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c ABSTRACT

The Young's modulus, stress-strain curves, and failure
properties of glass bead-filled EPDM vulcanizates were studied
under superposed hydrostatic pressure. The glass bead-filled
EPDM was employed as a representation of composite systems,
and the hydrostatic pressure controls the filler-elastomer
separation under deformation. This separation shows up as
a volume change of the system, and its infuence is reflected
in the mechanical behavior as a reinforcing effect of variable
degree.

The strain energy stored in the composite system in
simple tension was calculated by introducing a model which
is described as a cylindrical block of elastomer with two
half spheres of filler on each end with their centers on the axis
of the cylinder. In the derivation of the strain energy, assumptions
were made to obtain the strain distribution in the model, and
strain energy-strain relation for the elastomer was also assumed.
The derivation was carried out for the case of no filler-elastomer
separation and was modified to include the case of filler-elas-
tomer separation.

The resulting strain energy, as a function of stretch ratio
and volume of the system, was used to obtain stress-strain

curves and volume change-strain curves of composite systems
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under superposed hydrostatic préssure.

Changes in the force and the lateral dimension of a ring
specimen were measured as it was stretched axially under a
superposed hydrostatic pressure in order to calculate the mechanical
properties mentioned above. A tensile tester was used which
is capable of sealing the whole system to carry out a measurement
under pressure. A thickness measuring device, based on the
Hall effect, was b.uilt for the measurement of changes in the lateral
dimension of a specimen.

The theoretical and experimental results of Young's
lmodulus and stress-strain curves were compared and showed
fairly good agreement.

The failure data were discussed in terms of failure surfaces,
and it was concluded that a failure surface of the glass-bead-filled

EPDM consists of two cones.



-v-

TABLE OF CONTENTS

1. Introduction
2. Theory
2.1. Introduction
2.2. A Model of Composite Systems
2.3. Deformation Tensor and the Invariants
2.4. Deformation of a Thin-Shelled Cylinder
2.5. Strain Energy in the Model of Filled Elastomers
2.5.1. No Vacuole Formation
2.5.2. Vacuole Formation
3. Experiments and Data Analysis.
3.1. Equipment
3.1.1. Pressurized Tensile Tester
3.1.2. Hall Effect Thickness Sensor
3.2. Material
3.3. Measurements and Method of Analysis
3.3.1. Volume Change-Stress-Strain Curves
3.3.2. End Effect in a Ring Specimen
3.3.3. Determination of the Point of Zero Extention
3.3.4. Calibration for the Calculation of
Relative Volume Change
4. Results and Discussions
4.1. Material Constants and Parameters

4.2. Initial Modulus of Filled Elastomers

10
10
ol
13

14y

24
31
36
36
36
39
45
46
46
48

51

54

61
61
63



—yi=

4.3. Volume Change-Stress-Strain Curves 66

4.3.1. General Observations 66

4.3.2. Comparison with Theory 69

4.4. Failure 75

4.4.1. General Observations ' 75

4.4.2., Failure Surfaces 77

5. Conclusion 83

Appendix 1. Deformation Tensor in a Cylindrical
Coordinates System 85

Appendix 2. Strain Energy Function of Dewetting

Composite Systems ' 90
Appendix 3. Ratio of Enclosed Volume 97
Figures . 102
Tables : 134

References 146



10

11

12

13

14

15

~vii-

LIST OF FIGURES

Illustration of a Model of Composite Systems

Schematic Explanation of the Deformation of a Thin-shelled
Cylinder

Schematic Explanation of the Internal Deforma‘xtion for the
Case of Vacuole Formation

Schematic of the Pressurized Tensile Tester

Piping Schematic for the Pressurized Tensile Tester
Electric Schematic for the Pressurized Tensile Tester
SchematicIllustration of Hail Efect

Schematic of Hall Effect Thickness Sensor

Sliding Wedge Block Gauge for Calibration of Hall Effectl
Thickness Sensor

Typical Calibration Curve for Hall Effect Thickness Sensor
Schematic Explanation of the Quadratic Dependence of the
Hall Output on the Thic‘kness

Measured and Corrected Stretch Ratio as a Function of

Calculated Stretch Ratio

Reciprocal of the Square of the Lateral Contraction Measured

with the Hall Effect Thickness Sensor as Function of the
Stretch Ratio

Volume Change-Stress-Strain Curve. Comparison between
the Measured and Corrected Values

Mooney-Rivlin Plot of Unfilled EPDM Vulcanizates



16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Initial Moduli of Glass Bead-Filled EPDM Vul canizates

Depénden ce of Stretch Ratio and Stress at Dewettihg {
Initiation on Hydrostatic Pressure

Dependence of- Final Slope of Volume Change-Strain Curve
on Volumetric Filler Fraction

A Few of Typical Examples of Volume Changé-Stres s~Strain
Curves of Glass Bead-Filled EPDM Vulcanizates

A Few of Typical Examples of Volume Change-Stress-Strain
curves of Glass Bead-Filled EPDM Vulcanizates

Volume Change-Stress-Strain Curves of Sample A02.
Comparison with Theory

Volume Change-Stress-Strain Curves of Sample A04.
Comparison with Theory

Volume Change-Stress~-Strain Curves of Sample AQ8.
Comparison with Theory

Volume Change-Stress~Strain Curves of Sample All.
Comparison with Theory

Example of Abnormal Behavior in Highly Filled Elastomer
Stretch Ratio at Break as Function of Hydrostatic Pressure
Stress at Break as Function of Hydrostatic Pressure

Profile of Failure Surface

Profile of Failure Surface

Profile of Failure Surface. Effect of Volumetric Loading
Characteristic Constants, C,and C3 of Failure Surface

as Function of Isotropic Component of Stress at Break



32 Characteristic Constants, CZ and C.',4 of Failure Surface

as Function of Isotropic Component of Stress at Break



10

-

LIST OF TABLES

Summary of Theoretical Results

Composition and Properties of Glass Bead-Filled EPDM

Vulcanizates

Mechanical Properties of Sample A02 as Function
static Pressure

Mechanical Properties of Sample A04 as Function
static Pressure

Mechanical Properties of Sample A05 as Function
static Pressure

Mechanical Properties of Sample A08 as Function
static Pressure

Mechanical Properties of Sample Al0 as Function
static Pressure

Mechanical Properties of Sample All as Function
static Pressure

Mechanical Properties of Sample Al4 as Function
static Pressure

Failure Surface Parameters of Glass Bead-Filled

Vulcanizates

of Hydro-

of Hydro-

of Hydro-

of Hydro-

of Hydro-

of Hydro-

of Hydro-

EPDM



ll

av

X Y5 &

-t e

LIST OF SYMEBOLS

Radius of a spherical filler particle

Half length of the model of a composite system
Radius of the model

Radius of a hook

Function determining the shape of strain energy function
Axial coordinate of a cylindrical coordinate system
after deformation

Axial coordinate of a cylindrical coordinate system
before deformation |

Initial distance between the surface of the facing
spheres in axial direction

Radial element of a cylindrical coordinate system
Mini mum radius of a stretched cylinder

Thickness of a specimen

Initial thickness of a specimen

Radial or x~element of a displacement vector

Ratio of dilatational volume change

tangential or y-element of a displacement vector
Width of a specimen

Axial or z-element of a displacement vector
Average width of a ring specimen

Error factors in the coefficients of a calibration curve

of the Hall effect thickness sensor



-}di-

Normalized distance of a point on the surface of a sphere
from the bottom of the model
Normalized distance of a point on the surface of a vacuole

from the bottom of the model

A, B, C Coefficients of a Hall device calibration curve

B

Bl’ B

2

Magnetic flux vector

Intensity of a magnetic field

Cl' Czl C3| C4

G, Go
Ip 1

_I?Uw"dot"

Constants specifying failure surfaces

Coefficient of the Taylor expansion of a strain energy
function

Outside diameter of a ring specimen

Inside diameter of a ring specimen

Average diameter of a ring specimen

Young's modulus

Shear modulus

i I3 Principal invariants of a deformation tensor

Electric current vector

Distance between the centers of the hooks of a tensile
tester

Initial distance of the hooks of a tensile tester
Hydrostatic pressure

Radius of a tube

Hall coefficient



ij

T

Area

Output voltagé of Hall effect thickness sensor

Volume of a system or a tube after deformation

Volume of a system or a tube before deformation
Volume of a portion of a vacuole

Volume of a portion of a sphere correspondingto Va
General notation for strain energy (the meaning of
various subscripts is explained in the text)

Elements of a rectangular coordinate system

Ratio of the minimum and maximum radii of a stretched
tube '

A limit of «

Displacement tensor

Ratio of the radii of the ends of a tube before and after
stretching

Cauchy-Green deformation tensor

Experimental parameter to correct the theoretical values
of strain energy |
Ratio of the length of a vacuole to the diameter of a
filler particle

Maximum value of 7

Angle between radius of a filler and the axis of the model
Stretch ratio (the meaning of subscripts is explained

in the text)

Ratio of enclosed volumes



a
on, b

O-OS,b

0'1.0"2.0'3

37
Exponent of a function that defines the profile of a
stretched tube
Cross linking density of an elastomer
Nominal (engineering) stress
True stress
Stress at bréak
Stress at dewetting
Octahedral normal stress
Octahedral shear stress
Octahedral normal stress at break
Octahedral shear stress at break
Principal streéses of a stress tensor
Volume fraction of filler

Parameter defining the shape of the model, a b



o] =

1. Introduction

Elastomers filled with solid particles show greatly different
properties in many respects from those of the matrix of elastic
material in which the particles are embedded. The differences
appear in Yt—)ung's modulus, stress-strain response, failure
properties, abrasion resistance, etc. When the changes in
the properties caused by filler particles are in a desirable direction
from the practical point of view, the filler is called a reinforcing,
or active filler, or otherwise a non-reinforcing or inactive filler.
Restricting our interest to mechanical properties, three
features are usually more conspicuous among the effects
of filler than the rest of them. These are Young's modulus,
the shape of the stress-strain curve, and the failure properties.

In order to investigate the effect of filler in an elastic material
there may be a number of methods of approach to the problem,
either theoreticallyor experimentally. But our interest is in
predicting the properties of a composite system consisting

of a matrix of an elastic material and solid particles, provided
that the properties of both constituents are known. Molecular
theories are not often applied to this special field of interest.
Applications of continuum mechanics have been more often

used to develop theories for a composite system. From a

theoretical point of view, the onlydifference between a reinforcing



filler and a non-reinforcing filler may be whether or not the
rubber matrix separates from the filler particles as a t;;omposite
system undergoes a deformation. And if this speculation is true,
a theory for a composite system with non-reinforcing fillers
with controlled degree of filler-elastomer separation will cover
the case of reinforcing filler as a special case. A method
to control the degree of filler-matrix separation is to carry
out measurements under superposed hydrostatic pressure. This
leads to the experiments which will be described later.

Of the three features mentioned above, the increase of
Young's modulus due to the solid particles is the most frequently
studied subject as far as the number of the available theories

is concerned.

(1)

Einstein's equation for the viscosity of a suspension of rigid
spheres in a Newtonian liquid predicts that the viscosity increases
linearly with the concentration of the spheres at low concentrations

where the interaction between the solid particles are regarded

as non-existent.

(4)

Smallwood' "', solving the problem by way of the theory
of elasticity with some simplifications in his mathematical
treatment, derived an equation identical to Einstein's equation
for viscosity. Naturally, his equation is useful only for very

low concentrations of filler, but this is probably the first attempt

to obtain the Young's mo dulus of a filled system by the theory



of elasticity.

Based on the coincidence of the results from totally different
approaches, in some cases the relations that give the increase
of viscosity of a liquid due to the suspended particles have been
used to predict the Young's modulus of filled elastbm_ers as
a function of filler fraction by simply replacing the wviscosity
terms in the equations by the corresponding moduli. Although
this may not be justifiable in a rigorous sense, this method
seems to be useful ‘»in_giving the right information concerning
the effect of filler.

(2)

Eilers'™’, starting fromEinstein's viscosity equation of sus-
pension which predicts a linear increase of the viscosity

of a suspension with the concentration of solid particles, modified

it to give a better fit to experimental results up to higher concentra-
tion, mostly empirically. The same equation has been applied

to give the increase of the moduli of filled polymers with
considerable success.

Guth( 3)

» also starting with Einstein's equation, derived
the viscosity ofsuspension as a power expansion with respect
to the concentration of solid particles and gave the coefficients
up to the second power of concentration. He also introduced

a shape factor forirregular shaped particles

‘whidi modifies thecoefficients in his first equation. This equation

was also converted for the purpose of predicting the moduli
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of filled polymers simply by replacing viscosity by modulus.

Einstein's and Smallwood's equations are valid only up
to filler concentrations of a few percent. The two empirically
modified equations mentioned above na.tu.ral.ly have wider ranges
of applicability, sometimes up to a few tens of percent.

Kerner(zs' ) introduced a three layer model for a composite
system which consists of a sphere of filler material inside a
concentric shell of material with the properties of the material
of continuous phase whichis in turn embed&ed in the material
with the overall properties of the composite system. He applied
the model to various properites such as electrical conductivity,
elasticity, etc. of composite systems. His model was further
developed by Van der Poel, and by Furukawa and Sato in their
theories.

Van der Poel(s), also by the aid of the theory of elasticity,
derived a relation between the moduli of unfilled and filled
elastomers. His theory is constructed on a three layer model
similar to Kerner's. The model consists of an inner sphere
of the material of the disperse phase of radius, a, an intermediate
layer of the material of the continuous phase of unit radius, and an
outer shell with the properties of the composite, the diameter
of which is much larger than those of the other two. The volume

fraction of the disperse phase coincides with a3. The modulus of the

material in the outer shell is given a value such that, when the model



is subjected to a uniform tension the overall deformation is not

affected if the two inside layers are replaced by a sphere of

unit radius of the material in the outer shell. He calculated the

modulus of the material in the outer shell and took it as the over-

all modulus of the system. The relation is not a closed -

form Agreement with experimental data is fairly good up to
considerable filler concentrations.

(6)

Frankel and Acrivos' ‘treated the problem from a.

slightly different direction. Their theory deals with the wviscosity
of suspension of high con centration. Considering the interaction
between the solid particles suspended inthe liquid, they derived

an equation that gives the asymptote to the viscosity-conc entration
curve in the high concentration region. Their equation gives

good correspondence at high concentration, but not inthe region of

lower concentrations.

