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ABSTRACT

The two-pulse stimulated radiation of dense
(lOg/cm3 < ne =< ldt&cm3) nonuniform neon and argon afterglow plasma
columns longitudinally immersed in a magnetic field isrstudied. The
magnetic field is very homogeneous over the plasma volume (AB/B ~ .01%).
If the S-band microwave pulses'center frequency is such that they
resonantly excite a narrow band of plasma upper hybrid oscillations
close to the maximum upper hybrid frequency of the column, strong two-
pulse echoes are observed. This new echo process is called the upper
hybrid echo. The echo spectrum, echo power and echo width were studied
as a function of the pulse peak power P, pulse separation 1 , relative
density (wpo/w)g, and relative cyclotron frequency (wc/m) . The complex
but systematic variations of the echo properties as a function of the
above-mentioned parameters are found to be in qualitative agreement with
those predicted by a theory of Gould and Blum based upon a simple
nonuniform unidimensional cold plasma slab model. The possible effects
of electron neutral and electron ion collisions not retained in the
theoretical model are discussed.

The existence of a new type of cyclotron echo, different from
that of Hill and Kaplan and not predicted by the Blum and Gould model
is documented. It is believed to be also of a collective effect nature
and can probably be described in terms of a theory retaining some hot

plasma effects.
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Ls INTRODUCTION

1.1 Background of the Problem

The state of experimental research in plasma physics has tre-
mendously improved over the last twenty years. This progress is
usually attributed to a remarkable development of microwave devices
following the discovery and equnsion of radar techniques during the
second world war. Because of the new instrumentation, old problems
such as the Tonks-Dattner resonances found in a cylindrical plasma
column have been more thoroughly investigated and findlly understood
(1). It also became possible to verify important theoretical predic-
tions as to the complicated properties of a plasma in a magnetic field.
For instance, by monitoring the absorption by a plasma column of a
microwave continuous wave signal fed into the cavity surrounding it,
Buchsbaum and Hasegawa (2) showed that fine structure resonances found
near the electron cyclotron harmonics could be attributed to interfer-
ences of electrostatic waves propagating at right angle with the
magnetic fields. Furthermore, they were recognized to be identical
with those predicted by Bernstein (3) in the case of an infinite
uniform hot plasma in a magnetic field. The continuously advancing
technology also produced situations in which the experiment preceded
the analysis in the finding of new pﬁenom@na. Recently Hill and Kaplan
made an important discovery (4) also concerning plasmas in a magnetic
field which attracted much attention because of the theoretical prob-
lems brought about by the new effect. Their experiment was of a
transient nature. Fig. 1.1 presents the sequence of experimental

events. Gas, preferably argon or neon, introduced in a glass bottle
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Fig. 1.1 BSequence of pulses in Hill and Kaplan experiment
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immersed in a slightly inhomogeneous magnetic field (AB/B ~ .6% over

the plasma volume), was ionized by a brief, high power 21 MHz pulse.

At a time Ta after the end of the discharge, two short microwave

pulses (™ 10 ns)
100 ns were sent
at times t = nt
pulse, bursts of

called echoes or

separated by a time interval T of the order of
through waveguides to interact with the plasma. Then,
(n = 1,2,°*+) after the end of the second microwave
radiation were emitted by the plasma. They were

cyclotron echoes because the pulse center frequency

was chosen close

w
to the cyclotron frequency (55— was in the X-band

range of frequency).

Although

first seen in plasmas by Hill and Kaplan, two-pulse

echoes in gyroresonant systems were by no means a new phenomenon. They

seem to have been originally described by Hahn (5) in 1950 in a paper
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concerning studies of nuclear magnetic resonance in liquids. Since
then, numerous observations have been reported (6). The first experi-
ment involved nuclear spin resonances in solids and liquids. Then,

the resonant excitation of either noninteracting electron spins, as was

the case in sodium-ammonia solution and in donor enriched silicon, or
of electron spin waves present, }or instance, in a YIG (yttrium iron
garnet) disc, were used. Furthermore, since it was shown (T) that any
two-state quantum-mechanical system, spin or otherwise, can be cast in
the same theoretical mold, a recent experiment involving chromium elec-
tronic states having their degeneracy removed by the crystal inhomogene-
ous strains and which were excited by short intense light pulses from a
ruby laser, was tried and brought the discovery of a photon-echo.

The great variety of conditions ﬁnder which these two-pulse
echoes can be seen indicates the generality of the phenomenon. It can

be shown that two pulses will produce an echo in any material if, in

this material, the pulses resonantly excite an ensemble of nondegenerate

slightly nonlinear oscillators, the relaxation time of which is not too

short compared to the time interval between the exciting pulses. As a

result the purpose of echo studies varied depending on each experiment.
The first nuclear spin echo measurements had as an objective to measure
the relaxation of nuclear spins in solids and liquids. The experiments
using standing spin waves in the YIG disc helped to ascertain through
echo spectra measurement the density of modes at any particular fre-
quency. The photon echo gave some information as to the amount of

degeneracy introduced by the crystal inhomogeneous strains. In their
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experiment, Hill and Kaplan, using a low density plasma (ne < 109/cm3)
showed that the cyclotron echo comes from the independent electrons
gyrating around the magnetic field lines at the cyclotron frequency;
the nondegeneracy of the "oscillators" being provided by the magnetic
field inhomogeneities and the nonlinearity entering through the energy
dependent electron neutral atom'collision frequency. Furthermore,

they pointed out that the echo could be an interesting diagnostic tool

for electron collisions in plasmas.

a2 Objectives of the Experiment

Because of these interesting implications, an experiment similar
to that of Hill and Kaplan was undertaken with the differences that the
electron density was higher (109/cm3 < ne < lOll/cm3) and the magnetic
field was more homogeneous (AB/B ~ .01% over the plasma volume). The
first results displayed some fine but systematic discrepancies with the
independent electron theoretical approach. They showed that the
simple theoretical picture which explained the cyclotron echo could not
be carried over to this experiment. It became progressively clearer

that the "oscillators" were not the free electrons gyrating around the

magnetic field lines, but collective oscillations of clusters of elec-

trons in the plasma. The echoes in plasmas therefore showed a similar
evolution to that of the spin echoes. Indeed, the latter were first
discovered and successfully described in terms of independent spins.
Then echoes coming from standing magnetostatic spin waves were found
in a YIG disc. In nonuniform plasma columns immersed in a magnetic

field, Buchsbaum and Hasegawa demonstrated the existence of a band of
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closely spaced hot plasma normal modes extending between the cyclotron
frequency W and what is called the maximum upper hybrid frequency
wHo_ where wﬁo = wg * wio and where wpo is the plasma frequency
characteristic of the peak electron density on the axis of plasma
column. If a cold plasma picture is adopted, more appropriate to the
low electron temperature found in the afterglow used for echo experi-
ments, it can be shown that there exists similarly a continuum of
normal modes between the cyclotron and the maximum upper hybrid fre-
quency. This band of resonances in the plasma can be excited with a
cold plasma wave propagating across the magnetic field, named the
extraordinary wave. A new experiment was then designed to observe in
better conditions (the pulses' center frequency was lowered from X-band
to S-band) the echo arising from these collective modes of the plasma.

It resulted in the discovery (21) of an echo peaking not at the cyclo-

tron frequency but near the maximum upper hybrid freguency, hence the

name upper hybrid echo (see Fig. 1.2) . Simultaneously with the

experiment, Gould and Blum (18,20) developed a new collective effect
echo theory in terms of a simple nonuniform unidimensional cold plasma
slab. The objectives of the experiment were then to verify the
complex dependences of that new echo on the parameters of interest as
predicted by the new theory.

Chapter II is devoted to the plasma echo theories. The inde-
pendent particle theories are described because of their value for low
density plasma echoes and also for the general frame of understanding

they provide. Consequently, the new cold plasma model of Gould and
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Fig. 1.2 Photograph of upper hybrid echoes and their triggering

pulses for a 5 micron neon afterglow plasma. The first
echo reaches a maximum power when the ratio (w /w)= .915
with the maximum upper hybrid frequency defined by
(mc/w) = .91. The microwave pulses' peak power = 5W,
their center frequency = 3 GHz. (Horizontal scale:
50 nsec per division).

Blum is developed in some detail. The general case is treated first,

followed by the two special cases of the low pulse peak power regime

and high pulse peak power regime or saturation regime. This regime is

studied carefully because of the remarkable complexity of the eeho

functional relations to the parameters of interest predicted in that

case. It will offer the best possible test of the theory by comparison

with the experiment. In Chapter III some details on the instrumentation

are given. Special attention is focused on the pulse-producing
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electronics and microwave devices, on the magnetic field generation
and measurement, and on the receiver system. Some characteristics of
the afterglow plasma are presented as well as some techniques used to
measure echo properties.

Chapter IV is devoted to the experimental results. They will
be compared with those of the tﬂeory for each property of the echo.
Furthermore, when important, the effects of electron-neutral and ion
collisions, not included in the theory, are discussed. In that
chapter the last section describes a secondary peak of the echo spec-
trum at the ecyclotron fregquency not predicted by the cold plasma theory
but believed to be also caused by collective effects and therefore to
be different from the Hill and Kaplan cyclotron echo.

The results and conclusions are summarized in Chapter V and

some suggestions for further work are given.
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II. THEORY

2.1 Introduction

The theory of the plasma echo has been a moving field over the
last three years. And a few different points of view have emerged as
a consequence of the sometimes contradictory experimental results.
Rather than try to find logical reasons for their order of exposition
in this chapter, we have developed them in a chronological seguence.
Section 2.2 will be concentrated on the independent particle theories
and some early experimental results will be injected to illustrate the
difficulties encountered in the understanding of that superficially
simple phenomenon. In Section 2.3 the new collective-effects model
of Blum and Gould will be exposed in some detail. Influence on the
echo power and echo width of the power of the exciting pulses will be

described and some experimental predictions will be made.

