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ABSTRACT 

In the first part of this thesis, experiments utilizing an NMR 

phase interferometric concept are presented. The srinor character of 

two-level systems is explicitly demonstrated by using this concept. 

Following this is the presentation of an experiment which uses this 

same idea to measure relaxation times of off-diagonal density matrix 

elements correspondinq to magneti c-dipole-forbidden transitions in a 
13c-1H, AX spin system. The theoretical background for these exper-

iments and the spin dynamics of the interferometry are discussed also. 

The second part of this thesis deals with NMR dipolar modu lated 

chemical shift spectroscopy, with which internuclear bond lengths and 

bond angles with respect to the chemical shift principal axis frame 

are determined from polycrystalline samples. Experiments using benzene 

and calcium formate verify the validity of the technique in hetero­

nuclear ( 13c- 1H) systems. Similar experiments on powdered trichloro­

acetic acid confirm the validity in homonuclear (1H- 1H) systems. The 

theory and spin dynamics are explored in detail, and the effects of a 

number of multiple pulse sequences are discussed. 

The last part deals with an experiment measuring the 13c chemi cal 

shift tensor in K2Pt(CN) 4or0 . 3·3H 20, a one-dimensional conductor. The 

I3c spectra are strongly affected by 14N quadrupolar interactions via 

the 13c _14N dipolar interaction. Single crystal rotation spectra are 

shown. 

An appendix discussing the design, construction, and performance 

of a s ingle-coil double resonance NMR sample probe is included. 
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CHAPTER 1 

GENERAL INTRODUCTION 
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Since its inception at the close of the Second World War, nuclear 

magnetic resonance (t~I·1R) has been enormously successful both as a research 

tool and as an analytical tool in studies of liquids. This is primarily due 

to the observation of the effects of three interactions. The first is the 

Zeeman interaction, in which we place our sample containing the nuclei of 

spin I to be studied into a strong magnetic field, and the energy levels of 

the spin I arc split into an equally spaced manifold of 21 + I levels. ny 

applying radiation at the frequency corresponding to the energy difference 

of adjacent levels, we can cause transitions and hence do NMR spectroscooy. 

This characteristic frequency, called the Larmor frequency, is equal to 

y 1H
0 

(in radians per second), where y1 is the magnetogyric ratio of the 

spin and H
0 

is the strength of the magnetic field. The second interaction 

is the so-called chemical shift interaction, in which the I spins feel also 

the weak magnetic fields created by electron currents in the sample, thus 

slightly altering the effective resonant frequency of the I spins in a way 

characteristic of the particular solution being studied. The third inter­

action is the scalar or "J" coupling, in which our spin I interacts indirectly 

with another spin S through a quantum mechanical exchange interaction of a 

pair uf shared electrons. This causes the NMR spectroscopic lines to be 

split characteristically of the particular sample, deoending on which spins 

I are near to which spins S in the sample. These three interactions together 

can often serve to "fingerprint" a molecule, thus making liquid NMR a power­

ful analytical tool. In addition, by observing the characteristic times 

required by systems prepared in non-equilibrium states to relax to equilibrium 

(T1 , T2 , T1P , etc.), investigators have been able to study random effects 
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such as molecular motions in the sample. 

Unfortunately the successes of solid state NMR spectroscopy have not 

come so easily. The main problem is that there are other interactions in 

solids which effectively overwhelm the smal ler chemical shift interaction. 

The primary offenders here are the direct nuclear dipole-dipole interaction 

and the quadrupole interaction. In the former we have a nucleus I interacting 

with the magnetic field created by another spinS. This effect is often 

orders of magnitude larger than the chemical shift effects. In the latter 

we have the quadrupole moment of a srin I(I>~) interacting with the gradients 

in the local electric field. This effect is usually an order of magnitude or 

more larger than the dipole-dipole interaction. In liquids both of these 

interactions are averaged to zero as the molecules and ions containing the 

spins tumble about randomly with characteristic times ~lo- 11 sec. However, 

in solids where the nuclei are, for the most part, "nailed" in place, these 

effects give rise to broad, featureless lines which yield little information. 

However, if ways are devised to selectively either remove or utilize these 

larger interactions, the NMR studies of solids can provide information not 

even obtainable from NMR in liquids. For instance, the chemical shift inter­

action is known to be a tensor interaction, but due to the motion in liquids 

the only information available there is the trace of the tensor. In solids, 

contrastingly, all three principal components of the tensor are obtainable. 

From the early 1950's to the late 1960's pioneering work was done in 

developing sample spinning (l, 2 ~ continuous wave (CW) (3), and multiple pulse 

(MP) ( 4) techniques to remove interactions having the symmetry of the homo­

nuclear dipole-dipole interaction, thus making it possible to narrow 
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the spectroscopic lines in solids by orders of magnitude. The MP techniques 

were even further refined (S),and the resulting linewidths decreased by another 

order of magnitude. Similar methods had been developed (6 , ?) and were be ing 

perfected (B) which were useful in narr01~ing the NMR lines in solids which were 

broadened by heteronucl ear dipole-dipole interactions. All of these techniques 

in solids were aimed at effectively removing or "averaging out" these l arger 

dipole interactions in order to see the smaller chemical shift effects. Then, 

however, the concept was pursued of not just eliminating, but rather utilizing 

the dipole-dipole interaction quantitatively to obtain chemical shift infor­

mation. This is where the present work of the author and collaborators comes 

into play. We have continued the progress by developing experiments designed 

to use the dipole-dipole interaction to effectively modulate the chemical 

shift interaction, thus allowing us to get at structural and perhaps motional 

parameters in polycrystalline solids. In the course of pursuing this research, 

we were carefully scrutinizing the dynamics of spin ~ systems in general, and 

out of this came a new generation of experiments which capitalize on often 

overlooked phase coherence in spin systems. These later techniques are applic-

able to liquids as well as solids, so in some sense this research has come 

full circle. The main common denominators of all the work in this thesis are 

the attempt to develop new insights into the dynamics of spin systems (basically 

spin ~) and the use of NMR to devise novel and potentially very useful methods 

of investigating materials. In all cases we have relied heavily on the strong 

scientific foundation laid by so many workers in the field of NMR over the years. 

The work summarized in this thesis is divided into basically three parts. 

Although these parts were chronologically developed in reverse order, for 
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purposes of pedagogy they will presented as they are in this thesis. 

The first part of the thesis, Chapters 2, 3, and 4, although developed 

most recently will be discussed first because it embodies in some ways the 

most simple and basic of the concepts in this thesis. It deal s with a 

nuclear magnetic double resonance technique which utilizes phase interferometric 

spectroscopy. Essential ly this means merely creating quantum mechanical phase 

coherence between two quantum states by irradiation at one frequency and then 

altering this phase coherence by application of radiation at a second frequency . 

In most double resonance experiments, the application of radiation to the 

second frequency is done in order to change the populations of the levels from 

the thermal equilibrium values (g) or to alter the actual energy level 

structure in a rotating frame (lO). Yet none of these conventional double 

resonance techniques makes use of phase information, thus ignoring a very 

important part of the quantum mechanics of spin systems. By utilizing this 

phase information we have been able to study the fundamental behavior under 

rotation of half-integral spin particles, as well as studying relaxation rates 

which are not normally seen. We feel also that this technique could be used 

to detect spins with low magnetogyric raLios, as well as having a number of 

other applications to spectroscopy. 

In Chapter 2 the simple theoretical basis for this phase interferometry 

is briefly presented. Chapter 3 gives the results of an experi ment designed 

to show the spinor character of a spin ~ nucleus using this same technique. 

This same experimental technique is again used in Chapter 4 to investigate 

the relaxation rates of transverse phase coherence corresponding to forbidden 
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transitions. This may prove to be a way to mea.sure cross-correlations 

between fluctuating fields at different nuclear sites. 

The second part of the thesis, Chapters 5-8, deals with a technique 

called dipolar modulation chemical shift spectroscopy. In this technique 

we allm-1 the dipole interaction bev.-1een spins to act for a time, T, and then 

observe the conventional solid state chemical shift spectrum undulating 

predictably. Since both the chemical shift and dipolar interactions are 

orientationally dependent, we can actually determine structural information 

in polycrystalline materials. This elimin~tes the necessity of having 

single crystal samples and makes it possible to use NMR to obtain geometrical 

and perhaps motional information in such systems as catalysts and polymers, 

where there may be no long range ordering. 

