
 
 

 
 
 

Thermoacoustic Instabilities in  
the Rijke Tube: 

Experiments and Modeling 
 

 
 
 
 

Thesis by 

Konstantin Matveev 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

 
 
 

 
California Institute of Technology 

Pasadena, California 
2003 

(Defended February 7, 2003) 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 2003 

Konstantin Matveev 
All Rights Reserved 



 iii 

ACKNOWLEDGEMENTS 

 

I gratefully acknowledge help and support of members of Caltech community who have 

influenced the development of my research toward the Ph.D. thesis. 

First and foremost, I would like to thank my advisor, Professor Fred Culick, for introducing me 

into the world of thermoacoustic and combustion instabilities, and for his guidance during my 

graduate study and thesis preparation. I appreciate his encouragement and help with my work on 

other topics of fluids engineering. Also, I wish to thank Professors Tim Colonius, Richard 

Murray, and Ken Pickar for serving on my thesis committee. 

I was lucky to have great colleagues at the Jet Propulsion Center, Caltech. Winston Pun and 

Steve Palm helped me a lot with experimental apparatus, instrumentation and signal processing. I 

also benefited from discussions with Al Ratner. 

I would like to thank my previous scientific advisor Igor Borisovich Esipov, D.Sc., and his 

research group at Andreyev Acoustics Institute in Moscow. 

Special thanks to my wife, Anna, for her support, patience and understanding. 



 iv 

ABSTRACT 

 

Thermoacoustic instability can appear in thermal devices when unsteady heat release is coupled 

with pressure perturbations. This effect results in excitation of eigen acoustic modes of the 

system. These instabilities are important in various technical applications, for instance, in rocket 

motors and thermoacoustic engines.  

A Rijke tube, representing a resonator with a mean flow and a concentrated heat source, is a 

convenient system for studying the fundamental physics of thermoacoustic instabilities. At certain 

values of the main system parameters, a loud sound is generated through a process similar to that 

in real-world devices prone to thermoacoustic instability. Rijke devices have been extensively 

employed for research purposes. The current work is intended to overcome the serious 

deficiencies of previous investigations with regard to estimating experimental errors and the 

influence of parameter variation on the results. Also, part of the objective here is to account for 

temperature field non-uniformity and to interpret nonlinear phenomena. The major goals of this 

study are to deliver accurate experimental results for the transition to instability and the scope and 

nature of the excited regimes, and to develop a theory that explains and predicts the effects 

observed. 

An electrically heated, horizontally oriented, Rijke tube is used for the experimental study of 

transition to instability. The stability boundary is quantified as a function of major system 

parameters with measured uncertainties for the data collected. Hysteresis in the stability boundary 

is observed for certain operating regimes of the Rijke tube.  

An innovative theory is developed for modeling the Rijke oscillations. First, linear theory, 

incorporating thermal analysis that accurately determines the properties of the modes responsible 

for the transition to instability, is used to predict the stability boundary. Then, a nonlinear 

extension of the theory is derived by introducing a hypothesis for a special form of the nonlinear 
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heat transfer function. This nonlinear modeling is shown to predict the hysteresis phenomenon 

and the limit cycles observed during the tests.  

A new, reduced-order modeling approach for combustion instabilities in systems with vortex 

shedding is derived using the developed analytical framework. A hypothesis for the vortex 

detachment criterion is introduced, and a kicked oscillator model is applied to produce nonlinear 

results characteristic for unstable combustion systems. 

The experimental system and the mathematical model, developed in this work for the Rijke 

tube, are recommended for preliminary design and analysis of real-world thermal devices, where 

thermoacoustic instability is a concern. 
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Chapter 1 

 

Introduction 

 

1.1  Thermoacoustic instability 

Thermoacoustic instabilities refer to the appearance of pressure oscillation coupled with an 

unsteady heat release. The idea can be understood from the diagram, shown in Figure 1-1. A 

chamber of a thermal device, such as a combustor, possesses certain acoustic properties. If the 

heat, released in the system, depends on pressure and velocity fluctuations, a feedback loop is 

formed, that can destabilize the system.  

 

 

 

 

 

 

Figure 1-1: Thermal system with unsteady heat release. 
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In the 19th century Lord Rayleigh proposed a criterion for heat-driven acoustic oscillation: 

“If heat be given to the air at the moment of greatest condensation, or be taken from it at the 

moment of greatest rarefaction, the vibration is encouraged.  On the other hand, if heat be given at 

the moment of greatest rarefaction, or abstracted at the moment of greatest condensation, the 

vibration is discouraged.” 

This rule can be conveniently expressed via transformation of thermal energy to acoustic 

energy. Considering conservation equations, Culick (1976) derived an expression for the energy 

addition to the acoustic mode 

(1-1)   ∫∫
+−

=∆
Tt

tVo
dtQpdv

p
E ''1 &

γ
γ

, 

where 'p  is the pressure perturbation; 'Q&  is the fluctuation of the heat release rate; γ  is the gas 

constant; 0p  is the mean ambient pressure; V  is the chamber volume; and T  is the cycle period. 

Equation (1-1) is an explicit interpretation of Rayleigh’s criterion, showing that instability is 

encouraged when the heat release fluctuates in phase with the pressure perturbation. If the energy 

input exceeds acoustic losses, then the system becomes unstable. 

 

 

1.2  Motivation 

Thermoacoustic instability plays an important role in various technical applications. We briefly 

consider several examples of the most significant exhibitions of this phenomenon: combustion 

instability in propulsion systems and low-pollutant lean flames; noise generation in industrial 

burners; enhanced combustion of heavy oils; and development of thermoacoustic engines. 

Rocket and gas turbine engines can be susceptible to combustion instability, which is a 

particular case of thermoacoustic instability. Pressure and flow oscillations inside a motor can 

lead to unacceptable levels of vibration and enhanced heat transfer that degrade propulsive 
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efficiency, and damage or even destroy the system. Both solid and liquid fueled propulsion 

systems can be prone to instability, and this effect has been extensively studied for a long time 

(e.g., Culick 1988, Margolin 1999). 

In recent years, strict regulations are being imposed on new combustion devices, requiring 

significant reduction of pollutant emission, in particularly NOx. At low combustion temperatures, 

realized in lean flames, the emission decreases (Figure 1-2). However, flames tend to be unstable 

near the lean limit, and their coupling with combustor acoustics may result in combustion 

instability. This is a major problem and an active research topic in modern gas turbine industry 

(Correa 1998). 

 

Figure 1-2: Effect of equivalence ratio on NOx production (from Rosfjord 1995). 

 

Another problem associated with acoustically unstable combustors is the intensive noise. Pun 

(2001) describes the unstable gas flares aimed at burning landfill gas, produced by decomposing 

material in LA county waste fields (Figure 1-3). When this system operates at the burning 

capacity exceeding 50% from the maximally possible, a loud, low-frequency rumbling is 

generated, unacceptable to people living near this facility. The tones excited correspond to eigen 
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acoustic modes of the flares; possible driving mechanisms are thermoacoustic instability, feed 

system coupling, and interaction between vortex shedding and chamber acoustics. 

 

 

 

Figure 1-3: Landfill flare station (from Pun 2001). 

 

Thermoacoustic instability is not always a negative phenomenon. Specially designed pulse 

combustors of a Rijke type use this effect to increase burning rate of heavy fuel oils (Bai et al. 

1993). In conventional steady burners several problems usually arise with such fuels: incomplete 

combustion, soot emission, long flames, and wall deposits.  

 

 

 

 

 

 

Figure 1-4: Scheme of a thermoacoustic engine. 
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The development of thermoacoustic engines is becoming an active research area. Based on 

thermoacoustic effects, these engines can serve as prime movers and refrigerators (Swift 1988, 

Garret and Backhaus 2000). In the first case, sound waves are generated when a sufficient 

temperature gradient is created in the stack (Figure 1-4), and resulting acoustic energy can be 

converted to electricity or applied for other purposes. If the temperature gradient is moderate and 

an external acoustic field applied, then heat can be pumped from a low-temperature source to a 

high-temperature sink, i.e., a refrigerating effect is produced. 

 

 

 

 

 

 

 

 

 

 

Figure 1-5: Original configuration of the Rijke tube. 

