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ABSTRACT 

The Young's modulus, stress-strain curves, and failure 

properties of glass bead-filled EPDM vulcanizates were studied 

under superposed hydrostatic pressure. The glass bead-filled 

EPDM was employed as a representation of composite systems, 

and the hydrostatic pressure controls the filler - elastomer 

separation under deformation. This separation shows up as 

a volume change of the system, and its infuence is reflected 

in the mechanical behavior as a reinforcing effect of variable 

degree . 

The strain energy stored in the composite system in 

simple tension was calculated by introducing a model which 

is described as a cylindrical block of elastomer with two 

half spheres of filler on each end with their centers on the axis 

of the cylinder. In the derivation of the strain energy, assumptions 

were made to obtain the strain distribution in the model, and 

strain energy- strain relation for the elastomer was also assumed . 

The derivation was carried out for the case of no filler - elastomer 

separation and was modified to include the case of filler - elas 

tomer separation. 

The resulting s t rain energy, as a function of stretch ratio 

and volume of the system, was used to obtain stress - st r ain 

curves and volume change-strain curves of composite systems 
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under superposed hydr'ostatic pressure. 

Changes in the force and the lateral dimension of a ring 

specimen were measured as it was stretched axially under a 

superposed hydrostatic pressure in order to calculate the mechanical 

properties mentioned above. A tensile tester was' used which 

is capable of sealing the whole system to carry out a measurement 

under pressure. A thickness measuring device, based on the 

Hall effect, was b .uilt for the measurement of changes in the lateral 

dimension of a specimen. 

The theoretical and experimental results of Young's 

modulus and stress- strain curves were compared and showed 

fairly good agreement. 

The failure data were discussed in terms of failure surfaces , 

and it was concl uded that a failure surface of the glass-bead-filled 

EPDM consists of two cones . 
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1. Introduction 

Elastomers filled with solid particles show greatly different 

properties in many respects from those of the matrix of elastic 

material in which the particles are embedded. The differences 

appear in Young's modulus, stress -strain response, failure 

properties, abrasion resistance, etc. When the changes in 

the properties caused by filler particles are in a desirable direction 

from the practical point of view, the filler is called a reinforcing, 

or active filler, or otherwise a non-reinforcing or inactive filler. 

Restricting our interest to mechanical properties, three 

features are usually more conspicuous among the effects 

of filler than the rest of them. These are Young's modulus, 

the shape of the stress-strain curve, and the failure properties. 

In order to investigate the effect of filler in an elastic material 

there may be a number of methods of approach to the problem, 

either theoreticallyor experimentally. But our interest is in 

predicting the properties of a composite system consisting 

of a matrix of an elastic material and solid particles, provided 

that the properties of both constituents are. known. Molecular 

theories are not often applied to this special field of interest. 

Applications of continuum mechanics have been more often 

used to develop theories for a composite system. From a 

theoretical point of view, the only difference between a reinforcing 
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filler and a non-reinforcing filler may be whether or not the 

rubber matrix separates from the filler particles as a composite 

system undergoes a deformation. And if this speculation is true, 

a theory for a composite system with non- reinforcing fillers 

with controlled degree of filler-elastomer separat'ion will cover 

the case of reinforcing filler as a special case. A method 

to control the degree of filler-matrix separation is to carry 

out measurements under superposed hydrostatic pressure. This 

leads to the experiments which will be described later. 

Of the three features mentioned above , the increase of 

Young's modulus due t o the solid par ticles is the most frequently 

studied subject as far as the number of the available theories 

is concerned. 

Einstein's equation for the viscosity(!) of a suspension of rigid 

spheres in a Newtonian liquid predicts that the viscosity increases 

linearly with the concentration of the spheres at low concentrations 

where the interaction between the solid particles are regarded 

as non- existent. 

Smallwood (
4

), solving the problem by way of the theory 

of elasticity with some simplifications in his mathematical 

treatment, derived an equation identical to Einstein 1 s equation 

for viscosity. Naturally, his equation is useful only for very 

low concentrations of filler, but this is probably the first attempt 

to obtain the Young ' s modulus of a filled system by the theory 



-3 -

of elasticity. 

Based on the coincide nce of the results from totally different 

approaches, in some cases the relations that give th e increase 

of viscosity of a liquid due to the suspended particles have been 

used . to predict the Young's modulus of filled elast.omers as 

a function of filler fraction by simply r eplacing the viscosity 

terms in the equations by the corresponding moduli. Although 

this may not be justifiable in a rigorous sense , this method 

seems to be useful lin_giv ing the _right information concerning 

the effect of filler. 

Eilers(Z), starting fromEinstein 1 s viscosity equation of sus-

p e nsion which predicts a linear increase of the viscosity 

of a suspension with the concentration of solid parti cles , modified 

it to give a better fit to experimental results up to higher concentra-

tion, mostly empirically. The same equation has been applied 

to give the increase of the moduli of filled polymers with 

considerable success. 

G h (3 ) 1 . . h E ' . I . d . d ut , a so s tart1ng w1t 1nste1n s equat1on, er1ve 

the viscosity ofsuspension a s a power expansion with respect 

to the concentration of solid particles and gave the coefficients 

up to the second power of concentration. He also intr oduced 

a shape factor forirre gular shaped particles 

·which modifies theco e fficients in his fir st equation. This equation 

was also converted for the purpose of predicting the moduli 



-4-

of filled polymers simply by replacing viscosity by modulus. 

Einstein's and Smallwood 1 s equations are valid only up 

to filler concentrations of a few percent. The two empirically 

modified equations mentioned above naturally have wider ranges 

of applicability, sometimes up to a few tens of percent. 

Kerner (2. 3 , 24) introduced a three layer model for a composite 

system which consiGts of a sphere of filler material inside a 

concentric shell of material with the properties of the material 

of continuous phase which is in turn embedded in the material 

with the overall properties of the composite system. He applied 

the model to various properites such as electrical conductivity, 

elasticity, etc. of composite systems. His model was further 

developed by Van der Poe!, and by Furukawa and Sato in their 

theories. 

Vander Poel(S), also by the aid of the theory of elasticity, 

derived a relation between the moduli of unfilled and filled 

elastomers. His theory is constructed on a three layer model 

similar to Kerner's. The model consists of an inner sphere 

of the material of the disperse phase of radius, a, an intermediate 

layer of the material of the continuous phase of unit radius, and an 

outer shell with the properties of the composite, the diameter 

of which is much larger than those of the other two. The volume 

fraction of the disperse phase coincides with a 
3

• The modulus of the 

material in the outer shell is given a value such that, when the model 
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is subjected to a uniform tension the overall deformation is not 

affected if the two inside layers are replaced by a sphere of 

unit radius of the material in the outer shell. He calculated the 

modulus of the material in the outer shell and took it as the over

all modulus of the system. The reb::i-:>n is not ~ 'c. l·osed 

form. Agreement with experimental data is fairly good up to 

considerable filler concentrations. 

Frankel and Acrivos (
6 
\rea ted the problem from a . 

slightly different direction. Their theory deals with the viscosity 

of suspension of high concentration. Considering the interaction 

between the solid particles suspended in the liquid, they derived 

an equation that gives the asymptote to the viscosity-cone entrati:on 

curve in the high concentration region. Their equation gives 

good correspondence at high concentration, but not in the region of 

lower concentrations . 

A number of em·pirical equations have been proposed to 

express the stress-strain curves of both unfilled and filled 

elastomers . However, there are very few useful theories to 

predict the stress - strain curves for filled elastomers from the 

known properties of filler and elastomer. The most f ruitful approach 

to this problem appears to be choosing an appropriate 

model that enables us to handle it with reasonable ease. 
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Sato and Furukawa(?) based their theory on a concentric 

sphere model similar to VanderPoel's. They chose a simple 

function for the deformation tensor for the outside layer of the 

model and calculated the strain energy predicted by the statictical 

theory of rubber elasticity. With this method, they obtained 

mechanical properties (such as, e.g , Young's modulus, stress-

strain curves, etc.) of composite systems. They ascribed 

deviations of the theory from the experimental data to vacuole 

formation and used an adjustable parameter to correct for· the devia-

tion. The corrected results agreed with the data ·for filler fractions 

up to about 10 -- 15 ~o. --~ 

Although it is quite oblious that vacuole formation around 

filler particles in a composite system has a great influence 

on the reinforcing ability of the filler, there has been no theory 

that directly relates the amount of vacuole formation to the change 

in the stress strain curves or vice versa. However, a number 

of experiments have been performed on the measurement 

and the observation of vacuole formation by deformation of filled 

elastomers. 

Fedors and Landel(S)measured volume changes of elastomers 

filled with glass beads. Assuming a conical shape for the 

vacuoles, the height of which increased linearly with the in-

crease of the strain, they derived an expression for the stress -

£train curve. 
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Fishman and Rinde( 9 }, by means of curve fitting, derived 

an expression that gives the volume change of a deformed, 

filled system as a function of strain energy, time, and temperature . 

Experimentally, they measured the volume changes and stress-

strain curves under constant strain rate, constant load, and 

constant loading rate deformation. 

Farris (l O)measured the volume change of elastomers 

filled with 'non-reinforcing filler' and analysed the results by 

a statistical method. He assumed that the nrohb<bility for a certain 

particle to dewet at a certain strain is given by a Gaussi~n 

distribution, and determined the parameters contained in the 

distribution function from experimental results. His measurements 

were performed under superposed hydrostatic pressure as well 

as at atmospheric pressure. 

he.r e . 

Some of the work that may be related to the ·one de's-=c ribed 

• have been briefly mentioned above . The purpo se 

here is to obtain the mecl.anical behavior ( primarily the stress-

strain behavior but also failure behavior) of fillled elastomers as 

a function of filler fraction and superposed hydrostatic pressure. 

The superposed pr~s sure is employed to control the degree 

of vacuole formation or filller-matrix separation under deformation 

and , consequently, gives some information about the reinforcing 

mechanism of fillers. In spite of the number of theories mentioned 

above, none of them is without some kind of experimental para-
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meter to give a reasonable fit of the theory to the experimental 

results. This can hardly be faulted, considering the difficulties 

involved in solving the problem of the stress -strain behavior 

of a filled system. For example, non-linearity of the compatibility 

equations due to large deformation, the non-linear relation 

between strain and stress, the extremely complicated boundary 

conditions because of the randomly dispersed particles of filler 

must be considered. Consequently, some assumptions and simpli

fications can not be avoided in order to handle the problem and 

obtain r easonable results. 

In chapter 2 we present a theory for obtaining the strain 

energy in a composite system as a functio n of stretch ratio and 

the amount of vacuole formation due to ~he de:-vetti?g on the surfaces 

of filler particles. The theory contains several assumptions 

and simplifications. First weassume that matrix material 

is incompressible , the filler consists of rigid spheres of uniform 

size and that the strain energy stored during the deformation 

can be expanded in a Taylor ser.ies of the invariants of the strain 

t tensor. Second we assume that time effects and hysteresis effects 

are absent. A model for the composite system is introduced and the 

approximate equations for the strain invariants are derived 

as functions of spatial position in the model when the system is sub

jected to a simple tension. Combining the Taylor expansion 

of the strain energy and the approximate e quations for the strain 

invariants, the total strain energy is calculated. The strain energy 

is obtained both for the case of no vacuole formation and for the case 
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of vacuole formation 

In Section 3 the experimental equipment and procedures , 

sample preparation, and the method of data analysis are described . 

Experiments were performed to obtain stress- strain curves 

and volume change- strain curves of glass - bead filled elastomers 

with superposed hydrostatic pressure and loading 'ratio of 

filler as parameters. 

In Section 4 the results of the experiments are compared 

with the theory. In Subsection 4 . 1 the material constants of the 

rubber matrix are obtained from the experimental data. In 

Subsection 4. 2 the initial moduli are calculated both from ex

perimental data and from the theory. In Subsection 4. 3 the 

volume change-stress-strain curves are compared, experimentally 

and theoretically, and discussed. In Subsection 4. 4 the failure 

behavior of the glass - bead filled rubber vulcanizates is discussed 

briefly. 

In Section 5 the summary and the conclusion are presented. 
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2.. Theory 

In this section the strain energy of a deformed composite 

system will be derived as a function of stretch ratio and amount 

of volume change. Except for the case specially mentioned 

the continuum phase is assumed to be incompressible and 

the filler particles are a:>sumed to be rigid spheres . 

2.. l. Introduction 

When an isotropic and homogeneous material is deformed, 

a certain amount of strain energy is stored in the system. 

While the stored energy is a function of the deformation 

tensor, the energy should be a function of the three invariants 

of the tensor. These invariants remain unchanged through the 

rotation of the coodinate system that causes the change of the 

directions of the three principal axes of the strain tensor . 

No matter what type of definitions one may choose for the 

strain tensor and the invariants, these relations will be true . 

We will u se the Cauchy- Green deformation tensor and 

the principal invariants in the development of the theory. 

Provided that the strain tensor is known at every point 

in an elastic body, the total strain energy is written, 

(2. - l) 
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where W is the total strain energy and w' is the strain energy 

per unit volume as a function of strain invariants, I 1, I
2

, 

and I 3 in a small volume element d V. 

In Section 2. 2 we will introduce a model for a composite 

system of elastomer filled with solid particles. In Section 

2. 3 a deformation tensor and the strain invariants are introduced, 

and the strain energy is described as a Taylor expansion of the 

invariants. In Sections 2. 4 and 2. 5 the strain ir.variants are 

obtained, and consequently the strain energy is calculated. 

And finally, some applications of the theory will be discus sed 

in Section 4. 

2. 2. A 1vbdel of CompositeS ystems 

It is necessary to introduce a certain simplified model 

to describe strain, and consequently stress, distribution in a 

system of elastic material filled with solid particles. A model 

that is often used is a solid sphere surrounded by elastic material. 

