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ABSTRACT

The effects of electron temperature on the radiation fields
and the resistance of arshort dipole antenna embedded in a uniaxial
plasma have been studied. It is found that for w < wp the antenna
excites two waves, a slow wave and a fast wave. These waves propagate
only within a cone whose axis is parallel to the biasing magnetostatic
field Eﬂ and whose semicone angle is slightly less than sin—l(w/wp).
In the case of w > wp the antenna excites two separate modes of
radiation. One of the modes is the electromagnetic mode, while the
other mode is of hot plasma origin. A characteristic interference
structure is noted in the angular distribution of the field. The far
fields are evaluated by asymptotic methods, while the near fields are
calculated numerically. The effects of antenna length & , electron
thermal speed, collisional and Landau damping on the near field pat-
terns have been studied.

The input and the radiation resistances are calculated and are
shown to remain finite for nonzero electron thermal velocities. The
effect of Landau damping and the antenna length on the input and
radiation resistances has been considered.

The radiation condition for solving Maxwell's equations is
discussed and the phase and group velocities for propagation given.

It is found that for w < wp in the radial direction (cylindrical
coordinates) the power flow is in the opposite direction to that of

the phase propagation. For w > mp the hot plasma mode has similar

characteristics.
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I. TINTRODUCTION

The behavior of an antenna in a magnetoplasma is of great
interest from the viewpoints of ionospheric investigations and laboratory
plasma diagnostics. The basic problem is to determine the impedance
and the radiation field of the antenna. A major difficulty in predicting
the behavior of an antenna in a plasma is the determination of wvalid
boundary conditions. Other difficulties include the determination of
current distribution on the source and the specifications of electro-
magnetic properties of the plasma. The sheath, surrounding the antenna,
makes the accurate formulation of the boundary conditions and the
analysis of the antenna properties a formidable task.

A number of investigators have studied this problem under
various simplifying approximations. Some of the pfincipal investigators
are Bunkin [1], Kogelnik [2], Kuehl [3], Staras [4], Seshadri [5], Lee
and Papas [6]. These authors have assumed a cold plasma model and have
studied radiation from a given current distribution. Kogelnik [2]
was the first to investigate the radiation resistance of an elementary
dipole in a magneto-ionic medium. His formulation yields infinite
radiation resistance for a point dipole for certain operating frequencies
even though there is no loss mechanism present. Bunkin [1] and Kuehl
[3] found far fields using the saddle point method. Their work shows
that fields are infinite, for certain frequencies, on a conical surface
(fig. 1.1) whose axis is along the magnetostatic field Eo and whose cone
angle is determined by the plasma, the cyclotron and the operating

frequencies. For a uniaxial plasma (BD = ®) the half-cone angle is
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given by sin_l(w/wp) where W and wp are the operating and the plasma
frequencies, respectively. The radiation is confined within the cone;
there is no radiation outside the cone. The nature of infinity in the
fields is such that the power flow from the antenna carrying a finite
current is infinite. This manifestation of infinity in the fields and
power radiated is well known in the literature by the name "infinity
catastrophe'". These results are unrealistic and useless from an engi-
neering point of view. Therefore, a number of authors have tried to
explain these infinities and have suggested ways to remove them.

Probably the first attempt in this direction was made by Staras
[4]. He took the approach that this "infinity catastrophe' can be
overcome by considering dipoles of non-zero dimension. Following Staras,
Seshadri [5] found the functional form of the dependence of the radiation
resistance on the antenna length. The radiation resistance varies as
the reciprocal of the antenna length, and thus approached infinity as
the antenna length approached zero. The source of the infinity was found
to be the plasma resonance.

The magnetoionic tﬁeory has been used for predicting antenna
properties in an anisotropic plasma without questioning its walidity.
Because of linearization in this theory the anisotropic plasma medium
is resonant in some critical directions, where the wave number is
infinite for certain operating frequencies of the antenna. 1In these
critical directions the linearization process is not valid. Therefore,
the use.of the usual cold plasma dielectric tensor based on this linear

theory is not right in the resonant regions.



FOR UNIAXIAL COLD
PLASMA

% 8 = SIN™ (w/wp)
DIPOLE ANTENNA
y

e ——— — —

Figure 1.1 Diagram showing the cones in the field
pattern of a small antenna at the origin.
The semicone angle 6 1is determined by the
‘plasma frequency w_, the operating fre-
quency W, and the cgclotron frequency.
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Now if one considers the non-zero length £ of the dipole, only
wave numbers k < 1/2 make sizable contributions to the radiation
resistance. Hence if one chooses a long enough antenna, the contri-
bution to the radiation resistance from the values of K near the
critical directions can be considerably reduced, and hence the question
of seriousness of the nonvalidity of the dielectric tensor near the
critical directions can be disregarded.

