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Abstract

This thesis presents experimental measurements of the shear stresses of a fluid-particulate
flow at high Reynolds numbers as a function of the volume fraction of solids. From the
shear stress measurements an effective viscosity, where the fluid-particulate flow is treated
as a single fluid, is determined. This viscosity varies from the fluid viscosity when no
solids are present to several orders of magnitude greater than fluid viscosity when the par-
ticles near their maximum packing state. It is the primary goal of this thesis to determine
how the effective viscosity varies with the volume fraction of solids.

A variety of particle sizes, shapes, and densities were obtained through the use of
polystyrene, nylon, polyester, styrene acrylonitrile, and glass particles, used in configu-
rations where the fluid density was matched and where the particles were non-neutrally
buoyant. The particle sizes and shapes ranged from 3 mm round glass beads to 6.4 mm
nylon to polystyrene elliptical cylinders. To properly characterize the effect of volume frac-
tion on the effective viscosity, the random loose- and random close-packed volume frac-
tions were experimentally determined using a counter-top container that mimicked the
in situ (concentric cylinder Couette flow rheometer) conditions. These volume fractions
depend on the shape of the particles and their size relative to the container.

The effective viscosity for neutrally buoyant particles increases exponentially with vol-
ume fraction at fractions less than the random loose-packing. Between the random loose-
and random close-packed states, the effective viscosity increases more rapidly with vol-
ume fraction and asymptotes to very large values at the close-packed volume fraction. The
effective viscosity does not depend on the size or shape of particles beyond the influence
these parameters have on the random packing volume fractions.

For non-neutrally buoyant particles, the difference in particle buoyancy requires an ad-
ditional correction. The volume fraction at the time of the force measurement was recorded

for several different ratios of particle-to-fluid density. This volume fraction increases with
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the shear rate of the Couette flow and decreases with the Archimedes number in a way that
when plotted against the Reynolds number over the Archimedes number, these curves col-
lapse onto one master curve. When the local volume fraction is used, the effective viscosity
for non-neutrally buoyant particles shows the same dependence on volume fraction as the
neutrally buoyant cases.

Particle velocities were also measured for both neutrally buoyant and non-neutrally
buoyant particles. These particle velocities near the stationary inner wall show evidence
for a small region near the walls with few particles. This particle depletion layer was
measured directly using the velocity data and indirectly using the difference between the
measured effective viscosities for the smooth- and rough-wall configurations. The slip
in the smooth wall experiments can significantly affect the measured viscosity, but this
deficiency can be corrected using the thickness of the depletion layer to find the actual

value for the effective viscosity.
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Chapter 1

Introduction

Fluid-solid flows are observed in a variety of fields ranging from mining operations to the
erosion of the Martian landscape. Particulate flows help polish and cut metals in manufac-
turing practices, but are also associated with the rapid deterioration of industrial compo-
nents. The mechanics of particulate flows cause dune formation and determine the dam-
age caused by a landslide. These are just a few examples of the vast range of fluid-solid
material flows of interest to engineers and scientists.

The rheology of granular flows was first studied by Bagnold (1954, 1956). In this
groundbreaking work, Bagnold investigated the effect of particulates on the pressure and
shear forces in a coaxial rheometer. Bagnold concluded that there was a transition — char-
acterized by the ratio of the inertial stress to the viscous stress, now called the Bagnold
number — from the “macro-viscous region” where the shear stress and the pressure grow
linearly with shear rate, to the fast “grain-inertia region” where shear stress and pressure
grow quadratically with the shear rate. Later analysis by Hunt et al. (2002) found that Bag-
nold’s experiments were marred by the presence of secondary vortices and the boundary
layer on the top and bottom annular end caps. Additional work by Chen and Ling (1996)
found that the higher volume fractions tested by Bagnold (¢ = 0.606 and ¢ = 0.623) were
inconsistent with the lower volume fractions due to particle slip against the cylinder walls.

This thesis is part of an effort to establish a base of rheological data for fluid-solid flows.
In the following section (section 1.1), fluid-particulate flows is described in more detail,
highlighting the specific assumptions and parameters, which characterize these flows. Fol-
lowing that explanation, a portion of the previous experiments conducted on these flows

is highlighted in section 1.2.



1.1 Flow regimes

In general, fluid-solid flows are associated with the movement of particles through an
interstitial fluid where the viscous effects of the fluid, the inertia of the fluid and particles,
and the collisions between particles all contribute to the mechanics. In addition to these
mechanisms, additional forces associated with many particles in the fluid (e.g. lift, drag,
added mass) may also significantly change the mechanics of the flow.

To investigate the nature of these fluid particulate flows, particles with diameter d and
density p, are placed in a Couette flow device consisting of two concentric cylinders (with
shear rate ¥ and gap width b) filled with a Newtonian fluid with viscosity y and density
py- This fluid-solid flow can be characterized by an effective stress tensor T composed of
shear stress 7 and pressure p. To simplify the form of the stress tensor, it is hypothesized

that the fluid-solid mixture is also Newtonian, thus
T = M/’% (11)

where 1/ is the effective viscosity of the fluid-solid mixture. This effective viscosity de-
pends on the properties of the fluid, the properties of the solid, the fluid shear rate, the gap

width, the volume fraction of solids ¢, and thermal energy kT

w = f(p,pgspp,d,g,7,b,6,kT). (1.2)

Reducing this dependance to non-dimensional parameters,

! d
i = f <¢7 Re7 Pe7 AI‘, &7 ) ) (13)
Iz ps b

where the Reynolds number, the ratio of fluid inertial force to the fluid viscous force, is
defined by

.d2
Re = 1% (1.4)

7
for a Couette flow. The Reynolds number is an indicator for the onset of turbulence and the
existence of secondary flows. The Peclét number, the ratio of particle advection to thermal

diffusion, is defined by
_ Bmpdy
Pe=—0r

(1.5)



The Archimedes number ,
Ar:gdpf‘:f_pf', (1.6)
describes the ratio of gravitational forces to viscous forces. The remaining non-dimensional
parameters are p,/py, the ratio of the particle-to-fluid density, and d/b, the ratio of the par-
ticle diameter to the gap width.
The equation for the effective viscosity, equation (1.3), can be simplified by employing

a few key assumptions. In the following subsections, several of these assumptions are

discussed in more detail.

1.1.1 Continuum assumptions

Inherent in the examination of bulk fluid properties is the assumption that the flow is a
continuum: enough particle-particle and particle-wall collisions occur during a measure-
ment so that their effect is averaged. Furthermore, it is argued that the results are not
affected by the presence of the cylinder walls. For the continuum assumption to hold, lim-
its must be placed on the volume fraction of particles ¢ and on the ratio of gap width to
particle diameter, b/d. The volume fraction must be large enough so that, over the time of
the experiments, a sufficient number of particle collisions occur. In the present experiment,
the volume fraction of solids was larger than 0.05, for which the continuum assumption
should hold.

Appropriate limits on the ratio of gap width to particle diameter are more difficult to
determine. The slip of particles against the cylinder walls causes a lower effective shear
rate within the bulk of the fluid-particulate mixture. A general rule for experiments with
suspensions of particles in a fluid is that the gap width must be at least 10 times the particle
diameter (Barnes 1995). In the current experiments, the ratio b/d is often close to this limit
of 10 (e.g. 9.5 for the polystyrene particles). The nature of slip on the outer walls and its
influence on shear stress measurements are discussed in chapter 6.

The presence of the outer walls can also change the maximum obtainable volume frac-
tions; particles tend to arrange themselves in an ordered, lower volume fraction pattern
near the container walls. If the container is small, the total volume consumed by this or-
dered arrangement can significantly affect the total volume fraction. To compensate for

this source of error, the random packing of particles is measured in box with a gap equal
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to the gap between the concentric cylinders. (The height and width of the box are much
greater than the gap and should not change the volume fraction). See section 2.2 for a

detailed discussion of this behavior.

1.1.2 Secondary flows

The radial inertia due to a rotating flow can induce a radial velocity in the fluids and
particles. At low Reynolds numbers, the viscosity can suppress this radial velocity, but as
the Reynolds number increases, Taylor vortices develop. As with single component flows,
secondary flows and turbulence can develop in fluid-particulate flows. In a concentric
cylinder Couette flow where the outer rotates and the inner cylinder is held stationary,
secondary flows are present in the form of Taylor vortices and the boundary layer flows
near the end caps. These secondary flows increase the shear stress on the cylinder walls
and, without correction, can yield a higher effective viscosity than without these effects.

The growth of Taylor vortices depends on the geometry of the annular gap as well as
the rotational velocity of both the inner and outer cylinders. Even in the case of a granular
flow, where the fluid effects are negligible, Taylor-like vortices develop at a slightly lower
Reynolds number than in the fluid case (Conway et al. 2004). The vortices develop at a
much lower Reynolds number for a Couette flow with the inner cylinder rotates than for a
flow where the inner cylinder is fixed and the outer cylinder rotates. The data obtained by
Taylor (1936a,b), shown in Figure 1.1, shows this trend very clearly. As the gap width b is
increased relative to the inner cylinder radius r;, the critical Reynolds number for the on-
set of Taylor-Couette vortices decreases for inner rotating Couette flows and increases for
outer rotating Couette flows. The presence of Taylor-Couette vortices can greatly increase
the observed torque in a nonlinear manner, as shown in Figure 1.2. Even small errors in the
Reynolds number can lead to large changes in the pure fluid torque. The effective viscos-
ity of the fluid-particulate mixture is calculated relative to pure fluid viscosity through the
normalization of the measured to pure fluid torque. Through this normalization, small un-
certainties in the Reynolds number can create significant errors in the normalized effective
viscosity measurement. Due to this possible error, care is taken to avoid Taylor-Couette
flows in the present experiment.

Secondary flows are also present near the end caps at the top and bottom of the an-
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nulus. The inertial opposition to the centripetal acceleration is balanced by a pressure
gradient in the center of the flow. An axial gradient exists near the end caps due to the
non-slip condition, which disrupts the pressure gradient. This resultant force near the end
caps drives a radial flow close to the boundary (Czarny et al. 2003). When the end caps
are fixed, these boundary layers are termed Bodewadt flows, or termed Ekman boundary
layers when the end caps and flow are rotating at different angular velocities (Lingwood
1997). As the rate of rotation increases, the boundary layers decrease in size but increase in
strength, inducing counterrotating recirculation cells. These cells grow with the increasing
Reynolds number until they eventually meet at the midplane. The boundary layer and its
accompanying recirculation cell has an increasing influence on the torque measurements.

The influence of particles on the development or strength of secondary flows is another
source of uncertainty. Experimental results summarized in Gore and Crowe (1991) show
that turbulence is strengthened by small particles and attenuated by large particles. This
attenuation is due in part to particle-fluid and particle-particle-fluid coupling, the magni-
tude of which is influenced by the volume fraction of particles (Elghobashi 1994). These
two effects are summarized in the data from Matas et al. (2003), which looks at the critical
Reynolds number for the onset of turbulence in horizontal pipe flow (Figure 1.3). A sim-
ilar influence of the volume fraction is expected for the initiation of Taylor vortices or on
boundary layer flows. The effect of particles on secondary flows is difficult to estimate,
making comparisons between single phase experiments at the same Reynolds number

problematic. The added complexity caused by these secondary flows should be avoided.

1.1.3 Diffusion and Brownian motion

The diffusion of particles in a fluid is governed by advection, particle interactions, and
thermal diffusion. Advection — diffusion caused by a fluid velocity gradient — depends on
how quickly the Couette flow is being sheared; diffusion due to particle interactions is a
function of the volume fraction of particles in the fluid; thermal diffusion is a function of
the fluid temperature. Diffusion always occurs, but the dominant type of diffusion may
change.

Thermal diffusion is caused by Brownian motion: the random movement of particles

suspended in a fluid due to colliding, thermally excited atoms and molecules. As the tem-
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Figure 1.3. Critical Reynolds number for the onset of turbulence in pipe flow as a function
of the volume fraction of solids ¢ and the ratio of particle diameter to pipe diameter d/D.
Turbulence is delayed for smaller particles and high volume fractions (Matas et al. 2003).

perature increases and as the particle diameter decreases, the Brownian motion of particles
becomes more pronounced. At room temperature, particles with diameters smaller than
100 pm show clear Brownian motion while particles with diameters greater than 1 mm
do not. The ratio of advection to thermal diffusion is termed the Peclét number (equa-
tion (1.5)). For processes with Peclét numbers that are very large (Pe — o0), the system
is not subjected to Brownian diffusion. Generally, systems with Pe > 103 are considered
non-Brownian (Stickel and Powell 2005). In all of the experiments considered in this the-
sis, the particle sizes are large enough and the fluid is moving sufficiently quickly that
the flows are considered non-Brownian. Then, the effective viscosity depends only on the
other non-dimensional parameters, %, =f (¢7 Re, Ar, 2%;, %)

The presence of diffusion based on particle interactions can also influence the effective
viscosity of the flow. As the volume fraction increases, particle-particle collisions become
increasingly frequent and exhibit a dominant behavior in the dynamics of the flow. Above
a critical volume fraction ¢, collisional diffusion dominates over advection. The exact

criterion of the transition between a region of continuous particle interactions and non-
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collisional flows is currently unclear and one of the goals of this thesis is to determine this
transition. A further discussion of the transition toward the continuous contact regime can

be found in chapter 2.