In our case, howeve·r,_· we are more interested in the effects 

of interaction between two particles, and consequently the model 

was chosen to meet this demand. The model is shown schemat

ically in Fig. la. As may be clear from the figure, the model 

is a cylindrical block of e lastomer of length, 2b, and of diameter , 

2c, with two solid half - spheres o£ radius, a , embedded on 

both ends. The relation among a , b, and c is left undetermined 
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at the moment. The centers of the spheres rest on the axis 

of the cylinder. This model may be considered as a representative 

unit cell of a composite system that enables us to obtain the total 

strain energy simply by multiplying the energy in the model 

by the number of the particles in the system. This may be the 

simplest model that can reasonably be treated mathematica}ly 

but is yet not too different from the real system. As the model 

is stretched axially, the surface will take a profile that is concave 

in theJni.ddle section. That is, the material belonging to the 

middle section moves more inward than that near both ends. The 

question may arise whether or not it is possible for the material 

to move this way in a real system of the material where other 

particles may restrict the movement of the elastomer. In 

reality, however, the filler particles are randomly packed so 
I 

tha. t not all the particles, or rather, none of the particles are 

really on the same horizontal plane. Thus when the system is 

stretched vertically, the surface of the model will have the 

con·cave profile as described above, and the void that may be 

produced will be filled with another particle and the surrounding 

elastomer that move in. Although this is only a conceptional 

idea, it will serve to explain the adequacy ofthe,
1
choice of the 

model. 
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2.. 3. Deformation Tensor and the Invariants 

When dr is a vector connecting two closely located 
0 

points in an undeformed system and dr. is the vector for the cor-
l 

responding points after deformation, the two vectors may 

b 1 db d . 1 "' .. as follows(ll, l2.) .. e re ate y a 1sp acement tensor v. 
lJ 

(2.2) 

where the repeated subscripts imply summation from 1 through 

3. From Eq . 2.-2. the distances between the two points 

before and after deformation are related by 

(2 .3) 

- . ...... J...:: 

where ds is the distance, and Y-- is a symmet!ic 
lJ 

-. 

deformation tensor. If the principal values of Ykl are Y 1• 

Y2 • and Y 3 , it is easily proved that there exists the following 

relation between them(l 3 ): 

(2 .4) 

Here stretch ratios are defined as the ratio of the deformed 
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and undeform ed dimen s ions. Therefore, if we define the invariants, 

1
1

, 1
2

, and 1
3 

as follows, they are identical to Rivlin' s definitions. 

!1 • Yl + Y2 + Y3 • Yll + Y22 + Y33 . 

(2.5) 

• YllY22 + Y22Y33 + Y33Yll - Y23
2 

- Y12
2 

- Y31
2 

A strain energy function of 11 , 12 , and 13may be expanded in 

a power series of the three variables, i.e., 

(2.6) 
i,j,k•l 

where W(I 1 , r
2

, I
3

) is the stored energy per unit volume in the 

system and C .. k are constants. In the case of an incompressible 
lJ 

material 

and Eq. 2-6 reduces to the following form using similar symbols 

because the terms containing r
3
vanish . 



-15-

"" 
w<r1,I2) - I cij<r1-3) 1 (r2-3)j 

i,j-1 
(2. 7) 

If an analytical form for the strain er.ergy function is 

known, the stress in the system can be ca,lculated. This will 

be shown later. 

If u, v, and ware the elements of a displacement vector 

in the x , y, and z directions , respectively, in cartesian coor-

dinates thedisplaoement tensor, 00 0 can be written 
lJ 

1 Clu Clu Clu +-il x Cly ilz 

Clv 11 0+ Clv ilv 
aij - Clx 0 Cly Cl z 

aw aw 1 + Clw 
dx Cly Clz 

If the system is axially symmetric as in our case, 

tensor, rr 0 0 is written in cylindrical coodinates (r, 
lJ 

1 + ~ 0 au 
Clr ClR. .. 

. aij - 0 1 +~ 0 
r 

aw 
0 1 aw 

ilr + ClR. .. 

... ·. 

(2 .8) . 

the displacement 

fl, .(,') as, 

(2.9) 
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In this case u and ware the radial and axial elements of the 

displacement vector, respectively. Details of the derivation 

of Eq. 2-9 are given in Appendix 1 . 

.. 
From Eq. 2-9 the Cauchy-Green tensor is obtained as, 

0 

(1+-..!:L) 

au (l+aw)+aw(l~-1 
-a.t' a-t' or 'a? 

r 

0 J 
( ~;f+ (1 + ~~)2 

(2-1 0) 

The principal invariants are obtained from Eqs. 2-5 and 2-10 • 
• 

lau ( ilw ilw ilu-1 2 
- 91.. 1 + at .. )+ a; (1 + a.r~ 
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[ 1 uJ 2 I au ( aw ')w au -~2 - + r- a.. 1 + a .. ) + a <1 + -) 
- r ar_ (2 - 11) 

From Eqs. 2-1 , 2-7, and 2 - 11 we may write for the total stored 

energy 

CIO 

C (I -3) 1(I - 3)j d1 ' d r ( r d6) 
ij 1 2 . (2 - 12) 

provided that the material is incompressible. The displacements 

u and w must be found. This will be done in the following section. 

2. 4. Deformation of a Thin Shelled Cylinder 

When the model(c£. Fig. 3) is stretched along the axis 

by the amount 26b, the macroscopic stretch ratio , >.. is given 

by 

>.. = 1 + 6b / b (2 - 13) 

We assume that the displacements u , v, and ware given by 

I 
u = u(r, .t ) 

v = 0 

( I ) ('' - 1)'' w = w r , .t = "' -v 

(2 - 14) 

where >..' is the internal stretch ratio at radius, r , and thus a 

I 
function of r, and .{, is the distance from the plane of symmetry 

normal to the axial direction. Physically, this assumption 
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means that the displacement in the axial direction is proportional 

to the distance from the middle plane .• Direct calculation of 

the strain invariants leads to difficult nonlinear differential 

equations. Instead of the deformation of a cyl.indrical rod 

we therefore consider the axial stretching of a thin-shelled 

cylinder (or tube) of radius R, wall thickness dR and length 

2.f.- as shown in Fig. 2. Over the thickness, dR, "-'may 
0 

be assumed to be constant. Here "-' is the overall stretch ratio 

of a tube which is defined as the ratio of the length of the deformed 

tube to the original length. The tube is deformed under 

the condition that the displacements of every point in the mate rial 

belonging to the tube are described by Eq. 2-.14. If the tube was 

independent of the rest of the material in the system it would 

take the shape for which the total strain energy stored in it 

has a minimum. As a matter of fact , the volume enclosed 

by the tube will be s uqj ect to the condition o f the material 

inside. We will discuss this problem later. Now we obtain 

the strain invariants for the deformed tube by substituting 

Eq. 2-14 into Eq. 2-11 under the condition that "-'is a constant 

as follows, 
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If the material is incompressible, I 3must have a value of 1, 

and we obtain a differential equation in u 

1 ' 

or 

' (l + ~~) (1 + ~) 1 
- -:-1 ). . 

Eq. 2-l 7 can be written 

a 2 2r · 
(r + u) • -;:r ar " 

Integration gives 

· or 

r + u • I~+ f(R.') 

- ·---

(2 - 15) 

(2 - 16) 

(2 - 17) 

(2 - 18) 

(2 - 19) 

(2 - 20) 
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We have thus made use of the incompressibility condition to . 

derive an expression for u. 

Substituting Eq. 2-20 in the first two of Eq. 2-15 the 

invariants are obtained as an expression containing an unknown 

function f(-t') and its derivative f'(/). We have 

I -1 

(2 - 21) 

[f'(R.:")J2 r2 
f (R. ') 

1 r+ r2 
I --+ + x2 + 

2 x2 . 4 r 2 r2 r2 
f ( R. ') v-+ 

. ' 
The function, f(t) . may be determined, at least in principle, by 

substituting Eq. 2 - 21 into the Taylor expansion of the strain 

energy, integrating it, and taking the variation to decide the 

condition at which the total strain energy reaches a mimimum. 

This procedure, however, yields a highly non - linear differential 

I 
equation in f(.t ). and it is not likely to be solved precisely. 

We will assume a certain profile for the tube in the stretched 

state. The shape of a stretched tube must be a surface of revolu-

"tion because the system is axially symmetric. Also, it must 

have mirror symmetry with respect to the plane that is per-

pendicular to the axis and passes the middle point of the axis. 

We approximate the function that defines the profile of the surface 

of revolution at r = R b y 
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R + u • r + A1~v 
0 (2 - 22) 

where r , A, and Vare constants. If both ends of the tube 
0 

are attached to solid surfaces so that the diameter on both ends 

I 
can not change, .R + u = R at .t = .t . On the other hand, the 

0 

diameters on the ends change in some cases. This will be 

I 
discussed later . If this is the case, .R + u =~at.(;= .t

0
, 

where 13 is a parameter. Using A=( I3.R-r )/.tv, Eq . 2-22 
0 0 

can be rewritten 

R + u • .t;.. '+ (SR - r ) (!:_:) v I 
0 0 1 

0 (a - 23) 

First we consider the case of no change in the volame enclosed 

by the tube. Geometrically r is the minimum radius of the 
0 

deformed tube and is attained at .t1 
= 0. This value must be a 

function of the stretch ratio A
1 

and the ratio R/.t . If either 
0 

R/.t is very small or >..'is very large, r will be .R(l/>..')'~, 
0 0 

provided that the e nclosed volume remains constant. This is 

because both cases correspond to simple tension with negligible 

end effects. In other words these cases are equivalent to 

simple extension of a very thin cylindrical block. On the other 

hand, if R/.C, is very large, i.e. if the radius of the tube is 
0 

much larger than its length, the fact that the material in the vicinity 

of both ends restricted in its radial movement gains particular 

I 
prominence. As a consequence the material near .(., =0 must move 

further than would beindicated by .R(l/X.')i to satisfy the condition 

of constant volume of the tube. We shall assume that the value 

of r in this extreme case is given by .R(l/>..'). Then r is 
0 0 
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This is a rather complicated formula, but the simplest one 

(2 - 24} 

that satisfies all the conditions mentioned above. While Eq.2-24 

is an expression for the case in which the volume enclosed by 

the tube remains constant, the volume must change in the case 

of vacuole formation as we will discuss later. The original 

enclosed volume, V , is written by 
0 

(2 - 25} 

After deformation the volume becomes V and it is calculated 

from Eq. 2-23 

'J. A .. 
V • 2 ~ J 0 

(R + u) 2 d'J. 
0 

[

· r r r 
. • 2 ~R2'J.o{ (Ro)2 + 2 [~- (Ro)) Ro /(v :+ 1) 

+ (~ - : 0
) 2 I (2v + 1)] 

(2 - 26} 

We term the ratio, V /V as the ratio of enclosed volume and 
0 



-23-

denote it by f.L· Then we can write, 

[
r r i: r

0 
~ 

~I • (..2..) 2 + 2 (1 -_E.._) (..2.._)/(v + 1) + (1 - -)/(2v + 1)] (2 - 27) 
SR 8·R 8 R 8 R 

Considering the case of volume change suggests that it is more 

reasonable if we replace 1/A.' in Eq. 2-24 by f.L/132 >-.'. The re sult 

is 82,_ .. 
(--- 1) + R/R. 

).J 0 

2(82 '-' - 1) + R/R. 
).J 0 

r
0 

• R(-IJ-) = ~ Ra. 
e2.>.' 

(2 ' - 28) 

Substituting Eq. 2-28 in Eq. 2-27 and solving for V, we obtain 

- (3a - 2a- 1) + / (3a - 2a- 1) 2- 8(a - a2)(a - 1) 
0 0 0 0 

v - ------~----------------------------------------------------------------T--

. , . 2 (2 - 2 9) 

where a.
0 

= iJ./P >-.'. The exponent, V is always larger than 1 

and converges to 1 as f.L/~ 2 >-.' approaches 1. This is desirable 

· geometrically. because, if V :§ 1 , the profile of the deformed 

tube would have a cusp at .t' = 0 which is physically unreasonable. 

Having Eq. 2-23 as the initial condition we can obtain the function, 

f(.t
1

) in Eq. 2-20 as 

. f(R. ') • R2 [a + (1-a) (~ .. ) VJ 2 ,- ~2 . 
0 . 

(2 - 30) 

In the process of deriving Eq. 2-30, r /~ R was replaced by 
0 
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ex.. Substituting Eq. 2-30 in Eqs. 2-21 we obtain the strain 

invariants in the deformed tube at r = R, as 

v2(1-a)2 1 
.. 2(v-1)' 

R2(-) 
R. 

1 0 
I - + 

l 

A .. 2 [a + 
R. .. \1]2 

.2. 2 

(1-a) (1) 
0 

0 

+ [a+ (1 .2. .. \1] 2 A .. 2 -a) (1) + 
0 

v2 (1-a) 2 1 .. 2 ( v-1) 
R2(-) 

[ 1 .. VJ2 
R. 

1 0 
I --+ a+ (1-a)(

10
) 

2 ~2 R. 2 
0 

(2 - 31) 

[
- R.' \1]2 1 + ~2 a + (1-a) (1) 1 + ----=~----

0 [a+ (1-a)(~ .. )\1]
2 

. 0 

We will take Eq. 2-31 as the approximation for the s train in-

variants at r = R for . the model in Fig. 1. 