2.2 Independent Particle Theories

The discovery of Hill and Kaplan attracted a great deal of atten-
tion because of its phenomenologicsl similarity with the spin echo in
solids. It was of particular interest to plasma physicists to know
how different the physical mechanisms hiding behind the apparent
resemblance of the experiments really were. A number of workers con-
tributed to build a relatively simple picture where these differences

were pointed out and also how non-interacting electrons of a plasma

can give rise to an echo. In this paragraph a report of Gould (8) on
these theories will be closely followed. As did the other workers,

Gould started with a plasma consisting of fixed ions and non-
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interacting electrons so that one could consider the motion of one of
them in a static magnetic field and an oscillating electric field such
as those encountered in an echo experiment, and then come back and
consider the linear superposition of the motions of each of them.
Before entering into any detailgd calculations one can try to describe
what happens to the electron gas in an echo experiment. It is recalled
from the introduction that the plasma is in a relatively homogeneous
magnetic field (in most early experiments of the order of 1% over the
plasma volume). So before the first microwave pulse hits the plasma,
the electrons gyrate around the‘magnetic field lines with a frequency
of rotation called the electron cyclotron frequency wc = %? , and
with a Larmor radius characterized by the temperature of the electrons
and the intensity of the magnetic field. The first pulse of microwave
whose center freguency is close to the electron cyclotron freguency and
whose spectrum width is much larger percentage wise than the magnetic
field inhomogeneities will heat up the electrons and synchronize their
phases so that right at the end of the pulses they will all be in
phase, and will reradiate coherently part of the energy absorbed from
‘the electric field of the microwave pulse. However, because of the
weak inhomogeneity in the magnetic field, the electrons gyrate at
slightly different freguencies. They will then slowly dephase, causing
a rapid drop in the coherent radiation emitted. The observed radiation
rate of decrease should not be interpreted as a corresponding loss of

energy on the part of each electron, but simply that they have lost

their coherence. One recalls from classical electrodynamics that the
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intensity of radiation produced by N electrons goes as N2 if they
are in phase, but goes only as N if they are not. So the situation
before the second pulse is as follows. The electrons have kept most
of their energy acquired during the first pulse, but are out of phase.
By the excitation of the second microwave pulse, the electrons will
acquire a new amount of energy (equal to that given by the first pulse,
since the experimental pulses are chosen to be equal) and coherence
again. However, for the same reason the electrons wiil again lose
that coherence and the radiation coming from the ensemble of electrons
will drop to a very low level. Why, then, an echo after the second
pulse? The answer is evidently not given by the discussion above. It
fails because it was based on linear logic which would prediect that if
there is only an infinitesimal amount of radiation coming from the
plasma at a time t = 1 after the end of the first pulse, only an
infinitesimal amount of radiation can be expected at a time t =1
after the end of the second pulse. So the echo has to come from some
nonlinear process. However, the first analysis tried by Gould was com-
pletely linear. It was hoped that even though such an analysis would
not produce an echo, it would point out some particularities in the
electron trajectories at times t =1 , 21,*+*,nt after the end of
the second pulse and then it would be possible to guess at the effects
of possible nonlinearities. The motion of a single electron in a
magnetic and electric field can be written (neglecting the effects of

the spatial variations of E and B and of the r.f. magnetic field)
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V-w x¥V ==2E , w, =% {2.1)
Now ‘it is convenient to transform to a rotating reference frame of the
velocity space in which one of the rotating components of E is sta-
tionary. In this system the effect of the other rotating component may
be neglected, and the cyclotron frequency appears reduced by the .
frequency w of the r.f. electric field. Cyclotron resonance corres-—

ponds to a "difference cyclotron frequency" mé of zero and near

resonance to small wé . So one can write:
i = € ¥
&y = - E‘E_ 5 w' = -w {2.2)

Since we shall be concerned only with the components of velocity per-
pendicular to the static magnetic field (which lies along the axis of

rotation) it is also convenient to introduce a complex velocity repre-
v

sentation in which the real and imaginary parts of V are Vx and
V& respectively. So equation 2.2 can be written:
v \4 | 4
V' - iw V' = -SE (2.3)
G m
with
v
¥ = WL % 3V
X ¥
Bguation 2.3 can be solved using Laplace transform
3 1 t 3 Ll
v vV lwct 1wc(t-s) & v
Vi(t) = V'(0) e © J . (- £) E'(s) ds (2.4)

0

Now the gqguestion is to find how the electron velocity has been



=12~

perturbed by a short microwave pulse. Since the duration of the pulse
is very short and the homogeneity of the magnetic field high, the con-
dition métp << 1 1is certainly satisfied so that the velocity of one
electron at a time t = tp (end of one pulse) is:

v

' 3 v; = & A
\ (tp) = V(o) = =E t (2.5)

The effect of the electric field is then simply to translate the velo-
city vector by an amount proportional to the intensity and duration of
the pulse. If the electron has a cyclotron frequency slightly differ-
ent from the r.f. exciting field frequency w , the velocity vector
will rotate slowly about the axis with the frequency wé + Ore csn
then use this result to discuss the behavior of electrons which have a
distribution of cyclotron frequencies by virtue of their being located
in regions of slightly different magnetic fields. Fig. 2.1 displays
Gould's echo diagrams. They describe the behavior in the rotating
velocity space of electrons submitted to the two pulses of an echo
experiment. If we ignore the thermal velocities of the electrons in
comparison with the heating due to the first pulse, the velocity vector
of each particle is initially at the origin and is translated by an
amount Vi by the first applied pulse (Figure 2.la). Following the
first pulse, each velocity vector characteristic of one electron
rotates about the origin at a rate determined by the "difference
cyelotron frequency" wé of that electron, so that after a time all

these velocity vectors become distributed around a circle of radius

Vi (Figure 2.1b). One should bear in mind that vectors at B , for
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FPlig. 2.1 Gould's Diagrams
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example, consist of particles which drifted directly to B or encip-
cled the origin once, twice, or more, either clockwise or counter-
clockwise, to reach B . This dispersal represented by Figure 2.1b
shows a situation corresponding to a complete loss of coherence of the
electrons due to the inhomogeneity of the magnetic field. The second
microwave pulse (equal in strength to the first) translates each of
the velocity vectors by the same amount, giving Figure 2.lc. Follow-
ing the second pulse, each velocity vector rotates with its appropriate
rate and the circle in Figure 2.lc breaks into "many circles", since
particles at a given point on the circle have arrived there by rotating
at different rates. However, after a time exactly Tt , each vector
will have turned through the same angle as 1t did during the initial
interval 1t between the two pulses and all vectors which were together
at B in Figure 2.1c are together at B in Figure 2.le. Figure 2.le
corresponds to the time of the first echo and Figure 2.1f corresponds
to the time of the second echoj; Figure 2.1d shows intermediate times.
We see that at special times nt (measured from the second pulse),
velocity vectors which are otherwise distributed over the entire plane,
regroup. This regrouping in phase at special times is not sufficient
to produce '‘a macroscopic current in the plasma, since the sums of the
velocity vectors (in diagrams 2.le and 2.1f) are zero due to an exact
cancellation of positive and negative V; 's. However, this exact
cancellation at the special times nt will be spoiled by any kind of
possible nonlinearities. There seem to be two main classes of possible

nonlinearities for the cyclotron echo; one is the energy-dependent
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cyclotron frequency that Gould and Kegel investigated (9), and the
other the energy-dependent relaxation phenomena first introduced by
Gordon, Hill and Kaplan (10). A typical energy-dependent relaxation
phenomenon is the electron-neutral collision frequency which is a
strong function of the electron velocity in most gases (11). What type
of energy-dependent cyclotron f}equencies can play a role will be dis-
cussed later. Considering Figures 2.le and 2.1f, an energy-dependent
cyclotron frequency will spoil the symmetry of the figures with
respect to the Vi axis. An energy-dependent relaxation phenomenon
such as the energy-dependent electron-neutral collision frequency will
have the effect of selectively removing electrons (or their corres-
ponding velocity vectors) from Figures 2.le and 2.1f, depending on the
magnitude of their velocity. For instance, if the collision frequency
is a growing function of the velocity, many of the electrons in Figure
2.1le which should have occupied the point A at the time t = 1 will
experience a collision with a neutral before that time and then lose
their phase identification, and so cannot be at A at the time t=rT.
However, among the electrons which should be at point E at t =71 ,
very few of them will experience collisions, so that the cancellation
of negative and positive V; will again be spoiled. A characteristic,
then, of the cyclotron echo is that the nonlinearities are acting at
all times between the beginning of the first pulse and the time the
echoes appear. This is a main difference with the spin echo, because
one can show that the nonlinearity associated with this phenomenon

comes directly through the pulse excitation. That kind of nonlinear-

ity is called a nonlinear driving force. Coming back to cyclotron
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echoes, one can use the hints given by Figure 2.1 to derive a mathemati-
cal model. The macroscopic entity we are interested in is the current
present in the plasma. To know the current one needs the density of
electrons and their velocity. The velocity of an electron at a time

t after the second pulse is (using the same notation as in equation

2.5)

v ig 5
Vit) = (v, e Tav)) el? (2.6)
il 2
Vl is the velocity imparted by the first pulse and is equal to % Eltl
V2 is the velocity imparted by the second pulse and is equal to % E2t2

¢1 "is the rotation between the first and second pulses = mét

0] is the rotation after the second pulse = wét

Since the electrons have different cyclotron frequencies depend-
ing on their spatial locations, one can define a normalized electron
density G(wé) per increment of "difference cyclotron frequency" wé

so that the plasma current can be written

}'(t) = -Ne J do! G(w!) 3'(t) (2.7)
N is the number of electrons per cublic centimeter if, for example,
one is interested in the plasma current per cubic centimeter. To be
more general and also to introduce energy-dependent relaxation type of
nonlinearities, one can multiply the integrand of equation 2.7 by a
term giving the probability P(t) of no collision between the first

pulse and t
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P(t) e—v(td-T)

v
so that equation 2.7 can be written, using the notation J'(t) = J to

simplify:

ig) 6 _~v(t+1)