In Chapter 5 the general theoretical background for the dipolar modu­

lated chemical shift experiments is presented. Both heteronuclear and homo­

nuclear dipole interactions are considered, and a number of different MP 

cycles and their subsequent effects are discussed. Chapter 6 presents the 

results of the first examples of transfer of spin polarization under pulsed 

cycles. These experiments were the predecessors of the dipolar modulated 

experiments and gave the first indication of how to generalize the concept 

of the Hartmann-Hahn double resonance matching conditons (ll) to pulsed 

experiments. In Chapter 7, Part One, we present the results of experiments 

on 13c-1H systems of polycrystalline benzene and calcium formate which 

demonstrate the feasibility of the heteronuclear dipolar modulated chemical 

shift technique. Chapter 7, Part Two, deals l'lith further refinements on the 

benzene theoretical work and a way to get internuclear distances by using only 
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areas of spectra. Chapter 8 presents the results of an experiment utilizing 

homonuclear modulation of chemical shift spectra. This experiment, done in 

a polycrystalline sample of trichloracetic acid (TCAA), uses dipolar inter­

actions between 1H (proton} pairs to obtain structural information. 

The third and final part of the thesis, Chapter 9, deals with a single 

crystal experiment in which the heteronuclear 13c-14N interaction was used 

to obtain chemical shift information in a one-dimensional conductor. The 

chemical shift, however, could not be determined without also calculating 

the effects of the 14N quadrupole interaction. This effect should be of 

extreme importance whenever calculating dipolar effects for spins greater 

than ~. It should be pointed out here that only this last experiment deals 

with a spin which is greater than ~. In all of the earlier parts of this 

thesis, the results, unless explicitly stated as such, are only valid for 

spin ~particles. 

An appendix is also included which describes the design of the most 

crucial piece of equipment used in these experiments, a sample probe. This 

single coil, double resonance probe was specifically designed and built for 

the experiments described in this thesis. 
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I. INTRODUCTION 

In this chapter we present very briefly the theory behind the phase 

interferometric experiments of Chapters 3 and 4. Actually, the underlying 

principles are explained in great detail in those chapters, so we shall con­

centrate here not on minor points, but rather on the one fundamental, simple 

concept that the experiments employ: the manipulation of quantum mechanical 

phase, and its subsequent detection through interferometry. Chapter 3 and 4 

approach the theory with a density matrix formalism, which is especially well 

suited for spin systems in statistically mixed states. However, the phase 

effects we discuss have their origin~ in quantum probability and not statis­

tical probability. Therefore we present the theory here in a different 

manner, which is chosen for its pedagogic rather than its pragmatic qualities. 

This method does not use density matrices, but rather considers the develop­

ment of a pure state quantL:m mechanical wave function. 

I I . The Theory 

The "bare-bones" theory requires three quantum mechanicals states, cp1, 

cp2, and q>3• These states are not degenerate, and the corresponding trans ition 

frequencies w12 , w23 • and w13 are all assumed to be inequivalent. We can 

write a general wavefunction, ~(t), as 

(1) 

where the Ci(t) are the complex amplitudes of the system to be found in the 
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various states ~i. 

We assume the following initial conditions 

(2) 

which means that at timet= 0, our system is in the state ~1 • We now wish 

to create quantum mechanical phase coherence between levels 1 and 2. This is 

done by applying radiation at the "resonant" frequency w12 . We are careful 

in this experiment to not disturb th~ 1 - 3 or 2 - 3 transitions. For sake 

of simplicity we assume that this radiation is a go• pulse, which means that 

our system nO\'/ has an equal probability of being found in states ~1 or ~2 . 

Another assumption we are making is that we are in the interaction frame of 

the main Hamiltonian giving rise to the energy l evel structure, and thus we 

will not "see" changes in the wavefunction due to this Hamiltonian . After 

the 90° pulse, which we assume is short, our "new" initial conditions, 

indicated by primes, are 

c1 '(o) = c2'Co) = 1 
y2 

( 3) 

The system is now in a state which is a linear combination of states ~ 1 and 
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~2 • Furthermore, there is a definite phase coherence between these states, 

and we have chosen the difference in the phases of the two complex amplitudes 

to be zero. We can perhaps understand this better by noting explicitly that 

since the Ci are complex numbers, they can be written in the form 

C A efy 
3 .. 3 

where the '\ are the strictly real and positive magnitudes of the complex 

numbers, and the a, 8 andy are the phases. 

(4) 

Next we apply a second pulse of radiation to only the 2 - 3 transition, 

by applying radiation at the frequency w23 . After a time T of this irradiation 

our co-efficients are 

(5) 

where 0 is a constant depending on the amplitude and the other details of the 

radiation. Since application of this second pulse has not changed the phase 
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of c1, we can observe the change in the phase of c2 by comparison of the 

difference in the phases of c1 and c2 at time t = 0 and later at time t = ' · 

Thus we have created phase coherence betl'leen levels 1 and 2, and then we 

have modified that coherence by irradiating the 2 - 3 transition. The co-

efficient c1 serves as our reference in the detection of changes in c2. 

The basis of all interferometric experiments in physics is that one cannot 

observe the overall phase of a quantum mechanical wavefunction, but one can 

observe relative phases of such wavefunctions. The experiments of Chapter 3 

and 4 use this effect much more elaborately for a variety of purposes, but 

at the real heart of it is this one simple concept. 

The only other point we should elaoorate on is how c1 is used as a 

reference to measure changes in c2. We do this by observing the expectation 

value of some operator which connects ~l and ~2 . In the experiments of 

Chapters 3 and 4, this operator is the transverse magnetization; however, in 

the most general case, any such "off-diagonal" operator could be suitable. 

(For instance, one can envision optical experiments utilizing the observation 

of the electric field for the same purpose.) The result i s that our expec-

* tat1on value will be proportional to the product c1c2 or its complex conju-

gate. Thus we actually measure the quantity A1A2 cos(a -G ), which enables 

us to see clearly how both the magnitude and phase of c2 have changed. In 

the case of Equation 5 this means we are measuring the quantity~ cos(nT). 

This leads to linear oscillation of our observable as a function ofT. This 

linear oscillation, which arises from quantum mechanical probabilities, is 

seen in the experiments of Chapters 3 and 4, and it should not be confused 

with linear oscillations in the dipolar modulation experiments discussed in 



-14-

Chapters 5, 6, 7 and 8, which arise from purely statistical probabilities. 

The quintessence of the following two chapters is this one simple phase 

interferometric concept. We reserve the explanations of the intimate details 

of the particular experiments for later discussion in those chapters. 



-15-

CHAPTER 3 

EXPLICIT DEMONSTRATION OF SPINOR CHARACTER FOR A 

SPIN ~ NUCLEUS 

USING NUCLEAR MAGNETIC DOUBLE RESONANCE PHASE 

INTERFEROMETRY 

{Chapter 3 is essentially an article by M. E. Stoll, A. J. Vega , and R. 

W. Vaughan, entitled "Explicit Demonstration of Spinor Character for a 

Spin~ Nucleus Via NMR Interferometry". This article has been sub­

mitted for publication to Physical Review A.) 
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It has long been known that a particle of half-integral spin (a fermion) 

exhibits spinor character, which means that it changes the sign of its quantum 

mechanical wavefunction upon a 2n rotation, and that the phase factor comes 

back to itself only after a 4n rotation. A particle of integral spi n (a boson) 

does not exhibit this behavior, and its phase factor comes back to itself in a 

2n rotation. While any number of experiments done over the years impli citly 

illustrate this concept, the first explicit demonstration came in 1975 when Werner , 

et a1. 1 clearly showed the spinor nature of neutrons. Such experiments had 

been suggested and discussed earlier (1967) by Bernstein2 and by Aharonov and 

Susskind3. We would like to present here the results of a somewhat analogous 

nuclear magnetic double resonance experiment which graphically shows the spinor 

character of a spin ~ particle by ob~erving the behavior under rotation of a 

pseudo-two-level system. A similar technique could easily be used to study spinor 

character for spin 3/2 , 5/2, etc., by observing the behavior under rotation of 

pseudo-4, 6, etc., level systems. Non-spinor character of spin 1, 2, etc., could 

be studied by choosing pseudo-3,5, etc . , l evel systems . In addition, this experi-

ment embodies concepts which could be exploited in a variety of spectroscopic areas . 

To observe spinor character, one must observe 

the phase of a wavefunction. However, this is difficult because 

* any measurement involves w w. and thus the overall phase is unobservable . The 

only way for us to "see" the phase is then by some form of interferometry, 

i.e., by determination of the phase difference between the amplitude to be in 

the given state and the amplitude to be in some reference state. In order 

to measure this phase difference we must measure a physical observable whose 

operator connects these same states, and furthermore, we must initially prepare 

the system in a linear combination of these states. Thus, it is in the off-

diagonal elements of the density matrix that such relative phase information 

is found and by doing experiments involving such off-diagonal elements t hat 
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one can observe spinor character. Many previous experiments involving off­

diagonal matrix elements then can be used as implicit evidence of this behavior. 