1.1.4 Phase diagrams

Since Bagnold (1954, 1956) first explored fluid particulate flow in his concentric Couette
experiment, other researchers have looked at different aspects of these flows. Generally,
these experiments can be placed in several categories. The most basic differentiation of
these categories is shown in Figure 1.4(a), which shows the phase diagram of volume frac-

tion and of Archimedes number relative to the Reynolds number. The continuous contact

. Continuous contact
¢cr1t .
Saltation
Sliding
bed
- Laminar Secondary g Secondary
flows Heterogeneous flows
suspension
Homogeneous
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0 . 0 :
Recrit Recrit

Re
(@) (b)

Re

Figure 1.4. Phase diagram for non-Brownian fluid-particulate flows. As a function of the
Reynolds number, the influence of (a) volume fraction and (b) Archimedes number are
shown on the behavior of the flow. These figures are based on the work of Coussot and
Ancey (1999) and King (2001).

regime comprises flows where the particles are always in contact and collisional diffusion
dominates over advection. Above a critical Reynolds number, secondary flows are present.
These secondary flows greatly complicate the flow behavior and can contribute to a higher
observed torque. Since the particles can alter these secondary flows, comparisons between
single phase and particle laden cases are complicated. This regime is avoided in this the-
sis. The third region comprises laminar flow without secondary flows where advection
dominates.

Variations in the Archimedes number, as seen in Figure 1.4(b), can also be significant to
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the behavior of the fluid-particulate flow. As the density difference between the particles
and fluid is increased, the Archimedes number increases and a higher Reynolds number
is required to fluidize the bed (Bi and Fan 1992; King 2001). Particle mixtures undergoing
saltation or in a heterogeneous suspension show variations in the local volume fraction
in the axial direction. A variation in the effective viscosity, due to this volume fraction
gradient, can complicate the dynamics of the flow. In the present experiments, when the
particle density and fluid density were not matched (chapter 5), the volume fraction was
measured locally. Thus, if the particles are not in a homogeneous mixture, the effective
viscosity can be correlated directly with the local volume fraction.

In addition to the phase diagram for variations in the volume fraction and Archimedes
number, variations in Peclét number can also be considered. For low Peclét numbers, the
flow is Brownian and thermal diffusion dominates. As the Peclét numbers for the experi-
ments discussed in the following chapters are all much larger than unity, any rheological

effects in this region are small and are neglected.

1.1.5 Particle interactions

Individual interactions between two colliding particles can vary dramatically based on
the relative inertia of the particles and the elasticity of the particles. Particle collisional
behavior is characterized by the Stokes number, which describes the ratio of particle inertia

to fluid viscous forces,
_ ppureld

St
)

(1.7)

(Joseph and Hunt 2004; Joseph et al. 2001). For shear flows, the relative velocity between
two adjacent particles is approximately equal to the shear rate times the distance between
the two particle centers. This separation between two adjacent particles is close to particle

diameter. The Stokes number for this flow is related to the Reynolds number by

.d2

st = P (1.8)
0

_ Lrvge (1.9)
9ps

For collisions against a wall, solid, rigid particles showed no rebound for a Stokes num-
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ber less than about 10 (Joseph and Hunt 2004; Joseph et al. 2001). For collisions between
two particles, a Stokes number based on the relative velocities between the two particles
is chosen. As shown in Yang (2006); Yang and Hunt (2006), for small Stokes numbers
(St < 2), the slow particle began to move as the fast particle approached and there was no
clear collision. For slightly larger Stokes numbers (St ~ 3 — 9), there was a clear collision,
but no rebound: the two particles travel as a single composite particle following the colli-
sion. At larger Stokes numbers, there was a clear rebound between the two particles. For
oblique collisions, the normal collisional interaction proceeds just as described above, but
the ratio of incident to rebound angle vary with Stokes number.

The collision of a particle with either a wall or a second particle is associated with en-
ergy dissipation due to the inelasticity of the contacts. This energy dissipation is described
by the coefficient of restitution: the ratio of the rebound velocity v, to the incident velocity
Vi,

e= 2 (1.10)

for a collision against a stationary wall. For a collision between a second particle, the
relative velocities must be used. The coefficient of restitution, which must be a function of
Stokes number and the properties of the two materials as is shown in Ruiz-Angulo (2008).
For steel particles against a Zerodur wall, where both the wall and particles have high

Young’s moduli, the coefficient of restitution is well described by the empirical fit

8.65

as shown in Joseph (2003) and represents the elastic limit. For collisions involving greater
plastic deformation, the coefficient of restitution will decrease. The elastic velocity is de-

fined as
2

2E*2, /10p,

where Y is the yield strength and E* is the reduced modulus, defined as E* = [(1 —

(1.65Y)°/2 (1.12)

Ue] =

v3)/E1+(1—v3/Es) !, which depends on the Young’s modulus for each material E; as well
as Poisson’s ratio v;. For particle-particle collisions within the fluid, the two materials are
identical and E* = E/[2(1 — v?)]. If the impact velocity is greater than the elastic velocity,

deformation will occur. The elastic properties of each particle used are summarized in
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section 3.3. For the materials used and the range of Stokes numbers tested, a reduction of
less than 10% in the coefficient of restitution will occur.
1.2 Previous experiments

Bagnold (1954) first experimented with the rheology of fluid-particulate flows and pro-
posed a non-dimensional number to govern variations between a rapidly sheared, high

volume fraction region and a slow, low volume fraction region. The Bagnold number,

Ba:)\%

(1.13)

is the product of the Reynolds number, the ratio of densities, and a function of the vol-
ume fraction. This “linear concentration,” J, is a function of the volume fraction and the

maximum obtainable volume fraction ¢.,

R (1.14)

(9/8)'/" —1

Bagnold (1954, 1956) proposed that small Bagnold numbers represented a “macro-viscous”
regime where the flow behaves like a Newtonian fluid and is considered non-collisional.
In this region, the shear stress grow linearly with shear rate. On the other hand, the shear
stress grows quadratically with shear rate in the “grain-inertia” regime at large Bagnold
numbers. While the Bagnold number has been used to distinguish the transition between
the non-collisional and continuous contact regimes, the transition observed by Bagnold
was caused by the Reynolds number rather than volume fraction. The experiments of
Bagnold (1954, 1956) were marred by the presence of secondary flows, as described in
Hunt et al. (2002), which accounts for the transition in behavior Bagnold observed.

Bagnold’s apparatus, shown in Figure 1.5, was a Couette flow rheometer with the inner
cylinder fixed and the top, bottom, and outer portions rotating. Liquid was allowed to fill
the top and bottom gaps while particles were confined to the annulus using a knife-edge.
The apparatus had a height to gap ratio (h/b) of 4.6 and a ratio of gap to outer diameter

(b/r,) of 0.189. The critical Reynolds number for the onset of Couette-Taylor flow for a
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Figure 1.5. Cross-sectional view of the experimental apparatus used in Bagnold (1954,
1956). The thatched portions represent the rotating outer cylinder while the white por-

tions represent stationary inner cylinder. Portions of the apparatus filled with fluid are
represented in blue.
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flow with these dimensions was approximately 18,000, well below the maximum operating
gap Reynolds number of 33,000 (Hunt et al. 2002; Taylor 1936a,b). Secondary flows were
present for some of Bagnold’s experiments and accounted for the sharp increase in torque.
In addition to secondary flows in the annulus, the presence of fluid in the top and bot-
tom gaps posed a complication. Using Bagnold’s original data, Hunt et al. (2002) found
that in the grain-inertia region, the normalized shear stress was best matched by the em-

pirical relation:
Tppd?
[T

= 0.35Bal"*®. (1.15)

A laminar boundary layer induced by a spinning disk yields a torque of

o uw?’ 1/2
My ~ —47r/ r2rdr ~ 0.6167p <> (ra —1}), (1.16)
ry p

where w is the angular rotation rate of the disk (Schlichting 1951). This yields a shear
stress that depends on the shear rate to the 3/2 power — very close to the 1.48 power of
equation (1.15). Hunt et al. (2002) concluded that the transition observed between the
macro-viscous and grain-inertia regions was not a transition in the fluid-particulate flow,
but a Reynolds number effect where the flow became dominated by the laminar boundary
layer present at the end caps and in the gaps.

Additionally, work by Chen and Ling (1996), found that the higher volume fractions
tested by Bagnold (¢ = 0.606 and ¢ = 0.623) were inconsistent with the lower volume
fraction data. They hypothesized that this was due to the increase in particle slip against
the cylinder walls. Thus only a portion of Bagnold’s data — namely the low Reynolds
number data — can be used as a comparison with the experiments presented in this thesis.

The rheology of fluid-solid flows using particles that are unaffected by Brownian mo-
tion were later studied by others: Acrivos et al. (1994); Hanes and Inman (1985); Savage
and McKeown (1983); and Prasad and Kytomaa (1995), as shown in Table 1.2 and Fig-

ure 1.6.

1.2.1 Secondary flows

In addition to the the data of Bagnold (1954, 1956), the experiments of Savage and McKe-

own (1983) using an inner rotating concentric cylinder device (shown in Figure 1.7) were
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Table 1.1. Previous experiments on non-Brownian shear flows.

Solid d (mm) Liquid pp/ps Type of Rheometer
Bagnold (1954, 1956)
o et lnder o
Savage and McKeown (1983)
0.97 . . .
polystyrene 1.24 salt water 1.00 Eg;i?;l;rlc cylinder, inner
1.78
Hanes and Inman (1985)
245 gmmlr e o
Acrivos et al. (1994)
PMMA“ 0.1375 aDci)liAe;ocljlsrili}rllcgerme 1.00 COlie te ?otl'lble gap,
acrylic 0.0905 FS-1265 0.95  centerrotating
Prasad and Kytomaa (1995)
acrylic 3.175 aqueous glycerine 1.12 annular gap, bottom

rotating

“polymethyl methacrylate
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Figure 1.6. Reynolds number-volume fraction phase diagram of previous experiments.
All of the data summarized in Table 1.2 is shown with the exception of the high Reynolds
number data of Bagnold.
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Figure 1.7. Cross-sectional view of the experimental apparatus used in Savage and McK-
eown (1983). The thatched portions represent the rotating inner cylinder while the white
portions represent stationary outer cylinder. Portions of the apparatus filled with fluid are
represented in blue.
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affected by secondary flows. The pure fluid calibration for this apparatus showed evidence
of Taylor-Couette flow and was nonlinear over the range of shear rates used. In their paper,
Savage and McKeown (1983) normalized particle laden torques by the pure fluid torque
measured at that shear rate without regard to the possible changes induced in the flow due
to the particles. Their hypothesis was that the presence of non-zero concentrations would
not significantly change the flow behavior, but as discussed in subsection 1.1.2, the pres-
ence of particles can either increase or decrease secondary flows. If the secondary flows
increase in intensity at low volume fractions (as shown by Matas et al. 2003), the actual ef-
fective viscosity is lower than the measured value. For high volume fractions, the intensity
of secondary flows is expected to decrease, increasing the effective viscosity. The degree to
which the effective viscosity should be adjusted is difficult to estimate, however, without
confirmation as to the type of Taylor-Couette flow present in the fluid-particulate cases or
the strength of boundary layer flows. As no flow visualization or velocity measurement
techniques were employed by Savage and McKeown (1983), their data is omitted when

direct comparisons are made with the experimental data measured in this thesis.

1.2.2 Non-neutrally buoyant particles

In the present thesis, experiments with both neutrally buoyant and non-neutrally buoyant
particles were conducted. As discussed in subsection 1.1.4, the mixing of particles is con-
trolled by the Archimedes number, which depends on the difference in density between
the particles and the fluid. Additionally, the flow may depend on the ratio of the densi-
ties, pp/p¢. To avoid misinterpretations, the present neutrally buoyant experiments will
only be compared with the neutrally buoyant experiments of Bagnold (1954, 1956) and
Acrivos et al. (1994) in chapter 4. In chapter 5, the non-neutrally buoyant data of Acrivos
et al. (1994), Hanes and Inman (1985), and Prasad and Kytomaa (1995) is matched with the
non-neutrally buoyant data described in that chapter. A summary of all of the previously
published experiments can be found in Table 1.2.

The experiments of Hanes and Inman (1985) were conducted in an annular, configura-
tion where the sides and bottom rotated as shown in Figure 1.8(a). The top did not rotate,
but was allowed to displace upwards as result of of the normal stress generated by the

mixture. Volume fractions between 0.55 and 0.59 were recorded for the range of normal
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stresses used. The experiments used glass beads of two sizes in both water and air. Only
the experiments in water are reported in this thesis. With the glass beads in water, the ratio
of particle-to-fluid densities ranged from 2.48 to 2.78.

The non-neutrally buoyant experiments of Acrivos et al. (1994) used acrylic particles
that were nearly neutrally buoyant; the particles were lighter than the fluid by only 5%.
Volume fractions ranging from 0.2 to 0.5 were tested using the non-neutrally buoyant parti-
cles. (The neutrally buoyant poymethyl methacrylate experiments were limited to volume
fractions of 0.2 and 0.3.) These experiments were conducted using a configuration Acrivos
et al. (1994) termed the Couette double gap, wherein a rotating cylinder piece was lowered
into a cup containing the particles and fluid (Figure 1.8b). The top was left as a free surface.

Using an annular gap where the bottom was allowed to rotate and the top and sides
remained fixed (Figure 1.8c) Prasad and Kytomaa (1995) measured the effective viscosity
of acrylic particles in an aqueous glycerine mixture. The top of this apparatus could be
moved up and down (around » = 3 ¢cm) to vary the volume fraction between 0.49 and

0.56. Acrylic beads with p,/ps = 1.12 were used in these experiments.

1.3 Thesis outline

The goal of the research documented in this thesis is to investigate the bulk behavior in
flows composed of solid particles immersed in a fluid. Emphasis has been placed on mea-
suring the effective viscosity of these flows at a constant shear rate as a function of the
volume fraction of solids, size and shape of the solid particles, and the roughness of the
exterior boundaries. A summary of other notable experiments investigating the effective
viscosity of fluid-particulate flows was presented above.