J = =Ne J G(wé) dw; [Vl e * V2] e” (2.8)

The energy-dependent gyrofreguency nonlinearity is present in the

phase. Assuming a weak dependence on V2, one has:

dw
¢ = [w (V7) -0l t = [mé+-a—v—g‘12]t
and
¢ [ M 21 (2.9)
= w' + —V 2.9
. c BV2

The energy-dependent relaxation can also be written, assuming again a

weak dependence on V2 5

(t+1) = [v + —"—;vel s 1) (2.10)

av

Now in these early theories the effect of the nonlinear terms in the
period of time between the two pulses is neglected, and one considers
their effect only starting from t = 0, corresponding to the end of
the second pulse. The approximation is certainly good when one consi-
ders the second or third echo, but seems questionable as far as the
first echo is concerned. However, one can show that the qualitative
aspect of the results is unchanged. Equations 2.9 and 2.10 will then

be written:
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ow o

g=[o +—=VI]t , @ =ul

, BV c

slpas] = v+ [y + -2 ¢

@] 2
aVv
Now
g .p 2 x
vV = Vl + V2 b 2V1V2 cos Ql

and from a well-known Bessel function identity

: +6d —ing
e—(u+18)cos Ql _ Z In(a-+i6) . o
with -
3v Bmc
o= 2oy vt ., B = = — SV V.4
3V2 Lr 3V2 &8
so that finally:
+co
o] = NeVl zm An(t) g(t -nt)
with
v, Ly, (t+1)+
A (t) = |(I . (0%ig) + vz-ln(a+18)e
Juw
il g (vi # vg) t
X e oV
and e
imét
- ' 1
g(t) J G(w!) e do,

-0

(2.11)

(2.12)

(2.13)

(Z.1d4)

(2.15)

(v5+v3) t]

(2.16)

(8.17)

An(t) represents an amplitude factor and g(t) represents the nor-

malized echo shape. One sees that the echo shape is simply the

Fourier transform of the distribution of cyclotron frequencies.

One
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should note that, apart from the assumptions mentioned, the plasma
current given by equation 2.15 has been derived in complete generality
as far as non linearities are concerned. BSo it is possible to make

a choice as to which one is preferred and then to draw some predictions
to be confirmed by the experimept. Kegel (12) showed that a possible
energy-dependent frequency type of nonlinearity could be the relativis-
tic mass effect. Other workers (13), however, pointed out that the
energy-dependent collision frequency type of nonlinearity is much

stronger when the energy of the electrons is of the order of 1 eV,
which is the energy the electrons are likely to acquire in a typical
echo experiment.

For some time the generally accepted picture was an independent
particle theory with the energy-dependent collision freguency as the
nonlinearity (10). In the first experiment that we tried, an extremely

i

homogeneous magnetic field (%?—z 10 ), at least ten times more homo-
geneous than was the case in the other experiments, was used. B8So it
was a startling surprise to find that the echo width was ten times
narrower than expected by equation 2.17. One recalls that G(wé) in
equation 2.17 is expected to be a direct measure of the magnetic field
inhomogeneity. Figure 2.2 presents this early experimental result. As
the figure makes clear, not only did the echo width appear much
narrower than expected, but it shows a systematic variation with the
time in the afterglow. The time in afterglow is the time, counted
from the end of the 21 MHz pulse creating the plasma at which the
echo experiment is done. It is then a measure of the electron density

at which the echo experiment is performed. As the density increases
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the echo gets narrower. As the pressure increases at a fixed time in
the afterglow, the echo gets narrower also. This reflects the fact
that if the pressure is increased at a fixed time in the afterglow the
electron density increases. The same behavior of the echo width was
observed in a cesium plasma by Wong et al (14). A systematic dependence
of the echo width on density was'found, a fact not at all predicted by
the model using an energy-dependent collision frequency. Gould and
Kegel (15) then proceeded to resuscitate the energy-dependent cyclotron
frequency model with a new idea. As shown by the calculation of Parker
(16) the radial density profile of a plasma contained in a cylindrical
glass column falls approximately as the Bessel function of order zero
froﬁ the axis of the column to a distance of about one Debye length
G A0 .
= O——ig) ) away from the wall and then drops rapidly to zero.

D
ne
The zone of plasma situated at one Debye length of the wall is called a

(A

sheath., Large static electric fields are present there as a result of
a steady state diffusion situation. Parker solved the problem for a
plasma not in a magnetic field, but it can be shown that gualitatively
the same type of static electric field exists. It will also be weak in
the center and large in the sheath region. One can take a one-
dimensional model to write the equation of motion of an electron in
such a configuration of fields. The static electric field will be

written E = E(y); the equation of motion of one electron will then be:
G 2 q g &
Sy(y) + w, sy(y) + 2 Bly+éy) = 0 (2.18)

where &y 1is the displacement of one electron from its equilibrium
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position y . Now it is possible to expand E(y) around the position
of equilibrium of the electron
= 3

2 E"‘(y) Sy T+ sen

E(y+6y) = E(y) + E'(y) &y + %—,— E"(y) sy 31

(2.19)

‘

Substitution of equation 2.19 into equation 2.18 gives:

s 1] l m 3 =
Sy(y) + (“’i +1E(y) &y +%% E"(y) 6y+-3—79n' E"(y)sy” =-2 E(y)
(2.20)

Equation 2.20 is the eguation of an anharmonic oscillator, meaning that
its frequency of oscillation is energy-dependent. Through the term
%'E'(y) the electron gyrofrequencies are seen to depend on the density,

ak' (y) 2 oy ! , .
i e v w p(y) explaining nicely why the echo width is depen-

since
dent on density. Eo for a while this new model seemed to hold some
serious promise. However, if one investigates the strength of the non-
linearity and compares it with the energy-dependent collision frequency,
it is found that only the electrons in the Sheath experience a nonline-
arity equivalent to that due to the collision frequency. Taking into
account the small quantity of electrons in the sheath, the echo com-
puted was about two orders of magnitude smaller in the new model than
in the collision-frequency type of nonlinearity. The contradictory
nature of the experimental and theoretical results brought some under-
standable confusion and the realization that something was basically
wrong in the independent particle theories. One must emphasize,

however, that they did serve a useful purpose, shedding some light on

what conditions are necessary to obtain an echo from a plasma, or for
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that matter, from any physical system. In other words, this system
must possess:

a) An ensemble of oscillators with a distribution of natural
frequencies, which interact with external forces;

b) Sufficiently long relaxation times to permit observation;

¢) One of a variety of nonlinear effects to "Spoil cancella—

tion":

Energy-dependent driving force

2. Energy-dependent natural fregquency; anharmonic oscilla-

tors

3. Energy-dependent relaxation phenomena.
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2.3 Collective Effects Model: Echoes from a Cold Nonuniform

Magnetoplasma

2.3.1 General Case

The single particle theories considered the independent electrons
to be the oscillators required for an echo. This implied that when the
plasma interacted with an external RF signal, each electron acted
independently. Actually, numerous experiments have shown that a
cylindrical nonuniform plasma column in a magnetic field such as we
used, exhibits a very complex collection of resonances when excited
with a continuous wave signal whose frequency is changed. Among those
most successfully explained are the Buchsbaum-Hasegawa resonances (25)
caused by standing electrostatic waves in the dense core of the plasma,
or the corresponding under-dense modes of Schmitt, Meltz and Freyheit
(26) excited in the low density area of the plasma. Both of these
phenomena are described in terms of electrostatic waves caused by
coherent density fluctuations which propagate through the plasma at a
right angle to the magnetic field. In these two cases the collective
oscillations are seen to dominate the plasma reaction to the excitation
of an external signal. As a rule of thumb, in fact, one can expect
that the collective effects of the plasma will prevail as long as the
plasma freguency wp/?w is not too small compared to the cyclotron
frequency wC/Eﬂ and signal frequency w/2m .

The Buchsbaum-Hasegawa resonances are most easily observed when
an active discharge is used, thus requiring a .'"hot" plasma theory. Our

experiment, on the contrary, is done in a late afterglow plasma. The
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electrons can then be assumed to be at room temperature so that an
easier cold plasma theory is expected to suffice. Indeed, it is known
that a cold plasma can support two types of waves across the magnetic
field; the ordinary wave and the extraordinary wave. Considering for
the sake of simplicity a uniform, unidimensional slab of plasma, one
can show that the latter type of wave will induce an electrostatic
resonance at what is called the upper hybrid resonance, wi
mg = mi + wi , Where wc/EH is the cyclotron frequency and wp/2ﬂ

is the plasma freguency. The idea, then, that these collective
oscillations in the case of a relatively high electron density should
play a role in the echo formation had been present for some time, but
it was difficult to see how a new theory could be developed. Herrmann
and Whittmer (17) were the first to suggest the existence of an echo
associated with the upper hybrid resonance. Later Gould and Blum (18),
Wong and Judd (19) developed that idea. The former showed that a slab
of cold, collisionless plasma with a nonuniform density profile had
all the necessary properties for the formation of an echo. In this
section the theory of Gould and Blum, and new developments of the
theory by Blum (20) will be presented for comparison with the experi-
mental results obtained by the author. For an easier analysis of the
nonuniform plasma slab, see Fig. 2.3, one can approximate it by an
ensemble of thin space charge sheets each carrying a slightly differ-
ent electron density and spaced closely enough to give a "smooth"

variation of density between the center of the slab and its edge. If

the plasma slab is excited by some signal, part or all of the space
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2 2
+d

ufms)

Mg 25 3« The model's nonuniform plasma slab

charge sheets will be excited and will oscillate at their own upper
hybrid frequencies. In other words, each sheet is an oscillator and,
depending on their location in the slab, they can have resonant fre-
guencies ranging from the cyclotron frequency--if the sheet is

located at the edge of the slab--to the maximum upper hybrid frequency

& (wz " w2 )1/2
e po

mum plasma frequency in the center of the slab.) Then even though the

w= W at its center. (wpo corresponds to the maxi-

Ho
magnetic field is very uniform, the spread of the oscillator fregquen-
cies could be very wide if the plasma frequency is high enough; even
comparable to or larger than the exciting pulse's spectrum (see Fig.
2.4). In the independent particle theories the spectrum of the pulse
was always assumed to be much wider than the spectrum of the oscillators.