For example, the precession of a spin ~ particle in a strong magnetic field 

furnishes such implicit evidence. 

In the neutron experiment of Werner1, et al., the relative phase infor­

mation was extracted by splitting a neutron beam into two parts and observing 

how the diffraction pattern changed upon application of a 2rr rotation to one of 

these parts. The change in the ''beating'' pattern then signaled the change in 

the phase. In our experiment we have used the NMR analogue of interferometry. 

For a spin in a strong magnetic field to have a transverse component of obser­

vable magnetization, it must not be in an·eigenstate of the Zeeman Hamiltonian . 

In fact, the direction that the magnetization points in the x-y plane (the 

external field is assumed along z) is the direct manifestation of the phase 

difference between the various levels. 

For the particular case of a spin ~ particle in a static magnetic field 

directed along the z-direction, one has a two-level system where the spin wave-

function, ~. can be written as 

where a and B are the eigenstates with quantized angular momentum along the 
i~a 

z-axis (+ ~-fiand - ~h.respectively). The complex coefficients, ae and 
i~b 

be , are amplitudes for eigenstates a and B, respectively, where a and bare 

chosen as real numbers with the normalization constraint. a2 + b2 = 1. The 

z-component of the magnetization is Mz«(a2 - b2), while the transverse components 

are Mx «a~ cos(~a- ~b) and MY« ab sin(~a- ~b), and thus it is apparent that 

observation of the transverse magnetization furnishes the phase difference, 
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~a- ~b. but the absolute phases, i.e., either ~a or ~b' are not determinable. 

In order to perform the nuclear magnetic interferometric measurement, it is 

necessary to "split" the spin into two components, each of which is a two-level 

system and then to selectively perform a rotation on only one part. Then by 

observing the interference between the two components both before and after the 

rotation one can determine the overall change in phase of the rotated component 

simply by using the phase of the unrotated component as a reference. This 

"splitting" was accomplished in the neutron experiment by splitting the neutron 

beam and spatially isolating it into two components which could be selectively 

rotated, and the beams were then spatially recombined to observe the interference. 

However, in the present experiment it was not necessary to split and i solate 

the spin spatially since we could use the presence of a second, different, spin 

to alter slightly the energy levels and thus accomplish the "splitting" 

energetically, rather than spatially. That is, by choosing a sys tem with coupled 

pairs of spins, I and S, one naturally has a "split" system of two components; 

one consisting of the states a and 8 for the S spin with the I spi n in the 

a eigenstate, and a second component consisting of the eigenstates a and 8 for 

the S spin with the I spin in the 8 eigenstate. The coupling between the I 

and S spins causes the transition frequencies of the S spin to be different for 

these two components, and thus it is possible to selectively rotate only one 

component and observe the interference effects. 

The chemical system we chose for the demonstration was 91% 13c-enriched 

sodium formate (NaCH02) dissolved in o2o with a small amount of 1H impurity. 

The 1H (I spin) and 13c (S spin) nuclei in the formate ion form a coupled 

system of two spin~ particles, and their energy levels are as shown in 

Figure 1. The allowed transitions for the 1H between levels 1-3 and 2-4 
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are inequivalent due to the presence of the secular part of a scalar coupling 

of the form J! . ~· where J is the coupling constant. The inequivalent 13c 

transitions are between levels 1-2 and 3-4. This J coupling splits the 

spectroscopic lines and thus allows one to selectively irradiate transitions. 

The rf pulsing scheme is illustrated in Figure 2. The experiment 

itself consisted of two parts. In the first part. we took a normal 1H Fourier­

transform echo spectrum of our liquid sample. This consisted of applying a 

short (2 ~sec) n/2 pulse to all the 1H transitions. A short (4 ~sec ) 1H n 

pulse was applied at a time 6T to create a spin echo at time 26T (t = 0). 

This was convenient for reasons to be explained later. The time decay was then 

recorded from t = 0 and Fourier transformed to yield the top spectrum in 

Figure 3. (Note that in this first part we have irradiated no 13c tra ns itions.) 

In this 1H spectrum the symmetric doublet results from the scalar coupling 

between 1H and 13c in the 91% of the formate ions which are isotopically 

enriched with 13c. The splitting here has a value of J = 195Hz . The small 

peak at the center of mass of the doublet results from the 1H nuclei in the 

remaining 9% of the formate ions which contain spinless 12c nuclei. The large 

peak on the far right results from the 1H nuclei in the small amount of HDO in 

the o2o solvent. 

In the second part of the experiment we repeated the scheme of the first 

part but with one important addition. After the initial 1H n/2 pulse we 

applied a long (T = 26 msec) low-power. selective. 13c 2n pulse to only one 

of the the 13c transitions (the 13c rotating field equaled approximately 10% 

of the separation of the 13c lines). As before we recorded the spin echo 

and Fourier transformed it to get the bottom spectrum shown in Figure 3. We 

can see that the application of the selective 2n pulse to only one of the 
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13c transitions caused the inversion of the peaks due to the 1H coupled 

to the 13c in the formate ions. This fact is the direct result of the 

fact that the 13c is a two-level system and that two-level systems behave 

as spinors under rotation. (Note that the 1H peaks due to the 1H not 

coupled to the 13c did not invert.) To understand this, one can refer to 

the energy level diagram in Figure 1. The effect of the initial n/2 pulse 

applied to the 1H 1-3 and 2-4 transitions was to place the 1H spins in linear 

combinations of the eigenstates spinup and down (a and B) with a definite phase 

difference between them. This means that one has created linear combinations 

of the states 1 and 3 and also of the states 2 and 4 (see Figure 1). Let the 

phases of the amplitudes of the four states be ~ 1 • ~2 • ~3 • and ~4 . The sizes 

of the 1H doub 1 et peaks are then proportion a 1 to cos ( <1> 1 - ~3 ) and cos ( ~2 - ~ 4). 

T;ie phase difference between 1 and 3 and bebveen 2 and 4 was then modified by 

the application of a selective 2n pulse to only the 3-4 13c transition. (A 2n 

pulse on the 3-4 transition is defined in the conventional way as one which 

causes cos (<t>3 - <t>4) to undergo one full cyc l e, i.e., ~(~ 3 - <t>4) = 2n.) However, 

one wishes to know by how much <t>3 and ~4 have changed individually. Since no 

radiation was applied to the 1-2 transition, <1> 1 and <1>2 have not been altered, 

and since the size of the 1H doublet lines are a measure of cos ( ~ 1 - <t>3) and 

cos (~2 - <t>4}, one can use the fact that both 1H spectral lines inverted (see 

bottom spectrum in Figure 3) to indicate that both <t> 3 and <1>4 have each changed 

by n, i.e., a clear demonstration of spinor character. 

With respect to more minor experimental details, a spin echo was used on 

the proton system to furnish 1H spectra that cou ld be directly compared. Had 

we not refocused the 1H magnetization with the n pulse, we could have observed 

only the portion of the free-induction decay remaining after the end of the 

rather long, selective pulse applied to the 13c system, and this would have 
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produced anomalous effects, making comparison of the 1H spectra more 

complicated. We set the length of the selective 13c pul se experimentally by 

observing the 13c NMR signal from a different sample containing an unsplit 

13c spectrum. 

We note that the two peaks of the doublet in the bottom spectrum of 

Figure 3 do not have quite the same amplitude. This effect does not have a 

trivial expl anation, and it appears that the difference in amplitude i s due to 

relaxation. When a spin system has been prepared in a state not in thermal 

equilibrium,as ours has been, the various density matrix elements relax with 

characteristic times. The diagonal elements relax with time constants which 

are normally called T1. A recent publication shows a clever way to measure 

all of these diagonal relaxation times, in the same system as we are usi ng4. 

Off-diagonal elements relax with time constants called T2. Usually, only 

relaxation times of off-diagonal elements corresponding to magnetic-dipol e­

allowed transitions contribute (e.g., T2 of the 13c is the relaxation time 

of elements 12 and 34, while the proton T2 is that of elements 13 and 24). 

However, in this experiment, during the long 2n pulse, the spin system spends 

part of its time in states that are linear combinations of states 1 and 4 and 

states 2 and 3. These correspond to magnetic-dipole-forbidden t ransitions . 