The behavior of fluid-particulate flows is heavily influenced by the volume fraction of
solids; it becomes more difficult for particles to move past their neighbors when the vol-
ume fraction nears maximum packing. This maximum packed state and another parame-
ter, the loose-packed volume fraction, are considered in chapter 2. In addition to the effect
of these volume fractions on the viscosity, methods for determining these volume fractions
and actual measurements are also discussed in section 2.2 and section 2.3, respectively.

The work presented in this thesis is largely experimental and the experimental appara-

tus used is presented in chapter 3. Specific techniques used and the method for data pro-
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cessing are discussed in section 3.2 with the data processing code included in appendix A.
Five different particles were used in these experiments, the properties of which are dis-
cussed and characterized in section 3.3.

Experiments were conducted using neutrally buoyant particles (chapter 4) and non-
neutrally buoyant particles (chapter 5). In both cases, the theory and expected results are
presented first, followed by the experimental data, and followed by a summary of the
results. Polystyrene has a density close to that of water allowing it to be used for both
the neutrally buoyant and non-neutrally buoyant experiments. Since this is the case, the
results with polystyrene particles are discussed first in both sections and in more detail.

Experiments using smooth walls in the Couette device are subject to the effects slip at
the walls. Apparent slip is associated with a thin particle-free layer near the smooth walls.
The influence of this particle-free layer on the measurements of the effective viscosity and
particle velocities near the wall are discussed in chapter 6.

Finally, in chapter 7, a summary of the experimental results is presented. This summary

is accompanied by several conclusions and a comparison with previously published data.
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Chapter 2

Packing

The packing of particles in rigid containers is dependent on the shape of the particles,
how the particles are configured, and on the size and shape of the container. Randomly
packed particles generally fall between two well-defined limits: random loose-packing
(RLP) ¢;, where the particles are allowed to gradually come to rest against each other, and
random close-packing (RCP) ¢., where the particles are compressed, generally through
gentle shaking (Scott 1960). These two packing methods are highly repeatable — generally
only varying by a few percent. The two random packed volume fractions have different
implications for the flow properties as outlined in section 2.1.

One key feature of these packing states is their random nature: in the bulk of the ma-
terial, there should be no short- or long-range ordering of particles. In a particulate flow,
as exists in the present experiment, the particles are allowed to arrange themselves and do
so in a semi-random nature. In the center of the flow, the particles should be randomly
arranged, but near the walls of an enclosing container, the particles show a greater degree
of order due to the influence on the walls. Near the walls, the measured volume fraction
is different than in the bulk of the flow (see section 2.2).

The random packing volume fractions must be measured for each type of particle used
in the present experiments or estimated for the previously published experiments. Mea-
surements of the RCP and RLP for the current particles were conducted in a rectangular
container with a width equal to the gap in the concentric cylinder rheometer. These mea-
surements are highlighted in subsection 2.3.1. For the previously published data, the RCP

is usually recorded from which the RLP can be estimated (subsection 2.3.2).
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2.1 Implications for the effective viscosity

The effective viscosity for fluid-particulate flows is influenced by the volume fraction of
particles, ¢. Specifically, these flows are influenced by the ratio of the volume fraction to
the random loose-packing ¢/¢;, or to random close-packing ¢/¢.. As ¢/¢; nears unity, the
number of particle collisions greatly increase and becomes a dominant force represented
as a dramatic increase in the effective viscosity (subsection 2.1.1). As ¢/¢. nears unity, the
particles are not able to move past each other without either increasing the order of the sys-

tem or deforming the particles further increasing the effective viscosity (subsection 2.1.2).

2.1.1 Random loose-packing and the dilatancy onset

As particles are allowed to settle in a bed with no external forces, they settle into a ran-
dom loose-packed state. Each sphere is touching and is partially supported by at least one
neighbor. On average, each particle is touching 6 others (Cumberland and Crawford 1987;
Yang et al. 1996). This configuration can only sustain small external forces and collapses
into a denser packed state when subjected to external vibrations or external forces (Onoda
and Liniger 1990). This configuration of particles is the driving force behind dry quick-
sand (Umbanhowar and Goldman 2006).
Granular fluids often dilate upon shearing. This behavior was first observed by Reynolds

and is occasionally referred to as Reynolds’ dilatancy (Reynolds 1885). If the particles

are packed together, as in Figure 2.1, the particle bed must grow, or dilate, in order for

'_*AY

=

Figure 2.1. Dilatancy of particles in a packed state. To shear the top particle past either
bottom particle, it must move up by AY'.

the particles to freely shear past each other. This dilation is associated with the onset of

movement (Pouliquen and Renaut 1996). Onoda and Liniger (1990) hypothesized that the
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volume fraction at dilatancy onset corresponded to the random loose-packed volume frac-
tion. Others have also noticed that these two points appear to correspond, but the physical
reason for this convergence has not yet been determined (Cates et al. 2005; Wood 1991).

If the random loose-packing volume fraction corresponds to dilatancy onset, it repre-
sents a transition in the flow where particle collisions become increasingly common and
important to the dynamics. With a sudden increase in the number of collisions, the ef-
fective viscosity should correspondingly increase. Dilatancy is not influenced by particle-
particle friction, but is influenced slightly by particle shape (Bashir and Goddard 1991;
Rowe 1962). Coussot and Ancey (1999) also suggest that dilatancy is associated with non-

Newtonian shear thickening behavior.

2.1.2 Random close-packing and jamming

Random close-packing is the most compact state the particles can occupy without in-
creasing the order of the system. Each particle, on average, is touching 9 others (Ben-
nett 1972; Cumberland and Crawford 1987). The volume fraction of random close-packing
(¢ = 0.637) is less than the ordered hexagonal close-packed state (¢,, = 0.7405), which has
a higher coordination number of 12. A close-packed state is at odds with a random state
showing that there is some inherent balance between increasing density through increased
order and randomness of the particles (Torquato et al. 2000). To reduce these ambiguities,
RCP is taken as the point at which the flow jams (O’Hern et al. 2002; Torquato et al. 2000).

A jammed state is able to support very large external forces and is manifested as a sud-
den, rapid increase in the effective viscosity. Particles may be released from a jammed state
through dilation of a free surface or deformation of either the particles or the constraining
surface (Ruiz-Angulo 2008). There is also an increase in slip between the particles and the
constraining surface (Barnes 1995, 2000). This increase in wall slip does not influence the
actual viscosity of the fluid-particulate flow, but will reduce the measured effective viscos-
ity (see chapter 6). Despite these effects, it is still expected that the measured shear stress
dramatically increases as the packing approaches RCP (Stickel and Powell 2005).

It is expected that the slope of a 1/ = f(¢) curve continually increases between ¢;
and ¢.. This region is often modeled as an asymptotic approach to infinity (see subsec-

tion 5.4.2). While an increase to infinite shear stress is impossible, these points may be
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difficult to measure as the force required to rotate the flow may be greater than can be

provided by the motor.

2.2 Determination of random packing volume fractions

Since random close- and random close-packing states were first described by Scott (1960),
there has been no definitive way to determine these volume fractions. Methods for de-
termining these volume fractions and their results for spherical particles are described
generally in subsection 2.2.1 for RCP and subsection 2.2.2 for RLP. The packing of particles
is influenced by the particle shape as well as the size and shape of the container (Cum-
berland and Crawford 1987). The influence on container shape and size is discussed in
subsection 2.2.3. Generalizations to non-spherical and nearly spherical particles are de-

scribed in subsection 2.2.4 and subsection 2.2.5, respectively.

2.21 Random close-packing

Spherical particles can be arranged in an organized manner, in a hexagonally close-packed

arrangement, to yield the absolute maximum packing volume fraction for spheres with all

the same diameter of ¢ = 3%/5 ~ 0.7405 (Figure 2.2). While this highly organized packing

dv2

N

Figure 2.2. Hexagonally close-packed spheres.

is helpful to the understanding of the maximum volume fraction that particles can obtain,
such a packing is rarely obtained in natural systems and cannot be sustained following
shearing. When the spherical particles are allowed to randomly arrange themselves, the

volume fraction is reduced from this theoretical maximum to a state called random close-
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packing.
This close-packing state has been found to have a volume fraction between ¢. = 0.606

and ¢. = 0.648 (see Table 2.1) and is usually taken as ¢. = 0.637. Such packings are

Table 2.1. Random close-packing volume fraction.

Reference Qe Method

Scott (1960) 0.637 Settling of ball bearings

Haughey and Beveridge 0.62-0.64 Sequential aggregation, >3 contacts

(1966)

Scott and Kilgour (1969) 0.6366 £ 0.0005 Settling of ball bearings

Finney (1970) 0.6366 £ 0.0004 Voronoi polyhedra model

Bennett (1972) 0.62 Sequential aggregation, >3 contacts

LeFevre (1973) 0.6366 Monte Carlo and molecular dynam-
ics models

Gotoh and Finney (1974) 0.610-0.647 Statistical polyhedra model

Woodcock (1976) 0.637 £+ 0.002 Equation of state

Berryman (1983) 0.64 £+ 0.02 Monte Carlo and molecular dynam-
ics models

Torquato et al. (2000) 0.64 Lubachevsky-Stillinger  compres-
sion model

Philippe and Bideau (2001) 0.606 Simulated tapping model

O’Hern et al. (2002) 0.648 Simulated settling model

often experimentally determined by pouring particles into a container and gently shaking
or tapping until no more compaction is observed. For the purpose of this thesis, while
the more common value of ¢. = 0.637 can be used, the slightly tighter compaction of

¢ = 0.648 appears to be better suited for the present data.

2.2.2 Random loose-packing

Random loose-packing is the loosest state that particles can obtain while still in contact.
Particles in this state are sensitive to external forces and vibrations, which compacts the
particles beyond RLP. Scott first found RLP by slowly tipping a graduated cylinder onto
its horizontal axis, rotating it about its axis, and then slowly tipping the cylinder back

to the vertical position. Using this method, a RLP volume fraction of ¢; = 0.591 and
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¢ = 0.608 was found by Scott (1960); Scott and Kilgour (1969), and later ¢; = 0.585 by
Zou and Yu (1995) (see Table 2.2). Realizing the influence of gravity on these experiments,

Table 2.2. Random loose-packing volume fraction.

Reference o) Method

Scott (1960) 0.591 Tilting with ball bearings in air

Scott and Kilgour (1969)  0.608 Tilting with ball bearings in air

Visscher and Bolsteri 0.582 Monte Carlo model of serially dropped

(1972) spheres

Bennett (1972) 0.61 Sequential aggregation, >3 contacts

Matheson (1974) 0.607 £0.002 Monte Carlo model of serially dropped
spheres

Henley (1986) 0.5535 3D Penrose tiling model

Onoda and Liniger (1990) 0.555 £0.005 Glass spheres dropped into matched den-
sity fluid

Zou and Yu (1995) 0.585 Tilting with glass spheres in air

Aste et al. (2004, 2005) 0.586 = 0.005 Acrylic beads poured around obstruction

Onoda and Liniger (1990) dropped glass spheres into a graduated cylinder containing a
fluid with a density that closely matched that of the spheres. The density of the fluid could
be adjusted to investigate the influence of gravity on the packing. A RLP volume fraction
of ¢; = 0.555 £ 0.005 was found using this method. Using acrylic beads poured around an
obstruction that was later removed, a volume fraction of 0.586 £ 0.005 was found by Aste
et al. (2004, 2005).

In addition to experimental methods to determine the random loose-packing of spheres,
several computational models have also been used. Using a Monte Carlo simulation of se-
rially dropped spheres, Visscher and Bolsteri (1972) found a volume fraction of ¢; = 0.582
and Matheson (1974) found ¢; = 0.607 £ 0.002. Henley (1986) used a three dimensional
Penrose tiling to find ¢; = 0.5535.

No consensus has been reached on what value should be used for the random loose-
packing volume fraction. For the purposes of this thesis, the RLP volume fraction is taken
as the mean value of ¢; = 0.584. For experimental determination of the volume fraction, a

method such as was employed by Onoda and Liniger (1990) is used (see section 2.3).
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2.2.3 Containers

The packing of particles depends on the container in which they are packed. Conforming
to the walls of a container creates order near the walls, and places — such as the corners of
a box — where particles cannot fit. This alignment near the walls is propagated inwards,
changing the local volume fraction and, if the container is small, the average volume frac-
tion. This trend was first observed by Scott (1960).

Two examples of two dimensional packing are shown in Figure 2.3. These contain-

Figure 2.3. Images of 2D random packing in confined (a) square and (b) round containers
with ¢op = 0.80.

ers are particularly small compared to the radius of the packed disks (D/d = 14.9 and
L/d = 14.9) and show ¢3p = 0.80. In the square container, particles tend to be located
against the wall and regions of near close-packing propagate inwards (as on the lower
side). Where these close-packing regions meet (as in the center), there are pockets that
are not filled. There are also unfilled pockets located near the edges where the size of the
container constricts the number of particles (as near the left side). The same trends can be
observed in the round container with the added complication of the curved edges. In the
the round container, regions of close-packing tend to propagate from the center outwards.

The tendency for particles to be located near walls can be further observed by measur-
ing the volume fraction as a function of the distance from the wall, as in Figure 2.4. The
volume fraction tends to oscillate near a wall: spheres are likely to be touching the wall

creating a peak volume fraction at 3d from the wall and trough at a distance d from the
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e D/d = 13.6, Roblee et al. (1958)

0.9 = D/d = 14.1, Benenati and Brosilow (1962)
A D/d = 20.3, Benenati and Brosilow (1962)
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Figure 2.4. Volume fraction near the wall of a large cylinder. The oscillating behavior
denotes areas where particles are more or less likely to be present.

wall. As one moves away from the wall, variations in particle location reduce this oscilla-
tory effect. The influence of this behavior on the volume fraction for the entire cylinder is
seen in Figure 2.5. For very small cylinders (D/d < 2), the volume fraction is limited by the
number of particles which can fit in the cylinder, thus there is no difference between the
RLP and RCP packing. Past this point, these two packing densities diverge and asymptote
to the values for infinite cylinders, ¢; and ¢..