A number of empirical equations have been proposed to
express the stress-strain curves of both unfilled and filled
elastomers. However, there are very few useful theories to
predict the stress=-strain curves for filled elastomers from the
known properties of filler and elastomer. The most fruitful approach
to this problem appears to be  choosing an appropriate ‘

model that enables us to handle it with reasonable ease.
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Sato and Furukawa based their theory on a concentric
sphere model similar to Van der Poel's. They chose a simple
function for the deformation tensor for the outside layer of the
model and calculated the strain energy predicted by the statistical
theory of rubber elasticity. With this method, théy obtained
mechanical properties (such as, e. g , Young's moduius. stress-
~strain curves, etc.) of composite systems. They ascribed
-deviations of the theory from the experimental data to vacuole
formation and used an adjustable parameter to correct for the devia-

tion. The corrected results agreed with the data for filler fractions

"up to about 10 -- 15‘?0.'

Although it is quite obvious that vacuole formation around
filler particles in a composite system has a great influence
on the reinforcing ability of the filler, there has been no theory
that directly relates the amount of vacuole formation to the change
in the stress strain curves or vice versa. However, a number
of experiments have been performed on the measurement
and the observation of vacuole formation by deformation of filled
elastomers.

Fedors and Landel(s)measured volume changes of elastomers
filled with glass beads. A ssuming a conical shape for the
vacuoles, the height of which increased linearly with the in-
crease of the strain, they derived an expression for the stress=

gtrain curve.
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Fishman and Rinde'"’, by means of curve fitting, derived

an expression that gives the volume change of a deformed,

filled system as a function of strain energy, time, and temperature.
Experimentally, they measured the volurn.e changes and stress=
strain curves under constant strain rate, constané load, and

.

constant loading rate deformation.

(10)

Farris measured the volume change of elastomers
filled with 'non-reinforcing filler' and analysed the results by
a statistical method. Heassumedthat the probubility for a certain
particle to dewet at a certain strain is given by a Gaussian
distribution, and determined the parameters contained in the
distribution function from experimental result-s. His measurements
were performed under superposed hydrostatic pressure as well
as at atmospheric pressure.

Some of the work that may be related to the -one described
here: . c.. have been briefly mentioned above. The purpose
here is to obtain the mechanical behavior,( primarily the stress-
strain behavior but also failure behavior) of fillled elastomers as
a function of filler fraction and superposed bydrostatic pressure.
The superposed pressure is employed to control the degree
of vacuole formation or filller-matrix separation under deformation

and , consequently, gives some information about the reinforcing

mechanism of fillers. In spite of the number of theories mentioned

above, none of them is without some kind of experimental para-
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meter to give a reasonable fit of the theory to the experimental

results. This can hardly be faulted, considering the difficulties

* involved in solving the problem of the stress-strain behavior

of a filled system. For example, non-linearity of the compatibility
equations due to large deformation, the non-linear relation
between strain and stress, the extremely complicated boundary
conditions because of the randomly dispersed particles of filler
must be considered. Consequently, some assumptions and simpli~-
fications can not be avoided in order to handle the problem and
obtain reasonable results. |

In chapter 2 we present a theory for obtaining the strain

energy in a composite system as a function of stretch ratio and

~ the amount of vacuole formation due to the dewetting on the surfaces

~of filler particles. The theory contains several assumptions

and simplifications. First weassume that matrix material

is incompressible , the filler consists of rigid spheres of uniform

' size and that the strain energy stored during the deformation

- can be expanded in a Taylor series of the invariants of the strain

{ tensor. Second we assume that time effects and hysteresis effects

are absent. A model for the composite system is introduced and the

approximate equations for the strain invariants are derived

. as functions of spatial position in the model when the system is sub-

jected to a simple tension. Combining the Taylor expansion

~of the strain energy and the approximate equations for the strain

invariants, the total strain energy is calculated. The strain energy

is obtained both for the case of no vacuole formation and for the case



of vacuole formation

In Section 3 the experimental equipment and procedures,
sample preparation, and the method of data analysis are described.
Experiments were performed to obtain stress-strain curves
and volume change-strain curves of glass-bead filled elastomers
with superposed hydrostatic pressure and loading ratio of
filler as parameters.

In Section 4 the results of the experiments ar‘e compared
with the theory. In Subsection 4.1 the material constants of the
rubber matrix are obtained from the experimexlxtal data. In
Subsection 4. 2 the initial moduli are calculated both from ex~-
perimental data and from the theory. In Subsection 4.3 the
volume change-stress-strain curves are compared, experimentally
and theoretically, and discussed. In Subsection 4.4 the failure
behavior of the glass-bead filled rubber vulcanizates is discussed
briefly.

In Section 5 the summary and the conclusion are presented.
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2. Theory

In this section the strain energy of a deformed composite
system will be derived as a function of stretch ratio and amount
of volume change. Except for the case specially rx‘uentioned-
the continuum phase is assumed to be incompressible and

the filler particles are assumed to be rigid spheres.

2.1. Introduction

When an isotropic and homogeneous material is deformed,
a certain amount of strain energy is stored in the system.
While the stored energy is a function of the deformation
tensor, the energy should be a function of the three invariants
of the tensor. These invariants remain unchanged through the
rotation of the coodinate system that causes the change of the
directions of the three principal axes of the strain tensor.
No matter what type of definitions one may choose for the
strain tensor and the invariants, these relations will be true.

We will use the Cauchy-Green deformation tensor and
the principal invariants in the developmeﬁt of the theory.

Provided that the strain tensor is known at every point

in an elastic body, the total strain energy is written,

’
W = erW (Il. IZ’ 13)dV (2 -1)
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where W is the total strain energy and Ww'is the strain energy
per unit volume as a function of strain invariants, Il' Iz,
and 13 in a small volume element d V.

In Section 2.2 we will introduce a model for a composite
system of elastomer filled with solid particles. 'In Section -

2.3 a deformation tensor and the strain invariants are introduced,

and the strain energy is described as a Taylor expansion of the

invariants. In Sections 2.4 and 2.5 the strain invariants are
obtained, and consequently the strain energy is calculated.
And finally, some applications of the theory will be discussed
in Section 4.

2.2. A Model of Composite S ystems

It is necessary to introduce a certain simplified model
to describe strain, and consequently stress, distribution in a
system of elastic material filled with solid particles. A model
that is often used is a solid sphere surrounded by elastic material.
In our case, however, we are more interested in the effects
of interaction between two particles, and consequently the model
was chosen to méet this demand. The model is shown schemat=
ically in Fig. la. As may be clear from the figure, the model
is a cylindrical block of elastomer of length, 2b, and of diameter,
2c, with two solid half-spheres of radius, a, embedded on

both ends. The relation among a, b, and c is left undetermined



] 2

at the moment. The centers of the spheres. rest on the axis

of the cylinder. This model may be considered as a representative
unit cell of a composite system that enables us to obtain the total
strain energy simply by multiplying the energy in the model

by the number of the particles in the system. This may be the
simplest model that can reasonably be treated mathematically

but is yet not too different from the real system. As the model
is stretched axially, 'the-surface will take a profile that is concave
in themiddle section. That is, the material belonging to the -
middle section moves more inward than that near both ends. The
question may arise whether or not it is possible for the material
to move this way in a real system of the material where other
particles may restrict the movement of the elastomer. In
reality, however, the fil]er".particles are randomly packed so

tha t not all the particles, or rather, none of the particles are
really on the same horizontal plane. Thus when the system is
stretched vertically, the surface of the model will have the
concave profile as described above, and the void that may be’
produced will be filled with another particle and the surrounding
elastomer that move in. Although this is only a conceptional
idea, it will serve to explain the adequacy ofthe Fhoice of the

model.
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2.3. Deformation Tensor and the Invariants

When dro is a vector connecting two closely located
points in an undeformed system and dr.1 is the vector for the cor-

respond ing points after deformation, the two vectors may

be related by a displacement tensor G'ij as follows(ll' 12):

} @)
dr:i aij droj :

where the repeated subscripts imply summation from 1 through
3. From Eq. 2-2 the distances between the two points

before and after deformation are related by

2 - ' = X
(ds) dri dri e %24 drok drc’i
{(2.3)
= Y'ki. drok drqi

where ds is the distance, and Yij is a symmetric

deformation tensor. If the principal values of Y

» and Y3 it is easily proved that there exists the following
(13),

1 are Y_l’
Y

relation between them

: Alz =y AZ = Yo J\32 = ¥3 (2.4) ‘j

Here stretch ratios are defined as the ratio of the deformed
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and undeformed dimensions. Therefore, if we define the invariants,

Il’ IZ‘ and I3 as follows, they are identical to Rivlin's definitions.
I3 » vy +yv2 +ys ™ Y11 +vz2 Y3
Iz = y1v2 + v2v3 + Yan

(2.5)

2 o L
Y11Y22 + Y22Y33 * Y33Yll — Y23© < Y12 Y31

D 2 a
I3 = Y1Y2Y3™ Y11Y22Y33 + 2Y12Y23Y31 ~ Y22Y1377 Y33Y12" - V1%,

o . . o

A strain energy function of Il' I.?.' and I3may be expanded in
a power series of the three variables, i.e.,
[=}

W(T, T2, 1) = ] e (-3 -3 ap-nk (2.6)
1,3 k=1

where W(Il. IZ' 13) is the stored energy per unit volume in the

system and Cijk are constants. In the case of an incompressible

material

and Eq. 2-6 reduces to the following form using similar symbols

because the terms containing Isvanish o
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WILI) = ] ¢ (- (1p-3)) 2.7)
i,i=1 | '

If an analytical form for the strainemergy function is
known, the stress in the system can be calculated. This will
be shown later. '

If u, v, and w are the elements of a displacement vector

in the x, y, and z directions, respectively, in cartesian coor-

dinates thedisplacement tensor, “ij can be written

s du du du |
L% 9x oy %z
- Y 18 22 2y -
aij = 11+ 3y = _ (2.8)
ow ow ow
7= Ttz
b—_ —

If the system is axially symmetric as in our case, the displacement

tensor, nij is written in cylindrical coodinates (r, A, 1) as,

2u ou
&4 or 9 aL”
' - u
;43 S S 0 . (2.9)
. w ow
or & A%
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In this case u and w are the radial and axial elements of the
displacement vector, respectively. Details of the derivation
of Eq. 2-9 are given in Appendix 1.

From Eq." 2-9 the Cauchy-Green tensor is obtained as,

du 2 du. |
1+— + 2, 7 4
( ) ( ) 0 a{‘ (1+ a&)-i- (15

- = - _u
%5 5% 1%k o MEE - ¢

o dpr |
(2-10)

The principal invariants are obtained from Egs. 2-5 and 2'-1"0.

l Ju |2 ul? aw|? i ow |?
- - — —t— -_— & ——aa ] i i
1, [1 2u* +[u,] +[1+r] +[ar] s (1w 2]

2 21— ' %
Iz-El'i-%%)z-'-(-g—:-)i[[l-b%%] +[1+1‘r-] ( )2+(1+u,il

S

|<1 + 92 + G52 ,>2H<a“’>2 +Q+ ‘,{,);|'

ip" 1+ ,)+ (l + )|

|(1+3“)2+( )2[ g;]ﬂ [1+ ] |(a“>2+(1+ v 52

g du w ow
tla+sdasin - Eads|

- s
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P su Ju & 2 = —
Iz = JUv2 U 42 u ow 3
3 L(_l Yo T (32.)_1 [1 + r] I_(-E-;)Z + (1 + -5‘;__)2'
2 |, =
- |1 "'E] léu_‘ % i I¥ LA 3u,|2
[ T oL ( BE') ¥ or 1+ 3:1 . (2 -11)

From Eqs. 2-1, 2-7, and 2-11 we may write for the total stored

energy

2n r¢ EO o0 g V
i - J J J I Cij(I -3)7(1 ---3)j dL“dr(xrde) (2 - 12)
o ‘o -R.o i,3=1 . _ € °

provided that the material is incompressible. The displacements

u and w must be found. This will be done in the following section.

2.4. Deformation of a Thin Shelled Cylinder

When the model(cf. Fig. 3) is stretched along the axis
by the amount 24b, the macroscopic stretch ratio, A is given
by

A=1+ab/b (2 = 13)

We assume that the displacements u, v, and w are given by

u =u(r,< ')

v =0 (2 - 14)

i/

w = w(r, 4') a (A - 1)L
where A’ is the internal stretch ratio at radius, r, and thus a

function of r, and 4’ is the distance from the plane of symmetry

normal to the axial direction. Physically, this assumption
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means that the displacement in the axial direction is proportional
to the distance from the middle plane. .Direct calculation of

the strain invariants leads to difficult nonlinear 'differential
equations. Instead of the deformation of a cylindrical rod

we therefore consider the axial stretching of a thin-shelled
cylir;der (or tube) of radius R, wall thickness dR and length

‘2.{,0 as shown in Fig.2. Over the thickness, dR, A may

be assumed to be constant. Here A\ is the overall stretch ratio

of a tube which is defined as the ratio of the length of the deformed
tube to the original length. The tube is deformed unde:-:

the condition that the displacements of every point in the material
belonging to the tube are described by Eq. 2-14. If the tube was
independent of the rest of the material in the system it would

take the shape for which the total strain energy stored in it

has a minimum. As a matter of fact, the volume enclosed

by the tube will be sulject to the condition of the material

inside. We will discuss this problem later. No w we obtain

the strain invariants for the deformed tube by substituting

Eq. 2-14 into Eq. 2-11 under the condition that \is a constant

as follows,

- Buyz L U2 L oq 4 B2y 42
'11 QA+ + G+ A+ +A
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ol 4+ Buy2 4 (Buy2 Uy2 -2 Y2
I _E_l+3r) +-(8£‘)_(l+r,) +A%% (1 + 2D

-2 3uy2
+ XA7<{1l + ar)

s . (2 = 15)
- duy2 uy2

I, Q+-0° @+

If the material is incompressible, I3must have a value of 1,

and we obtain a differential equation in u

13.5(1+§_1:)2'(1+%)23?511 (2 -~ 16)
or
'(1+§—‘;)(1+%)-%ri 2 - 17)
Eq. 2-17 can be written
5 it ol - (2 - 18)
Integration gives
N (2 -19)

g
(r + u)? = —i—;--l- £(2°)

.0r o - -
7 = ]
r + = L3 -
S arr £ (2 - 20)
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We have thus made use of the incompressibility condition to .
derive an expression for u.’ - A
Substituting Eq. 2-20 in the first two of Eq. 2-15 the
invariants are obtained as an expression containing an unknown

function f(&l) and its derivative f’({’). We have

| - - 2 2 ’
2 E " ﬂ ';':7"" £Qef)
I = - - + : + X2
1 2 2
X2 [;'—- 4§ f({,‘)—J AE— + f(z‘)] £
I = g1}
- - 2 2z
1 [f . 7 £ r2
I = —+ + A2 : + 3
2 - 2
2 )‘2 4 r T _;;"_.*. f(!.")

b |

The function, £(4), may be determined, at least in principle, by
substituting Eq. 2-21 into the Taylor expansion of the strain
energy, integrating it, and taking the variation to decide the
condition at which the total strain energy reaches a mimimum.
This procedure, however, yields a highly non-linear differential
equation in £(4). and it is not likely to be solved precisely.