Another attempt at resolving the 'infinity catastrophe' has
been made by Lee and Papas [6] . They suggested a new method for
calculating the radiation resistance. Specifically, they claimed that
the radiated power from an antenna in a magnetoplasma is not neces-—

sarily given by the conventional relation:

P ne | - av
B 8 Eout
v
but rather is given by
P L ge | £ d
~% " i (Eout - E'in) i
v

In the above formulas the subscripts "in'" and "out'" refer to the incom-—
ing (advanced) and outgoing (retarded) waves, respectively. By this
new approach they claim to obtain a finite value for the radiation
resistance of a point dipole in an anisotropic plasma.

The merits and demerits of the work of Lee and Papas are not yet
well understood. Even if the infinity in radiation resistance does not

appear, whether due to the contention of Staras and Seshadri, or to the
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new approach of Lee and Papas, considerations of the more physical
nature of the problem will introduce further modification in the cal-
culation of the radiation resistance and the fields. 1In this paper

we consider a more realistic problem and study the effects of electron
thermal motion on the radiation characteristics of a short dipole
antenna.

When the plasma can be considered to-be isotropic, it is pos-
sible to obtain solutions of the hot plasma equations and study the
effects of Landau damping [7] and compressibility [8] on the radiation
resistance and the fields of an antenna. In the presence of a magneto-
static field the mathematics become involved and therefore this problem
has received very little attention. To the author's knowledge, the
first work done on this problem was by Deschamps and Kesler [9]. They
studied the problem in the fluid model of the plasma and derived a
formula for the radiation field of an arbitrary antenna. Chen [10] has
also investigated this problem in the fluid model of the plasma and
derived dyadic Green's function and a formula for the radiated power.
Some aspects of this problem are studied by Tunaley and Grard [11] in
the electrostatic approximation. In their paper they are right in
noting that, in the electrostatic approximation, the phase velocity
is infinite on a cone of half-cone angle cos_l(w/w ) in a uniaxial
plasma. But they are wrong in concluding that these cones are those
along which the electric field tends to infinity in the cold collision-
less plasma. As a matter of fact, fields go to infinity on the cone of

the half angle sin-l(w/wp)-
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In this paper the radiation characteristics of a short dipole
antenna in a hot uniaxial plasma are studied. The uniaxial plasma is
an approximation for large magnetic field Eo and small operating and
plasma frequencies. Still we ignore the sheath around the dipole to
make the problem tractable. The ion motions have been neglected. The
fluid, as well as kinetic theory models of the plasma, are
considered.

The input and radiation resistances of a dipole oriented
parallel to the d.c. magnetic field Eo are studied in Chapter VII.
It is found that in the fluid model of the plasma the resistances are
always finite. Input resistance is studied as a function of the dipole
length. Effect of Landau damping on the input and the radiation resis-
tances is discussed.

The far fields have been evaluated by asymptotic methods in
Chapter V. It is found that for w < wp the dipole excites two waves
propagating within a cone, whose cone angle is slightly less than
sinul(w/mp). For w > mp there are three propagating waves. One of
the waves corresponds to electromagnetic mode of radiation, while the
other two waves are a hot plasma effect and correspond to a hot plasma
mode of radiation. The radiation in the hot plasma mode is confined
within a cone, whose axis is parallel to QO, and whose cone angle is
determined by (w/wp), and the electron thermal velocity V0 -

In Chapter VI near fields have been studied numerically. An
interference structure is found in the angular distribution of the

field patterns. The effects of antenna length 2, electron thermal
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velocity, collisional and Landau damping on the near field patterns
have also been investigated. The appearance of the interference
structure in the angular distribution of the field pattern has been
experimentally verified by Fisher [12].

Radiation conditions for solving Maxwell's equations are
discussed in Chapter IV, while Chapter III deals with the velocities
of the phase and the group propagation. It is found that for w <w
the radial power flow is in the opposite direction to the radial phase
propagation. For w > wp the hot plasma mode has similar characteristics.

In Chapter II the problem has been formulated in kinetic and
fluid models of the plasma. Equations for the field components are
derived.

Chapter VIiI has been devoted to studying the radiation
characteristic of a dipole oriented perpendicular to the magnetic
field QD.

In the last chapter some concluding remarks are made. Here
some of the areas of further research and unsolved problems are singled

out.
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II. FORMULATION OF THE PROBLEM AND THE BASIC EQUATIONS

We consider an infinite and homogeneous plasma biased with an
infinite external d.c. magnetic field 20 in the z-direction of the
rectangular coordinate system. Geometry of the problem is shown in
Figure 2.1. Filamentary dipole of length 2% is assumed to be
oriented parallel to the magnetic field Eo . The current density on the

antenna is given by

3, = 585 (2

2Tp -

where gz is the unit vector parallel to the z direction. JS(z) gives
the current distribution. Later on for getting some quantitative
results, it is assumed to be triangular.