2. 5. Strain Energy in the Model of Filled Elastomers 

2. 5. 1. No Vacuole Formation 

Since we now have the expression for the strain in-

variants of the deformation tensor of a deformed composite 

system as a function of the coordinates (r, a, .t1
) we can cal-

culate the strain energy in the model by substituting Eqs. 2-31 
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into Eq . 2.-12.. Eq. 2.-12. can be rewritten as 

(2. - 32.) 

where r was replaced by the radii of the tubes, R and W .t is given by 

(2. - 33) 

or 

(2. - 34) 

Numerical calculations show that r
1
-3 and r

2
-3, as given by Eqs. 2.-31 

vary about 2.0 ° /o around the average values as .t' /t changes 
0 

from 0 to 1 when >-.' = 3 and R/.t =1. The variations decrease as >-.' 
0 

increases. This variation is less when R/.t < 1 and increases by 
0 

10 -- 15 <J'o as R/.t -3, which is estimated to be its highest value, 
0 

attained at the maximum random packing of spheres, 0. 63. In 

ordinary elastomers, the contribution of high terms in the 

expansion of the s train energy function, C .. (i+j>1 ), becomes 
lJ 

significant only at quite large values of the stretch ratio. For 

convenience of calculations we may therefore approximate the third 

term in Eq. 2.-34 as follows. 
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(2 - 35) 

In fact if i=2, and the variations in 11 -3 or r2 -3 are as large 

as 50 <Jo the error introduced by this approximation· is less than 

5 7'o. If we define W 
1 

and W 2 as 

.t 
= -1 J 0 (1 - 3)d.t' 

W 1 .to 0 1 

.t 
W = _1 J o (I - 3)d.t' 

2 .to 0 2 

Eq. 2-33 gives 
co 

i j . w .t = 2 r c ij w 1 w 2 
i, j =0 

(2 - 36) 

(2 -3 7) 

Values of W 1 and W 2 are obtained by carrying out the integration 

with the substitution of Eq. 2-31 into Eq. 2-_36 to give 

W1= 
1 

~ + 
V2@2R2P - a~2 1 

a2>..'2 .t 2 (2v- 1) 
0 

+ a2 c cx.2 + 2cx.( 1 1 + (1 
2 1 J + >..'2 - 3 - ex.) v + 1 - a) (2v + 1 ) 

0 

2 2 2 2a( 1 a) (1 - a)2 1 
+ ~ >..' [ a + ( v +- 1) + (2 v + l) ] + 7 ~ (2 - 38) 
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where 9 is defined in terms of Gauss' hypergeometric function 

( 14) 
F(a, b, c, d) by 

= 
l (V-1) ( (2V-l) (3V-2) (a-1) 

a2 v (2 v - l) F 
2

• ( v - l) ' ( v - 1) ' a 

Substituting Eq. 2-37 into Eq. 2-32 we obtain 

W = 4rr~ C .. f R.t W
1
iw

2
jdR 

.. _0 lJL0 o 
l, J-

In integrating Eq. 2-32 we have to divide the interval into 

. I 
two reg1ons, O~R~a and a~R~c, because both .t

0 
and A are 

(2 - 39) 

(2 - 32) I 

different functions of · R in those regions. In the region O::R~ 

these quantities are obtained from the following geometrical 

relations: 

.(., = b- a cos6 = b(l · - ~cos9) 
0 

· R = a 8 in~ = b 1jt 8 in 6 

and 

AI= (Ab- acos9} = 
(b-acos9} 

A- \jlcos9 
l - \jlcos9 

(2 - 40) 

(2 - 41) 

(2 - 42} 

Here 1jt = a/b, and 9 is the angle between the axis and a radius 

that intersects the surface of the sphere to give the radius, 

R of a tube. Also in this re gion the material is in contact 

with the filler surfaces so that the displacements ·on the boundary 

. . 
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are zero. Consequently, the constant, f3 in Eqs . 2 - 35 has a 

value of 1. The ratio of enclosed volume, !J., is also equal 

to 1 because we are considering the case of no vacuole formation 

and the material is assumed to be incompressible. Thus there 

would be no volume change. Cons ide ring these conditions, the 

values of W 1 and W 2 in the region, O:l!.R~. w1, IN and W 2 , IN 

are written 

1 
(2 v- 1) 

+ 
2 1 

a. + 2a.( 1 - a.) _,(_v....;:+_1=-")-
2 1 

+(1 -a.) (2v+1) + >...' - 3 

2 2 2 2 2 
_v--=-.R~(-:-1 ---"'-a..._) _ [ a. 2 a.( 1 - a.) + (l - a.) :J 

-<-2 (2v- 1) + (3v- 1) (4v- 1) 
0 

+ ''[a.2 + 2a.(l - a.) (1 - a.)
2 

"" (V + 1) + (2V + 1):J + ~ - 3 (2 - 43) 

Here the subscript implies that these values are for the inside 

region. The value of a. is given by 

(>...
1

- 1) + Rjto 
1 2(>...' - 1) + .R t 

a. = <-r-) 0 (2 - 44) 

and Vis given by Eq . 2 - 31. 

In the region, a<R:l!c, -<-
0 

and>...' are given by 
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0 

>..' = A. 
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(2 - 45) 

(2 - 46) 

In this case, however, we must obtain the value of i3 because 

the ends of the tube are no longer attached to the surfaces of 

the filler particles. If we assume that the stretch ratio in the axial 

direction is equal to the overall stretch ratio, A., at t' = t , 
0 

the radial stretch ratio and tangential stretch ratio may by 

written in terms of the radial displacement, u, as 

= A. )..1 

)..2 1+~ (2. - 47) 
= aR 

>--z. = 1+~ R 

Because the material is incompressible the product >..1 >-.
2

>..
3 

.must equall, i.e. 

(2 - 48) 

Eq. 2-48 is mathematically identical to Eq. 2.-17 which gives 

the_ ~ollowing solution 

R+u (2. - 49) 
I 

· where C is the constant of integration. Since u must be zero 

at R = a, we can obtain the constant C as 

. 1 2. 
C = (1 - -y- )a 

We can also write 

R+u 
2 

= ,.., '+ + (1 - _1_~ 
~ 1\. ).. R2.· 

(2. - 50) 

(2.- 51) 
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As defined in Eq. 2-23 and its preceding paragraph, P is. obtained 

from Eq. 2.-51. 

=J 
1 l a

2 
p - ~+ (1- -)-

/\. A R2. 
(2. -52. ) 

Now we can obtain the strain energy stored in the tubes in the region, 

a<R<c . Eq. 2.-52 gives 13 and f..L = 1 in this region. w 1 and w
2 

can 

thus b e obtained from Eqs. 2.-38, denoting them by W l, OUT and 

W 2., OUT' respectively, in analogous to W l, IN and W 2., IN(cf. Eqs. 2.-

43 ). W l, OUT and W 2., OUT differfrom W l, IN and W 2., IN only 

in a and \i because of the difference in the values assigned to 13 . 

Finally the total strain energy in the system is given by the following 

equation, at stretch ratio, A 

OW = 2.'!T'~ w1NR.t
0

dR + 2.'!T's: WOUTbRdR (2. - 53) 
... 

Thus WIN and W OUT are the values of W tin Eq. 2.- 32. in the regions, 

O~R~ a and a~ R:§ c, respectively. Eq. 2.-53 can be written, c_orrespon

ding to Eq 2.-32.', as 
0 

W = 4'lT' ; C. 0 [ ~ Rt W 1 INiW2. INjdR 
0 0 _

0 
lJ J

0 
~ o , , 

1 , J-

(2. - 53) I 

The integration can b e carried out numerica:ly with the help of Eqs. 

2.-40, 2.-41, 2.-42, 2-45 and 2.-46. This theory will be extended to 

~he case of vacuole formation in the next subsection. The theory will 

be con:pared ~th experimental r esults later on. 
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2. 5. 2. Vacuole Formation 

When an elastic substance separates from the surfaces 

of filler particles as a composite system is deformed, vacuoles 

are formed around the particles causing a volume change in the 

system. This phenomenon is termed 'dewetting' in subsequent 

discussions. If dewetting occurs under a certain deformation, 

Eq. 2-53 derived in the previous section is no longer valid and 

the effect of vacuoles on the total strain energy must be taken into 

consideration. 

Sampson (
22

), using a system of transparent rubbery 

material filled with spherical inclusions , photographed the vacuoles 

formed around the spheres as the system was stretched. Those 

photographs show that, in most cases, a vacuole originates at 

the closest point to the neighboring sphere on the surface of the 

sphere, and tla t it spreads outward along the surface as the amount 

of deformation increases. In other words , a vacuole of a finite 

volume does not come into existence spontaneously, but it in

creases in size continuously. The shape of the vacuoles resembles 

an ellipsoid or paraboloid with the major axis coinciding with 

the direction of stretching, and they are tangentially in contact 

with the surfaces of spheres . Apparently dewetting is never 

completed no matter how large the stretch ratio may become, 

or no matter how large the size of a vacuole may beco'me . 
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Here, complete dewetting means the state in which a vacuole 

contacts the filler particle only c. round its equate r. In other words, 

a finite amount of the surface area of the sphere is always in contact 

with the continuous phase. 

An attempt was made to calculate the strain energy of a de-

wetting composite system as a function of the overall stretch ratio, >-.., 

and the volume change in the model. This approach required further 

assumptions and produced unsatisfactory agreement with the data. 

As this procedure was already rather complicated, its refinement 

appeared unwarranted. The calculations did show, however, that, 

at a given stretch ratio, the strain energy of a composite system 

first decreases sharply as the volume increases, then slows down 

and reaches a minimum before it increases again. This is easily 

I 
understood if we consider the internal stretch ratio, >-... As 

the volume increases, the stretch ratio decreases because the 

vacuole formation releases the strain. The strain energy reaches 

I 

its lowe3t value when >-.. =1. As the volume increases further, the 

stretch ratio becomes less than unity and the strain energy increases 

again. This behavior can be expressed mathematically and can be 

used to develop simpler approach for calculating the strain energy 

stored in a de wetting s ys tern. 

Let W (>-..) be the strain energy before dewetting as obtained 
0 

in the previous section, and let W . (>-..) be the minimum strain 
m1n 

energy at the same stretch ratio . Then, we can write the strain 

energy function of the dewetting system, W(>-.., v) as a function of stretch 

ratio and volumeratio (which is defined as the ratio of the volume of the 
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deformed system to that of the original system) as shown below: 

W(A., v) = W . (A.)+ [W (A.} - W . (A.)}(A., v) 
m1n o m 1n (2 - 54) 

Let v (A.} be the volume ratio corresponding to the minimum strain 
0 

energy W . (A.). From the definition of W (A.}, f(A., v) must equal 
m1n o 

unity when v=l and decrease to 0 as v reaches v (A.). We now 
0 

assume that the function, f{A., v) has the form 

f(A., v) = f(A., v/v (A.)} 
0 

(2 - 55) 

This assumption implies that the pattern of strain energy decrease 

by dewetting is decided by the ratio of a changed volume to its 

maximum possible value. 

f(A., v/v (A.)) undetermined. 
0 

For the moment, we leave v (A.} and 
0 

W (A.) was already obtained in the previous subsection. W . (A.) 
o m1n 

is calculated as follows. We consider that. when the volume ratio is 

v (A.), the vacuoles are ellipsoids of revolution with the axis of re
o 

volution coinciding with the axis of stretching and the two minor radii 

coinciding with the sphe rical filler particles. We assume that no 

radial displacement takes place during the process in which 

a point of the elastic substance which was in contact with the surface 

of a particle m oves to the new point on the surface of a vacuole . Then 

the strain energy can be calculated by a method similar to that used in 

the previous section with slight modifications. That is, the final 

result is given by Eq. 2-53 as in the case of no vacuole formation. 
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However, changes must be made in Eq. 2-42 which gives the internal 

stretch ratios and the ratio of the enclosed volumes, tJ., which is con-

tained in the definition of a: in Eq. 2-28. The original length 

of a thin- shelled tube of radius R in the model is given by Eq. 2-40. 

The length becomes (>...b- aT)cos8) after stretching to a total 

stretch ratio, >..., for the case of an ellipsoidal vacuole around 

a sphere instead of (>...b - a cos9) given for the case of no vacuole 

formation. This is because the distance of a point on the vacuole 

from the bottom of the model is given by aT)cos 8 instead of 

aces 8 for the case of a sphere, where T) is a constant that changes 

the radius, a, into the major axis of the ellipsoid, a TJ· Consequently, 

the internal stretch ratio,·..,.:, is give~! by 

>....' = >...b a1] cos e 
a case = 

1J1!rcos9 
b - 1 - 1jrcos8 

(2 - 56) 

The ratio of the enclosed volumes , tJ., is no longer 1 in this 

case because the volume enclosed by a cylinder does not remain 

constant after vacuole formation. Fig. 3 shows a schematic 

of vacuole formation. Although it is a more general case than 

the one considered here, the change in the e nclosed volume is 

given by the same principle. lithe radius of the original cylinder 

is R, the change in the enclosed volume after deformation is 

given as the difference between the volume of the shaded portion 

of the vacuole and the corresponding volume of the sphere. 
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The volume of the shaded portion of the ellipsoid, V , is calculated 
a 

by 

Ja~ 2 3 
V = 2 iT(asin9) d(a~cos9) ='fa ~(2 + cos8)(1 - cos9)2 

a a~cos8 
(2 - 57) 

The corresponding volume of the sphere, V , is 
ao . 

v ao = 2 r iT(asin8)
2

d(acos9) = ~ a 3
(2 + cos8)(1 

acose. 

The original volume of the tube, V , is 
0 

The ratio of enclosed volume, therefore, is obtained as 

2 
- cos 6) 

(2-57) 1 

(2 - 58) 

v - v a ao 
fJ. = 1 + --==----=-=

yo 
= 1 +0J.:.llw3(2 + cos e)(l - cos e) ,2 _ 59 ) 

3 (l - wcos9)(1 + cos8) 

In the calculation of W 0 (A.) by Eq. 2-53, Eq. 2-57 instead of 
m1n 

Eq. 2. 42 and Eq. 2-59 instead of fJ. = 1 are used. Integration 

is carried out numerically as before. 

If the form of f(A., v/v (A.)) is known, the total strain energy 
0 

is given by Eq. 2-54 as a function of stretch ratio and volume ratio . 

The determination of f(A., v/v (A.)) will be discussed in Section 4. 
0 0 

The method employed to obtain W . (A.) can be generalized 
m1n 

to obtain the strain energy at any stage of dewetting under 
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the assumption that shape of the vacuoles is known. Details 

are given in Appendix 2. for reference. 

The relation expressed by Eq. 2.-54 will be used to 

calculate stress-strain and volume change - strain curves of 

glass bead-filled elastomers under hydrostatic pressure. 

3. Experiments and Data Analysis 

The purpose of the experiments is to obtain the stress-

strain and volume change-otrain behavior of an elastic material 

filled with glass beads which characterize non- reinforcing 

filler particles as functions of both volumetric loading ratio 

of filler and superposed hydrostatic pressure. 

In this section the experimental equipment and procedure , 

samples and methods of data an~l ysis will be described. 

3. 1. Equipment 
' 

Two special pieces of equipment were used in the ex-

periments . These are the Pressurized Tensile Tester for 

measuring the stress-strain curves under superposed hydrostatic 

pressure and the Hall Effect Thickness Sensor for measuring 

the volume change accompanying the deformat ion of a system. 

3. l. l. Pressurized Tensile Tester 

Details of the pressurized tensile tester were given 
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in the report by Lim and Tschoegl(lS, 
16

). Only a brief des

cription will be given in this section. 

A detailed diagram of the equipment is shown in Fig. 4. 

The equipment was designed in the Central Engineering shop 

of the California Institute of Technology. The equipment is 

basically a tensile tester designed for simple tension experiments 

of ring shaped specimens. A hook is attached to the lower 

eros shead which travels verticallywith constant speeds driven 

by a driving unit. The other hook is connected to a load cell 

of Slb. maximum capacity, which is in turn connected to the 

upper eros shead which is fixed to the frame of the apparatus. 