The amplitudes of the two inverted lines in Figure 3 are therefore partially 

determined by the relaxation rates of the normally not observable elements 

14 and 23. Si nce the two peaks of the doublet have different amplitudes, these 

two T2's are not equal. (The 14 and 23 relaxation rates are 

of special interest since they can depend on the cross-correlation between 

the fluctuating local fields at the two nuclei.) Thus, we are now able to map 

out all the relaxation t imes of the compl ete density matrix of a system like 
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this. We will discuss this somewhat specialized spectroscopic idea in great 

detail in a later paper. 

As mentioned earlier, this technique could be generalized to show 

explicitly the behavior of spins greater than~ under rotation. As an example, 

we could consider a system where a spin 1 (e.g., 2H, 6Li, 14N) is scalar coupled 

to a spin~ (e.g., 1H, 13c, free electron). Provided the three energy levels 

of the spin 1 were equally s paced, we could accomplish a rotation of the nucleus 

as a whole by irradiating at the single resonance frequency. The presence 

of the spin~ would split this resonance line into a doublet,and the spin!; 

spectrum would be a triplet. By first applying a w/2 pulse to all of the three 

spin~ transitions and then selectively applying a 2n pulse to only one of 

the lines in the spin 1 doublet, one would see the spin~ triplet not invert 

but rather remain upright. A selective n pulse should cause an inversi on , 

however. This is because a spin 1 does not exhibit spinor character. Thus, 

by choosing systems carefully, one should be able to examine spins with many 

different numbers of levels, and thus observe the spinor or non-spinor behavior 

of these systems. It is, in fact, just a property of Hilbert space that 

systems having an even number of levels behave as spinors and systems with odd 

numbers of levels behave as non-spinors. Would, for instance, in the above exampl e 

the three level s of the spin 1 not be equally spaced due to quadrupolar interaction, 

then only transitions between one pai r of level s might be irradiated by one 

pulse,and this two-level system would behave as a spinor. So it is because 

fermions have an even number of levels and bosons have an odd number that they 

behave as they do. A demonstration of the spinor behavior for a 13c as we 

have shown, is in fact valid as a demonstration for all two-level systems, of 

which spin ~ particles are particular examples. 
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Although used here for the demonstration of the spi nor character of a 

spin ~nucleus, the basic interferometric spectroscopic technique demonstrated 

here should have much wider applicability. In general, it is appli cable whenever 

we have a system with two or more inequivalent transitions having one quantum 

mechanical level in common. An obvious application cou ld involve indirect 

detection of low magnetogyric ratio spins , where this technique can have a 

signal-to-noise advantage over schemes which depend on diagonal elements of 

the density matrix, since the 1H spectrum is totally inverted independent of 

the ratio of the two magnetogyric ratios (related phase effects have been 

observed in a different context by Ferretti and Ernst5). The scheme can, in 

addition, be applied to a variety of sp in systems; for example, inequivalent 

transitions with a common level could be formed by interaction of two nuclear 

spins, by electron-nuclear spin interactions, or by magnetic dipole and electric 

quadrupole interactions of a particle with spin greater than ~~ With only 

slight additional complication, one can envision experiments developed using 

concepts of recently published schemes for extracting geometrical and 

orientational information in polycrystalline solids 7•8, which would allow one 

to obtain comparable information on such quantities as the electric field 

gradient at a nuclear site. 
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Figure Captions 

Figure 1. Energy level diagram for two weakly coupled inequivalent spin ~ 

particles (13c, 1H) in a strong magnetic field. The a and 8 represent 

the two eigenstates spin up and spin down of the spin ~ particle. 

The first Greek letter represents the state of the 1H spin and the 

second represents the state of the 13c spin, so the two 1H transitions 

are shown with single arrows while the two 13c transitions are shown 

with double arrows. The numbers 1, 2, 3, 4 are used to refer to 

the various energy levels or to the eigenstates to which they 

correspond. The relative Zeeman energies for 1H (56.4 MHz) and 
13c (14.2 MHz) have been drawn- to scale, but the effects of the weak 

coupling have been greatly exaggerated for emphasis. 

Figure 2. Radiofrequency pulse sequence used. A n/2 pulse and a n pulse were 

applied to the 1H transitions and the resulting spin echo was 

recorded from time t = 0 for Fourier transformation. The spectrum 

was obtained first with no 13c irradiation (, = 0) and second with 

a selective 2n pulse (T = 26 msec) applied to only one 13c transition. 

Figure 3. 1H Fourier transform NMR spectra explicitly showing sp inor character 

of a spin ~particle. The top spectrum involved no 13c irradiation 

while the bottom spectrum utilized a selective 2n pulse applied to 

only one 13c transition. The splitting of 195 Hz is between the 

two peaks of the doublet due to weak scalar coupling of the 1H and 

13c in the formate ions containing 13c. The small peak at the 

f 1 . 1 . f _ . . 12C center o the doub et 1s due to H 1n ormate 1ons conta1n1ng , 

while the large peak at the far right is due to the small amount of 1H 

in the solvent. 
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CHAPTER 4 

NUCLEAR MAGNETIC DOUBLE RESONANCE PHASE INTERFEROMETRY: 

RELAXATION TIMES FOR DIPOLAR FORBIDDEN TRANSITIONS AND 

OFF-RESONANCE EFFECTS IN AN AX SPIN SYSTEM 

(Chapter 4 is essentially an article by M. E. Stoll, A. J. Vega, and R. 

W. Vaughan, entitled "Double Resonance Interferometry: Relaxation 

Times for Dipolar Forbidden Transitions and Off-Resonance Effects in an 

AX Spin System". This article has been submitted for publication to 

the Journal of Chemical Physics.) 
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I. INTRODUCTION 

This paper presents a detailed analysis of the application of a 

recently presented interferometric spectroscopic technique(!) to a model AX 

spin system. The density matrix for such a coupled spin !2 system is a four­

by-four matrix, and when such a spin system in a strong magnetic field is 

prepared in a nonequilibrium state, the subsequent relaxation of the system to 

thermal equilibrium can be described by the decay of the elements of the density 

matrix, where the diagonal elements relax with characteristic time constants, 

called T1 's, and the off-diagonal elements relax with characteristic time constants 

called T2's( 2•3>. The determination of all of the T1's requires a sequence of 

experiments, and this has been discussed recently in detail for an AX system by 

Mayne, A1derman, and Grant( 4), while measurement of the off-diagonal relaxation 

rates corresponding to magnetic-dipole-allowed transitions involves application 

of a standard Carr-Purcell sequence. This leaves off-diagonal rates corresponding 

to magnetic-dipole-forbidden transitions to be measured, and the present paper 

presents a simpl e method for direct measurement of these remaining relaxation 

rates. These rates are of particular interest since they can contain cross-

correlation information about the fluctuating fields at the sites of the coupled 

A and X nuclei. In our review of the literature we have found no reports of 

previous efforts to measure these relaxation rates in coupled spin ~ systems, 

although we do want to call attention to an effort to detect such dipolar­

forbidden transitions by a multiple step excitation process, and that effort 
27 . ( 5) involved a spin 5/2 nucleus, Al 1n Al 2o3 . 

In addition, the analysis of off-resonance phase effects measured in the 

spectra demonstrate that one can use such an interferometric scheme to measure 

indirectly the resonance frequency of one of the coupled nuclei by observation of 
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the spectra of only the second nucleus. The limiting precision of such an 

indirect measurement will be shown to be equivalent to that of a direct mea­

surement. Thi s could be of use when the magnetogyric ratios of the two 

coupled spins differ by a large amount,and the direct observation of the nucleus 

with the smaller magnetogyric ratio is made difficult by poor signal-to-noise 

conditions. 
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11. DESCRIPTION AND EXPLANATION OF THE EXPERIMENT 

A. General Description 

The system we chose for this experiment was a conventional AX( 13c - 1H) 

system where both nuclei are spin ~. The 13c (S spin) and 1H (I spin) were 

in a liquid and were weakly coupled to each other via a scalar coupling of the 

form J I · S. Since the sample was in a strong magnetic field, oriented along 

the z-axis, only the secular part of the scalar interaction, J Iz Sz,contributed 

to first order to the energy level spacings for this system. An appropriate 

energy-level diagram is shown in Figure 1. The four levels are the eigenstates 

of the Zeeman Hamiltonian corresponding to aa, a8, Sa, and 88, where the a and 

8 represent the spin "up" and "down" states with the z-component of angular 

n.omentum equa 1 to ~ 1i and - ~ 1i, and the first Greek 1 etter refers to the I 

spin while the second refers to the S spin. Note that the secular part of 

the scalar interaction alters the energy levels slightly (exaggerated 

considerably in Figure 1 for purposes of explanation), thus giving rise to 

four inequivalent magnetic-dipole-allowed transitions. The 1H NMR spectrum 

is a doublet corresonding to transitions 1-3 and 2-4 (single arrows), and the 
13c spectrum is also a doublet corresponding to transitions l-2and 3-4 (double 

arrows). This doublet splitting is crucial for the present experiment since 

it enables us to selectively irradiate certain transitions. 