In order to treat the problem, plasma and Maxwell equations are

solved with steady state time dependence e_iwt. The field quantities
obey Maxwell's equatiomns, i.e.,
VXE = +lwp H (2.2)
VXxH = J- iwe E (2.3)
= = o—
V<E = o/eo (2.4)
VB = 0 (2..5)

where J 1s the total current given by
L],=

gp is the induced plasma current. p and J are connected by the

continuity equation V * J = iwp . The foregoing equations can be
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Figure 2.1 Geometry of the problem.
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combined to give

v { = - - e—— U . 2 E

Since go is very large electron motion is confined along B0 and gp has

only one component i.e., J = J_ e . Next we derive expressions for J
P P —Z -

for both the fluid and the kinetic theory models of the plasma.

a) Fluid Model

In the fluid model the plasma current is given by
J =-en_V_e (2.7}

where n is the zero order electron density and VZ is the solution

of the linearized plasma equation

3kT 3
(=]

zlz
- m_V

> v (2.8)
e 4

>
@

z

me and Te are the electron mass and temperature, respectively. K
is the Boltzmann constant. V is the effective collision frequency. In
arriving at equation (2.8) the equation of state foranm adiabatic gas in
one dimensional compression p = 3nel<Te has been used. The quantities
n, and p are the first-order perturbation in the electron density and
the pressure respectively.

Solving equations (2.7) and (2.8) by taking Fourier transform
with respect to 2z, we obtain

2
w

~ - p -
Jp(p,kz) lwe  — ’ Ez(p,kz) (2.9)

w@ + 1Y - K’y
w Z 8
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where a variable g(kz) is the Fourier transform of g(z) given by

- r -ik z
g(kz) = J g(z) e Z 4z
00

2 n ez 3KTe
and w_ is the plasma frequency (w. = ——) and V = .
P P o 8 m,

Equation (2.9) can be written in the form

A we ~
o
3 (psk,) = > (& - 1) E,(p,k,) (2.10)

where 2
w

=1 - P (2.11)

I Pl 1D -
w z -]

b) Kinetic Theory Model

In kinetic theory model of the plasma to find the plasma current
one solves the Vlasov equation for the electron distribution function

F given by

oF e
at+yw—;e-[g+yx_n]-vvlr = 0 (2.12)

For infinite magnetic field Bo it can be shown that

f= J F dv_ 4V
£ 2 3

satisfies the following equation

of af e of
5t T V2 9z " m Zzav. - 9
e z
Linearizing above equation by letting f = f0 + fl , we find
of of of
1.y l_e p 2. ¢ (2.13)




o
The current density Jp is given by

00

Jp = - en J flvz de (2.14)

-—00

Combining equations (2.13) and (2.14) we obtain for J

P
2 0
W
A & £/ v
J iweO i—% Ez J (] z av (2.15)
z W z
—00 V - —
z k
z
Then Kll defined in (2.10) is given by
2
w > fof v
K= 1-—% e\ (2.16)
H k w Z
z s WL, o =)
= z k
P 2
1 m V
m,2o¢ - _ez
For a Maxwellian velocity distribution fo(Vz) =( ZWKTej e QKTe
(2.16) can be written as
2
W o
K||=1-k—£’rz(kv) (2.17)
z Al o)

where 2' is the derivative of the plasma distribution function [13] de-
fined by

02 2
s &
(x-t)

=00

Z(t) =q

2,
= 2 =
dx and Vo = (KTe/me) VS/ VB

Carrying out Fourier transform of (2.6) with respect to 2z and combining
it with (2.10) we obtain for the 2z component of the electric field
EZ (p ’kz)

k.2

* 2 T i S (p)
[V, + £%1 E,(p,k,) = —dwn (1 Ei-)Js(kz) Tos (2.18)
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where Vi is the transverse Laplacian, ki = wZHOEO , and

2 2 2
£ = (ko - kz)xlI (2.19)

The other two nonzero field components are found in terms of Ez

ik
z

~ aA
E (p,k ) = — E (p,k.) (2.20)
P z 2 2,2 ap "zt
ko (1= (k_/k))
ﬁw(p,kz) = A %E-Ez(p,kz) (2.21)

wu (1 = (/D))

Now (2.18) should be solved with proper radiation and boundary condi-
tions. A physically reasonable radiation condition is to require that
the fields should approach zero as p and z tend to infinity, and that the

total radiated power from the antenna be positive. The consequences of

this requirement will be seen later.

Poynting Vector Theorem for a Uniaxial Plasma

An energy conservation equation for the field quantities in a

general medium is given by [14]

vV - (E XH*) = 4 E H H* E E* (2.:22)
ExH)=-J *E+ io(uH*H - €E*E ) .

where J is the total current density. Since for the uniaxial plasma

the plasma current is confined to the z direction, we have

*

* *
g, *E = F*J %
L ==

E *J (2.23)
=2 TZp

where Js is the current of any external source. For the fluid model
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of the plasma, we obtain from equations (2.7) and (2.8)

n*
* * e
E *J =41iwmnV V + iw -5 n 3kT
z Zp e 0 2 z no e e
+V e(eakT V n) (2.24)
Bgd Ny Vo By ’

Substituting the foregoing relation into (2.22) we obtain for the

Poynting theorem for a uniaxial plasma

* * * * *
V(EXH+3ekT V. n)=-J *E+ iw[p H-H - € E-E
= "=ze z e == = o— = o =

n*

*
~mn V. V. +—n3kT ] (2.25)
e o z z n_ e e

The above theorem is utilized in Chapter IV for calculating radiated
power from the external current source. This will be used to determine

the proper radiation condition for solving equation (2.18).
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ITI. PHASE AND GROUP VELOCITIES IN A UNTAXIAL PLASMA

It is well known that in an anisotropic medium the direction of
phase propagation differs, in general, from that of the energy propa-
gation. The energy propagates with the group velocity. A detailed
description of the phase and the group velocity in an anisotropic plasma
is given by Holt and Haskel [15]. 1In this chapter we bring out some of
the important features of the phase and group velocities and investigate
how the electron temperature modifies them.