To avoid ambiguities, the random packing volume fraction is usually reported in terms
of an infinite container size, or, as they relate to rheological measurements, measured in situ

(see section 2.3).

2.2.4 Packing of non-spherical particles

For non-spherical particles, the maximum packing behavior is influenced by the particle
shape and can be related directly to the sphericity (Zou and Yu 1996). The sphericity is

defined as the ratio of surface area of an equivalent volume sphere divided by the actual
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Generally, as the sphericity increases toward one, the maximum volume fractions de-
crease, but near a sphericity of 1 (¢» 2 0.8), the maximum volume fraction may increase
slightly. The packing of arbitrary particle shapes falls between the limits of that of cylin-
ders (long particles) and disks (short particles). Zou and Yu (1996) measured the RCP and
RLP for several shapes of particles (all with the same volume) and found an appropriate
curve fit. Based on a RCP and RLP volume fraction for equal volume spheres, designated
$e00 and ¢ o respectively, the fits of Zou and Yu (1996) can be adapted. The random

loose-packing is

In (1 - ¢l,cylinde7’) = ¢5.58 €xp [589 (1 - 1/])] In (1 - ¢l,oo) ) (22)

In (1= Graise) = ¥ exp [0.23 (1= )% In (1 = dr.00) (23)
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and the random close-packing is

In (1 = ¢ eytinder) = o™ exp [8.00 (1 — )] In (1 — Peoo) (2.4)
In (1 = ¢egisk) = "% exp [0.64 (1 — ¥)] In (1 — ¢e,00) - (2.5)

For arbitrary convex particle shapes, the maximum volume fraction is a weighted average
of these two points
Idisk Icylinder

¢m = —Qbm,cylinder + T

—————— Pmdisk (2.6)
Icylinder + Idisk’ cylinder + Idisk

where m is either c for close-packing or [ for loose-packing. The cylindrical index, Ioiinder =
|V — Yeylinder |, is @ measure of the difference in shape between the particle and a cylinder.
The disk indeX, Ijsk = [t — Yaisk|, is @ measure of the difference in shape between the

particle and a disk. The cylindrical sphericity and disk sphericity are given by:

d , (4)%
For a cylinder, - < 1 Veylinder = 123 7 (2.7)
l 4+ 7
2
For a disk L <1 Vdisk = 125 (é)ﬁ (2.8)
7 d disk — 1+4é’ '

where [ is the largest length for the cylinder and the shortest length for the disk. The

diameter d is found using the projected area perpendicular to /.

2.2.5 Nearly spherical particles

For nearly spherical particles with a nominal diameter of d and perturbation in the diam-
eter of J, the packing is close to that for a sphere, but with a slight variation. It is assumed

that the largest measured diameter is djq,9¢ = d (1 + J), where § < 1. To maintain the same

d

volume, the smallest diameter d,,,q;; = TFs-

The sphericity, assuming the surface area of a

scalene ellipsoid with diameters #‘15, d,and d (1 +9),is

1 11
¢=1—15—67§52+0(53). (2.9)
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The disk sphericity and cylindrical sphericity are

%:(2)3 T (2:10)
1+ 3 (1+40)2
%:(3)3 =t 211)

Using equation (2.6), the close-packing volume fraction is
be = de,00 + 0.05839 & + 0.42066 5 + O (5°) (2.12)
and the loose-packing volume fraction is
e = G100 +0.02259 535 + 0.00012 515 — 0.013286 § — 0.00005 636 + O (5%) . (213)

A comparison of the third and tenth order approximations for ¢; and ¢. as a function of the

sphericity 1 is shown in Figure 2.6. For even large perturbations in the diameter, § < 0.15

0.02 T T T T T T T T T
—— ¢;: Analytical solution
- = = ¢y 10th-order fit : : -

—— ¢¢: Analytical solution
- — — ¢¢: 10th-order fit
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Figure 2.6. Approximations for close- and close-packing for nearly spherical particles.

(1 = 0.925), both the close- and loose-packing volume fractions remain accurate (less than
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0.2% error). Using the tenth order approximation for the packing fractions, a loose-packing

volume fraction can be found from previously published data if ¢. is known.

2.3 Experimental data

2.3.1 Current particles

A rectangular container was constructed to measure both the close- and close-packing vol-
ume fractions. To reduce any effect on the container shape between the counter-top and
in situ measurements, the container was constructed with a width of 3.16 cm (1.25 in) to
match the gap in the Couette shear cell and length much greater than the width (38.1 cm,
15 in). Volume fractions were measured by adding particles to a known volume of water
and measuring the displaced volume. For loose-packing, the particles were slowly added
without disturbing the container or interstitial fluid and allowed to come to rest in a loose,
random orientation. For close-packing, the particles were added in small batches between
which the container was tapped to encourage the particles to settle until no more visible
compaction occurred. Again, the volume fraction was found by measuring the displaced
volume of the fluid. The random packing volume fractions were repeated several times

for each material and are summarized in Table 2.3.

Table 2.3. Random packing volume fractions for the currently used particles found by
experimental measurement and calculated using the sphericity.

Property Glass Nylon Polyester Polystyrene SAN

Sive d (mm) 304 636 2.93 3.34 3.22
d/b 0.0962 0.2013  0.0927 0.1057 0.1019
(0 0.9998 0.9999  0.9910 0.7571 0.9798
Sphericity cylindrical, ¢ 0.8736 0.8736  0.8690 0.8528 0.8658
disk, 14 0.8244 0.8254  0.8701 0.8356 0.8648

measured 0.597  0.568 0.593 0.553 0.611
RLP, ¢; calculated 0.5844 0.5844  0.5883 0.5551 0.5898
error 21%  2.9% 0.8% 0.4% 3.5%

measured 0.626  0.627 0.650 0.663 0.657
RCP, ¢, calculated 0.6370  0.637 0.6500 0.6552 0.6524
error 1.8% 1.6% 0.0% 1.2% 0.7%

Using the average particle dimensions and sphericity, the random packing volume
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fraction can also be calculated from equation (2.6) using ¢~ = 0.648 (based on the set-
tling model of O’Hern et al. (2002)) and ¢; o = 0.584. These calculated packing fractions
are shown in Table 2.3 accompanied by the error between the calculated and experimen-

tally measured value. The average error for all particles is 1.5%.

2.3.2 Previously reported experiments

In previously reported experiments, researchers published the particle sizes or size distri-
butions and the random close-packing volume fraction, which was either experimentally
determined or estimated. The random loose-packing volume fraction was often not re-
ported. As it is the hypothesis of this thesis that the random loose-packing volume fraction
corresponds to a transition in the effective viscosity (as discussed in subsection 2.1.1) this
volume fraction must be determined.

In order to estimate the random loose-packing volume fraction, the random close-
packing volume fraction is used with the assumption that all of the reported particles are
nearly spherical such that the equations outlined in subsection 2.2.5 can be used. The gen-
eral agreement between the calculated and measured values shown in Table 2.3 reinforces
the choice of this method for determining the RLP. Values for the random packing fractions

are summarized in Table 2.4 and outlined in detail below:

Table 2.4. Previous experiments of non-Brownian shear flows

Experiments Solid d (mm) 10) e o))
Bagnold (1954) 0% paraffin & g 4 (934 0603 0637 0.60
lead stearate
Savage and 0.97 0.642 0.590
MCKgown (1983) polystyrene 1.24 0.429-0.570 0.644 0.591
1.78 0.641 0.590
Hanes and Inman lass beads 1.1 0.55-0.58 0.64 0.544
(1985) & 1.85 049-05 055 0.441
. PMMA 0.1375 0.20-0.30 . a
Acrivos et al. (1994) acrylic 0.0905 0.20-0.50 0.58% 0.58
Prasad and Kytomaa ;. 3175 0.493-0.561 0565 0.512

(1995)

“Based on a fit determined using 46 ym polystyrene beads (Leighton and Acrivos 1987).
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® Bagnold (1954): In his paper, Bagnold normalized the volume fraction by the the-
oretical limit of ¢ = 0.74 for perfectly ordered spheres. In a later paper, Bagnold
measured the “fluidity” packing fraction — below which the residual shear resistance
at zero shear rate disappears — as ¢ = 0.60 (Bagnold 1966). In later analyses of his
work, the RCP volume fraction has been taken as either the fluidity volume frac-
tion (Savage and McKeown 1983) or as ¢ = 0.65 (Hanes and Inman 1985). As fluidity
should correspond more closely to (but is not necessarily) the RLP volume fraction,
Bagnold’s reported value of ¢ = 0.60 is used as the random loose-packing volume
fraction. As no RCP value was reported, the theoretical value (¢. = 0.637) was used

for the close-packing volume fraction (Finney 1970).

* Savage and McKeown (1983): Using the reported values for the RCP, the RLP was
estimated for nearly spherical particles based on the 10th-order extrapolation using
Ge00 = 0.637 and ¢y o, = 0.584. Values of ¢; = 0.590, 0.591, and 0.590 were obtained
for the d = 0.97, 1.24, 1.78 mm particles, respectively.

* Hanes and Inman (1985): In the experiment by Hanes and Inman, non-neutrally buoy-
ant particles were confined to an annular region, the top plate of which was allowed
to move axially, but was subjected to a non-zero load during the experiment. Due
to this geometry, the measured volume fractions were all confined between ¢; and
¢.. Hanes and Inman report the RCP volume fractions, but do not report the RLP
volume fractions. These values were estimated using the 10th-order extrapolation
using ¢c oo = 0.637 and ¢; oo = 0.584. For the d = 1.1 and 1.85 mm particles, the
extrapolation yielded values of ¢; = 0.544 and 0.441. Both of these values are below

the minimum volume fraction tested, as expected.

e Acrivos et al. (1994): In their 1994 paper, Acrivos et al. did not determine ¢. inde-
pendently, but used the value obtained from a previous experiment. In Leighton and
Acrivos (1987), using 46 psm polystyrene beads, ¢. was determined as a fitting param-
eter to be 0.58. In their paper, Acrivos et al. claimed that this value is consistent with
their results, but for two different types of particles (137.5 yum PMMA and 90.5 ym
acrylic). With no other information with which to make a determination, the value
of 0.58 as reported in Leighton and Acrivos (1987) is used as ¢. and ¢;. This value is

close to the values reported for RLP (Table 2.2), but does differ from the values for



34
RCP (Table 2.1).

® Prasad and Kytomaa (1995): In the experiments by Prasad and Kytémaa, the RCP
volume fraction was reported as ¢. = 0.565. This reported value differs signifi-
cantly from other values for RCP (Table 2.1), but may be due to the large particles
(d/b = 0.294). If the same reduction was present in RLP — as expected using the data
presented in Figure 2.5 for the influence on packing fraction on diameter ratio — a
value of ¢; = 0.512 is appropriate. This value is consistent with the transition shown

in effective viscosity for their data.

2.4 Summary

The volume fraction of solids, ¢, can dramatically change the effective viscosity of the
liquid-solid flow. The random close-packed (RCP) volume fraction ¢, represents the vol-
ume fraction at which no more compaction occurs. At this volume fraction, the mixture is
unable to shear without requiring deformation of either the particles or the surrounding
cylinder walls. The random loose-packed (RLP) volume fraction ¢; is the volume fraction
where each particle is in contact with at least one adjacent particle. This volume fraction
is the volume fraction obtained when shearing particles are allowed to freely dilate and
represents the transition between an advective dominated diffusion and collision domi-
nated diffusion. Above ¢;, as the volume fraction approaches ¢., the effective viscosity is
expected to asymptotically increase. Below ¢, a different, heretofore unknown, relation
between the volume fraction and effective viscosity is expected.

These volume fractions depend on the particle size relative to the size of the container,
particle shape, and on external forces. To avoid ambiguities, both the random close- and
random close-packed volume fractions for the particles used in this paper were measured
in a container that mimicked the in situ conditions. For previously reported experiments,
¢. was often reported without ¢;. The RLP volume fraction was estimated from the correc-

tions provided for slightly non-spherical particle and small container to diameter ratios.
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Chapter 3

Apparatus and Experimental
Procedure

To measure the influence of solids on the shear stress, a rheometer with a rotating outer
cylinder was used. Particles are confined in an annular region between the inner, station-
ary cylinder and the outer, rotating cylinder. This rheometer was specifically designed
to measure the effective viscosity of fluid-particlate flows, and special care was taken to
minimize the effects of secondary flows on these measurements. As was discussed in sub-
section 1.1.2, secondary flows exist as Taylor-Couette vortices above a critical Reynolds
number or as a boundary layer flow against the annular end caps and are manifested as
an increase in the measured torque. The rheometer, which is discussed in more detail in
section 3.1, was designed with a gap width to outer radius ratio to delay the onset of Taylor
Couette flows and a ratio of gap width to height to reduce the influence of the boundary
layer flows. In addition to these measures, the effective viscosity measurements are only
made in a center region on the inner cylinder — the center, floating cylinder — to further
isolate these measurements from the end cap boundary layers. Torque measurements are
described in subsection 3.2.2 with the method for using these measurements to find the
shear stress and effective viscosity for the fluid-particulate flow.

With non-neutrally buoyant particles, the volume fraction can vary axially and radi-
ally within the annulus. The shear stress and effective viscosity are measured at the center,
floating cylinder. To correlate these force measurements with the volume fraction of solids
over this region of the annulus, optical probes are mounted just above and below the float-
ing cylinder. These probes were used to measure the volume fraction by measuring the

frequency of particles crossing the optical probes and their velocity. The signals from the
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optical sensors are filtered and analyzed using the algorithms described in subsection 3.2.1
with the MATLAB code included in appendix A.
Finally, this chapter also examines the properties of the particles that are used through-
out these experiments in section 3.3. Properties including size, shape, and density are

discussed in detail.