The crosshead can travel 18 inches. The whole equipment 

is built on a base plate with a threaded socket in which a bell 

shaped s t eel cover is screwed, when in use. When a measure

ment is performed the whole system is tightly sealed by means 

of the cover, the inside is filled with silicone oil and it is pres

surized. Two heating units of 1, 000 and 2, 000 watts are installed 

near the bottom and cooling coils made of copper tubings are 

located near the top. The cooling coils can be operated by 

either water or liquid nitrogen. A mixing blade is located 

at the center of the heating units. The eros shead travel helipot 

converts crosshead displacements into electric signals to 

be recorded. Thermocouples are located near the bottom and 

the upper hook for measuring experimental temperatures and 
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controlling them . The equipment is connected to the accessories 

as shown in Fig . 5 and Fig. 6 . 

Fig. 5 shows the piping schematic diagram. The hydraulic 

system consists of the pressurized tensile tester, a liquid 

reservoir, transfer pumps, a control panel, and 'a nitrogen 

pressure back-up sytltem. The reservoir can store 40 gallons 

of silicone oil. The liquid is pumped into the pressurized tensile 

tester by the transfer pumps. Then , the v:.hole system is pres

surized bythe pressurizing system. The maximum pressure 

used is 2, 000 psi. (138 bars) 

Fig. 6 shows electric connections. The load cell turns 

a stress into an electric signal, the crosshead trave l helipot 

gives a eros shead displacement as a voltage and these a r e re 

corded on the X and Y 1 axes o f an X - Y 1- Y 2 r ecorde r . 
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3. 1. 2. Hall Effect Thickness Sensor 

A number of measurements were carried out to obtain 

the pressure dependence of stress-strain behavior of glass

bead filled elastomers since the pressurized tens'ile tester 

had been built by Lim and Tschoegl(l 6}. It became clear, 

however, that not only the stress-strain relation but also the 

volume change due to stretching of a specimen must be measured 

in order to interpret the whole nature of the mechanical behavior 

of a filled material. The Hall-effect thickness sensor was designed 

to measure the thickness change of a specimen as it is stretched 

in the pressurized tensile tester. 

A charged particle moving in a magnetic field experiences 

a deflective force termed the Lorentz force. When a solid material 

carrying a current is placed in a magnetic field , the electrons 

moving in the material are deflected by the Lorentz force and 

produce an electromotive force in the direction in which they are 

deflected. This phenomenon is called the Hall effect(l?' 18• l9} 

after E. H. Hall who discovered it in 1879. 

The Hall output voltage is proportional to the vector 

product of the current vector and the magnetic field intensity, 

and is given by 
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(3 - 1) 

where V H is the Hall output voltage, w is the width of the material, 

RH is the Hall coefficient, J is the current density' and B is the 

magnetic field intensity as shown in Fig . 7 where T is the thickness 

of the material. The Hall coefficient is a material constant . 

Thus, if the current is constant, the Hall output voltage 

depends only on the magnetic field whose intensity is a single 

valued function of the position in the space surrounding the 

magnet. If a Hall material carrying a constant current is placed 

in the field of a magnet, the Hall output voltage will be a function 

of position. Moving the Hall material along a straight line 

passing through the field, the output voltage will be a unique 

function of the distance from the magnet . If the magnet and the 

Hall material are placed on each one of the two parallel surfaces 

of a non-magnetic specimen, the output will be a function of the 

thickness . The Hall effect can thus be utilized to determine 

the thickness of non-magnetic specimens provided that the Hall 

coefficient is sufficiently large to yield an output which can 

be measured conveniently. For ordinary electrically conductive 

substances the Hall coefficient is negligibly small. Recently, 

however , semiconductors with much la r g·e r Hall coefficients 

have been developed and several are now commercially available. 
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To construct our thickness sensor, we used a Model 

BH-700 Hall effect device manufactured by F. W. Bell Inc. 

The arrangement is s hown diagrammatically in Fig. 8. Here 

M is a small magnet, S is the specimen, H is the Hall device, 

s is a spring made from a non-magnetic metal, and c is a 
p 

clamp which may be opened to install the device on one side of 

a stretched ring. Since the device is very light, the pres sure 

required to keep it in contact with the specimen is negligible 

even with rubbers. 

A Hewlett-Packard Model 6218A current supply provides 

the constant current. The output is preamplified through a simple 

home-built single-pole operational amplifier and fed to the second 

pen (Y 
2

) of the X- Y 1 - Y 2 recorder which is the same as the one 

introduced in the previous section. Construction of the pre-

amplifier became necef' sary because the one supplied by F. W. Bell 

proved unsatisfactory, mainly because of excessive sensitivity 

to changes in ambient temperature. The preamplifier and recorder 

have means to suppress the major portion of the Hall output 

so that only the change in output upon stretching a specimen is 

recorded. 

Any pres sure dependence of the Hall output voltage 

is negligible for our purposes. However the output is quite 

sensitive to temperature. A separate calibration is carried out 

in the pressurized tensile tester using the sliding double 
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wedge blo c k gauge shown in Fig . 9. F 1 and F 2 are small 

frames which hold the two parts of the gauge together and also 

serve as convenient bench marks for calibration. The thickness 

of the block gauge is changed simply by sliding the accurately 

machined aluminum wedges past one another. To calibrate the 

thickness sensor, the block gaug e is installed in the pressurized 

tensile tester, and the magnet and Hall device are clamped 

on. The tester is then closed, the silicone oil is pumped in, 

and the whole assembly is brought to constant temperature. 

The Hall output voltage is then measured as a function of the 

eros shead displacement, which had previously been related to 

the corresponding thickness of the block gauge by measuring 

the thickne ss as a function of bench mark separation with a 

cathetometer sensitive to 0. 0002 em. This relation is linear . 

A typical calibration curve at 25°C is shown in Fig. 10. 

Although the Hall output is proportional to the intensity of 

the magnetic field the relation between the output and the distance 

from the magnet will not be linear because the intensity of the 

magnetic field does not change linearly with the distance from 

the magnet. In fact the calibration curve in Fig. 10 can be 

represented by the equation 

(3 - 2) 

in which tis the thickness and A , B, and C are constants depending 
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on the temperature. The values of these constants at 25°C are 

shown in the figure. The dependence of the output voltage on 

the square of the thickness is a consequence of the geometry 

of the magnetic field. This is s hown in Fig . 11-a where N and 

S are the two poles of the magnet M , and H is the Hall device. If 

the change of the distance between the magnet and the Hall 

device is quite small, the force lines passing through the small 

range may be considered straight lines radiating from a single 

point as shown in Fig. 11- b . Letting S 1 and s2 be the arbitrary 

areas shown in Fig. 11 - b , we can write , u sin g a simple geometric 

theorem, 

OA 

OB 
= 

Since the number of force lines pas sing through the areas 

S 
1 

and s
2
are the same, the intensity of the magnetic field 

B will be inversely proportional to the area, S , and hence 

= 

(3 - 3) 

(3 - 4) 

From Eq. 3 - 1 the output is linearl y proportional to the intensity 

of the magnetic field if the rest o £ the variables are constant, 



-44-

i. e. 

(3 - 5) 

Combining Eqs. 3-3, 3-4, and 3-5 yields 

(a - t)2 
= 2 (3 - 6) 

a 

where a = OB and t = AB. Rearranging, Eq. 3 -6 can be written as 

But VH = VH 
2 

V H , where V H is a constant. Hence 
0 0 

VH 
V = (V - V ) - 2-!._ t + 

H H 1 H
0 

a 

which is identical with Eq . 3-2. 

v 
Hl 2 

2 t 
a 

(3 - 7) 

(3 - 8) 

With our arrangement about 0. 004 inch change in thickness 

corresponds to 1 inch on the recorder chart. Thus in a 0. 1 

inch-thick rubber specimen the thickness change resulting 

from a lOOpercent extension will register as about 7 inches 
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on the chart. This is quite adequate for our purpose but is not the 

limit of the sensitivity of the device. This could be increased 

by a factor of about 10 if required. The device should therfore 

allow determinations of Poisson's ratio in E:lastomers. 

3. 2.. Material 

The samples used in experiments are glass bead filled 

EPDM (Ethylene-propylene-terpolymer) vulcanizates. The 

EPDM is U. S. Rubber Co. Royalene 301T and the glass beads 

are 3M "Super bright'' glass beads manufactured by 3M Company 

which have 2 9 micron diameters. l 00 parts of rubber was milled 

on a 2-rcll rubber mill for 10 minutes and a measured amount 

of glass -beads are added to be milled together for another 

10 minutes . Care was taken not to overheat the mixture during 

the mixing. Then, 3 phr dicumyl-peroxide was added and 

mixed for 10 more minutes . After cooling it to the room temper-

ature, the mixture was vulcanized by compression molding to 

produce sheets of 25. 4x25. 4x0. 318 ern (1 Oxl Oxl /8 in.) , at 

0 162 C for an hour. The specifications of the samples are 

given in TableTI. The crosslinking densities shown in the last 

column were measured by M . Okuyama (2 0). 

Rings of inside diameter 1. 350 in. outside diameter 

1. 500 in. were cut out of the sheets. 



-46-

3 . 3. Measurements and Method ofAnalysis 

In this section the experimental procedures for measuring 

the stress- strain curve and the accompanying volume change of 

a glass-bead-filled rubber vulcanizate ring specimen will be 

described. The method of data analysis for obtaining volume 

change-stress - strain curves will follow. It will contain an estima

tion of end effects , the determination of the point of zero strain, 

and the calibration of Hall output. 

3 . 3 . 1. Volume Change- Stress-Strain Curve 

Preceding actual measurments , the Hall Effect thickness 

sensor is calibrated by the method described in Section 3. 2 . 

In calibrating the sensor , the sensitivity and range of the recorder 

are adjusted so that the full movement of the recorder pen 

across the chart approximately coincides with the change in the 

Hall output for the expected change in the thickness of the specimens. 

Stress and volume change of the samples due to deformation 

were measured on the pressurized tensile teste r . 

To begin a measurement the lower hook of the equipment 

is brought as close to the other hook as poss ible. This allows 

us to hang a ring specimen without deforming it over the upper 

hook. With the specimen on the hook, the lower hoo k is brought 

down far enough t o deform the ring to a n ellipt ical shape but 
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not enough to make it straightened out. At this position the 

specimen is still regarded as unstretched, but it does not 

slip around the hooks when the Hall effect thickness sensor 

is put on it. Care must be taken to locate the thickness sensor 

as close to the middle of the specimen as possible'. At this 

stage the output from the load cell shows the sum of the forces 

due to the bending of the specimen and the weight of the sensor. This 

force is recorded. Next the cover is put over the equipment, 

screwed in and tightened. Hydraulic liquid is introduced, and 

the entire system is pressurized. Temperature and pressure 

are carefully controlled so that the desired condition is main-

tained through the measurement. Before stretching the specimen, 

the stress output is brought back to the value indicated before 

the system was filled with the liquid in order to cancel the 

buoyancy force. The specimen is stretched at a constant speed, 

3. 45 em/min., until it breaks. The stress and thickness 

changes are recorded on the same chart by a two-pen X- Y 1 - Y 
2 

recorder. The pressures used are, 1. 0, 7. 9, 14. 8 , 27. 6, 

69. 8, and 138. 0 bar . (0, 100, 200, 400, 1 , 000, 2, 000 psig ) 

Each measurement is repeated three times to redu::e the 

uncertaintyof the data due to experimental error. 

' .,. , 
( ·- . 
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3. 3. 2.. End Effect . in a Ring Specimen 

When a ring specimen is strefched on a pair of hooks 

the stretch ratio is given by 

A 
a 

= r2.L + Tr(d + .5!:!_ )]/Tr(D. + w) 
l' [\:' l 

(3 - 9) 

where D. is the inside diameter, dis the diameter of the hook, 
l 

w is the width of the ring, L is the distance between the centers 

of the hooks and A is the stretch ratio averaged over the eros s
a 

section. Since D - D. = 2.w, where D is the outer diameter 
0 l 0 

of the ring, we have 

D = (D +D. )/2. =D. + w a o l l 

where D is the average diameter. 
a 

Setting 

(3 - 1 0) 

A = 1 in Eq. 3-9 
a 

so that L becomes L , the initial distance of the hooks, we 
0 

may express din terms of L , w, and D.. Making the necessary 
0 l 

substitutions, it can be shown that Eq. 3-9 is identical with 

the equation of Smith(2.l). We prefer to use it in this form 

because this does not require knowledge of L . 
0 

Eq. 3 -9 has been derived from the geometry of the ring 

assuming that the material is incompressible, and that there 
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are no end effects . In fact , however, the ring is flattened 

out where it is in contact with the hooks, and four "fillet sections" 

develop in the proximity of the hooks . For convenience in con-

sidering the end effects , a ring may be subdivided into four 

sections as shown in Fig. 12 in which the sections'are identified 

by Roman numerals. 

To ascertain whether the end effects could be neglected, 

a ring, cut from a sheet of an unfilled natural rubber vulcanizate 

was bench marked as shown in Fig. 12. The lengths along the 

inside and outside circumferences of the four sections were 

measured with a cathetometer to obtain the initial lengths of 

each section. The ring was then stretched in small increments, 

and the changes in the lengths of the four sections were again 

read with the cathetometer. The resulting stretch ratio will 

be denoted by ~ . Stretch ratios were then calculated using 
meas 

Eq. 3-9 in the form 

~ 
calc = 2L 

lTD a 
+ d+w 

D a 
(3 - 11) 

i.e. suppressing the subscript a for convenience, and neglecting 

the small correction for the change in the width of the ring , 

1/Fa . We have found that with our samples and specimen 

geometry this correction is indeed negligible up to stretch 

ratios as high as 8. 
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By Eq. 3-11 the stretch ratio, >.. 
1 , is a linear function 

ca c 

of the hook dis tance, L. The average stretch ratio in each 

section was obtained by taking the mean values of the inside 

and outside stretches. The un f illed circles in Fig. 12 represent 

a plot of the averag e of >.. against >.. 
1 

. The dotted line is 
mas ca c 

the line of unit slope . The scatter of the values obtained for 

each section is considered to arise from slight changes in the 

thickness and width along the circumference of the ring. 

Since the force acting on any cross section must be the 

same, the stress along the circum£ erence of the ring will be 

inversely proportional to the eros s- sectional area . Therefore, 

if we assume a linear relation between the stress and the stretch 

ratio, the latter will also be inversely proportional to the 

cross- s ectional area along the circumference. This assumption 

is certanly valid for the small dimensional variations considered 

here. If the thickness and width of a given cross-section are 

denoted by t and w, and the values averaged over the cir-

cumference by t and w , respectively, we may write 
av av 

>.. = >.. wt corr meas-w_..:.;:...:...t--
av av 

(3 - 12) 

.where >.. is the cathetometrically determined stretch ratio, , 
me as 

and >.. is the stretch ratio corrected 
corr 
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for changes in the cross-sectional area . 