Figure 3.1 gives the orientations of the phase velocity Ep’
the group wvelocity yg and the wave vector k for a plane wave of the
ei(k°r—wt)

form . The phase velocity Ep is parallel to k and its

magnitude Vp = c¢/u, where ¢ 1is the velocity of light in vacuum and

H is the refractive index defined by u = k. The group velocity Eg

£
w
is given by

= W _ W 1l 2w
3k+§ﬂ)k 3y (3:..1)

J<
=
Io

where ey and.gIL

tively. V¥ dis the angle between Eo and k. From (3.1) we find that the

are the unit vectors parallel and normal to k respec-

angle O between the phase and the group velocities is given by

13y
tan o0 = = 32
Y (3.2)
and the magnitude of the group velocity can be written as
V = < (3.3)

& -ga;(wu) cos O
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The wave vector k is the solution of the dispersion relation for the
medium. In this case the dispersion relation is obtained from equation
(2.18) by setting its right hand side equal to zero and taking Fourier

transform with respect to x and y. Thus we obtain
-k K-k Ky =0 (3.4)
g = g ¥ UK =) Kiy

where kx and ky are the Fourier transform variables with respect

[ 2 2
to x and y . Noting from Figure 3.1 that kx + ky = k sin ¥,

kz = k cos Y and substituting for ﬁl the expression in (2.11) with

V = 0 we obtain an equation for the wave number k

2

w 2
k“vzs cos?P - k2w? [1 + cos2y(pi- 2] + 2 WP- wﬁ) - (3.5)
w

c

where B = VEfC . Solving this equation for u = ﬁ-k we have

2
w
a + az— 482c052w(1 - —Eﬁ
u? = S L (3.6)
2B " cos Y .
2
g .85 M
where a =1 + cos Y(B~ - —%) i

w

Cold Plasma

For a cold plasma VS = 0 and so (3.5) becomes quadratic

in p= kc/w and yields directly

o= E (3.7)
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We can see from (3.7) that for w > wp, U is real for all values of U .

For w < wp, W 1is real only for 0 <y < cosﬁl(ﬁfﬂ. The wvalue of

= P
P o= wo = cos lfﬁ%ﬁ is the cone angle where the wave number is infinite

P
and the phase velocity vanishes. For { > wo the waves are evanescent

(k is imaginary).

From (3.2) and (3.7) we obtain after some algebra

w_ cos Y sin Y
tan @ = ( ——7 ) (3.8)
wp cos | - w?

Now when = wo’ o =mn/2, i.e., group velocity vector makes an
angle of 90° with the phase velocity vector. Also, at this angle it
can be shown that the group velocity vanishes.

The angle 6§ which the group velocity makes with respect to BD
can be easily shown to be related to the angle i), the angle between the

phase velocity and Bo’ through the following relation

2
tan 0 = tan(y-a) = - ﬁ%— _tan y (3.9)
e
w
P

For w < wp, angle 6 reaches its maximum value when | = cos-lﬁfu), and
this wvalue is given by 6 = 80 = —sin_lq%—). The two angles wo and 80
are thus complementary to one another. ghe values of 6 given by (3.9)
are negative, indicating that the radial component of the phase and

group velocities are directed in opposite directions. Thus in the radial
direction phase propagation is inward, while for w > mp, 0 is always

positive and thus the radial component of the velocities are both out-

ward. The upper plot in Figure 3.2 and Figure 3.3 give polar plots of
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Figure 3.2 Polar plot of phase velocity (right side) and group
velocity (left side) for B =eo,w /w=2. Lower plot
shows shaded region, where elePtron thermal
velocities are important, on an expanded scale.



-20-

*apou oT133uSewWOI]DaTa 2yl 103J £3Td0T72A dnoild pue eseyg g¢°¢ =2and1g
9l 14 2’| _ 8 S v €
I | | | | | | %
=
= lN-
' E
= i
/A 2/ | A
i q U..a 1@.
/N S
J
= w = w.
dm
2/ = ==
= s O
i g
Oom - O
| l ] | 1




-21-

the phase and group velocities for w < mp and W -~ mP, respectively.
Only in the shaded region of the upper plot in Figure 3.2, hot plasma
effects are important. These plots display above mentioned character-
istics diagrammatically.

