion equation, we can use a method with a constant operation
count and amount of memory required for each time step. We show that a numerical
algorithm can be implemented for a two-dimensional, symmetric problem with equal
physical parameters in both phases. The results agree well with the exact solution
for the expanding circle case and microscopic solvability theory. We also extend the
method to the nonsymmetric case. Additionally, a stability analysis is done of a sim-
ple, parabolic moving front to perturbations on the surface. As the eigenvalues of our

problem increase, the interface becomes more increasingly oscillatory.
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Chapter 1 Introduction

1.1 Introducing the Solidification Problem

Snowflakes are a common example of unstable solidification in nature. You can easily
see the sixfold symmetry demonstrating the effect of anisotropy (preferential solidifica-
tion based on direction) in the formation of dendrites and side branches in snowflakes.
Although each snowflake has six similar branches, each branch is unique. Slightly dif-
ferent initial conditions and differences in forcing are expected to produce these dif-
ferent structures. The growth of a solid from an undercooled or supersaturated melt
gives rise to dendritic pattern formation, a process characterized by propagation of a
needle-shaped tip and the persistent emission of side branches [8]. The phenomenon
of dendritic crystal growth is a particularly elegant example of a process in which an
instability of a simple system generates complex but highly structured new patterns

126].

1.2 Mathematical Description of the Problem

Consider a container of a pure substance which is initially at a temperature, 7', above

the freezing temperature of water [Figure 1.1].

lim 7T > Tmelting- (11)

x—0

If you lower the temperature of the walls to below the freezing temperature,

lim T < Tmelting; (12)

X—00



Solid: temp < melting

Liquid

temp > melting

Wall: temp < melting

Figure 1.1: A stable system where the liquid bath is initially at a uniform tempear-
ture above the freezing temperature. The walls of the system are then lowered to a
temperature below the freezing temperature and held there. Solidification begins at
the walls and progresses inward.

the solid will begin to form at the walls of the container. Heat is being removed at
the walls of the container and the solid grows into the liquid from all sides. This
stable solidification is characterized by conduction of heat away from the solid-liquid
interface through the solid. The velocity of the moving interface is controlled by the
speed of conduction of the excess heat through the solid which is in turn modelled by

the classic diffusion equation:

orT
o = kV?T  in the solid and liquid, (1.3)

where k is the thermal diffusivity. The boundary conditions imposed at the interface

are given by a condition on heat conservation:

Lv-n= [kg (IIVTs) — kL (IIVTL)] y (14)

where v - n is the normal velocity of the interface, ks and kj are the thermal con-

ductivities in the solid and liquid, respectively, Ts and 7T} are the temperatures in
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the solid and liquid, respectively, and L is the latent heat of solidification. The other

boundary condition is a statement of local thermodynamic equilibrium

T = Thneiting — do/X  at the interface. (1.5)

The second term on the right-hand side of (1.5) is a correction to the melting tem-
perature for a curved surface often called the Gibbs-Thomson correction, where K
describes the curvature and anisotropy of the system. The Gibbs-Thomson correction
will be defined in more detail in Chapter 2. The interface generally remains smooth
and any protrusions of the solid into the liquid are retarded [18]. The solidification
front will move smoothly and uniformly towards the center. This is a smooth, stable
phenomenon which can be modelled by the classical two-phase Stefan problem. The
temperature field satisfies the heat equation in each phase separately, the normal ve-
locity is the jump in the normal component of the heat flux across the interface, and
the temperature on the interface is the equilibrium melting temperature. The motion
of the interface is determined by the rate at which the excess energy of the solidifying
fluid can be conducted out through the surrounding solid [29].

Alternatively, we look at the case of unstable solidification [Figure 1.3]. Here, a
liquid bath of a pure substance is slowly cooled to below its normal freezing temper-

ature without initiating freezing.

T < Theting for all x at time ¢, (1.6)
and
xh—>I£lo T< Tmelting- (17)

Starting with this undercooled melt, solidification can be started at a central nucleat-
ing point in the solid. The solid will advance rapidly into the undercooled liquid. The
latent heat generated at the interface must now be conducted away from the interface

through the liquid in order for the crystal to grow. The process is controlled by the



Ligquid: temp < melting

Wall: temp < melting

Figure 1.2: An unstable system where the liquid bath is initially at a uniform tem-
perature below the freezing temperature. Solidification begins at a central seed and
proceeds outward.

amount of heat that can be removed from the interface surface [29]. Here again,

T
%—t = kV?T in the solid and liquid. (1.8)

The boundary conditions (1.4) and (1.5) from the stable case are applicable to this
case as well. This situation is intrinsically unstable and the interface breaks up into
dendrites which grow relatively rapidly out from the central seed [29].

Both the stable and unstable systems can be modelled by a moving boundary
problem. As in most crystal growth problems, this involves solving the diffusion
equation in the two domains representing solid and liquid phases. The diffusion
equations are coupled by boundary conditions describing the production of latent
heat at the interface during the freezing process and the Gibbs-Thomson correction
to the melting temperature at the interface. The interface position is unknown and

must be determined as a part of the solution [4].

1.3 Challenges of the Problem
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The equations for either the stable or unstable case are highly nonlinear due to the
conditions on the interface. Few exact solutions to these problems have been found
and this has lead to interest in numerical solutions to these problems. The problem is
often converted to an integral equation. Because the integral equations only need to
be evaluated on the interface, the dimension of the problem is reduced. The integral
equations are derived in detail in Chapter 2. Often, a simplified version of the system
is investigated where the physical properties (thermal conductivity and diffusivity) of
the liquid and solid are assumed to be the same. However, we will find that even in
this case, called the symmetric case, the integral equation is quite complex and will

be seen to be of the form:

A=dof (5,,0) K (5,) + / us (1) G (X, 1:C (5,8) to) AV (1.9)
1%

t
+ H/ / G (X', t;C(s,t),t") [v'-n']dS"dt
to S(t’)
where

exp (— |x — X’|2 / (4k (t — t')))
[dmk (t — t1)]Y?

G(x,t:;x,t)=0 for t' > t.

G (x,t;x,t) =

for ' <t (1.10)

A direct approach to solving the integral equation can be problematic. First, it can
be seen that the integrand (1.9) contains a singularity at the current time. Therefore,
evaluation of the integral equations must be approached with care. Additionally, the
integral equation formulation of the problem contains a history integral which tracks
the release of latent heat since the initial time. The surface integrals are evaluated
over the entire history of the system. For each time step, the entire history of the
system must be retained. The increasing memory and time required may prohibit
direct evaluation, especially in higher dimensions.

We propose an alternative numerical method for modelling the unstable problem
which requires both a constant amount of time and memory for each time step. We

take advantage of properties of the heat equation to avoid holding the entire history
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of the system in memory for each time step. The proposed method splits the history
integral into two pieces. The first and, as time increases, larger piece is smooth and
can be advanced independently because it satisfies the heat equation. The remaining,
smaller piece as time increases contains the singularity in the kernel and must be
approximated. This method provides a constant operation count for each time step.
However, it does require the introduction of an underlying spatial grid for the smooth

temperature field.

1.4 Previous Work

Dendritic solidification is a challenging problem, but there are several general ap-
proaches which have been used to model the problem. Successful methods must be
robust enough to handle highly deformed interface geometries.

Phase field models introduce an order parameter, ¢ (x,t), which identifies the
phase of a point z. The order parameter, ¢ (z,t), takes on given and different constant
values in the solid and liquid phases; ¢ = 1 in the solid and ¢ = —1 in the liquid
are a common choice. Values of ¢ (z) in the range (—1, 1) indicate points which lie
on the interface. In the case where ¢ = 1 in the solid and ¢ = —1 in the liquid, the
dimensionless temperature field, u, of the system is coupled to the order parameter
by the relationship [5]:

ou 10¢

— 2 —
5 kV u+28t'

(1.11)
Because of this smoothed step function ¢ (z,t), there is never a sharp boundary. And,
therefore, the boundary conditions are never explicitly applied. However, Caginalp
[6] has shown that the sharp-interface boundary conditions are recovered as the width
of the interfacial region vanishes. Numerical computations by Kobayashi [22] using
such an approach show the expected large scale dendritic features. However, Juric
and Tryggvason [18] suggest that smaller-scale features of Kobayashi’s model are

dependent on the underlying mesh used. Simulations by Karma and Rappel [19],

[20], and [21] using a new thin-interface limit version of the phase field equations also



demonstrate the promise of this method.

The immersed boundary technique described by Juric and Tryggvason [18] uses a
fixed grid to track the temperature field for the problem and explicit tracking of the
solid-liquid interface position. This technique uses a single heat equation for both
phases which adds a forcing term at the boundary to incorporate the liberation of

heat at the interface during solidification:

0 (cT)
ot

=V -kVT +Q, (1.12)

where T is the temperature field, c is the heat capacity, and £ is the thermal conduc-

tivity. The source term () at the solid-liquid interface is given by

Q = / [L + (CL - CS) (Tsurface - Tmelting)] d (X - XS) dS, (1.13)
S

where L is the latent heat of solidification, ¢, and cg are heat capacities in the liquid
and solid, and the delta function is nonzero only at the interface. This formulation
of the heat source at the interface is derived in [1]. The Gibbs-Thomson equation is
additionally applied as a boundary condition at the interface. Solution of the prob-
lem in this formulation requires knowledge of the interface position and a numerical
representation of the delta function. The interface is represented using a series of
marker particles. The method is able to track highly complex interface geometries.
However, Lahey [24] shows that the method is only first-order accurate and does not
agree well with linear stability theory.

Lahey [24] uses an immersed interface method where a custom finite difference
stencils are constructed to allow second-order accurate calculations of derivatives of
nonsmooth functions at the interface. Knowledge of the jumps in the value of the
function of interest and its derivatives at the interface are used to reduce the error of
the stencil. The resulting front tracking method was found able to simulate dendritic
solidification in the presence of convection. The method was shown to be second-order
accurate and could be extended to even higher orders of accuracy.

Level set methods have become viable for modelling dendritic solidification. Level
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set methods introduce a variable ¢ which is defined to be the distance from the
interface. Therefore, the interface position can be established by finding the position

(level set) where:

6= 0.

The interface position can be updated through the solution of the equation found in
[24]:
99

where v is the normal velocity of the interface. Chen, Merriman, Osher, and Smereka
show agreement in [12] with stability theory and a capability to model deformed
interface geometries.

Finite element methods have been used by many researchers to model the dendritic
solidification problem. One approach allows the finite element mesh to deform as the
interface moves so that elements are in either the solid or liquid phase, but not both.
This is quite difficult to implement because the interface is of an irregular shape and
continuously deforming in time. Also, since the interface position must be determined
as a part of the solution, setting up the mesh itself becomes a part of the problem.
Linear stability theory is shown to be satisfied in [44]. Another method is presented
by Schmidt in [38], which does not require that mesh elements be entirely in either
phase. This allows extremely complex interface shapes to be modelled. However,
because elements can contain both solid and liquid phases, the method is restricted
to only symmetric problems (where the physical parameters of the system are the
same in both the solid and liquid phases.)

Brattkus and Meiron [4] have used a variant of the method that we outline here
to look at the one-dimensional, symmetric case of an advancing planar front. We will
discuss the method in greater detail in Chapter 2. However, they were able to achieve
second-order accuracy in comparison to the known, exact similarity solution to the
one-dimensional, symmetric model. Another possible simplification of our system is
also explored, a one-sided model. In a one-sided model, no diffusion takes place in

the solid phase. This method again leads to a single integral equation, but one that
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contains more terms than that found for the symmetric model. The one-dimensional,
one-sided method is applied to the problem of rapid solidification. Banded structures
observed in rapidly solidified alloys represent essentially one-dimensional growth. The
transition point is found to be accurate to within 1 percent and the value of the initial
oscillation frequency agrees even more closely to that found by linear theory. The
numerical algorithm works well for one-dimensional problems and we will extend this

method to two-dimensional problems.

1.5 Preview of this Thesis

We show that the numerical algorithm, suggested by Brattkus and Meiron in [4], can
be implemented for the symmetric case in two dimensions. The results obtained agree
with theory as well as with the exact solution for the expanding circle case. We have
also derived a numerical method which can be used to extend this method to the
nonsymmetric case.

Additionally, an analysis is done of the stability of the Ivantsov solution, a simple
parabolic moving front representing a dendrite tip, to perturbations on the surface.
Our computation found many eigenvalues of our matrix with positive real parts and
saw that as the eigenvalue increases, the interface becomes more oscillatory.

In Chapter 2, we look at the mathematical formulation of our problem in terms of
partial differential equations and conditions at the interface. An integral equation re-
formulation of the problem can reduce the order of the problem we are trying to solve.
We discuss in detail how our system can be converted to one using integral equations.
Our system can be greatly simplified by assuming that we have a symmetric system
and we explore the resulting integral equation for the symmetric problem. Two exact
similarity solutions are introduced, an advancing planar front and an expanding circle.
The case of the advancing planar front is included to motivate the method used to
determine the expanding circle solution. However, the expanding circle solution is a
valuable and direct check for our two-dimensional, numerical method.

In Chapter 3, we present the outline of the numerical method for the symmetric
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case. We look specifically at the two-dimensional case and show the details of the
numerical implementation. We introduce the underlying temperature field for our
problem. We discuss how the smooth temperature field evaluated over the entire
domain can reduce the difficulty inherent in determining the interface position with
a history integral.

In Chapter 4, we look at the derivation of the Ivantsov solution. We then look at
the stability of a single dendrite tip advancing into an undercooled melt. We perform
a numerical stability analysis of the known Ivantsov solution to small perturbations of
the interface. This is used to set the stage for our simulations of unstable solidification.

In Chapter 5, the exact similarity solution for the expanding circle case will be
compared against the output from the numerical method outlined in Chapter 3. The
Ivantsov solution provides a continuous family of solutions for any undercooling. Ex-
perimentally, a particular velocity and tip radius are chosen for a given undercooling.
Linear stability analysis around these solutions identifies the dynamically selected
needle crystal. Our output of our simulation is compared to these theoretical relation-
ships between undercooling, velocity, and tip radius. Our results appear to validate
the theory of microscopic solvability as put forth in [2], [31], [37]. Our method is
shown to converge with second-order accuracy.

Chapter 6, we expand our view to include the nonsymmetric case. This gives
us two integral equations coupled by our boundary conditions. Each of the integral
equations is more complex than the one integral equation needed for the symmetric
case. However, our method can still be applied independently to these two coupled
integral equations. We present the outline of the numerical method for the more
complex, nonsymmetric case. We look specifically at the two-dimensional case and

show the details of the numerical implementation.
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Chapter 2 Integral Equation Formulation

2.1 Derivation

We consider the problem of crystal growth from a melt of a pure substance initially
cooled to a temperature, T, which is below the melting temperature, Ty, (see Figure
2.1). Heat conduction moves the latent heat, which is produced at the surface during
solidification, away from the interface. The temperatures in the solid, Ts (x,t), and

liquid, T}, (x,t), satisfy

0Ts

¥ = ks V?Ts in the solid, (2.1)
oT,
8—tL =k V2T, in the liquid, (2.2)

where kg and k, are the thermal diffusivities in the solid and liquid, respectively.
One boundary condition deals with the absorption or liberation of latent heat at

the interface. When the interface grows with a normal velocity v - n, then the latent

heat produced is transported away from the interface by conduction in the normal

direction. Equation (2.3) is often called the Stefan condition:
Lv-n=lks(n-VTs) — ki, (n-VTL)], (2.3)

where kg and k;, are the thermal conductivities in the solid and liquid, respectively,
and L is the amount of heat released produced during the solidification process.

We can now re-scale our system to work in terms of dimensionless quantities. We
will define a scaled temperature field, u (x,?),

T-T,
~ kL/k
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Underconled
Liquid

Figure 2.1: Solidification into an undercooled melt where the liquid bath is initially
at a uniform temperature below the freezing temperature. Solidification is started at
a central seed and proceeds outward into the undercooled liquid.