This hypothesis will evidently not be adequate here. After the first
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pulse, the sheets will then oscillate and, because of the different
upper hybrid fregquencies, slowly dephase in a manner guite similar to
the independent electrons as seen in Section 2.2. It is intuitively
fel£, in fact, that when the electron density is small enough the
independent particle theory should be a good approximation. A possible
criterion (21) to fix a density‘limiting the zones of applicability of

the two theories would be:

2 2,1/2
(wHo - wc)

= —= (2.21)

where ch/wc represents the inhomogeneity of the magnetic field and
2 2\1/2 ' .

(wHo - wc) /wc represents the spread of upper hybrid frequencies due

to the nonuniformity of the electron density. In our experiment this

fixes the density limit to lOBel/cmB. When compared to the usual

11 el/cm3, this criterion reinforces

experimental values of 109 to 10
the necessity of a collective effect theory. BSo far the model of Blum
and Gould has the necessary linear property for an echo. To see where

the nonlinearity comes from, a Lagrangian formulation of the equation

of motion of a sheet perturbed by an external field Eext is used:

getse) + o 6x(x) + S E(x+6x) = 0 (2.22)

where &x(x) is the sheet displacement from the equilibrium position
x . E(x+8x) consists of the external field E_,4 =and the space charge

restoring force of the ions (assumed fixed) which may be expanded in a

Taylor series:
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e _e Bty 2! 2 2u 3 )
e E(x+ 6x) it wp(x) X + W (6x)°/21 + W (6x)>/3!+ (2.23)

Substituting 2.23 into 2.22:

wi'(x) Sx(x) win(x) 6x2(x) X ...]

2

s 2 2
sx(x) + (mc +r.up(x)) Sx(%) I:l ! 21 (w +w2(x)) 3‘(“’2+w2(x))
& D (o] P

(2.24)

e
“ -~ 5P
Equation 2.2L4 is the equation of an anharmonic oscillator; the nonline-
arity required to have an echo comes then simply from the nonuniform
density profile of the slab. Equation 2.24 is that of the motion of
one sheet only; it is necessary to link its motion to some physically

measurable macroscopic quantity. A sheet displaced from its equilibrium

position x by 6éx will generate an electric field E(x,t) such that

E(x,t) = = 8x(x,t) py(x) (2.25)
o]

where pi(x) is the fixed ion density.
If all the sheets are considered, they will each generate some

electric field which will appear as a voltage V(t) across the slab:

+a +a
v(t) = - J E(x,t)dx = - —t- J 8x(x,t) p;(x) dx (2.26)
-8 -

This quantity V(t) or the square of it will be compared with the
experimentally observed plasma signals. The problem is now defined and

one can proceed to look for an approximate solution of 2.2h.
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However, before that is done some simplifications in 2.2L will be

necessary; first some simplification in writing

Sx(x,t)y = &%
2 2 _ 2
mc + mp(x) = 'mH
2n
w
D * @
3! m2
= =
-En = F(t) (2.27)
m ext

Second, the presence of two nonlinear terms will introduce some unnec-
essarily complicated equations. The term in 6x3 only will be kept
throughout the derivations and the results will be adjusted to take

into account the effect of the term in 6x2 so that 2.2l becomes:

Bse W? ex[1+8 5°] = Ft)

with B << 1 : (2.28)

Using standard small perturbation techniques (22) the time is redefined

2 I

0 = ut 5 "-‘"""'—d (62) = §6x

dae
where
w = w_ + Bw, *+ 82m * e i =
o 1. 2 2 o Yy
8x = 8x_ + Béx +826x L N (2.29)
o 1 2 :

Using the newly defined variable, equation 2.28 can be written
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1
w2 6x + wﬁ sx[1 + Bﬁxa] = F(gJ

or

Il 1]
(mH + Buy+ -..)2 (6x°+ 86x1+ ---)+m§[(6xo+ Baxl+ o |
# B(Gx(;+ Box, + 3 = S (2.30)

From equation 2.30 one gets different order differential equations by

equating the coefficient of Bo, Bl, 82, 98]

. 2 2 _ 8
zeroth order: Wy ﬁxo + wy Gxo = F(w) (2.31)
) I 3 2wy
first order: 6x) + le — P 6xo - —;; Gxo (2.32)

The zeroth and first order differential equations only will be used
here. This will represent a good approximation as long as B << 1 .
It can be shown that the solution of 2.31 using Fourier transform

is:

8
f sin(6 - @') F(%L) as’ (2.33)

o}
£
=

making a transformation of variable from © to t , equation 2.33

becomes
wt

§x = e sin w(t-t') F(t') at" (2.34)
wy I, \
If one is interested in the wvalue of 6xo for times at whiech F(t) has

become negligible, 2.34 can be written approximately as
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4o

6x = = J sin w(t-t') F(t') at' (2.35)
H -—o

which can be put in the form

Gxo = —EE-(fr(m) sin wt - fi(w) cos wt)
[\
H ’
where -
f(w) = J 1t p(t) at = £ (w) + if, (w) (2.36)

Equation 2.35 or 2.36 would constitute the solution of the problem if
w were known. To achieve that goal, the 6xo Just obtained will be
substituted into equation 2.32. This will produce "secular" terms

from 2.32 unless a condition on w is satisfied, giving the value of
w to first order (sufficient in this'case). Since Gxo is expressed
as a Tunction of the variable t , equation 2.32 must be transformed
also, giving

2w

= 5 ) 5 3 L -
le + w le = - 0 axo - TH sxo (2.37)

Now using equation 2.36 one has:

]

8x - w 6x
o o

[fr(w) sin wt - fi(m) cos mt]3

3 2

3
= 2g[fi(m) sin“wt - 3 sin“wt fi(w) cos wt fi(m)

+ 3 sin wt frc052wt ff(w) - c053wt ff(w)] (2.38)
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Among the terms of 2.38 only the terms in cos wt or sinwt will
give rise to solutions growing with time or "secular" terms. So,
gathering all the secular terms from 2.38 and from the other term of

the second member of 2.37, one gets:

Sum of secular terms = "

5
w [ . 3.3.3,.2 3 2. 3.3
- ;g‘{%ln wt(h £o® g frfi)4-cos wt (- A - fii}
H
WS |
+ 2ml ;g-[sin wt f - cos wt fi] _ (2.39)
H

It can be seen that the disappearance of the cos wt and sin wt

terms calls for the same condition on w = Wy + Bwl which is:

_ 3. 2 ;
w, = g;;(fr(wﬂ) + fi(mH)) (2.40)
which means that
_ . - 2 2
W= wy Bwl- Wy * BwH B(fr(wH)+ fi(mH) ) (2.41)

It is then possible to take the value of w®w and to substitute it into

equation 2.35:

mH+ Bwl
PO 1 S . ey ' 1
6xo(t) = 5 J sin(wH+ Bwl)(t t*) ®lt') at (2.42)
w
H —00
w, +B
i H . Y 1 T
or since Buw, << wy —% = = ol then equation 2.42 can be
H

written:
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w

+

i(w,+ Buw. )t -iw, t’

6x _(t) = 2 {% % J g ° F(t')dti}
H

or
i(w, + Bw, )t
6x0(t) = —%E'Im {% H & f*(wﬂi} (2.43)

.

where A

-imHt
£*(w) = J R F(t)dt
Equation 2.43 is the most general equation of the motion of one
plasma sheet in the first approximation analysis used, and subject to
the condition that it is good only for a time + for which F(t) has
become and stays negligible. Nothing has been said about the exciting
external field represented by F(t) to keep the analysis general. Now
F(t) will be made to represent an echo experiment. So F(t) will be
@

composed of two pulses F and F2 s one at t = -1 , the other at

t =0, so that

F(t) = F(t+1) + F(¢) (2.h4h)

To adapt 2.43 to this case:

= -1wHt
f*(wH) = J e (Fl(t4~1) + Fe(t))dt
+co
~iw (t'-1)
= fg(wH) + J e “H ' Fl(t')dt'

- 00

or.:



£ (wy) = £¥(oy, %(w,) (2.45)

At this point another simplifying assumption can be made by noting that
if the exciting pulses are symmetrical in the time domain with respect
to their "center line", fl(mH) and f2(mH) are real; then:

v

fi(wﬁ) = fl(wH) 5 f;(mH) = f2(wH) (2.46)

which means that equation 2.L45 becomes

iw,. T
(o) = £ lug) e o+ ry(uy) (2.47)

The next thing to calculate is w, from equation 2.40:

ifa
e i ($° 2
Wy = 8wH (fr (wH) + fi(wH)) (2.40)
but
~inT
f(mH) = fl(wH) e + f2(wH)
then fr(wH) = fl(wH) cos w,T + fg(mH)
fi(mH) = - sin w,T fl(mH)
which will give
_ 3 2 2 L
w, = ga; (fl + f, + 2 f,f, cos wt) (2.48)

Using equations 2.43, 2.47, 2.48 the eguation of motion of one plasma

sheet becomes:
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1 iwgT
6x°(t) = —:r-Im {}fl(mH) e + fz(wH)] e (2.49)

1(wH+ Amg)t}
H

_B

where Aw, = 3
8 Wy

2 2
5 (fl + f2 + 2f1f2 cos wrt)

Before going on and obtaining a more explicit echo formula, it is
interesting to note that with the method employed here there is a cor-
rection to the frequency from t =0 to t =1 which.is Aw2 and
which arises from the nonlinearity of the plasma sheet oscillation, but
there seems to be no corresponding correction between the times t = -7
to t =0 . This comes about because the solution developed here is
only correct for times after which F(t) becomes and stays negligible
which is evidently not the case between the two pulses. To correct
that difficulty one can consider what would happen if there were only

one pulse: the first pulse at t = -t . The plasma sheet motion can

then be obtained from the general equation 2.L43:

i(w + Aw. ) (t+1)
6x, (t) == In {fl(wH) ¢ + 1 } (2.50)