The filled circles in Fig. 12 represent the data shown 

by the unfilled circles corrected according to Eq . 3-12. The 

data fall almost exactly on the same straight line which is off-

set here by the arbitrary amount A for clarity. The solid line 

was calculated by the method of least squares from the data 

represented by the filled circles. This analysis shows that 

the scatter caused by slight changes in the thickness and width 

along the specimen can be corrected for in the indicated manner. 

It also shows that the end effects cannot be neglected in calculations 

demanding a high degree of accuracy. Since, however, the filled 

circles in Fig . 12 fall on a straight line, the true stretch ratio 

may be obtained from that calculated by Eq. 3-11 by the linear 

relation 

>.. =a>.. + b 
true corr 

(3 - 13) 

The constants a and b will in general, depend on the material 

and the ring dimensions . The constant b is small. Forb = 0, 

1rD /a is an equivalent circumference analogous to the equivalent 
a 

gauge length employed with dog bone shaped tensile specimens . 

3. 3 . 3 . Determination of the Point of Zero Extension 

When a ring is stretched in uniform extension it is first 
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straightened out into the "race track11 shape shown in Fig . 12. 

Little force is required generally to affect this shape change . The 

load-deformation curve, therefore, shows a 11 toe" at small 

eros shead dis placements wnere the force rises less steeply than 

it would if the specimen had had the race-track shape 

in the undeformed state. To determine the point of zero extension 

for the race track shape it is customary to back-extrapolate 

the load - deformation record using the portion of the curve just 

past the toe where it is generally a straight line. In the past 

these extrapolations were done manually. For the measurements 

reported here this method proved inadequate. Because of the 

relatively high filler content the behavior is sufficiently non

linear to prevent the determination of the point of zero extension 

by simple manual extrapolation with the required accuracy. 

We have therefore devised a method based on curve fitting 

which gives excellent results . 

For some unfilled rubber vulcanizates the stress - strain 

curves in simple tension are described fairly well up to a certain 

strain b·y the equation 

-; = ElnA. (3 - 14) 

where a- is the stress , E is Young's modulus, and A. is the stretch 

ratio. In the case of filled elastomers , provided that the filler 
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is rigid and that the material is incompressible . the average 

deformation in the rubbery matrix. A.R. may be approximated 

by 

>..R = 1 + (>.. - 1 >A 1 - cr) (3 - 15) 

where A. is the overall stretch ratio and cp is the volume fraction 

of the filler . Substituting this expression into .Eq . 3 - 14 we obtain 

cr = Eln[l +(A. - 1)/(1- r(l)J (3 - 16) 

Although Eq. 3-15 does not describe the behavior of real filled 

materials. it. nevertheless. has the correct shape and may be 

used for the purpose of curve fitting by regarding the constants 

E and O'las adjustable parameters. To determine the point of 

zero extension by back-extrapolation using Eq . 3 - 16. it is 

necessary to add another parameter A that shifts the curve along 

the A.-axis without changing its shape . The result is 

cr = Cln[ 1 + (A.- 1 - A)/B J (3 - 1 7) 

where the use of the symbols A . B . and C emphasizes that no 

physical meaning should be attached to them. except that C/B = E 

may be regard~d as an estimate o f Young ' s modulus at small 



-54-

strains. 

This procedure has been incorporated into our computer 

program fo r the reduction of the load-deformation records to 

the stress-strain curves . It appears to give more consistent 

results than back-extrapolation using a polynominal fit. 

3. 3. 4. Calibration for the Calculation of Relative Volume 

Change 

When a body i s deformed, letting V and V denote the 
0 

volume before and afte r deformation, respectively, the ratio 

is given by, 

(3 - 1 7) 

where >...
1 

• >...
2

, and >...
3 

are three principal stretch ratios, respec -. 

tively. If t and t denote the widths (thickness) of a specimen 
0 

before and after deformation, respectively, the stretch ratios 

in the two lateral directions are 

t 
= A.3 = -t-

o 

As shown in section 3 . 4. 1 the principal stretch ratio in the 

direction of stretching, >...1 , may be calculated by Eq. 3-12 

for an unfilled elastomer . Attempts to carry out a similar 

(3 - 18) 
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analysis on glass bead-filled EPDM rubber were unsuccessful 

because the specimen failed in delayed rupture when the rings 

were held at a constant elongation during the cathetometer 

reading. Therefore, an indirect method nust be used to obtain 

the true values of >... 1 experimentally. 

2 If the material is incompressible we will have >-.. 1 >...
2 

= 1. 

Eq . 3-18 would then give 

(3 -19) 

Plotting (t /t)
2 

measured by the Hall effect thickness sensor , 
0 

against the separation of the hooks, L, should, by Eq. 3 - 19 

yield a straight line if the material is incompressible . If the 

rubber separates from the filler particles as it is deformed, 

the volume does not remain constant because of the vacuole 

formation. As a consequence, the thickness, t, will not decrease 

as fast as it would if the material was incompressible. A 

plot of (t /t)
2 

against L, therefore, would be curved downward. 
0 

This is shown in Fig. 13 by the data obtained on sample A06 at 

atomspheric pressure (triangles), and at 138 bars pressure 

(squares). In both cases the curve begins as a strai ~ht line 

and later bends down. as expected. This shows that the composite 

material is incompressible until a certain stretch ratio is reached. 

Although it may be possible to calculate thEf. true values 
I 
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of axial stretch ratio, A. 1, by extrapolating the straight portion 

of the curves in Fig . 13, it turned out that it is not accurate 

enough. Another method had to be developed. 

The variation of the output from the Hall effect thickness 

sensor was shown to be a quadratic equation with ;;.espect to 

the thickness, both experimentally and semi-theoretically, 

in Section 3. 2 as 

V H = At
2 

+ Bt + C (3 - 20) 

where V H is Hall output , t is thickness of a specimen and 

A, B, and Care constants. Experimentally obtained values 

of A, B and C will contain some amount of error · and , 

consequently, the thickness, t, calculated from the equation 

will contain some error. Letting A
1

, B1
, and c' represent the 

measured values of A, B, and C, respectively, the relation 

among them is given by 

(3- 21) 

where it is assumed that the Hall output, V H can be measured 

accurately enough so as not to contain any error. If subscript, 

'o 1 , denotes the initial values of all the quantities under consider-

ation, lateral stretch ratios of a specimen are defined by 
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~2 
t =--
t (3 - 22) 

0 

~ I 
t' 

=--
2 

t 
(3 - 23) 

0 

The prime (') denotes experimental values. The ~olume ratio , 

v is given by 

I v' _ ~ I~ 12 
v =-- - 1 2 

vi 
0 

If the material is incompressible, we have v = 1 and ~1 is 

given by 

(3 - 24) 

(3 - 25) 

(3 - 26) 

The experiments described in Section 3 . 2 showed that the 

true stretch ratio, ~ 1 is a linear function of eros ahead displace 

ment, and it is related to the stretch ratio calculated by Eq. 3-11, 

I = z(~ 1 - 1) + 1 (3 - 27) 

I . 
This is because, according to the equation, ~l lS also a linear 
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function of crosshead displacement, and z is an error factor, 

or more precisely, something that should be called an end 

effect factor. 

Solving Eqs. 3-20 and 3-21 fort and substituting the 

solution in Eqs. 3-22 and 3-23, we can get 

and 

A I = 
2 

B
1 

+ J B12 
- 4A ( c I - v H) 

B I +J B 
12 

- 4A
1 

( c I - v ) 
Ho 

(3 - 28) 

(3 - 29) 

where VHo is the Hall output corresponding to the initial thickness, 

t
0

• From Eq. 3-29 VHis obtained as a function of >..
2 

as 

[>.. {B
1
+JB'2 -4A

1
(C

1
-V ) = 2 Ho 

(3 - 30) 

if the relative error in the values of ~:he measured constants, 

A
1
, B 

1
, and C

1 
are aA, .613 and ll.C, respectively, the true values 

are 

I 
A =A (1 - aA) 
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B = B I (1 - .t.B ) . (3 - 31) 

I 
C = C (l - .t.C) 

Substituting Eqs. 3-31 in Eq. 3-28 we obtain 

I 12 2 I I 
B (1 - .t.B) + ,_j B (1 - .t.B} - 4A (1 - AA)[C {1 - .t.C}-VH] 

>-z = 
B

1
(1-.t.B) + j B

12
(1-.t.B)

2 
- 4A

1
(1-.t.A} [ C

1
(1-.t.C}-V ] 

Ho 

2 
B I 1 - .t.B + j B 12 (1- .t.B ) - 4AI [ c I (1- .t.C) - v J 

/1-.t.A 1-AA H 
= --''---=..:;..;:;....._-======:::;=================- ( 3 - 32) 

Bl 1-.t.B + j B12 ..._(_1 -....::.t.;::.:B:::...~-.)2 - 4A~C 1 
(l-AC)- VH

0
] 

/1-.t.A 1-AA 

Replacing (l-AB}//1-AA, and (1 - .t.C) by x andy, respectively, 

V can be written 

>..
2 

= B 1
x + j(B

1
x}

2
- 4A

1
(C

1
y- VH) 

(3 - 33) 
I j I 2 I I 

B x + (B x) - 4A ( C y - V Ho) 

Substitution of Eq. 3-30 into Eq. 3-33 yields 

(3 - 34} 

Eq. 3-34 relates expected values of lateral stretch ratio from 

Eq. 3-11 to the true values. Substituting Eq. 3-27 and Eq. 3-34 

into Eq. 3-24, the dilatation due to stretchin g can be calculated 
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provided that the values of x, y, and z are known . 

If the material is incompressible, v will have the value of 

unity independent of the stretch ratio . If, however, any one or all of 

I 
the parameters x, y, and z do not equal unity, v will deviate 

from unity even though the material is incompressible . Calculating 

v 
1 

from experimental data, i. e. from the eros shead displacement and 

the thickness change, will lead to a curve such as that shown by the 

circles in Fig. 14. By contrast, the curve r epresented by the 

squares, is of the form one expects when the material is incompressi-

ble(i. e. does not dewet) until a certain value of the stretch ratio is 

reached. The experimental curve (circles) can be corrected to give 

the true curve(squares) by choosing a set of appropriate 

values · for x, y, and z, by means of curve fit.ting. The result 

may be used to correct the data of volume change because it 

will be reasonably assured that the calibration constants have 

no relation to whether or not the volume of a specimen is increasing 

during the deformation. A typical example of the calibration 

is shown in Fig. 14. In the figure the circles show a set of 

experimental data of dilatational measurements . After correction 

the experimental values are reduced to the points r epresented 

by squares . In making this correction, measured values of 

I I I 
A, B , and C were used to calculate the values represented 

by the circles. Those values belonging to the region where 

the curve does not yet begin to rise sharply were compared 

to the expected value of l, and the factoz:s x , y, and z were 

determined by a trial-and-error method so as to give the best . 

agreement to each other. 
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4. Results a nd Dis cuss ion s 

Both experimental and theoretical results will be presented 

and compared. First the material constants and experimental 

paramete rs of the material used are calculated . 'Then in the 

succeeding sections, the initial moduli, the stress - strain-

volume chang e curves, and the failure properties of the samples 

will be presented and discussed . For the fi r st two properties 

the resuts will be compared with the theore t ical results. 

4. 1. Material Cons tants and Parame ters 

As discussed in Section 2 the strain energy function 

of a homogeneous and isotropic elastic material should be a 

function of strain invariants . Furthermore , if the material 

is incompressible and the time dependence is negligible, the 

strain energy is a function of two of the strain invariants, 11 

and 1
2

, and is expanded to a Taylor series of the two invariants. 

o:> 

W = L: C .. (I
1

- 3)i(I
2

- 3)j 
i , j =0 lJ 

For the case of simple tension , 11 and 1
2 

are given by 

Il = >-.2 ++ 
1 =-z + 2>-. 
>-. 

(4 - 1) 

(4 - 2) 
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The stress - strain curve is obtained by differentiating Eq . 4 - 1 

by the stretch ratio, >.., as 

aw 
CT =~ 

1 
-2-) + g(>..; c .. ) 

>.. lJ 
i + j > 1 

(4 - 3) 

where CT is nominal stress and g(>..; C .. ) is a function of >.. with 
lJ 

C .. as the parameters. If g(>..; C .. ) is neglected Eq. 4 - 3 is the 
~ ~ 

well known Mooney-Rivlin equation, and the c.onstarits , C 10 

and COl are obtained as the intercept and the slope when 

CT/(>..- >.. -
2

) is plotted against 1/>... The Mooney- Rivlin equat ion, 

however, is not valid in a very wide range of stretch ratio. The 

Mooney stress , CT/(>.. - >.. -
2

), fo r rubbery materials , in most 

cases, blows up as the stretch ratio increases indefinitely. 

Recently Ts choegl (
25

) developed a method of c urve fitting to 

obtain the coefficients ofthe higher terms in Eq. 4--l. According 

to t~"lis method all that is needed t o o btain sat isfactory coincidence 

with the experimental data in most cases is retaining only one 

or two coefficients in addition to c 10 and c 01 . The coeffieciont 

for the strain energy of sample AOl (EPDM pure gum vulcanizate) 

was-calculated according to his method . It turned out that for 

this material the combination of C l O' c 01 and c 22 gives the best 

fit t o the experimental data. Mooney stresse of AOl 

is plotted against the inverse stretch r atio , 1/>.. in Fig. 15. 

The solid curve was calculated from Eq. 4 -3 using the following 
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values for the coefficients. 

cl o = 1. 374 bars. 

COl = 3. 003 bars. 

c22 = 0. 000783 bars. 

In the beginning of Section 2 the model for the composite 

system with the representative dimensions, a, b, and c was 

introduced. The relation between these parameters, however, 

was left undetermined. Obviously the relation must depend 

on the volume fraction of filler in some way. By definition, 

the volume fraction, cp , is related to a, b, and c by 

cp = 

While W is defined by W = ajb, if we let b = c, then cpand 1j1 

are related by 

or 

If this relation holds over the whole range of possible filler 

loading ratios, 1jl increases as cp increases and reaches 1 at 

2 cp = - 3- cr 66. 7 %. S~nce it is obvious that 1jl can not exceed 

1, as long as this condition holds, 66. 7 'I> is the upper limit 

(4 - 4) 

(4 - 5) 
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of the possible loading fraction of filler. On the other hand, 

experiments show that the limit of loading ratio ranges from 

60 to 63 % (26
} and that this range is fairly close to the maximum 

loading ratio of our chuice. It may be reasonable to assume 

that at rna x imum loading all the liller p.1.rticles are effectively 

in contact with each other so that the whole composite system 

behaves as a rigid body. If this is true we may modify Eq. 4-5 

by replacing 2/3 by cp , 
m 

where cp is the maximum loading ratio of filler particles. 
m 

(4 - 6} 

The adequacy of the choice will be tested in the following 

section. 