 

 

1.3  Rijke tube 

Thermoacoustic instability is a complex phenomenon, and to understand its nature some 

simplified models must be used. A Rijke tube is a convenient system for studying thermoacoustic 

instabilities both experimentally and theoretically. The original Rijke tube (Rijke 1859) consisted 

of a vertical pipe with a gauze, located in the lower half of the tube and heated by a flame (Figure 
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Convection flow 

Sound 
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1-5). A mean flow in the tube appears due to natural convection. For sufficiently high 

temperature of the gauze, a high-intensity tone is generated. Explanation of the appearance of 

sound in a Rijke tube, using Equation (1-1), is given in Chapter 3.  

Despite the simplicity of a vertical Rijke tube, it does not permit independent variation of the 

mean flow and the power supplied to a gauze. A horizontally located Rijke with a mean flow, 

provided by a blower, and the air-permeable gauze, heated by electric current, overcomes this 

deficiency (Figure 1-6). Another advantage of an electric Rijke tube is the possibility for precise 

control of the main system parameters in wide ranges: heater location, air flow rate, and heat 

power released. In our experiments, this type of a Rijke tube is employed. For a certain range of 

the main system parameters, the tube produces a tonal sound with frequencies close to the natural 

frequencies of the system.  

 

 

 

 

 

 

 

Figure 1-6: Horizontal electric Rijke tube with a forced mean flow. 

 

 

1.4  Literature survey 

Heat-driven sound generation in closed chambers belongs to thermoacoustics. This field includes 

interesting areas such as combustion instabilities (Culick 1988) and thermoacoustic engines 

(Swift 1988). Our study is dedicated only to a particular device, a Rijke tube, that exhibits major 
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phenomena associated with thermoacoustics. Extensive reviews on Rijke oscillations are given by 

Feldman (1968), Raun et al. (1993), and Bisio and Rubatto (1999). The major goals of 

experimental investigations of a Rijke tube are to determine transition to instability as a function 

of system parameters and to study excited regimes. The purposes of theoretical investigations are 

to model the stability boundaries and the limit cycles. In this section the papers of most interest 

and relevance to our study are briefly surveyed. 

Higgins (1802) discovered singing flames when a jet of ignited gas was inserted into the tube 

open at both ends. The frequency of singing coincided with the natural frequency of the tube. 

Sound was produced only at certain ranges of system parameters. 

Rijke (1859) discovered that a tonal sound was generated by sufficiently hot gauze when it was 

located in the lower half of an open-ended vertical tube. Oscillations were the most intensive at 

the heater position of one quarter of the tube length from a lower tube end. Sound generation was 

attributed to air expansion near the grid and contractions at the upper cooler tube section. 

However, this hypothesis was not sufficient to explain the oscillations. 

Rayleigh (1945) proposed a criterion for the necessary condition of thermoacoustic instability: 

oscillations are encouraged when heat fluctuates in phase with pressure perturbation. Rayleigh 

assumed that this criterion is fulfilled in the Rijke tube and is the major reason for the 

experimental findings. 

The first quantitative analysis of the Rijke phenomenon was made by Lehmann (1937). He 

assumed that air received heat from the grid only on the way forward; on the way back, at the 

reverse air motion, no heat transfer took place. Some consequences of his theory were not 

confirmed later by experimental results, and Feldman (1968) and Raun et al. (1993) concluded 

that Lehmann’s theory is erroneous. However, in this study we will show how the idea proposed 

by Lehmann can be utilized in nonlinear modeling of the excited regimes of operation of the 

Rijke tube that produces results in accordance with experiments. 
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Neuringer and Hudson (1952) modeled Rijke oscillations and concluded that tone excitation is 

greatly dependent on the turbulence in the flow and the velocity gradient at the heater. Their 

results only partly agreed with experimental findings.  

Putnam and Dennis (1953) derived a heat-driven wave equation. Rayleigh’s criterion was 

verified by showing that instability is encouraged in a Rijke tube when the phase difference 

between pressure and heat release fluctuations was less than 90o. 

Using conservation equations, Carrier (1955) applied linear perturbation analysis to obtain a 

system of dynamic equations. The corresponding eigenvalues, found numerically, defined 

stability properties of the Rijke tube. Carrier elaborated the response of the ribbon heating 

element to a fluctuating flow.  

Starting from the first principles of fluid mechanics, Merk (1957) derived a mathematical 

model for thermoacoustic systems with concentrated heat sources and constant temperature 

sections. He introduced the transfer functions of the heater to the analyses of Rijke oscillations. In 

theoretical portion of our work, we will use the concept of transfer functions, implementing, 

however, more accurate approach to model real systems. 

A simplified model was proposed by Maling (1963), based on the works by Putnam and Dennis 

(1953) and Carrier (1955). Maling represented a heat source by a delta function in one- 

dimensional formulation and obtained a considerably simpler stability equation.  

Among experimental investigations dedicated to the study of stability boundaries in Rijke 

devices, the major papers are published by Saito (1965), Marone and Tarakanovskii (1967), 

Tarakanovskii and Steinberg (1972), Collyer and Ayres (1972), Katto and Sajiki (1977), and 

Madarame (1981). These papers contain a lot of information on transition to instability for 

various sets of basic system parameters. However, there were little discussions how these 

parameters were varied and how the order of variation influenced the stability boundaries. 

Experimental errors have not been reported in these works; and temperature measurements have 

been rarely accomplished; the exceptions are the recent papers by Finlinson et al. (1987) and 
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McQuay et al. (2000) on Rijke burners, where only a few system conditions can be tested. All 

mentioned factors, not sufficiently studied in the previous papers on Rijke tubes, strongly affect 

the actual transition to instability and have to be accurately assessed. That motivated the 

experimental study accomplished in our work. 

Further progress in modeling the onset of Rijke oscillations has been reflected in several papers 

appeared since the 1980’s. Madarame (1981) obtained unsteady temperature distribution near a 

heat source by solving a heat conduction equation. The amount of energy input supplied to 

oscillations was computed. The stability boundary agreed with experiments only when a special 

shifting was imposed on data. 

Kwon and Lee (1985) reported results for the heat transfer of a cylinder in superimposed 

oscillating and steady flows. Employing the finite difference method, they calculated time-

dependent heat transfer response of the cylinder to velocity fluctuations by treating the flow as 

incompressible and two-dimensional. The flow regime around a cylinder corresponded to an 

intermediate range of the Reynolds number when the Oseen approximation is already invalid and 

a boundary layer is not yet formed. They also derived a simplified analysis for thermoacoustic 

instability of a Rijke tube and presented a calculated stability curve in agreement with a specially 

selected configuration from the experiments by Katto and Sajiki (1977). The maximum 

thermoacoustic transformation efficiency was found to occur when a wire radius was on the order 

of the thermal boundary layer and mean flow velocity close to the thermal diffusion velocity. 

Nicoli and Pelce (1989) derived a one-dimensional model for the Rijke tube, including effects 

of gas compressibility and variable fluid properties. Diffusive time was chosen to be small 

compared with the transit time across the grid. Velocity transfer function was computed, and 

stability boundary was modeled for the case of constant temperatures in tube sections. 

Yoon et al. (1998) studied analytically the stability properties of generalized Rijke tubes with 

different phenomenological thermoacoustic response models. A solution methodology was based 

on modal analysis.  
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Ishii et al. (1998) carried out a numerical study of transition to instability of the heated air 

column in a simplified formulation. A comparison of growth rates and some temperature 

variation was made with their experimental results and those by Madarame (1981). The energy of 

driving and damping air column vibration was estimated and discussed for explaining the air 

column excitation. 

A significant deficiency of all these works is the absence of a thermal analysis, which 

determines temperature distribution in a tube. Mode shapes and matching conditions on the 

heater, defining transition to instability, are dependent on the non-uniform temperature field. 

There are two papers that deal with non-uniform temperature profiles in Rijke burners. Raun and 

Beckstead (1993) developed an interpolating model for determining the average temperature 

profile based on the simplified energy equation and temperature measurements at the certain 

points in the burner. McIntosh and Rylands (1996) studied the influence of heat loss downstream 

the flame on instability regimes, applying the procedure similar to that suggested by Raun and 

Beckstead  (1993). 

Though less critical due to its small value, a heater impedance is usually neglected in modeling 

Rijke oscillations. Heat transfer characteristics of the heater are of great importance for stability 

properties. For some limiting values of the system parameters, analytical estimations can be 

obtained for particular heater geometry (Merk 1957, Bayly 1985, Nicoli and Pelce 1989); for flow 

conditions unsuitable for theoretical analysis, CFD is used (Kwon and Lee 1985). 