3.1 Rotating cylinder rheometer

The coaxial shear cell, which was constructed for the present experiment and is shown in

Figure 3.1, consists of a fluid-particle mixture confined between two stainless steel concen-

3
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Figure 3.1. Coaxial rotating cylinder, Couette flow device. The outer cylinder rotates while
the inner cylinder remains fixed. The center section of the inner cylinder (floating test
section) is allowed to rotate slightly so as to measure the forces created by the flow

tric cylinders. The flow is driven by the rotation of the outer cylinder. The inner cylinder
consists of three sections: rigid top and bottom sections, and a central, floating section,
which deflects circumferentially to allow measurement of the shear stress. The floating

cylinder is supported by a central axle. Knife-edge gaps between the floating section and
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the upper and lower fixed sections prevent particles from leaving the annular region. A
seal around the axle and seals above and below the annular gap prevent fluid from en-
tering the bearings. Mechanical drawings of each part and assembly are included in ap-
pendix B and the properties of the experimental apparatus are summarized in Table 3.1.

The inner cylinder radius r; is 15.89 cm (6.26 in) and the outer cylinder radius 7, is 19.05 cm

Table 3.1. Dimensions and properties of the rotating cylinder rheometer.

Property Value

radius of the inner drum, r; 15.89 cm (6.26 in)
radius of the outer drum, r, 19.05 cm (7.50 in)
annular gap width, b = r, — r; 3.15 cm (1.24 in)
height of the annular gap, h 36.98 cm (14.56 in)
height of the floating cylinder, H 11.22 cm (4.42 in)
ratio of annular height-to-gap, h/b 11.7

ratio of annular gap to outer radius, b/r, 0.165

velocity of the outer, rotating cylinder, V' 0.07-32m/s
shear rate, ¥ 22-1001/s

gap Reynolds number, Re = pb?/u 1.3 x 103 -6.2 x 10*

critical gap Reynolds number for the onset of 1.8 x 10*
Taylor-Couette vortices

shear stress, T 0.3 -1000 N/m?

(7.50 in) leaving a gap between the two cylinders b of 3.15 cm (1.24 in). The annular gap
has a height h of 36.98 cm (14.56 in) for a height to gap ratio h/b of 11.7 and a ratio of the
gap to outer radius b/r, of 0.165.

This annular Couette flow device was specifically designed to reduce the effect of sec-
ondary vortices on fluid measurements. These secondary flows and their influence on
shear measurements is discussed in subsection 1.1.2. Several design choices were made to
delay the onset of such secondary flows. First, the flow is driven through the rotation of the
outer cylinder to delay the onset of Taylor-Couette vortices. Such vortices develop for an
outer rotating Couette flow at a Reynolds number significantly higher than for an inner ro-
tating flow on the same apparatus (Taylor 1936a,b; Wendt 1933). Further delay is achieved
through the increase in the ratio of gap width to outer radius (b/r,). Using the data of Tay-
lor or fit of Zeldovich, a critical gap Reynolds number of 1.8 x 10* is found for the chosen

ratio of b/r, = 0.166 (Taylor 1936a,b; Zeldovich 1981). Finally, for finite height Couette
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flows, the presence of either rotating or stationary end caps can significantly increase the
measured torque due to boundary layer flows at the end caps. Stationary end caps reduce
the secondary flows as compared with rotating ends. The effects of these boundary layers
is further reduced by increasing the height to gap ratio (h/b = 11.7 for the present appara-
tus), which decreases the percentage of the inner cylinder affected by boundary layer flow,
and by only taking measurements in the center of the annulus away from these stationary
end caps and the associated boundary layer. In the case of the current apparatus, torque

measurements are taken in the center 11.22 cm (4.42 in), four gap widths from each end

cap.

3.2 Experimental measurements

The apparatus includes two observation ports located on the inner, fixed cylinders and
centered at 2.86 cm (1.13 in) above and below the floating test cylinder. These ports were
used with the optical probes, but can also be used with piezoelectric pressure sensors.
The optical probes return a signal when a particle was in front of the probe face and are
used to count the particles above and below the floating test cylinder. Additionally, two
probes mounted side-by-side can measure the velocity of these particles. The velocity and
particle count data are used to calculate the effective volume fraction in the center region
of the annular gap. The probes and the algorithms used to find the particle velocity and
volume fraction measurements are discussed in subsection 3.2.1.

Using the concentric cylinder apparatus, measurements of the torque on the inner,
floating cylinder were completed. These measurements are discussed in detail in sub-
section 3.2.2 with the methods for calculating the shear stress and effective viscosity. A

calibration of this data is also provided in subsection 3.2.3.

3.2.1 Particle velocity and volume fraction measurements

To evaluate the effective volume fraction adjacent to the floating cylinder, MTI 0623H op-
tical probes were used. The optical sensors detect the presence of a particle close to the
active face of the sensor (within 1 cm through a fluid or 3 cm in air). The sensors transmit
light through a fiber optic cable, and the MTI KD-300 fotonic sensor uses a photodetector to

measure the light reflected back through the cable. The transmission and detection fibers
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are arranged in a hemispherical pattern such that when a target is very close to the active
face no light is reflected and no output is measured. The output rapidly increases before
reaching a peak as the distance between the probe face and the particle is increased. After
this peak, as the distance continues to increase, the voltage asymptotically approaches a
low level representing the ambient light in the room. A typical calibration is shown in
Figure 3.2.
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Figure 3.2. Typical response curve for the MTI KD-300 fotonic sensors used with a MTI
0623H optical probe. The sensors are able to detect a particle passing the probe face and
two adjacent sensors are used to find the particle velocity.

To estimate the local volume fraction, it is assumed that the particles are distributed

evenly in all three directions and separated by some average distance, L, given by
L="2, (3.1)
n

where u is the particle velocity and n is the number of particles that cross the probe per

unit time. If the particles have a typical dimension, R, then the volume fraction, ¢, is given

3
¢ = %ﬂ <§) : (3.2)

by

The particle velocity and particle count must be measured in order to determine the

volume fraction. Both of these tasks are accomplished by arranging two optical sensors
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in line with the flow as shown in Figure 3.3. Two consecutive peaks are measured from

6.4 mm (0.25 in)
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Figure 3.3. Schematic of the optical probe configuration to measure particle counts and
velocities. The 1.6 mm (0.064 in) probes are arranged so that the transmitting fibers are
toward the center, and are separated by 6.4 mm (0.25 in). Particles cross the probes from
left to right yielding a voltage signal as shown in the lower graph.

the two probes corresponding to the particle passing each probe face in turn. The probes
are oriented with the receiving filaments on the outside to reduce the strength of a signal
registered from the second probe before the particle is directly in front of the probe. For the
purposes of this discussion, the signals from the optical probes are considered as a part of
a series, each individual measurement taken for singular rotational speed. The rotational
speed was varied between measurements, while the number of particles in the annulus
was kept constant.

The raw voltage signal from the optical probes was sampled at 10,000 Hz per channel
using a 16-bit digital acquisition board (Measurement Computing PCI-DAS 6023) and pro-
cessed digitally using MATLAB. At the highest speed recorded, a particle takes between
60 and 120 sample times to cross the optical probe. This digitized voltage is then normal-
ized based on the average signal and filtered using a 9th order Butterworth lowpass filter
(with a natural frequency of 185 Hz) and three third order Butterworth bandstop filters to

reduce ambient electrical noise at 60 Hz and the first two harmonics at 120 Hz and 180 Hz.
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The lowpass filter attenuated the signal at least 1 dB above 300 Hz, losing no more than
0.001 dB below 200 Hz. The Bode magnitude plot for this combined filter is shown in
Figure 3.4 and the results of filtering are seen in Figure 3.5. The shape, width, and height
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Figure 3.4. Bode magnitude plot for the combined lowpass and bandstop filter used to
reduce experimental noise. The lowpass filter has a natural frequency of 185 Hz and the
bandstop filters have natural frequencies of 60, 120, and 180 Hz.

of each particle peak signal are influenced by the particle shape, distance from the probe,
and speed of the particle. In addition to these differences in peak height within a signal,
the gain between signals can differ. In Figure 3.5, the oscillatory behavior in the unfiltered
data corresponds to introduced 60 Hz noise from the supplied power and is significantly
reduced in the filtered signals.

The filtered data is passed through a peak finding algorithm (see section A.1) to find
the time locations of signals corresponding to particles conclusively passing by the probes.
The peak finding algorithm looks for peaks within a certain range (Range) and with a
peak width of 2s. The initial threshold in voltage is set as 0.1 V over the mean value with a
peak width of 40 time steps. Using these values, the maximum peak height for each optical
probe, for each rotational speed measured, is recorded. This maximum peak height is then

averaged over each rotational speed series to find meanmaxpeak and the new threshold is



0.25 T T . T T
0.2
0.15
0.1

0.05

Voltage (V)

.t
e

0.05 i ® 3

- I .
0-1 0 0.05 0.1 0.15 0.2 0.25

Figure 3.5. Filtered (-) and unfiltered (-) voltage data for an optical probe. The oscillatory
behavior of the unfiltered signal corresponds with 60 Hz noise from AC supply and is

significantly reduced in the filtered data.

then set as 0. 1xmeanmaxpeak. The new peak width is set as

2s = Ld fs, (3.3)

where d and u are the particle diameter and velocity, respectively, and fs is the sample
frequency. Using these new threshold values, the optical data is reanalyzed to find the peak
number and locations using fpeak .m (section A.1). Typical results for an suspension of
¢ = 0.30 polystyrene (St = 52) are shown in Figure 3.6 with the peaks shown as circles. The
left signal (solid line) precedes the right (dashed line) by 0.0104 seconds. The typical optical
sensor signal contain many slightly overlapping signals from many particles crossing the
probes in quick succession.

To find the particle velocity, the peak locations and shapes from adjacent optical probes
are cross-correlated using correl_full.m (see section A.2). Each signal is converted
to one where each peak is normalized to a magnitude of 1 and only the area within the
peak width s points of the center is non-zero (see lines 20-56 of correl_full.m). Fig-

ure 3.7 shows this converted signal for the same sample as seen in Figure 3.6. The results
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Figure 3.6. Filtered and normalized voltage signal from two probes located in the lower
observation port. The flow proceeds from left to right, with particles crossing the left probe
(solid line) 0.0104 seconds before the right probe (dashed line). Peaks detected and used
to determine particle count are shown with circles (see section A.1). Peaks used for cross-
correlation are shown with closed circles (see section A.2).
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Figure 3.7. Converted voltage signal used for the cross-correlation of the full voltage sig-
nals for two adjacent optical probes. These are the same signals as appear in Figure 3.6.
(See section A.2 for more information.)

of the cross-correlation are shown in Figure 3.8 with offset found to be ¢ = 0.0104 sec-
onds. Using correl.m, the velocity of individual particles is determined through the
cross-correlation of individual peak signals. For each peak from the first optical sensor
correl.mlooks for peaks between 0.80x0ffset and 1.33+offset, where offset is
the time offset found using correl_full.m. Additionally, particle velocities cannot be
greater than the rotational velocity of the outer (rotating) cylinder. A histogram of the par-
ticle velocities for the same example of a suspension of ¢ = 0.30 polystyrene (St = 40) is
shown in Figure 3.9. It is important to note that since peak width (also used for the cross-
correlation to find the particle velocities) is a function of the velocity, an initial value of 40

time steps is used and then the data is reprocessed using the newly found velocity.

3.2.2 Shear stress

The floating inner cylinder (Figure 3.1) is allowed to deflect circumferentially so that the
average shear stress on this cylinder is measured. The deflection is measured using the

same type of optical probe and fotonic sensor (MTI 0623H and MTI KD-300, respectively)
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Figure 3.8. Normalized cross-correlation amplitude showing the likely particle veloci-
ties found by cross-correlating the entire optical signals with correl_full.m (see sec-
tion A.2). The velocity found using the cross-correlation of the entire optical signals is
u = 0.5935m/s.
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Figure 3.9. Histogram of particle velocities found using the correl.m script (see sec-
tion A.3). The mean velocity (u = 0.5955 m/s) found using this method closely matches the
velocity found through the cross-correlation of the entire optical signals (v = 0.5935 m/s).
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as used to find the volume fraction. A small mirror is used as a moving target mounted to
the floating inner cylinder, and the probe is mounted to a stationary reference. The optical
sensor and target were initially displaced past the peak voltage (see Figure 3.2) ensuring
that the measured signal would yield a singular displacement.

The calibration was obtained by recording the voltage for a variety of displacements
measured separately by a dial gage. While the maximum measured voltage can change
based on the initial separation between the sensor and target or optical sensor gain, the
shape of the displacement curve is constant. An example of the normalized displacement
curve is shown in Figure 3.10 and has a squared 2-norm of the residual of 0.0012 (R-squared

value of 1 — 1 x 107®). The displacement is fitted using an equation of the form

2.5 T T T T T T T T T

Displacement (cm)

0 | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1
Voltage (V)

Figure 3.10. Post peak displacement as a function of normalized voltage for the MTI optical
displacement sensors. Measured values are shown by the plotted points and the curve fit
is shown by the line. The squared 2-norm of the residual is 0.0012 (R-squared value of
1 — 1 x 107®) for this curve fit.

. 01E3—|—02E2—{—03E+C4
"~ CsBE* + CgE3 + C7E2? + C3E + Cy

(3.4)

This calibration was repeated several times, all with similar results.
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The deflection of the floating inner cylinder is limited by a spring connecting the inner
cylinder to a stationary reference. By adjusting the stiffness of the spring, it is possible to
measure a range of torques corresponding to shear stresses between 0.3 and 1000 N/m?.
The stiffness of each of these springs was calibrated in situ to account for any stiffness
caused by the experimental apparatus itself. To measure the spring stiffness, known forces
were applied to the torque arm using a set of calibrated masses. This test was performed
while the rheometer was dry, wet, and wet with the outer cylinder rotating slowly (~5 rpm).
While all three test conditions yielded similar results, completing the calibration wet with

the outer cylinder rotating slowly was found to be the most repeatable.