We will assume a certain profile for the tube in the stretched
state. The shape of a stretched tube must be a surface of revolu-’
‘tion because the system is axially symmetric. Also, it must
have mirror symmetry with respect to the plane that is per-
pendicular to the axis and passes the middle point of the axis.

We approximate the function that defines the profile of the surface

of revolution at r = R by
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R+umz, +as” @ - 22
where e A, and Vare constants. If both ends of the tube
are attached to solid surfaces so that the diameter on both ends
can not change, R+ u =R at 2 = -Lo- On the other hand, the
"diameters on the ends change in some cases. Thi‘s will be
discussed later. If this is the case, R + u = fR at Z = -Lo.
where P is a parameter. Using A=(BR-r°)/LOV, Eq. 2-22
can be rewritten
e Sk b ro)(i—o)"* 3 - 553
First we consider the case of no change in the volume enclosed
by the tube. Geometrically 2 is the minimum radius of the
deformed tube and is attained at 4" = 0. This value must be a
function of the stretch ratio A’ and the ratio R/‘Lo. If either
R/Lo is very small or N is very large, % will be R(l/k')%',
provided that the enclosed volume remains constant. This is
because both cases correspond to simple tension with negligible

end effects. In other words these cases are equivalent to

simple e xtension of a very thin cylindrical block. On the other
hand, if R/»f,o is very large, i.e. if the radius of the tube is

much larger than its length, the fact that the material in the vicinity
of both ends restricted in its radial movement gains particular
prominence. As a consequence the material near +’'=0 must move
further than would beindicated by R(l/)\")% to satisfy the condition
of constant volume of the tube. We shall assume that the value

of s in this extreme case is given by R(l/h’). Then v, is




«22=

A=1 + R/R.o

20(-1)+R/£° : (2 - 24)
£, ™ R(?)

e e W

This is a rather complicated formula, but the simplest one

that satisfies all the cor-lditions mentioned above. While Eq.2-24
is an expression for the case inwhich the volume enclosed by
the tube remains constant, the volume must change in the case
of vacuole formation as we will discuss later. The original

enclosed volume, Vo' is written by
vV = 2 7R22 (2 - 25)
. o) o

After deformation the volume becomes V and it is calculated

from Eq. 2-23

L A”
V"'ZTI'JO (R+u)2d2.

2 o
& A" 2 .
= 2 7 J 5 [r + (R - ro) (_L_)v] dg”
o a 2 A7

T 3 Y (& = 26)
-2 w2 [ G@D2 2 5 - G2 /A D

f =
+ (B -2y + 1)]

We term the ratio, V/Vo as the ratio of enclosed volume and
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denote it by p. Then we can write,

r T T T 72
B'R B R B R .
Considering the case of volume change suggests that it is more

reasonable if we replace 1/\’ in Eq. 2-24 by p./ﬁz)\.’. The result

is B2)~
(—1'1-'—' - 1) + R/Zo

B2\ "
2o by R/%,

) = B R& {2 ~ 28

'::Q-R("I
BZA”

Substituting Eq. 2-28 in Eq. 2-27 and solving for V, we obtain

- (3o, - 20 - 1) + ,/ (3a, - 2a - 1)2- 8(a_ - a?) (o, = 1)

VvV =

L
4(0.0 a<)
SO - 2 ~ (2 =. 29)
where ao=p/i5 . The exponent, V is always larger than 1

and converges to 1 as p/sz' approaches 1. This is desirable
‘geometrically. because, if V=1, the profile of the deformed
tube would have a cusp at 2’ = 0 which is physically unreasonable.
Having Eq. 2-23 as the initial condition we can obtain the functio::x.
£(4') in Eq. 2-20 as

.12 o2
£(27) = Rz[; + (1—a)<§—a“]2 - .E%r_ (2 - 30)
o i

In the process of deriving Eq. 2-30, rO/B R was replaced by
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. Substituting Eq. 2-30 in Eqs. 2-21 we obtain the strain

invariants in the deformed tube at r = R, as

| . 2(v-1)

v2(1-a)2 R2(3)
3 K - 1 + 2
1 . A2 2.*
A72 [a + (1-a) (%:—)”]
o R
- 2
+ [a # (1 - o) (i—)"] + %L
(o]
2 2 o287 2491
ve(l-a)“ R (E-'-') V3
. 2 « 31
1 mio4 = [a+(l—a)(%—-)] ( !
2 32 g 2 o ;
[o]
i 2
+ X2 ta. + (1-a) (-i’—'-)‘,’] + L T
- [a + (1-a) (%'—)“]
) o]

We will take Eq. 2-31 as the approximation for the strain in-

variants at r = R for.the model in Fig. 1.

2.5. Strain Energy in the Model of Filled Elastomers

2.5.1. No Vacuole Formation

Since we now have the expression for the strain in-
variants of the deformation tensor of a deformed composite

. . '
system as a function of the coordinates (r, 6, 4 ) we can cal-

culate the strain energy in the model by substituting Eqs. 2-31
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into Eq. 2-12. Eq. 2-12 can be rewritten as
.‘-c
W= 2« JOR-LQW{‘dR (2 - 32)

where r was replaced by the radi of the tubes, R and W{, is given by

{L o
2 [0 i Joauf
w, = iy i'§=0cij(11 - 3)(1, - 3Yde
2z g g [ i gl
=T .t Cy (I, - 3)%1, - 3Pa (2 - 33)
o i,j=0 0

or
. . L {'
=20 ° ‘ o

w, =% S, jo (I, - 3)at’+ Coljo (1, - 3)de’

® 2 _ )
+ i,?:lcij 0°(11 - 3), - 3)Jd:,’:] (2 - 34)
Numerical calculations show that I,-3 and 12-3 » as given by Eqs.2=-31
vary about 20 ®0o around the average values as -C'/-Lo changes

from 0 to 1 when A\’ = 3 and R/-f,o:l. The variations decrease as A\’
increases. This variation is less when R/-Lo< 1 and increases by

10 == 15 % as R/'Lo -~ 3, which is estimated to be its highest value,
attained at the maximum random packing of spheres, 0.63. In
ordinary elastomers, the contribution of high terms in the

expansion of the strain energy function, cij (i+j>1), becomes
significant only at quite large values of the stretch ratio. For
convenience of calculations we may therefore approximate the third

term in Eq. 2-34 as follows.
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<4 ; : 1 -
_]_»_ (o] _ 1 - J 7 hvl_ 1 f‘o ra
*’o‘fo (I, = 3)(1, - 3rdd L—Q‘Jo &y = 3)d{»_]

ri1 et :r
o '

x| 7| (I2 - 3)d4 (2 - 35)
0" 0

In fact if i=2, and the variations in I,=3 or 12—3 are as large

as 50 O/o the error introduced by this approximation'is less than

o :
57/0. If we define W, and W, as

L

W, = -l—j °@, - 3)at’
1 A P
= (2 - 36)
%
1 o 4
W. = —= (I, - 3)d<
= [,
Eq. 2-33 gives
% 5 e _
W, = zizjzo Ci; Wi W, (2 -37)

Values of Wl and Wz are obtained by carrying out the integration

with the substitution of Eq. 2-31 into Eq. 2-36 to give

woe—l_ o4 VER21 -0 1
172,72 “'“oz Zv - 1)
+ 32[0.2 + 2a(l - CL)—V—:T + (1 - a)zm—il—)] 4 )\12 -3
W. = 1 " vZBZRZ(l - o:)2 [ az + 20l - @) , (1 - a)z
2772 2 2 Bv=1) © (3v=1) (@y - 1)
o

2
’ 2 - -
+ BZ}‘ 2[ a® + 20(1(\)11- 10)0 + 8\) +Q)l) 1+ ;2. $ (2 - 38)
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where ¢ is defined in terms of Gauss' hypergeometric function

Fas bs ¢y d) by H)
1 gt
8 = ¢ J 2

o"0 [la+ (1 - a)(i—’)vj
. (o]

1 (v-1)

F(2,

(2w 1) (3%« 23

= .O.Zv (2v - 1)

Substituting Eq. 2-37 into Eq. 2-32 we obtain. L

w
- iy d
w 4T!'Z"_ Ciij{'owl W.?. dR
i, j=0 0

v-1) *(v- 1)

,desd) sy 2 - 39)

(2 = 32)

Inintegrating Eq. 2-32 we have to divide the interval into

.two regions, 0=R=a and a=R=c, because both LO and \' are

different functions of R in those regions. In the region 0SR=a

these quantities are obtained from the following geometrical.

relations:

{'o =b - acosh =b(l - tllt.‘;ose)

"R =asinb = bysinb

and

¢+ _ (\b- acosb) _ M- Vcos$

n (b -~acosb) ~ 'l - ycosb

(2 - 40)

(2 - 41)

(2 - 42)

Here ¥ = a/b, and 6 is the angle between the axis and a radius

that intersects the surface of the sphere to give the radius,

R of a tube. Also in this region the material is in contact

with the filler surfaces so that the displacements on the boundary

/

~
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are zero. Consequently, the constant, B in Egqs. 2-35 has a
value of 1. The ratio of enclosed volume, |, is also equal

to 1 because we are considering the caseof no vacuole formation
and the material is assumed to be incompressible. Thus there
would be no volume change. Considering these conditions, the

values of W, and Wz in the region, 0=R=:, WI.IN and WZ. IN

are written

22 2
1 5, YR (1l-aq) 1

1,IN - \ /2 42 (2v- 1)

2 il 2 1 ‘
+ L +2a(1-CL)W+(1-O:) W+K -3

w

2.2 2 2 2
W _ 1 VERT(1 - a) o 2a(l - o) , (1 - &)
Z'IN‘K,?. * 2 -7 Bv-n T 12
o
2
+ ¥ ¢ 2L-0) Lol iy 53 (2 - 43)

vV+1) T@v+l)

Here the subscript implies that these values are for the inside
region. The value of a is given by

(A - 1) + R/20

a,::(-xlr—) 2(N" - 1)+ R/%, (2 - 44)

and Vis given by Eq. 2 -31.

In the region, a<R=c, Lo and \’ are given by
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.= b (2 - 45)

Moo= (2 - 46)
In this case, however, we must obtain the value of P because
the ends of the tube are no longer attached to the surfaces of
the filler particles. If we assume that the stretch ratio in the axial
direction is equal to the overall stretch ratio, A, at 4’ = LO.
the radial stretch ratio and tangential stretch ratio may by

written in terms of the radial displacement, u, as

A = N i
. 2 - 47)
. au -
)\Z = 1+ R
u
)‘2‘ = 1+ R
Because the material is incompressible the product A, )\ZXB

must equal 1, i.e.

: " du u ‘
Miaky = (¥l + 5k = 1 vars 48y

Eq. 2-48 is mathematically identical to Eq. 2-17 which gives
the following solution

RZ

R+u =/5-+C ' (2 - 49)
"where C ié the constant of integration. Since u must be ‘zérb
at R = a, we can obtain the constant C as

Cc = (1--—-{—-)5;2 - . (2 - 50)

We can also write

; 2
1 1,2 2 = 51
R+u=R/T+(1- L)_——R_Z_ ( ),
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As defined in Eq. 2-23 and its preceding paragraph, P is obtained

from Eq. 2-51.

-l a -5 a% (2 -52)
A A RZ

Now we can obtain the strain energy stored in the tubes in the region,

a<R<c. Eq. 2-52 gives P and p =1 in this region. W, and W, can

thus be obtained from Eqs. 2-38, denoting them by Wl OUT and

respectively, in analogous to W, and WZ. IN(Cf- Egs. 2-

W,,ouT’
43). W

» IN

1,0UT and Wz’ OU,I.cufferfrorn Wl, IN and WZ, IN

in @ and V because of the difference in the values assigned to B.

only

Finally the total strain energy in the system is given by the following
equation, at stretch ratio, A
: c
W = Z'n'r(; WINRLodR ¥ Z'n'ja WO

UTdeR (2 = 53)

Thus Win 2nd Wy are the values of WL in Eq. 2-32 in the regions,
0O=R=a and a=R=c, respectively. Eq. 2-53 can be written, correspon-

ding to Eq 2-32’, as’ .

W = 411'2 C l:fR-C W’1 IN
130

i J
f R4 W) out W2, oUT dR:] 2 = 5sy"

The integration can be carried out numerically with the help of Egs.
2-40, 2-41,2-42, 2-45 and 2-46. This theory will be extended to
‘the case of vacuole formation in the next subsection. The theory will

be compared with experimental results later on.
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2.5.2. Vacuole Formation

When an elastic substance separates from the surfaces
of filler particles as a composite system is deformed, vacuoles
are formed around the particles causing a volume‘change in the
system. This phenomenon is termed 'dewetting' in subsequent
discussions. If dewetting occurs under a certain deformation,
Eq. 2-53 derived in the previous section is no longer valid and
the effect of vacuoles onthe total strain energy must be taken into
consideration.

(22)

Sampson » using a system of transparent rubbery
material filled with spherical inclusions, photographed the vacuoles
formed around the spheres as the system was stretched. Those
photographs show that, in most cases, a vacuole originates at

the closest point to the neighboring sphere on the surface of the
sphere, and that it spreads outward along the surface as the amount
of deformation increases. In other words, a vacuole of a finite
volume does not come into existence spontaneously, but it in-
creases in size continuously. The shape of the vacuoles resembles
an ellipsoid or paraboloid with the major axis coinciding with

the direction of stretching, and they are tangentially in contact

with the surfaces of spheres. Apparently dewetting is never

completed no matter how large the stretch ratio may become,

or no matter how large the size of a vacuole may become.
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Here, complete dewetting means the state in which a vacuole
contacts the filler particle only around it_s equater. In other words,
a finite amount of the surface area of the sphere is always in contact
with the continuous phase.