Only a few works devoted to studying the nonlinear aspects of the Rijke tube, are available in 

the literature. Madarame (1981) carried out an extensive experimental investigation of the 

stability boundaries and unstable regimes; however, no hysteresis was reported, and no analysis 

was done to interpret the limit cycle properties.  

Bayly (1986) developed a theory in the Oseen limit for the nonlinear heat transfer from the 

gauze in the presence of acoustic motion. Flow reversal and unfavorable phasing between heat 

and pressure fluctuations were cited as factors limiting instability development. The model also 
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predicted hysteresis effects, i.e., the dependence of the stability boundary between stable and 

unstable states on the direction of parameter variation. 

Heckl (1988) demonstrated the application of active control to suppress instabilities in a Rijke 

tube. A special theory was developed for explaining the effect of the feedback system. In another 

paper by Heckl (1990), nonlinear effects in a Rijke tube were investigated experimentally for a 

few sets of system parameters, and a derived empirical model for the system stability was fitted to 

the experimental results.  

Assuming simplified geometry and enhanced thermal conductivity, Hantschk and Vortmeyer 

(1999) applied a commercially available CFD code for simulation of the instability in a Rijke 

tube. Results agreed well with an experiment, although the comparison was made for only one 

system condition. 

Yoon et al. (2001) constructed a two-mode model of acoustic behavior in a heated duct, 

applying some phenomenological law for the thermal response of a concentrated heater to 

velocity fluctuations and ignoring other factors. The results of parametric studies were presented. 

A numerical study of unsteady thermoacoustic field in a Rijke type device was carried out by 

Entezam et al. (2002). Using some simplifying assumptions, they investigated a transient process 

of transition to instability and a saturation of limit cycle amplitudes. Results were reported for 

several sets of system parameters and no direct comparison was made with experiments; hence, 

the general validity of the numerical tool created is questionable. 

 

 

1.5  Status of understanding of Rijke oscillations 

A Rijke tube is a simple experimental system convenient for the parametric study of 

thermoacoustic instability. Previous tests determined the general dependence of the behavior of 

this device on variations in primary parameters. For instance, in order to make the first acoustic 
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mode unstable, the heater must be located in the upstream half of the tube; the most favorable 

position is near one quarter of the tube length. For second mode excitation, the heater should be 

located either in the first or third quarter of the tube as measured from the upstream end. The 

larger the quantity of heat delivered to the air flow, the more prone to instability the system is, 

with all other parameters kept fixed. With a constant heater location and input power, a Rijke tube 

can always be made stable with a flow rate either sufficiently low or sufficiently high; i.e., there 

is a limited range of flow rates where thermoacoustic instability can be observed. Despite a 

number of previously reported experiments, there is a lack of accurate data with specified 

experimental errors and with an adequately described data acquisition process which could be 

used for quantitative comparison with thermoacoustic theories. 

The previous studies of Rijke tubes with heating elements have established that the appearance 

of thermoacoustic instability is the result of the presence of unsteady heat release component 'Q&  

that fluctuates in phase with the pressure perturbation 'p . In this case, according to Rayleigh’s 

criterion (1-1), there is a positive thermal-to-acoustic energy transformation. Since heat addition 

to air flow in systems with heating elements occurs commonly through convection, the unsteady 

heat transfer rate is a function of the velocity perturbation 'u  (in low Mach number flows). If the 

magnitude of acoustic velocity oscillations is small in comparison with the mean flow velocity 

0u  (linear regime) and the period of oscillations is infinitely large (quasi-steady regime), then the 

unsteady heat transfer rate is proportional to the velocity perturbation )('~)(' tutQ qs
& . The 

inertia of the heat transfer process leads to the appearance of a time delay in unsteady flows with 

a finite frequency of oscillation )('~)(' τ−tutQ& , where the time delay τ  depends on the system 

properties. Therefore, an unsteady component of the heat transfer rate fluctuating in phase with 

pressure perturbation can arise, and the integral in Rayleigh’s criterion (1-1) can become greater 
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than zero in a certain range of τ , i.e., 0'' >∫
+Tt

t

dtQp & . Simplified modeling, based on the 

argument just discussed and similar to the analyses done so far in the literature, will be presented 

in Chapter 3. Since this theory does not take into account some important effects, such as the non-

uniformity of the temperature field in the system, this model can serve only for illustrative 

purposes. 

Thus, the qualitative reasons for Rijke oscillations are currently well understood with the 

uncertainty remaining in the unsteady heat transfer at the heater. However, there is lack of both 

experiments providing data with specified measurement errors and models capable of accurately 

predicting the transition to instability and the properties of unstable regimes of thermoacoustic 

devices. The present work attempts to advance in that direction. 

 

 

1.6  Objectives  

The purpose of this work is to overcome the deficiencies of the previous investigations of Rijke 

devices. The main objectives are 

• to obtain accurate experimental data for transition to instability and excited regimes obtained 

within wide ranges of the main system parameters in the controlled environment of an electrical 

Rijke tube with a mean flow provided by a blower; 

• to develop the mathematical model, incorporating heat transfer analysis, aimed at calculating 

stability boundaries, limit cycles, and history-dependent effects; 

• to reveal which factors and system parameters are of major importance in accurately 

determining thermoacoustic instability. 

Outline of the thesis: 
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Chapter 2 starts with a description of the experimental system. Then, the test procedures are 

discussed that allow us to obtain robust results suitable for comparison with modeling. 

Experimental data for stability boundaries are presented for three heater locations. A new effect, 

identified as hysteresis in the transition between stable and unstable states, is discovered. The 

limit cycle properties of the excited regimes of operation of the Rijke tube are reported. 

Chapter 3 is devoted to simplified mathematical modeling (commonly used in the literature) of 

a Rijke tube, based on Rayliegh’s criterion for acoustic eigen modes. Major assumptions and 

shortcomings of this approach are discussed. 

Thermal modeling is presented in Chapter 4. Stability properties of the acoustic modes are 

dependent on the temperature field, which can be found only by utilizing heat transfer analysis. 

Linear acoustic theory is applied in Chapter 5 to calculate stability boundaries in the Rijke tube. 

Non-uniform temperature distribution and all other major linear effects are taken into account. It 

is shown that theoretical results agree with experimental data much better than in the case when 

simplified modeling is used. 

The nonlinear extension of this theory is developed in Chapter 6. Nonlinear effects are 

discussed and incorporated in the model. Nonlinear modeling explains the hysteresis phenomenon 

and predicts limit cycle properties. 

Our findings and conclusions are summarized in Chapter 7. 

A novel approach to the reduced-order modeling of combustion instabilities in the systems with 

vortex shedding, based on the derived analytical framework, is developed in Appendix. 

The content of the thesis is partly presented in the author’s papers (Matveev and Culick 2001, 

2002a,b,c,d,e,f, 2003a,b). 
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Chapter 2 

 

Experimental Apparatus and Results 

 

2.1  Experimental apparatus and instrumentation 

The structure of the experimental apparatus, the Rijke tube, is shown in Figure 2-1. The 

horizontally placed Rijke tube is a square aluminum tube of 9.5 x 9.5 cm cross section and 1.0 m 

long. The thickness of tube walls is 3 mm. The mean air flow is provided by a blower, which 

sucks air in the tube. The fan allows us to control the mean flow rate, a major system parameter, 

precisely and independently of the thermal power release, which is also regulated. If the tube 

were kept vertically orientated, as in the original version by Rijke (Figure 1-5), then, first, it 

would be necessary to take into account a mean flow component caused by natural convection, 

and second, it would be difficult to provide low rates of mean flow at high levels of power. To 

exclude the influence of natural convection on a mean flow rate, the horizontal orientation of the 

Rijke tube has been implemented. A damping chamber, located between the tube and the blower, 

is intended to prevent interaction between the blower and tube acoustics. The chamber 

dimensions are 46 × 46 × 120 cm; its internal surface is covered by 1/2" pile carpet on 1/8" felt. 
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Figure 2-1: Experimental setup of the Rijke tube. 
 