The equations for heat conduction in each phase become

Bus

W = HSVQUS, (25)
ou
L = ki Vur, (26)

The equation describing conservation of heat at the interface becomes

v -n=ksVug (s,t) -n —kVur (s,t) - n, (2.7)

where s is the parameterized position on the interface and ¢ is the current time.
Additionally, the temperature of the interface should be equal to the melting
temperature with a Gibbs-Thomson surface tension correction. The Gibbs-Thomson
effect (2.8) predicts the increasing depression of the melting point of a substance on
a curved interface as the pressure and, therefore, the amount of curvature increases.

A detailed discussion of the Gibbs-Thomson effect can be found in [31]. The Gibbs-
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Liquid

2=

Solid

Figure 2.2: The angle used for determination of anisotropy is measured as the devi-
ation from the outward pointing normal to the advancing solidification surface.

Thomson condition is given by:

U¢ = A— dOf (Svta a) K (Svt) ’ (28)

where u¢ is the temperature at a point on the interface, A is the transformed value
of the melting temperature, and dy is a capillarity length as defined, for example,
by Langer [31] and which is defined in greater detail below, and K refers to the
curvature of the surface. dy is not a good length scale. We will scale with values
from the initial value problem. The term f (s,¢,«) is used to model directionally
preferred solidification or anisotropy. In the case where a = 0, there would be no
preference for any particular direction of solidification. As « increases, the strength
of the directional preference increases. The function f (s,t, «) is used to model the
direction of preference for growth of the solid. We will assume a simple form of

angular dependence with an m—fold symmetry where 6 = 6 (s,t) as in Figure 2.2:

f(s,t,a) =1—acos(mb). (2.9)
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In the definition of dy, we have physical parameters where v is the surface tension,
¢p is the specific heat per unit volume in the liquid, and L is the latent heat per unit

volume. The parameter is given by
do = ve, Ty /L. (2.10)

The resulting free-boundary problem is often represented as a pair of integral
equations. An integral equation representation of the system is often most convenient
because the dimension of the original problem is reduced to the dimension of the

interface. The heat equation operator and its corresponding adjoint operator are

L= % — kV?, (2.11)
L= —% — kVZ, (2.12)

The adjoint Green’s function for this problem is given in d dimensions by

I G S WA LI Gat))
G* (x, ;%) = PR for ' > t, (2.13)

G* (x,t;x,t") =0 for t' < t.

A simple relationship exists between the Green’s function and its adjoint:
G(x,t;x,t') =G (x,t;%x/,1), (2.14)

and, therefore,

exp (— |x — x'|” / (4k (t — t"))
[A7k (t — 1))/

G(x,t:x,t)=0 for t' > t.

G(x,t;x',t') = for t' < t, (2.15)

To obtain a coupled set of integral equations, we look at the integral of ulL* (G*) —

G*L (u) or, because we know the relationship between G* and G, we can examine
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uLl* (G) — GL (u). For simplicity, we will look only at the equation in the solid. A
similar method can be used to derive the equation in the liquid. We look at the

complete integral of uL* (G) — GL (u) over time and the volume of the solid:

/ t / lusL* (Gs) — GsL (ug)] dV'dt. (2.16)
to J Vs(t)

We know that L (ug) = 0 and L* (Gg) =6 (t' — 1) 0 (x — x'). Therefore, we have the

identity at the interface x:

t
1’U,S (X, t) = / / [UsL* (GS) — GSL (us)] dV’dt'. (217)
2 to Vs(t’)

There is a factor of 1/2 because x is on the edge of the solid region. We can then

expand the operators to a more complete equation,

1 : G
—ug (x,t) = / / us (x',t') (— = (%, x, t')) av'dt' (2.18)
2 t(] Vs(t’) 8t

t
— / / ug (x', ') (ks V?Gs (x, t;x, 1)) aV'dt’
to J Vs(t')

! ! . ! 8u5 !yt 1ot
— Gs (X', t;x,t') = (x',t') | dV'dt
to JVs(t) ot

t
+ / / Gs (X', t;x, 1) (ks V?ug (x', 1)) dV'dt'.
to JVs(t)

Out volume integrals are parameterized by the variable V', which varies over the
volume of the solid. The point x' in the volume integrals is the position in the
domain. The position x’ is directly determined by the position V' in the coordinate
system of interest.

x' =x" (V). (2.19)
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Grouping the integrands of (2.18) by type of derivative, we obtain

1
L s (x,1) / / (s (<, ) Gs (X, 1 x, ) dV'd (2.20)
2 to JVs(t)
+I~€5/ / Gs (x',t;x,t") V?ug (x', ') dV'dl’
to J Vs (¥

t
— /{5/ / us (x', 1) V?Gg (X', t;x, ") dV'dt'.
to JVs(t

Using Leibniz’s Theorem for differentiation of an integral to move the partial deriva-
tive with respect to time outside of the volume integral, an additional term is intro-

duced because the boundary of the volume of the solid is time dependent:

1
—ug (x,t) = / / 't Gs (X', t;x,t") dV'dt’ (2.21)
2 tO at VS t’

+ / / us (X', t") Gg (¥, t;x,t") (v!-n') dS"dt/

to S(t’)
t
+ Kg / GS (XI, t; X, t,) V,2U5 (Xl, tl) av'dt'
Vs(t')

t
— &5/ / us (x', ) V?Gg (X, t;x, ') dV'dt’.
Vs (t!

Here the surface integral is an integral parameterized by the variable S’. The point
x' in the surface integral is a point on the interface. The position x’ in our coordinate

system of interest can be directly determined by the value of the parameter S’.
x'=x'(V'). (2.22)

As §' varies, our entire interface surface is determined and can be displayed using

our coordinates x’. The first integral in (2.21) can then be evaluated with respect to
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time. Knowing that Gg vanishes as t' — ¢ reduces our system to

1
L (x,8) = / us (%, 10) Gs (', £: %, 1) AV (2.23)
2 Vs (to)
t
+ / / ug (x',t') Gg (¥, t;x,t') (v!-n') dS'dt’
to JS(t")
¢
+ /{5/ / Gs (X, t;x, 1) V?ug (x', 1) dV'dt!
to JVs(t')

t
- /{5/ / us (x', 1) V?Gg (X', t;x, ) dV'dt.
to v Vs(t')

The final integrals can then be simplified by using Green’s second theorem.

1
—ug (x,t) = / us (x',t0) Gs (X', t;x,t9) dV’ (2.24)
2 Vs(to)
t
+ / / ug (x',t') Gs (X', t;x,t") (v'-n') dS"dt’
to JS(t)
t
+ kg / / G (6%, ) (V'ug (x, ') -0') dS'dt’
to JS(t)

t
— /-65/ / us (x',t") (V'Gs (X', t;x,t') -n') dS"dt’.
to JS(t")

A similar derivation leads to a similar integral equation in the liquid where the normal

n is directed outward from the solid into the liquid.

1
—uy, (x,t) = / ur, (X', t0) G (X', t5x, tg) dV’ (2.25)
2 VL(to)
t
— / / ur, (X', ) G (X', t;x,t") (v!-n') dS"dt’
to JS(t)
t
— liL/ / Gr (X', t;x,t") (V'ug, (X', ') -n') dS'dt/
to JS(t)

t
s / / up, (<, ¢) (VG (<, £: %, ') -n') dS'dY.
to JS(t")
The initial conditions ug (x,to) and ur, (x, %) are required at the initial time ¢, < ¢

throughout the system as seen in the first integral in both (2.24) and (2.25). The

remaining integrals have been reduced to ones which will only require information at
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the interface. However, these integrals are history integrals and require evaluation
and compilation of data over the time of the system. The amount of time and
information needed for a straightforward evaluation grows quickly with increasing
time. Additionally, each of these integrals has a singularity at the current time

(' — t). This further complicates traditional methods of evaluation.

2.2 Symmetric Case

The system can be greatly simplified for a symmetric model having equal thermal
diffusivities (k = kg = k1) and conductivities (kK = ks = k1) in the solid and liquid
phases. By evaluating these equations at the interface, the problem can be reduced to
a single integral equation. Although this is a dramatic simplification of the problem,
a great deal of both theoretical and experimental work can be done on the symmetric
problem. The plastic crystal succinonitrile is commonly used in solidification exper-
iments because its physical parameters closely approximate a symmetric system [14]
and its melting temperature is close to room temperature.

Evaluating the equations (2.24) and (2.25) at the interface gives

1
L (s,8) = / us (5 10) G (X', 1 C (5,) , £o) AV (2.26)
2 Vs (to)
t
+ / / us (X, 8) G (< £:C (s,1) ') (v'-n') dS'd’
to J St
t
+r / / G (X ;¢ (s,0) 1)) (V'ug (', ') -n') dS'dP
to JS(t)

t
+r / / us (< 1) (V'G (X', 1:C (s,1) , ') -0) dS'dE.
to JS(t)
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1
Lot (s,8) = / up (1) G (%, : ¢ (5,1) , o) AV (2.27)
2 Vi (to)
t
- / / up (<, ) G (£ C (5,1) ,#') (v'-n') dS"d#
to JS(t)
t
. / / G (4 (5,8) ) (V' (x, #) n) dS'de’
to J ()

t
—k / / up (<, 8) (VG (%, £: C (5,2) , #) -n') dS'dF"
to JS(t)

Our surface integral is parameterized by S’. As we evaluate our equations at a point
on the interface, we should be able to determine our position on the interface in
terms of a similar parameter s for the position on the surface. ( (s,t) is a point in
our coordinate system which is on the interface at a parameterized position on the
interface s and at a time ¢.

Adding the two equations (2.26) and (2.27) gives a single integral equation:
uc (s,t) = / u (X', t) G (X', t;¢ (s,t) , to) dV' (2.28)
v
t
+ m/ / G (X, t;C(s,1),t) [Vusg (%', ¢') -n' — V'ur (x',t') -n'] dS'dt’.
to JS(t')

The second integral can be simplified by using the conservation equation at the in-

terface (2.7) giving:
ue (5,1) = / W (X 10) G (X, 1 C (5,1)  0) AV (2.29)
14
t
+ l€/ G X, ;¢ (s,t),t)[v'-n']dS"dt.
to JS(t)

Incorporating the Gibbs-Thomson condition gives us the final equation to be solved

for the symmetric case.

A=dof (5.t,0) K (5,1) + / (X 1) G (K 1:C (5, 8) 1) AV (2.30)
1%

t
+1~€// G (x4 (5,8),¢) [v' - 0] dS'dF.
to J ()

So the symmetric version has been reduced to a single-integral equation. The
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position of the interface for a given undercooling of the system (A) can be determined
by solving the integral equation.

The solution of these equations will be discussed in greater detail in Section 3.1.3,
however, we can summarize the situation here. We can see that our integral equation
for the symmetric case (2.30) involves two unknowns for each point on the interface.
The unknown values in two dimensions are the current interface position ( (s;,t) =
(z (sj,t),y(sj,t)) in Cartesian coordinates or ¢ (s;,t) = (r (s;,1t), 0 (s;,t)). If we have
I points on the interface, we have 21 unknowns. Our integral equation (2.30) will
each be evaluated at each point on the interface providing us with I equations. The
remaining I equations necessary will be provided by a prescription for interface point

motion.

2.3 Nonsymmetric Case

Again, we will evaluate both equations (2.24) and (2.25) at the interface.

1
Lo (s,8) = / us (1) Gs (<, £:C (5,1) 1 5) V" (2.31)
2 Vs(to)
t
+ / / us (X', 1) Gg (X', t;C (s,t),t') (v!-n') dS"dt’
to S(t’)
¢
+ &5/ / Gs (x',t;¢ (s, 1) ,t) (V'ug (x',¢') n') dS'dt’
to S(t’)

t
— K,S/ / us (X', t") (V'Gs (X', t;( (s,t) ,t') -n') dS"dt’,
to S(t’)

1
L (s, 1) = / wp (X, 10) G (<, £5C (5, 1) , o) V" (2.32)
2 Vi (to)
t
- / / up (X, ) G (', 6 (s,1) , ¢) (v'-n') dS'dt’
to JS(t)
t
e / / G (X1 C (5,8) 1)) (V'ug, (', ) -n') dS'de
to JS(t)

t
. / / up, (<, 8) (/G (x4 C (,1) ) -n') dS'd’.
to JS(t")
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The simple addition of the unequal physical parameters kg and xj, in these equations
(and in the Green’s functions) causes us to retain both an equation in the liquid and
an equation in the solid for the nonsymmetric case. However, we can still apply the

Gibbs-Thomson condition in both the solid and liquid to give us

%A - %do f(s.4,0) K (5,1) (2.33)

[ s () Gs (X, G (5,0) ) aV”
Vs(to)
t
+ / / us (x',t") Gg (%', ;¢ (s,t),t") (V'-n') dS'dt’
to S(t')
t
+ HS/ Gs (x',t;¢ (s, 1), 1) (V'ug (%', ') -n') dS"dt’
to S(t’)
i
— /{S/ / us (x',t") (V'Gs (X', t;¢ (s,t),t') -n') dS'dt’.
to S(t’)
and
1 1
§A = idOf (s,t,a) K (s,1) (2.34)
+ / ug (X, 10) G, (<, 1€ (5,1) , £o) AV
VL (to)
t
_ / / up (<, ) Gy (<, £:C (5,2) , #) (v'-n') dS'd’
to J 5@
t
e / / G (.1 ¢ (5,2) ,#') (V'ug, (¢, ) -n') dS'dt
to JS(t")

t
+ IﬁL/ / ug, (X, ) (V'GL (X, t;¢ (s, 1) ,t') -n') dS"dt'.
to J St

We will leave our system as a pair of coupled integral equations (2.33) and (2.34).

These two equations are coupled by the Stefan condition (2.7):
v -n=ksVug (s,t) -n—kVur (s,t) -n (2.35)

describing conservation of heat at the interface.
The solution of these equations will be discussed in greater detail in Section 6.1.3,

however, we can again summarize the situation here. We can see that our coupled
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integral equations for the nonsymmetric case, (2.33) and (2.34), involve four unknowns
for each point on the interface. The first two unknown values in two dimensions are
the current interface position ¢ (s;,t) = (z (s;,t),y (s;,t)) in Cartesian coordinates
or ¢ (sj,t) = (r(sj,t),0(sj,t)). Additionally in the nonsymmetric case, we also need
to know the value of Vu - n at each point on the interface as approached from both
the solid and liquid. We will represent these unknowns at each point as Vug (s;,t) - n
and Vuy (s;,t) - n. If we have I points on the interface, we have 41 unknowns.
Our integral equations (2.33) and (2.34) will each be evaluated at each point on the
interface providing us with 27 equations. The Stefan condition (2.35) is applied at
each point on the interface which gives us another I equations. The final I equations

which we need will be provided by a prescription for motion of points on the interface.
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Chapter 3 Numerical Algorithm for the
2-D Symmetric Case

3.1 Numerical Formulation

For the symmetric case, we are attempting to solve the equation (2.30):

A=dyf (s,t,a) K (s,t) + / u (X', t) G (X', t;C (s,t) ,t) dV’ (3.1)
v

t
+ n/ / G (1 (5,8) ) [v' - '] ds'd,

to S(t’)

with the Green’s function:

exp (— |x — x’|2 / (4k (t — t')))
Ak (t — t')

G (x,t;x,t') = fort' <t (3.2)

G(x,t:x,t)=0 for t' > t.

The integration of the source gives us a discontinuity in the derivative of the tem-
perature field at the moment the latent heat is released during freezing. However,
due to the smoothing nature of the heat equation, if no further heat is released, the
temperature field will have finite derivatives of any order thereafter. The liberation
of heat at the interface during solidification may be thought of as a moving temper-
ature source at the interface. We see the discontinuity in the second integral of (3.1).
Because we are evaluating the system at some point s on the interface, there will be
a point on the integral of the surface where s’ will be equal to s. At that point, our
Green’s function will have a singularity. For this reason, the integrals in (3.1) will

be broken into a contribution with a singularity in the integrand and a contribution
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without a singularity in the integrand:
A = dof(S,t,Of)K(S,t) +E(C(Sat) at_NAtat) +Q(X7C(Sat)7t_ NAtat)a (33)

where N is the number of time steps held in the singular integral and At is the size
of the time step. At the end of Section 3.1.1, we will discuss the ideas behind the
selection of the number of time steps to hold in memory NV and the size of each time
step At.