(1 pulse at t=-1) &

.
where A, = 5o Blfl(wﬂ)

|2
1 H

Then equation 2.49 can be corrected to read:

ilw,+ Aw )T i(w,+ Aw,)t
Gxo(t) = i—H- Im {[f w.)e 4 I fE(wH)] e & & } (2.51)
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Using a well known Bessel expansion, one can show that

i(3/4) =8 f f cos wt n=+w
e i =

12 i
I 1% (z) &7 (2.52)
n=-—w
where & _3._?_,
a h w f1f2
H
Then SxO(t) can be written
. idw. T ilw, (t-nt)+ ot]
- il B 1 H
Gxo(t) ;;-Inl{jg g [fl iJn+l(zt)e - feJn(zt)]e
(2.53)

oojw

- B 62 2
where e = = (fl + f2)

H
As in the independent particle theories the sum over n means that
6x°(t) will comprise the contribution of the first echo: n =1 ,
second echo: n = 2 and so on. (The negative values of n do not have
any physical meaning; they correspond to echoes which would appear
earlier than the exciting pulses). Since one is interested only in
one echo at a time, one can consider the equation of motion of the plasma
sheet for one value of n only; the displacement of the plasma sheet
created by the nth echo will then be:
W NS S {}n[f . o eiAwlT+ . (Zt)]ei[wH(t-nT)+Gt]:}
on Wy 1™ n+l 2'n
(2.54)
Calculating the imaginary part of the bracket gives a different result
n

depending on the evenness or oddness of n because of the term 1.

So n even:
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6x0n (t) = bn cos wH(t—n1)+ a, sin wH(t— nt) (2.55)
even even even
where
8, o (W2 {[-£.9 . (zt)sin(bw, 1 +0t)+ £.3 (zt)cos ot]]
even wH 1 n+l 1 2y
. (2.56)
and
N ok
bneven = —““;E"—' {[flJn+l(Zt)cos(Amlr-bGt)+ ngn(zt)51n ot]}
(2.57)
n odd:
62 (£) =1 cos w,_(t-nt)+ a sin w,(t-nt) (2.58)
Noaa "oaa B "oad A
where n-1
8 5 Gzl : {[-£,7 __ (2t) cos(a + 0t)- £,J (zt)sin 6t]}
N g ™ i w) T 59, (zt)sin
(2.59)
and n-1
b = {=2) - {-£.0  _(zt) sin(Aw, T +0t) + £.J (zt)cos ot]}
nodd wH 1 n+l i o 2 n RSl

(2.60)

Equations 2.55 to 2.60 describe the motion of one plasma sheet trig-

gered by the nth echo. To know the voltage across the slab generated

by this echo, one needs equation 2.26

+a *a
- - _ 2
Von(t) = c I Gxon(x,t) pi(x)dx = = J wp(x) Gxon(x,t)dx
-a —-a

Substituting the value of dxon(x,t) into equation 2.61

(2.61)
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+a

m 2
on(even( }m w2 J wp(x) [a sin wH(t—nT)+ b co8 wH(t—nT)]dx
(even (even
or -a o .
odd)

Equation 2.62 would be the most general equation for the voltage gen-

erated by the nth echo in the first approximation analysis used were it
not for the fact that equation 2.2k was solved only for the 5x3 type
of nonlinearity. It can be easily shown, however, that the only effect

of the 6x2 type of nonlinearity is to add another correcting term to

the frequency Wy s meaning that if one solves
& 2 2
Sx + wH¢5x[1 + adx + Béx"] = F(t) (2.63)
with o,
1 % b
a = -2- we (2.64)
H

instead of equation 2.28,then w takes the value:

2 .
_ 3B _ 5 9 ) 2
B =y +[8wH 12wy ) (2.65)

with the effect that in equations 2.55 to 2.62 2z in the argument of

the Bessel functions becomes:

(2.66)

8 Dbecomes

2
o = @L-2Zl 45D (2.67)
H
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Awl becomes:

b, = (5@ - 2 (2.68)
Equétion 2.62 with the corrections just mentioned represents the micro-
wave signal emitted by the nth echo. However, experimentally, using
erystal rectifiers, one Jjust measures the envelope of the microwave
signal so that some of the information given by equation 2.62 is super-
perfluous aﬁd it is clear that any possible resulting simplifications

of that equation will be extremely useful for its later numerical evalu-
ation. An "ideal case" of an equation of type 2.62 can be conceived to
show what kind of "theoretical crystal rectification" is possible. Let

us suppose that out of some related theoretical echo calculation comes

the voltage expression:

Wn(t) = J dw n(w)[cn(w) gsin w(t-nt)+ dn cos w(t-nt)] (2.69)

where it is assumed that:

n(w) cn(w) Flw - mo)

" cn and dn are not functions of time

Glw - wo) ((2.70)

n(w) dn(w)

and where F(w - mo) and G(w - wo} are symmetrical functions of w ,

centered at w = wo . Then one can write:

Wn(t) = J dw F(w—mo) sin w(t-nt)+ J dw G(w—mo) cos w(t-nt) (271

Letting w' = w - w, > one gets:
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Wn(t) = J dw' Flw') sin[(w'+ wo)(t—nT)]+J dw‘G(m')cos[(w'+w0)(t-nT)]
(2.72)
using the evenness of F(w') and G(w') and some trigonometric iden-

tities, equation 2.72 can be written

Wn(t) = g8in mo(t—nr) J dw' F(w') cos w'(t-nt)

+ cos mo(t-nr) J dw' G(w')ecos w'(t-nt) (2.73)

Calling: fdm' F(w') cos w'(t-nt) = C (t-n1)
. (2.74)
and fdw' G(w') cos w'(t-nT) = Dn(t-nt)
the -crystal detected output of that signal will be:
2 _ .2 2
[w (£)]|° = Cn(t—nT) + D (t-n1) (2.75)

When t = nt, corresponding to the peak of the "echo" in that simple

case, the detected output is:

W (n0)|% = ¢2(0) + p2(0)
where Cn(O) = f dw' Flw') = J do' n(w') cn(w') (2.76)
and Dn(O) = I dw' G(w') = I dw' n(w') dn(w')

and then, instead of evaluating equation 2.7l, one is left with two
simple integrals. To discuss the possibility of applying the same
"detection" technique to equation 2.62, one has to write that equation
with Wy instead of x as a variable. Using mi(x) = mio(l- (x/a)h)

then
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2
wo, = wo\1/L
H H
(xfa) = [~ (2:7T)
w
po
with o° = g+ we . The equivalent of equation 2.62 is:
Ho c po d q : '
w ‘
c
ma
Von(t) = ewe I N(wH) [ansin mH(t—nT)+ b_cos wH(t—nT)] dwy (2.78)
PO wy
with
(wi - we)wH
N(NH) = (2.79)

2 2., 2 \3/h
((wHo" wH)/wpo]

N(wH) should compare to n(w) from equation 2.69 in the ideal case.

0 In fact

this density of oscillators per increment AmH of upper hybrid fre-

The former is certainly not a symmetrical function of w

quencies starts at zero when wy = W, goes to « when Wy = wHo 5
and drops back to zero when L However, both a and b

o n n
(equation 2.56 to 2.60) contain the Fourier transform of the incident
pulses which are not only symmetrical about their center frequency
but have spectra so narrow that the density of oscillators does not
change much over the pulses' spectral widths, as long as the density
is not too low, see Fig. 2.4. The multiplication of the two types of
spectra is then going to be more or less symmetrical about the pulses'

center freguency. Another difficulty in applying the simplfications

of the "ideal case" to the present one comes from the fact that in
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equation 2.62 a  and b are functions of time (not the case for

sin sin
c, ~and dn) through Jn(zt), Jn+l(zt), COS(AmlT + 0t), cos(et)

However, their time dependence is very weak compared to that of

sin

COS(mH(t—nT)) since it is coming from the very small nonlinear fre-

quency shifts. In view of these arguments it was felt that the sim-
plification previously given colild be applied to equation 2.62.
Returning to the more familiar varisble x , the "theoretical detected

output" at t = nt due to the nth echo is then:

2 2 2
IVon (nt)[* = A7 + B (2.80)
evern even even
(Odd ) (Odd ) (odd )
+a
where An = = %- J w2(x) a_ . dx (2.81)
(even) - 2 (even)
odd odd
+a,
B = J Bo(x) B dx (2.82)
n e p n
(EVEI} ) _ (even )
odd - odd

It is interesting to note that in the "ideal case" considered before,
the nth echo had a symmetrical shape peaked at +t = nt . However, in
our case due to the time dependence of a and bn (as defined by

equations 2.56 to 2.60) and the asymmetry of the oscillators in the

upper hybrid frequency domain, the echo will probably not peak exactly
at t = nt , and also the echo shape in the time domain could be |
asymmetrical with respect to its peak. But it is the echo amplitude

at t = nt as defined by eguation 2.80 with the properly chosen
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density profile which is the quantity computed and compared with the
experimental echo signal amplitude. Finally, there are basic limita-
tions to this plasma sheet model which have not yet been exposed.
Because of the density nonuniformity, adjacent sheets of plasma which
started to move in phase after the exciting pulses, will slowly dephase
and eventually "collide", making a mathematical descriptién much more
difficult than the present one. The phenomenon of the collision of

the sheets is also called cross-over. Blum (20) showed that the theory,
because of that phenomenon, breaks down if 2zt , the argument of the
Bessel, sine and cosine functions,present in a, and bn . are too
large. For a fixed input power, peak density and pulse separation

thié happens most easily near the boundary of the plasma. In spite of
that basic limitation, the calculations were pursued and fortunately
showed that the central area of the slab is by far the most important
in the formation of the upper hybrid echo. The problem of the sheet

cross—-over was, therefore, not considered any further.