An attempt was made to calculate the strain energy of a de-
wetting composite system as a function of the overall stretch ratio, A,
and the volume change in the model. This approach required further
assumptions and produced unsatisfactory agreement with the data.
As this procedure was already rather complicated, its refinement
appeared unwarranted. The calculations did show, however, that,
at a given stretch ratio, the strain energy of a composite system
first decreases sharply as the volume increases, then slows down
and reaches a minimum before it increases again. This is easily
understood if we consider the internal stretch ratio, W As
the volume increases, the stretch ratio decreases because the
vacuole formation releases the strain. The strain energy reaches
its lowest value when )\I=1. As the volume increases further, the
stretch ratio becomes less than unity and the strain energy increases
again. This behavior can be expressed mathematically and can be
used to develop simpler approach for calculating the strain energy
stored in a de wetting system.

Let Wo()\) be the strain energy before dewetting as obtained
in the previous section, and let Wmin(h) be the minimum strain
energy at the same stretch ratio. Then, we can write the strain
energy function of the dewetting system, W(A,v) as a function of stretch

ratio and volumeratio (which is defined as the ratio of the volume of the
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deformed system to that of the criginal system) as shown below:

W, v) =W _. (\)+ [WO(M - Wi MIE V) (2 - 54)
Let vo(k) be the volume ratio corresponding to the minimum strain

energy Wm.

m(?\). From the definition of Wo(k). (N, v) must equal

unity when v=1 and decrease to 0 as v reaches vo(?\). We now
assume that the function, f(A,v) has the form

f(N, v) = £(N, v/vo(k)) (2 - 55)
This assumption implies that the pattern of strain energy decrease
by dewetting is decided by the ratio of a changed volume to its
maximum possible value. For the moment, we leave vo()\) and
f(\, v/vo()\)) undetermined.

Wo(h) was already obtained in the previous subsection. Wmin()\)
is calculated as follows. We consider that, when the volume ratio is
vo(k), the vacuoles are ellipsoids of revolution with the axis of re-
volution coinciding with the axis of stretching and the two minor radii
coinciding with the spherical {filler particles. We assume that no
radial displacement takes place during the process in which
a point of the elastic substance which was in contact with the surface
of a particle moves to the new point on the surface of a vacuole. Then
the strain energy can be calculated by a method similar to that used in
the previous section with slight modifications. That is, the final

result is given by Eq. 2-53 as in the case of no vacuole formation.
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However, changes must be made in Eq.2-42 which givesthe internal
stretch ratios and the ratio of the enclosed volumes, u, which is con-
tained in the definition of a in Eq. 2-28. The original length

of a thin-shelled tube of radius R‘ in the model is given by Eq. 2-40.
The length becomes (Ab - ancos8) after stretching' to a total

stretch ratio, A, for the case of an ellipsoidal vacuole around

a sphereinstead of (Ab - a cosf) given for the case of no vacuole
formation. This is because the distance of a point on the vacuole
from the bottom of the model is given by ancos® instead of

acos® for the case of a sphere, where 1 is a constant that changes
the radius, a, into the major axis of the ellipsoid, amn. Consequently,

the internal stretch ratio, N, is given by

+ _ Ab -ancosf _ N - micosh
A TRl ycosB (&~ 36

The ratio of the enclosed volumes, [, is no longer 'l in this
case because the volume enclosed by a cylinder does not remain
constant after vacuole formation. Fig. 3 shows a schematic
of vacuole formation. Although it is a more general case than
the one considered here, the change in the enclosed volume is
given by the same principle. Ifthe radius of the original cylinder
is R, the change in the enclosed volume after deformation is
given as the difference between the volume of the shaded portion

of the vacuole and the corresponding volume of the sphere.
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The volume of the shaded portion of the ellipsoid, Va, is calculated

by

an
V.= Zj w(asine)zd(ancose) =2'3la.3n(2. + cosB)(1 - cose)z
" ancos® ;

(2 = 57)

The corresponding volume of the sphere, Vao' is_

v, = zf alasing)d(acosd) = &x 502 + conBill = coadlt

acosf y
(2 - 57)
The original volume of the tube, Vo. is
2 3 .
Vo = Zw{OR =2mb (1l - YcosB)sin”8 (2 - 58)

The ratio of enclosed volume, therefore, is obtained as

N, =W
i b a a0 _ +(B;IZ¢3(Z + cosB)(l - cosB) (3 ~ 55}

Vo (1 = ycosB)(1l + cosd)

In the calculation of Wmin(?\) by Eq. 2-53, Eq. 2-57 instead of
Eq. 2.42 and Eq. 2-59 instead of p =1 are used. Integration
is carried out numerically as before.
If the form of f(\, v/vo(h)) is known, the total strain energy
is given by Eq. 2-54 as a function of stretch ratio and volume ratio,

The determination of f(A, v/vo()\.)) will be discussed in Section 4.

The method employed to obtain Wmin(k) can be generalized

to obtain the strain energy at any stage of dewetting under
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the assumption that shape of the vacuoles is known. Details
are given in Appendix 2 for reference.

The relation expressed by Eq. 2-54 will be used to
calculate stress-strain and volume change-strain curves of

glass bead-filled elastomers under hydrostatic pressure.

3. Experiments and Data Analysis

The purpose of the experiments is to obtain the stress-
strain and volume change-strain behavior of an elastic material
filled with glass beads which characterize non-reinforcing
filler particles as functions of both volumetric loading ratio
of filler and superposed hydrostatic pressure.

In this section the experimental equipment and procedure,

samples and methods of data anal ysis will be described.

3.1. Eguipment

Two special pieces of equipment were used in the ex-
periments. These are the Pressurized Tensile Tester for
measuring the stress-strain curves under superposed hydrostatic
pressure and the Hall Effect Thickness Sensor for measuring
the volume change accompanying the deformation of a system.

3.1.1. Pressurized Tensile Tester

Details of the pressurized tensile tester were given
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1(15' 16). Only a brief des-

in the report by Lim and Tschoeg
cription will be g'n;en in this section.

A detailed diagram of the equipment is shown in Fig. 4.
The equipment was designed in tlﬁe Central Engineering shop
of the California Institute of Technology. The eqx.fipment is
basically a tensile tester designed for simple tension experirhents
of ring shaped specimens. A hook is attached té the lower
crosshead which travels verticallywith constant speeds driven
by a driving unit. The other hook is connected to a load cell
of 5lb. maximum capacity, which is in turn connected to the
upper crosshead which is fixed to the frame of the apparatus.
.'I'he crosshead can travel 18 inches. The whole equipment
is built on a base plate witha threaded socket in which a bell
.shaped steel cover is screwed, when in use. When a measure-
ment is performed the whole system is tightly sealed by means
of the cover, the inside is filled with silicone oil and it is pres-~
surized. Two heating units of 1, 000 and 2, 000 watts are installed
near the bottom and cooling coils made of copper tubings are
located near the top. The cooling coils can be operated by
either water or liquid nitrogen. A mixing blade is located
at the center of the heating units. The crosshead travel helipot
converts crosshead displacements into electric signals to
be recorded. Thermocouples are located near the bottom and

the upper hook for measuring experimental temperatures and
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controlling them. The equipment is connected to the accessories
as shown in Fig. 5 and Fig. 6.

Fig. 5 shows the piping schematic diagram. The hydraulic
system consists of the pressurized tensile tester, a liquid
reservoir, transfer pumps, a control panel, and a nitrogen
pressure back-up system. The reservoir can store 40 gallons
of silicone oil. The liquid is pumped into the pressurized tensile
tester by the transfer pumps. Then, the whole system is pres-
surized bythe pressurizing system. The maximum pressure
used is 2, 000 psi. (138 bars )

Fig. 6 shows electric connections. The load cell turns
a stress into an electric signal, the crosshead travel helipot
gives a crosshead displacement as a voltage and these are re-

corded on the X and Y1 axes of an X-Yl-Yz recorder.
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3.1.2. Hall Effect Thickness Sensor

A number of measurements were carried out to obtain
the pressure dependence of stress-strain behavior of glass-
bead filled elastomers since the pressurized tensile tester

had been built by Lim and Tschoegl(l6)

. It became clear,
however, that not only the stress-strain relation but also the
volume change due to stretching of a specimen must be measured

in order to interpret the whole nature of the mechanical behavior

of a filled material. The Hall-effect thickness sensor was designed

to measure the thickness change of a specimen as it is stretched

in the pressurized tensile tester.

A charged particle moving in a magnetic field experiences
a deflective force termed the Lorentz force. When a solid material
carrying a current is placed in a magnetic field, the electrons
moving in the material are deflected by the Lorentz force and
produce an electromotive force in the direction in which they are
deflected. This phenomenon is called the Hall effect(17' 18, 19}
after E. H. Hall who discovered it in 1879.

The Hall output voltage is proportional to the vector

product of the current vector and the magnetic field intensity,

and is given by
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V., = wR..(JxB) (3 -1)

where VH is the Hall output voltage, w is the width of the material,
RH is the Hall coefficient, J is the current density'and B is the
magnetic field intensity as shown in Fig. 7 where T is the thickness
of the material. The Hall coefficient is a material constant.

Thus, if the current is constant, the Hall output voltage
depends only on the magnetic field whose intensity is a single
valued function of the position in the space surrounding the
magnet. If a Hall material carrying a constant current is placed
in the field of a magnet, the Hall output voltage will be a function
of position. Moving the Hall material along a straight line
passing through the field, the output voltage will be a unique
function of the distance from the magnet. If the magnet and the
Hall material are placed on each one of the two parallel surfaces
of a non-magnetic specimen, the output will be a function of the
thickness. The Hall effect can thus be utilized to determine
the thickness of non-magnetic specimens provided that the Hall
coefficient is sufficiently large to yield an output which can
be measured conveniently. For ordinary electrically conductive
substances the Hall coefficient is negligibly small. Recently,
however, semiconductors with much larger Hall coefficients

have been developed and several are now commercially available.
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To construct our thickness sensor, we used a Model

BH-700 Hall effect device manufactured by F. W. Bell Inc.
The arrangement is shown diagrammatically in Fig. 8. Here
M is a small magnet, S is the specimen, H is the Hall device,
Sp is a spring made from a non-magnetic metal, and C is a
clamp which may be opened to installthe device on one side of
a stretched ring. Since the device is very light, the pressure
required to keep it in contact with the specimen is negli gible

even with rubbers.

A Hewlett-Packard Model 6218A current supply provides
the constant current. The output is preamplified through a simple
home-built single-pole operational amplifier and fed to the second
pen (YZ) of the X-Yl-YZ recorder which is the same as the one
introduced in the previous section. Construction of the pre-
amplifier became nece#sary because the one supplied by FF'. W. Bell
proved unsatisfactory, mainly because of excessive sensitivity
to changes in ambient temperature. The preamplifier and recorder
have means to suppress the major portion of the Hall output
so that only the change in output upon stretching a specimen is
recorded.

Any pressure dependence of the Hall output voltage
is negligible for our purposes. However the output is quite
sensitive to temperature. A separate calibration is carried out

in the pressurized tensile tester using the sliding double
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wedge block gauge shown in Fig. 9. F, and FZ, are small
frames which hold the two parts of the gauge together and also
serve as convenient bench marks for calibration. The thickness
of the block gauge is changed simply by sliding the accurately
machined aluminum wedges past one another. To calibrate the
thickness sensor, the block gauge is installed in the pressurized
tensile tester, and the magnet and Hall device are clamped
on. The tester is then closed, the silicone oil is pumped in,
and the whole assembly is brought to constant temperature.
The Hall output voltage is then measured as a function of the
crosshead displacement, which had previously been related to
the corresponding thickness of the block gauge by measuring
the thickness as a function of bench mark separation with a
cathetometer sensitive to 0. 0002 ¢cm. This relation is linear.

A typical calibration curve at 25°C is shown in Fig. 10.
Although the Hall output is proportional to the intensity of
the magnetic field the relation between the output and the distance
from the magnet will not be linear because the intensity of the
magnetic field does not change linearly with the distance from
the magnet. In fact the calibration curve in Fig. 10 can be

represented by the equation

V.. = At“ + Bt + C (3 « 2}

in whicht is the thickness and A, B, and C are constants depending



w3 =

on the temperature. The values of these constants at 25°C are
shown in the figure. The dependence of the output voltage on

the square of the thickness is a consequence of the geometry

of the magnetic fielde This is shown in Fig.ll-a where N and

S are the two poles of the magnet M, and H is the Hall device. If
the change of the distance between the magnet and the Hall

device is quite small, the force lines passing through the small
range may be considered straight lines radiating from a single
point as shown in Fig. ll-b. Letting S; and Szbe the arbitrary
areas shown in Fig. 11-b, we can write, using a simple geometric

theorem,

oA . (3 - 3)

Since the number of force lines passing through the areas
S, and Szare the same, the intensity of the magnetic field

B will be inversely proportional to the area, S, and hence

B
2 S (3 - 4)
By

1
2

From Eq. 3-1 the output is linearly proportional to the intensity

of the magnetic field if the rest of the variables are constant,
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= (3 -5)
1

2 _fa-t) (3 - 6)

where a = OBand t = AB. Rearranging, Eq. 3-6 can be written as

Vi, = Vg [ - 25 + 60 (3 -7)

where VH is a constant. Hence

But VH = VH - VH »
o o o
Ve & Ve =V )-ziﬁl—u —YH—%Z (3 - 8)
H Hl Ho a aZ

which is identical with Eq. 3-2.

With our arrangement about 0. 004 inch change in thickness
corresponds to 1 inch on the recorder chart. Thus ina 0.1
inch~thick rubber specimen the thickness change resulting

from a 100percent extension will register as about 7 inches
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on the chart. This is quite adequate for our purpose but is not the
limit of the sensitivity of the device. This could be increased

by a factor of about 10 if required. The device should therfore
allow determinations of Poisson's ratio in elastomers.

3.2. Material

The samples used in experiments are glass bead filled
EPDM (Ethylene-propylene~terpolymer) vulcanizates. The
EPDM is U. S. Rubber Co. Royalene 301T and the glass beads
are 3M "Super bright''glass beads manufactured by 3M Company
whichhave 29micron diameters. 100 parts of rubber was milled
on a 2-roll rubber mill for 10 minutes and a measured amount
of glass-beads are added to be milled together for another
10 minutes. Care was taken not to overheat the mixture during
the mixing. Then, 3 phr dicumyl-peroxide was added and
mixed for 10 more minutes. After cooling it to the room temper-
ature, the mixture was vulcanized by compression molding to
produce sheets of 25.4x25.4x0. 318 cm (10x10x1/8 in.), at
162°C for an hour. The specifications of the samples are
given in Tablell. The crosslinking densities shown in the last
column were measured by M. Okuyama(zo).
Rings of inside diameter 1. 350 in. outside diameter

1.500 in. were cut out of the sheets.
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3.3. Measurements and Method of Analysis

In this section the experimental procedures for measuring
the stress-strain curve and the accompanying volume change of
a glass-bead-filled rubber vulcanizate ring specimen will be
described. The method of data analysis for obtaining volume
change-stress-strain curves will follow. It will contain an estima-
tion of end effects, the determination of the point of zero strain,
and the calibration of Hall output.