The experiment is shown schematically in Figure 2. First, we apply a 

nonselective n/2 pulse (2 ~sec) to both the proton transitions. Then immediately 

after the n/2 pulse we apply a low-power, selective pulse of length T to only 

one of the 13c transitions. At a time fiT after the original proton ~12 pulse 

we apply another nonselective n pulse (4 ~sec) to both proton transitions, causing 

a proton spin echo to be formed at time 26T. The decay taken from time t :: 0 
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(at the middle of the echo) is recorded for Fourier transformation (FT). The 

five spectra shown in Figure 3 are such FT spectra for values of T 0, 28, 56, 

84, and 112 msec. The top spectrum,for which T = O,corresponds to a conventional 

spin echo pulsed NMR-FT proton spectrum. The sample was a solution of 91% 
13c-enriched sodium formate (NaCH02) dissolved in o2o with a small amount of 

1H impurity. It is the 1H and the 13c in the enriched formate ions that comprise 

our AX spin system and give rise to the symmetric proton doublet split by 

J = 195Hz. The small peak at the center of the doublet is due to the protons 

in the 9% of the formate ions containing spinless 12c. The large peak on the 

far left is due to the small amount of proton impurity in the 020. When 

preparing the solution, no efforts were made to remove dissolved oxygen. 

When looking at the spectra of Figure 3, two effects stand out. First, 

we see that the amplitude of the formate doublet actually goes to zero, then 

negative, back to zero, and finally positive again. Secondly, the amplitudes 

of both members of the doublet do not remain the same. The former effect can 

be explained completely by the spin dynamics of the system(l} while the latter 

effect can be explained only by invoking relaxation phenomena. Therefore, 

in order to understand the results of this experiment, we must theoretically 

understand the spin dynamics of such a system first without, and later with, 

relaxation effects taken into account. 

B. Spin Dynamics Ignoring Off-Resonance and Relaxation Effects 

We first examine the spin dynamics of our experiment, ignoring relaxation 

effects as well as effects of the 13c selective pulse being "off-resonance." 

There are, in fact, two such off-resonance effects to be ignored. The first 

is the possibility of the selective r.f. radiation being at a slightly different 

frequency from the 13c transition frequency. The second is the possibility 
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that although the selective radiation is weak, it still is strong enough to 

somewhat disturb the other 13c trans ition . 

Before we apply the first pulse, we assume that our spin system is in 

thermal equilibrium and that it can be described by the following 4 x 4 density 

matrix: 

A 

0 

0 

0 

0 

B 

0 

0 

0 

0 

c 
0 

0 

0 

0 

D 

(1) 

where the basis states are chosen to be the states 1, 2, 3, and 4 of Figure 1 

(aa, aa, aa, and aa. respectively) . Note that the off-diagonal matrix elements 

are zero, meaning there is no statistical phase coherence in the system and, 

furthermore, in the high temperature approximation 

A - B = C - D (2) 

As usual, the observable 1H and 13c magnetizations are proportional to the 

expectation values of the dimensionless spin operators, I and S. The 

expectation values for I and S corresponding to the various observable 

magnetizations are related to the density matrix elements as follows: 

<Ix>l3 = Re pl3 <Ix>24 Re p24 

<ly>13 -Im p13 <I/24 = -Im p24 

<lz>l3 ~(pll - p33) <Iz>24 = ~(p22 - p44) 

<Sx>12 = Re Pl2 <Sx>34 
(3) 

= Re P34 
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Because of the hermiticity of the density matrix, Repij = Repji and 

lmpij = -lmpji" The subscripts refer to particular levels between which 

transitions give rise to observable magnetization. Because of the scalar split­

ting, we can distinguish between the transverse magnetization <Ix> 13 and 

<lx>24 , etc. Each corresponds to one of the peaks of the doublet. However, 

since we do not know the sign of J, we do not know which magnetization 

corresponds to which peak. Fortunately, this is no serious drawback, and we 

will say more about this point later in the paper. 

Initially, since the off-diagonal elements are zero, there is no 

transverse magnetization . The purpose of the proton n/2 is then to create 

some transverse magnetization and phase coherence. After the n/2 pulse, 

(assumed to be along the x-axis of the proton rotating frame), we have the 

following matrix, making use of Equation (2) and ignoring effects due to the 

finite width of the pulse: 

~(A+C) 0 ~i(A-C) 0 

0 ~(B+D) 0 ~i(A-C) 
p( 0) ( 4) 

-~i(A-C) 0 ~(A+C) 0 

0 -}ii (A-C) 0 ~(B+D) 
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The Hamiltonian acting on the system during the weak 13c pulse is 

(for 1i = 1): 

(5) 

where we have chosen the pulse to be along the x-axis of the 13c rotating frame. 

The frequencies w1 and US are the Larmor frequencies of the 1H and 13c, w is 

the frequency of the 13c pulse, 2w1 is its amplitude, and J is the scalar 

coupling·in radians per second. We now analyze this by transforming to a doubly 

rotating frame in which the Hamiltonian is static, by choosing to go to the 

interaction frame of: 

(6) 

where wp is the reference frequency of the phase detector we used to detect 

the proton traverse magnetization. After transforming to this frame we have 

the following Hamiltonian 

(7) 

ignoring the counter-rotating r.f. component as usual. The density matrix 

p is also taken to be in this same rotating frame, and for the sake of 

simplicity we will not use any special notation to indicate this. Equation (4) 

is still correct because we have assumed the lab frame and the interaction 

frame to be coincident before the n/2 pulse, and we are justifiably assuming 

the pulse is short enough to ignore effects during the pulse. The density 

matrix evolves in time according to the Liouville equation: 
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d = 
dt p (8) 

Using Equations (7) we have the following matrix for H': 

~{J+t.w) ~1 0 0 

~1 -~(J-t.w) 0 0 

H' (9) 

0 0 -~ ~~ 

0 0 ~1 -~t.w 

T~e first kind of previously mentioned off-resonance effect was ignored when 

we chose w- ll's = ~ J, from Equations (7), because the 13c radiation is being 

applied right "on" one of the resonances of the doublet. The second kind of 

off-resonance effect is ignored by assuming that 

(10) 

This approximation means that the r.f. perturbation is so weak that it does 

not mix levels 1 and 2, thus we set H' 12 = H' 21 = 0. However, levels 3 and 4 

are still very strongly mixed by the 13c pulse. 

Because this experiment involves observing only the I transverse magne-

tization, Equations (3) show that it is sufficient to calculate only p13 
and p24 (or p31 and p42), and thus we shall only worry about determining these 

matrix elements. Using Equations (8) and (9) we can write the following 

differential equations, and their initial conditions using Equation (4): 
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plJ = -i (~ + 6w) plJ + i ~1 pl4 

p14 = -i (~ + 1\w) pl4 + }s wl Pl3 

. 
i (~ - 1\w) p24 = P24 + i }s wl PzJ 

(11) 

PzJ = (~ - t.w) P23 + i }s wl P24 

. pl3 (0) = Pz4 (0) = }s i (A - C) 

pl4 (O) = p23 (O) = 0 

Solving these equations, we can determine the relevant matrix elements at 

the end of the 13c pulse of length , 

-i(lz.) + 6w)T 
pl3 (,.) = !2 i (A - C) e cos(Js w1<) 

(12) 
i (lzJ - t.w)T 

Pz4 (,.) = Js i (A - C) e cos('1 w1T) 

The time evolution of the density matrix from the time T through the 

n proton pulse at 1\T, which we take to be along the x-axis of the proton 

rotating frame, and finally up to the middle of the echo at 21\T, is quite 

straightforward to calculate, and we merely state the pertinent results: 

i(~ + t.wh 
P31 (21\T) = e P13 (<) 

(13) 
-i(lzJ - 6wh 

P24 h) e 
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Thus, from Equations (12) and (13), we have 

p31 (26T) = ~ i (A - C) cos (~1<) 
(14) 

We can then use Equations (3) to compute the transverse proton magnetization of 

the two peaks in the 1H doublet 

(15) 

where <ly{26T)>T=O is just the magnitude of the transverse magnetization at 26T 

(the middle of the echo) for the case in which < = 0 (no 13c irradiation). Thus, 

we see that the effect of our selective 13c pulse is to cause the proton 

magnetization to oscillate sinusoidally with a frequency of ~w 1 . So by choosing 

the length of < to correspond to a normal 2n pulse (w1< = 2n) we see that 

effect is to multiply the amplitude of the proton doublet by cos (n) = -1. 