2.3.2 Special Cases: Low Input Power Echo Description and Large Input

Power Echo Description or Saturation Phenomena

Before any special case is studied it will be useful to express

the parameters =z, 6, Aw as functions of a general density profile

0
wi(x) so that they will be easily evaluated when the proper profile

is chosen.

First =z will be obtained from equations 2.66, 2.27, 2.6k
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. 1 2n_ 5 Opye
g = . [wp - (m =1 L. (2.83)
wh H
6 1is obtained from equations 2.67, 2.27, 2.64
we!
= L 2" 5 /p 2 2 2
e = [ =& (~=)%] (£5 + £3) (2.84)
16m§ p 3.7 wy LR

and Aw. from equations 2.68, 2.27, 2.64

i
27
12" o8 (2 2 (2.85)
K. = w - e s
* 16w§ p 3 by 3

2 2
o X d{w ) d@z
where wp and mP mean ———g- and —EE- respectively.

dx

Anticipating the experimental results, it is observed that the
density profile giving the closest agreement between theory and experi-

ment is the following one:

wg(x) o mlem(l'- (g)") (2.86)

No other attempt to justify the choice of that profile will be given,
because it was not possible in our experiment to measure it.

Low input power echo description. A considerable simplifica-

tion in the mathematical formulation of the echo will be obtained by

i Amlt 5 BT

will be << 1 . Then if this is the case, one can expand the Bessel

allowing the input power to be low which means that 8t

functions, sine and cosine expressions, in & and bn (equations
2.56 to 2.60) in series and retain only the first term. Another simpli-

fication can be achieved by eqguating fl and f2 since experimentally
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only eqgual pulses were used. In that case:
2!
1 o" 5% 2. o
1753 ld, < §{m BE; (2.87)
“H

Using equation 2.87 and the first term of the small argument Bessel

.

function expansion:

n
gz} & e (2.88)
g nl
it can be shown that for
n even:
/2 =
n " w
o, = (g 2 (2] A e o( ) (2.89)
p 3 w
w. 2 nl Buw H
H H
b = o(e™h) (2.90)
and
n odd:
a = 0(c™) (2.91)
n;l 2!!
"
b= ARl u2% BE2 B 4 o) (2.92)
2 mH2 n! Bw p H

As an example the signal due to the first echo at t = 1t when one uses

very low power can be computed:

2!
1 gt 5 Y52
b, = £34 [w - & (—=)7] (2.93)
l l6wh 3 (.I.)H
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So that the echo peak voltage is given by

+a m2(x) 3 2“ 5 i ' 2
Vo v [ 2 e o 5 B e (2.9%)
-8 H

Fig. 2.5a shows a numerical computation of the echo's peak power

2

. i . 2 2 L
VOl(T) by Blum as a function of (wc/w) with wp(x) = mpo(l— (xfa) )

The density was chosen so that the maximum upper hybrid frequency is
located at (mc/w) = .85. This figure presents an important result of
the cold plasma model. That is to say, the echo peaks at a frequency
very close to the maximum upper hybrid frequency. Fig. 2.5b is a
qualitative plot of the three fastest varying functions of

(x/a):wﬁ(x), f3(w ) and [m2"— E{we'/wH)g] present in equation 2.94

H p 3'p

which will help to understand the results of Fig. 2.5a. The horizontal
axis of Fig. 2.5a is labelled as a function of (wc/m) and that of

Fig. 2.5b as a function of (x/a) so that a clarification is needed.
(wc/w) and (x/a) are physically independent parameters. However,

through the local upper hybrid resonances the following mathematical

relation exists between them:

o =l e 20 - /)
w2
so that: mc/m = {1 - —2%-(1 - (x/a)h)llg (2.95)
w

Fig. 2.5c is a computation of equation 2.95 for the density correspond-
ing to Fig. 2.5a. Through Fig. 2.5c¢ one can then make a correlation
between Fig. 2.52 and 2.5b. For instance the maximum upper hybrid

frequency corresponds to (x/a) = 0 in Fig. 2.5b and (wc/w) = .85 in
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Fig. 2.5a. The cyclotron frequency which in Fig. 2.5a is characterized
by wc/w = 1.0, will be assigned to (x/a) = 1 in Fig. 2.5b. Now that
the relation between the two parameters is clear, one can look at Fig.
2.5b. The solid curve represents the first term: the density pro?ile
expressed by ms(x). The two other terms: f3(wH) and [min— %{gﬁde]

can be traced back to the frequeécy shift caused by the nonlinearity of
the model. The square bracketed term represented by the dashed line is
zero at the center of the slab and grows uniformly to the edge of it.
Depending on the center frequency of the pulses, the dotted line dis-
playing the f3(mH) term* can be anywhere between (x/a) = 0 and

(x/a) = 1.0. The multiplication of the three curves and the computation
of the area located under the function defined by this multiplication
will give the echo voltage. When the pﬁlses center frequency is changed
in the (x/a) domain, the f3(wH) term sweeps the slab between (x/a) = 0
to (x/a) = 1. One can see that the echo will first be zero because
the nonlinearity of the model is zero at the center of the slab, then
increases following the corresponding increase in the nonlinearity as
(x/a) grows, and finally drops back to zero when the faster varying
mi(x) takes over.

Before leaving the weak echo case, it is interesting to derive

the relation between the amplitude of the weak echo and the input power

¥
In Fig. 2.5b the f3(wH) term does not look symmetrical, because it is

drawn in the (x/a) domain instead of a frequency domain, see Fig. 2.5c.
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used to generate it, or what might be called the "power law" of the
echo. Considering the case of the first echo with equation 2.94, the
input power is contained in the pulse spectrum, if we call f a

normalized pulse spectrum then:

T= v E;, f (2.96)

where Yy = constant

I

=
1]

peak input electric field.

Since neither Y nor Ei is a function of x , it is possible to

take them out of the integral 2.94 so that

i me(x) w '
3 w3 =3 gy g a8
vol(T) ~oyTOES J : % [wp -3 ( mH) ] dax (2.97)
-a H

Hence the voltage generated by the first echo grows as the cube of the
incident electric field, and if one speaks of power, the power of the
first echo grows as the cube of the incident power. In general for a

weak incident power one can show that:

n+1

(2.98)

; : 2
Power nth echo "~V (Power incident)

Another peculiarity of equation 2.94 or 2.97 is that the echo power
seems to grow as 12 if everything else is kept constant. This will
. be true only as long as 871 , Awlt » 2T s8tay << 1 . Experimentally,
even if 671 , AwlT , zT do stay very small, the echo power will not
grow as 12 for 1 greater than 100 ns because of the effect of

electron-neutral collisions not present in the theoretical model.
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Large Input Power Echo Description of Saturation Phenomena. It

was seen that considerable simplifications in the expressions giving
the echo power or voltage resulted when the approximations appropriate
to iow power could be used. One of the aspects of these simplifications
(see equation 2.97) is that neither the input power nor 1 has an
influence on the shape of the spectrum of the echo. The curve traced
by the peak power of the echo as the parameter (mC/w) is changed, we
call an eché spectrum. For instance, Fig. 2.5a is an echo spectrum.

P and 1 merely control the absolute magnitude of the echo spectrum.
This is because a low input power makes 2zt small and it is possible

to expand in series and retain only the first terms of the sine, cosine
and Bessel functions present in the general expression of a and bn'
However, when the input power or 1 1is increased to make 21 equal to
about .5, the retaining of only one term in the expansions of the above-

mentioned functions will certainly not be adequate. This value of .5

for gzt will set, as a matter of definition, a threshold for what we

call saturation phenomena of the echo. When this threshold for satura-

tion phenomena is reached, the general form of & and bn will be
needed. P and T will be present in the arguments of the trigonomet-
ric functions and Bessel functions and it will not be possible any more
to factorize them out of the integral as in equation 2.97. It is then
conceivable that the shape of the echo spectrum, among other charac-

teristics of the echo, could be a function of the input power ,t , or

>
for that matter any other variable which enters into the expression of

zT . The complexity of the general expressions for &, and bn makes

the task of finding the echo functional dependence on input povwer 4 T ,
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and electron density, seem arduous to say the least. But it is also
through these functional dependences of the echo that one can best test
the theory with the experiment. Blum (20) computed numerically all the
interesting echo characteristics as functions of the parameters acces-
sible to the experiment. His results will be presented in a following
chapter. However, because of tﬂe great interest in these saturation
phenomena in relation to the experiment, it is_of importance to try to
have some intermediary steps between the general expression of the echo
voltage and the numerical calculation of these expressions.

The only way to accomplish this and then to achieve some mathe-
matical if not physical insight, is to try to simplify the echo's
general expression without losing too many of the interesting features
of the saturation phenomena that we want to study.

We recall that the first echo power in the general case is given

by (assuming equal pulses)

2 _ 2]
Magled = By + 8 (2.99)
a
__on [ 2
A =« - J wp(x) a, dx
0
a
(2.100)
__am [ 2
B, =~ = pr(x) bl dx
0
with
&, = = i [T.(z1) cos(é'zr)+ J.(2) sin z71]
1 wH 2 2 2.
b e (=T (z1) sin(—3- zt)+ J.(z21) cos z1) (2.101)
i 1 2 2 XL
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" w
and with ZT = - [w2 = 2~(--13-)2] f21 (2.102)
8 3 o) 3w
wH H

The following pseudo-echo experiment will then be devised to
simplify the mathematics. One will use very wide pulses in the time
domain such that in the freguency domain the pulses spectral width is
much smaller than the frequency change necessary to produce a signifi-
cant variation of all other functions of w present in the expression
of the echo. Equations 2.99 to 2.102 giving the echo voltage are
expressed with x as the variable and not w . However, as pointed
out earlier, see Fig. 2.5c, there exists a direct relationship between

the parameter (wc/w) and (x/a):

w
c _ _ _p0 _ (Xyhyl1/2
il T 2 (1 -()7)

2 i
2 o 2 X1k
wp(x) = wpo(l - (a)

)

If we use then pulses with narrow spectral width whose center
frequency is such that (wc/w) = K , they will involve only a very
localized area of the slab given, say, by (x/a) = L . Then all con-
tribution to integral 2.100 between x = 0 and x = a will be zero
except for values of (x/a) very close to L .