3.3.1. Volume Change- Stress=-Strain Curve

Preceding actual measurments, the Hall Effect thickness
sensor is calibrated by the method described in Section 3. 2.
In calibrating the sensor, the sensitivity and range of the recorder
are adjusted so that the full movement of the recorder pen
across the chart approximately coincides with the change in the
Hall output for the expected change in the thickness of the specimens.
Stress and volume change of the samples due to deformation
were measured on the pressurized tensile tester.

To begin a measurement the lower hook of the equipment
is brought as close to the other hook as possible. This allows
us to hang a ring specimen without deforming it over the upper
hook. With the specimen on the hook, the lower hook is brought

down far enough to deform the ring to an elliptical shape but



wil e

not enough to make it straightened out. At this position the
specimen is still regarded as unstretched, but it does not

slip around the hooks when the Hall effect thickness sensor

is put on it. Care must be taken to locate the thickness sensor

as close to the middle of the specimen as possible. At this

stage the output from the load cell shows the sum of the forces
due to the bending of the specimen and the weight of the sensor. This
force is recorded. Next the cover is put over the equipment,
screwed in and tightened. Hydraulic liquid is introduced, and

the entire system is pressurized. Temperature and pressure

are carefully controlled so that the desired condition is main-
tained through the measurement. Before stretching the specimen,
the stress output is brought back to the value indicated before

the system was filled with the liquid in order to cancel the
buoyancy force. The specimen is stretched at a constant speed,
3.45 ¢cm/min., until it breaks. The stress and thickness

changes are recorded on the same chart by a two-pen X-Y,-Y,
recorder. The pressures used are, 1.0, 7.9, 14.8, 27.6,

69.8, and 138.0 bar. (0, 100, 200,400, 1,000, 2,000 psig)

Each measurement is repeated three times to reduwe  the

uncertaintyof the data due to experimental error.
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3.3.2. End Effect.in a Ring Specimen

When a ring specimen is stretched on a pair of hooks

the stretch ratio is given by

N, = [2.1.. + w(d + v:_)]/“(Di + w) (3 -9)

a

where Di is the inside diameter, d is the diameter of the hook,

w is the width of the ring, L is the distance between the centers

of the hooks and la is the stretch ratio averaged over the cross~-
section. Since D0 - Di = 2w, where Dois the outer diameter

of the ring, we have

Da=(D°+Di)/2=Di+w (3 - 10)

where Da is the average diameter. Setting ha =1 in Eq. 3-9

so that L becomes I"'o' the initial distance of the hooks, we

may express d in terms of Lo. w, and Di' Making the necessary
substitutions, it can be shown that Eq. 3-9 is identical with

)

the equation of Smit’.h(Zl . We prefer to use it in this form
because this does not require knowledge of Lo'
Eq. 3-9 has been derived from the geometry of the ring

assuming that the material is incompressible, and that there
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are no end effects. In fact, however, the ring is flattened

out where it is in contact with the hooks, and four ''fillet sections"

develop in the proximity of the hooks. For convenience in con-
sidering the end effects, a ring may be subdivided into four
sections as shown in Fig. 12 in which the sections are identified
by Roman numerals.

To ascertain whether the end effects could be neglected,
a ring, cut from a sheet of an unfilled natural rubber vulcanizate
was bench marked as shown in Fig. 12. The lengths along the
inside and outside circumferences of the four sections were
measured with a cathetometer to obtain the initial lengths of
each section. The ring was then stretched in small increments,
and the changes in the lengths of the four sections were again
read with the cathetometer. The resulting stretch ratio will
be denoted by )\m . Stretch ratios were then calculated using

eas

Eqg. 3-9 in the form

_ 2L + d + w (3 - 11)

cale ~ #D D
a a

i. e. suppressing the subscript a for convenience, and neglecting
the small correction for the change in the width of the ring,
1@ . We have found that with our samples and specimen
geometry this correction is indeed negligible up to stretch

ratios as high as 8.
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By Eq. 3-11 the stretch ratio, kcalc' is a linear function
of the hook distance, L. The average stretch ratio in each
section was obtained by taking the mean values of the inside
and outside stretches. .The unfilled circles in Fig. 12 represent
a plot of the average of )\mas against )\calc' The dotted line is
the line of unit slope. The scatter of the values obtained for
each section is considered to arise from slight. changes in the
thickness and width along the circumference of the ring.

Since the force acting on any cross section must be the
same, the stress along the circumference of the ring will be
inversely proportional to the cross-sectional area. Therefore,
if we assume a linear relation between the stress and the stretch
ratio, the latter will also be inversely proportional to the
cross-sectional area along the circumference. This assumption
is certanly valid for the small dimensional variations considered
here. If the thickness and width of a given cross-section are
denoted by t and w, and the values averaged over the cir-

cumierence by t v and W respectively, we may write

= -1
hcorr Xmeas-——L 3 “d

av av

.where hmeas is the cathetometrically determined stretch ratio, '

and A is the stretch ratio corrected
corr .
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for changes in the cross-sectional area.

The filled circles in Fig. 12 represent the data shown
by the unfilled circles corrected according to Eq. 3-12. The
data fall almost exactly on the same straight line which is off-
set here by the arbitrary amount A for clarity. The solid.line
was calculated by the method of least squares from the data
represented by the filled circles. This analysis shows that
the scatter caused by slight changes in the thickness and width
along the specimen can be corrected for in the indicated manner.
It also shows that the end effects cannot be neglected in calculations
demanding a high degree of accuracy. Since, however, the filled
circles in Fig. 12 fall on a straight line, the true stretch ratio
may be obtained from that calculated by Eq. 3-11 by the linear

relation

true = ZT")\corr *b (3= 13)

The constants a and b will in general, depend on th_e material
and the ring dimensions. The constant b is small. For b = 0,
'n'Da/a .is an equivalent circumference analogous to the equivalent
gauge length employed with dogbone shaped tensile specimens.

3.3.3. Determination of the Point of Zero Extension

When a ring is stretched in uniform extension it is first
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straightened out into the ''race track’ shape shown in Fig. 12.
Little force is required generally to affect this shape change. The
load-deformation curve, therefore, shows a "toe' at small
crosshead displacements where the force rises less steeply than
it would if the specimen had had the race-track shape |
in the undeformed state. To determine the point of zero extension
for the race track shape it is customary to back-extrapolate
the load-deformation record using the portion of the curve just
past the toe where it is generally a straight line. In the past
these extrapolations were done manually. For the measurements
reported here this method proved inadequate. Because of the
relatively high filler content the behavior is sufficiently non-
linear to prevent the determination of the point of zero extension
by simple manual extrapolation with the required accuracy.
We have therefore devised a method based on curve fitting
which gives excellent results.

For some unfilled rubber vulcanizates the stress=-strain
curves in simple tension are described fairly wellup to a certain

strain by the equation
& = Eln\ (3 -14)

where o is the stress, E is Young's modulus, and X\ is the stretch

ratio. In the case of filled elastomers, provided that the filler
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is rigid and that the material is incompressible, the average

deformation in the rubbery matrix, RR' may be approximated

by

xR=1+(x-1)/(1-m) ' (3 - 15)
where N is the overall stretch ratio and ¢ is the volume fraction

of the filler. Substituting this expression into Ej. 3-14 we obtain
T = Eln[l % o= 130 co):l (3 - 16)

Although Eq. 3-15 does not describe the behavior of real filled
materials, it, nevertheless, has the correct shape and may be
used for the purpose of curve fitting by regarding the constants
E and ®as adjustable parameters. To determine the point of
zero extension by back-extrapolation using Eq. 3-16, it is
necessary to add another parameter A that shifts the curve along

the A-axis without changing its shape. The resultis
- =c1n[1+(x- l-A)/B] (3 -17)
where the use of the symbols A, B, and C emphasizes that no

physical meaning should be attached to them, except that C/B = E

may be regarded as an estimate of Young's modulus at small
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strains.

This procedure has been incorporated into our computer
program for the reduction of the load-deformation records to
the stress-strain curves. It appears to give more consistent
results than back-extrapolation using a polynominal fit.

3.3.4. Calibration for the Calculation of Relative Volume

Change

When a body is deformed, letting V and Vo denote the
volume before and after deformation, respectively, the ratio

is given by,
v _ :
= NAN (3 -17)

where ?\lr )\2, and ?\3 are three principal stretch ratios, respec=
tively. If t and K, denote the widths (thickness) of a specimen
before and after deformation, respectively, the stretch ratios

in the two lateral directions are

A, = Ay = —— (3 - 18)

As shown in section 3. 4.1 the principal stretch ratio in the
direction of stretching, ?\1. may be calculated by Eq. 3-12

for an unfilled elastomer. Attempts to carry out a similar
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amalysis ‘on glass bead-filled EPDM rubber were unsuccessful
because the specimen failed in delayed rupture when the rings
were held at a constant elongation during the cathetometer
reading. Therefore, an indirect method nust be used toobtain

the true values of )\l experimentally.
2

If the material is incompressible we will have )\17\2 = 1.
Eq. 3-18 would then give
t
2
Xy === (3 -19)

Plotting (to/t)2 measured by the Hall effect thickness sensor,
against the separation of the hooks, L, should, by Eq. 3-19

yield a straight line if the material is incompressible. If the
rubber separates from the filler particles as it is deformed,

the volume does not remain constant because of the vacuole
formation. As a consequence, the thickness, t, will not decrease
as fast as it would if the material was incompressible. A

plot of (t:o/l:)2 against L, therefore, would be curved downward.
This is shown in Fig. 13 by the data obtained on sample A06 at
atomspheric pressure (triangles), and at 138 bars pressure |
(squares). Inboth cases the curve begins as a straight line

and later bends dowmn, as expected. This shows that the composite
material is incompressible until a certain stretch ratio is reached.

Although it may be possible to calculate the true values
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of axial stretch ratio, }‘1' by extrapolating the straight portion
of the curves in Fig. 13, it turned out that it is not accurate
enough. Another method had to be developed.

The variation of the output from the Hall effect thickness
sensor was shown to be a quadratic equation with i-espect to
the thickness, both experimentally and semi-theoretically,

in Section 3.2 as

V., =At°+Bt+C (3 - 20)

where VH is Hall output , t is thickness of a specimen and

A, B, and C are constants. Experimentally obtained values
of A, B and C will contain some amount of error ' and ,
consequently, the thickness, t, calculated from the equation
will contain some error. Letting A', B, and C represent the

measured values of A, B, and C, respectively, the relation

among them is given by

2

Vo, = A5 % 4 Bt % & (3 - 21)

H
where it is assumed that the Hall output, VH can be measured
accurately enough so as not to contain any error. If subscript,
'o', denotes the initial values of all the quantities under consider=-

ation, lateral stretch ratios of a specimen are defined by
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A =T ' . (3 - 22)
N, =——

S = (3 = 23)

The prime (') denotes experimental values. The volume ratio,

v is given by

v = a2 (3 - 24)
o
oY = kl'kz'z (3 - 25)
V '
o

If the material is incompressible, we have v =1 and )‘1 is

given by
1
}\,1 :—-—2 (3 -~ 26)
)\2

The experiments described in Section 3.2 showed that the
true stretch ratio, A, is a linear function of crosshead displace-
ment, and it is related to the stretch ratio calculated by Eq. 3-11,

¢

Ay» by
% =z(>\1'-1)+1 (3 = 27)

1

& .
This is because, according to the equation, A, is also a linear
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function of crosshead displacement, and z is an error factor,
or more precisely, something that should be called an end
effect factor.

Solving Egs. 3-20 and 3-21 for t and substituting the

solution in Egs. 3-22 and 3-23, we can get

2
B# | B2 = 4A(C = Vi)
X, = “/ .2 (3 - 28)

2
B+JBZ-4A(C-V

Ho)

and

; B +JB’2 = A (C" - Vi)
hy! 8 (3 - 29)
B’ +A/1‘:a"2 - 28" -

Ho)
where VHo is the Hall output corresponding to the initial thickness,

is obtained as a function of A_ as

to. From Eq. 3-29 VH 2

’ 12 1] / 2 ¥
=[x2{B +JB “ ARG = Yop ] ¥« B« 5™ caa’c

/

4A

Va

(3 - 30)
if the relative error in the values of the measured constants,
A, B’, and C’ are AA, AB and AC, respectively, the true values

are

A =4 (1-a4a)
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= B'(1 - aB)’ (3 - 31)

o
1

&'l = AG)

Q
n

Substituting Egs. 3-31 in Eq. 3-28 we obtain

B'(1 - AB) + ,\/IB'Z(I - aB)? - 4A’(1 - aa)[c/(1 - AC)-VH]‘

)\2=

B(1-AB) +JB'2(1-AB)2 - 4a'(1-84)[C"(1-2C)-V ]

2
p_1-aB "‘«/BIZ (1-aB)" _ 4A'[c’(1-a0) - Vi
= 1-A4 (3 - 32)
g dwdd, o [peldeam] ® - 441C"(1-8C) - Vg, ]
Ji=ak N 1-aAA

Replacing (1-aB)//T-AA", and (1 - AC) by x and y, respectively,

V can be written

_ B'x +,\/(B'x)2 - 4A'(CYy - Vi)

A (3 - 33)

2

B'x + ,\/(B'x)z - 4A'(C'y - Vi)

Substitution of Eq. 3-30 into Eq. 3-33 yields

B’x+«/[x2’{3’+\/ B’2-4A’(c’—VHO)}-B’f-(B’x)Z-B'ZﬂA’(l-y)

)\.2_

’ T Fa— :
B'x+,/ (B'x)%-4A(CY-V,; )
(3 - 34)
Eq. 3-34 relates expected values of lateral stretch ratio from

Eq. 3-11 to the true values. Substituting Eq. 3-27 and Eq. 3-34

into Eq. 3-24, the dilatation due to stretching can be calculated
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provided that the values of %, y, and z are known.