Since the major mystery about Rijke oscillations is associated with the heat transfer at the 

heater, it is desirable to select a heater with a heat transfer process that can be analytically 

modeled as precisely as possible. This suggests an array of parallel cylinders, located far from 

each other. In order to consider a heater to be infinitely thin in mathematical modeling (it would 

permit to apply the appropriate jump conditions), the cylinder diameter must be small, hence, a 

set of wires could be used. To measure stability properties of a Rijke tube in wide ranges of 

system parameters, a heater should also repeatedly withstand high temperatures for long time 

intervals and be able to release large amounts of thermal power (over 1 KW in our system) 

without geometry changes. Another desirable property is the ability to heat the air flow uniformly 

over a tube cross section. A square-weave 40-mesh made from nichrome is a suitable trade-off 

between these requirements. It has proved to be a reliable heating element, and the heat transfer 

resembles that of cylinders, accounting for a flow blockage effect. A wire diameter in the grid is 
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0.01". The gauze is brazed to two strips of copper, which are suspended on a square frame made 

from macor (machinable glass ceramic) in order to eliminate electric and reduce thermal contact 

with tube walls. The lay of the screen is parallel to the direction of electric current flow. Two 

copper rods with diameter 0.25", welded directly to the copper strips on the heater, connect the 

heater to the power source. The scheme of the heater assembly and the geometry of the frame are 

shown in Figure 2-2. Location of the heater can be easily changed within the tube. 

 

 

Figure 2-2: Dimensions of the insulation frame and the heater assembly. 
 

The power source consists of two TCR-20T250 power supplies, each capable of producing 500 

amps of current. The power supplies are load balanced and operate in parallel. The actual power 

supplied is dependent on the resistance of the nichrome grid, which changes with temperature. 

The power supplies are computer controlled using a software-implemented PI controller to 

stabilize the output power, although fluctuations on the order of ±1% do occur with frequency 60 

Hz. The control system for the power supply is discussed by Poncia (1998). 
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The mean air flow through the Rijke tube is provided by a GAST R1102 blower, operating at 

3450 rpm with a maximum throughput of 0.0127 m3/s at standard atmospheric conditions. The 

blower is operated at full capacity with a 2" by-pass ball valve controlling the amount of air 

drawn through the damping chamber, or from the atmosphere. The flow rate is measured using a 

laminar flow element (Meriam 50MW20) and a differential pressure transducer (Honeywell 

Microswitch). This measurement takes place between the damping chamber and the blower. The 

temperature measured with a thermocouple, located upstream of the laminar flow element, is the 

basis for correcting the air density and viscosity to produce accurate measurement of the air mass 

flow rate. The flow rate is determined from a calibration curve provided by the producer. A re-

calibration procedure has been performed to convert the electronic measurement to a convenient 

curve for routine use. A large plastic shroud is placed above the entrance to the Rijke tube to 

minimize the effects of external air currents on the system. 

Pressure transducers used in this experiment must be able to provide accurate measurements in 

a hot environment during long experimental runs. The transducers used were PCB model 

112A04, coupled with a 422D11 charge amplifier and a 482A20 signal conditioner. Charge-mode 

 

Sensitivity 100 mV/psi 

Maximum Pressure 5000 psi 

Linearity < 1% FS 

Temperature Range -400 to +600 F 

Flash Temperature 3000 F 

Resonant Frequency > 250 kHz 

Rise Time < 2 µs 

 

Table 2-1: PCB 112A04 pressure transducer properties with 422D11 charge amp. 
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piezoelectric transducers were used, since the majority of the electronics is located in a separate 

charge amplifier, increasing the operating temperature range while retaining relatively high 

sensitivities. Important characteristics of the pressure transducers are listed in Table 2-1. The two 

pressure transducers are flush mounted in the tube at positions x/L = 0.15 and x/L = 0.80. In most 

cases, one of the transducers is located on the cold side of the tube and another is on the hot side. 

For measuring a temperature profile, an array of 15 type K thermocouples is suspended from 

the top of the tube to the centerline, at positions of x = 5, 10, 15, 22, 27, 30, 35, 40, 45, 50, 56.7, 

63.3, 70, 76.7, and 90 cm. An additional thermocouple is located just before the laminar flow 

element that measures the mean flow through the tube. The spacing was selected to place more 

thermocouples nearer to the heat source when it is positioned at 25 cm from the upstream tube 

end, as well as to allow the heater to be located at key locations without interfering with the 

thermocouples. For validating the thermal modeling, some thermocouples are used at the exit and 

entrance cross sections for determination of averaged temperature in those sections. Since 

thermocouples have a relatively large time constant, they are multiplexed and sampled at 2 Hz. It 

is not possible for thermocouples to respond quickly enough at the acoustic time scales typical for 

our experiment. They are used solely for time averaged temperature measurements. 

In order to provide accurate measurements of the acoustic pressures and other relevant 

parameters in the Rijke tube, a fast sampling system is required. The data acquisition system is 

based on a Pentium III 700 MHz computer. A Computer Boards’ CIO-DAS1602/12 (12 bit) data 

acquisition board is installed in the machine, using the Sparrow program (Murray 1995) as the 

software interface. An EXP-16 expansion board accommodates 16 thermocouples in a 

multiplexed array and also provides cold junction compensation. The channels acquired are listed 

in Table 2-2. 

The DAS1602/12 is operated in single-ended mode, giving a total of up to 16 analog input 

channels. It also contains two analog output channels, one of which is used to control the power 

supplies. In this configuration, data could be acquired in short bursts at over 8000 Hz, and for 
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extended periods of time streaming to the hard drive at over 4000 Hz. For this Rijke tube, the 

frequencies of the primary excited modes are approximately 180 Hz and 360 Hz. These 

frequencies and the waveforms are easily captured by the data acquisition system. 

 

Channel Measurement 

0 System thermocouples 

1 Cold junction compensation 

2 Pressure transducer P1 

3 Pressure transducer P2 

4 Heater voltage 

5 Flow rate (LFE pressure drop) 

6 Heater current 

 

Table 2-2: Data acquisition analog measurements. 

 

 

2.2   Test procedure and data acquisition 

In order to obtain robust data on the stability boundaries and the limit cycles in excited regimes, a 

careful methodology of data acquisition must be established. There are three basic parameters that 

can be controlled by the operator: heater position, air flow rate, and power supplied to the heater. 

At each operating condition, the pressure fluctuation, which is the output data of primary interest, 

can be recorded with a scan rate up to 8000 Hz. Additional information on the spatially resolved 

temperature profile along the tube and the temporarily resolved air flow rate, voltage and current 

is also available. In steady state, corresponding to a given triplet of the system parameters (heater 

location, air flow rate, and supplied power), one can analyze the pressure signal and declare 
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whether the system is in the stable or excited state; in the latter case, the limit cycle properties, 

i.e., amplitudes and frequencies of excited modes, can be extracted. 

Since the two system parameters, air flow rate and heater position, are changed mechanically, 

they are fixed in the individual experimental runs, and the power is varied through the computer 

interface of the control system. At every steady-state system condition, characterized by a triplet 

of main parameters, data have been captured. 

Stability boundaries are determined for three heater locations: 1/4, 1/8 and 5/8 of the tube 

length; the origin of the tube is taken to be at the open upstream end. These locations have been 

chosen with the intention of observing driving of the first mode (x/L = 1/4), the second mode (x/L 

= 5/8), and possibly the first two modes simultaneously (x/L = 1/8). For each heater position, a 

set of mass flow rates values is selected to cover the range when transition to instability is 

possible. For each value of the mass flow rate, the power is varied, starting from zero, in order to 

reach a critical power when the transition to instability occurs. 

Before commencing an experimental run, the tube is subjected to a warm-up procedure, to 

minimize temperature variations as the power input is increased. The warm-up depends on the 

actual conditions under which the experimental run will take place, based on anticipated stability 

boundaries. Typically, the power input will be set to approximately 200 W below the unstable 

point for a particular flow condition, and the tube run at that rate for 20 minutes. If the stability 

boundary is not known or incorrectly selected, a more conservative estimate of the stability 

boundary is used at the expense of increased duration for the experiment. 

Following a change of power, the temperature field in the tube slowly responds. This 

unsteadiness, as well as finite power increments, can lead to initiation of the instability at lower 

power than it would be in the system with steady temperature distribution corresponding to a 

certain power level. It is observed in the experiments that the critical power obtained at large 

steps of power increments may significantly differ (to lower values) from the critical power 

obtained at small steps. To avoid this early initiation of instability, known as nonlinear triggering 
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(Burnley and Culick 2000), and to generate the results convenient for mathematical modeling, a 

quasi-steady procedure for power variation has been established. First, a settling time is imposed 

between power changes; during that period a steady temperature field is reached by the system. 