1.2 T T T T
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Displacement (c
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Figure 3.11. Plot of displacement as a function of applied torque for springs A 167-A, B
170-A, and @ 176-A manufactured by Century Springs. The z-intercept for each spring is
determined by the initial tautness of each spring and is not a spring property.

Each spring has a unique calibration constant (given by the slope in Figure 3.2.2) and
an initial torque required to displace the spring. The initial torque (z-intercept) depends
on the initial tautness when the spring is installed and is not a property of the spring. For
some of the tests, it was necessary to preweight the system to avoid any errors caused by
this initial torque. The value of this weight is unimportant as long as it remained constant

for all of the tests in that series.
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3.2.3 Pure fluid calibration

To test the experimental apparatus and data acquisition system, several tests were com-
pleted using an aqueous-glycerine mixture and no particles. These pure fluid measure-
ments were expected to compare favorably with the theoretical results for Couette flow.
Ignoring any end effects, an annular flow where the inner cylinder is stationary and the

outer cylinder rotates has a velocity profile given by

o(r) = 297«3 5 <r - 72) : (3.5)

where r; and 7, are the inner and outer radii, respectively, and (2 is the angular rotation

rate of the outer cylinder (Schlichting 1951). The shear stress, as measured on the inner

cylinder, is given by

Qr?
T’T:Ti = 2lu’l“2 _OTQ ‘ (36)
o %

Thus, the torque on the inner, floating cylinder is
Silo (3.7)

where H is the height of the floating cylinder. The fluid density and viscosity are a func-
tion of both the percentage of glycerine and the temperature. As seen in Figure 3.12 the
experimentally obtained values for the shear stress compare well with the values predicted
using this theoretical Couette flow solution with the curves for 68% and 75% glycerine eas-
ily distinguishable.

There is scatter in the calibration data caused by temperature variations and uncertain-
ties in the experiment at low torques. As the temperature increases during the course of
the experiment, the viscosity of the aqueous glycerine decreases, decreasing the measured
shear stress. This temperature variation increases with an increase in the percentage of
glycerine. The calculated pure fluid torque, used to normalize the measured torque, is
corrected for temperature. Additional error is introduced due to the limitations of the ex-
periment. This shear stress is at the lower range of the capabilities of this experimental
apparatus (0.3-1000 N/m?). There is friction opposing the rotation of the center cylinder,
primarily from the seal around the axle. This friction is small, but can interfere with small

shear stress measurements. While there is some error in these measurements, they do not
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Figure 3.12. Pure fluid calibration showing (a) the measured shear stress and (b) the ratio
of measured-to-pure fluid torque for aqueous glycerine mixtures with © 68% and O 75%
glycerine. The solid line represents the shear stress predicted using equation (3.6) with
temperature adjusted values for the viscosity.
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show the sudden increase in shear stress or torque that would occur if secondary flows are
present.

3.3 Particle characterization

The present thesis includes measurements using five different types of particles. These

particles, summarized in Table 3.2, vary in size, shape, and density. The particles also

Table 3.2. Properties for experiments

Glass  Nylon Polyester Polystyrene SAN
diameter, d (mm) 3.04 6.36 293 3.34 3.22
diameter/gap width, d/b 0.0962  0.2013 0.0927 0.1057 0.1019
particle density, p, (kg/m?) 2520 1150 1400 1050 1070
fluid density, ps (kg/m?) 1200 1150 1200 1000 - 1070 1070
shape spheres spheres ellipsoids elliptical cylinders ellipsoids
sphericity, ¢ 0.9998  0.9999 0.9910 0.7571 0.9798
RLP, ¢, 0.597 0.568 0.593 0.553 0.611
RCP, ¢ 0.626 0.627 0.650 0.663 0.657
Young’s modulus, £ (MPa) 72000 2100 2800 3000
Yield strength, Y (MPa) 50 45 55 40
Poisson’s ratio v 0.24 0.40 0.39 0.34
elastic velocity u.; (m/s) 0.001 1.40 1.20 0.592

show variations in the random loose- and random close-packed volume fractions, but as
shown in subsection 2.2.3 and 2.2.4, these volume fractions are influenced by the particle
size relative to the container and the particle shape. These particles and their properties

are described in detail in the following sections.

3.3.1 Glass

Glass beads are commonly used in laboratory fluid-particulate flows due to their regularity
and nearly spherical nature. Soda-lime glass has a density of 2520 kg/m? and therefore
sinks in aqueous glycerine mixtures (pure glycerine has a density of 1260 kg/m?). The
particles are nearly perfect spheres as seen in Figure 3.13.

The glass spheres used in this experiment are nearly spherical and by direct measure-

ment of 200 particles, the glass beads were found to have a diameter of d = 3.04 £ .04 mm.
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Figure 3.13. The glass spheres as used in the rheological experiments. The spheres have a
specific gravity of 2.52 and have an equivalent spherical particle diameter of 3.04+.04 mm.
The ruler shown for reference measures in centimeters.

A histogram of the measured diameters is shown in Figure 3.14. As seen in this histogram,
the particle diameters are unimodal. The volume was also found by directly measuring
the displaced volume of 1000 particles. Using this method, the sphere of equal volume has
a diameter d = 3.03 mm. Weighing the sample and assuming a density of 2520 kg/m?,
sphere of equal volume is calculated to have a diameter d = 3.03 mm. These methods
for calculating the volume of the glass particles are in agreement, and the glass particles
are taken to have a sphere of equal volume with a diameter of d = 3.03 + 0.04 mm. The
loose-packed volume fraction ¢; is 0.597 and the close-packed volume fraction ¢, is 0.626

(see section 2.3).

3.3.2 Nylon

Nylon is an opaque thermoplastic used as a fiber in clothing, ropes, and ladies” stockings
as well as being used as the matrix in many composite materials. First produced in 1935
by DuPont, nylon 6-6 is usually championed for its resiliency as it is not vulnerable to
chemical decomposition or weathering. Nylon plastic has a density of 1150 kg/m? and
is neutrally buoyant in an aqueous glycerine mixture with 58% glycerine by weight. The

particles are nearly perfect spheres as seen in Figure 3.15.
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Figure 3.14. Histogram of particle diameters showing the unimodal distribution of particle
diameters for 3 mm glass beads.

Figure 3.15. The nylon spheres as used in the rheological experiments. The spheres have a
specific gravity of 1.15 and have an equivalent spherical particle diameter of 6.36+.02 mm.
The ruler shown for reference measures in centimeters.
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These nylon spheres have a measured diameter of d = 6.36 + .02 mm, as shown in
Figure 3.16 for a sample of 200 particles. As seen in this histogram, the particle diameter is
unimodal.
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Figure 3.16. Histogram showing the unimodal distribution of nylon particle diameters.

The volume was also found by directly measuring the displaced volume of 1000 parti-
cles. Using this method, the sphere of equal volume has a diameter d = 6.36 mm. Weighing
this sample and assuming a density of 1150 kg/m?, a sphere of equal volume is calculated
to have a diameter d = 6.36 mm. These methods for calculating the volume of the nylon
particles are in agreement, and the nylon particles are taken to have a sphere of equal vol-
ume with a diameter of d = 6.36 & 0.02 mm. The loose-packed volume fraction ¢; is 0.568

and the close-packed volume fraction ¢. is 0.627 (see section 2.3).

3.3.3 Polyester

Polyester resin is a hard, white plastic used in injection molding processes. Polyethylene
terephthalate (PET), commonly referred to as polyester, was patented in 1941 by the Calico
Printers” Association. It is found in textiles, plastic bottles, and as the matrix in many

composite materials including fiberglass. Polyester plastic has a density of 1400 kg/m?3
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and therefore sinks in aqueous glycerine mixtures (pure glycerine has a density of 1260

kg/m?3). The particles are scalene ellipsoids as seen in Figure 3.17.

Figure 3.17. The polyester scalene ellipsoids as used in the rheological experiments. The
ellipsoids have a specific gravity of 1.40 and have an equivalent spherical particle diameter
of 2.93 £ .02 mm. The ruler shown for reference measures in centimeters.

These scalene ellipsoids of polyester have smooth sides, with semi-axes dgman = 2.60,
dmedium = 2.90, and dj4rge = 3.30. A histogram of the measured diameters is shown in
Figure 3.18 for a sample of 200 particles. As seen in this histogram, the particle diameters
are unimodal. The geometric mean of these three diameters yields the diameter of the
sphere of equal volume, d = 2.93 mm.

The volume was also found by directly measuring the displaced volume of 1000 parti-
cles. Using this method, the sphere of equal volume has a diameter d = 2.95 mm. Weighing
this sample and assuming a density of 1070 kg/m?3, a sphere of equal volume has a diam-
eter d = 2.91 mm. These methods for calculating the volume of the polyester particles are
in agreement, and the polyester particles are taken to have a sphere of equal volume with
a diameter of d = 2.93 £ 0.02 mm. The loose-packed volume fraction ¢; is 0.593 and the

close-packed volume fraction ¢, is 0.650 (see section 2.3).
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Figure 3.18. Histogram of polyester particle sizes showing the small, medium, and large
diameters of the ellipsoid.

3.3.4 Polystyrene

Polystyrene is a colorless hard plastic used in injection molding processes that was discov-
ered in 1839 by Eduard Simon. Uncompressed polystyrene, as used in this experiment,
is molded into everything from CD cases to children’s toys. When expanded with either
carbon dioxide or pentane, the plastic is usually known by the trademarked name Styro-
foam. Uncompressed polystyrene has a density of 1050 kg/m? and is neutrally buoyant
in an aqueous glycerine mixture of 21% glycerine. The polystyrene particles are elliptical
cylinders as seen in Figure 3.19.

These elliptical cylinders of polystyrene have smooth sides, but are rough cut to vary-
ing lengths. A histogram of the particle diameters and lengths is shown in Figure 3.20 for
a sample of 150 particles. This sample had an average small diameter dg,qo; = 2.08 mm,
large diameter djqgc = 2.92 mm, and length [ = 3.99 mm. As seen in this histogram,
the particle length is bimodal whereas the diameters are unimodal. Using these average

lengths, a sphere of equal volume has a diameter d = 3.31 mm where it is assumed that
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Figure 3.19. The polystyrene elliptical cylinders as used in the rheological experiments.
The cylinders have a specific gravity of 1.05 and have an equivalent spherical particle di-
ameter of 3.34 £ .02 mm. The ruler shown for reference measures in centimeters.

45 I I I I I I I

- dsmall
dmedium

I length

40+

[\ [\V] W (S
(==} ot () ot

percentage

—
ot

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5
size (mm)

Figure 3.20. Histogram of polystyrene particle sizes showing the largest and smallest mea-
sured diameters and the cylinder length.
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the volume of each particle is

™
V}) = stmalldlargel- (38)

The volume was also found by directly measuring the displaced volume of 1000 particles.
Using this method, the sphere of equal volume has a diameter d = 3.35 mm. Weighing
this sample and assuming a density of 1050 kg/m?, a sphere of equal volume has a diam-
eter d = 3.34 mm. These measurements of the volume of the polystyrene particles are in
agreement, and the polystyrene particles are taken to have a sphere of equal volume with
a diameter of d = 3.34 £ 0.02 mm. The loose-packed volume fraction ¢; is 0.553 and the
close-packed volume fraction ¢. is 0.663. (See section 2.3 for more information on how

these measurements were conducted.)

3.3.5 Styrene acrylonitrile

Styrene Acrylonitrile (SAN) plastic resin is a colorless hard plastic used in injection mold-
ing processes. SAN is used in many of the same applications as polystyrene, though it
lacks some of the optical clarity. SAN is ideal for use as food containers, kitchenware, and
computer products due to its high melting point. SAN resin has a density of 1070 kg/m?
and is neutrally buoyant in an aqueous glycerine mixture of 29% glycerine. The particles
are flattened scalene ellipsoids as seen in Figure 3.21.

These scalene ellipsoids of SAN have smooth sides, with semi-axes a, b, and ¢ with
the measured medium and large diameters corresponding to 2b and 2c, respectively. The
ellipsoid is flattened such that the smallest measured diameter d,,,;; < 2a. A histogram of
the measured diameters is shown in Figure 3.22 for a sample of 200 particles. This sample
had a peak small radius 2a > dgq = 2.64 mm, peak medium diameter 2b = dpedium =
3.20 mm, and peak large diameter 2c = dj4r4e = 3.86 mm. As seen in this histogram, the
particle diameters are unimodal. The geometric mean of these three diameters yields the
radius of the sphere of equal volume, assuming that flattened portion of the scalene ellipse
does not effect the total volume (2a = dgpan1), d = 3.20 mm.

The volume was also found by directly measuring the displaced volume of 1000 parti-
cles. Using this method, the sphere of equal volume has a diameter d = 3.25 mm. Weigh-
ing this sample and assuming a density of 1070 kg/m?, a sphere of equal volume has a

diameter d = 3.22 mm. These measurements are in agreement, and the SAN particles are
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Figure 3.21. The SAN scalene ellipsoids as used in the rheological experiments. The ellip-
soids have a specific gravity of 1.07 and have an equivalent spherical particle diameter of
3.22 £ .02 mm. The ruler shown for reference measures in centimeters.
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Figure 3.22. Histogram of SAN particle sizes showing the small, medium, and large diam-
eters of the ellipsoid.
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taken to have a sphere of equal volume with a diameter of d = 3.22 & 0.02 mm. The loose-
packed volume fraction ¢; is 0.611 and the close-packed volume fraction ¢, is 0.657. (See

section 2.3 for a description of how these measurements were conducted.)