4. 2. Initial Modulus of a Filled Elastomer 

As mentioned in Section 1 there are a number of theories 

for predicting the effects of filler particles on the Young's 

modulus of filled elastomers. AlthOL'.gh calculating the modulus 

i£J not the main purpose of this_work. it will serve to check 

the feasibility of the theory. 

With the strain energy of a filled elastomer known as 

a function of stretch ratio and volume change, the Young's modulus 

E, of the sys tem is given by 
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E (4 - 7) 

where >.. is the stretch ratio of a simple tension deformation. 

As will be shown in the next section, the volume change due 

to the dewetting under deformation does not begin until a certain 

stretch ratio is reached unless the hydrostatic pressure is 

zero. We, therefore, can use the strain energy function for the 

case of no vacuole formation obtained in Section 2 to compute 

the Young 1 s modulus. Values of second derivative of the strain· 

energy function were computed numerically to obtain the Young's · 

modulus, using the constants and the parameter, $, obtained 

in the previous section. 

The -experimental values of Young's moduli of glass bead 

filled EPDM rubber were calculated as the slopes of the tangents 

of stre ss-strain curves at>.. = l. The results are shown in 

the second c.~lui:nns of Tables .m: to IX, where G is obtained by 

dividing E, by 3. Contrary to the prediction, the experimental 

values of the moduli show a slight dependence on the pres sure 

at high loading ratios at low pressures. This, however, can reasonably 

be attrib'ut:~·~/~ ··the fact that in a hi~hly loaded system, the dewetting ., .. 
begins at such a low stretch ratio that it becomes difficult 

.. 
to measure the initial slope of a stress -strain curve precisely 

before the effect of volume change initiates. 

The eros slink densities (2 0) of the rubber matrices in the 
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samples are shown in Tables :m to IX. The crosslink density 

of the pure gum vulcanizate AOl is 2.. 72.xl 0-
4 

mol/cc. Molecular 

kinetic theory shows that the modulus of crosslinked polymers 

is proportional to the crosslink density. These data allow us 

to correct the experimental values of the moduli in order to 

appropriatedly compare them with the theoretical results . 

If we assume that the material constants obtained in the previous 

section vary in the same proportion as the crosslink density, 

the r esulting values of the moduli vary at the same rate. That 

is, if the c rosslink density of a rubber matrix increases by a 

factor of 2., the modulus of the composite doubles its value . Omitting 

the data in the second columns of the tables that are obviously 

affected by the decrease of the apparent modulus due to dewetting , 

the moduli were averaged over the pressures for each sample , and 

the results were multiplied by the ratio of the crosslink density 

of rubber matrix to that of AOl. That is , 

G corr 

v 
- e = G (-) 

av v 
eo 

where G is the average of the moduli over the pressures , 
av 

(4 - 8) 

G is the corrected value, and V and v are the crosslink corr e eo 

densities of the sample and of AOl, respectively. G normal-
carr 

ized by the value of the unfilled binder, G , a r e plotted as 
0 

G/G in Fig. 16. The solid curve was calculated from 
0 

Eq. 4 - 7 using the material con'Btants and the parameter, ~, 
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obtained in the previous section . The coincidence is fairly good 

in spite of the scatter among the experimental data . . 

4 . 3 . Volume Change - Stress-Strain Curves. 

4 . 3. 1. General Observations 

A few typical examples of volume change - stress - strain 

curves of glass bead-filled EPDM vulcanizates are shown in 

Fig. 19. These are the results of the measurements on sample 

A08 at 5 different pressures. 

The figure exhibits most of the characteristic features 

of the pressure dependence of stress response and dilatational 

behavior of non-reinforcing filler-filled rubber vulcanizates. 

Dilatation of a filled system does not begin until a certain 

stretch ratio is reached. After pas sing through a transitional 

region, where the rate of dilatational change gradually increases 

from zero to a certain positive value, the volume of the system 

increasl::!s linearly with stretch ratio. 

In order to obtain a general idea concerning the dependence 

of dilatational behavior on pressure and filler fraction, it is 

convenient to characterize the volume change-strain curve 

by as few character is tic parameters as possible. Considering 

the typical nature of a curve described above, two parameters 

are necessary and also sufficient for the purpose, namely 

a stretch ratio, A.d, at which volume change begins and the final 
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rate of volume increase, m. For the sake of convenience we 

define >..d as the stretch ratio where back extrapolation of the 

linear part of a volume change-strain curve intersects with the 

A.- axis. Although this is obviously not the real point of volume 

change initiation. it will serve the purpose. 

These characteristic values for each experiment are 

shown in Tables :nr to lX. Despite the fact that fairly large 

scatter in the data makes it difficult to obtain precise information 

one can observe that >..d depends strongly on pres oure but that it 

depends little on volume fraction of filler, if it does at all. 

>..dis plotted against pressure in the lower half of Fig. 17. 

The circles represent the averages over several different filler 

fractions ranging from 0. 089 to 0. 485. A range of experimental 

scatter is shown by a solid vertical line segment and a pair 

of short horizontal bars at both ends . According to the results, >..d 

increases with pressure. In other words the volume change in the 

system is delayed by superposed hydrostatic pressure. 

The change in A.d from 1 bar to 10 bars is about 0. 15 and the 

corresponding value is about 0. 30 in the interval from 10 to 

1 OObars. This implies that much more change p.appens in the 

low pres sure region than does in the higher pressure region. 

Tables :nr to lX show that m decreases with pressure , 

suggesting a lower :i.·ate of volume increase at higher pressure. 

The decisiveness of these observations, however, is obscured 
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by the amount of experimental scatter, and if the observations 

are true the pressure dependence of m is less conspicuous than 

the dependence on the change in filler fraction . Values of m 

are plotted against filler fraction, cp, in Fig. 18 in a manner 

similar to Fig. 17, i.e. a circle· represents an average value 

of mover several different pressures ranging from 1 to 140 

bars and the range of experimental scatte r is shown by a vertical 

line segment and a pair of short horizontal bars at both ends. 

As expected the slope of volume change increases with volume 

fraction of filler, the more so, the higher the filler 

fraction. 

In order to show the change in stress -strain relations 

due to increase in filler content, Fig. 20 shows the experimental 

results from the samples with several different filler fractions at 

14.8 bars . As clearly seen, the more highly loaded with filler 

a specimen is, the stronger the force necessary to stretch it 

in the early stage of deformation. This relation is reversed 

as the stretch ratio increases, i.e. at a highly stretched state, 

the least loaded system shows the highest stress and the most 

highly loaded one has the lowest stress. This implies that 

all the stress-strain curves cross each other at certain stretch 

ratios. Although experimer.ts show that the points of intersection 

fall in a fairly narrow range of stretch ratios-- sometimes it 

looks almost like one point -- this is probably purely coincidental. 
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The stresses corresponding to X.d, denoted by <Td' are shown 

in the upper half of Fig. 17 . <T dis a monotonically increasing 

function of pressure and the rate of increase is higher for a 

more highly filled system. <T d also increases with the fraction 

of filler except at the lowest pressure . 

4. 3. 2. Comparison with Theory 

Consider a system of elastic material in simple tension 

which is in equilibrium at hydrostatic pressure, P , nominal stress, 

<T (stress based on the original cross section of the system}, 

stretch ratio, X., and the ratio of the deformed volume to the 

original volume , v . If the stored energy in this system is 

W(X., v) the change in strain energy caused by small changes 

in the variables is obtained from the following energy 

balance relation. 

dW =<rdX. - Pdv 

or 

awdX. + awdv + Pdv 
ax. av 

If X. is constant we get 

oW dv + Pdv = 0 
av 

<rdX. = 0 (4 - 9} 



or 

p = aw 
-~ 

If v is constant we obtain 

or 

<T = aw 
()}.. 

o-d>-. = 0 
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(4 - 1 0) 

(4 - 11) 

In Section 2. 5. 2 we assumed that the strain energy of a composite 

system was given by Eq. 2-54. As an example of the function, 

£(>-., v/v (>-.))we can select the following expression. 
0 

f(A. , v /v (A.)) = (1 - v /v (>-.))h(A.) 
0 0 

v '~ v (A.) 
0 

(4 - 12) 

If h(A.) is always larger than l, this expression for f(A., v/v (A.)) 
0 

satisfies the conditions mentioned in Section 2. That is , f = l 

at v = 0 , and the function has a minimum, 0 at v = v (>-.). 
0 

Furthermore, this form is simple enough to allow us to treat 

it mathematically. 

Substituting Eq. 2-54 into Eq. 4-10 we can obtain 
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(4- 13) 

Substituting Eq. 4-12 into Eq . 4-13,p is obtained as 

(4 - 14) 

Similar calculations using Eqs. 2-54 and 4-11 give 

(J = 
aw . 

m1n + (1 - _v_ )h(}\)_a_[W (}\) - w . (}\)] 
v (}\) ()}\ o mm 

0 

+ [ W (}\) _ W . (}\) ]h(}\){ 1 __ v_ )h(}\)-1 _ 1 _ 
o mm v (}\) v (}\) 

0 0 

(4 - 15) 

From Eq. 4-14 the volume ratio v is obtained as a function of 

P as 

v 
v (}\) 

0 

Pv (}\) 1 

= 1 - [ h(}\) [w (}\) - w . (}\)} J h(}\) ... 1 
o m1n 

(4 - 16) 

Substitution of Eq . 4-16 into Eq. 4-15 gives the nominal stress, a-, 

as a function of stretch ratio , }\, and hydrostatic pressure, P. 

Functions h(}\) and v (}\) were chosen so that they give 
0 

reasonable agreement with the experimental data on sample A 11 

with filler fraction, 0.· 398 (cf. Fig. 24), 

h(}\) = 6}\ 
3 

(4 - l 7) 



v (X.)= ~(X.- 1)1. 
3 

0 
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(4 - 18) 

Stress -strain curves and volume changes for glass-bead-

filled EPDM samples were calculated numerically using the 

material constants and parameters obtained in Section 4. 1. 

Fig. 21 through 24 show the results for samples A 02, 

A04, A08 and All, respectively. The volumetric loading 

fraction of filler increases from 0. 089 to 0. 398 in this order. 

In plotting the data the values were corrected by the same method 

used for determining the Young's moduli in Section 4. 2. 

In each figure experimental values of stress -strain 

and volume change-strain are shown by solid lines for pressures , 

l. 0, 14.8 and 138.0 bars. The theoretical results are indicated 

by broken lines for 1. 0 and 138 . 0 bars. As expected the agreement 

between the experimental and theoretical data becomes poorer 

as the volume fraction of filler increases; however, the agreement 

is fairly good considering the arbitrariness in choosing the 

functional form of the strain energy W(X., v) . Although it may 

be possible to choose a more complicated form for f(X., v/v (>.. ) ) 
0 

to improve the agreement of the results , we may not be able 

to obtain a closed form for the stress , cr because it may be im-

possible to rewrite Eq. 4-13 to a form equivalent to Eq . 4-16 

in such a case. 

Unlike the agreement in the stress - strain curves, the 
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volume changes predicted by the theory 

than those of the experimental data. This is rather strange 

considering the fact that the theoretically obtained strain energy 

function describes the stress-strain behavior fairly well not 

just for one, but for three variables, namely volu'me fraction 

of filler, stretch ratio and hydrostatic pressure. For examle , 

in Fig. 23 the theory predicts not only the approximate heights 

of stress-strain curves but also the characteristic shapes of 

the curves, which are not monotonous functions. This deviation 

from the experimental data of the volume changes predicted by 

the theory may be because of the special choice of the functions , 

h(:\), and v (:\) we made. 
0 

From the observation discussed above we may conclude 

that, if we choose the functions , h(:\) and v (:\), so that the 
0 

results of the theoretical calculations show reasonable agreement 

with the experimental data at a volume fraction of 0. 398 , then 

the theory satisfactorily predic ts the s tress-strain behavior 

as a function of stretch ratio, volumetric loading of filler, 

and pressure for volume fractions below 0. 398, and pressures 

up to about 140 bar. 

At higher volume fractions the specimens broke before 

dewetting fully developed. The stress-strain curves up to the 

relatively short stretch ratio, ~· at which the specimens failed 

were practically straight lines , the slope of which are given 
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by the initial moduli tabulated on Tables m. to IX. 

The effect of filler-elastomer adhesion on the reinforcement 

of mechanicala behavior of filled elastomer is quite obvious 

in Figs. 21 to 24. 

Superposed hydrostatic pressure prevents filler-elastomer 

separation to some extent as shown by the volume . change-

strain curves in the lower parts of the figures. As soon as the 

elastomer begins to separate from the filler particles, the rate 

of stress increase sharply drops. The higher the loading fraction 

of filler is, the more remarkable the phenomenon appears. 

ln the case of no vacuole formation, the theory predicts a 

nominal stress of 860 bars at A = 2.?, cp = 0. 4; experiments 

give only 11. 4 bars for the same material even at the highest 

pressure , 138 bars, which was actually used. Of course this 

does not mean that this composite will really show a stress of 

860 bars if dewetting is completely prevented. There will be 

many factors that prevent the achie'vement of this extreme 

strength. For example, the maximum internal stretch ratio of 

a composite system with filler fraction of 0 . 4 at A = 2 . 5 reaches 

as high as A= 10. 6 according to Eq. 2-42. Considering that 

the stretch ratio at break of unfilled EPDM sample AOl has a 

value of about 3. 5, it is highly improbable that the stretch ratio 

exceeds the value of 10 even locally. However, the theoretical 

speculation gives an idea about the importance of filler-elastomer 

adhesion on reinforcing effect of filler. 
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4. 4. Failure 

4. 4. 1. General Observations 

In system s heavily loaded with glass beads, a stress-

strain curve often has a m axim a. Sometime's this phenomenon 

may be g enuinely the reflection of a sudde n decrease in strain 

energy due to vacuole formation in the coznposite material, 

but at other times it is caused by local growth of flaws. If the latter 

is the case , caution is needed in determining the true mechanical 

propertie s at break. 