This time (of the order of a few minutes) is determined experimentally for different system 

configurations. Second, to obtain a critical power accurately, power increments should be made 

as small as possible; but this could lead to an unreasonable increase in the duration of the 

experiment. An iterative method with reduction of a power step has been implemented. Initially, 

large steps (50 W) are used for approximate location of the transition to instability; then this 

boundary is approached from below with smaller power increments, so that the accuracy in 

locating this transition is improved. A step in power variation is successively reduced until a 

converged value of the critical power is obtained; the minimally possible step corresponds to the 

intrinsic power oscillation of order 1%. Before data is acquired, the system parameters are held 

steady at each condition for approximately 4 minutes until the system temperature field has 

settled. 

Since transition from the stable state to the unstable state does not coincide exactly with the 

reverse transition, another critical power is also determined, corresponding to the transition from 

the unstable to stable state. After excitation of the instability, several power increments are made 

in order to move from the transition point; then power is decreased, using the same (small) steps 

and settling time, until a stable state is achieved. Almost always, the critical power in the reversed 

direction is smaller than in the forward one. The presence of a large gap between the two critical 

powers may imply hysteresis of the stability boundary. However, that is not always the case: in 

the unstable regime, temperatures in the system increase due to acoustically enhanced heat 

transfer, leading to a change in the eigen mode properties and the mass flow rate. Hence the 

forward and reverse paths may correspond to different mass flow rates. Also, errors in the mass 

flow rate and power must be taken into account, since they can overlap the gap between those two 
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critical powers. Therefore, only by plotting the critical points with error bars on the power-mass 

flow rate diagram is it possible to determine whether hysteresis is present. 

For each power step, a time-resolved measurement of the pressure (at two points), temperature 

(at fifteen points), a mass flow rate and a supplied power are recorded and filtered using a fifth-

order Butterworth high-pass filter with a cutoff frequency of 20 Hz, to eliminate low frequency 

noise and environmental effects. The data files with recorded data are post-processed using a set 

of computer programs written in MATLAB environment. The examples of the pressure, power 

and mass flow rate fluctuations in time and the temperature profile along the tube centerline are 

given in Figures 2-3, 2-4, and 2-5.  

The first case (Figure 2-3) corresponds to heater position x/L = 1/4, mean mass flow rate 3.35 

gm/sec, and mean power delivered to the grid 956 W. The power values shown in the figure are 

larger since some fraction of power is lost in the feeding rods, and this loss is not subtracted from 

the full power depicted. Pressure signals from two transducers located in the upstream and 

downstream tube sections demonstrate a noisy character. It means that the system is in the stable 

state, and no sound is observed during the test at this system condition. The power signal 

possesses a low frequency component imposed on a pure noise. The presence of this oscillation is 

related to the AC/DC power supply system and the action of the power controller (Poncia 1998). 

The air flow rate fluctuations are attributed to the blower properties. The centerline temperature 

profile manifests a discontinuity at the heater location x = 25 cm. The temperature field is not 

uniform in both cold and hot tube sections due to heat exchange between air flow and tube walls 

and power rods. The temperature profile exhibits non-monotonic behavior downstream the heater, 

which may be caused by transverse non-uniformity of the temperature field induced by 

recirculation zones behind the heating element and natural covection from the grid.  

The temperature jump in the air flow at the heater location, as well as the temperature variation 

along the hot section, is comparable with the absolute temperatures of the system. That could lead 

to significant modification in the characteristics of the eigen acoustic modes, and hence affect  
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Figure 2-3: Steady state recordings on the Rijke tube (x/L = 1/4; stable case). 
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system stability properties. Therefore, the measured non-uniform temperature profile shows the 

necessity for the heat transfer analysis when the system stability is to be calculated. 

The second case, shown in Figure 2-4, corresponds to heater position x/L = 1/4, mean mass 

flow rate 3.08 gm/sec, and mean power delivered to the grid 1094 W. Notice that the difference in 

system parameters from those of the first case is only about 10%. However, the pressure 

perturbations recorded are drastically different. The pressure fluctuates with high amplitude, and 

the signals from both transducers have a regular shape with little variation form cycle to cycle. 

The system is in the unstable regime now with an excited egien acoustic mode, and during the test 

a loud sound is heard. The pressure magnitude captured by transducer 2 exceeds that of 

transducer 1, because the second transducer appears to be positioned closer to the pressure anti-

node. Sound waves in the tube affect heat transfer at the heater and modify recorded power 

variation in time. Despite the fact that the damping chamber is introduced between the tube and 

the flow meter, the oscillation of the measured air flow rate is noticeable and has the same 

frequency as pressure fluctuation. The temperature profile is qualitatively similar to that in the 

stable case. The overall temperature is greater due to higher power delivered and possible 

modification of the heat transfer rate due to presence of intensive oscillations in the flow. 

The third case, shown in Figure 2-5, corresponds to heater position x/L = 5/8, mean mass flow 

rate 2.40 gm/sec, and mean power delivered to the grid 718 W. The system is unstable at this 

condition; however, different from the previous case, the heater is located in the downstream part 

of the tube. It is known from the earliest experiments on Rijke devices that excitation of the first 

mode becomes impossible at this heater position. Nevertheless, some investigators (Marone and 

Tarakanovskii 1967, Collyer and Ayres 1972) demonstrated the possibility of making the system 

unstable by exciting the second mode in this case. In our experiment, we observed the same 

phenomenon. The dominant frequency of pressure fluctuation is roughly twice that corresponding 

to the heater location at x/L = 1/4. The amplitude of the second mode and signal-to-noise ratio is 

lower, implying that the instability is less encouraged. Fluctuating components in the power 
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Figure 2-4: Steady state recordings on the Rijke tube (x/L = 1/4; excited case). 
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Figure 2-5: Steady state recordings on the Rijke tube (x/L = 5/8; excited case). 
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supplied and the mass flow rate have the frequency of the pressure oscillation. The temperature 

profile is modified according to the displacement of the heating element; a jump is observed at 

x/L = 5/8. 

Transition to instability of the Rijke tube, as well as its excited regimes of operation, are 

characterized by the appearance of limit cycles. The properties of limit cycles, namely, 

amplitudes and frequencies of the excited modes, can be found from information for the spectral 

content of the pressure signals. With a module available in MATLAB, Fast Fourier transform 

(FFT) analysis is used to generate the spectra. The power spectra of pressure signals, recorded by 

Transducer 1, are shown in Figure 2-6 for the considered cases; the vertical axis scale is arbitrary. 

The spectrum in Figure 2-6a corresponds to the stable state, shown in Figure 2-3. A typical noisy 

spectrum is observed with a small peak near the low frequency induced by the specificity of the 

power controller action. Figure 2-6b demonstrates the spectrum of the unstable state (as in Figure 

2-4). The main peak corresponds to the excited first mode of the tube; other peaks of smaller 

magnitude show that higher harmonics of the first mode are present in the signal. When the heater 

is positioned in the downstream half of the tube, the second mode is responsible for instability 

with frequency about 360 Hz (Figures 2-6c and 2-5). The harmonic of this mode at twice the 

frequency is barely noticeable. The exact numbers for the amplitude and the frequency of the 

excited modes and their harmonics are reported in the next section where the limit cycles are 

analyzed. 

In spite of the convenience of the FFT, this procedure modifies the signal properties, giving rise 

to the three pitfalls of the FFT, which are aliasing, leakage, and “picket fence” effect (Randall 

1998). The first issue appears when there are significant signal components of the frequency 

above half the sampling frequency. The second problem is due to non-integral number of periods 

in the finite length records, so the power in a single-frequency component leaks into adjacent 

bands. The third effect results in a non-uniform frequency-weighting corresponding to a set of 

overlapping filter characteristics. In our case, the first two problems are not important for two  
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Figure 2-6: Power spectra of pressure signals: (a) heater location x/L = 1/4, supplied power 

956 W, mass flow rate 3.35 g/s; (b) x/L = 1/4, 1094 W, 3.08 g/s; (c) x/L = 5/8, 718 W, 2.40 g/s. 
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reasons: first, there are no significant components in the signal of frequencies exceeding half the 

sampling frequency; and second, the number of periods in the recorded interval is so high that the 

leakage error is negligible. The “picket fence” effect, however, can greatly affect the post-

processing data analysis, and special measures must be implemented in order not to lose the 

accuracy. We applied the recommendations of Jain et al. (1979) to determine the actual amplitude 

and the frequency of the excited harmonic. Let the two highest amplitudes, located next to each 

other in the spectrum, have amplitudes pA and 'pA  and frequency scales p  and 'p . Then the 

exact harmonic frequency f  and amplitude A  are 

(2-1)   
'

' '

pp

pp
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pApA
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π
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where )/();min( '' ppppd AAAAf += . The results for the amplitudes and frequencies of excited 

modes, given in the following sections, are calculated using Equations (2-1) and (2-2). 