Then

e

A
1 (x/a)=L

2m; 2
<h_,l:wp(x) a, (x)] - (2.103)
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B =

(x/a)=r, %n [“’i(") 0y ()] (2.104)

(x/a)=L
If we use another center frequency K' we will involve another local-
ized area of the slab characterized by x/a = L' so that we can

follow the variation of Al and Bl and of the pseudo-echo:

2 a8

N2 = wEx) (&l + 2N

(A§+B
as a function of (x/a).

Figures 2.6a and 2.6b represent the computation of a.l,bl and
of the pseudo-echo as a function of (x/a) with different input power
levels. The behavior of the pseudo-echo with power is similar to that
observed when one directly computes the general echo formula with
pulse characteristics corresponding to those of the experiment. Fig.

2.6a displays the variation of the absolute magnitude of a and bl

il
versus (x/a), with input power as a parameter. The obvious result is
that decreasing the input power makes =zt1 smaller which results in a
shift for the location of the threshold of saturation phenomena

(zt = .5). Since the nonlinearity is a growing function of (x/a), when
the power is diminished the saturation threshold will be reached for a
larger (x/a), until eventually the saturation threshold cannot be

reached anywhere in the slab as is the case for the lowest power curve

in Fig. 2.6a. After considering the three diagrams of a and bl

3
and the pseudo-echo, it is possible to make some predictions as to
what kind of meaningful experiments can be tried. First, choosing a

certain center frequency for the exciting pulses corresponding to a
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certain (wc/w) or (x/a) value, the amplitude of the echo can be moni-
tored as the input power is varied and the experiment repeated for
different (wc/m). If the center-frequency of the pulses is equal to
an upper hybrid frequency close to the maximum upper hybrid frequency
(corresponding to (x/a) ~ 0), it will require a large input power to
reach the saturation threshold. As this point is reached, the echo
power will stop growing with input power, then decrease, and eventually
increase again depending on the complex variation of a, and bl with
input power. If, on the contrary, the center frequency of the exciting
pulses is equal to an upper hybrid frequency not very different from
the cyclotron frequency (corresponding to (x/a) ~ 1), the saturation
effect should be felt even for low input power levels.

Another type of experiment would be to monitor the echo power
as (wc/w) or (x/a) is varied for a fixed input power level and compare
the results obtained with different input power levels. From Figs.
2.6a and 2.6b one sees that if the input power is decreased, the echo
spectrum should not peak at the same place. Its peak should shift
toward larger (wc/w) or larger (x/a) until the low power case is
reached; in other words, until the saturation threshold cannot be
reached anywhere in the slab. (In that case equation 2.97 is a valid
representation of the echo.) So far the saturation phenomena have been
described only as a function of P and (wc/w) or (x/a), but the other
parameters contained in zt can produce saturation as soon as they
make 2zt large enough. To discuss the influence of the other param-

eters, it is desirable to come back to the general case of finite
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spectral width pulses. Calculating =zt with a density profile of the
type:

) = o - &)
one has:

2 2

w w
2 o= - =20 (3% B2 22 (0] P(u) (2.105)
282 a 3 w2 a H
H H

Using a normalized pulse spectrum T to make the input power appear

separately, equation 2.105 can be written (Y is a constant)

2 2
w B w
v = 2oL (352 22 22 (X)6) () (2.106)
a 3 2 'a H
2a wH mH

Among the variables which could be responsible for saturation, a prime
candidate seems to be l/mg . However, in this paragraph we try to
make suggestions for experiments and in the experiment the microwave
signal generator will be fixed so that w = Wy = constant. The reson-
ance of each layer of the slab is reached by changing the magnetic
field so that in the parameter (wc/w) it is ® which is constant.
This might seem contradictory since in previous paragraphs the words:
upper hybrid frequency domain were used, it meant that w, was then
considered to be fixed and w variable, and then w, was a variable
too. The first point of view is more directly related to the experi-
ment and the second makes the theoretical expressions much easier, but
the two points of view are strictly equivalent if one writes the re-

sults which might be derived from them in terms of (mc/w) or (x/a).

The changes from one to the other might be confusing to the reader,
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but it is felt that the confusion would be even greater if it were not

done, due to the greater complication of the algebra. here, is

UJH,
then a constant and will not be one of the variables useful for the
study of saturation phenomena. As was pointed out before, (wc/m) is

one variable parameter. It is contained in the term:
2
X,2 ., 20 mgo x.6, =2
[3(=)° # == (=)°] £° (w
a 3 m2 a
H
Pi,r will play identical roles. wio finally, will be involved in
two terms with the second term in the brackets very weak. So that if
(mC/w) is kept constant an experiment should show the similar role of
wﬁo, By i in saturation phenomena. This also means that if one wants
to measure the effects of a parameter, it is necessary that the other
parameters do not change during the measurement. To conclude, since
an experiment can demonstrate the presence or absence of all the
parameters thought to be contained in 21 and demonstrate whether they

have the proper predicted functional relationship, it can be said that

the saturation phenomena play an important role as a test of the theory.

2.3.3 Echo Width

In the independent particle expression of the echo current, one
recalls that it is possible to write it as the product of an echo amp-
litude factor and an echo shape factor. The echo shape factor g(t-t),
(see equation 2.17) is just the Fourier transform of the oscillators’
spectral density, so that there is a direct relationship between the
echo width and the spectral width of the oscillators. To compare with

the cold plasma model of Blum and Gould, one has to express the nth
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echo voltage as an integral over Wy and not x ; this is done in

equation 2.78:

w
e
Von(t) = ——E%— J N(wH) [ansin wH(t—nT)+ bncos wH(t—nT)] duwy
PO w

o (2.78)

with '

2 2
2 2 Wy = g, B4
N(wH) = (wH - wc) wH// @jﬂl??_li) ; (2.79)
Who

. an(wH)
With {bn(wH)}N(mH)

one has defined two "equivalent oscillator spectral densities" whose

sine and cosine transforms will give the echo voltage. The knowledge

b H
n

a 5
of {j n:}N(w ) without going through the integral defined in equation
2.78 is then sufficient to describe the echo width. To test the prac-

ticality of this idea, one can investigate the low power limit of
equation 2.78. Using equations 2.97, 2.78 and 2.105, the first echo

voltage is:

3
VOl(t) g BY
o2 -3 2 o2 B3
2 Ho H\2 ,20 po ( Ho Hy2 \-=3
Tc (0w - w {3( i ) 3 mE( . )}f (wH)
jelo] h po _
% ! me wg os wH(t T)d%{
Ho 3 , Ho H\3/k
wH( 5 )
w
po ' (2.107)

This can be written:
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2 2
w. - )
e (uf -a2)3+ BT )] Pray)
5 Wy
Vol(t) vt E] wI - m2 cos mH(t-r)de
Ho ( Ho . H)l/h (2.108)
Npo

.

From equation 2.108 one sees that the "equivalent oscillators' density"
has a singularity at Wy T Wy ot It seems meaningless, then, to relate
the "half-power" width of the oscillators' spectral density and that of
the echo as it is done in the independent particle theories. However,
one can show (18) that there is still a relation between the total
spectral width of the oscillators and that of the echo. 1In fact in the
simple case where the pulse spectrum is much larger than that of the
oscillators, the echo width will be inversely proportional to that of
the oscillators. Since the latter scales with the electron density,
one can expect a dependence of the echo width on the electron density.
To obtain the exact echo width in that low power limit and in the
general case, one must then perform the integration as defined by 2.78
and 2.108. Some other observations can also be made from equation
2.108 on the echo width behavior. BSince it was possible to factorize
out of the integral t and E? , the echo width in the low power limit
will not depend on the input power or T. As the power or any other
variables contained in 2zt 1is raised, saturation phenomena will take

place and affect the echo width. An experimental study of the echo

width will then offer one more way of testing the adequacy of the theory.
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III. INSTRUMENTATION AND EXPERIMENTAL TECHNIQUES

3.1 Instrumentation

In the introduction we indicated the sequence of the most impor-
tant events present in the experiment. First the plasma is fired with
a 21 MHz pulse. Then at a time‘ Ta after the end of the discharge,
two high pover microwave pulses about 20 ns wide, separated typically
by 100 ns are sent through waveguides to interact with the plasma. If
the pulse center frequency is cheosen correctly, bursts of radiation at
times t = nt (n=1,2,°**) after the second microwave pulse are
observed. They are the echoes. In this section the instrumentation
which was used to create the microwave pulses, the plessma, the magnetic
field, and to observe the echoes will be described. In a following
section we will give more details on the properties of the plasma and
how the basic characteristics of the echoes are measured.