If the material is incompressible, v will have the value of
unity independent of the étretch ratio. If, however, any one or all of
the parameters x, y, and z do not equal unity, v’ will deviate
from unity even though the material is incompressible. Calculating
v’ from experimental data, i.e. from the crosshead displacement and
the thickness change, will lead to a curve such as th:at shown by the

circles in Fig. 14. By contrast, the curve represented by the

squares, is of the form one expects when the material is incompressi-

ble(i. e. does not dewet) until a certain value of the stretch ratio is
reached. The experimental curve(circles) can be corrected to give

the true curve(squares) by choosing a set of appropriate
values for x, y, and z, by means of curve fitting. The result

may be used to correct the data of volume change because it
will be reasonably assured that the calibration constants have

no relation to whether or not the volume of a specimen is increasing
during the deformation. A typical example of the calibration
is shown in Fig. 14. In the figure the circles show a set of
experimental data of dilatational measurements. After correction
the experimental values are reduced to the points représented
by squares. In making this correction, measured values of
A’, B'. and C’ were used to calculate the values represented
by the circles. Those values belonging to the region where
the curve does not jret begin to rise sharply were compared
to the expected value of 1, and the factors x, y, and z were
determined by a trial-and-error method so as to give thebest .

agreement to each other.
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4. Results and Discussions

Both experimental and theoretical results will be presented
and compared. First the material constants and experimental
parameters of the material used are calculated. 'Then in the
succeeding sections, the initial moduli, the stress-strain-
volume change curves, and the failure properties of the samples
will be presented and discussed. For the first two properties
the resuts will be compared with the theoretical results.

4.1. Material Constants and Parameters

As discussed in Section 2 the strain energy function
of a homogeneous and isotropic elastic material should be a
function of strain invariants. Furthermore, if the material
is incompressible and the time dependence is negligible, the
strain energy is a function of two of the strain invariants, 5

and Iz. and is expanded to a Taylor series of the two invariants.

[=-] i &
w =_>;_ cij(11-3) (12-3)J (4 =~ 1)
i, j=0

For the case of simple tension, I, and I2 are given by

il .

I1 =X "i------——-)g
: 4-2)

IZ Ryt + 2\

A
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The stress-strain curve is obtained by differentiating Eq. 4-1
by the stretch ratio, A, as

Co1
~

o =8 - 200+ )(x-)%zng(x;cij) § g e 1
(4 - 3)

where ¢ is nominal stress and g(\; Ci.j) is a function of N with

Ci.i as the parameters. If g(\; cij) is neglected Eq. 4-3 is the

well known Mooney-Rivlin equation, and the constants, clO_

and (.':01 are obtained as the intercept and the slope when

o/(\ - )\-z) is plotted against 1/\. The Mooney-Rivlin equation,

however, is not valid in a very wide range of stretch ratio. The

Mooney stress, O‘/()L - )\—2). for rubbery materials, in most

cases, blows up as the stretch ratio increases indefinitely.

Recently Ts .::hoegl(?‘5 )

developed a method of curve fitting to
obtain the coefficients ofthe higher terms in Eq. 4--1. According
to thiis method all that is needed to obtain satisfactory coincidence
with the experimental data in most cases is retaining only one

or two coefficients in addition to C, and C,. The coeffiecient
for the strain energy of sample A0l (EPDM pure gum vulcanizate)
wagcalculated accordingto his method. It turned out that for

this material the combination of ClO’ COl and CZZ gives the best
fit to the experimental data. Mooney stresse of AOl

is plotted against the inverse stretch ratio, 1/\ in Fig. 15.

The solid curve was calculated from Eq. 4-3 using the following
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values for the coefficients.

ClO = 1.374 bars.
COI = 3.003 bars.
CZZ = 0.000783 bars.

In the beginning of Section 2 the model for the composite
system with the representative dimensions, a, b, and ¢ was
introduced. The relation between these parameters, however,
was left undetermined. Obviously the relation must depend
on the volume fraction of filler in some way. By definition,

the volume fraction, ¢, is related to a, b, and c by

—ra 3
- % - = Zaz (4 - 4)
2mbc 3be

While V is defined by ¥ = a/b, if we let b = ¢, then ®and ¥

are related by
% B 3
e m ey or ¢=g/——2crs (4 - 5)

If this relation holds over the whole range of possible filler

loading ratios, | increases as ¢ increases and reaches 1 at

p= i cr 66.7 % Since it is obvious that § can not exceed

1, as long as this condition holds, 66.7 % is the upper limit



-63€L

of the possible loading fraction of filler. On the other hand,
experiments show that the limit of loading ratio ranges from

60 to 63 %(26) and that this range is fairly close to the maximum
loading ratio of our choice. It may be reasonable to assume

that at ma ximum loading all the filler particles are effectively
in contact with each other so that the whole composite system
behaves as a rigid body. If this is true we may modify Eq. 4-5

by replacing 2/3 by P

r

3,9 -
] -\/ o (4 - 6)

where P is the maximum loading ratio of filler particles.
The adequacy of the choice will be tested in the following
section.

4.2. Initial Modulus of a Filled Elastomer

As mentioned in Section 1 there are a number of theories
for predicting the effects of filler particles on the Young's
modulus of filled elastomers. Althouvgh calculating the modulus
is not the main purpose of this work , it will serve to check
the feasibility of the theory.
With the strain energy of a filled elastomer known as
a function of stretch ratio and volume change, the Young's modulus

E, of the system is given by
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where N\ is the stretch ratio of a simple tension deformation.

As will be shown in the next section, the volume change due

to the dewetting under deformation does not begin until a certain
stretch ratio is reached unless the hydrostatic pressure is

zero. We, therefore, can use the strain energy function for the
case of no vacuole formation obtained in Section 2 to compute

the Young's modulus. Values of second derivative of the strain *
-energy function were computed numerically to obtain the Young's"
moduluﬁs, using the constants and_ the parameter, ¥, obtained

in the previous section.

The-experimental values of Young's moduli of glass bead
filled EPDM rubber were calculated as the slopes of the tangents
of stress-strain curves at A = 1. The results are shown in
the second c_pluijnns of Tables Il to IX, where G is obtained by
dividing E-—l:;r 3. Contrary to the prediction, the experimental
values of the moduli show a slight dependence on the pressure
at high loading ratios at low pressures. This, however, can reasonably
be attrib}.}té’fl.lj;o’the fact that in a higizly loaded system, the dewetting
begins at-su;h a low stretch ratio that it becomes difficult
to measure‘the initial 510pe:‘,0f a stress-strain curve precisely
before the effect of volume change initiates.

(20)

The crosslink densities of the rubber matrices inthe
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samples are shown in Tables II to IX. The crosslink density

of the pure gum vulcanizate A0l is 2. 72x1 0-4 mol/cc. Molecular
kinetic theory shows that the modulus of crosslinked polymers

is proportional to the crosslink demsity. These data allow us

to correct the experimental values of the moduli in order to
appropriatedly compare them with the theoretical results.

If we assume that the material constants obtained in the previous
| section vary in the same proportion as the crosslink density,

the resulting values of the moduli vary at the same rate. That

is, if the crosslink density of a rubber matrix increases by a

factor of 2, the modulus of the composite doubles its value. Omitting
the data in the second columns of the tables that are obviously
affected by the decrease of the apparent modulus due to dewetting,

the moduli were averaged over the pressures for each sample, and
the results were multiplied by the ratio of the «crosslink density

of rubber matrix to that of AOl. That is,

_ - M
)

GCOI‘I‘ - Gav( \Je

(4 - 8)

_ o

where Gav is the average of the moduli over the pressures,

G is the corrected value, and V_and Vv, _are the crosslink
corr e eo

densities of the sample and of A0Ol, respectively. Ecorr normal-.

ized by the value of the unfilled binder, Go' are plotted as
6/60 in Fig. 16. The solid curve was calculated from

Eq. 4 - 7 using the material constants and the parameter, V,
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obtained in the previous section. The coincidence is fairly good
in spite of the scatter among the experimental data..

4.3, Volume Change-Stress-Strain Curves.

4.3.1. General Observations

A few typical examples of volume change-stress-strain
curves of glass bead-filled EPDM vulcanizates are shown in
Fig. 19. These are the results of the measurements on sample
A08 at 5 different pressures.

The figure exhibits most of the characteristic features
of the pressure dependence of stress response and dilatational
behavior of non-reinforcing filler-filled rubber vulcanizates.

Dilatation of a filled system does not begin until a certain
stretch ratio is reached. After passing through a transitional
region, where the rate of dilatational change gradually increases
from zero to a certain positive value, the volume of the system
increases linearly with stretch ratio.

In order to obtain a general idea concerning the dependence
of dilatational behavior on pressure and filler fraction, . it is
convenient to characterize the volume change-strain curve
by as few characteristic parameters as possible. Considering
the typical nature of a curve described above, two parameters
are necessary and also sufficient for the purpose, namely

a stretch ratio, ?\d. at which volume change begins and the final
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rate of volume increase, m. For the sake of convenience we
define )\d as the stretch ratio where back extrapolation of the
linear part of a volume change-strain curve intersects with the
M axis. Although this is obviously not the real point of volume
change initiation it will serve the purpose. ;

These characteristic values for each experiment are
shown in Tables II to IX. Despite the fact that fairly large
scatter in the data makes it difficult to obtain precise information
one can observe that ?\d depends strongly on pressgure but that it
depends little on volume fraction of filler, if it does at all.

)\d is plotted against pressure in the lower half of Fig. 17.
The circles represent the averages over several different filler
fractions ranging from 0. 089 to 0.485. A range of experimental
scatter is shown by a solid vertical line segment and a pair
of short horizontal bars at both ends. According to theresults, hd
increases with pressure. In other words the volume change in the

system is delayed by superposed hydrostatic pressure.
The change in ?\d from 1 bar to 10 bars is about 0. 15 and the
corresponding value is about 0. 30 in the interval from 10 to
100bars. This implies that much more change happens in the
low pressure region than does in the higher pressure region.

Tables II to IX show that mn decreases with pressure,

suggesting a lower rate of volume increase at higher pressure.

The decisiveness of these observations, however, is obscured
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by the amount of experimental scatter, and if the observations
are true the pressure dependence of m is less conspicuous than
the dependence on the change in filler fraction. Values of m
are plotted against filler fraction, @, in Fig. 18 in a manner
similar to Fig. 17, i.e. a circle - represents an ave‘rage value

of m over several different pressures ranging from 1 to 140
bars and the range of experimental scatter is shown by a vertical
line segment and a pair of short horizontal bars at both ends.
As expected the slope of volume change increases with volume

fraction of filler, the more so, the higher the filler

fraction.

In order to show the change in stress-strain relations
due to increase in filler content, Fig. 20 shows the experimental
results from the samples with several different filler fractions at
14.8 bars. As clearly seen, the more highly loaded with filler
a specimen is, the stronger the force necessary to stretch it
in the early stage of deformation. This relation is reversed
as the stretch ratio increases, i.e. at a highly stretched state,
the least loaded system shows the highest stress and the most
highly loaded one has the lowest stress. This implies that
all the stress-strain curves cross each other at certain stretch
ratios. Although experiments show that the points of intersection
fall in a fairly narrow range of stretch ratios-- sometimes it

looks almost like one point -~ this is probably purely coincidental.
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The stresses corresponding to )\d' denoted by 'a_'d, are shown
in the upper half of Fig. 17. ;d is a monotonically increasing
function of pressure and the rate of increase is higher for a
more highly filled system. ;d also increases with the fraction

of filler except at the lowest pressure.

4.3.2. Comparison with Theory

Consider a system of elastic material in simple tension
which is in equilibrium at hydrostatic pressure, P, nominal stress,
o (stress based on the original cross section of the system),
stretch ratio, A, and the ratio of the deformed volume to the
original volume, v. If the stored energy in this system is
W(A, v) the change in strain energy caused by small changes
in the variables is obtained from the following energy

balance relation.
dW =odA - Pdv

or

oW AW
—a—rd?\. + -a—‘:—-dv + Pdv =~ odh = 0 (4 - 9)

If A is constant we get

BWov + Pav = 0
ov
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or

P = -o— (4 - 10)

If v is constant we obtain

ow

ﬁ-—dk - odhN = 0
or
B = _g_w (4 - 11)

In Section 2.5.2 we assumed that the strain energy of a composite
system was given by Eq. 2-54. As an example of the function,
(N, v/vo()\)) we can select the following expression.

£, v/ (V) = (- V/vo(h))hm

V= VO(M (4 - 12)
If h(\) is always larger than 1, this expression for f(A, v/vo()\))
satisfies the conditions mentioned in Section 2. That is, f =1

at v = 0, and the function has a minimum, 0 atwv = vo(k.).
Furthermore, this form is simple enough to allow us to treat

it mathematically.

Substituting Eq. 2-54 into Eq. 4-10 we can obtain



Tl
B oe s lW 0] =W, B (4 - 13)
o min oN

Substituting Eq. 4-12 into Eq. 4-13,P is obtained as

v___h{n)-1_1

P = [w (A - w_. (MIh\(I -";;m—) FANE
(4 - 14)

Similar calculations using Eqs. 2-54 and 4-11 give

gom B o (1 v:(x))hm BV (M) = W ()]
+ w0 - w_, Vho( - ﬁ))hm'l v:()\) (4 - 15)

From Eq. 4-14 the volume ratio v is obtained as a function of

Pas‘

on(?\)
h(h)iwo(k) - W

. 1
h(Z)-1 (4 - 16)
min(MT]

Substitution of Eq. 4-16 into Eq. 4-15 gives the nominal stress, o,
as a function of stretch ratio ,- A, and hydrostatic pressure, P.
Functions h(\A) and VO(M were chosen so that they give
reasonable agreement with the experimental data on sample All
with filler fraction, 0.398 (cf. Fig. 24),
B = SR “ - 17)



D
v, = o -t (4 - 18)

Stress-strain curves and volume changes for glass-bead-
filled EPDM samples were calculated numerically using the
material constants and parameters obtained in S'ection 4, 1.

Fig. 21 through 24 show the results for samples A02,
A04, A08 and All, respectively. The volumetric loading
fraction of filler increases from 0. 089 to 0.398 in this order.

In plotting the data the values were corrected by the same method
used for determining the Young's moduli in Section 4. 2.

In each figure experimental values of stress-strain
and volume change-strain are shown by solid lines for pressures,
1.0, 14.8 and 138. 0 bars. The theoretical results are indicated
by broken lines for 1.0 and 138. 0 bars. As expected the agreement
between the experimental and theoretical data becomes poorer
as the volume fraction of filler increases; however, the agreement
is fairly good considering the arbitrariness in choosing the
functional form of the strain energy W(\, v). Although it may
be possible to choose a more complicated form for f(A, v/vo()\))
to improve the agreement of the results, we may not be able
to obtain a closed form for the stress, ¢ because it may be im-
possible to rewrite Eq. 4-13 to a form equivalent to Eq. 4-16
in such a case.