These new values are defined by

u(x,t1,t) = / ug (x',t0) G (X', t;x, to) dV' (3.4)
v

t1
+ /{/ G X, t;x,t')[v'-n']ds'dt
to S(t)

and
t
Q(x,tl,t):/{// G (%, ) [v' - 0] ds'dt. (3.5)
t1 JS()

Because our temperature fields, ug and uy, and our Green’s function satisfy the
heat equation, we are not surprised to find that our underlying temperature field
U (x,t1,t) also satisfies the heat equation. We remember the heat equation operator
from Section 2.1 (2.11):

0

L= 5 KV (3.6)

We can apply the operator to our smooth temperature field (3.4):

L@ t,t) = L ( /V us (1) G (', £: %, 1) dV’) (3.7)

t1
+L </~c/ / G, t;x,t')[v' -1 ds'dt') :
to Js)

Our equations are evaluated at a point on the interface (x and t), however, x and ¢

do not depend on our variables of integration in any way. Therefore, we may bring
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the operator inside the integrals:

L (@ (x, 1, 1)) = / us (<, t0) (G (', £:x, 1)) V" (3.9)

1%
t1
+r / / L(G (K, tx,t) [v' - 0] ds'dl.
to JS()

We know that G (x,t;x',t¢') satisfies the heat equation, so we see that the smooth

temperature field @ (x, t1, t) does as well.

L (@ (x,41,1)) = / us (% 5) (0)dV" + & / 1 / O)[v'-n]dsdd  (3.9)

1% to JS)

or

L (@ (x,t1,t)) = 0. (3.10)

To find the interface position ¢ (s,t), we then only need to solve the equation
(3.3). If we evaluate the underlying temperature field at each point in the domain,
we can interpolate its value for any possible interface position x = ¢ (s,¢). We should
also be able to approximate the integral with the singularity for any possible value of
¢ (s,1).

After we have found our interface position at time ¢, we are interested in finding
the interface position at the next time step, ¢t + At. We are then trying to solve the

new equation:

A =dof (s,t+ At,a) K (s, + At) (3.11)
+a (¢ (s,t+ At),t — (N — 1) At, t + At)
+Q(x,((s,t+ At),t — (N —1) At,t + At).

To find the interface position at the new time, we again need to have values for the

underlying temperature field @ (x,t — (N — 1) At, ¢ + At) at all points in the domain.
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Our new temperature field is given by

u(x,t— NAt+ At t+ At) = / ug (X', to) G (x',t + At; x, ty) dV’ (3.12)
v

- NAt
+ I{/ G (X, t+ At;x, ') [v'-n'] ds'dt’
to S(t’)

I—(N—1)At
+ K,/ / G X, t+ At;x, ') [v'-n'|ds'dt’.
¢ S(#)

—NAt

This can be separated into two pieces:

u(x,t — (N —-1)At,t+At) = A+ B, (3.13)
where

A= / ug (X 10) G (X, £ + At x, tg) dV’ (3.14)

Vv

and

t—(N—1)At

B=x / / Gt + At x, ) [v' - '] ds'dt’. (3.15)
t—NAt S()

Because the underlying temperature field satisfies the heat equation, we can find the
piece we call A by advancing the temperature field from the previous time step using
the heat equation. This allows us a straightforward method to advance the underlying
heat equation without needing to evaluate the integral over the entire history from
to to t — NAt at each point. The second piece, B, must be evaluated separately at
each point in the domain. However, if At is small, the calculation will be rapid at
each point because the time range ¢t — NAt to ¢t — (N — 1) At will be small and the
Green’s function decays rapidly as x’ moves away from the point we are looking at

on the interface x.
The numerical method can be summarized as follows:

1. Separate the problem (2.30) into a part with a singularity and a
part which is smooth and satisfies the heat equation. This introduces an
underlying smooth temperature field @ (x, ¢1,¢), which must be evaluated

at all points throughout the domain of the problem.
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2. Approximate the remaining unknown integral @ (x,t1,¢) with the
singularity in terms of the interface position at the current time.

3. Calculate the interface position at the current time using equation
(3.3).

4. Update the underlying smooth temperature field A (3.14) using the
diffusion equation to advance to the next time step.

5. Compute the contribution B of the time integral to the smooth

temperature distribution for the next time step (3.15).

3.1.1 Step 1: Separate Singular and Smooth Parts

The integral seen in (2.30) will be broken into a contribution with a discontinuity
and a contribution without a discontinuity: ¢ is some small, yet positive amount of
time which allows us to separate this integral into one with a singularity where ¢ is
an element of the integral ¢’ € [t —¢,t] and one without a singularity (because ¢ is

not a part of the integral) where t' € [ty,t — €.

A=dyf (s,t,a) K (s,t) + / us (X', t0) G (X', t;C (s, 1) ,tg) AV’ (3.16)
1%
t—e
+ n/ G (X', t;C(s,t),t) [v'-n']ds'dt’
to S(t)

¢
+ n/ G (X, t;C(s,t), ) [v'-n']ds'dt.
t—e J S(t)

We define a function which satisfies the heat equation and with finite derivatives of

all orders at the interface where t; < ¢ as follows,

E(X, tl,t) =A+B for ¢ > t1, (317)

where

A= / us (<, 10) G (3 : %, 15) V" (3.18)
14
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and

t1
B= /@/ / G X', t;x,t')[v'-n']ds'dt’. (3.19)
to S(t')

In (3.18), we know the value of the function G (x',t;x,ty) from equation (2.14)
at each point in the domain. G (x/,;x,1¢) is a smooth function because ¢ > t,. The
initial state of the system wug (X, tp) is given at time ¢y, and must be smooth throughout
the solid. A classical numerical integration scheme for equally spaced abscissas, such
as an extended trapezoidal method, will be able to approximate A.

In (3.19), we know the function G (x',¢;x,t') from equation (2.15) .G (x',¢;x,t')
will be a smooth function because ¢t > t'. Additionally, we know the interface position
at previous times t' € [ty,t1]. A smooth function for the normal velocity can be found
using interpolation over the previous time steps. Again an extended trapezoidal
method may be used to approximate B.

We can then calculate % (x, t1,t) for all points in the domain. Therefore, we have

reduced the problem to one with only one unknown integral.

A=dyf (s,t,0) K (s,t) +u(¢(s,t),t—¢,t) (3.20)

t
+ /-6/ G (x',t;C (s, 1), ') [v'-n'|ds'dt'.
t1 S(t’)

The remaining integral which we define separately here,
t
Q (x,t1,t) = K,/ G (X', t;x,t')[v'-n']ds'dt’, (3.21)
t1 JS()

is much more difficult to evaluate because of the singularity as ' — t. We will explore
its evaluation in more detail in the next section.

Although @ (x,t — ¢,t) has derivatives of all orders, if € is too small, the numer-
ical scheme will not be able to distinguish it from one with a discontinuity. There-
fore, N steps of the integral will be held out of the formation of @ (x,t — NAt,t).
It will be necessary to calculate @ (x,¢;,t) at each point in the domain. However,
u(x,t — NAt,t) is a rapidly decaying function as the distance between a point x in

the domain and the interface increases. In fact, with a fixed number of time steps
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held in memory, N, the contribution from the interface becomes negligible [4] when

the distance exceeds several diffusion lengths:
max |x — ((s,t)] > VENAL. (3.22)

On the other hand, the grid points need to be sufficiently fine to allow accurate
advancement of the temperature field @ (x,t — NAt, t) between time steps. This will
require a maximum spacing of grid points based on a fixed number of time steps held
in memory, N [4]:

Ax <VENAL. (3.23)

These two equations, (3.22) and (3.23), balance the choices of N and At. Decreasing
N gives a finer grid, i.e. reduces the size Ax which would correspond to reducing
Az and Ay in a two-dimensional Cartesian coordinate system, while it increases the
amount of work needed for the diffusion equation calculation. However, it does reduce
the number of calculations needed to determine the underlying temperature field.
Increasing N allows a coarser grid to speed to diffusion calculations, but increases
the number of points which are necessary for the temperature field determination.
By having @ (x,?1,t) at each point, we will be able to find any @ ({ (s, t),t1,t) by

interpolation. The system that we are interested in solving has been reduced to
A=dyf (s,t,a) K (s,t) +u(C(s,t),t — NAt,t) +Q (C(s,t),t — NAL,t). (3.24)

For each time step, we can evaluate each piece of this equation (3.24) at any estimated
new interface position. We should then be able to solve for the new interface position
(step 3). Because the approximation required is quite complicated (step 2), we will

use an iterative method to find the new interface position.

3.1.2 Step 2: Approximate the Singular Integral

In order to find the interface position from our integral equation, we need to be able

to numerically compute the remaining portion of the memory integral. Given an
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Figure 3.1: Segmentation of the interface into I segments of equal length starting at
the negative real axis (angle = —m).

approximation of the interface position at recent times, we can find

Q(C(s,8),10,8) = & / Gt ) ] dsd. (3.25)

t1 S(t’)

In two dimensions, the interface can be split into I 4+ 1 finite segments of equal

length As, where s; = —m + jAs (see Figure 3.1).

Lor—1 it

Q(C(s,1),t,1) /Z/v WG (X4 C(s,0), ) dsdt (3.26)

or equivalently

top_q Sitt 2 2
(X' —X) "+ (Y - Y -
Q (¢ (s,1),t1,t) /Z / Tn t—t’) exp (— py r— )dsdt,

(3.27)
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where

C(5,1) = XitY(] (3.28)
¢ (s, ) = X'i+Y'j (3.29)
C (5 1') = X;i+Yij. (3.30)

If we have enough points on the interface, we can approximate each segment as a

straight line.

Xjt1 = X

X'~ (s = s5) + X; s' € (s, 8+1] (3.31)
Sj+1 = 5j
Y —Y,

Y w(sl_sj)‘*‘yj s' € [sj, 8541]-
Sj+1 = §j

The integral in s does not depend strictly on the terms s; except in its limits of

!

integration. Making the change of variables S’ = s’ — s;, changes our limits of

integration to a fixed range.

I—1 As

1 / ! Aj+BjS,+CjSIZ I,
— . — ds' dt 3.32
4 / t—t’/v nexp( yPT— s at, ( )
=04 _Nat 0
where

A= (X; = Xo)* + (V; - Vo) (3.33)

X — X, Y1 —-Y;

Bj=2(X; - X)L 4oy -v) L

Sj+1 — 5j Sj+1 — S5

2 2
C; = (Xj+1 - Xj) n <Yj+1 - Yj) .
Sj+1 — 85 Sj+1 = 85
We will also assume that As is small enough so that v/ - n’ can be reasonably

approximated by the value of v/ - n’ at the central position of each segment, the

osition S’ =0 or s’ = s,,1/9. This gives us a new equation for Q):
p j+1/
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I—1 t As
1 - Aj+ B;S' + C;5” .
e Z / . ]3':3:‘+1/2 /exp <_ 4k (t —t') d5"dt.
I=0s_Nat 0
(3.34)

The surface integral may then be evaluated.

[v' - n']

=siprn ] B? — 44,C; ) (3.35)

Q= jz(l) / 4 /7rC, (L 1) eXP(].G/%Cj (t—1)

erf Bj +2CjAs — erf B dt'.
VeC; t— 1) 4/kC; (t — )

The error function, erf (z), and the complementary error function, erf ¢ (z), are special

cases of the incomplete gamma function.

erf (2

/ e dt. (3.36)

%\w

erfe () = —= / Pt =1— erf (). (3.37)

We make a change of variables in time, 32 =t — t'.

I-1 VINAt

v o'l B2 — 4A,C;
N §'=8j41/2 J i
Q ~ Z / o exp ( 1610, 2 ) (3.38)
j=0 0
ot BJ+2C As\ (B
4ﬂ 45\/K,Cj

We will use Gaussian quadrature in time to evaluate the integral (). Quadrature

methods are concerned with choosing points z, and weights w,, such that the error
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obtained from estimating the integral is minimized.

/ P@)de =3 u,P (). (3.39)

For Gaussian quadrature, z1, zo, ..., Z4, ...Z¢ are the zeroes of the Gth Legendre poly-

nomial and the weights w, are given by the formula

1 G

T — Tp

w, = dx. 3.40

g /H_ (3.40)
h#g

Both of these are widely tabulated and computer programs are readily available for

their evaluation. Here §, = % (1+z,) VNAt and @ is approximated by

0~ I-1 iw [V' . n’]s’:3j+1/2 €Xp (M) erf w
>3 | 16kC; 5 WVEG ) L pes
(3.41)
-1 @ ".n'
~ ! Zw [v' -n ]s’=5j+1/2 (w) erf B
j=0 g=1 I 2/mkC} 16KC;3° 4B/KC; =By

We have the interface position at the previous N time steps, and an approximation
for the interface position at the current time. Therefore, we have known interface
positions at each position on the interface s;. We will call the interface position at
each of the time steps ¢ (s;,bx) = X (bg) i+ Y (bg) j where by = 3 (t — kAt) = VEAL.
At each 34, X; and Y} will be approximated by a Lagrange interpolating polynomial

over the previous N time steps and the current time.

X; =X, (bo) Lno(B) +---+ X (bg) Lny (B) +---+ X (by) Ly .y (B) (3.42)

X;= ZXJ' (bx) Ly (B) -

k=0
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Y;=Yj(bo) Lo (B) + -+ Y (b) Ly (B) + -+ + Y (bn) Lv,v (B) (3.43)

Yy = Vi (be) Ly (6)-
C(B=bo)- - (B—br) (B—brsr) - (B —bw)
L B) = 0~ (b = o) (br = brrs) - (br = b) (3.44)
Ly (8) = H Z:IZ
= Z

Finally, we need to be able to evaluate the normal velocity of the interface at j3,,

v 0K, Y0, 0X,
~ 98 9y 95 05’

(3.45)

which will be evaluated at s" = s;,1/2 and 8 = ;.

3.1.3 Step 3: Find the Interface Position

We can now use Newton’s method to solve for the new interface position. We have

an equation describing the position of each point on the interface:

A —dof (sj,t, ) K (sj,t) —u(C(s),t),t — NAt,t) — Q (¢ (s4,t),t — NAt, t) = 0.

(3.46)
There will be an equation for each 7 = 0,...,I — 1. Each equation depends only
on known quantities such as the position of the interface at previous times and the
physical parameters of the system and the unknown values of the current interface
position (Xo, X1,..., X, ..., X1, Y0, Y1, ..., Y}, ..., Yi_1). We can rewrite the left-
hand side of (3.46) and call it g;. We can write equation (3.46) as a sum of known
coefficients multiplied by our unknown quantities.

I-1

9j = Z a;; Xi + Bi; Vi (3.47)

=0
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These coefficients are quite complex, but can be found using the methods in the
previous section.
In addition, we need a prescription for point motion on the interface. There are
many possible choices here. We will set the tangential velocity of the first point to
ZETO.

v -t] = 0. (3.48)

S=—T

This equation (3.48) also depends only on the unknown values of the current in-
terface position (Xo, X1,...,X;,..., X711, Y0, Y1,..., Y}, ..., Y1) and known quan-
tities, such as the position of the interface at previous times and the physical pa-
rameters of the system. Similarly, we can write equation (3.48) as a sum of known
coefficients multiplied by our unknown quantities. We will call this new value hy.

I-1

i=0
These coefficients are determined by finding the tangential velocity of point ¢ in terms
of the current and previous interface positions.
The remaining equations are found by assuming that the points are equally spaced

along the interface.

arclen(¢ (s;,t), ¢ (sj41,t)) — arclen(( (so, ), ( (s1,t)) = 0. (3.50)

We are comparing the arc length between point s; and its next neighbor with the arc
length between the first two points on the interface. There is an equation for each
j=1,...,1 —1. And each of these equations depend only on the unknown values of
the current interface position (Xo, X1,...,X;,..., X1, Y0, Y1,..., Y}, ..., Y1) and
known quantities, such as the position of the interface at previous times and the
physical parameters of the system. We write the quantity on the left-hand side of

equation (3.50) as h;. Only the position of the current and previous interface should
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be necessary to evaluate this expression.