Since in a lossless plasma energy propagates along the group
velocity, for w < mP the radiation from a source embedded in a uniaxial
ﬁlasma will be confined within a cone of semicone angle 60 = sin_lﬁf-)
(Fig. 1.1). 1It should be emphasized here that Bo can be greater or ’
smaller than wo depending upon the wvalue of (w/wp), since 80 + wo = /2,

For w > wp all directions are allowed for Vg and hence the antenna will

radiate in all directions.

Hot Plasma

In the case of a hot plasma, simple analytical relations like
(3.8) and (3.9) cannot be obtained, but the polar plots of the phase and
group velocities can easily be obtained numerically.

It can be easily seen that for w < wp only one of the two solu-
tions in (3.6) gives real values of u. For w > mp both the solutions
give real values for @ . Thus for w < mp there is only one mode of

propagation, while for w > wp there are two modes.

Case 1 w <w .
P

For this case effects of electron temperature are shown in the
lower plot of Fig. 3.2. The lower plot shows the shaded region in the
upper plot, where electron thermal velocities are important, on an
expanded scale. For the hot plasma, the phase velocity has real values

even beyond Y > wo. But still the group velocity has real values only
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for 8 < 60. For any angle 6 < 90 the group velocity is now double
valued. Gould and Fisher [16] have reported similar results. We will
see in Chapter V that these two group velocities for any 6 < 80
correspond to two propagating waves, a slow wave and a fast wave, within

a cone of half-cone angles 80.

Case 2 W > w .
P

The solution in (3.6) with the minus sign gives a similar polar
plot to that given in Fig. 3.3 for B << 1. The mode of propagation
given by this solution is not much affected by the electrop temperature
unless B 1is large. For large values of B relativistic effects enter
and our analysis would require some modification.

For the solution with positive sign in (3.5) polar plots for
the group and phase velocities are given in Fig. 3.4. This mode of
propagation is due to hot plasma effects. The group velocity of this
model is confined within a small cone and is double valued within this
cone. In Chapter V it will be seen that the two values of the group
velocity correspond to two propagating waves in a hot plasma mode.

It should be noted that the preceding discussion of hot plasma
effects was based on the fluid description of the plasma. In kinetic
description of the plasma, the waves with phase velocities V_ "V V0
will be strongly damped because of Landau damping. Actual calculations
of near zone fields and radiation and input resistances in later

chapters will be made for both models.
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Figure 3.4 Polar plot of phase velocity (rightside) and group
velocity (leftside) for the hot phase mode of

radiation.
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IV. RADIATION CONDITIONS AND THE INTEGRAL REPRESENTATION
OF THE FIELDS

The purpose of this chapter is to solve the differential equation
in (2.18) and choose one of the two possible solutions which gives out-
wardly directed power flow. It is found that in some cases radial

phase propagation is in opposite direction to the radial power flow.

4.1 Expression for the Field Components and the Radiated Power

Equation (2.18) can be solved to give
E (p,k ) = A(k) H™ (£p) p>0 (4.1)
z'\F g z” "o ’ :

where Hgn)(kz) is the Hankel function of either the first or second

kind (n =1 or 2)." A(kz) can be determined by the nature of the

source by requiring that

lim 2mp H0 = Js(kz) (4.2)
p~+0

Substituting equation (4.1) into (2.21) we obtain

iA(kz)

By(pk,) = - en™ (ep)

kZ
wuo(l ——7)

k0

For the small argument formula for H{n)(ﬁp), H0 can be written

A(kz)

n-1 2
Hy(p,k,) = (-1) = i
wu (1 - %)
K2

o

Hence we obtain from (4.2)



=25

W kz

[¢] i, B
ek L R

AGk) = (D" —

o

A ~ ~
Now the three field components Ez(p,kz), Ep(p,kz) and Hg(p,kz) can

be written

2
~ wH k
E,(p,k) = (D=2 -5 5 ) u™ &) (4.3a)
k
(8]
P ik (n)
E; Lpik,) = (= -1 J (k) H""(&p) (4.3b)
0
Hy(o,k) = (DR T ac) u™ (gp) ' (4.3¢)

The value of n in (4.3a) to (4.3c) is determined on the basis of
which one gives outgoing power. Therefore, we next calculate the total
radiated power. We use the Poynting theorem in (2.25). Considering a
cylinder with z axis as its axis, and of radius p and height 2h
(Fig. 4.1) and integrating both sides of equation (2.25) on this cylin-

drical volume, we obtain

h p
*
—2wp-% Re J EZHQ dz + 2mp Re J [E Hg] dp
z=h
-h 0

p
* 1 *
+ 2mp Re J KTe [Vz ne]z=h dp = - = Re j'g E dv (4.45)
"0 v
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Assuming that as h tends to infinity the fields are zero so that the

second and third termson the left side vanish, we obtain

@ 2
o \Y

(o]
* *
-2mp T Re J E H, dz = -~ = Re JJ- E av (4.6)
2 z s
The right hand side of the above equation is the time average input
power and the left hand side is the time average radiated power. Here
essentially it has been shown that in a lossless plasma the total

input and the radiated power are equal. Denoting the total time

average radiated power by P we have

P = —an-% Re J E,(0,2) H;(p,z) d 4.7)