 

 

2.3   Stability boundaries for instability in the first mode 

The primary goal of most investigations of Rijke devices is to determine the transition to 

instability as a function of the main system parameters. In this study we have the flexibility to 

vary three parameters: heater location, mass flow rate and power supplied to the heating element. 

The procedure for localizing the transition to instability is specified in the previous section: for 

the fixed heater location and the mass flow rate, the power is varied until the transition to 

instability is achieved. Figures 2-7 and 2-8 demonstrate the examples of such experimental runs 

for heater location x/L = 1/4 and mass flow rates (a) 0.89 gm/sec, (b) 2.25 gm/sec, and (c) 3.15 
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gm/sec. The values of a mass flow rate are chosen to show different patterns of transitions 

between stable and excited regimes of operation of the Rijke tube. 

RMS of the pressure fluctuation recorded by Transducer 1 is given versus the power delivered 

to the gauze in Figure 2-7. Dominant frequency in the signal within the interval near the first-

mode natural frequency is presented in Figure 2-8. The changes in both RMS magnitudes and 

dominant frequencies determine the appearance of instability; the frequency also identifies which 

mode is unstable. As soon as the system transits to the excited regime, the magnitude of the 

pressure fluctuation significantly increases and the dominant frequency stabilizes at a certain 

level. 

In case (a), typical for low flow rates, a noticeable sound is generated when the supplied power, 

varied in increasing manner, reaches a certain value. The transition, however, is not abrupt and 

not very well defined. At this particular flow rate, there is a power range, from 165 to 172 W, 

where a tone may appear and disappear, and beating in sound is heard. Recorded pressure 

fluctuation magnitudes at this transitional power range correspond to some arbitrary captured 

states. When the power exceeds 172 W, the sound does not disappear anymore, i.e., the system is 

in an excited state. On the way back, when the supplied power is decreased, the situation is 

similar; after a transitional regime the tone vanishes, hence, the system reaches a stable state. 

At moderate flow rates, such as corresponding to case (b), the transitional process changes. 

When increasing power reaches a certain critical value, a stable tone of noticeable intensity 

abruptly appears. No intermediate ill-defined regimes are observed. With subsequent increase of 

power, the magnitude of the pressure fluctuation slowly increases. During the opposite 

(decreasing) variation of power, the system, going from an excited state, bypasses the critical 

value corresponding to the direct power variation without disappearance of the sound. The 

magnitude of the pressure signal decreases, and when another certain value of the power is 

achieved, abrupt transition from the excited to the stable state of the system occurs. Thus, the 

dependence of the critical power on the system history is observed. However, we cannot yet  
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Figure 2-7: RMS of pressure oscillation near the stability boundary: ∆, power increase; ∇, 

power decrease. Mass flow rate: (a) 0.89 g/s; (b) 2.25 g/s; (c) 3.15 g/s. 
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Figure 2-8: Dominant frequency of pressure oscillation near the stability boundary: ∆, 

power increase; ∇, power decrease. Mass flow rate: (a) 0.89 g/s; (b) 2.25 g/s; (c) 3.15 g/s. 
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judge whether this effect is a real hysteresis, i.e., when a system state at the same set of the basic 

parameters is not unique. The mass flow rate on the way back may be different, and intrinsic 

fluctuations of the power and the mass flow rate can overlap this gap between critical pairs of 

power and flow rate.  

At high mass flow rates, as in case (c), the hysteresis loop is much more pronounced. The 

difference in the critical powers is comparable with the absolute power values. The qualitative 

pattern of the pressure dependence on the power variation is similar to case (b), although the 

magnitude of the signal is much bigger in the excited regime. The presence of the profound 

hysteresis at high mass flow rates testifies that two different system states, stable and excited, can 

exist at the same values of the main system parameters, and the choice of a particular state 

depends on the direction of parameter variations. Some kind of hysteresis in Rijke tubes has been 

mentioned in theses by Heckl (1985) and Poncia (1998); however, no papers with quantified data 

have followed these observations. The first documented results with regard to this phenomenon 

are presented and explained by the author (Matveev and Culick 2002 a,b,e). 

Experimental runs aimed at finding the stability boundary, similar to the discussed above, are 

carried out for a set of mass flow rates, producing data on the transition to instability for three 

heater positions: 1/4, 1/8 and 5/8 of the tube length from the upstream end of the tube. The critical 

values of the system parameters are determined with experimental errors that are the maxima 

between the intrinsic variations of the parameters and the size of the intermediate regimes, such 

as discussed with regard to Figure 2-7a. 

The cumulative data of the stability boundary for three heater locations are presented in Figures 

2-9, 2-10, and 2-11. Both directions of power variation are studied. The results corresponding to 

the power increase are shown in bold lines; the results obtained for power decrease are 

represented by thin lines. In the first two cases, it is the first acoustic mode of the tube that is 

responsible for instability, in the last case – the second mode. The general shape of the stability 

curves of the Rijke tube is in accordance with previous investigations, e.g., by Marone and  
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Figure 2-9: Transition to instability for heater location x/L = 1/4. 

 

Tarakanovskii (1967), Katto and Sajiki (1977). The sizes of the crosses depicted are equal to 

experimental errors. 

The location of the heater at x/L = 1/4 (Figure 2-9) is close to the most favorable situation for 

initiation of the thermoacoustic instability, as Rijke noticed in the first experiments on this device. 

The dependence of the critical power, defining the transition between stable and excited regimes, 

on the mass flow rate has a distorted parabolic shape. At very low and high mass flow rates, this 

stability boundary goes steeply upward. In our system the maximally achievable power is about 

1300 W, and the extreme flow rate limits (for instability to be seen) are about 0.5 and 3.5 gm/sec. 

A minimum value of the power needed to make the system unstable (near 160 W) is achieved at a 

mass flow rate around 0.9 gm/sec. The left wing of the stability curve grows steeply, while the 
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of the stability boundary shape greatly depend on the heat transfer processes in the system that 

affect properties of the acoustic modes and the thermal power released to the air flowing through 

the heater.  

The experimental error bars have a tendency to increase with increasing mass flow rate and 

power. However, the relative noise component in the mass flow rate is generally greater at lower 

flow rates than at higher ones. That can be explained by the increasing importance of both air 

leakage in the system, e.g., via micro slits in the damping chamber, and the influence of incoming 

flow disturbances.  

At flow rates exceeding 2.8 gm/sec, the stability boundary splits into two branches; one 

corresponds to increasing power variation, the other to decreasing power. This is a manifestation 

of the hysteresis effect. The higher the mass flow rate, the stronger is hysteresis. At moderate and 

low flow rates, the size of hysteresis loops is within the error bars, hence we cannot declare 

whether the hysteresis effect exists. Even if it does, hysteresis is small at these regimes. At the 

lowest recording we see that critical values are different for opposite variations of the power. 

However, since the stability curve is nearly vertical, this gap lies inside experimental errors, and 

hysteresis cannot be claimed there either.  

From the experimental results, we could assume that the transition to instability at moderate 

flow rates is caused by linear system instability with a possible minor influence from nonlinear 

effects. Hysteresis is definitely a nonlinear phenomenon, and its explanation requires careful 

consideration of important nonlinear mechanisms. 

Let us now consider the stability boundary obtained for heater position x/L = 1/8 (Figure 2-10). 

From previous investigations, e.g., by Marone and Tarakanovskii (1967), we know that both the 

first and the second eigen acoustic modes of a tube can be responsible for transition to instability. 

Since this position is less favorable for excitation of the first mode, and generally it is more 

difficult to excite the second mode (acoustic losses increase with frequency growth), we can 

expect the stability boundary to move in the upward direction. Experiments do show this 
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tendency: the limiting mass flow rates are about 0.8 and 2.8 gm/sec, and the minimally achievable 

power needed to make the system unstable exceeds 200 W with the corresponding mass flow 

rates displaced to the right and equal to about 1.2 gm/sec.  