Our series of equations may be approximated by a matrix equation.

Fx =0, (3.52)
where
Qoo Q10 Boo  Bio
Qi Oyl 5z‘j 5i+1,j
F— ar—1,7—-1 ﬂ1—1,1—1 (3.53)
Moo  HM10 Voo V1o
Mg Mit1,j Vij Vit1j
| Hr—1,1-1 Vi-1,1-1 |
and
x=[Xo, X1,.. ., Xjpoo 0, X0, Yo, Y, ., Y, Y] (3.54)

Given a system Fx = 0, an initial approximation to the interface position x,, and
the Jacobian of the system, we can use Newton’s method for nonlinear systems to find
a new estimate for the vector containing x, the new interface position. The method is
expected to give quadratic convergence, provided that a sufficiently accurate starting
value is given and that the inverse of the Jacobian exists. The method uses an iterative

procedure, where

x®) = xk-1) _ ( J(H))—l Fk—Dy (k1) (3.55)
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A weakness in applying this method directly is the need to calculate the inverse of
the Jacobian at every step. In practice, the computation can be avoided by splitting

the method into two steps. First, a vector y is found such that
JEDy = =Dy k-1), (3.56)
Then the new approximation x is found by adding y.
x®) = x*=1) 4y (3.57)

This does, of course, still require us to solve a linear system. However, we are able
to avoid the explicit computation of the inverse of the Jacobian at each time step by
using this two-step procedure.

The Jacobian for the system is given by a matrix with four distinct sections.

A B

J= , (3.58)
C D
where
[ Oago o Oap o Oaj_1p
8X0 aXZ aXIfl
. 8010]' 80@- (90[[_1,]'
A= —6X0 <. a—X, 78)(171 , (3.59)
a040,1—1 o aOéz',I—l o 8041—1,1—1
| 0X) 0X; 0Xr_1
" 000 . 0Bio . 0Br-10
8X0 BXZ alel
_ 0B, 0Bi; 0B1-1,
B= 0Xo 0X; 0X.1 |’ (3.60)
850,1—1 o a5z‘,1—1 o 551—1,1—1
| 0X) 0X; 0Xr_1
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[ Opoo . 1o o Opr—1,0 7
aX() 8Xz 8X1_1
_ Opo; O Opr—1,
C= 0X, 0X; 0X1_4 ’ (3.61)
aNO,Ifl o 3Mz‘,1—1 o 3#1—1,]—1
| 0X) 0X; 0Xr_1
[ O 0w Ovioio ]
aX() aXz aX[_l
(91/0- aV" 61/171 ;
D= 7Y Y i ) .62
3X0 5Xz 8XI_1 (3 6 )
61/0,1,1 o 3%‘,171 o 81/1—1,1—1
| aX() 8X, 6X[_1 i

3.1.4 Step 4: Diffuse the Smooth Temperature Field

Now that we have solved for the new interface position at time ¢, we need to prepare
to step forward to time ¢t + At. In order to proceed to the next time step, we need
to advance the smooth temperature field @ (x,t — NAt,t). Because u(x,t — NAt, t)
satisfies the heat equation, we may advance the information that it contains using
any standard finite difference, finite element or spectral method. We have a dif-
fusion equation solver easily available that operates in radial coordinates. In fact,
U (x,t — NAt,t) may be held in either radial or Cartesian coordinates. We merely
need to be able to interpolate @ (x,t — NAt,t) for any possible interface position.
As long as our coordinate system covers any possible interface position, it does not
matter in which coordinate system we hold the underlying temperature field. Our
interface positions ¢ (s;,t) can also easily be converted between the two coordinate
systems.

The underlying temperature field w (x,t — NAt, t) satisfies the following equation

in radial coordinates:

ou kO ou k 0%
%o (a_) + g (3.63)
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with boundary conditions

10u
lim-— =0 3.64
ro0 ror ’ ( )
r]ggloﬂ =0, (3.65)

and initial conditions

u=g(r,0) =u(r6,t — NAt,t) t=0.

We will take a finite Fourier transform in the #-direction. For any point, where

Nop—1

Uijn = Z Ui j k 2mikn/N (3.66)
k=0

Ng—1
1

m — E —2mikn/N
ui,jak - ﬁﬂ Uiajan € / )
n=0

Substituting into our original differential equation gives us

GUZ j.n Kk 0 8UZ j,m K o

ZZbn Y P . ) — —n?U; in 0, 3.67
ot r; Or (TJ or ) T']?n I r# (3.67)
Ui,O,n:O r=0,n#0,

an’(),() _ K}62Ui,0’0 r=n=— 0
ot or? T

We are interested in discretizing the time derivative in (3.67). We could choose a

Forward-Difference method in time for our function at time ¢;:

Uit1,jn — Ui
At

I — VU, . (3.68)

Alternatively, we could choose a Backward-Difference method in time for our function

at the time ti+12
Uit1,n = Uijn
At

= kV?Uis1jm- (3.69)
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Though averaging these two methods gives us the Crank-Nicolson scheme:

Uit1,n — Ui

2
At

il = K,V2Ui,j,n + liVQUH_Lj,n (370)

or
Uit1,j;m — Uijn
At

= g [V2Ui+1,j,n + V2Ui,j,n} . (371)

Applying the Crank-Nicolson scheme to (3.67) gives us

Ui g Ui, jn 1k 0 6UZ Jon K
it ] (o O ) Bt (372)
J J
1|k 0 6U”n K o
bl A kY L IO 5 0,
* 2 [rj or (T] or ) rjzn 7 ] r¥
Uit100 =0 r=0,n#0,

Uir100 = Uipo _ 1 K62Uz‘+1,0,0 1 KGQUZ',O,O F=n=0

At 2 or? 2 or?

We will use a finite difference approximation for the spatial derivatives.

190 Uit 1,5n

First, we use a Centered-Difference scheme with width Ar centered at r; to evaluate

the interior spatial derivative:

(3.74)

190 ( 3Ui+1,j,n> 10 ( Uis1,j+1/20 = z'+1,j—1/2,n)
ar\"" o ) rar \7 Ar ‘

r; Or I or r; Or

Now we will repeat the application of the Centered-Difference method to evaluate the

remaining spatial derivative in (3.74) with width Ar centered at r; :

10 OUii1.in 11 Ui n—Uit1i_1/2m
1o (Tj +1,4, ) ~ (""j +1,5+1/2, +1,5-1/2, ) (3_75)
rj Or or rj Ar Ar J=T41/2

11 (r Uiti,j+1/2;m — i+1,j—1/2,n)
— == ‘
j=T—1/2

r; Ar Ar
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The method (3.75) can be simplified to yield

TirtUstrrin = 275010 + 75 1Uip1 10
2
r; (Ar)

190 <T_8Ui+1,j,n) ~ L

- j
r; Or or T

] (3.76)

A finite difference scheme for the simple second derivative needed for » = 0 can be
derived in a similar fashion. Finally, these finite difference schemes can be applied to

our equation (3.72):

Uit jm — Uijn & |TixtUitigrin = 20U jn + 75 1Uip 1
- - e r£0, (3.77)
j
LE —Tj+é igtin = 27Uijn +1; 1Uij 1
2| r; (Ar)?
-9 2
k [n n
- _U Co _U . :|
2 ZJ"LJ;” 2 2,7,n
2 75 T;
Uit10n =0 r=0,n4#0,
Uir100 = Uioo _ K [Uit1,1,0 — 2Uit10,0 + Uz’+1,—1,0:| =0
At 2 | (Ar)?
N K [ Ui — 2Uip0 + Ui,—1,0:|
2 (Ar)?

Because we are eventually interested in forming a matrix equation describing this
system, we will try to group all of the terms at time ¢+ 1 on one side of the equations

and all of the terms at time ¢ on the other side of the equations. For r # 0,

—¢iUis1jr1n+ (0 + dj,) Uig1,jm — 0Ui15-10 = ¢Uijrim+ (b — djn) Ui jn+a;Ui j-1n-

(3.78)

For r =0,n # 0,
Uit10n = 0. (3.79)
We assume a Neumann condition at r = 0, which gives us U; 1o = U1 and

Uit1,-10 = Uiy1,10- Forr=n =40,

—2Uit1,1,0 + (b +2) Uis1,00 = 2Uit1,1,0 + (b — 2) Uit1,0,0, (3.80)
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where a; = rj_%/rj, b=2(Ar)?/ (kAt), ¢; = rj+%/rj, and dj,, = 2 + (Ar)> n?/ (r;)’.

We now have a tridiagonal matrix system A, x = b,, for each value of n:

T
X = [Ui—f—l,O,n; Ui—f—l,l,n; ceey Ui—l—l,j,na ceey Ui—l—l,N?«,n] . (381)

—aq b + dln —C

Ao = ' ' ' . (3.82)
—a; b + dm —C;

—CLNT b + dNTn

0
ciUian + (b —din) Uirn + ajUion

boso — : . (3.83)
Ui + (b= djn) Ui jn + a;Us 51,0

(b—dn,n) Uin,n +an, Ui N, 1

b+ 2 -2
—aq b -+ dln —C1

Ay = ' ' ' : (3.84)
—Q; b + dm —C;

—an, b =+ dNTn
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2Uis110+ (b—2)Uit1,00

ciUion + (b —din) Uirpn + ajUio

by = ' . (3.85)
ciUijsin+ (b —djn) Uijn +aUij1n

(b—dn,n) Uinyn + an, Ui N, 1.

It is then possible to find wu; ;; when all of the Uj ;, are known through equation

(3.66).

3.1.5 Step 5: Find the New Contribution

We return to the equation (3.12) for the temperature field at the next time step:

u(x,t— NAt+ At t+ At) = / ug (x',t0) G (X', t + At;x, ty) dV’ (3.86)
v

t—NAt
+ /{/ G X, t+ At;x,t') [v'-n']dS"dt’
to S(t')

t—(N—1)At
+ I{/ G X, t+ At;x, ') [v'-n'| dS"dt.
t

_NAt S(#)

The value of the underlying temperature field from time ¢ diffused one time step to
t + At was found in the previous section and corresponds to the first two integrals in
equation (3.86).

Next we need to find the new contribution to the underlying temperature field
which will be needed for the next time step. This is the third integral in equation
(3.86). To complete @ (x,t — NAt + At, ¢t + At) over the entire domain, the integral
needs to be evaluated at each point. This additional integral is actually our function
Q (x,t — (N — 1) At,t — NAt) from Section 3.1.2. We have shown in great detail
the evaluation of ) previously and that evaluation can now conveniently be used
again to find the newest piece of W (x,t — (N — 1) At,t + At). However, @ is a very
complicated and computationally intensive function to evaluate. And because it must

be evaluated at every point in the domain, this becomes the most costly step in the
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procedure. However, it does maintain a constant operation count for each step in the
Newton iteration between time steps and does not grow as time progresses as a direct
integral equation solver would.
Because each step also satisfies the heat equation, we can continue to step the

method forward in this manner.

3.2 Analytic Solutions

3.2.1 Advancing Planar Front

We will look at the case where there is no anisotropy, and growth occurs only in one
spatial dimension. In this case, the interface between solid and liquid becomes a line

advancing into a liquid. This simplified version of the system is given by

aU,L . azuL
8u5 . 8211,5

The Stefan condition (2.3) becomes

dC |:8US aU,L
—-— =K

. 8—30_8—30] z=C(t). (3.89)

A line has zero curvature and there is no anisotropy in the system, so our boundary
condition is simply that the temperature is equal to the melting temperature at the
interface.

urp, =ug = A z=C((1). (3.90)

As we move far from the interface, the temperature of the system should be equal to

the undercooled temperature of the system. When scaled, this gives us a condition
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as r — 00,

ur, — 0 T — 0. (3.91)

ug — 0 T — 0O.

Following the method outlined by Carslaw and Jaeger [10], we seek an interface

position of the form

¢ (t) = 2\Vkt. (3.92)

We know that ug = ¢; + ¢y erf (a:/ (2\/5)) is a solution to equation (3.88). Applying

the boundary condition (3.91) gives us a solution for ug.
Us = Cz [1+erf (:U/ (2\/&))] —oco<z<((t). (3.93)
We can also apply the boundary condition (3.90) to the question of ug.

A =cy[1 +erf (V)]. (3.94)
co =A/[1+erf (V).

uszA[1+erf(x/(2\/ﬁ))]/[1+erf()\)] —oo<xz<((t).

We also know that u;, = ki + kyerfc(z/ (2V/kt)) is a solution to equation (3.87).

Applying the boundary condition (3.91) gives us a solution for uy,.
ur, = koerfc (x/ (2\/@)) ((t) <z < 0. (3.95)
We can also apply the boundary condition (3.90) to the question of uy,.

A = kqerfc ()). (3.96)
ke = A/ erfc (N).

ur, = Aerfc (3:/ (2\/&)) / erfc (N) ((t) <z < o0. (3.97)
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Finally, we look at the Stefan condition (3.89).

A\/,T/t:m\/%exp (—%ﬁ/(@)) [1+elrf(A)+erfcl(AJ v =C(t). (3.98)

A 2 2
A= ﬁeXp (_)‘ ) [(1 + erf (/\))erfc ()‘):| .

A= ?/\ exp (A?) erfc (A) (1 + erf (N)).

So we have a class of exact similarity solutions which can be written in closed form

for the advancing planar front case.

ug = 4/\ exp (A?) erfc (A) [1 + erf (Az/( (t))] —oco<x<((t). (3.99)

ur = 4)\ exp (A?) (1 + erf (X)) erfc (Az/¢ (t)) ((t) <z < 0. (3.100)

A= g)\ exp (A?) erfc (A) (1 + erf (X)) (3.101)
¢ (t) = 2\Vkt. (3.102)

3.2.2 Expanding Circle

We will look at the case where there is no anisotropy and the interface between solid
and liquid becomes a circle advancing into the liquid. In the limit where curvature
does not affect the interface temperature (dy = 0 in equation (2.8)). This simplified

version of the system is given by

8UL _ K 0 aU:L
= = (TW) C(t) <r< 0. (3.103)
Ous K O Oug
Bt ror (a—> O<r<ct). (3.104

The Stefan condition becomes

r=C(t). (3.105)

at " lor  or

% — K (91,65 8’U,L
or or
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With dy = 0 boundary condition is simply that the temperature is equal to the

melting temperature at the interface.

up =ug = A r=C_(1). (3.106)

As we move far from the interface, the temperature of the system should be equal to
the undercooled temperature of the system. When scaled, this gives us a condition

as r — oo and the temperature of the system should be smooth at the origin.

u,—0  r— oo (3.107)
1 6u5
~S = 0.
r or '

-1/2

Solutions for the advancing planar front were function of xt only. This suggests

/2 Following the

solutions in cylindrical coordinates which are function only of ¢~
method outlined by Carslaw and Jaeger [10], we again seek an interface position of

the form

¢ (t) = 22/kt. (3.108)

We can show that
us = 1 + 2By (r?/ (4kt)) (3.109)

and

urp = kl + kQEl (7‘2/ (4I€t)) (3110)

are solutions to equations (3.103) and (3.104) where E; (z) is the exponential integral

defined by -
El(z):/ C at. (3.111)

t
In fact, it can be shown that these are the only solutions which are of the form rt~1/2
for these equations. If we apply the boundary conditions (3.107), we find that k; = 0

and c; = 0. Our solutions are then reduced to

ur, = koFy (r%/ (4kt)) C(t) <r<oo (3.112)
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and

us =1 0<r<((t). (3.113)

If we apply the condition at the interface (3.106), we find that k, = A/E; (A\?) and

¢; = A. Which reduces our solutions to
ur, = AE; (r?/ (4kt)) /E1 (V) C(t)<r<oo (3.114)

us = A 0<r<((t). (3.115)

Finally, we look at the Stefan condition (3.105).

MW/t =k |0+ ﬁ; exp (—r?/ (4xt)) r=C((). (3.116)
A A 2 exp (—)\2) :

Vit B () 22/t
A =exp (\%) E1 (A?).