Fig. 25 shows the results of measurements on two different spec-

imensofA13(cp = 0. 459) at 13.8 bars(gauge). In spite of the excellent 

reproducibility of the data, both in stress-strain curves and in 

volume change-strain curves at stretch ratios lower than 

1. l, they deviate from each other at higher deformation. 

Moreover, the shape of the curves becomes quite irregular 

as soon as the volume change-strain curve begins to deviate 

from l. Not to mention the fact that 6V /V could not be ri'egative, 
0 

it is obvious that the d e formation in this region is not uniform 

any longer. Visual observations of the specimens under 

deformation revealed that a large flaw sometimes develops 

locally in the specimen at it is stretched. To be accurate, 

the stress and the corresponding stretch ratio at which a stress-

strain curve begins to show an irregularity in shape are taken 
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as the properties at break. The failure data are shown in the 

last three columns of Tables m: to DC. 

The data for a few of the samples are shown in Fig. 26 

and Fig. 27. In Fig. 26 stretch ratios at break for samples 

A 02, A G8 and A 14 are plotted against hydrostatic pres sure, and 

the corresponding stresses are shown in Fig . 27. 

Of the three cases sample Al4, which is the most highly 

loaded system in the series , is of most interest. In A02 and 

A08 the stretch ratios at break more or less smoothly increase 

with hydrostatic pressure. On the other hand the behavior of 

Al4 is quite unique; that is, A.b exhibits a dramatical drop 

at a pressure of about 10 bars . It becomes clear that this is 

not simply experimental error when one looks into the other 

properties. In spite of the unusual behavior of ~ in Al4, 

the dependence of the stress at break, (;b' is hardly distinguishable 

from the other two samples as shown in Fig. 27. Inspection 

of the dilatational behavior of these specimens shows that 

the volume of specimens under stretching at 1 and 7. 9 bars 

increases quite rapidly, as expected from the high loading ratio 

of filler. In the other four cases, meaeured at higher pressures , 

the specimens break before they show any indication of dilatation. 

This observation suggests that at lower pressures the release 

of large internal deformation due to vacuole formation which 

causes a large stress concentration is str ongly responsible 



-77-

for keeping the specimens from breaking. It further suggests 

that the properties at break of the rubber matrix its elf are not 

at all or only slightly affected by hydrostatic pressure. 

4. 4. 2. Failure Surfaces 

If an elastic material is subjected to a 

deforrna tion, the stress tensor as the response can be character-

ized by three principal values, o- 1 , o-
2 

and o-
3

. When the 

values at rupture are plotted in three -dimensional stress space 

with o- 1 , o-
2 

and o-
3 

as the base axes, they will fall on a character-

is tic surface, which is called the failure surface. Since in 

an isotropic material interchanging o-1 , o-
2 

and o-
3 

does not alter 

the mode of deformation, a failure surface must have the space 

diagonal as an axis of six-fold rotational symmetry as the 

most general case. A space diagonal is defined as a straight 

line consisting of all the equidistant points from the three stress 

axes in the first and eighth octants, where o- 1 , o-
2 

and o-3 all 

have the same sign. 

Lim and Tschoegl(l 6 ), assuming that a failure surface 

is a surface of revolution whose axis is the space diagonal, 

attempted to express it by two variables. Those are 

1 [ 2 2 2 t = 3 ( ()'" 1 - ()'" 2 ) + ( ()'" 2 - ()'" 3/) + ( ()'" 3 - ()'" l ) J 
(4 - 14) 
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Both <ron and <r
0

s are symmetric with respect to <r 1, <r
2 

and 

<T 
3

, and consequently any equation calaining <T and <T as the 
os on 

variables defines such a surface of revolution that was described 

above. Geometrically, /3 <T is the length of the projection 
on 

of a position vector in stress space on the space d 'iagonal, and 

/3 <r os is the distance of the point from the space diagonal. 

Lim and Tschoegl obtained values of <T and <r at 
on os 

break, which are denoted by <T b and <T b' from their simple on, os, 

tension measurments under hydrostatic pressure on glass bead-

filled EPDM vulcanizates. In simple tension the principal stresses 

at break <rl , b , <r2 , b' and <r3 , bare related to the stress at 

break by 

<T 1' b = <T -b 
p 

<T2,b = -P 

<T3,b = -P 

(4 -

where Pis the superposed hydrostatic pressure and <Tb is the 

15) 

true stress at break. Substituting Eqs.4-l5 into Eq. 4-14 we obtain 

<r b and <T b as on. os, 

<Tb 
p <T = 3 -on,b 

2 - (4 - 16) 
<T = T <Tb os,b 
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Plotting (/3cr- b)
2 

against /3cr- b' they found that the failure os, on, 

surfaces consisted of a paraboloidal and a cylindrical section 

corresponding to the higher and lower pres sure regions, respec -

tively. The y refered to the critical pressure at which the 

transition from a cylinder to a paraboloid takes piace as 

<T b(trans) and speculated that vacuole formation is complete-on, 

ly prevented atpressures higher than <T b(trans) . on, 

Unfortunately at the time they did not have a practical 

method for measuring the volume change in a stretched specimen. 

In order to obtain principal stresses one must know the 

true stress of deformation and consequently one must know 

the dilatational properties as well as the force - displacement 

relation for a specimen. Naturally their data could not avoid 

the error caused by the lack of knowledge of the dilatation. 

In this section the volume change-strain curves for the 

samples which were used in their measurements were calculated 

by interpolating the data from the curves obtained for the samples 

we measured and correcting the stress-strain curves to obtain 

the true stresses at break. The results show considerable 

differences from the conclusions they reached. 

/3cr- b is plotted against /3cr- b in F i g . 28, and os, on, 

29, for all the samples measured . Attempts to fit these data 

by a continuous and s.mooth power function were not successful. 

As clearly shown in the figures each curve consis t s of two 
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straight line segments ·. As for the shape of a failure surface, 

this implies that it consists o{ two cones with different opening 

angles, provided that it is a surface of revolution. This assump-

tion may be reasonable for an isotropic system, including 

a system such as filled polymers that is homogeneous only from a · 

macroscopic point of view. However , one could not expect 

a dewetted glassbead-filled polymer to be isotropic; i.e . the 

shape of vacuoles formed around particles will depend on the 

mode of deformation, and consequently the mechanical properites 

will also depend on the mode of deformation. In order to discuss 

the characteristic of failure surfaces appropriately, it will 

be essential to mea~ure the p roperties at break by not only 

simple tension deformation but also at least one other type 

of deformation such as, simple shear, pure shear, biaxial, 

etc. In the following discussion, however, we assume that the 

failure surfaces are surfaces of revolution, simply for convenience . 

The curves shown in Fig. 28 and 29 are the intersections 

of failure surfaces with a plane that contains the <Tl axis and 

the space diagonal. All the curves in Fig. 28. and 29 are 

replotted on Fig . 30 for comparison. Each curve can be expressed 

by the following two equations. 

()'" = -c l <Ton, b + C2 ()'" ~ <T b (trans) 
os,b on,b on, 

- C3<T on, b +C4 !l: 
(4- l 7) 

()'" 
os,b = ()'" 

on,b <T b (trans) on, 
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In the equations, r:J b{trans) is the value· of r:J b at which 
on, on, 

the two straight lines intersect, and c 1, c
2

, c 3 and c
4 

are 

constants. We will call the portion of a curve belonging to the 

re gion, r:J b ~ r:J b(trans) the first cone and the other the second on, on, 

cone. At first glance all the curves look parallel', 'and for the 

second cones this is true because there is no significant dependence 

of the slope on the volume fraction of filler. A closer inspection 

of the first cones, however, reveals that the slope increases 

with the filler concentration from A02 (cp = 0. 089) to A07 (cp = 0. 258). 

(with the exception of AOS (cp = 0 . 200)), and decreases again as 

t rhe filler concentration further increases. This may be too con-

sis tent to be neglected as experimental error. 

c 1 and c
3 

are plotted in Fig. 31 as a function of filler 

concentration. C 1 has a sharp maximum at about cp = 0. 22 

while c
3 

remains constant regardless of the value of filler 

cone en tra tion. 

c
2 

and C 
4 

are shown in Fig. 32 also as a function of 

the volume fraction of filler. Both decrease linearly with 

the filler concentration 1n the range of experiments. Since the 

value (24. 4 bars) of c
2 

at cp = 0. 0 is much higher than the value 

expected from linear behavior, it may be more reasonable 

to assume that the c
2

- and c
4

-curves are concave upward . 

Experiments show that the failure properties of unfilled EPDM 

· do not depend on pressure; i . e. the value of c 1 and C 3 of AOl 
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is 0. Although the values of c 3 in Fig. 31 show a slight indication of a 

drop at cp =0. 089 and 0. 132, a sharp drop must take place in 

the narrow range between cp = 0. 1 and 0. 0. 

The values of cr b(trans) range from -5. 77 to -24. 2bars, on, . 
and they do not show any consistent dependence on filler concentra-

tion. This range is quite narrow compared to the range of 

hydrostatic pressure where the experiments were performed 

so that one can safely say cr b(trans) is a critical value on, 

independent of pressure. The behavior of cr b(trans) is almost 
OS, 

identical to that of c 2 and C 
4

. 

The significance of cr b(trans) as a critical value is on, 

not clear. This could not correspond to the initiation of vacuole 

formation because, according to the experiments described 

in the previous section, only Al2 and Al4 among the samples 

break under deformation before vacuoles are formed. Even 

for these highly filled samples it happens only at high pressures. 

cr b(trans) may be related to the release of stress concentration on, 

due to vacuole formation. 

In conclusion the failure surfaces consist of two cones, 

provided that they are surfaces of revolution, and the pair 

of cones intersect at a constant value of cr bregardless of on, 

the filler concentration. 
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5. Conclusions 

Mechanical behavior described in preceeding sections 

may be summarized as; 

l. A glass bead filled - EPDM vulcanizate behaves as a 

typical non-reinforcing filler-filled elastomer at atmospher

ic pres sure. 

Z. Typically, the volume of a glass bead-filled EPDM 

vulcanizate begins to increase as the stretch ratio 

reaches a certain value. After a transitional region 

the volume increases linearly with the stretch ratio. 

The initiation of volume change is delayed by hydrostatic 

pres sure, but it does not depend on volume fraction of 

filler . The steady rate of volumeincrease is an increasing 

function of volume fraction of filler. This also seems 

to be a decreasing function of pressure , although it is 

not conclusive because of experimental scatter. 

3. The theory for the strain energy of composite systems 

derived in Section 2 had good agreement with the experi

mental data in the Young 1 s moduli and stress- strain 

curves of glass bead-filled EPDM vulcanizates as functions 

of appropriate variables; i. e . volume fraction of filler 

in the Young's moduli and volume fraction of fille.r , 

stretch ratio, and hydrostatic pressure in stress-strain 
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behavior. 

4. The failure surface of a glass bead-filled EPDM vulcanizate 

consists of a pair of cones. The value of CJ' b at which on, 

a transition from one cone to the other occurs does not 

depend on volume fraction of filler. 
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Appendix 1. D e for matio n T ensor in a Cylindrical Coordinate 

System 

If a pair of closely located points are given the coordinates 

{r ' a 'z ) and {r +dr, a +da, z +dz) in a cylindrical coordinate 

system and the corresponding cartesian coordinates are {x , y , z 
' 

and {x +dx, y +dy, z +dz), respectively, there exist the following 

relations between them 

x = rcosa 

y = rsin8 (A - 1) 

z = z 

and 

dx = cos 8 d r - r sin 8 d 8 

dy = sin8dr + rcos8d8 {A - 2) 

dz = dz 

Since the distance between a pair of positions is given as the 

square root of the sum of the squares of differences of each 

coordinate in a cartesian coordinate, the distance ds is given 
0 

by 

(A - 3) 
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Substituting Eq . ..A-2 in Eq . A-3 yields 

If the two points move to (r +u, 9+ ...::!..._, z+w) and 
r 

I 
I V I 

{r +dr+u 1 e +d9+ r +dr 1 Z +dz+w ) 1 respectively, after a 

certain amount of deformation of the system, d, ../, and w
1 

can 

be related to u, v, and w by simple relations, where u, v, and 

w are radial, tangential and axial displacement. Because 

dr, d8 and dz are small quantities, we can write 

and 

d = u+du = u + ~~ dr + ~~ d6 + ~~ dz 

I OV OV 0v 
v = v+dv = v + --a;- dr + -a-8d e + --a;- dz 

w
1 = w+dw = w + ~; dr + ~e de + ~;'dz 

I 
v 

r+dr = 
v+dv 
r+dr 

_ _ v_ + dv _ 
r r 

vdr 
2 

r 

neglecting the higher terms of differentials. 

(A - 5) 

(A - 6) 

Similar to Eq. A-4, the distance between the two points after 

the deformation, ds , can be w:;.·itten 
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2 2 2 e dv vdr 2 2 
{ds) = (dr+du) + (r+u) (d + -r-- - 2-) + (dz+dw) 

r 
(A - 7) 

Using Eqs .A-5 into Eq. A-7, one can rewrite it, using 

matrices as, 

Il l+~ (1+~)(~-..:!....) ow or r or r a;-
1 

2 
(ds) = (dr, rd6, 

I 
dz) _l_~ (1+~)(1+-l- av ) _r1 aaa 

r ae r r ae 

1+~ or 

au ( 1 ~)..£.L az- r oz 

1 au -rae- dr 

X (1+~)(1+-1- av ) (1+~) av rd8 
r r as r oz 

ow 1 ow 
ar -;as 1 + ow 

8z 

(A - 8) 

Comparing Eq . A- 8 with Eq. A-6 the deformation tensor a. . 
lJ 

is 

dz 



1+ .E.£_ ' or 
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1 au 
-rae-

( 1 + ..£...) ( .2..!:._ - .::!.._) ( 1 + ....11..) ( 1 + .l ~ 
aij = r a r r r r a If' 

ow 
--ax:-

1 ow rae,. 

( 1 + ~ ) .2..!:._ 
r az 

1 + ow oz 

(A - 9) 

If a s ys tern is axially symmetric the tangential displacement 

is always zero, and in addition all derivatives with respect to 9 vanish. 

The deformation tensor then becomes 

1+ .E.£_ or 

a .. = o 
lJ 

ow 
or 

0 

1+~ 
r 

0 

au az-

0 

1+ aw oz 

The Cauchy-Green tensor, y . . , is given by 
lJ 

•- .~. 