3.4 Summary

The bulk shear stress of the liquid-solid mixture is measured using a coaxial rheometer
specifically designed to minimize the effects of secondary flows from these steady-state
measurements. The critical design features include a height to gap ratio (b/7,) of 11.7
to delay the onset of Taylor-Couette flows and a gap to outer radius ratio (h/b) of 0.166
to reduce the influence of boundary layers near the top and bottom end caps on shear
stress measurements. Additionally, the shear stress is measured at the floating test cylin-
der, further isolating these measurements from the influence of secondary flows near the
end caps. The shear stress on the inner cylinder was calculated through measurements
of the displacement of the center, floating cylinder. This displacement was opposed by a
linear spring, each spring allowing for a specific range of force measurements. Using these
measurements of the shear stress, the effective viscosity, relative to the viscosity of the lig-
uid, is calculated. The effective viscosity is measured for five different types of neutrally
buoyant and non-neutrally buoyant particles in aqueous glycerine. Each particle is charac-
terized to find its size, sphericity, random close- and loose-packing volume fractions, and
density.

In addition to effective viscosity measurements, the particle velocities and volume frac-
tion is measured using optical probes mounted just above and below the center cylinder.
These optical probes record a voltage peak due to the reflection of light as a particle passed
the probe face. The voltage signals from two adjacent probes is filtered and cross-correlated
to find the mean and individual velocities of the particles. These velocity measurements,
combined with the count of the number of particles passing each probe and particle size,
are used to find the volume fraction of solids. These volume fraction measurements are
used in the following sections to investigate the influence of the resuspension of particles

on effective viscosity data.
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Chapter 4

Neutrally buoyant particles

In order to determine the effective viscosity of a fluid-particulate flow, experiments with
neutrally buoyant particles are considered first. If the particles are neutrally buoyant, they
will be evenly distributed axially within the annulus of the concentric cylinder rheometer.
The theory of these flows is discussed first in section 4.1, followed by the experimental re-
sults for three different types of particles. The experiments with polystyrene are discussed
first and in the most detail (subsection 4.2.1) followed by experiments with nylon (subsec-
tion 4.2.2) and SAN (subsection 4.2.3). The results from all three experiments are compared

in section 4.3.

4.1 Theory

It is the goal of this thesis to examine the shear stresses as a function of the volume fraction
of solids ¢, the Reynolds number, the ratio of fluid-to-particle density, and the Archimedes
number, as discussed in section 1.1, where the flow is non-Brownian. If the particles and
the fluid are the same density, the Archimedes number is equal to zero and the density
ratio is one for all cases, thus the effective viscosity should only depend on the volume
fraction and Reynolds number.

At very low volume fractions, ¢ << 1, the dynamics of the fluid-particulate mixture
deviates only slightly from the dynamics of the fluid alone. These dilute suspensions were
studied in detail by Einstein (1906), Batchelor (1970, 1977), Batchelor and Green (1972)

among many others. For non-Brownian suspensions of rigid spheres, Batchelor and Green
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added a second order correction to Einstein’s effective viscosity,
f/pw=1+2.5¢ 4+ 7.6¢ (4.1)

where 1 is the fluid viscosity and ' is the effective viscosity of the fluid-particulate mix-
ture.

At higher volume fractions, particles collide with increasing frequency. For rigid par-
ticles, as the volume fraction nears the maximum packing volume fraction, the force re-
quired to slide particles past each other tends toward infinity. For the current experiments,
the particles are not perfectly rigid, but the force required still increases dramatically as the
volume fraction nears maximum packing. The force required to deform the mixture can
be expressed in terms of an effective viscosity for the bulk fluid /.

It was hypothesized in section 2.1 that there should be a transition between flows with
a volume fraction less than the random loose-packing volume fraction and those between
the RLP and RCP. While the form of either curve is not known, the curves should match
the limits for ¢ << 1, ¢ = ¢., and each other at ¢;. Furthermore, each curve should show
an increasing dependence on volume fraction.

In addition to a dependence on volume fraction, there may also be a dependence on
Reynolds number. The fluid itself is Newtonian, having a constant viscosity, but the inter-

actions between particles may depend on the rate of rotation of the outer cylinder,

W= f <<z>, Re, Z) . (4.2)

Such interactions certainly do depend on the rate of rotation for non-neutrally buoyant
particles, but for these neutrally buoyant particles, this dependence will need to be exper-

imentally determined.

4.2 Experiments

Using an aqueous glycerine mixtures matched to the density of the particles, experiments
were conducted in the concentric cylinder rheometer. In these experiments, the volume

fraction of particles was varied while the resulting shear stress 7 on the inner, floating



63

cylinder was calculated from measurements of the torque using
M = 2w Hr?T, (4.3)

as a function of Reynolds number, where the floating cylinder height H is 11.22 cm
(4.42 in), the inner radius of the annulus r; is 15.89 cm (6.26 in), and the outer radius of
the annulus 7, is 19.05 cm (7.50 in). All torque measurements were made several minutes
after the onset of the shearing motion and are considered to be steady-state measurements.
The measured shear stress is compared to the shear stress for the fluid alone to find

an effective viscosity ratio. For an annular geometry with the outer cylinder rotating and
the inner cylinder stationary, the shear stress 7, as measured on the inner cylinder, can be

related to the viscosity through (Schlichting 1951)

Qr?
T = 2”7"2 — 3 (4.4)

The shear stress measured for several aqueous glycerine mixtures compared favorably
with the shear stress predicted using equation (4.4), and thus this equation is used to nor-
malize the measured shear stresses.

The experimental apparatus is designed to record the torque by measuring the dis-
placement of a target attached to the center, floating cylinder relative to a stationary base.
The initial displacement of the target is held stationary for each experiment with a constant
volume fraction, but is not necessarily constant between series of experiments. In addition
to uncertainty in the initial displacement, the displacement is opposed by a linear spring,
which may require an initial force based on the spring’s tautness before any displacement
is recorded. To overcome these uncertainties in determining the torque for any individual
measurement, the experiment can either be calibrated for each experiment, as it was with
the pure fluid measurements, or the slope between points in each experiment can be used
to adjust this curve-fit through the origin.

Any error in the y-intercept in a shear stress versus Reynolds number graph can affect
the recorded shear stress values, but does not influence the measurement of the effective
viscosity. The shear stress data is found using equation (4.3) and any error in zeroing the

torque data adds a constant offset shear stress. The effective viscosity for each volume
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fraction experiment is found using the slope of the shear stress curve-fit, a value that does

not change with any error in the initial offset.

421 Polystyrene

The shear stress measurements taken for a range of volume fractions are shown in Fig-
ure 4.1 on a log-log plot. Each point represents the mean value of at least five individu-
ally recorded measurements shown with error bars representing the standard deviation in
these measurements. For each volume fraction, the shear stress is shown with its linear fit.
The shear stress increases rapidly with the volume fraction, varying by several orders of
magnitude between the smallest and largest volume fraction. The dependance on the vol-

ume fraction appears to be more pronounced as the volume fraction increases. The linear
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Figure 4.1. Shear stress measurements for suspensions of polystyrene particles in aqueous
glycerine. The lines represent linear fits for each volume fraction, fits that are constrained
to pass through the origin.

increase in shear stress with the Reynolds number implies that fluid-particulate flow, like
the pure fluid flow, is Newtonian (7 = x/4) with the particles as it is with the pure fluid

alone.
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For neutrally buoyant particles, the Stokes number is equal to one-ninth of the Reynolds
number. For the polystyrene, the Stokes number ranges from 3.5 to 63. For all but the
lowest Stokes numbers, the collisions between particles will show a clear rebound. The
coefficient of restitution between plastic particles colliding at these low Stokes numbers
will be small — less than 0.6. For these low coefficients of restitution, particles collisions
represent significant damping of the particle velocities.

The nature of the effective viscosity can easily be seen by considering the ratio of mea-
sured torque to the torque predicted using the pure fluid viscosity, as seen in Figure 4.2.

The ratio of torques, M /Mgyiq, is clearly a function of the volume fraction, but does not
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Figure 4.2. Ratio of measured-to-pure fluid torques for suspensions of polystyrene parti-
cles in aqueous glycerine. This ratio is fitted by a constant, unique to each volume fraction
¢. This constant is the ratio of the effective viscosity to the pure fluid viscosity, '/ .

appear to depend greatly on the Reynolds number. For most volume fractions, the ratio of
torques is fairly constant as would be expected with a Newtonian fluid. For the two lowest
volume fractions (¢ = 0.077 and ¢ = 0.154), the ratio of torques does increase slightly with
Reynolds number, which may be due to the onset of secondary flows in the fluid (see dis-

cussion below). Additionally, for the largest volume fraction measured, the particles stick



66
and slip against the inner cylinder creating torque that is more uneven and may depend
on the Reynolds number.
The ratio of torques M /Mayiq is equal to the effective viscosity ratio i’/ . It can be seen
to be a function of the volume fraction, but does not appear to vary dramatically with the
Reynolds number. The effective viscosity is thus taken as only a function of the volume

fraction of solids

W= f(9), (4.5)

as in Figure 4.3. For points below ¢;, the effective viscosity is fitted by an exponential
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Figure 4.3. Effective viscosity ratio for neutrally buoyant polystyrene particles in aqueous
glycerine solutions. The black line is an exponential fit for the points below ¢;, dashed
vertical lines denote the loose-packing and close-packing volume fractions.

W/ = exp <5.41;:l) : (4.6)

For volume fractions greater than ¢;, the effective viscosity grows more quickly than the
exponential fit. This deviation is expected as the particles near a region of jamming where
more force is required to shear the particle layers.

In the experiments with the lowest volume fractions (¢ = 0.077 and ¢ = 0.154), there
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was a slight increase in effective viscosity with the Reynolds number (Figure 4.2). This
increase begins for gap Reynolds numbers between 1 x 10* and 3 x 10%. For the apparatus
used in these experiments, the critical Reynolds number for the onset of Taylor-Couette
flow is at 1.8 x 104, certainly within the range of the increase measured. The higher volume
fractions do not see such an increase in effective viscosity beyond this critical Reynolds
number. If the variation in the data is considered as a function of the Reynolds number

using the mean effective viscosity and gap width

12
Rej = pz; (4.7)

as in Figure 4.4, the increase from the mean value for these low volume fraction exper-
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Figure 4.4. Deviation from the mean effective viscosity ratio for neutrally buoyant
polystyrene particles in aqueous glycerine solutions as a function of the Reynolds num-
ber based on the mean effective viscosity.

iments is clearly observed. The much lower effective viscosity measured for these low
volume fraction cases separates these two cases from the others in terms of the Re. The
increase in effective viscosity with Reynolds number present in two lowest volume frac-

tion experiments may be do to the onset of secondary flows. In these two experiments,
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there is an increase at a Re, ~ 1 x 10%. This is below the Reynolds number for the onset
of Taylor vortices for the present experimental apparatus (Re, = 1.8 x 10%), and may rep-
resent the point at which the vortices caused by the stationary end caps begins to impinge
on the floating cylinder.
In addition to the experiments with neutrally buoyant polystyrene, experiments were
also conducted with nylon and styrene acrylonitrile (SAN). The results from these addi-

tional experiments are summarized in the following sections.

4.2.2 Nylon particles

Experiments with nylon particles were conducted using an aqueous glycerine mixture of
56% glycerine by weight. The nylon particles were very nearly spherical (¢» = 1.0) and had
a diameter of 6.36 mm, about twice the size of the polystyrene. Lower volume fractions

(¢ = 0.10, 0.20 and 0.295) were tested using the nylon as seen in Figure 4.5. Only these
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Figure 4.5. Shear stress measurements for suspensions of nylon particles in aqueous glyc-
erine. The lines represent linear fits for each volume fraction, fits that are constrained to
pass through the origin.

volume fractions were tested due to the limited availability of these particles. As with the
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polystyrene measurements (Figure 4.1), the shear stress grows linearly with the Reynolds
number and shows a strong dependence on the volume fraction.

For this neutrally buoyant nylon, the Stokes number ranges from 5.5 to 80. All of the
collisions between particles will show a clear rebound. The coefficient of restitution be-
tween plastic particles colliding at these low Stokes numbers will be small — less than 0.7.
For these low coefficients of restitution, particles collisions represent significant damping
of the particle velocities.

The ratio of torques, Figure 4.6, is nearly constant implying that this flow may also
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Figure 4.6. Ratio of measured-to-pure fluid torques for suspensions of nylon particles in
aqueous glycerine. This ratio is fitted by a constant, unique to each volume fraction ¢, This
constant is the ratio of the effective viscosity to the pure fluid viscosity, 1/ /.

be considered Newtonian where the effective viscosity is only a function of the volume
fraction, as shown in Figure 4.7. All of the volume fractions measured are below ¢;, and

are fitted by an exponential

W /= exp <5.49(Z) : (4.8)

For reference, the loose-packing and close-packing volume fractions are denoted with

dashed and dotted vertical lines.
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Figure 4.7. Effective viscosity ratio for neutrally buoyant nylon particles in aqueous glyc-
erine solutions. The black line is an exponential fit for the points below ¢;, dashed vertical
lines denote the loose-packing and close-packing volume fractions.

4.2.3 Styrene Acrylonitrile

Using an aqueous glycerine mixture of 29% glycerine by weight, matched to the density
of the SAN particles, experiments were conducted for volume fractions of ¢ = 0.40, 0.50,
0.60, and 0.657. The SAN particles are flattened ellipsoids with sphericity ¢ = 0.98 and a
diameter of 3.22 mm, close to the diameter of the polystyrene.