Applying Parseval's theorem to (4.7) and using equations (4.3a) and

(4.3c) we obtain for P

e 2

WH k
P=—gp Im J di, (1 - =) 3§<kz)€* Hé“)(io) Hf“)*(ip) (4.8)

0 o

For the collisionless fluid model of the plasma & 1is either pure real
or pure imaginary. 1In that case the above expression for P can be
simplified. The Wronskian relation for the Hankel function gives

@ @) M (2) =41
Hy o (E0) WO (Ep) - u T (Ep) W)Y (E0) = T

(1)* (2)
If & is pure real then remembering that HU (Ep) = Hv (Ep) we

have

n-12_

mle"uS™ (€o) 1M €] = 1" A
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Figure 4.1 Cylindrical volume for calculating radiated power.
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when & 1is pure imaginary; then using the relation

eivﬂlz

k (a) = (D™ m (™ g_1)14,4)

it can be easily shown that
m (" 1™ o) n{ )] = o

Therefore we have

(—l)n_l %6 Real &
m (" 8™ o) w0l - (4.9)
0 Im &
and
wn 12
p= —2 (D" dk_(1 - jﬁ:(kz) (4.10)
Real § o

where J denotes that the integral is to be evaluated only for

Real &
those of kz for which & is real. This expression for the power

demonstrates that the contribution to the radiated power comes only
from the real value of £ . Also, only these real values of £ give
propagating waves. To find the right value of n in (4.10) so that
P is positive, giving outwardly directed power flow, we treat the

cases W < wp and w > mp in the next two sections.

4.2 Case w < w,

For the collisionless fluid model of the plasma & is given by
the equations (2.11) and (2.19) with v = 0 . It can be easily seen

that & 1is real when ko < kz < w/VB and it is imaginary otherwise.
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Therefore (4.10) can be written

WH

w/V8 2
o n-1 kz ~2
P =gy 1 I kG =g S0k
k
k o

The integrand in the above integral is

always positive so that the power flow

choose n = 2

Ep(p,kz) =

(o]

Therefore, we obtain

W/Vg 2
Z- 1) Pk, de,
k
k o
(o]
2
Wy k
~ o T (2)
Ez(p,kz) =il (1 - '1:2—) Js(kz) Ho (Ep)
(o)
ik & .
z (2)
Gue_ J (k) Hy (Ep)
ig

Hg(p,kz) -

5 (2)
25,0 1 (Ep)

negative. In order to make

P

is outwardly directed, we must

(4.11)

(4.12a)

(4.12b)

(4.12¢)

Since 4.13a, b, and ¢ involve the Hankel function of the second kind, the

phase propagation is inward and in the opposite direction to that of the

radial power flow.

case of a cold plasma.

Similar behavior is noted by Seshadri [17] in the

This implies that the radial components of the

group and phase propagation are directed in opposite directions. Indeed

this is true, as is evident from Figure 3.2.
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4.3 Case w > wp

In this case £ 1is real in two regions 0 <kZ < ko and

w

< kz < %— provided ER Lglil, = — L, Hence the total
s

n <
(SO

w
v l-
s

ENFUE

radiated power given by equation (4.10) can be written

. k 2
NUO n-1 = kz AD
P = —8"1"7 (-1) J (1 - _E) Js(kz) dkz
k
0 o
wH s Wix, ki 5
* g () J (L~ k—z) Jo(k)) dk, (4.13)
w? 2
B e =P
v 2
s w

When mp = 0 the foregoing expression for the power should reduce to
the free space case. In that case the second term is zero and only the

first term contributes to the total power. Denoting this power by P

fs
we have
k
wuo n-1 ¢ ki ~2
Pfs = —EE-(—l) J (1 - ;E) Js(kz) dkz (4.14)
0 o

The integrand in (4.14) is always positive. Therefore to make Peg
positive we must choose n = 1 . In the electrostatic approximation

(uo = 0) the first term in (4.13) vanishes and then the expression for

the power becomes
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w/vs
_ n-1 1 2,29
P=-(-1) rr—— J kz Js(kz) dkz
o e
w_ .
\Y = 2
s w

In order that the power be outwardly flowing in the electrostatic
approximation, we choose n = 2 . Therefore radiation conditions for

w > w are n=1 for 0 < kz < ko and n = 2 for

%}- 1 - —%—< kz < %—-. This gives two distinct modes of propagation.
Tﬁe two terms in (4?13) correspond to these two modes. In the mode for
which Hél)(gp) is the permissible solution, the radial phase and
group velocities point in the same direction. For the other mode for
which ng)(gp) is the permissible solution, the radial phase propaga-

tion is inward. These facts are clearly demonstrated by Figures 3.3 and

3.4.