Unlike the agreement in the stress-strain curves, the
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volume changes predicted by the theory

than those of the experimental data. This is rather strange
considering the fact that the theoretically obtained strain energy
function describes the stress-strain behavior fairly well not
-just for one, but for three variables, namely volume fraction

of filler, stretch ratio and hydrostatic pressure. For examle,
in Fig. 23 the theory predicts not only the approximate heights
of stress-strain curves but also the characteristic shapes of
the curves, which are not monotonous functions. This deviation
from the experimental data of the volume éhanges predicted by
the theory may be because of the speciai choice of the functions,
h(M), and vo()\) we made.

From the observation discussed above we may conclude
that, if we choose the functions, h(A) and vo{k), so that the
results of the theoretical calculations show reasonable agreement
with the experimental data at a volume fraction of 0. 398, then
the theory satisfactorily predicts the stress-strain behavior
as a function of stretch ratio, volumetric loading of filler,
and pressure for volume fractions below 0. 398, and pressures
up to about 140 bar.

At higher volume fractions the specimens broke before
dewetting fully developed. The stress-strain curves up to the
relatively short stretch ratio, ?s.b, at which the specimens failed

were practically straight lines, the slope of which are given
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by the initial moduli tabulated on Tables II to IX.

The effect of filler-elastomer adhesion on the reinforcement
of mechanicala behavior of filled elastﬁmer is quite obvious
in Figs. 21 to 24.

Superposed hydrostatic pressure prevents filler-elastomer

separation to some extent as shown by the volume_change-

strain curves in the lower parts of the figures. As soon as the
elastomer begins to separate from the filler particles, the rate
of stress increase sharply drops. The higher the loading fraction
of filler is, the more remarkable the phenomenon appears.

In the case of no vacuole formation, the theory predicts a
nominal stress of 860 bars at A =2.5, @ = 0.4; experiments
give only 11.4 bars for the same material even at the highest
pressure, 138 bars, which was actually used. Of course this
does not mean that this composite will really show a stress of
860 bars if dewetting is completely prevented. There will be
many factors that prevent the achievement of this extreme
strength. For example, the maximum internal stretch ratio of

a composite system with filler fraction of 0.4 at A = 2. 5 reaches
as high as A = 10. 6 according to Eq. 2-42. Considering that

the stretrch ratio at break of unfilled EPDM sample A0l has a
value of about 3.5, it is highly improbable that the stretch ratio
exceeds the value of 10 even locally. However, the theoretical
speculation gives an idea about the importance of filler-elastomer

adhesion on reinforcing effect of filler.
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4.4. Failure

4.4.1. General Observations

In systems heavily loaded with glass beads, a stress-
strain cL;rve often has a maxima. Sometimes this phenomenon
may be genuinely the reflection of a sudden decrease in strain
energy due to vacuole formation in the coinposite material,
but at other times it is caused by local growth of flaws. If the latter
is the case , caution is needed in determining the true mechanical
properties at break.

Fig. 25 shows theresults of measurements on two different spec-
imens of Al13(¢p= 0.459) at 13.8 bars(gauge). In spite of the excellent
reproducibility of the data, both in stress-strain curves and in
volume change-strain curves at stretch ratios lower than
1.1, they deviate from each other at higher deformation.

Moreover, the shape of the curves becomes quite irregular

as soon as the volume change-strain curve begins to deviate

from 1. Not to mention the fact that AV/VO could not be n_egative.
it is obvious that the deformation in this region is not uniform

any longer. Visual observations of the specimens under
deformation revealed that a large flaw sometimes develops
locally in the specimen at it is stretched. To be accurate,

the stress and the corresponding stretch ratio at which a stress-

strain curve begins to show an irregularity in shape are taken
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as the properties at break. The failure data are shown in the
last three columns of Tables II to IX.

The data for a few of the samples are shown in Fig. 26
and Fig. 27. In Fig. 26 stretch ratios at break for samples
A02, AC8 and Al4 are plotted against hydrostatic pressure, and
the corresponding stresses are shown in Fig. 27.

Of the three cases sample Al4, which is the most highly
'loaded system in the series, is of most interest. In A02 and
AO08 the stretch ratios at break more or less smoothly increase
with hydrostatic pressure. On the other hand the behavior of
Al4 is quite unique; that is, ?\b exhibits a dramatical drop
at a pressure of about 10 bars. It becomes clear that this is
not simply experimental error when one looks into the other
properties. In spite of the unusual behavior of )\b in Al4,

the dependence of the stress at break, R

from the other two samples as shown in Fig. 27. Inspection

» 1s hardly distinguishable

of the dilatational behavior of these specimens shows that

the volume of specimens under stretching at 1 and 7.9 bars
increases quite rapidly, as expected from the high loading ratio
of filler. In the other four cases, meacured at higher pressures,
the specimens break before they show any indication of dilatation.
This observation suggests that at lower pressures the release

of large internal deformation due to vacuole formation which

causes a large stress concentration is strongly responsible

e
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for keeping the specimens from breaking. It further suggests
that the properties at break of the rubber matrix itself are not
at all or only slightly affected by hydrostatic pressure.

4.4.2. Failure Surfaces

If an elastic material is subjected to a
deforma tion, the stress tensor as the response can be character-
ized by three principal values, T 0y and o3 When the
values at rupture are plotted in three-dimensional stress space
with oy crz and Tg

istic surface, which is called the failure surface. Since in

as the base axes, they will fall on a character-

an isotropic materialinterchanging T Oy and o3 does not alter
the mode of deformation, a failure surface must have the space
diagonal as an axis of six-fold rotational symmetry as the
most general case. A space diagonal is defined as a straight
line consisting of all the equidistant points from the three stress
axes in the first and eighth octants, where o1 0y and o3 all
have the same sign.

Lim and Tschoegl(lé), assuming that a failure surface

is a surface of revolution whose axis is the space diagonal,

attempted to express it by two variables. Those are

q
Il

(0'1+o' + 0o

on 2 3)

(4 - 14)

wlt—- o]

Sog £(0'1 -0, )2' + (0—2 - 0-3/)2' + (0‘3 - 0'1)2]%
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Both ¢ and ¢ are symmetric with respect to o,, o, and
on os 1 2

O3s and consequently any equation cxiainng A and Ton 28 the
variables defines such a surface of revolution that was described
above. Geometrically, /3 L is the length of the projection
of a position vector in stress space on the space diagonal, and
J3 Tss is the distance of the point from the space diagonal.

Lim and Tschoegl obtained values of on and Ty BE
break, which are denoted by ¢_ ., and o » from their simple

on, b os, b

tension measurments under hydrostatic pressure on glass bead-

filled EPDM vulcanizates. In simple tension the principal stresses

at break “l, b 0'2, b’ and 03. b are related to the stress at

break by
o-l,b N P
Fa s = o i (4 - 15)
Tg. 5 = *F

where P is the superposed hydrostatic pressure and -Eb is the

true stress at break. Substituting Eqs.4-15 into Eq. 4-14 we obtain

u-on,b and O-os.b as
o
I -
on, b 3 »
i | (4 - 16)
ol © B 7B
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Plotting (f30'05’ b)2 against f30'on' b’ they found that the failure
surfaces consisted of a paraboloidal and a cylindrical section
corresponding to the higher and lower pressure regions, respec-
tively. They refered to the critical pressure at which the
transition from a cylinder to a paraboloid takes pface as

L b(trans) and speculated that vacuole formation is complete-~
ly prevented atpressureshigher than L. b(trans).

Unfortunately at the time they did not have a practical
method for measuring the volume change in a stretched specimen.

In order to obtain principal stresses one must know the
true stress of deformation and consequently one must know
the dilatational properties as well as the force-displacement
relation for a specimen. Naturally their data could not avoid
the error caused by the lack of knowledge of the dilatation.

In this section the volume change-strain curves for the
samples which were used in their measurements were calculated
by interpolating the data from the curves obtained for the samples
we measured and correcting the stress-strain curves to obtain
the true stresses at break. The results show considerable
differen ces from the conclusions they reached.

f3cros’ b is plotted against f3cron, b

29, for all the samples measured. Attempts to fit these data

in Fig. 28, and

by a continuous and smooth power function were not successful.

As clearly shown in the figures each curve consists of two



-80-

straight line segments. As for the shape of a failure surface,

this implies that it consists of two cones with different opening

angles, provided that it is a surface of revolution. This assump-

tion may be reasonable for an isotropic system, including

a system such as filled polymers that is homogenéous only from a -

macroscopic point of view. However , one could not expect

a dewetted glassbead-filled polymer to be isotropic; i.e. the

shape of vacuoles formed around particles will depend on the

mode of deformation, and consequently the mechanical properites

will also depend on the mode of deformation. In order to discuss

the characteristic of failure surfaces appropriately, it will

be essential to measure the properties at break by not 'only

simple tension deformation but also at least one other type

of deformation such as, simple shear, pure shear, biaxial,

etc. In the following discussion, however, we assume that the

failure surfaces are surfaces of revolution, simply for convenience.
The curves shown in Fig. 28 and 29 are the intersections

of failure surfaces with a plane that contains the oy axis and

the space diagonal. All the curves in Fig. 28. and 29 are

replotted on Fig. 30 for comparison. Each curve can be expressed

by the following two equations.

= = =
D-os, b clcron, b * CZ “on, b f"cm, b(trans)

(4- 17
<. == G 4 %on, b = Ton, b(trans) !

0os, b i

BUon. b
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In the equations, Gon, b(trans) is the value' of Gon. b at which
the two straight lines intersect, and C, CZ' C; and Cy are
constants. We will call the portion of a curve belonging to the

region, o =

anb . Tom; b(trans) the first cone and the other the second

cone. At first ghpce all the curves look parallel; ‘and for the
second cones this is true because there is no significant dependence
of the slope on the volume fraction of filler. A closer inspection
of the first cones, however, reveals that the slope increases
with the filler concentration from A02 (¥ = 0. 089) to A07 (¢ = 0. 258).
(with the exception of A05 (¢ = 0.200)), and decreases again as
the filler concentration further increases. This may be too con-
sistent to be neglected as experimental error.

C, and C; are plotted in Fig. 31 as a function of filler
concentration. C; has a sharp maximum at about @ = 0. 22
while C3 remains constant regardless of the value of filler
concentration.

C, and C, are shown in Fig. 32 also as a function of

2
the volume fraction of filler. Both decrease linearly with
the filler concentration in the range of experiments. Since the
value (24.4 bars) of C.2 at ® = 0.0 is much higher than the value
expected from linear behavior, it may be more reasonable
to assume that the C,- and C,-curves are concave upward.

Experiments show that the failure properties of unfilled EPDM

- do not depend on pressure; i. e. the value of G, and 03 of A0l
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is 0. Althoughthe values of Cy in Fig. 31 show a slight indication of a
drop at ¢ =0. 089 and 0.132, a sharp drop must take place in
the narrow range between ¢ = 0.1 and 0. 0.

The values of 5 i b(trans) range from -5.77 to -24. 2bars,
and they do not show any consistent dependence on filler concentra-
tion. This range is quite narrow compared to the range of
hydrostatic pressure where the experiments were performed
so that one can safely say o-on. b(trans) is a critical value
independent of pressure. The behavior of L. b(trans) is almost
identical to that of C2 and C4.

The significance of Uon. b(trans) as a critical value is
not clear. This could not correspond to the initiation of vacuole
formation because, according to the experiments described
in the previous section, only Al2 and Al4 among the samples
break under deformation before vacuoles are formed. Even
for these highly filled samples it happens only at high pressures.
o-on, b(trans) may be related to the release of stress concentration
due to vacuole formation.

In conclusion the failure surfaces consist of two cones,
provided that they are surfaces of revolution, and the pair

of cones intersect at a constant value of o regardless of

on, b

the filler concentration.



B3

5. Conclusions

Mechanical behavior described in preceeding sections

may be summarized as;

s

A glass bead filled - EPDM vulcanizate behaves as a
typical non-reinforcing filler-filled elastomer atatmospher-
ic pressure.

Typically, the volume of a glass bead-filled EPDM
vulcanizate begins to increase as the stretch ratio

reaches a certain value. After a transitional region

the volume increases linearly with the stretch ratio.

The initiation of volume change is delayed by hydrostatic
pressure, but it does not depend on volume fraction of
filler. The steady rate of volumeincreaseis an increasing
function of volume fraction of filler. This also seems

to be a decreasing function of pressure, although it is

not conclusive because of experimental scatter.

The theory for the strain energy of composite systems
derived in Section 2 had good agreement with the experi-
mental data in the Young's moduli and stress-strain
curves of glass bead-filled EPDM vulcanizates as functions
of appropriate variables; i. e. volume fraction of filler

in the Young's moduli and volume fraction of filler,

stretch ratio, and hydrostatic pressure in stress-strain
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behavior.

The failure surface of a glass bead-filled EPDM wvulcanizate
consists of a pair of cones. The value of % o b at which

a transition from one cone to the other occurs does not

i

depend on volume fraction of filler.
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Appendix 1. Deformation Tensor in a Cylindrical Coordinate

System

If a pair of closely located points are given the coordinates
(r + 8 ,2 Jand (r +dr, § +d6, z +dz) in a cylind'rical coordinate
system and the corresponding cartesian coordinates are (x 2 ¥ox )
and (x +dx, y +dy, z +dz), respectively, there exist the following

relations between them

x = rcosé
y = rsinb ' . (A - 1)
zZ =z

and
dx = cos8dr - rsin6d®
dy = sinfdr + r cos6d6b (A -2)
dz = dz

Since the distance between a pair of positions is given as the
square root of the sum of the squares of differences of each
coordinate in a cartesian coordinate, thedistance dso is given

by

(dso)z = A2 +dy” & de £ = 3)
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Substituting Eq. A-2 in Eq. A-3 yields

@s_) = dr’ + r%a8® + dz? (A - 4)

If the two points move to (r +u, 8+ ;"L-, z+w) and
s

/ v
(r +dr+u, 6 +d8+ﬁd—r-,

. . / / /
certain amount of deformation of the system, u, v, and w can

z +dz+w’), respectively, after a

be related to u, v, and w by simple relations, where u, v, and
w are radial, tangential and axial displacement. Because

dr, d6 and dz are small quantities, we can write

u =u+du=u+-—-dau r+——d8u e+__8u dz
or 96 0z
’ _ v ov_ . v
v =widy s v+ dr+aeu9+az dz | (A - 5)

‘" _ dw ow Ow
w = witdw = W+—_3r dr +-§Tda +_3;dz

and

/

v _vtdv __v dv vdr (A - 6)
r+dr r+dr r T 2

n eglecting the higher terms of differentials.