So we have a class of exact similarity solutions which can be written in closed form

for the expanding circle case.

us = Aexp (A\?) By (\?) 0<r<((t). (3.117)
ug, = Aexp (X?) By (r?/ (4xt)) C(t) <r<oo.
A = \exp ()\2) E; ()\2) :

¢ (t) = 22Vkt.

In Chapter 4, this solution will provide a valuable check for our numerics.
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Chapter 4 Numerical Stability Analysis

of the Ivantsov Solution

The material in this chapter was prepared in conjunction with C. Yang and D. C.
Sorenson from the department of Computational and Applied Mathematics at Rice
University [45].

The Ivantsov solution describes the advancement of a simple, parabolic figure rep-
resenting a dendrite tip into the undercooled melt. A family of solutions is determined
by the Ivantsov solution such that the product of the tip velocity v and tip radius p
is uniquely determined. However, a solution exists for any tip velocity v, which will
fix the value of the tip radius p. We can, however, use the Ivantsov solution as a
starting point for the analysis of the behavior of needles to predict the behavior of
the solution in terms. We are interested in theoretical relationships between the tip
velocity v, the tip radius p, the undercooling in the system A, and the anisotropy
in the system «. In Chapter 5, we will derive the theoretical relationships between
these quantities in the symmetric model based on the Ivanstov solution which we will

derive here.

4.1 Introduction

There has been a great deal of interest in the simulation and modelling of crystal
growth and dendritic solidification [4], [40]. It is well known that the physical behavior

of a needle crystal solidifying into some undercooled liquid can be described by the
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dual diffusion equations

oU,
—atL = aVQUL (41)
ouU.

Here Uy, and Ug denote the temperature of the liquid and solid respectively. They
are functions of the time ¢ and the spatial coordinates x and z. The parameter o
represents the thermal diffusivity. At the solid-liquid interface, U;, = Ug, and the
motion of the interface denoted by 7 and the temperature field are related by the

conservation relation, where n is the unit outward pointing normal to the interface.

dv

—y n=a (VUs -n—VUp - n) (4.3)

It is also natural to impose the boundary condition
U, —0 as z — 00. (4.4)

Both analytical and numerical solutions are difficult to obtain because of the moving
boundary. We are interested in analyzing the stability of a well known stationary
solution that corresponds to a simple parabolic shaped moving front. In the following,
we give a brief description of the Ivantsov solution and a standard linear stability
analysis that gives rise to an eigenvalue problem. Numerical discretization of the
continuous model and the solution of the large scale algebraic eigenvalue problem
derived from the discretization are also discussed. It is observed from our numerical

computation that the solidification is unstable.

4.2 TIvantsov Solution

A stationary solution that corresponds to a parabolically shaped moving front can
be obtained by the method of Ivantsov [17]. Suppose the front is moving in the z

direction with a constant velocity v. We first rewrite the equation (4.1) in a moving
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Figure 4.1: n — & orthogonal coordinate system

frame.

z4z—ut (4.5)

T (4.6)

After this change of variables, we have a new equation in both the liquid and solid

phases.
200 10U

2 - =
VU + 137 = oot (4.7)

The boundary conditions remain the same. To simplify the geometry, we introduce a
transformation to map the parabolic interface in (x, z) coordinates to the horizontal

line n =1 in (&, n) coordinates (see Figure 4.1).



z = pné (4.8)

(4.9)

In these new coordinates, the convection diffusion equation (4.7) can be rewritten

where P = p/l is the Peclet number, and 7 is defined to be 7 = (v/2p) t.

U 0°U oU  oU s oy OU
— &) = P— 4.1

The boundary condition imposed at the moving front N = 1 satisfies

ON ON oUs  0Uy, ON (0Us 0Uj
PlEE (N e ro (N1l = (&8 ) 2N (s Pr)
ey w2 (veege) | = (50 -50) - o (% - %)
(4.11)
The known Ivantsov solution corresponds to the solution N (§,7) = 1. It is not

difficult to verify that there is a stationary solution of the form

N=1 (4.12)
Ug = VrP exp (P) erfc (\/1_3) (4.13)
UL = VrPexp (P)erfc (\/1_377> . (4.14)

This is the Ivantsov solution which will be the basis for the examination of the re-

lationships between tip radius, tip velocity, anisotropy, and undercooling in Chapter

d.

4.3 Linear Stability Analysis

Our objective is to determine the linear stability of the Ivantsov solution under a

small disturbance. This is done by assuming that there exists a solution to equations
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(4.10) and (4.11) of the form.

N =N + Nexp (o7) (4.15)
Us =Us + Ugexp (07) (4.16)
Up=U+ Upexp (o7), (4.17)

where N, Ug, and Uy, are stationary solutions derived by Ivantsov’s method and o is
the growth rate. The substitution of the above equation (4.15) into equation (4.10)

leads to the disturbance equation
U 9°U U  aU ~
— + = 2P | n— — &— P 4.1
(a§2+ >+ ("8n ag) (n* + &%) PoU (4.18)

in both phases with boundary conditions

Us=0 everywhere (4.19)
~ oUyL ~
L & atn ( )
P|oN(1+&) +2 (N -+ ga—]g” ( a{;{; 4P2N> atnp=1 (4.21)

To simplify the notation, we rename variables N and U to N and U , respectively,
and let A = oP. Equations (4.19) and (4.20) the boundary condition (4.21) can be

written as the following eigenvalue problem:

1 0’U  0*U oU
- e = .22
n2+§2{3§2+8n2+2p< an ¢ 5)] A (4.22)
1 oU 5 ON _
m[—+4PN+2P<N+€86>:| AN atnp=1, (4.23)

where N and U are coupled by

U=2PN at p=1. (4.24)
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On an infinite domain, the boundary conditions at infinity are

({;—g—)()asn—)oo (4.25)
oUu

— . 4.2

a€—>0as§—>oo (4.26)

4.4 Discretization

In our numerical approximation, the infinite domain problem is first transformed into

a finite domain problem by using the following change of variables.

‘ ‘m

w
Il

- (4.27)

Y+
N

n
_ 4.28
1+4+n ( )

ARt
Il

In these new variables, equation (4.22) and boundary condition (4.23) become

N PU 1 1 02U oU oU
C(s,%)[(1—§)4a?+1(2—%) ﬁ—E®£+F(¥)¥]:AU (4.29)
D (3,1) {P%—g +4P2N + 2P [N +(1-5)? %—g] } = —)\N, (4.30)

where

C (5,t) = -<11>2+<22)2} i (4.31)

D (5,1) = <1f,§>2+1 (4.32)
E(3) =2_(1 —35)°+2P5(1-5) (4.33)
F (i) = —%(2—%)3+Pf(2—t~). (4.34)

Let s; = iAs5, %V] = jAt, Uyj =U (§,~,?j), and N; = N (5;). The standard centered

difference formula is used to discretize the equation (4.29). At the boundaries s =0
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and s = 1, we use ghost values U_;; = Uy ; and Uy41; = U,_1; and a centered
difference formula to discretize QU/d3. A similar scheme is used to discretize U /9t
at ¢ = 2. At the interface boundary ¢ = 1, the temperature Ui and the displacement
of the moving from N; satisfies U;y = 2PN;. To avoid mixing U and N values, an
upwind difference scheme is used to discretize the term OU/0t in (4.30). The term
ON/0s is approximated by a centered difference formula.

The above discretization scheme gives rise to an algebraic eigenvalue problem.

Ax = )x (4.35)
Uy
x=| (4.36)
Unm
N
U()’j
U;j=| (4.37)
Un.i
No
N=| (4.38)
Ny,

Eigenvalues of positive real parts are sought to determine interesting unstable
modes that involve excitation of the interface. Analysis suggests [34] that at least
part of the spectrum corresponding to this eigenvalue problem is continuous and
unbounded. The conventional QR method becomes expensive as the mesh size of the
discretization becomes small. A fast iterative scheme, such as the Arnoldi method, is

attractive in this setting.
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4.5 Implicitly Restarted Arnoldi Method

The standard Arnoldi method computes a factorization of the form

AVy, = Vi Hy, + fep (4.39)
VEV, =1 (4.40)
VEf =0, (4.41)

where Hj is a k X k upper Hessenberg matrix. The first column of V is arbitrarily
chosen and normalized such that ||vi|| = 1. Subsequent columns of Vj, the matrix

Hy, and the vector f are generated from the Arnoldi process illustrated below.

Input : (A, v)

Output : (Vi, Hy, f)

Set : w < Av

Set : oy = vflw
Set : H; = ()
Set : Vi = (v1)

Set: f+ w— vy



o7

For:5;=1,23,....,k—1
Bi =1l

Vj1 = o~

Bi
Vier = (Vi, 0j41)

()

ﬁjejr
z 4+ Avj
h« VT2

Hjn = (Hj-1,h)
fz—Vih

It can be verified that the columns of V' form an orthonormal basis for the Krylov
subspace K = {v1, Avi, A%vy, ..., A¥"v; }. Eigenvalues of H provide approximations
to the eigenvalues of A. They are often referred to as the Ritz values. If y is the
eigenvector of H corresponding to an eigenvalue €, the Ritz vector z = Vy is an
approximation to the eigenvector of A. It is well known that Ritz values converge very
fast to well-separated extreme eigenvalues. However, in our problem these eigenvalues
correspond to the ones on the left half of the real axis, and are not interesting. To
overcome this difficulty, one must carefully choose a starting vector v; such that the
subspace spanned by the columns of V' contains the desired eigencomponents. The
choice of v; is not trivial. An elegant way to identify this vector is to use Sorensen’s
implicit restarting scheme discussed in [41] to repeatedly modify an arbitrary starting
vector v; so that the unwanted eigencomponents v; are annihilated by a polynomial
in A. The analysis and some of the implementation issues of the Implicitly Restarted

Arnoldi method (IRAM) are also contained in [32].
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Given a (k + p)-step Arnoldi factorization.

AViip = VirpHpip + feg—kp (4.42)
Vk}ikaer =1 (443)
VI =0 (4.44)

A sequence of QR updates corresponding to the shifts py o, ..., 1, may be applied
as follows. Let Hyyp, — 11 = Q1 Ry be the QR decomposition of Hy, — p11, it follow
from equations (4.42) that

(A = i) Vieyp = Vierp (Hip — pnl) + fez—kp = (Vesp@1) Br + feg—l—p' (4.45)

Multiplying the above equation on the right-hand side by @); yields

(A= pad) (VigpQ1) = (VispQ1) (QF Hyip@1) + fefy,@n (4.46)

It is easily seen that the first column of the update Vk“_ip = Vi4p@1 is related to the
first column of Vj,, through (A — uil)v; = v pi;. Let H,;Lp = Q! \HQj_1. The

next step starts with the factorization of H;"

nip — Mol followed by the update of V)

and H," .p and performing p more steps of Arnoldi iteration to give
T
AV, = Vit HiE + frel,,. (4.47)

This is equivalent to a new Arnoldi factorization with v; replaced by v =
P, (A) v, where P, (A) is a polynomial with roots at py po,. .., i,. This polynomial
is designed to filter out the unwanted eigencomponents in the original starting vector
vi. Thus the shifts py 9, ..., 1y are chosen to be approximations to the unwanted
eigenvalues of A.

A software package based on this algorithm, ARPACK, is used successfully in our
computation. Table 1 lists the leading eigenvalues that correspond to different levels

of discretization and the number of matrix vector multiplications (MATVECs) and
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CPU time used to obtain them. The Peclet number is set to be 0.1 in our computation.
The experiment is performed on a SUN-SPARC 20. For coarse discretization up to
about A5 = At = 1 /29, the results compared favorably to those obtained from
LAPACK ([3]. As the matrix size increases, the computation becomes more expensive

as indicated by a large number of matrix vector multiplications used. In the case

A5 = At =1/99, IRAM did not converge in 300 iterations.

Matrix Size Eigenvalue MATVECs CPU(seconds)

2500 6.39 4831 876.68
3600 7.78 6408 1547.68
4900 9.17 10905 3656.83
6400 10.6 11086 3897.88

Table 1. The Performance of ARPACK in direct mode

An alternative to compute the eigenvalues of A directly is to work with (4 — o)™,
where o is defined as an estimated location of a desired eigenvalue. Since eigenvalues
of (A—ol )71 are often large and well separated, the Arnoldi approximation converges
extremely fast. However, the fast convergence is obtained at the cost of factoring the
matrix A — ol and solving the linear system (A —ol)w = v at each iteration. In
our application, the matrix can be easily factored using a block Gauss elimination.
The initial shift can be predicted from the runs of smaller size problems. In Table
2, we list the number of linear system solved (LSs) and the CPU time used form
problems of various size. It is observed that using ARPACK in shift-invert mode is

considerably faster in this application.
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Matrix Size Shift 0 LSs CPU(seconds)

2500 10.0 87 21.35
3600 10.0 81 31.86
4900 14.0 87 48.78
6400 14.0 86 104.21
8100 15.0 86 115.83
10000 15.0 87 189.46

Table 2. The Performance of ARPACK in Shift-Invert Mode

4.6 Numerical Results

Our computation shows that there are many eigenvalues of A with positive real parts.
This implies that the solidification of the needle crystal is unstable. As expected, it is
observed in our computation that the leading eigenvalue increases as A3, At — 0. The
computed interface N for the disturbance equation corresponding to three positive
eigenvalues of A are plotted in Figures 4.2, 4.3, and 4.4.

The computation was done on a grid with A5 = At = 1/99. It is observed that as
the eigenvalue increases, the interface becomes more oscillatory. This agrees with the
result obtained from analysis. Finally, the temperature field U in both phases that

corresponds to a typical positive eigenvalue is also plotted in Figure 4.5.
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Eigenvalue = 0.005

10|

08r

00Ff

0.0 0.2 0.4 0.6 0.8 1.0
Xi

Figure 4.2: The computed interface position N associated with the positive eigenvalue
o = 0.005 of our matrix A. Positive eigenvalues imply that the solidification of the
needle crystal is unstable.
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Eigenvalue = 0.102

117

09r

05

0.0 0.2 0.4 0.6 0.8 1.0
Xi

Figure 4.3: The computed interface position N associated with the positive eigenvalue
o = 0.102 of our matrix A. Positive eigenvalues imply that the solidification of the
needle crystal is unstable.
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Eigenvalue = 0.186

o9 r

05

0.0 0.2 0.4 0.6 0.8 1.0
Xi

Figure 4.4: The computed interface position N associated with the positive eigenvalue
o = 0.186 of our matrix A. Positive eigenvalues imply that the solidification of the
needle crystal is unstable.
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Eigenvalue = 0.186

temperature
0.000 0.008 D08 0.024

Figure 4.5: The temperature field U in both phases corresponding to the positive
eigenvalue o = 0.186.
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Chapter 5 Application to 2-D

Solidification

5.1 Expanding Circle Case

We will look at the expanding circle case discussed in Section 3.2.2. We have a

similarity solution based on a non-dimensional parameter A (3.117).

us = Aexp (A\?) By (\?) 0<r<((t). (5.1)
ur, = Aexp (A\?) By (r?/ (4kt)) C(t) <r<oo.
A = )dexp ()\2) E, ()\2) .

¢ (t) = 2\Vkt.

The code was first run with a variety of coefficients for the Gibbs-Thomson con-
dition (dp). Figure 5.1 shows that as dy decreases, we are approaching the exact
solution that we have derived for dy = 0. At a given time, we are interested in finding
the rate of difference from the dy = 0 similarity solution as dy increases. We expect

that the difference from the similarity solution will increase as a factor of dy:
|Tsimilarity - Td0| = B (dO)a . (52)
We can multiply by a constant without affecting the slope a.

1000 |7 simitarity — Tdo| = 100073 (1000dg)* .