Now knowing the proper choice of n , the behavior of fields as
functions of space coordinates can be found by taking the Fourier inverse

transform of the equations 4.3a,b,c, i.e.,

o 2 i
n-1 wuo kz ~ (n) lkzz
E,(p,2) = (-1)" ~ —— | (- ;—5) J (k) H ' (Ep) e dk_ (4.15a)
=} (8]
o ik z
n 1 z (n) z
Ep(p,z) = (-1) &“—Eo“ J k& Js(kz) Hy (Ep)e dk,, (4.15b)
ni y s (n) ikzz
Ha(o,Z) = (-1) o JEJB(RZ) Hy (Ep) e dk, (4.15¢)

The evaluation of the integrals in the foregoing will give the behavior

of fields in space. This is the subject matter of the next two chapters.



=40

V. FAR FIELDS

This chapter is devoted to finding the asymptotic representa-
tion of the fields for large values of r (r =,/p2 T 22). For
w < mp it is found that the dipole excites two propagating waves, a
slow wave and a fast wave. These waves propagate only within a cone.
Near the cone surface the field components can be represented by the
Airy function. When w > wp the dipole excites three propagating
waves. One of the waves is similar to the wave excited by a dipole in
free space. Therefore we call this wave the electromagnetic mode of
radiation. The other two waves are hot plasma effects and propagate
only within a cone. The field consisting of these two waves has been
called radiation into a hot plasma mode.

Here we will find asymptotic representation for EZ only.
Similar expressions can be obtained for Ep and Hg . Rewriting

(4.15a) we have

E ( )=(1)“'1w—°m1 kijk 1™ g0y ikzzdk
z st = 8m - _59 s( z) o tp) e z
-0 0
(5.1)

It is convenient to introduce the spherical coordinate system

through
p=r1sin 8 and z =1 cos @O . r >0
For waves propagating in the positive z direction, angle O is in the

range 0 <0 < w2 . If r is large the argument of the Hankel

function (£p) can be likewise made large if &£ and sin @ are not
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zero. In that case the Hankel function can be replaced by its asymp-

totic expansion, i.e.,

T 1™ 1 [ Ex afn 0-71

H.gn) (E_,I' sin 9) = (m) e (5.2)

£ 1is given by equation (2.19). K is never zero for the kinetic

I

model of the plasma and for the fluid model K is always nonzero

I
only when collisions are included. Hence & has only zeros at
kz = i_ko . But the integrand in (5.1) vanishes at kz = k0 . There-

fore in equation (5.1) the contribution to the integral from the

vicinity of kz = k0 is negligible and Ez can be approximated by

Wy -1 5 ¢ irQ(k_,0)
E (r,0) = (-1 o . 4 Jm ye 20 dk
4w v2mr sin O 2 z (5.3)
where
N K
Js(kz)(l - —39
F(k,) = 2 (5.4)
43
and
Q(kz,g) = (—1)“’15 sin 6 + k_cos © (5.5)

The asymptotic expression for the integral in (5.3) can be obtained by
the method of stationary phase [18] . The main contribution to the

integral comes from small regions near the stationary points given by
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aQ (K ,0)

dk
z

= 0 or E&'(k) = (-1)"cot 8 , 0 <8 <=
(5.6)
where the prime denotes d/dkz s

Now in the following two sections the two cases W < mp and

w > wp are considered.

5.1 Case w < Wp

We recall from Chapter IV that we must choose n =2 for w <
in order that the power flow be outwardly directed. Then we can write

equations (5.3) and (5.6) as

wy i %— i irQ(k_,0)
Ez(r,e) o - 2 e J F(k ) e & dk (5.7)
4mv2Tr sin B 2
£'(k,) = cot ® (5.8)

In the collisionless fluid model of the plasma &£ is pure real for

some part of the real kz axis and pure imaginary for the rest of it.

For w < mp even in the collisionless limit KII is never zero.

Hence the representation of the field by (5.7) is still valid. There may

be stationary points on the real kz axis. These can be found by

plotting © against kz from equation (5.8) as shown in Figure 5.1,
Only real stationary points for which E(kzi) is also real will

contribute to the radiation in the far zone. For fluid model of the

plasma & 1is real only when ko <|kz| < m/VS . For 0 <9 < %—, cot O

is positive. It can be seen from equations (2.11) and (2.19) that £E'
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is positive only for positive values of kz . Therefore only positive
i ™
stationary points contribute to waves propagating for 0 < 8 < 5 -

It is interesting to note from Figure 5.1 that for any angle 6

less than 90 there are two real stationary points. There are no

real stationary points for 0 > 90 . At 8 = 90 the two stationary
points coalesce. The two real stationary points for 6 < 90 give
rise to two propagating waves within the cone (Figure 1.1) of half-
cone angle 90 . Outside the cone the waves are evanescent. If we
now refer back to Figure 3.2, we see that 90 is the same half-cone angle
beyond which the group velocity has no real value. Within the cone
the two group velocities for any 6 correspond to these two waves.

Now knowing locations and the nature of the stationary points
asymptotic expressions for the fields can be obtained inside the cone

(8 < Go), on the cone (8 = 90) and outside the cone (8 > 00).