Similar to Eq. A-4, the distance between the two points after

the deformation, ds, can be wiitten
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2
(Es)™ = farddul” + Gkl G4 —‘i-;’—- VAL 5% & lausaw)c

2
b5

(A =-7)

Using Eqs.A-5into Eq. A-7, one can rewrite it, using |

matrices as,

|
l

2 _ 1 du u 1 ov 1
(ds)“ = (dr, rd9, dz) =56 (1+ = )(1+-—-—r -——-ae) ——

du u , ov
| B WS bE
v du 1 8u du
1+ %x r 6 Bz

or T 08 1%

Comparing Eq. A-8 with Eq.A-6 the deformation tensor oij

is

ou Uy, 0v v ow
hF or L5 I X or T ) or

r 00

x |2 LYy ardas—2)

ow

dr
g‘; rdf
ow
oz ||%%
(A - 8)




Q..
3)

w
€

[=7]
H

A+ f- - L) 40+

-88 =~

1 ou

06

1 dw
Ir

26,

‘r'ae’

(A - 9)

If a system is axially symmetric the tangential displacement

is always zero, and in addition all derivatives with respect to 8vanish.

The deformation tensor then becomes

ij

The Cauchy-Green tensor,

ou
0 0z
14+ 2 0
T
Iw
0 14 5

Yij , is given by

(A - 10)
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Y5 % %%
3 Su 2 ., DwiD
(L) (55
= 0
du, . 0w
(1+ ar)(ar peiitid—cy

This is the necessary relation.

ou ,dw _ du , ow
g (1+3r"3r+8z 1+8z)
(1-1-%)‘2 0
ou 2
0o +dw2s (B, |
(A - 11)




-90-

Appendix 2. Strain Energy Functionof Dewetting Composite

System

Rigorously, vacuoles will be allowed to take only one
shape, which gives the minimum total strain energf at the same
volume. One must choose a certain function to define the shape
of the vacuoles, however, because it is quite unlikely for one
to be able to obtain the precise mathematical expression for
the shape of thevacuoles. In making anappropriate choice we
must keep in mind that the approximation should satisfy as many
experimentally observed conditions as possible while it should
be simple enough not to hamper the mathematical treatment.

After havingtried several possibilities we came to the conclusion
that the following function may best serve the purpose. The
necessa ry notations are schematically shown in Fig. 3 with

the general idea of the derivation. Since the system is axially
symmetric, the shape of a vacuole must be a surface of revolution.
We use a two dimensional rectangular coordinate system, (X, Y) in
the discussion for convenience. The correspondence between

the new coordinate. system and the (R, 6, L) system used

before should be obvious from Fig. 3. The origin of the rectan-
gular coordinate system coincides with the center of the circle

at the bottom. If the distance of a point on the circle from

the X-axis is given by bx, at X = R, x is given by
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x = ycosb (A - 12)

where § = a/b, a is the radius of the circle and b is the half
distance between the centers of two circles. If a point represented
by x moves by the distance from the X-axis, by, after vacuole
formation, the internal stretch ratio, A\, which has the same

physical significance as in the Section 2.5.1, is given by,

O (A - 13)
-

Determining the functional form of y is equivalent to deciding

the profile of the vacuole as a function of x, or R. vy should
have a maximum at x = Yor R = 0, and the value of the maximum
increases as the volume of the vacuole increases. However,

the value can not increase indefinitely because the space between
the surfaces of the spheres facing each other is limited.
Consequently, it is reasonable to set a limit on the value of

y at x = §, the corresponding internal stretch ratio is given

by Eq. A-13,

A - my
1=y

and by the physical restriction this value must be positive.

That is,
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-)—‘—'—ﬂy—:»o or n<%.—.n

R b (A - 14)

where yR is the physically possible upper limit of . Comnsider

an ellipse described by

2 2
~’_'[T,_-+—"'-Z—=a‘2 (A - 15)
A n

which passes a point (0, ma). If we assume that (Xd. Yd)
are the coordinates of the intersection of the ellipse with the circle
representing a filler particle and that Yd decreases linearly
from a to 0 as 71 increases from 1 to Mg We can obtain the following
relation which gives the necessary information about internal
stretch ratio and volume change for calculating the strain energy.
The details of the derivation are given in Appendix 3.
From the definition of x, y, X and Y, the following
relations between them exist.
Y = by
g b(wz i xz)% (A - 16)

Denoting the value of x corresponding to (Xd, Yd) by Xq from

the assumption concerning Yd mentioned above, X4 is given by

M =M
%, ® Sy (A -17)

d 'qo-
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From the condition that the ellipse given by Eq. A-15 intersects

with the circle at x = x 13' is obtained as

d!

AT W s @ = 18
"xd/T] ‘

Consequently yisgiven by

. - R/
=nJ¢2- 2 d—— (# -9 (a - 19)

In caseofvacuole formation the volume of the region enclosed

by the broken lines and the t wo horizontal lines passing through
the upper and lower ends in Fig. 3 is not the same as that of

the original cylinder. The increase in the enclosed volume

is the difference between the volume of the shaded regions of

the vacuoles and the corresponding volume of the sphere.

The ratio of enclosed volume, K, after the necessary calculations
is given by

2\];2

il
=1+—;11_ , Zxd.z‘b_xz
¢+J¢'(¢' z)wz-xz
d

2 P
J” - (v° Hn_)w-x"' 1 /0-x)
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1 (U=-x)(2U+x)
T3 (T-x) (U x) (A - 20)

in the range Xy <x<y. At x=xj, the value of p, denoted by

Bq? becomes

L @nvExg)(ni-xg) (24 )(Emx,)

R B T 1o B3 R TR [ ey (A - 21)

%)

In the range, 0 = x = X4 (Rdé R =a), the absolute value of the

increase of enclosed volume is constant and is given by

3 2 2
2wb™ (1 - xd)(w - Xy )p.d
Since the original value of the enclosed volume at a certain x
is

2ub>(1 = x)(¥2 - x2)

the ratio of enclosed volume, W, is given, in the range, 0 = x= X3
by

(1~ )($%-x.%)

d
= 1+ (p,~1) — 0sxsSx (A -22)
B d (1-x) (42- 2 d

Similarly, in the range, a <R <c, M is given by
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2. 2
(I-x )(¥7-x,7) 2
=14 (pg-1) dwz “ ;z a<R<c (A - 23)

Egs. A-20, A-22 and A-23 give all the information needed
for the value of p. Corresponding to Eqs. A-20, A-22, and

A=-23 the internal stretch ratios in these three regions are given

by
¢t M-y < =
N e x4 xély(O-R<Rd)
b _A=x
Rhl-x Oéxéxd(RdéRéa) (A - 24)
A=A aSR=c

The total strain energy is obtained by carrying out the integration

in Eq. 2-32. However, in this case, the interval of integration

must be divided into three ranges,

_ L, rRa
W = szO wI RLOdR+ ZwrWIN’ndR'ﬁodR

N, d
R
c
+ ZTera WOUTRdR (A - 25)
where WIN, d’ WIN, nd’ and WOU'I‘ are the strain energy in dewetted,

non-dewetted, and outer shell regions, respectively. These '

are given by the same form as Eq. 2-37,

w. =% c.w, tw, J (A - 26)
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~where the subscript N is a dummy to be replaced by, IN,d,

IN, nd, and OUT, respectively, corresponding to each case.
Constants and functions needed in the calculations are summa-
rised in Table I.

The integrations can be carried out numerically.
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Appendex 3. Ratio of Enclosed volume

Consider an ellipse described in a rectangular coordinate

system, (X, Y), by

2 2
2o 2 (A - 27)

A ui

[ 3Y)

If the ellipse intersects a circle of radius, a, with the center

and Y ,will satisfy the

on the origin at a point (Xd. Yd), Xd £

following simultaneous equations,

2 2
o, Ya _ 2
2 Z
A Y
(A - 28)
2 2 _ 2
Xd-i-Yd—a

We introduce a new coordinate system (x, y) which is related

to (X, Y) by

Y = by
(A - 29)

x = b(#® - x%)

Geometrically, x is the normalized distance of a point on the

circle from the X-axis given by ycos® and y is defined as the
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ratio between the distance of a pair of points on the ellipse and
th e circle with the same X-coordinate and § = a/b. Substituting

Eq. A - 29 into Eq. A - 27, we obtain

l'JZ -2 VZ 2
> % 2 = ¥ (A - 30)
A n
The circle is given by
y =X (A - 31)
The simultaneous equations A-28 are converted to
2 5 & 2
¥ d . Fd_ 2
2 g 7
A n
(A - 32)
Ya T *a
The internal stretch ratio, \', is given by
o o e N (A - 33)

l - x

from the definitions of x and y, because the original distance

between the facing circles at a certain value of x is

2(b - bx)
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and the length after deformation is
2(Ab - by)

From Eq. A-29, yis n¥ at x = ¥ (X = 0). While the internal
stretch ratio, )\’, is given by (N - 'qlll)/(l - y)atx =Y, and

the value decreases as 7 increases, A\ must be positive for

obvious reasons. When A\ =0, my=Xor n = \/V. Since the
minimum value of m is obviously 1, 7 could vary at most from

1 to A/V. If we assume that the profile of a vacuole is expressed by
the ellipse of Eq. A-27 and that the value of x at the point of
contact with the surface of the sphere, Xq linearly decreases

from V¥ to 0 as m increases from 1 to Mo (=x/1). Xq is given

v (A - 34)

2 2
g ¥ rxy

W - xdz a2

(A = 35)

Substituting Eq. A=-35 into Eq. A-30, y is obtained, after re-

arrangement, as
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2 "‘da
Vo=

y = ¥ - =T - <P (A - 36)
LN

X

While the nature of a vacuole is described by Eqs. A-35 and
A-33. the volume of the region enclosed by the surface, the
profile of which is shown by the broken lines in Fig. 3 and

the two horizontal planes on both ends, increases .as the system
is stretched and/or the size of the vacuole increase. The
region was originally a circ ular cylinder of radius, R, and
length, Z,Lo . The amount of increase of the volume is the same
as the difference between the part of the vacuoles represented
by the shaded area and the corresponding portion of the spheres

in Fig. 3. The original volume of the cylinder, Vo' is obtained

from geometrical relations.

¥, = z-rrsz;o = SR & 2TH - %) (A - 37)

'The volume of the shaded region of the vacuoles, Va is computed
na

by carrying out the integration j deY. The result of the
4

computation is

2 2 2V
v = 2w Loy

¢+ \l"W' Z)wz 2
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The corresponding part of the spheres, Vao' is calculated

similarly to give

3
_2tmb 2
V.o = (v - 0@y + x)

The ratio of enclosed volume, [, is obtained from the definition,

% = A Ya~ Vao
VO
Z‘:fz 2 2 xdz ‘llz-xz'
=1+3] =yl ¥ =gyt |
2 mn U -x
2 2 *q 2-x2 d
¥+ Ve - (‘l’ "_2_) 3 2
n? §Pexg
2
ey L% )20+ x)
A x) =~ =TS T a) (A - 39)



-102-

(a)

=+ ——

- s S

2C

(b)

1 Illustration of a Model of Composite Systems

Fig.
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the Hall Output on the Thickness
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" Table I

Summary of the Theoretical Results

No Vacuole Formation

C

W = ZwJ W RL dR+21rb WOUTRdR
(1) (2)
Vacuole Formation
r*Rd
W = ZwJO IN, dR'L dR + .?.'n'j W ndR{'o dR
(3) Ha (4)
r.C
+ z"bJaWOUTRdR
(5)
m .
o J -
WN = 2.1 EOC Wl NWZ N N =IN, OUT,
) IN,d, IN,nd, OUT
i e o 0 [0 bR(1-a)]% 1
1,N o 2V =1
BTN LZ
(o]

2
+ B%[a? + 20 (\};?) 4 (é;i‘)l T+x% .3
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- Table I (Cont'd)

R [VBR(1-q]% o 2a(1-0) . (1-a)®
Woon = 2 * LZ_GLEZ\J-l e T a1
2
2. /27 2 2a(l-a) (1-a) 1 i
+ BN La” + SR S J’LﬁzF'?’
AL ’
¥ B %Io o L Vg
o v0 [a"'(l-a)('"r) ]
0o
BN/ - 1 + R/
o = (?i-{) 2(B°\" /u -1) + R/L
. -(30_-20-1) +J(3ao-za-1)3 - S(ao-az)(ao-l)
4(a0-a2)
B = 1 ' e (1), (3) and (4)
b = /1 PR Pl 2 5
=/~ (-)\) 5 for (2) and (5)
Moo= X for (1), (3), and (4)
y = x for (1) and (4)
2
x 2
y =n/w2-<w2- dz)w"‘z for (3)
n ¥exy
n, -
xg = 5 o] ]
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- Table I (Cont'd)

A=A for (2) and (5)
{0 = b(l - x)
2 _ 2.3 for (1), (3) and (4)
R ~ b(‘# -x) 1
L =5
° for (2) and (5)
R = R |
242

po= 14 3‘— @ 2 | >

¢+Jw2- (¥2- =)

-xy
2

2 x 2_ ; i
- sz -V -:dg‘) iz i: 5 ]/(1-2\:) -—%—-&% for (3)
d I el

(L2 ) (¥P-x4%)

= 1% «1) : for (4)
M (bg (1-x) wz_xz):-
S 2 2 o
(l-xd)(“v -xd ) az )
H. =1+ (I-Ld'l) 11#2 - Rz for (5)
e | (@nyrxg)(ny-xq) (2¥Hx ) (¥-x,)
. d o 3_.'_.(jty.+xd)(1-xd) (¢+xd)(l-xd)
p_ = l

for (1) and (2)
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Table I

Composition and Properties

of

Glass Bead-Filled EPDM Vulcanizates

29 b pglass beads diameter

Identification Parts Volume Fraction Density Crosslink
by Dglnaity
Weight _(g/cc) (10" mol/cc)

A0l 0.0 0.0 0.875 2.72
A02 26.0 0. 089 0. 986 1.32
A03 40.0 s 131 1. 048 313
A04 52.0 0. 164 1. 076 2.80
A05 66.0 0.200 1.141 3.14
A06 80.0 0.232 1.204 3.32
A07 92.0 0.258 1.237 3.50
A08 105.0 0.285 1.266 3.53
. A09 132.0 0.333 1.330 4.18
AlO 150.0 0.362 1. 348 3.93
All 175.0 0.398 1.369 3.95
Al2 200.0 0.430 1.472 4.75
Al3 225.0 0. 459 1.491 3.91

Al4 250. 0 0.485
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