66

4t
3
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g 2r
——  Similarity solution
—— d0=0.001
—— d0=0.002
—— d0=0.004
1 d0 = 0.008
d0 =0.016
—— d0 =0.032
0 1 1 1 1 L 1 1
1 3 5 7 9 11 13 15

time /t0

Figure 5.1: The similarity solution is used to test our code with a similarity constant
A = 0.5, a constant for diffusion x = 1, the number of steps held in memory N = 2,
and the outer radius of the system 7., /70 = 60.
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t/t0=4 slope =1.10
t/t0=6 slope =1.06
t/t0=8 slope =1.05
t/t0 =10 slope =1.04
t/ t0=12 slope =1.03

difference (r/r0) from similarity solution * 1000
N

I

1 1

1 2 3 4 5678910 20 30 40
do * 1000

Figure 5.2: The similarity solution is used to test our code with a similarity constant
A = 0.5, a constant for diffusion x = 1, the number of steps held in memory N = 2,
and the outer radius of the system 7., = 60.

If we take the logarithm of both sides, we can try to find the slope of a linear plot:
10g (1000 |7simitarity — Tdo|) = clog (1000ds) + log (1000'8) . (5.3)

Figure 5.2 shows the log-log plot at several different times. The average slope of
our lines « is equal to 1.06. This tells us that the difference between the similarity
solution and our solution for a given dy grows linearly as d, increases.

Our code was run with a variety number of points on the interface. We cannot
easily distinguish the solutions for different values of As from each other in Figure
5.3. However, we are interested in finding the rate at which our code converges to
this solution as the number of points on the interface increases. If we assume that the
solution found for pts = 800 is the converged solution, we will look at the difference

between the converged solution and our solution at other values of pts. We expect
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Figure 5.3: The similarity solution is used to test our code with a similarity constant
A = 0.5, a constant for diffusion k = 1, and the number of steps held in memory
N =2.
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that the difference from the converged solution will decrease as a factor of the number

of points on the interface:

|7“pts:800 - Tpts‘ =p (pté’)a . (5-4)

If we take the logarithm of both sides, we can try to find the slope of a linear plot:

log (|rpts=s00 — 7pts|) = alog (pts) + log (B) . (5.5)

Figure 5.4 shows the log-log plot at several different times. The average slope of our

lines « is equal to —2.35. This shows that we are getting better than second-order

convergence as the number of points on the interface increases.

ot

t/t0 = 1.40
t/t0 = 1.52
tt0=1.64
tt0 =1.76
t/t0 = 1.88
t/t0 = 2.00

difference (r/r0) from 800 points solution * 100,000

[

slope =-2.32
slope =-2.33
slope = -2.37
slope = -2.37
slope =-2.34
slope = -2.37

0.1

100 200 300 400 500 600 700
number of points on the interface

Figure 5.4: The similarity solution is used to test our code with a similarity constant
A = 0.5, a constant for diffusion x = 1, the number of steps held in memory N = 2,
and the outer radius of the system 7., = 60.
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circle radius / r0

121

10

time /t0

Figure 5.5: Runs for different time step sizes with similarity constant A = 0.5, con-
stant for diffusion x = 1, the number of steps held in memory N = 2, and dy = 0.04.

Our code was run with a variety of time step sizes. We cannot easily distinguish
the solutions for different values of At from each other in Figure 5.5. However, we
are interested in finding the rate at which our code converges to this solution as
At decreases. If we assume that the solution found for At = 0.02 is the converged
solution, we will look at the difference between the converged solution and our solution
at other values of At. We expect that the difference from the converged solution will

increase as a factor of At:

[ at=0.02 — Tacl = B (A1) (5.6)
We can multiply by a constant without affecting the slope a.

100 |7 ar—0.02 — Ta¢| = 1005 (100A1)* .
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If we take the logarithm of both sides, we can try to find the slope of a linear plot:
log (100 |rat=0.02 — 7at|) = alog (L00AE) + log (100" ). (5.7)

Figure 5.6 shows the log-log plot at several different times. The average slope of
our lines « is equal to 2.22. This is consistent with our expectation of second-order

convergence in At.

5.2 Convergence in the 2-D Symmetric Case

Since the tip radius is expected to be small compared to dy, we take a length scale of
do * 2D.

Figures 5.7, 5.8, and 5.9 show the progression of the solidification front starting

18 [
=3 -
=] 16
=
*
c 14
K]
5
Q121
-
o
< 10
o
5 8
S
&4t
o t/t0 = 1.192 slope =2.70
L | ——— t/t0=1.320 slope =2.20
5 2 ———— {/t0 = 1.448 slope =2.03

——— t/t0=1.576 slope =1.94
ol
Il " Il " 1 " 1
1 6 11 16
dt* 100

Figure 5.6: Runs for different time step sizes with similarity constant A = 0.5, con-
stant for diffusion x = 1, the number of steps held in memory N = 2, and dy = 0.04.
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Figure 5.7: Surface position determined when starting with a circular contour with
anisotropy a = 0.60 and undercooling A = 0.56.

Figure 5.8: Surface position determined when starting with a circular contour with
anisotropy a = 0.70 and undercooling A = 0.56.
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Figure 5.9: Surface position determined when starting with a circular contour with
anisotropy a = 0.80 and undercooling A = 0.56.

with a circular surface for different values of anisotropy. You can see the formation of
the dendrites due to the inclusion of anisotropy. As anisotropy increases, the dendrites

become more pronounced.
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Figure 5.10: Surface position determined when starting with a circular contour with
anisotropy a = 0.70 and undercooling A = (0.48.

Figure 5.11: Surface position determined when starting with a circular contour with
anisotropy a = 0.70 and undercooling A = (0.52.
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Figure 5.12: Surface position determined when starting with a circular contour with
anisotropy a = 0.70 and undercooling A = 0.56.
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Figures 5.10, 5.11, and 5.12 show the progression of the solidification front starting
with a circular surface for different values of undercooling. You can see the formation
of the dendrites due to the inclusion of anisotropy. As undercooling increases, the
dendrites become more pronounced.

Figures 5.13 and 5.14 show the progression of the solidification front starting with
a perturbed circular surface for different values of the Gibbs-Thomson coefficient in
the absence of anisotropy. The initial surface is set using the following description

with perturbation constant p:

x (8) = p cos(s) rao=o (5.8)

y (s) = p sin(s) rgo=o-

Figure 5.15 shows an inital interface shape with p = 0.10.

We are interested in the convergence properties of our two-dimensional symmetric
code. The code was run with a range of number of points on the interface. Figure
5.16 shows that as the number of points on the interface changes, the tip positions, r,
are indistinguishable. Figure 5.17 shows that we have converged to a characteristic
velocity for our range of points on the interface. If we assume that the solution found
for pts = 800 is the converged solution, we will look at the difference between the
converged solution and our solution at other number of points on the interface. We
expect that the difference from the converged solution will increase as a factor of the
number of points on the interface. We expect « to be negative because we expect the

difference to decrease as we increase the number of points on the interface.

|Tpts:800 - ’rpts‘ = ﬂ (pts)a . (59)
We can multiply by a constant without affecting the slope a.

10000 ‘T’ptszgo() - Tpts| = 10000B (ptS)a .
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Figure 5.13: Surface position determined when starting with a perturbed circular
contour with a perturbation constant of p = 0.10 with anisotropy a = 0.00 and
undercooling A = 0.60 and dy = 0.04.
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Figure 5.14: Surface position determined when starting with a perturbed circular
contour with a perturbation constant of p = 0.10 with anisotropy a = 0.00 and
undercooling A = 0.60 and dy = 0.02.
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Figure 5.15: Initial perturbation of the dy = 0.0 similarity solution with a perturba-
tion constant p = 0.10.
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Figure 5.16: Tip position determined with anisotropy o = 0.30 and undercooling
A = 0.64.
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Figure 5.17: Tip velocity determined with anisotropy a@ = 0.30 and undercooling
A = 0.64.
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Figure 5.18: Difference from converged tip position determined with anisotropy o =
0.30, and undercooling A = 0.64.

If we take the logarithm of both sides, we can try to find the slope of a linear plot:
log (10000 |rpis=s00 — Tpts|) = clog (pts) + log (1000073) . (5.10)

Figure 5.18 shows the log-log plot at several different times. The average slope of
our lines « is equal to —2.37. Our results are better than second-order convergence
in the number of points on the interface or As.

The maximum radius used in the numerical simulation is the distance from the
origin at which we assume that the temperature field is equal to the undercooled
temperature. In other words, this is an artificially inserted value for infinity for our
code. We hope that our maximum radius is large enough so that the value of the
temperature field at the maximum radius is not felt at the interface. We have used

a variety of values for the maximum radius in the simulation. Figure 5.19 shows
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Figure 5.19: Tip position determined with anisotropy a = 0.40 and undercooling
A = 0.60.
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Figure 5.20: Tip velocity determined with anisotropy a@ = 0.40 and undercooling
A = 0.60.
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that as the maximum radius changes, there is very little noticeable difference in the
calculated tip position. Figure 5.20 shows that our tip velocity also has very little
noticeable difference between solutions for different values of the maximum radius.
If we assume that the solution found for r = 80 is the converged solution, we will
look at the difference between the converged solution and our solution with different
values for the maximum radius. We expect that the difference from the converged
solution will increase as a factor of the maximum radius. Therefore, we expect a to
be negative because we expect the difference to decrease as we increase the maximum
radius in the system.

" max=80 — Tmax| = B (max)®. (5.11)

We can multiply by a constant without affecting the slope a.

1000 |Fmax—80 — Tmax| = 10008 (max)® .

If we take the logarithm of both sides, we can try to find the slope of a linear plot:

log (1000 |rmax=80 — Tmax|) = alog (max) + log (10003) . (5.12)

Figure 5.21 shows the log-log plot at several different times. The average slope of
our lines « is equal to —0.971. Our method achieves very close to linear convergence

in the maximum radius in the system.

Next, we ran the symmetric, two-dimensional code with a range of values for Ar.
Figure 5.22 shows the position of the dendrite tip as a function of time for differ-
ent values of Ar. However, it is very difficult to distinguish the difference between
solutions for different values of Ar. Additionally, it is very difficult to distinguish
the difference between tip velocities for different values of Ar in Figure 5.23.We will
assume that the tip position for the smallest value of Ar for which we have calculated
the position, Ar = 0.075, is the converged solution. We can then use the difference

between the converged position and the calculated position at other values of Ar to
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Figure 5.21: Tip position determined with anisotropy o = 0.40 and undercooling
A = 0.60.
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Figure 5.23: Tip velocity determined with anisotropy a@ = 0.40 and undercooling
A = 0.60.
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Figure 5.22: Tip position determined with anisotropy o = 0.40 and undercooling
A = 0.60.

find the convergence rate for our code:
rar=0.07 — Tar| = B (Ar)*. (5.13)
We can multiply by a constant without affecting the slope a.
100 |7 Ar=0.07 — Tar| = 1003 (100A7)“ .

Again we take the logarithm of both sides, we can try to find the slope of a linear
plot:
log (100 |rar=o.07 — Tar|) = alog (100Ar) + log (100'~*3) . (5.14)

Figure 5.24 shows the log-log plot at several different times. The average slope
of our lines « is equal to 2.633. Our code converges with greater than second-order
accuracy in Ar.

Next, we ran the symmetric, two-dimensional code with a range of values for
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Figure 5.24: Difference in tip position from assumed converged solution with changing
radial grid sizes as determined with anisotropy a = 0.40 and undercooling A = 0.60.
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Figure 5.25: Tip position determined with anisotropy a = 0.45 and undercooling
A = 0.60.
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Figure 5.26: Tip velocity determined with anisotropy a@ = 0.45 and undercooling
A = 0.60.
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At. Figure 5.25 shows the position of the dendrite tip as a function of time for
different values of At. However, it is very difficult to distinguish the difference between
solutions for different values of At. Additionally, it is very difficult to distinguish the
difference between tip velocities for different values of At in Figure 5.26. We will
assume that the tip position for the smallest value of At for which we have calculated
the position, Ar = 0.01, is the converged solution. We can then use the difference
between the converged position and the calculated position at other values of Ar to

find the convergence rate for our code:
T At=0.01 — Tat] = B (A1), (5.15)
We can multiply by a constant without affecting the slope a.
100 |7 as—0.01 — Tas] = 100" “B (100A1) .

Again we take the logarithm of both sides, we can try to find the slope of a linear
plot:
log (100 |ras—0.01 — 7a¢]) = clog (100A¢) + log (100' ) . (5.16)

Figure 5.27 shows the log-log plot at several different times. The average slope of our
lines « is equal to 2.032. Therefore, our code converges with second-order accuracy

in At.

5.3 Velocity Selection for a Needle Crystal

Ivantsov has shown that there is a steady-state solution to our problem where a
parabolic, needle-crystal will grow steadily into an undercooled melt at a speed v in
the direction of its axis of symmetry. The product of the speed v and tip radius p

can be found by the Ivantsov relation between the undercooling and velocity:

A = \/mpexp (p) erfc (\/p) - (5.17)
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Figure 5.27: Difference from converged tip position determined with anisotropy o =
0.45 and undercooling A = 0.60.
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The Peclet number p is defined by

p=pv/2k. (5.18)

This presents a family of solutions. For any tip radius p, the Ivantsov relation predicts
a unique tip velocity v. The solidification front for the Ivantsov solution is measured

in units of the tip radius to be

CIvantsov (.T) = —$2/2.

The derivation was summarized in Chapter 4 and is shown in greater detail by Langer
in [31]. The Ivantsov solution provides a continuous family of solutions for any un-
dercooling. In experiments, we see that a fixed velocity and tip radius are chosen
for any given undercooling. Addition of a Gibbs-Thomson correction to the interface
temperature based on surface tension and anisotropy seems to be necessary to select

a particular velocity for a given undercooling.

One convenient feature of the symmetric model is that the equation of motion for

an advancing needle crystal moving at a velocity v can be written in closed form [31]:

r t
A —dof (x,t,0) K (C (x,1)) = % (5.19)
where
t oo
1 _ o~ 2 t _ ! t, t _ tl 2
FIZ//_ 15eXp _‘X X| +(C(x’) C(X’ )+/U( )) dxldtl
(t—t)" 4k (t —t')

(5.20)

Langer suggests a change of variables
T=v(t—t)/p (5.21)

and assumes that x and ( (x, t) are measured in units of the tip radius p. This gives
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us the steady-state equation of motion used by Barbieri, Hong, and Langer [2] to look

at the problem of velocity selection.

A %f (x,1,0) K (¢ (%)) = pTa (7, %, € (x)), (5.22)

where
s (p, x, € (x)) =/Ooo/m e (‘ (=) Heb) b ) ) daar.
(5.23)

Here the position of the advancing front is given by ( (x) close to, but not necessarily
equal to, the Ivantsov solution. We can subtract from equation (5.22) for our general
problem with dy # 0 the same equation which we know must hold for the Ivantsov

solution with dy = 0.

—%f (x, ) K (¢ (%)) = pl2 (p, %, ¢ (x)) = L'z (P, X, Crvantsov (X)) - (5.24)

Let us introduce a stability parameter o = dy/ (pp):

—of (x,0) K (¢ (x)) =T (p,x,((x)) — 2 (p, X, (vantsov (X)) - (5.25)

Because our new stability parameter appears as the coefficient of the highest derivative
in the equation (in the equation for the curvature), Barbieri, Hong, and Langer [2]
point out that we have reason to believe that solutions may only exist for specific
values of o. Therefore, (5.25) is a nonlinear eigenvalue equation which determines
the selection of specific values of o. In an attempt to find values for o, we will linearize

(5.25) in terms of the deviation of the interface shape from the Ivantsov parabola:

CO (X) = C (X) - Clvantsov (X) - (526)
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The result, in the limit of small Peclet number, is

(5.27)

L P Bow dg (14 /°° (@+2) (G (@) - G@)
T da? 1422de 2nf (z,0) ) o (x — ') (1+(x+x’)2/4) .

Langer [31] suggests that we eliminate the first derivative on the right-hand side by

writing:

3/4

o= 142")"Z(z). (5.28)

This gives a linear and inhomogeneous integro-differential equation

o _ Pz 142" 1+ /°° (z+2) (@) =6 @)
(1 + 22)%/* dz?>  f(z,c) 2nf(z,0) oo (=) (1 + (z + 2)° /ét) )
5.29

Here P denotes the Cauchy principal value of the integral. For the existence of
a nontrivial solution, we need the function on the left-hand side of (5.29) to be
orthogonal to the zero eigenvector Z (x) of the adjoint of the operator on the right-

hand side of the same equation [37].