- ;- -:---- -

(A - 1 0) 



= 

yij = a.ki ~j 

(1+~)2 + ( aw)2 
ar ar 

0 

-8 <t-

( 1 +~)( aw )+(-~~-Hl+ ow) 
ar ar az az 

This is the necessary relation. 

0 (1+ au-) aw +~(1+ aw ) 
a r or az az 

0 

0 

(A - 11) 
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Appendix 2. Strain Energy Functionof bewetting Composite 

System 

Rigorously, vacuoles will be allowed to take only one 

shape, v.hich gives the minimum total strain energy at the same 

volume. One must choose a certain function to define the shape 

of the vacuoles , however, because it is quite unlikely for one 

to be able to obtain the precise mathematical expression for 

the shape of the vacuoles . In making an appropriate choice we 

must keep in mind that the approximation should satisfy as many 

~::xperimentally observed conditions as possible while it should 

be simple enough not to hamper the mathematical treatment. 

After havingtried several possibilities we came to the conclusion 

that the following function may best serve the purpose. The 

necessary notations are schematically shown in Fig. 3 with 

the general idea of the derivation. Since the system is axially 

symmetric, the shape of a vacuole must be a surface of revolution. 

We use a two dimensional rectangular coordinate system, (X, Y) in 

the discussion for convenience. The correspondence between 

I 

the new coordinate system and the (R, 8, .t) system used 

before should be obvious from Fig. 3. The origin of the rectan-

gular coordin ate system coincides with the center of the circle 

at the bottom. If the distance of a point on the circle from 

the X - axis is given by bx, at X = R , x is given by 
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x = $cos8 (A - 12) 

where * = a/b, a is the radius of the circle and b is the half 

distance between the centers of two circles. If a point represented 

by X moves by the distance from the X-axis , by, after vacuole 

formation, the internal stretch ratio, A
1
, which has the same 

physical significance as in the Section 2. 5. 1, is given by. 

AI = A - y 
1 - X 

(A - 13) 

Determining the functional form of y is equivalent to deciding 

the profile of the vacuole as a function of x , or R. y should 

have a maximum at x = *or R = 0, and the value of the maximum 

increases as the volume of the vacuole increases. However, 

the value can not increase indefinitely because the space between 

the surfaces of the spheres facing each other is limited. 

Consequently, it is reasonable to set a limit on the value of 

y at x = $, the corresponding internal stretch ratio is given 

by Eq. A-13, 

A - 7)~ 
1 - $ 

and by the phy sical restriction this value must be positive. 

That is, 



A. - 114' > 0 

1 - * or 

-92-

{A - 14) 

where T) is the physically possible upper limit of '1· Comider 
0 

an ellipse described by 

2 
a 

which passes a point {0, T)a). If we assume that {Xd' Yd) 

{A - 15) 

are the coordinates of the intersection of the ellipse with the circle 

representing a filler particle and that Yd decreases linearly 

from a to 0 as T) increases from 1 to TJo• we can obtain the following 

relation which gives the necessary information about internal 

stretch ratio and volume change for calculating the strain energy. 

The details of the de~ivation are given in Appendix 3. 

From the definition of x, y, X and Y, the following 

relations between them exist. 

y = by 

X = b(4'2 - x2)t 
(A - 16) 

Denoting the value of x corresponding to (Xd' Yd) by xd' from 

the assumption concerning Y d mentioned above, xd is given by 

1)0 - T) 

xd = $ 1) - 1 
0 

{A - 1 7) 
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From the condition that the ellipse given by Eq . A-15 intersects 

with the circle at x = xd, } is obtained as 

(A - 18) 
,1,2 2/ 2 
'I' - xd TJ 

Consequently y is given by 

,r, 2 2/ 2 
2 'I' - X d T') ,2 2 

1jl - ---=--=---=---- ( 1jl - X ) 
W2 _X 2 

d 

(A - 19) y = v 
In case of vacuole formation the volume of the region enclosed 

by the broken lines and the two horizontal lines pas sing through 

the upper and lower ends in Fig. 3 is not the same as that of 

the original cylinde r. The increase in the enclosed volume 

is the difference between the volume of the shaded regions of 

the vacuoles and the corresponding volume of the sphere . 

The ratio of enclosed volume, iJ., after the necessary calculations 

is given by 

2 2 
r 

1-L = 1 +~ 

J /(1-x) 



1 ( l!l - x }(2 1!•+x ) 
-3 (1-x)( *+ x) 
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(A - 2 0) 

m the rang e xd < x < ljr . At x=xd' the value of fJ., denoted by 

fJ.d' becomes 

(A - 21) 

In the range , 0 ~ x ~ xd (Rd~ R ~a) , the absolute value of the 

increase of enclosed volume is constant and is given by 

Since the original value of the enclosed volume at a certain x 

is 

3 2 2 
21Tb ( 1 - X) ( $ - X ) 

the ratio of enclosed volume , fJ. , is given, in the range , 0 ~ x~ xd 

by 

(A - 22) 

Similarly, in the range, a < R < c , fJ. is given by 
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1.1 = 1 + (A - 23) 

Eqs. A-20, A-22 and A-23 give all the information needed 

for the value of 1.1· Corresponding to Eqs. A-20, A-22, and 

A-23 the internal stretch ratios in these three regions are given 

by 

>... ' 
)\ - y 

xd < x :!1! * (0 :!1! R < Rd) = 1 - X 

>...' 
)\ - X 

0 :!1! x :!1! xd (Rd :!1! R :!1! a) (A - 24) = 1 - X 

>...' = )\ a:!1!R:§c 

The total strain en~rgy is obtained by carrying out the integration 

in Eq. 2-32. However, in this case, the inte rval of integration 

must be divided into three ranges, 

(A - 25) 

where WIN, d' WIN, nd' and W OUT are the s train energy in dewetted, 

non-dewetted, and outer shell regions, respectively. The se 

are given by the same form as Eq. 2-37, 

WN =. ~ 0 C .. Wl Ni W2, Nj l, J = lJ • 
(A - 26) 
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where the subscript N is a dummy to be replaced by, IN, d, 

IN, nd, and OUT, respectively, corresponding to each case. 

Constants and functions needed in the calculations are summa

rised in Table I. 

The integrations can be carried out numerically. 
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Appendex 3. Ratio of Enclosed volume 

Consider an ellipse described in a rectangular coordinate 

system, (X, Y), by 

x2 y2 2 
2+-2-= a 

A 11 
(A - 27) 

If the ellipse intersects a circle of radius, a, with the center 

on the orig in at a point (Xd, Yd}, Xd and Ydwill satisfy the 

following simultaneous equations, 

y 2 
+ d = -2-, 2 

a 

2 = a 

(A - 28} 

We introduce a new coordinate system (x, y) which is related 

to (X, Y) by 

y = by 

(A - 29) 

Geometrically, x is the normalized distance of a point on the 

circle from the X-axis given by ~cos 6 and y is defined as the 
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ratio between the distance of a pair of points on the ellipse and 

the circle with the same X- coordinate and $ =a/b. Substituting 

Eq. A - 29 into Eq. A - 27, we obtain 

2 
+ L_ = 1jl2 

2 ,., 

The circle is given by 

y=x 

The simultaneous equations A-28 are converted to 

2 

+ !£__ 
2 ,., 

The internal stretch ratio, A.', is given by 

A.' = A. - y 
1 - X 

(A - 30) 

(A - 31) 

(A - 32) 

(A - 33) 

from the definitions of x and y, because the original distance 

between the facing circles at a certain value of x is 

2(b - bx) 
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and the length after deformation is 

2(A.b - by) 

From Eq . A-29, y is TJW at x = 1jr (X = 0). While the internal 

stretch ratio, A
1

, is given by (A.- 1'] * )/(l - 1jr) at x = \jr , and 

I 

the value decreases as 1'] increases, A. must be positive for 

obvious reasons. When A.' = 0 , 1']\jr =A. or 1'] = A./1jr. Since the 

minimum value of T] is obviously 1, T] could vary at most from 

1 to A./1jr. If we assume that the profile of a vacuole is expressed by 

the ellipse of Eq . A - 27 and that the value of x at the point of 

contact with the surface of the sphere, xd ' linearly decreases 

from 1jr to 0 as 1'] inc r eases from 1 to 1']
0 

( =A./1jr ) . xd is given 

by 

TJo - 1') _.;::.__;:-- * 
1') - 1 

0 

(A - 34) 

Eliminating yd from Eqs . A - 33 and solv ing it fo r A
2

• we obtain 

(A - 35) 

Substituting Eq . A - 35 into Eq. A - 30, y is obtained, after r e-

arrangement, as 
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y = T) (A - 36) 

While the nature of a vacuole is de scribed by Eqs. A- 35 and 

A-33. the volume of the region enclosed by the surface, the 

profile of which is shown by the broken lines in Fi'g . 3 and 

the two horizontal planes on both ends, increases as the system 

is stretched and/or the size of the vacuole increase. The 

region was originally a eire ular cylinder of radius, R, and 

length, 2-!, . The amount of increase of the volume is the same 
0 

as the difference between the part of the vacuoles represented 

by the shaded area and the corresponding portion of the spheres 

in Fig. 3. The original volume of the 

from geometrical relations. 

cylinder, V , is obtained 
0 

(A - 37) 

The volume of the shaded region of the vacuoles , V is computed a 

JT)a 2 
by carrying out the integration X dY. The result of the 

computation is 

v 
a 

-) 2 $ -

y 

(A -38) 
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The corresponding part of the spheres, V , is calculated 
ao 

similarly to give 

v ao = 2rrb
3 

2 
3 ( $ - x) (2 $ + x) 

The ratio of enclosed volume, fJ., is obtained from the definition, 

fJ. = 1 + 
v - v a ao 

yo 

2 
/( 1 -x) _ 1 ( W - x)(21lt+x) 

3 (1 - x)( W + x) (A - 39) 
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Fig . 1 Illustration of a Model of Composite Syste.I:r..3 
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2A.b 
I 
I 
I 

t I 
\ x..t \ y 

0 
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~ 

X 

by 

1-C~t----- a -----c,....j 

Fig. 3 Schematic Explanation of the Internal Deformation for 

the Case of Vacuole Formation 
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Fig. 6 Electric Schematic :for the Pressurized Tensile Tester. 
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Fig. 9· Sliding Wedge BlockGauge 
for Calibration of Hall Effect 
Thickness Sensor . 

, . . 
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1 Fig. 10 Typical Calibration Curve for Hall Effcet Thickness 

Sensor 
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Fig. 11 Schematic Explanation of Quadratic Dependence of 

the Hall Output on the Thickness 
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Fig. 13 Reciprocal of the Square of the Lateral Contraction. 
Measured with the Hall Effect Thickness Sensor as 
Function of the Stretch Ratio , >-.. '. 
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Fig. 14 Volume Change -Stress-Strain Curve . Comparison between 
the Measured and Corrected Values 
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Fig. 16 Initial Moduli of Glass Bead-Filled EPDM Vulcanizates 
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Table I 

Summary of the Theoretical Results 

No Vacuole Formation 

~ ( 
W = 2rrj

0 
W INR.t0 dR + 2irb JaW OUT R dR 

(1) (2) 

Vacuole Formation 

W = 27T (d WIN, dR.to dR + 27T s; WIN, ndR.to dR 

(3) d (4) 

c 
+ 2rrb s W OUTRdR 

a 
(5) 

1 [v PR(l-a)] 2 1 
2 '2 F + -=-2-:-v~---:-1 

~ A .e, 2 
0 

2 
+ 132[ 2 + 2a (1-a) I (1-a) J + A'2- 3 

a V+l 2V+l 

N =IN, O UT, 

IN, d, IN, nd, OUT 
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· Table I (Cont'd) 

w2, N 

2 
+ 2 a( 1 - a) + ( 1 - a ) ] 

3v-1 4v-1 
0 

+ Q2, ,2[a2 + 2a(l-a) + (1-a)
2 

] 1 . 3 ~ 1\. v + 1 2 v+ 1 + 7F -

-(3a -2a-1) +)(3a -2 a -1)
2

- S(a - a
2

)(a -1) 
v = ____ o~----------~0----------~o ____ ~o __ __ 

~ = 1 for ( 1 ) ' (3) and (4) 

p J+ + (1 
1 a

2 
for (2} and (5) = - --)-

>-. R2 

>-.' = >-.- y for ( 1 ) ' (3), and (4) 1 -X 

[: 
= X for ( 1) and (4) 

~,2- X 
2 2 2 

= (1)12 - _ d_) 1jt - x for (3) 
2 1jt2 2 

'l1 -xd 

,0 - , 
1)1 xd = 1 , -

0 



-136-

· Table I (Cont 1d) 

>...' = 'A. 

{.0 = b(1 - x} l 
2 2 .l_ 

R = b{W - X )"2 

{. = b 
0 

R = R 1 

·-;; . . 

2 2 

2. 2. 

for (2) and (5) 

for (1 ). (3) and (4} 

for (2} and (5} 

for (3} 

(1,-xd)(W -xd ) 

~ = 1 + (~d-1) (1-x)(ljl2.-x2.>. . ./' 
for (4) 

. 2 2 
(1-xd)(ljl -xd ) a2. 

~=1+(~d-1) ljl2 R2 

1..1. = 1 

for (5) 

(2. ~+xd ){ljl-xd) J . 
(ljl + xd)(1-xd) 

for (1) and (2.) 
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Table li 

Composition and Properties 

of 

Glass Bead-Filled EPDM Vulcanizates 

I d e ntification 

AOl 

A02 

A03 

A04 

A05 

A06 

A07 

A08 

A09 

AlO 

All 

Al2 

Al3 

A l4 

29 1..1. glass beads diameter 

Parts 
by 

Weight 

0.0 

26 . 0 

40.0 

52 . 0 

66. 0 

8 0. 0 

92. 0 

105. 0 

132.0 

150.0 

175. 0 

200. 0 

225 . 0 

250. 0 

Volume Fraction 

0. 0 

0 . 089 

0 . 131 

0 . 164 

0 . 200 

0 . 232 

0.258 

0.285 

0. 333 

0 . 362 

0.398 

0. 430 

o. 459 

0. 485 

D ensity 

(g/cc) 

0.875 

0. 986 

1 . 048 

1. 076 

1 . 141 

1. 204 

1. 237 

1.266 

1. 330 

1 . 348 

1 . 369 

1. 472 

1. 491 

Crosslink 
D~Aity 

(xl 0 mol/cc ) 

2 . 72 

1. 32 

3. 11 

2 . 80 

3 . 14 

3 . 32 

3.50 

3 . 53 

4 . 18 

3. 93 

3.95 

4.75 

3.91 

--
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