This effect is the manifestation of the spinor character of the pseudo-two-

level system composed of levels 3 and 4, and this phenomenon has been discussed 

in detail elsewhere<I>. The spectra in Figure 3 were taken for values of< 

corresponding to values of w1T = 0, n, 2n, 3n, and 4n. Note that after a full 

4n rotation the phase of the proton magnetization has come back to itself 

again, which is further consistent with spinor behavior. Thus, we can see 

that this idealized spin dynamical approach can at least explain the 

oscillatory behavior in Figure 3. However, we need to understand quantitatively 

the amplitudes of both members of the doublet, and this can only be done by 

appealing to relaxation effects. 
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By examining Equations (15), one notes that the magnetization 1 inearly 

oscillates rather than precesses. By looking at Equations (11) we see that 

the matrix elements p13 and p14 are coupled, a~ well as p24 and p23. Solving 

for p14 would show that p14 "' sin (J.-::!W1 T); therefore, we see that p13 and p14 
are mutually oscillating and when one has a maximum, the other is zero, 

and vice versa. According to the definition of the density matri x: 

* P· ·"'c . c. lJ 1 J 
(16) 

where Ci and Cj are the complex quantum mechanical amp litudes for the system 

to be in the states and j, and the bar represents the mixed state whi ch 

results from taking a statistical ensemble average over the system. Thus, 

we see that when p14 t 0, statistically our system is in a linear comb~nation 

of states 1 and 4. This, in turn, means that there is phase coherence or 

"magnetization" corresponding to the forbidden transition 1-4. The reason 

we do not see this magnetization is twofold. First of all, since it i s magnetic-

dipole-forbidden, the process is second order and the probability of the 

transition is correspondingly low. Secondly, the 1-4 transition frequency i s 

at about wi + ws' and we would have to make our phase detection reference 

frequency wp closer to this "double quantum" frequency in order to observe this 

magnetization. Similarly, p24 and p23 form a compl ementary pair of oscillating 

variables, and p23;o implies phase coherence between the levels 2 and 3, which 

corresponds to a magnetic-dipole-forbidden "flip-flop" transition. In 

anticipation of our later discussion of relaxation effects, we mention that if 

the off-diagonal element p14 relaxes with a different rate than p13 , we 

would expect the amplitude of the 1-3 peak of the doublet to be different from 

the prediction of Equations(15). This is because forT t 0, the system 

has a probability of being in a linear combination of states 1 and 4 as well 
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as 1 and 3. Thus, the ratio of < IY(2t. T)> to < IY(2t. T)>T =O could be either 

smaller or larger than that predicted by Equations (15), depending on whether 

or not the relaxation rate of p14 is faster or slower than the relaxation rate 

of p13• Again, similar statements can be made about the rates of p24 and p23 . 

Thus, by attempting to quantitatively fit the amplitudes of the peaks of the 

formate doublet for different values of T• we can in fact determine the relaxation 

rates of the density matrix elements p14 and p23. In the next section we 

pursue the effects of being "off-resonance" on the 13c frequency, while still 

ignoririg relaxation. We will see that these "off-resonance" effects cannot 

explain the fact that the doublet does not remain symmetric. 

C. Spin Dynamics Including Off-Resonance Effects but Ignoring Relaxation 
Effects 

As mentioned earlier, there are two important "off-resonance" effects 

of the selective 13c pulse to be considered. These both fall naturally out 

of the mathematics, if we choose the proper interaction frame. We start with 

the same Hamiltonians as those in Equations (5) and (6); however, we will 

choose our frequency of 13c irradiation, w. slightly differen t l y. In this 

case Equations (7) must be modified so that now after transformation to the 

interaction frame, we have the following remaining Hamiltonian: 

( 17) 

ws - w = l-il + ow 

Therefore ow i s just the difference in frequency between the applied 13c 
radiation frequency and the frequency of the one member of the doublet we are 



-42-

intending to irradiate, and thus 6w measures an "off-resonance" effect. 

Using Equations (17) we can now write the matrix representing H' 

~(J+<'iw+Aw) ~~ 0 0 

~UJ -~( J+6w-llw) 0 0 

H' = (18) 

0 0 ~(ow-llw) ~UJ 

0 0 ~UJ -~(6w+l>w) 

We can examine the other type of 13c "off-resonance" effect by not 

making the assumption of Equation (10). Therefore, we are saying our 13c 

radiation is substantial enough to somewhat disturb the other member of the 
13c doublet. Thus, it is no longer necessary to assume that J >> ~1 , and 

we are not so far "off-resonance" from the other 13c transition that i t is 

irrelevant. So proceeding with this in mind, we can use Equation (18) and 

the Liouville Equation (8) to get the following set of coupled differential 

equations: 

(19) 

The initial conditions for p13, p14 , p24 , and p23 are identical to those in 

Equations (11) . The solution of this set of equations is rather tedious, but 

the important matrix elements can be shown to be: 
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-i&.rr 
p13(-r) =~(A-C) e {i(a cos n+-r + c cos n_<) + (b sin n+' + d sin n_<)} 

-illwT 
(20) 

P24 (<) = ~(A-C) e {i(a cos n+' + c cos n_< ) - (b sin n+' + d sin n_<)} 

where we have 

2 2 4 J 4 4 
n + = _!_ { ( ~) + ( * + cSw) 2 + w ± [ ( ~2 ) + ( -2 + cSw) + w 1 - ~ 2 ~ 1 

(21) 
J 2 J 2 J 2 2 2 J 2 ~ ~ 

- 2(-z) (z- + cSw) + 2 (z-) w1 + 2 w1 (2 + cSw) ] } 

where n+ refers to the top sign and n refers to the bottom s ign. Also, we 

have the following values for a, b, c, and din Equations (2D): 

(22) 

b = 
J 2 J 2 2 

(z-)[n_ - (z-) - w1 ] 

n+ ( n_
2

- n/> 

J J 2 2 2 
<z> [ (z-) + (1.)1 - n+ ] 

n_ (n_2 - n/) 
d = 

The following relations also hold true 

a + c = 1 
(23) 

n b + n d = ~ + - 2 
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After the 13c pulse ends, the density matrix evolution is identi ca l to that 

in Equations(13). Then using Equations (13), (20), and (3) we compute the 

proton transverse magnetization at 2AT to be 

<IY(2AT)>13 = <IY(2AT)>24 <IY(2AT)>,-=o {(b sin n+,- + d sin n_ ,-)sin(~} 

+ (a cos n+, + c cos n_,-) cos (~ ,-)} 

(24) 

<Ix(2AT)>13 -<Ix(2AT) >24 = <IY(2AT) >,-=o {(b sin n+,- + d sin n_,-)cos(~) 

- (a cos n+,- + c cos n_,-) sin <% ,-)} 

where <ly(2AT) >,-=o is again the amplitude of either of the peaks of the 

doublet for the case where ,- = 0. Notice that the y-comoonents of the 

magnetization of the proton doublet are identical, 1>1hilc the x-components 

merely differ by a sign. 

Careful examination of Equations(24) tells us several important things. 

First of all, we see that neither of the 13c "off-resonance" effects we have 

considered can possibly lead to the discrepancy in the amplitudes of the peaks 

in the doublet of the spectra in Figure 3. Any such off-resonance effects 

may alter the overall amplitudes of the peaks as well as introduce dispersion 

to the peaks, via the x-components, but the two peaks must remain mirror 

images of each other in the spectrum. Because of this, we can then rule out 

magnetic field inhomogeneity as a possible cause of that discrepancy. 

Magnetic field inhomogeneity can be treated by summing a distribution of 

peaks being off-resonance by different amounts. However, any distribution of 

frequency would still lead to overall lineshapes for the t~ro peaks which are 

mirror images of each other, thus ruling this effect out as a possible 
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explanation. Also we can precisely determine ow. and consequently, the 

resonance frequency of the 13c line by observing the effects of dispersion 

on the lineshape. 

The full behavior of the functions in Equations (24) is quite involved. 