The mode responsible for transition to instability in this case remains the first one. The second 

mode is still stable at this position of the heater; it is probably due to the relatively small length-

to-diameter ratio of the tube, so the sound radiation losses from the open tube ends are too large 

for the second mode to dominate.  

Although the hysteresis effect is observed during the tests at high mass flow rates, it is located 

in the region where the stability curve goes steeply upward, and is overlapped by the error bars. 

That does not allow us to claim unambiguously that hysteresis is present in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10: Transition to instability for heater location x/L = 1/8. 
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2.4   Stability boundary for instability in the second mode 

To study Rijke oscillations in a broad spectrum of parameters and system states, it is highly 

desirable to be able to excite the system with a mode higher than the first one being responsible 

for instability. A heater location in the downstream section of the tube is not favorable for 

excitation of the first mode, and by positioning a heating element there, we intend to obtain the 

system instability in higher modes. A heater location is chosen to be 5/8 of the tube length; this 

point is known to be suitable for encouragement of the second mode development. However, 

during the tests no sound was generated at this condition in the accessible range of the power. The 

most likely reason is that acoustic losses are too large. To reduce them, we modified the damping 

chamber (Figure 2-1) by installing a rigid wall on the chamber internal back side; initially it was 

covered by a thick carpet as described in Section 2.1. We expected that the solid wall would 

decrease the absorption coefficient leading to reduction of total acoustic losses in the system. 

According to our expectations, the system did produce sound in this modified configuration, and 

it was the second mode that caused transition to instability. 

The approach to localizing the stability boundary is similar to the preceding tests: for the fixed 

flow rate, the power is increased until the unstable state is discovered. The measured transition 

points with the appropriate experimental error bars are shown in Figure 2-11 for forward direction 

of power variation. A surprising distinction from the preceding runs is that the sound disappears 

when the power is further increased after transition to instability. Therefore, we are unable to 

produce the stability boundary corresponding to the reverse variation of the power; that is why 

only one set of data is given in Figure 2-11. The transition from the unstable to stable regimes for 

increasing power variation at high powers is not reported here; during the test we could not obtain 

a robust boundary. 

Despite the reduction of acoustic losses in the system, the typical powers needed to obtain 

instability are greater than those shown in Figures 2-9 and 2-10. The possible reason is that the 
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losses increase significantly with a frequency, and since the second mode is excited, this factor 

makes the critical power to be high. Another reason may be due to different efficiency of 

conversion of thermal energy to acoustic energy, which also depends on frequency. However, 

within this study we did not measure thermoacoustic efficiency experimentally, and hence cannot 

judge this factor. 

The extreme limits of mass flow rates, when instability is achievable, are about 1.6 and 2.6 

gm/sec. The minimal power needed for excitation is around 650 W; the corresponding mass flow 

rate is 2.2 gm/sec. The stability boundary moves upward in the power-flow rate diagram, and 

contracts more in comparison with the cases when the heater is located in the upstream half of the 

tube. The shape of the stability boundary changes as well: a steeper branch is located on the right, 

and a gentle sloping is on the left from the minimum point.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11: Transition to instability for heater location x/L = 5/8. 
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Besides information on the stability boundary in the main coordinates (heater location, flow 

rate, and supplied power), the properties of the acoustic modes in the transition between stable 

and excited regimes, such as a frequency and a growth rate, are of interest too, especially from the 

modeling point of view. These data would correspond to essentially transient processes. Test 

strategies, data acquisition and analysis must differ significantly from the procedures developed 

at this study, aimed at working with steady-state conditions. Therefore, we do not report here the 

information about growth rates, corresponding to the initial development of instability. Only 

experimentally and theoretically determined stability boundaries and steady state excited regimes 

are the subjects of this thesis; tests and modeling of the transient processes in the system can be 

investigated in a later work.  

For illustrative purposes and qualitative comparison with linear modeling, information about 

the dominant frequencies in the pressure signals of the steady states obtained after transition to 

instability are reported in Figure 2-12. In cases (a) and (b), given for heater locations 1/4 and 1/8 

of the tube length, the dominant frequency is around 180 Hz, corresponding to the first acoustic 

mode of the tube. In the third case (c) the heater is positioned at 5/8 of the tube length, and the 

second mode is dominant; a measured frequency is within 350–370 Hz interval. Noticeable data 

scattering is due to unequal deviation of the recorded system parameters from the actual stability 

boundary. The trends of the frequency apparent in Figure 2-12 are caused by variation of the 

characteristic temperature in the system. At high and low mass flow rates the power needed to 

excite the system is greater than that at the intermediate flow rate. The mean temperature 

correlates positively with the amount of power supplied; and the mode frequencies increase with 

the growth of characteristic temperatures. 
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Figure 2-12: Dominant frequency in the signal on transition to instability. Heater location: 

(a) 1/4; (b) 1/8; (c) 5/8 of the tube length. 
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2.5   Limit cycles  

This section is dedicated to experimental study of the excited regimes of operation of the Rijke 

tube. Since the Rijke tube behavior at heater location x/L = 1/8 is qualitatively similar to that at 

x/L = 1/4, namely, the first mode is responsible for instability in both cases, we study the excited 

states only for two heater positions, 1/4 and 5/8 of the tube length, where different modes 

dominate in the unstable regime. 

Recordings have been obtained for two fixed mass flow rates in both cases, and the power has 

been varied starting from the value, corresponding to the stable state near the stability boundary, 

to nearly 900 W. The signal generated at Transducer 1 is chosen for analysis, since thermal 

conditions near this sensor, located in the cold upstream tube section, vary much less than those at 

Transducer 2, where temperature changes in wide ranges for given power interval. By using the 

cold section sensor, an additional factor imposed by significant temperature variation is excluded. 

When transition to instability was studied, the power was driven very slowly in order to obtain 

quasi-steady conditions. The duration of the experiment was acceptable, since only a small power 

interval in the vicinity of the stability boundary was studied. Investigating the unstable regimes, 

we want to cover much larger power ranges, so this quasi-steady procedure would lead to the 

unreasonable increase of test duration, hence it is not acceptable. We have to decrease the time 

between power increments. That inevitably produces some delay in the temperature field settling 

due to the system thermal inertia. The results for opposite directions of power variation will 

correspond, strictly speaking, to different conditions. However, the power is chosen to be varied 

with a moderate rate that produces only a small difference between these opposite variations. In 

any case, the accuracy of the results, obtained both experimentally and theoretically in this work 

for the excited regimes of operations of the Rijke tube, is accepted to be lower than the accuracy 

of the stability boundary. With regard to the limit cycles, we are mostly interested in 

understanding their properties and approximate modeling. 
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Pressure signals studied in this portion of the work are analyzed in accordance with the 

procedure explained in Section 2-2. Power spectra are obtained for steady state signals, and 

amplitudes and frequencies of the spectral peaks are calculated accounting for peculiarities of the 

FFT method. The noise component is subtracted from the amplitude values, so that in the stable 

state the intensity of the harmonics is zero. The results for the excited modes and their harmonics 

are presented in Figures 2-13 to 2-18. Filled markers correspond to the increase of the power 

supplied, empty markers – to the decrease of the power. 

Figures 2-13 to 2-16 show the dependence of amplitudes and frequencies of the first mode 

(responsible for instability in this case) and its harmonics for the heater location x/L = 1/4. 

Appearance of higher harmonics can be explained by the fact that the velocity fluctuation with a 

finite amplitude inevitably produces higher harmonics in the heat release from the gauze due to a 

nonlinear law of the forced convective heat transfer. Another possible reason, nonlinear gas 

dynamics, is probably not important in our system, since the Mach numbers do not exceed 10-3; at 

this value the nonlinear terms in a wave equation cannot generate higher harmonics of the 

amplitudes observed during the tests. 

The amplitude of the first mode at mass flow rate 1.63 gm/sec has an increasing tendency with 

respect to the power supplied; this trend is more pronounced at lower power. In the high power 

range the amplitude’s growth decelerates, since the fraction of a power that leaves from the gauze 

via thermal radiation increases at high temperatures, and hence the fraction of power transmitted 

to the air flow decreases. Irregularities in the recordings are probably related to the fluctuations in 

the main system parameters, which are larger in the high power range. The maximal intensity of 

the sound inside the tube is very high; at large supplied powers it exceeds 135 dB.  