/ ﬁd ~0. (530
—0o0 +x
Let us call this integral O:

[ 7 (x;0,q)

The WKB method is used by many people [2], [31], [37] to obtain Z (z;0,a) and

O (o, ) can then be found to behave for small o and « as

o

© (0, @) ~ exp (=C/\/o) cos (g 00&7/4) , (5.32)

where 0y is a constant of order unity. We are interested in solutions where © (o, o) ~

0:

oo/t

~1+2n. (5.33)
g
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oo’/

m ~ 0 (5.34)
Linear stability analysis around these solutions shows that the largest value of o
satisfying © (0,) ~ 0 identifies the dynamically selected needle crystal. The in-
finitely many smaller o’s describe unstable solutions of little significance. This selects
a particular stability parameter

o ~ apal*, (5.35)

oo should be of order unity [31]. Substituting o = dy/ (pp) and p = pv/2k, gives us a

relationship between the tip radius, velocity, and coefficient of anisotropy:

do2
pPv ~ Q2R (=114, (5.36)
0o

Figure 5.28 shows the results of runs at separate values of undercooling. For a fixed
value of undercooling, we can find the velocity v and tip radius p. We expect p?v to

~7/%. We expect each line in Figure 5.29 corresponding to a fixed value of

scale as «
undercooling to have a slope of approximately —7/4. Our average slope of —1.72 is
consistent with our relationship (5.36). We expect our curves to be independent of
undercooling, which they obviously are not. However, as the undercooling decreases
the lines do converge. It may be necessary to explore the behaviour of p?v vs « at
higher values of undercooling.

Additionally, in the limit of small Peclet number, A ~ /mp. Therefore, for a

constant anisotropy, we also have a relationship between velocity and undercooling

after the substitutions into (5.35) of o = dy/ (pp) , p = 2kp/v =, and p = A?/m:

2/60'0 7/4 A4

Figure 5.30 shows the results of runs at separate values of anisotropy. For a fixed
value of anisotropy, we can find the velocity v. We expect velocity to scale as A%.
We expect each line in Figure 5.31 corresponding to a value of a fixed undercooling

to have a slope of approximately 4. Our average slope of 4.06 is consistent with our
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Figure 5.28: Plot of (tip velocity) x (tip radius)? vs. anisotropy for various under-
coolings.
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Figure 5.29: Plot of (tip velocity) x (tip radius)? vs. anisotropy for various under-
coolings.
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Figure 5.30: Plot of tip velocity vs. undercooling for various values of anisotropy.
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Figure 5.31: Plot of tip velocity vs. undercooling for various values of anisotropy.
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Figure 5.32: Plot of tip velocity vs. anisotropy for various values of undercooling.

relationship (5.37).

Figure 5.32 shows the results of runs at separate values of undercooling. For a fixed
value of undercooling, we can find the velocity v. We expect velocity to scale as a’/%.
We expect each line in Figure 5.33 corresponding to a value of a fixed undercooling
to have a slope of approximately 1.75. Our average slope of 1.73 is consistent with

this relationship (5.37).

LaCombe, Koss, and Glicksman [15] observed the growth of pivalic acid (PVA)
dendrites in microgravity at six different undercoolings in the range of 0.13K to
1.25K. Estimates for anisotropy were not given. The data presented was obtained
at 0.41K and it shows that the tip does not approach a truly constant velocity.
The non-steady-state velocities observed suggest that there may be features of the
process that are not well described by current theory. However, the authors note that

thermal interactions between dendrites and neighboring tips or container walls may
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Figure 5.33: Plot of tip velocity vs. anisotropy for various values of undercooling.
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account for differences between the observed velocity and the velocity predicted for a
dendrite with the thermal boundary conditions set at infinity. At low undercoolings,
the diffusion length is high and may compound these problems.

By converting to dimensionless quantities using Equation 2.4, the range of ex-
perimental undercoolings is approximately equal to the range 0.01 to 0.14 in our
dimensionless undercooling, A. We cannot compare the tip velocities we calculated
to those that they observed because the experiments do not achieve a constant tip
velocity. Our calculations were also run at much higher values for A in the range
of 0.4 to 0.8. A detailed comparison between the time dependent data at 0.41K or

approximately A = 0.05 is a subject for future work.
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Chapter 6 Numerical Algorithm for the

2-D nonsymmetric Case

6.1 Two-Sided Case

The numerical method for the nonsymmetric case is nearly identical to that for the
symmetric case, though it now needs to be done for both of the integral equations in
(2.33) and (2.34) separately. Recall from (2.33) and (2.34) that we have the following

coupled set of integral equations.

%A - %dof (5.8) K (5, ) (6.1)

[ s () G (K¢ (5.0 o) aV”
Vs(to)
t
+ / / ug (x',t") Gs (X', t; (s, 1) ,t") (v':n') ds'dt’
to JS(t)
t
ss [ [ G (¢ (5,0).8) (Tus (. 2) )
to S(t’)

t
~ kg / / us (X, 1) (V'Gs (X', 1:C (5,8) ') -n') ds'dl.
to S(t’)

SA = Sdof (s.0) K (5,1) (6.2)

+ / up (X', 10) Gy, (%, 8: ¢ (5,1) , 1) AV
VL(to)
t
- / / up (<, ) Gy (%, £ C (5,2) , #) (v'-n') ds'd’
to JS(t)
t
L / G (X 4:C (5,4) ) (V'ug, (', ) -n') ds'dt
to JS(t)

t
+ry / / wp (<, 1) (VG (x4 (s,1) ) -n') ds'd’.
to JS(t)
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These equations are now coupled by the conditions on the interface dictating the

conservation of heat at the interface:
v -n=kgVug (s,t) -n -k Vur (s,t) - n. (6.3)

The pieces of the integral equations may be different, but the steps remain the same

and are summarized as follows:

1. Separate the problem into a part with a singularity and a part which
is smooth and satisfies the heat equation. This introduces an underlying
smooth temperature field @ (x, t1, t), which must be evaluated at all points
throughout the domain of the problem.

2. Approximate the remaining unknown integrals with the singularities
in terms of the interface position at the current time.

3. Calculate the interface position at the current time.

4. Update the underlying smooth temperature field using the diffusion
equation to advance to the next time step.

5. Compute the contribution of the time integral to the smooth tem-

perature distribution for the next time step.

6.1.1 Step 1: Separate into Singular and Smooth Parts

As in the symmetric case, there will be a discontinuity in the temperature field at the
interface due to the release of latent heat during solidification. However, the under-
lying temperature field will be smooth if no additional heat is released. Therefore,
we can separate our integral equations (6.1) and (6.2) into one component with a

singularity at the current time and one component which stops short of the current
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time and is smooth with derivatives of all orders.

of (s,1) K (s,1)

1,
2
+/ X t() Gs(X tC(St) to)dvl
V to)
—NAt
+/ / x',t)Gs (X', ;¢ (s,1), ") (v-n') ds'dt’
to S(t)

t
/ / (x',t)Gs (X', ;¢ (s,t), ") (V-n') ds'dt’
t—NAt S S()

t—NAt
/ G (1 C (5,8) ,#) (V'ug (x, ') -n') ds'd’
S(#)

+

+
X
)

Gs (X', ;¢ (s,1),t') (V'ug (x', ') -n') ds'dt’

+
X
)

\\

t—NAt JS(#)

tm/g(t, (', 1) (VG (X, ;¢ (s,1) , ) -n') ds'd’

X
%)

«\\

— K

NAt/St' x',t") (V'Gs (x',t;¢ (s,t),t') -n') ds'dt’.

1
“A =

1
—d

2 2
)
Va(

t—NAt
/ / () Gy (', 1:C (5,1) ) (v'-n') ds'dl’
S(t")

of (5,1) K (s,1)
ur, (%', t0) G (x',t; ¢ (s,t) , o) dV’
to)

/tm [ 10 ) GOt (5,0, 0) (')

)
t—NAt
. / G (X, ¢ (5,4) ') (V'ug, (', ) -n') ds'd’
to S(t)
_natJsw)

t
. / G (X, ¢ (s,1) 1) (V'ug, (¢, ) -n') ds'd’
t
t—NAt
+r / () (VG (X, £:C (5,2) , #) n') ds'dt
S(t")
+ K

7
L/ NAt/St’ x', ") (V'Gy (X', t; (s,t) ,t') -n) ds'dt’.

(6.4)
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We are able to define two functions (one for the integral equation in the solid and
one for the integral equation in the liquid) which satisfy the heat equation and which

have finite derivatives of all orders at the interface.

T (%, 41,4) = / ws (¢, 10) Gs (%, £:C (5,1) o) V" (6.6)
Vs(to)
t—NAt
w0 s () G (i (s, 8), ) () i
St
t—NAt( )
+ kg / / G (X, £:C (5,1) ) (V'ug (', ) -n') ds'dt
to S(t)

t—NAt
— Kis/ / us (X', t") (V'Gs (X', t;¢ (s,t),t') -n') ds'dt’.
to S(t’)

Ty (%, 1, 1) + / up, (' 10) Gy (X', C (5.,) 1) V' 6.7)

Vi.(to)

t—NAt

/ / () Gy (<, 1:C (5,4) ,#) (v'-n') d'd’

tl
t—NAt
. / / G (¢, 1:C (5,8), ') (V'us, (5, ) -n') ds'd’

to t’

t—NAt
+/~zL/ /S(tl (x",t") (V'GL (%', ;¢ (s,t),t') -n') ds'dt.

Because we can calculate ug (x, t1,t) and @y, (x,¢1,t) throughout our domain, the
integral equations (6.1) and (6.2) have each been reduced to having only three un-
known integrals which are over a much smaller range. Unfortunately, we do not

reduce this to one unknown integral as in the symmetric case. Here instead we have,

lA _ —do F( ) K (5,8) + s (C (5,1) £ — NALT) (6.8)
/ / (X', ) Gs (x,1:C (5, 1) #) (v'-n) ds'dl!
t—NAt Js@)
+ ks /t n /S | O G C(5,0,0) (T () ) !

HS/ / (', 1) (V'Gs (x4 (s,1) , ) -n') ds'd’.
NAt J st
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1 1
EA: §d0f (Sat)K(S:t)—{_ﬂL (C (Sat)at_NAtat) (69)
t
_ / / up, (<, 1) Gy (X1 C (5, 8) ) (v'n) ds'de
t-NAE S S
t
. / / G (X1 C (5.8) ) (V'ug, (X', ) -n') ds'dl’
—Nae s

t
. / / ug, (< 2) (V'Gy, (4 C (s, 1), ) -n') ds'dl.
t—NatJs@)

6.1.2 Step 2: Approximate the Singular Integrals

In order to find the interface position from our integral equation, we need to be able to
numerically compute the remaining memory integrals, those holding information from
time ¢t — NAt to t. There are several memory integrals involved in the nonsymmetric
case. If we know the interface position at previous time steps and an approximation
to the interface position at the current time, then we can find the integrals of interest.

We will define our integral equations (6.8) and (6.9) in terms of the unknown integrals:

SA = Sdof (5,1) K (s,1) + s (C (5,1) £ = NA 1 (6.10)
+QS (C(S’t)’t_NAt’t)
+RS (g(sat)at_NAtat)
~Ts(C(5,1),t — NALt).

SA = Sdof (5,1) K (5,1) + 11, (5,), £ = NA 1) (6.11)

— QL (C(s,t),t — NAt, 1)
— R, (¢ (s,t),t — NAt, t)
+ T (¢ (s,t),t — NAt, t)

where our unknown integrals are

t
Q(C(5,8),00,8) = /t /S NG EC 0, O ) adar. (612)
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t
R(C(s,t),t1,t) = K,/ / G (x',t;¢ (s,1),t') Vu (X', ') -n'ds'dt’. (6.13)
t1 S(t’)

t
T(C(s,t),t1,t) =k / / ug (X', ") VG (X, ;¢ (s, 1) , ') -n'ds'dt’. (6.14)
t1 S(t’)

Q (¢ (s,t),t1,t) is very similar to @ ({(s,t),t1,t) from the symmetric case. In
the symmetric case, the kernel is not multiplied by the temperature field on the
interface. However, we can assume that At is small enough such that for any ¢ in our
range, we can approximate u (x',t') by u (x',t). And the temperature field will only
need to be applied at specific points on the interface. Therefore, the evaluation of
Q@ (C (s,t),t1,t) from the symmetric case (3.41) can be evaluated in a similar fashion

in the nonsymmetric case.

BJ274A]‘C]'

-1 G [U’ (Sli t) (VI : nl)]s’:sj+1/2 exp ( 16nC’j,32 ) £ (BJ + QCJAS>
er e ——

Q=22 2 /7rC, 18+/C;

Jj=0 g=1

B=B4
(6.15)
B2—4A;C;
Izif:w [u(s',t) (v/ 'nl)]S’:Sj+1/2 P (&T’Jﬂ;) erf ( b )
—_— g |
2.2 2,/7xC; 4B+/kC; B=p
—rFg

We will next look at the integral R ({ (s,t),%1,t) (6.13). This integral is similar
to our integral () from Chapter 3. However, we are looking at the behavior of the
temperature field at the interface Vu (x',t') -n’ instead of the velocity of the interface

as in @ (3.25).

t
R(C(s,8) 10, 8) = & / / G, 4 (5,8) ) Vu (<, ) nlds'd!,  (6.16)
t Js@)
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where

x = ((s,t)coss, (6.17)
y = ((s,t)sins,
' =((s,t")cos s,
y' =((s',t)sins.
We define a function
F(z',y,t)=Vu(z,y,t')-n' (6.18)

We assume that if ¢ — ¢; is sufficiently small, that F' (2',y', ') can be approximated

over the range t' = [t1,t] by a polynomial.
Fy )~ Ry, )+ (' —t) (@ g, )+ (' =) B (2,9, 1) + ... (6.19)

For a first approximation, we will look only at on the first term in each series, though

the method could be extended by including additional terms:

t T B /) N2 2
R O(l)yat) (l‘ .']7) +(y—x) , ,
~ drr(t—t) 3 . 92

Make the change of variables g =1/ (t —t),

¥ [T Ryt (e —a) + @y —y)
R~ / / —— 277 Lexp | -f ds'dg. 6.21
1/(t—t1) J -7 4m 3 4K ( )

Change the order of integration:

N R CAVZ0Y S S P C kel Ut U :
RN/ /1 ep<ﬁ )dﬁds. (6.22)

—r dr /(t—t1) 5 4K

exp(—au)

(e e]
Using the exponential integral E; (z) = [

z/a

du, the integral over 5 can now be
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R~ /ﬂ By t) B, ((x — 122(:_(? )_ y')2> ds'. (6.23)

evaluated

A7

We notice the log singularity which is introduced by the exponential function, E.
To deal with this singularity, we will subtract a function with a similar singularity
which we are able to evaluate in closed form. We find this new function in the vicinity

of s =4

4 4k t—tl

FO(xay’t) " (x8+y5) (8_8)
T 4 /_ﬂEl( 4k (t — 1) )d

Fy (z,y,t) (" (s +95)" (s =)
L— /_WE1< 4j(t—t1) )ds'

We will now evaluate the new integral. This subtraction allows us to remove the log

R%/n FO (m/’y/’t)El ((.’L‘—x > (6.24)

singularity while providing a good approximation as t; — t.

I = /7‘( B, (($s + y3)2 (s — S')Q) ds'. (6.25)

4K (t — tl)

Define a function « (s).
(6.26)

The unknown integral becomes

™

I= /E1 (oz (s — s')2) ds'. (6.27)

Make the change of variables y = a (s — S')?,

as—m)? a(s+m)

I= / Ei () <_2\/1a_7> dy = ﬁ 7\%‘; dt d-y. (6.28)

as+m)? afs—m)
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Changing the order of integration a = a (s — 7)° and b = a (s +7)°,

1:55/ /mm+fi/mﬁ]

a

b
2 e” ooe -|
=2 b /_ v=b gy
NG /t dt+ ; \/_] J
b

o0

Izii/—ﬁ— /ﬁ+f/ﬁf/ﬁl

I:% /—dt— ozs—w/—dt+\F5+7r/ooeT ]

b

Our integral can be evaluated in closed form:

1= 2 [t (Va4 m) Tt (Vo )]

+ (r—s)E; (a(s—w)2)+(s+7r)E1 (a(s+7r)2).