However, we can look at certain limiting cases to separate the two kinds 

of off-resonance effects. To try to understand the first type of off-resonance 

effect wtlere the 13c radiation is slight "off" the intended frequency, we 

can take the limit of Equations(24) in the case where we assume the approximation 

inEquations (10) to be valid . In this case Equations (24) become: 

( 25) 

<lx(26T)>13 -<lx(26T)>24 <ly(26T)>T=O {COS (~ ~12 + ow2 T) sin (~) 

for the case where ow « w1, we see that Equations (25) are the same as U.-J!;e 

of Equations (15) except that there is a phase error of owT/2 introduced into 

the peaks. Thus, both peaks have the same amount of dispersion mixed in, and 

the sign of that dispersion is opposite for the two peaks. He note that we 

can use this effect to our advantage in determining the position of the 13c 
resonances. We could arbitrarily increase T until any 13c off-resonance, ow . 

no matter how sma ll, would lead to noticeable phase changes in the proton spectrum; 
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however, an upper limit on T. equal to approximately the inverse of the 13c 
linewidth, effectively limits the resolution of ow to the 13c linewidth. 

Thus, this indirect method of determining the position of the 13c resonance 

seems to be superior, in this case, to other methods such as spin tickling( 6), 

whose resolution is ultimately limited by the proton rather than the 13c 

linewidth. 

The second type of off-resonance effect, in which we take into account 

the effect of weakly irradiating the other member of the 13c doublet, can be 

examined by assuming that 

ow = 0 (26) 

but not making the assumption of E~uations{lO). Taking the subsequent 

limiting case of Equations(24) expanded to second order i1, the !Jat·ameter 

x = w1/J, we have the following 

<ly(2~T)> 13 = <ly(2~T)>24 = < ly(2~T)>T=O {cos (~IT) [cos[{~aviT) (~x)) 

-~x2 sin r<frHI + ~x2 )J sin(~) 1 

+ x sin (~1T) si n [{~)(1 + ~x2 )] cos (fr)} 

(27) 

< lx(2~T) > 13 = -<lx(2t.~T) >24 <ly(26T)\=o {cos (~IT) [sin[{lrto1T)(!-ax)J 

-~x2 sin [{~r)(l + ~x2 )] cos (~r)) 

- x sin {!a,o 1 T) sin [ ( fr )( 1 + ~i) J sin ( fr) } 

Thus, we see for the case of x << 1 (or w1 << J) that Equations (27) are the 

same as Equation (15) except that there is a phase error of(wiT/2)· (x/2) 

introduced into the peaks. Thus, again both peaks have equal and opposite 
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amounts of dispersion mixed in. If we intend to use the first type of off-

resonance effect to find the 13c resonance position by observing the amount 

of dispersion mixed in, we must take into account also this other phase error 

due to the second type of off-resonance effect. This does not hurt our resolution 

of the 13c resonant frequency, but it does mean that we must subtract off this 

second effect. Although we do not show the results here, computer calculations 

of Equations (24) indicate that if both types of off-resonance effects are 

present simultaneously and they are both small, their phase errors will, in 

fact, merely add linearly rather than combine in some more complicated manner . 

Thus. it seems that the detailed spin dynamics of the experiment, taking 

off-resonance effects into account. seem to provide the necessary insight to 

use this technique as a very accurate, indirect method of determining the 13c 
resonant frequency. However, only in the next section, where we investigate 

the effects of relaxation, can we quantitatively fit the measured peak 

amplitude to theoretical calculations. 

D. Spin Dynamics Including Relaxation Effects but Ignoring Off-Resonance 
Effects 

In order to make the relaxation cal culation more tractable and more 

easily interpretable, we have chosen to ignore both types of 13c off-

resonance effects in this section. According to Redfield's theory of relaxation{ 2). 

we can include relaxation effects by assuming that we have a modified 

Liouville equation: 

k Pmn = i [p.H' lmn - ~mn Pmn (m fn) (28) 

Since the relaxation times are long compared to 1/J, we can assume that the 

damping term in Equation (28) for off-digonal matrix elements depends only 
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on the same matrix element appearing on the left-hand side of Equation (28). 

Each different matrix element, Pmn• however, is assigned its own rate constant, 

1/Tmn· This condition of Tmn >> 1/J merely means that we do,in fact, have 

a well-resolved proton doublet to begin with. Furthermore, the requirement 

* is that the 

* where Tmn 

real relaxation time Tmn >> 1/J and not the apparent Tmn >> 1/J 

is the decay constant taking magnetic field inhomogeneity i nto 

account. Thus, this criterion is easily satisfied in our experiment. 

Next, by using Equations(28) and also Equations (11), which are the ones 

appropriate for ignoring off-resonance effects, we can determine the following 

differential equations: 

-i (~ J + &.J)p13 + 
1 

P13 = ~1 P14 - y- P13 
13 

. 
-i (~ J + 6w)p14 + ~1 p13 

1 
P14 = -- p T14 14 

(29) 

p24 = i (~ J - 6w)p24 + ~1 p23 
1 -- p T24 24 

Again, the initial conditions are the same as in Equations (1 1) . The relevant 
matrix elements can then be determined to be 

1 1 -i (~+t~wh -~("i'::" + -h 
p13(T) = ~i{A-C) e e 13 T14 

1 - 1 

/ 2 1 1 2 T 14 T 13 
X {COS(~ /w1 -(-- -T ) T] + ----;==========-~ 

T 13 14 /2 1 1 2 
/'w1 - (T 13 - T 14) 

sin r~lw12 - (-T1 - _T1 )2 T]} 
13 14 

(30) 
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i (~-6w)T -~(-1- + - 1-)T 
P24 (T) = ~i(A-C) e e T24 T23 

,_1_-_1_) 

x {cos[~ !w 2 -(-1- __ 1_)2 T] + T23 T24 
I T 24 T 23 fw 2 1 1 2 

w - (-- -) 1 T24 T23 

1 1 2 (-- -) TJ} 
T 24 T23 

As in the other cases, the Equations (13) for the evolution of the density 

matrix after the 13c pulse are still applicable. Then by using Equations 

(13), (30), and (3), we get 

( 1 1 
<I (2~T)> 13 = <I (2~T)> e-~ y--- y--)T 

Y Y T=O 14 13 {cos[!.;; /w12 - (-1- - _1_)2 T) 
T14 T13 

1 1 
(-T 1-4 - -T 1-3) ,-------

+ -;=:==::::::======== sin [ ~ fw/ - ( J- - f-i T]} lw 2 - ,_1_ - _ 1_ ,2 1 14 13 
1 T14 T13 (31) 

1 1 
<I (2~T)> = <I (2~T) > e-~(y--- y--)T 

Y 24 y T=O 23 24 {cos[~ /wl2 - (-1- - _1_)2 T] 
T23 T24 

1 1 
{-T 2-3 - -T 2-4) ,..-------

+-;==========- s in[~ fw/ - <f- -f--) 2 -r]} lw 2 - ,_]_ - _1_,2 23 24 
l T23 T24 

where we note that <Iy(2~T)>T=O now implicitly includes an overall relaxation 

term exp (-2~T/T 13 ). 
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After examination of Equations (31), we see that the effects of the 

relaxation are three-fold. First, we see that there is an exponential damping 

or increasing of the amplitude of the peak, depending on the difference of 

the two relaxation rates. For the caseof<IY(2~T)>13 we see that the crucial 

quantity is (1/T 14 - l/T13). If the two time constants T14 and T13 are 

equal, then we see no effects and the magnetization is the 

same as that in Equation (15). If, however T14 < T13 , then there will be a 

damping of the amplitude; and if T13 < T14 , then there will be an increase 

in the peak's amplitude. The second effect of the relaxation is to alter 

the oscillation frequency; however, this effect is second order in the 

parameter R13 = (1/T14 - 1/T13 )tw1. The third effect of the relaxation i s 

to introduce a first order (in R13 ) term which oscillates like sine rather 

than cosine. The main effect it has is to uniformly translate the zero-

crossings of the amplitudes as it effectively introduces an overall phase 

error into the oscillating term. This phase of the oscillati on is not to be 

confused with the dispersion- related phase discussed extensively in Section II C 

of this paper. Although we have not calculated in detail the effects of 

relaxation and 13c off-resonance effects simultaneously, we feel that we 

can safely predict the results for small off-resonance parameters by a linear 

combination of the dispersion phase errors predicted by Equations (25) and 

(27) and the magnetizat ion predicted by Equations (31). 

Fitting the measured amplitude of the peak to the theoretical Equat ions (31) 

can yield a value for R13, and knowing w1 and T13 , this will 

then yield the relaxation time T14 . A similar procedure for the other peak 

will subsequently yield T23 if we know r 24 • It seems reasonable to assume that 
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where this just means that the relaxation time constants of the two members of 

the proton doublet (corresponding to the allowed transitions 1-3 and 2-4) are 

the same. Furthermore, since these are just the conventional proton T2's 

of such a system, we call these times (T2)1. 