The amplitude of the first mode at the reverse power variation is generally lower than that at the 

power increase. This observation may relate to the system thermal inertia. The averaged 

temperatures in the air flow and especially in its portion in the hot tube section are higher during 

tests on the reversed path. That leads to the increase of the frequency and the larger distortion of 
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the mode shape (compared with a mode shape for constant temperature in the tube). The first 

effect enhances the acoustic losses, and the second effect displaces the mode from the most 

favorable distribution for thermoacoustic energy transformation. 

The variation of the frequency of the first mode (Figure 2-14) is practically linear in the excited 

state. The frequency increases with the growth of the power, since temperatures and consequently 

the speed of sound increase. On the reverse path the frequency decreases for the same reason. The 

frequency value is higher during reversed power variation, due to the higher temperatures caused 

by the system thermal inertia. 

Now let us look at the properties of the higher harmonics recorded at mass flow rate 1.63 

gm/sec (Figures 2-13 and 2-14). The fact that these are harmonics of the first mode, but not the 

higher modes of the tube, follows from the frequency data. The spectral peaks are observed at the 

frequencies that are exactly integer multipliers of the first mode frequency. If there were higher 

modes excited, their frequencies in a non-uniform temperature environment would differ from the 

exact multipliers of the first mode frequency (though some mode frequencies would be close to 

those numbers). 

From the figures presented, one can see that higher powers are required to generate higher 

harmonics. While the second harmonic is produced almost immediately after the excitation of the 

first mode, the power exceeding 300 W is needed for the appearance of the third harmonics, and 

over 700 W – for the fourth harmonic. The pattern of the harmonic amplitude dependencies on 

the supplied power is similar: initially, the amplitude is growing fast, reaching a maximum; then, 

it recedes and stabilizes at a certain level. During reversed power variation, amplitudes of the 

harmonics are lower than those on the way forward, similar to the first mode behavior. 

Regarding values of the harmonic amplitudes with respect to that of the first mode, one can 

notice that in the regime from 200 to 400 W, the amplitude of the second harmonic is only about 

30% less, and at higher powers, it is 3-5 times smaller than the amplitude of the excited mode.  
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Figure 2-13: Amplitudes of the excited mode and its harmonics of the Rijke tube in the 

unstable state. Mass flow rate 1.63 gm/sec; x/L = 1/4. ∆, fundamental mode; ◊, second 

harmonic; ∇, third harmonic; o, fourth harmonic.  
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Figure 2-14: Frequencies of the excited mode and its harmonics of the Rijke tube in the 

unstable state. Mass flow rate 1.63 gm/sec; x/L = 1/4. ∆, fundamental mode; ◊, second 

harmonic; ∇, third harmonic; o, fourth harmonic.  
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Figure 2-15: Amplitudes of the excited mode and its harmonics of the Rijke tube in the 

unstable state. Mass flow rate 2.40 gm/sec; x/L = 1/4. ∆, fundamental mode; ◊, second 

harmonic; ∇, third harmonic; o, fourth harmonic. 
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Figure 2-16: Frequencies of the excited mode and its harmonics of the Rijke tube in the 

unstable state. Mass flow rate 2.40 gm/sec; x/L = 1/4. ∆, fundamental mode; ◊, second 

harmonic; ∇, third harmonic; o, fourth harmonic. 
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The third and the fourth harmonics reach only a small fraction of the second harmonic amplitude.  

At mass flow rate 2.40 gm/sec (Figure 2-15 and 2-16), a pattern of the development of the first 

mode amplitude is somewhat different from the low flow rate case. The magnitude increases 

abruptly, and then changes insignificantly. This is similar to variation near the transition to 

instability discussed in the previous section. The absolute value of the amplitude is a few dB 

higher than that shown in Figure 2-13. The trend in frequency is similar to the previous case. 

Behavior of the second and the fourth harmonic amplitudes also demonstrates initial abrupt 

increase and stabilization at a certain level; however, the development of the third harmonics is 

more complicated with some obvious regions of increased amplitude imposed on the otherwise 

linear dependence on power for both directions of power variation. Frequency data confirm again 

that the spectral peaks correspond to the harmonics of the excited modes, since their frequencies 

are the exact multipliers of the first mode frequency. 

When the heater is moved to the downstream half of the tube (x/L = 5/8), the second eigen 

acoustic mode of the tube is unstable. Higher losses associated with the increase of the frequency 

of the unstable mode require higher power to be delivered to the heating element, so the excited 

state in this case covers a smaller power range. The maximum level of power (900 W) is kept the 

same during these tests in order not to overheat the system components. 

The stability boundary for this heater position is reported in the previous section with regard to 

only one direction of power variation, because sound is observed to disappear at higher power 

level. The additional goal of this section is to study how this effect occurs. The results for the 

amplitude and frequency of a dominant spectral component in the signal are shown in Figures 2-

17 and 2-18 for two mass flow rates. Different from the case of heater location at 1/4 of the tube 

length, higher harmonics in the signal are not clearly recognizable from the background noise, 

and hence, are not reported here. The reason is again a smaller instability margin. 
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Figure 2-17: Amplitude and frequency of the excited mode of the Rijke tube in the unstable 

state. Mass flow rate 2.05 gm/sec; x/L = 5/8. 

 

At mass flow rate 2.05 gm/sec, tone intensity grows steeply after crossing the stability 

boundary. There is an intermediate region similar to that observed in the transition to instability at 

low flow rates when heater location was x/L = 1/4 (Figure 2-7). The maximum of the amplitude 

of the excited mode is recorded at power 760 W. It gradually recedes afterwards and eventually 

disappears at power near 900 W. The most likely reason for the transition to the stable regime at 

high powers is the distortion of the acoustic mode shape, so the maximally favorable heater 

position for excitation of the second tube mode displaces from the actual location of the heating 

element. Increase of the supplied power, as well as thermoacoustic power generation, cannot 

counteract this effect, since a significant portion of energy leaves the gauze via thermal radiation 

in the high power range. The behavior of the dominant frequency is similar to the previous case:  
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Figure 2-18: Amplitude and frequency of the excited mode of the Rijke tube in the unstable 

state. Mass flow rate 2.21 gm/sec; x/L = 5/8. 

 

it increases with the growth of the power due to higher temperatures in the system. 

Once sound disappears at a critical value of power (near 900 W), the tone is not produced either 

by increasing the power further or by decreasing it. That implies a strong history dependence, and 

a hysteresis loop in this case is quite different from that observed at the heater location x/L = 1/4. 

At higher mass flow rate, 2.21 gm/sec, the pattern is similar (Figure 2-18), although some details 

are different. Instability occurs earlier, and initially the tone intensity is growing with power. 

Then the mode amplitude reaches a maximum and starts declining. At power 900 W, the sound 

becomes unnoticeable. On the way back, no instability is observed either. The mode frequency 

increases monotonically versus power. 
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The non-trivial behavior of the properties of the exited modes and their harmonics, considered 

in this section, shows a complexity of the real system. The mathematical modeling intended to 

simulate the effects observed must be quite sophisticated to capture all these phenomena. 

 

 

2.6   Summary of experimental results  

A quasi-steady data acquisition procedure has been established to generate temporally and 

spatially resolved measurements of the properties of the Rijke tube. An iterative method has been 

employed to determine the transition to instability as a function of the primary system parameters. 

Stability boundaries were documented with specified uncertainties in the system parameters for 

three heater locations: x/L = 1/4, x/L = 1/8, and x/L = 5/8. In the first two cases, it was found that 

the first acoustic mode caused transition to instability. In the third case, it was the second mode 

that became unstable. A hysteresis in the stability boundary was discovered for sufficiently high 

mass flow rates for the heater at location x/L = 1/4, and for all flow rates at x/L = 5/8. A 

significant non-uniformity in the temperature field inside the tube was observed for all system 

conditions (except those without power input). The properties of the limit cycles for the unstable 

regimes of operation of the Rijke tube were determined as functions of the main system 

parameters. At steady-state conditions, spectra of the acoustic signal clearly exhibited a major 

peak corresponding to the unstable eigen mode, as well as minor peaks at higher frequencies 

associated with higher harmonics of the self-excited mode. At heater locations x/L = 1/4 and x/L 

= 1/8, the limit-cycle amplitudes and frequencies have shown tendency to grow with increasing 

input power. At x/L = 5/8 the limit cycles disappear upon reaching a sufficiently high power, and 

the system transits to a stable state. 