Making the substitutions for the endpoints:

1:%/ \fdt—/ \/_dt—i—/ tt\/Edt—/ett\/adt}

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)
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So the integral of interest (6.13) can be evaluated by

™ ! _
R%/ FO($7yat)E1(($ .Z'

47

Fo(.’l,‘,y,i) " (xs+ys) (8_8) !
_747( /;WEI( 4I€(t—t1) )dS

2 x§+ys K;(t_tl
Fy(z,y,t) VEG—t) o a2+ (s— )
2 22 + 12 2\/k(t—t)
Fy (z,y,1t) ($§+y§)2 2
i (m—s) By (4/-6(?5—151) (3_7)>
Fy (2,9, 1) (o2 + 92 2
o (s+mE (4n(t—t1) (S+7T))

Next, we look at the integral T (( (s, t),t1,t) (6.14).

T(C(s,1) _ﬁ/t /s(t' () VG (X, £:C (5,4) , ¢) -n'ds'dl.

where

x = ((s,t)coss,
y = ((s,t)sins,
' = (S t")cos s,
y' = (S, t)sins

We define a function

H (', y,t)=u(,y,t).

(6.36)

(6.37)

(6.38)

(6.39)

We assume that if ¢ — ¢; is sufficiently small, that H (z',y’,t') can be approximated
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over the range t' = [t1,t] by a polynomial.

H(a',y',¢') ~ Ho (', t) + (t' — ) Hy (' y/,0) + (¢ = )" Ho (¢, ¢/, ) + ... (6.40)

For a first approximation, we will look only at on the first term in each series, though

the method could be extended by including additional terms:

t
zn/ Hy (z',y',t) VG («', ¢, t; z,y,t') -n'ds'dt’. (6.41)
t1 S(t')
vy dy 0 9 9
~ Hy (', - — — "dt’. 42
m/t/ 0(x,y,t)( aS,ax,-i—aS,ay,)Gdsdt (6.42)

The derivatives can be evaluated.

Hy (2,9, 1) | 2% (y — o) — ,(x—:r)] =) (e=)?
/ / 65 ad e w0 ds'dt’.  (6.43)
8k (t — t')°

Again make the change of variables § =1/ (t — t'),

T T Hy (2, yt 0z (4 — o) — 9 (x — ') Nt (e
/ / %8 o8 L= s (6.40)
81K
1/(t—t1)

Change the order of integration

2

e’ ™ dBds. (6.45)
8K
o 1/(i-t)

- /Ho(:z:yt)[as,(y—y') SS,(x—m)} 7 (=3 +(z—a")

The integral over S can be easily evaluated.

_p === 7%
woy) Heme )

(

- /HO(-T yt)[asl(y y) 3 (iC—.T)] 4I€€eﬂ ds'

o 81K (x—x’)2+(y—y’)2 v
1/(t—t1)

(6.46)

—T
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T:/Ho (@', y's 1) [65, W—y)— 5% (x—ft’)] o (_(x_x')2+ (y—y')2> "

27T[(:U—:E’) —|—(y—y)] 4k (t — t1)

-7

(6.47)

In (6.23), the term multiplying the exponential function was singular. This is not true

in this case, however, and [65’ y—y)— 2% (z—x )} / [(z - ')’ + (y — y')2] obtains
a finite value. There is still a problem regarding the exponential decay. Again we
subtract a function which we can evaluate in closed form from our integral which has

the same behavior as S’ approaches our interface position, s.

2r [(z — 2)° + (y — v)°]

T
H t sYss T Yslss 2 2 —')?
_ Ho@9,0) 2~ e /exp(_(xs+ys><s R

27 x2 + 1?2 4k (t —t1)

o / Hy (2", y', ) [as’ -v)— 2% (z— x’)] o (_(a) — )+ (y— y')2> L

—T

—T

4 HO (-fEa Y, t) TslYss — YsTss / exp (_ (xz + y?) (8 —)Sl)2> dSI.

27 x2 +y? 4k (t — 1y

We can evaluate the new integral in closed form where o = (22 + y?2) / [4k (t — t1)]:

J= / exp (— (= Iﬁyé)£$t5 5) ) ds' (6.49)

-

! [\/g erf (/a5 - S'))] Z

_ %\/g fexf (V@ (s — m)) — exf (va (s +1))]
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So our approximation for 7' ({ (s, t),t1,t) becomes

. /”Ho (@9, 1) [% (y—y) — 5% (
B or [(w — ) + (y — ¢

~
.
8

-7

27 x?2 +y?

-7

o HO (x,y,t) TslYss — YsTss / exp | — (33? + y?) (S - SI)2> dSI

TsYss — Ysss K - tl) m2 + y2
+ Hy(z,y,t erf — =5 _(s—m
@) Tt Iz ( -t 77

LslYss — YsTss K (t - tl) .IQ + y2
— H, t s erf s IS5 .
0@y ) = V@ S\ Tty T

6.1.3 Step 3: Find the Interface Position

We can now use Newton’s method to solve for the new interface position. We have
an equation describing the position of each point on the interface in both the solid

and liquid phases (6.10) and (6.11):

%A - %dof (s5,0) K (55, ) + s (C (35,1) . £ — NAE, 1) (6.51)
+ Qs (C(Sj,t),t—NAt,t)
+ Rg (C(Sj,t),t—NAt,t)
Ty (C(sy) ¢ — NALE),

SA = Sdof (s5,0) K (55,0) 700 (C (1) £ = NA ) (6.52)

—QL (C(Sj,t),t—NAt,t)
_RL(C(Sj’t)at_NAtat)

+TL(C(Sj,t),t—NAt,t).
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There will be an equation for each 5 = 0,...,1 — 1. In the nonsymmetric case, there
are many more unknowns to be found. Each equation depends on known quantities
such as the position of the interface at previous times and the physical parameters
of the system. And as in the symmetric case, the unknown values of the current in-
terface position (Xo, X1,..., X, ..., Xr—1, Y0, Yi,..., Y], ..., Y1) are also necessary
for evaluation. However, in the nonsymmetric case, we also need to know the value
of Vu - n at each point on the interface as approached from both the solid and lig-
uid. We can again rewrite the left-hand side of (3.46) and call it g;. We can write

equations (6.51) and (6.52) as a sum of known coefficients multiplied by our unknown

quantities.
-1
gj = Z a,-jX,- + BUY; + fVijVUS (5j7 t) . (653)
=0
-1
hj = Z Aij Xi + YiY; + Ty Vg (s4,1) - n.
i=0aij

These coefficients are quite complex, but can be found using the methods in the
previous section.

We will use the same prescriptions for point motion on the interface as we use in
the symmetric case. We will set the tangential velocity of the first point to zero.

v -t]___=0. (6.54)

S=—T

This equation (6.54) also depends only on the unknown values of the current inter-

face position (Xo, X1,...,X;,..., X1-1,Y,Y3,.... Y]

iy -, Y1) and known quantities
such as the position of the interface at previous times and the physical parameters
of the system. Similarly, we can write equation (6.54) as a sum of known coefficients
multiplied by our unknown quantities. We will call this new value hyg.

I-1

po = Z pioXi + VioYi. (6.55)

1=0
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These coefficients are determined by finding the tangential velocity of point ¢ in terms
of the current and previous interface positions.
The remaining equations are found by assuming that the points are equally spaced

along the interface.

arclen(¢ (s;,t), ¢ (sj41,t)) — arclen(( (so, ), { (s1,t)) = 0. (6.56)

We are comparing the arc length between point s; and its next neighbor with the arc
length between the first two points on the interface. There is an equation for each
j=1,...,1 —1, and each of these equations depends only on the unknown values of
the current interface position (Xo, X1,...,X;,..., X1, Y0, Y1,...,Y;, ..., Y1) and
known quantities such as the position of the interface at previous times and the
physical parameters of the system. We write the quantity on the left-hand side of
equation (6.56) as h;. Only the position of the current and previous interface should
be necessary to evaluate this expression:

I-1

Pj = Z,Uz'sz’ + vi;Y;. (6.57)

=0

Finally, our integral equation is coupled at the interface by the Stefan condition (2.7).

[V . Il] i — K)SV’U,S (Sj,t) -n — HLV’U,L (Sj,t) -n = 0. (658)

S§=S§

In the symmetric case, this was implicitly involved in the integral equation. However,
in the nonsymmetric case it must be directly applied while solving for the integral
equation. There will be an equation for each j = 0,...,I — 1. Each equation de-
pends only on known quantities and the unknown quantities previously described
(X;,Y;, Vug (sj,t) -n,Vuy (sj,t) -n). We can rewrite the left-hand side of (6.58) as
a sum of only known coefficients multiplied by our unknown quantities.

-1

q; = Z pini + O'in;' + Tijvu,g (Sj, t) -n+ wijVuL (Sj, t) n. (659)

1=0
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Although much larger and significantly more complex, our system may again be

approximated by a matrix equation.
Fx =0, (6.60)
where
X = [Xo X, Yo Y, VUo,solid .- VUI—l,solid, VUo,liquid e VUI—l,liquid]T-

(6.61)

coefficients for g

coefficients for g;_;

coefficients for Ay

coefficients for hr_;

coefficients for pg

coefficients for p;_;

coefficients for ¢q

coefficients for g;_;

We can now use Newton’s method to solve for the new interface position in the

same way that we did in the symmetric case in Section 3.1.3.

6.1.4 Step 4: Diffuse the Smooth Temperature Field

In Section 3.1.4, we discussed in detail how to diffuse the smooth temperature field.
Exactly the same process can be used for the nonsymmetric case, except in the non-

symmetric case there are two smooth temperature fields which require advancement
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using the diffusion equation. We advance each smooth temperature field separately

using the diffusion coefficient appropriate in each phase.

6.1.5 Step 5: Find the New Contribution

We need to advance our smooth temperature fields in both phases to the next time
step (6.6) and (6.7):
Us (x,t — NAt + At, t + At) = (6.62)

/ us (1) Gis (%', 15C (s,1) o) V"
Vs(to)
t—NAt
/ / (x',t) Gs (X', t;¢ (s,t), ") (v'-n') ds'dt’
to ("
t—NAt
+ ks / / Gs (.1 ¢ (5,4),#) (V'ug (') -n') ds'd’
tl
t—NAt
—Kig/ / (V'Gs (X', t;C (s,1) ,t') -n') ds'dt’
to (t’
—1)At
+ / / s (1) Gs (X1 C (5.2) ) (v'on') ds'd’
¢ S(#)

—NAt

NAt

(N-1)At
+ Kls/ / Gs (X', ;¢ (s,t),t) (V'us (X', t') -n') ds'dt’
t S(#)

t—(N—1)At
—ns/t /(t, V'Gs (X1 C (s,1) ) -n') ds'dt’,

—NAt

uy (x,t — NAL + At t+ At) = (6.63)



122
/ up (<, 1) Gr (%, £:C (5,2)  £0) V"
VL (to)
t—NAt
/ / (x',t") G (X', ;¢ (s,t),t") (V'-n') ds'dt’
S(#)

— KL /t NAt/S Gr (X', t;C(s,1), 1) (V'ug (X', ') ') ds'dt’
/t NAt/ ) (V'GL (%', ;¢ (s, 1) ,t') m') ds'dt’

()

/ / () G, (X, 1€ (5,1) ) (v'n') ds'd’
t—NAt S(t

t—(N—1)At
— KL / Gr (x',t;¢ (s,t),t) (V'uy (x',t') -n') ds'dt’
¢

_NAt S(t)

n

t—(N—1)At
+ry / / up (<, ) (VG (5, £:C (s,1) , ) -n') ds'd’.
¢ S(#)

—NAt

The value of the underlying temperature field from time ¢ diffused one time step to
t + At was found in the previous section (Section 6.1.4) and gave us the contribution
corresponding to the first four integrals in each of the equations (6.62) and (6.63).
Next we need to find the new contribution to the underlying temperature fields
which correspond to the final three integrals in each of the equations (6.62) and (6.63).
These additional integrals are actually our familiar functions from Section 6.1.2:
Q (x,t — (N — 1) At,t — NAt) in the solid and liquid, R (x,t — (N — 1) At,t — NAt)
in the solid and liquid, and 7T (x,t — (N — 1) At,t — NAt) in the solid and liquid.
To complete Tg (x,t — NAt + At,t + At) and Ty, (x,t — NAt + At,t + At) over the
entire domain, these integrals need to be evaluated at each point in the domain
for both the solid and liquid temperature fields. We have shown in great detail
the evaluation of these integrals previously and that evaluation can now conve-
niently be used again to find the newest pieces of ug (x,t — NAt + At,t + At) and
ur, (x,t — NAt + At,t + At). However, @), R, and T are very complicated and com-
putationally intensive functions to evaluate, and because they must be evaluated at
every point in the domain twice (once for the solid temperature field and once for the
liquid), this becomes the most costly step in the numerical method. However, it does

maintain a constant operation count between time steps and does not grow as time
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progresses as a direct integral equation solver would.
Because each step also satisfies the heat equation, we can continue to step the

method forward in this manner.

6.2 One-Sided Model

The numerical model could also be applied to a one-sided model. In a one-sided
model, no diffusion occurs in the solid phase. Setting kg = 0 throughout Section 6.1
significantly reduces the amount of work that is required. However, the numerical
method remains unchanged.

Brattkus and Meiron [4] were able to use the one-sided, one-dimensional model to
simulate the rapid directional solidification of a binary alloy. The controlling factor
for growth in the solidification of metal alloys is the distribution of the solute which
is dissolved in the liquid. Mass diffusion in the limiting mechanism. For an alloy
being directionally solidified at a pulling speed of V' with a temperature gradient G,

the diffusion equation becomes

oC 0?C oC

where C' is the concentration of the solute and D is its diffusivity. Additional bound-

ary conditions are given by

DZ= =v(k=1)C, (6.65)

where k is equal to the ratio of concentration across the interface and v is the velocity

of the interface, which is given by

_ v 9%
v=V+ o (6.66)

Also the temperature of the front 77 is fixed by

Tr = Ty + mC + pgv, (6.67)
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where m is the slope of the liquidus, 1/ug is a characteristic velocity representing
nonequilibrium attachment kinetics, and T3, is the melting temperature. Although
the model is quite complicated, it can be represented by an integral equation which
resembles the one that we have dealt with in this thesis. Their integral equation at

the interface ¢ (¢) becomes

t 66‘ Y
5u© = [uie) gy (6:69
K 6CI ! kE’ (1 - k) A gt !
+ / uo ()G (¢, 1 #,0) 2, (6.69)
where )
. ,_;X _(z—z’—i—t—t')
G (z,t;2,t") = 47T(t—t’)ep[ =) ] (6.70)

and kg is the equilibrium value of k. A relaxation oscillatory instability in the steadily
moving front discovered and discussed by Coriell and Sekerka [13] and Merchant and

Davis [36] is confirmed by the numerical results.
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Chapter 7 Summary and Ideas for
Future Work

We implemented a numerical algorithm for the symmetric case in two dimensions.
The results obtained agreed well with microscopic solvability theory as well as the
similarity solution for the expanding circle case. An extension of the numerical was
also derived for the nonsymmetric case.

Additionally, a stability analysis was done for the Ivantsov solution showing in-
creasingly oscillatory behavior for the interface with increasing eigenvalues.

Obviously, an implementation of the two-dimensional, nonsymmetric numerical
method would be the next logical step to pursue in continuance of the numerical
algorithm. The numerical method would require more time and computing power
than was required for the symmetric method, but the algorithm has been developed
and should be fairly straightforward to implement.

Additionally, there is nothing in the algorithm which prevents extension of this
method to three dimensions. Extending either the symmetric or nonsymmetric cases
to three dimensions would be possible. Also noise could be added to stimulate the

growth of side branches.
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