As was pointed out before, the experiment is performed in an
afterglow plasma. Among other quantities, the plasma electron density
will decrease in an approximately exponential fashion, through recom-
binations. The corresponding e-folding time of that decrease will
determine the frequency at which the experiment can be repeated in
order to have a sufficiently wide variation of density for each experi-
ment. This repetition rate was chosen to be 60 c¢/s. In Fig. 3.1 it is
the "master timing unit" triggered by the line which gives this
repetition rate. The master timing unit is composed of several Tek-
tronix waveform and pulse generators of the 160 series. Their

triggering pulses permit firing the plasma first and then choosing the
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time after the end of the discharge at which the microwave pulses will
be sent to interact with the plasma. The delay between the two events
is observed on the monitor scope. The microwave pulses are generated,
looking at Fig. 3.1, by the three blocks "signal generator', "10W TWT
Amplifier" and "pulse instruments". The signal generator, an UHF
oscillator (Hewlett-Packard Type 616A) is set to produce a continuous
wave signal of frequency 3 GHz and power of about 1 mW. The signal
then goes through path B (path A is used in continuous wave scattering
measurements described later) to a Litton traveling wave tube amplifiér
Type L5010. The grid on the tube is held at about -50V with respect to
the cathode. The traveling wave tube is then not operating; no output
can be detected. If one applies to the grid a positive pulse such that
it drives the grid potential with respect to the cathode to its
nominal value (+60V with respect to the cathode) during, say 20 ns,
the tube operates for the corresponding length of time. It will thus
generate a microwave pulse with a peak power of 10 watts, 20 ns wide.
The difference in peak power output of the tube between off and on
conditions was difficult to ascertain, but it is believed to be more
than 60 db, 20 ns after the beginning of the pulse's trailing edge. To
bring the grid from its preset -50V with respect to the cathode to the
operating voltage of 60V during 20 ns, 110V pulses, ~ 30 ns wide are
needed. They were obtained using two Hewlett-Packard Type 21LA pulse
generators; since the maximum pulse voltage given by the instruments
is only 50V, they were stepped up with two blocking oscillators in
parallel (one is described in Fig. 3.2) or with a simple 3 to 1 pulse

transformer (Pulse Engineering Type PE-57T5). The blocking oscillators
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are used when very narrow pulses are needed, and the transformer is
practical for pulses whose widths are not regquired to be narrower than
the minimum available from the HP 214A (minimum half-power width ~ 30 ns).

It further provides for variable width pulses through the corresponding
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Figure 3.2. Pulse Producing Blocking Oscillator

feature of the HP 214A's until a critical value of about 200 ns is
reached, at which point the saturation of the ferromagnetic material
of the transformer sets in and causes a significant alteration of its
operation. Two HP 21LA's and two blocking oscillators were used
because of the slow recovery of these instruments after one pulse is

produced. A second pulse could not be obtained directly after the
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first from Just one of the instruments. In fact, even with the doubl-
ing of the pulse electronics, a certain amount of interaction and
interference was observed when the pulse separation was smaller than
60 ns, so that no echo measurement was taken for lower values of T
than the above given limit. The 10W traveling wave tube was always
operated close to its maximum péak output; under these conditions a
certain amount of harmonics of the input signal frequency was produced.
To avoid a possible complication in the data interpretation, a low pass
filter was then placed after the traveling wave tube to reject the
harmonics. A precision attenuator followed, permitting us to adjust
the pulses' peak power. Before reaching the waveguide section, the
pulées went through an isolator which eliminated troublesome multiple
reflections due to unavoidable mismatches.

Several remarks can be made about the waveguide arrangement.
First, the glass tube in which the plasma i1s created, is inserted into
the S band waveguide through two holes in its narrower side. The mag-
netic field lines are parallel with the tube axis. The geometrical
relation between the wave vector k of the pulses propagating in the
waveguide, their electric field E , and the magnetic field lines is
then such that k L E 1L B .

Second, a certain symmetry in the waveguide configuration with
respect to the magic tee can be observed from Fig. 3.1. It is s
consequence of a property of the magic tee (23) that if its H-arm
(input) and E-arm (output) are terminated in matched loads and if a

signal Ein enters the H-arm, the signal at the E-arm will be
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E
in

E =(rl—r)-— {3:1)

out 2 2

where Pl and Pg are the reflection coefficients looking from the
magic tee into arms one and two respectively. Supposing that the plasma
is located in arm 1 and that the coefficient of reflection due to the

3

plasma Fp » and that due to the glass and the waveguide holes Fg

superpose, one has

I.= T +7T {3:2)

so that
E

E = (T +rg—r2)

in
out P 2

(3.3)
Equation 3.3 gives the output signal when some plasma exists. If there

is no plasma, egquation 3.3 becomes:

1
B ik = (Fg - Fg) = (3.4)

This means that with no plasma, one can, by acting on F2 through
tuning elements in arm 2, have no output signal. And when the plasma

is turned on the output signal for F2 = Fg is Just:

. _ Pp Ein
out 2

(3:5)

The experimental output signal is just a measurement of the coefficient
of reflection of the plasma alone which can be easily compared with its
theoretical equivalent. Ideally, when no plasma is present, we showed

that it is possible to have no output signal by properly adjusting FE'
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However, experimentally the maximum isolation between input power and
output power was about 30 db for the 20 ns microwave pulses used in an
echo experiment. For a pulse 200 ns wide, the isolation can be as good
as 60 db. The difficulty with short pulses can be traced to the rela-
tively strong freguency dependence of conventional tuning elements such
as slide-screw tuners and the wide frequency spectrum of the short
pulses.

This microwave bridge arrangement is not especially useful as far
as echo investigations are concerned, but it permits a much better
observation of the plasma stimulated radiation directly following the
exciting pulses. By monitoring the amount of power reflected from a
continuous wave by the plasma as a function of (wc/w), it will also give
some valuable information on the plasma which will be described later.
On the output path there is an isolator to remove multiple reflections,
and a precision attenuator for the calibration of the signals' magni-
tude. Finally, the signal is amplified by two l-watt traveling wave
tube amplifiers (Hewlett-Packard Type h9lA),‘giving a total signal
power amplification of about 55 db with a noise figure around 30 db.
The signal is then detected, sometimes video amplified, and displayed
on a Tektronix 585A oscilloscope or on a Hewlett Packard Type HP 185B
sampling oscilloscope. The sampling oscilloscope, with its 100 ps rise
time, permits a detailed study of the echo. Also, through its "manual
scanning" feature, one is able to sample a single point of the repeti-
tive waveform of interest. The y axis output of the sampling oscillo-
scope is fed into the y axis input of an X-Y recorder. On the x axis

input of the recorder is a signal whose voltage is proportional to the
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magnetic field intensity and thus (wc/w). The recorder will then
directly trace the wvariation of the deflection of the sampling oscillo-
scope beam as a function of (wc/w). As was pointed out in Chapter iI,
the‘value of (mc/m) is changed, not through w which is kept constant,
but through w, or the magnetic field. The reason for that particular
choice lies in the frequency deﬁendence of too many elements in ﬁhe
system. For instance, the 10 watt TWI' and the signal generator which
feeds it do not have a flat frequency response as far as power output
or amplification are concerned. It could be expected, however, that
changing the magnetic field would affect the plasma parameters. But it
was not believed to be very important in the case of echo experiments,
since the magnetic field is not changed by more than 25%.

The plasma is generated in the following manner. The plasma
vessel is a tube of glass about 1 m long and of 1.8 em I.D. It is
connected through a stainless steel flexible tubing to a conventional
vacuum system (see Fig. 3.3). After their assembly, the glass and
flexible tubing were baked at 400°C for twelve hours so that a vacuum

of X 1071

mn of mercury could be reached. Then neon or argon gas

of research grade purity was leaked in the system through a variable
leak valve (Granville-Phillips). A weak continuous flow through dif-
ferential pumping of the diffusion pump (the valve between the diffu-
sion pump and the system being almost closed) was arranged to insure
the highest possible purity of the gas involved in the plasma formation.
The gas was then ionized by 100 watt peak power pulses of 21 MHz, 50us

long, fed into large copper sleeves (10 cm long) tightly fitted around

the glass vessel and symmetrically situated with respect to the



=T

=4£3‘¢

S '
e/
Ik

Fig. 3.3 Photographs of the solenoidal magnet and waveguide apparatus
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waveguide. To produce a 21 MHz high power pulse, a VHF signal generator
(Hewlett-Packard type HP608D) with an output of 4 mW was used. The
output was modulated and fed to a simple tuned three-stage power ampliu
fier-whose power tubes were two 6146 in parallel, in class C . The peak
power of the 21 MHz pulses seems to be an important factor in obtaining
an easy and reproducible breakdoﬁh of the plasma. Some fluctuations in
the first few microseconds of the discharge were observed. They were
undesirable because they provoked density fluctuations méking studies of
the echo properties difficult, since the latter were strongly dependent
on the electron density. These fluctuations of the breakdown from shot
to shot diminished appreciably if the 50 watt peak power was increased
to a 100 watt peak power. The situation was even better when 500 watt
peak power was used (24). The explanation is thought to lie simply in
the higher initial electron density created, leaving a higher final
electron density when the next pulse comes along. The latter breaks
down the gas easily because of the relatively high number of electrons
left. Another way to correct this difficulty would be to increase the
repetition rate of the experiment. However, synchronizing with the line
freguency is experimentally preferable. It is more convenient to
increase the power of the breakdown pulse.

There was difficulty in avoiding some density variations which
occurred over time periods of the order of one hour or so. One of the
reasons for their existence could be the progressive elimination of
impurity molecules trapped on the inner surface of the glass due to the
intense ion bombardment occurring during the discharge. In fact, a

somewhat more stable plasma over long periocds of time can be obtained if
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during the first half-hour of operation the breakdown of the gas is made
by very long pulses (v 500 us) instead of the usual 50 us . The 50 us
width of the breakdown pulses was chosen because it gave the highest
density for a fixed peek power. The measurement of the plasma parameters
is discussed in Section 3.2.

The magnetic field was obtained with an air core solenoid con-
sisting of 10 pancake type coils; see Fig. 3.3. The positions of the
coils could be adjusted so as to minimize inhomogeneities due to the
end effects. A computer calculation showed that if a space of 3.2
inches was left between the two center coils to accommodate S-band
waveguide, a homogeneity of .01% could be achieved over the plasma
volume if the other coils had the same distance between them, except
for the last pair which should be separated by a space of only .8". The
coil dimensions were the following: inner diameter 12", outer diameter
27", coil width 1-5/8". They were wound with hollow copper conductor
through which water could be pumped for cooling. About 110A and LOV
were necessary for the field intensity to reach 1 kg in the region of
interest (the volume of plasma contained in the waveguide) with the above
described positions of the coils.

The computer calculations of the magnetic field intensity were
experimentally checked. Using a nuclear magnetic resonance probe and a
digital frequency counter, the expected high longitudinal and radial
homogeneity over the vo