5.1.1 Fields inside the Cone

Inside the cone the two stationary points contribute separately
to the field. Since most significant contributions to the integral
come from the neighborhood of the stationary points, the range of
integration may be reduced to two short segments centered at kzl and
kzZ (Figure 5.1), respectively. In each segment Q(kz,Q) may be
approximated by the first three terms of its Taylor expansion, whereas
the remaining factor F(A) , being a slowly varying function of kz 8

may be approximated by its value at kz and kz ; thus

1 2
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l " 2 -
Q(kzlpg)*'i‘q (kzl,g)(kz—kzl) , near k_=k
Q(A,8) = (5.9)

_]_-_u 1 2 -
Q(kzz,O )4-2 Q (kz2’9)(kz kzZ) , near kz = kzz

Then putting kz- kzi =T , (5.7) becomes asymptotically

£ ir 2
wu_ F(k o) irQ(k_,,0) +1i 7 - Q"(k_.,0)T
Ez(r,e) ~ (o] zL & zl 4 J e2 zi o
4mv2Tr sin O —E
T € ir 2
wH F(k2z) irQ(kzz,9)+ - | "y 2 Q(kzZ,Q)T 1
- (2] e dT e 0(?)
4nv2mr sin @ &
where € is a small positive quantity. Q"(kz,G) is given by
Q"(kz,g) = " gin O (5.10)
where E" <0 for k =k and E£" >0 for k =k . Hence, with

z zl Z z2

2

the substitution %—rq"(k 9)12 = u and knowing that

o 2
f eiu du = Vim

T irQ"(kzl,Q)Tz ir ={ 2 31/2 LA/
e

217

NPSIONS:
-€
Similarly, o
< irQ"(kzz,Q)T2 . 2m 42 'i'Z
J e IR, 0 ] ©
-€

Thus we obtain
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im
muo F(kzl) irQ(kzl,9)+-—5—
E (r,0) = - o0p 17 ©
[sin 9|Q"(kzl,9)|]
Bk, 42 1rQlk, 208 G co <o (5.11)
+ 172 e o

[sin 9|Q"(kzz,9)|]

From the foregoing expression for Ez(r,g) we see that the fields fall

as 1/r . Since the phase of the two waves in (5.11) are (-wt

= pg(kzi)ep + kziz ez), their phase velocities are given by

w
A

—pi - 2
(€7 (k, )+ k

5 )1/2 €5.12)
zi

and it makes an angle 1 with Eo where

-1 E'(kzi)

¥ = -tan " (———) ; 1=1,2 (5+13)

zi

Using equations (5.12) and (5.13) the phase velocity plot as given in
Figure 3.2 can be obtained. It can be shown that Vpl > sz and
therefore we call the wavesgiven by the first and second term in (5.11)
the fast and the slow wave, respectively.

The net field inside the cone will be the interference of the

two waves. The structure of the interference pattern will depend

upon the relative amplitudes of the two waves.

5.1.2 Field near the Cone

As one approaches the conical surface 0 = Oo the two station-

ary points coalesce and then Q" = 0 . The stationary point becomes
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second order. Then the expression for Ez(r,Q) given by (5.8) must

be improved. 1In order to obtain a valid asymptotic representation of

the field near the cone, the term (kz— kzi)3 in the Taylor expansion

of Q(kz,e) must be included. We therefore expand Q(kz,Q) in a
double Taylor series and keep terms up to the third order in (kz— kzi)

and first order in [0 - 90| .  Thus we have

o p 1 B 3
Q(kz,g) A+ B8O - im0 TG - 3T £ (kzo)sin 90 T (5.14)
o]

_ . g = -t
where A = Q(kzo,Go) , B= 30 Q(kzo,e) 9=90 and © (e Go) and

T= (kz- kzo) .

Combining (5.7) and (5.14) we obtain

"
wH i[r(A+B 9)+%] <
Ez(r,Q) abata 3 F(kzo) J dt
-€
PR 2 LR : I T
s . ir[3! E @Eo)Sin GOT + e 90 T 0]

Defining a new variable t by t3 = %-r g"'(kzo)sin 90 T3 we find

for the integral (I) in the foregoing expression for Ez(r,Q)
2,2

2 )
k )sin%@
Z0O o

L/3

3
0 —i{-§_+9(£'"(

2 1/3
I n [I‘ g (kzo)sin gg J dt e

t]

-_00

The integral in the above expression is the Airy function Ai(X) where
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n 2 1/3

Xx=0{ == (5.16)
E"'(kzo)ain 90

Thus we obtain

1/3
Ai (X) -

o 1
(r sin 90)5/6 {\/E g (kzoﬂ v

in

ir(A+ BO)+ A

wy
(5.17)

Ez(r,Q) = -

The Airy function Ai(X) 1is oscillatory for X < 0 and exponentially

decaying for X > 0 as shown in Figure 5.2. Thus the field is oscilla-
tory with decreasing amplitude inside the cone (’5 < 0) and exponentially
decreasing outside the cone (E > 0). From equation (5.16) the structure

of the pattern near the cone surface can be predicted