The shear stress measurements are shown in Figure 4.8 with the linear fits and the ra-
tio of torques are shown in Figure 4.9. For the neutrally buoyant SAN, the Stokes number
ranges from 2.6 to 60. The lowest Stokes numbers (St < 9) there will be a clear point of con-
tact between the particles, but no clear rebound. This behavior results in the coalescence
of particles during interactions. At higher Stokes numbers, collisions between particles
will show a clear rebound. The coefficient of restitution between plastic particles colliding
at these low Stokes numbers will be small — less than 0.6. For these low coefficients of
restitution, particles collisions represent significant damping of the particle velocities.

The ratio of torques, M /Maz,iq, are constant with the Reynolds number and are taken

as only a function of the volume fraction as shown in Figure 4.10. For points below ¢;, the
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Figure 4.8. Shear stress measurements for neutrally buoyant SAN particles in aqueous
glycerine. The lines represent linear fits for each volume fraction, which are constrained to
pass through the origin.
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Figure 4.10. Effective viscosity ratio for neutrally buoyant SAN particles in aqueous glyc-
erine solutions. The black line is an exponential fit for the points below ¢;, dashed vertical
lines denote the loose-packing and close-packing volume fractions.

effective viscosity is fitted by an exponential. For the higher volume fraction point which
lies near the close-packed volume fraction, the effective viscosity is greater than predicted

using the exponential fit

W /= exp (5.042) : 4.9)

The loose-packing and close-packing volume fractions are shown in Figure 4.10 with a

dashed and dotted line, respectively.

4.3 Summary

The effective viscosity for three different neutrally buoyant particles was experimentally
determined in the preceding section (section 4.2). It was hypothesized in section 4.1 that
the effective viscosity should transition at the random loose-packed volume fraction, a
proposition that appears to be substantiated by the experimental data. In order to com-
pare the three experiments, the volume fraction is normalized by the RLP as shown in

Figure 4.11. For all of the particles tested, the effective viscosity is only a function of this
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Figure 4.11. Effective viscosity for neutrally buoyant particles in aqueous glycerine.

volume fraction ratio and is fitted well by an exponential for ¢ < ¢;

w /= exp (5.152) . (4.10)

For larger volume fractions, the effective viscosity grows faster than exponentially as the
volume fraction nears the RCP.

When normalized by the size and shape dependent RLP, the effective viscosity shows
no further influence from the particle size or shape. Comparing the nylon to the SAN, both
have a high sphericity (1) = 1.00 and 0.98), but the nylon are nearly twice the size of the
SAN (d = 6.36 and 3.22 mm). Almost 10 SAN particles can fit across the gap while only
5 nylon beads are able to fit. Despite this drastic difference in size, when normalized by
their respective RLP volume fractions, both experiments show the same effective viscosity.
Comparing the rod-shaped polystyrene to the nearly spherical SAN, it can be seen that
there is also no deviation for sphericity for the particles tested. As discussed in subsec-
tion 2.2.3 and 2.2.4, the volume fraction is dependent on the particle size and shape. Thus,

it is consistent that by normalizing against the RLP, any influence on the particle size or
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shape would be eliminated from the effective viscosity.
The results from the present experiments can be compared to the previously published

experiments, as shown in Figure 4.12. In the this figure, only the neutrally buoyant exper-

104; T T T T
[ | o Nylon ]
¢ Polystyrene §:
* SAN
Acrivos et al. (1994)
103F | + Bagnold (1954) (macro-viscous) S
i
~ 102 - < -
=< K03
£
B -
¥
1L + _
107 T E
0 I I I I
10% 0.2 0.4 0.6 0.8 1 1.2

b/

Figure 4.12. Effective viscosity for neutrally buoyant particles in aqueous glycerine.

iments of Acrivos et al. (1994) and the macro-viscous experiments of Bagnold (1954) are
considered. As discussed in section 1.2, these are the experiments that are both neutrally
buoyant and without secondary flows. The macro-viscous data from Bagnold compares
favorably with the current experiments showing a similar transition at the RLP volume
fraction. The PMMA used in the experiments of Acrivos et al. were significantly smaller
(d = 0.1375 mm) and were tested at a much lower Reynolds number (0.3-13) implying that
the fluid-particulate flow may be in a different flow regime.

Additional data on neutrally buoyant polystyrene is included in chapter 6. In this

chapter, the influence of slip against the cylinder walls is investigated.



76

Chapter 5

Non-neutrally buoyant particles

The effective viscosity of a flow consisting of neutrally buoyant particles in a Newtonian
fluid was discussed in chapter 4. These experiments showed that the effective viscosity
grows exponentially with the volume fraction for volume fractions less than the random
loose-packing volume fraction, and that the effective viscosity transitions to a faster region
of growth for the region between the random loose- and the random close-packed volume
fractions.

In this chapter, these flows are examined with the added complexity of non-neutrally
buoyant particles. The theory regarding this change is discussed first, in section 5.1 fol-
lowed by the experimental results for three different types of particles: polystyrene (sub-
section 5.2.1), glass (subsection 5.2.2), and polyester (subsection 5.2.3). As with the previ-
ous chapter, the experiments with polystyrene are discussed in the greatest detail and the

results of these experiments are used for the other particles.

5.1 Theory

As with neutrally buoyant particles in a Newtonian fluid for non-neutrally buoyant par-
ticles, the volume fraction of solids has a dramatic influence on the effective viscosity. In
all of the experiments outlined in the previous chapter, measurements were taken when
the experiment reached a steady state. For particles with a density different than the in-
terstitial fluid, the particles tend to float or sink away from the floating cylinder, at which
the shear stress measurements are taken. As the particles migrate away from the central,
floating cylinder, the local volume fraction decreases, a change that is likely to alter the

effective viscosity ratio.
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The migration of particles in the fluid creates several flow regimes. When the settling
velocity of the particles is much less than the mixing velocities in the shear cell, the mixture
becomes homogeneous. This homogeneous mixture may be obtained in these experiments
through a combination of using a fluid density close to that of the particle velocity (thereby
reducing the settling velocity) or by increasing the rate of rotation (thereby increasing the
mixing velocity). If mixing is decreased or if the density ratio differs greatly from unity,
the particles settle into a heterogeneous mixture. The Archimedes and Reynolds numbers,
discussed in subsection 1.1.4, determine the rate of mixing. In these current experiments,
the mixture is assumed to be heterogeneous and the volume fraction is directly measured.

By adjusting for the actual volume fraction across the floating cylinder, the effective vis-
cosity for non-neutrally buoyant particles should match that obtained for neutrally buoy-

ant particles.

5.2 Experiments

For non-neutrally buoyant mixtures of particles in aqueous glycerine, the torque on the
inner cylinder is recorded and used to find the effective viscosity. This process is identical
to the methods for neutrally buoyant particles. As the particles are not evenly distributed
axially in the annulus, optical sensors are used to record particle counts and velocities
near the inner cylinder. This data from the optical sensors is used to determine the volume
fraction of particles across the floating cylinder. The method for determining the volume
fraction using the optical sensor data is discussed in detail in subsection 3.2.1. For all of
the experiments discussed in the following sections, the particles are not fluidized using
inflow from the bottom of the annulus.

In the following sections, non-neutrally buoyant experiments for polystyrene, glass,
and polyester are described. The polystyrene experiments are discussed first and in the
most detail, as they were for the neutrally buoyant experiments. In section 5.3, all of the
non-neutrally buoyant experiments are compared with the neutrally buoyant experiments

of this thesis and with previously published data.
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5.2.1 Polystyrene

The polystyrene particles used in the non-neutrally buoyant experiments are identical to
those used in the neutrally buoyant experiments. These particles are elliptical cylinders
with a diameter of equal volume of d = 3.34 mm and sphericity ¢ = 0.76. The particles
have a density p = 1050 kg/m3, and experiments were conducted in aqueous glycerine
mixtures with a density between py = 1000 and 1070 kg/ m3. By varying the fluid density,
specific relations for the volume fraction can be determined based on the particle buoy-
ancy. In this section, the data from the optical sensors is discussed first (subsection 5.2.1.1

and 5.2.1.2) followed by measurements for the effective viscosity (subsection 5.2.1.3).

5.2.1.1 Particle velocity

Using two MTI optical sensors, the particle velocity is found at the observation ports above
and below the center, floating cylinder. The probes are located 2.86 cm (1.13 in) above and
below the floating test cylinder, where the velocity is measured at the lower probes and
the particle counts are measured both above and below the test cylinder. The velocity was
only measured on the lower signals in order to maximize the number of particles passing
the sensors. The method for finding the velocity is described in detail in subsection 3.2.1,
but entails the cross correlation of both a full ten second signal and individual particle
peaks to find both the mean velocity and individual velocities for each particle, a process
that is repeated for each rotational speed.

The mean particle velocities are shown in Figure 5.1(a). The particle velocity shows a
positive dependence on the rotational velocity of the outer cylinder, but does not follow
perfectly the velocity predicted using laminar Couette flow (dotted black line). The par-
ticles in a fluid with a density within 1% of the particle density (ps/p, = 0.997 — 1.009)
follow the fluid closely at higher speeds, but deviate at lower speeds. The particle veloc-
ity shows increased slip as the density of the fluid departs from the particle density with
the greatest slip occurring for particles in water (ps/p, = 0.951). This slip is investigated
further in chapter 6.

For the fluids that are not within 1% of the particle density, there appears to be a tran-
sition between a region of rapid growth in particle velocity for low rotational velocities

and a region of more slowed growth in particle velocity for high rotational velocities. In
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Figure 5.1. Graph of the particle velocity as a function of the (a) rotational velocity of
the outer cylinder and (b) Stokes number. The dotted line in (a) represents the velocity
predicted for laminar Couette flow for a particle located two diameters away from the
stationary inner cylinder
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the region of slow growth, all of the curves appear to be parallel to each other and to the
laminar Couette line. While the particles in the lower fluid density curves are physically
moving faster, they have the same acceleration with rotational velocity. The low fluid den-
sity curves collapse in the low rotational velocity region when viewed as a function of the
Stokes number (Figure 5.1b) to remove any dependence on the fluid viscosity. The collapse
of these curves with Stokes number implies that the particle velocity is limited by the abil-
ity of the particles to track the fluid. For these low rotations, the particle count and volume
fraction are rapidly increasing from less than half of the average volume fraction in the an-
nulus. At low rotational speeds, the particles are able to track the fluid, but as the number
of particles begins to increase, particle interactions become much more frequent and slow
the average particle velocity. For the curves in which the density difference between the
fluid and particles is small, the particles are well distributed within the annulus, even at
low rotational speeds, and follow the laminar Couette line throughout the experiment.
The mean particle velocities can also be normalized against the laminar Couette veloc-

ity, as seen in Figure 5.2. The slip is greater for lower rotational velocities and for greater

Y T T P P P P PP Ny LL L L L LL L L L LT

0.8 T T ' !
o— pg/pp, = 0.951
? —E—pf/pp =0.973
: —Q—pf/pp = 0.997
s —x—pf/pp = 1.000
£ 06 pelpp = 1.002 17
E +pf/pp = 1.009
S\ BN e Couette flow
S 0.5 ]
z
3
< 04fF ]
4
2
.S
-+
503k ]
2,
Gy
1S
.9
b=
o~

1 I I I I
0 0 0.5 1 1.5 2 2.5

Rotational velocity (m/s)

Figure 5.2. Graph of the particle velocity normalized by the rotational velocity of the outer
cylinder. These velocities were obtained from optical probes mounted below the stationary
floating cylinder.
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density offsets. As the rotational velocity is increased, the particles begin to fluidize allow-
ing the particles to follow the fluid more closely.
In addition to the average velocities recorded for all of the particles in the measurement
period, individual particle speeds were also recorded. The velocity of individual particles
is represented as a histogram, as seen in Figure 5.3, or since the spread is well represented

by a Gaussian, by the standard deviation as in Figure 5.4. For all but the lowest veloci-
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Figure 5.3. Histogram of velocity fluctuations — the individual particle velocities minus
the mean value — for 30% polystyrene in 21% glycerine (p¢/p, = 1.000) rotating at 1.4 m/s.
The histogram is well fitted by a Gaussian normal distribution with a standard deviation
of 0.053 m/s.

ties, the standard deviation remains a constant percentage of the mean velocity (between
12% and 18%). This deviation in particle speeds may represent some variation in particle
distance from the wall, changes in momentum due to collisions between slower moving
particles and the stationary wall, collisions with faster particles radially inward, or some
combination of all of these factors. A 20% variation in particle velocity from the mean

value can be the result of a 0.1d-0.5d movement in particle radial position.
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Figure 5.4. Standard deviation in particle velocity normalized by the mean value for an av-
erage volume fraction in the annulus of ¢ = 0.30. With the exception of the low rotational
velocity points, the spread in the particle velocities remains fairly constant.

5.2.1.2 Volume fraction

As the interstitial fluid is varied and the rotational speed is allowed to change, the distri-
bution of particles within the annular gap correspondingly changes. The particles migrate
toward the top or bottom of the annulus and toward the outer cylinder. The highest rota-
tional speed gives rise to a centripetal acceleration four times larger than the acceleration
due to gravity. The optical probes measure the volume fraction near the inner, station-
ary cylinder where measurements of the shear stress are made. The particle counts are
measured via optical probes just above (Figure 5.5a) and below (Figure 5.5b) the floating
cylinder. Above the floating cylinder, the tests in 21% glycerine (ps/p, = 1.000) start out
with higher particle counts and remain higher throughout the experiment. The experi-
ments where the fluid density is within 1% of the particle density register a nonzero par-
ticle count throughout the experiment, but did not achieve the same high counts as in the
matched density case. Tests with p;/p, < 0.985 (in which the polystyrene sink) only begin
to register particles at the upper cylinder at higher rotational speeds. The particle counts

just below the floating cylinder are close for every fluid tested. There is a slight trend to-
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