In the next section we quantitatively compare theory and experiment 

and determine values for T14 and T23. We also look briefly at some data 

which show off-resonance effects discussed in Section II C. 

III. PRESENTATION AND DISCUSSION OF RESULTS 

A. Relaxation Data 

In this section we first compare the spin dynamical theory including 

relaxation, of Section II 0, to experimental data. First, we need to rewrite 

Equations (31) in a slightly more usable form 

<ly(2~T)> 13 

<ly(2~T)> -r=O 

<Iy<nn>24 
----- = e-~eR24 

(33) 

R24 
{cos(~e lf-R24

2) + ~ sin(~e 
1-R24 

where we have now normalized the amplitude of each peak to the value for the 

case of -r = 0. The parameters in Equations (33) have the following values 

R - 1 ( 1 1 1 1 1 
13 - - T - T) = - (-T - (-) ) 

wl 14 13 w1 I4 T2 I 

R - 1 ( 1 I 1 I 1 24 - - T - -T ) = - (- - {- ) ) 
WI 23 24 WI T23 T2 I 

(34) 
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The assumption of Equation (32) has been used to justify the substitutions 

for T13 and T24 in Equations (34) above. 

In Figure 4 we have plotted experimental data and the theoretical Equations 

(33) for various values of the R parameters. Figure 4A shows the experimentally 

measured amplitude of the peak of the proton formate doublet which was not 

attenuated for long values ofT (the right-most member of the doublet in 

Figure 3). Figure 4B shows the experimental amplitudes of the other peak of 

the doublet which was strongly attenuated for long values of T (the left-most 

member of the doublet in Figure 3). In both Figures 4A and B the ratios of 

the amplitudes of the doublet peaks to the amplitude for the special case of 

T = 0 were plotted in order to facilitate direct comparison with Equations (33). 

Amplitudes were determined from areas of the experimental peaks, and 

normalization was accontplished by comparison of the 1H impurity peak. 

The triangles indicate data points for experiments where the echo time, 2~T. 

was chosen to be 90 msec while the circles indicate data points for experiments 

where 2~T was chosen to be 280 msec. In all experiments, the same value for 

the strength of the 13c r.f. pulse, w1, was used . 

The question now arises as to which of the theoretical Equations (33) 

corresponds to which of the doublet peaks. The ambiguity arises because we 

do not know the absolute sign of J; hence, we cannot be sure which of the 

proton transitions, 1-3 or 2-4, is the lower frequency transition. We have 

the possibilities of irradiating either the high or low frequency member 

of the 13c doublet, and the system might react with attenuation of either 

the high or low frequency member of the proton doublet. Analysis reveals that 

we can unambiguously assign r 14 and T23, but we cannot determine the sign of 

J. Let us consider the four cases of irradiating the high 13c (his) or 
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low 13c (los) transitions, and observing attenuation of the high 1H (hii) 

or low 1H (loi) transitions. It turns out that hi s - hii and los - loi both 

predict that T23 < (T2)I, while his - loi and los - hii predict that 

T14 < (T2)I. In our case, we experimentally observed only hi s - hi 1 and 

los - 1o1 so we know that T23 < (T2) I. 

By the discussion of the preceding paragraph, we now can determine 

values for R from the data in Figure 4 without worrying about the subscripts 

on R. Figure 4A has two theoret i ca l curves drawn for R = 0 (sol1d 11ne) and 

R = 0.02 (dashed line) from Equat1ons 33. From these curves we det ermine that 

R = .01 ± .01 . The value for Rand the error limits are somewhat subjecti vely 

determined by noting that the curves for R = 0 and for R .02 seem to nicely 

uound the scatter in the data. In Figure 4B we have drawn theoretical curves 

for R = .20 (solid line) , R = .18 (dashed line) , and R = .22 (dotted l ine). 

The curve for R = .20 f its the experimental data best, and the curves for 

R = .18 and R .22 bound the scatter in the data rather well. So from 

thi s we conclude that R = .20 ± .02 for Figure 4B. 

We determined w1 from the zero crossing of the experimental data in 

Figure 4A to be w1/2n = 17 .9 Hz. This procedure is conven ient si nce,for thi s 

unattenuated peak, rel axation effects are small and Equations (33) become 

equivalent to Equations(15). Another option to detennine the value for w1 
would be to measure the l ength of a 2n pulse by actually observing the 
13c magnetization. By conventional methods we measured (T2)I to be 160 msec. 

Thus, from Fi gure 4A the value of R = .01 ± .01 means that T14 = 140 ± 20 msec. 

The value of R = .20 ± .02 from Figure 4B means that T23 = 35 ± 3 msec. 

Although not crucial to the experiment, for general information we measured 

the (T2) (this is the 13c T2) to be 480 msec , the (T1)I (normal proton T1) 
s 
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to be 4.2 sec, and (T1)5 (normal 13c T1) to be 8.7 sec. All of these times 

are shorter than would be expected in a system purged of dissolved oxygen. 

Using this method, it is now possible to directly meas ure all of the 

relaxation rates pertaining to the off-diagonal density matrix elements of 

such a system. In our case the only four unique non-zero rates have the time 

constants (T2 )1• (T2 )5, r 14 • and r23 . The full Redfield theory( 2) says that 

the general relaxation of the density matrix is of the form 

d 
9t I 

ij 

where the R .. is a super-matrix. Thus, the relaxation of a particular mnlJ 

(35) 

element of the density matrix in general depends on the values of other elements 

as well. However, according to our assumption of Equation (28), the relaxation 

of each off-diagonal element depends only on its own value. This is not the 

case for diagonal elements even if we still assume that the relaxation times 

are long compared to 1/J. A recent paper of Mayne, et al. ( 4 ) shows a very 

pretty experiment, performed on the same chemical system we used, which measures 

all of the elements of the super-relaxation rate matrix, Rmnij• which pertain 

to diagonal elements of the density matrix . So, by performing experiments 

like these as well as the experiments described here, it is possible to 

map out the values of the entire 16 x lG relaxation matrix for this AX system. 

Generalized versions of this phase interferometric spin spectroscopic technique 

are easy to generate for more complicated systems such as AX2 , etc. 

If the decay times of the peaks had been long compared to the length of 

our 13c pulse (as might have been the case had we removed dissolved oxygen), 

there would have been several alternatives. First of all. we could have just 

increased the time T until relaxation effects were noticeable. Care should 
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be used in choosing the proper w1 because if during the time T the value 

of cos (w1TI2) undergoes many cycles, then the inhomogeneity of the 13c r.f. 

magnetic field (w1/ys) could cause the proton magnetization to dephase, thus 

giving rise to an effective decay rate which could interfere with the measurement 

of the relaxation decay. This will not be a problem if the following criterion 

1s maintained 

llwl 

wl 
«R (36) 

where R is the dimensionless parameter of Equations(34). The symbol ll.wl 

stands for the variation of the 13c r.f. perturbation across the sample, so 

ll.w1!w1 is the fractional r.f. inhomogeneity, determined by the geometry of 

the r.f. coil. A second alternative to the initial problem would be to 

stop the 13c pulse at a time when the proton magnetization has completely 

disappeared. This would correspond to values of o = w1T = n, 3n, 5n, etc. 

At that time the state of the system would have P14 and p23 as the only non-zero 

off-diagonal matrix elements, and the system would relax with the corresponding 

times T14 and T23. After waiting some appropriately long time one would 

"retrieve" the proton magnetization by the application of another selective 
13c pulse. Measuremen t of the magnetization would then yield the desired 

relaxation times. A method similar to this last suggestion was used in a 

quadrupolar system by Hatanaka, et al. (S) to measure off-diagonal forbidden 

transition relaxation rates for spin 5/2 nuclei, 27Al in Al 2o3. Of these two 

methods the former should work in all cases, while the later is applicable 

only when 

J» for i ,j 1,4 and 2,3 (37) 
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B. Qualitative Off-Resonance Data 

In this section we very briefly present two spectra showing some of the 

off-resonance effects of the spin dynamics described in Section II, C. 

Figure S contains spectra taken for w1T = 2n in which the 13c radiation is 

slightly off-resonance. Both types of off- resonance effects contribute to these 

spectra. For the value of w1 stated earlier, we have the important parameter 

of Equation (27), x = .092. This means that if the 13c offset frequency, 

ow. is zero, there will be an apparent phase error of about 8° due to the 

second type of off-resonance effect. The first kind of off-resonance effect 

then predicts that irradiating the 13c line at ow/2n = .8Hz should produce 

spectra with no dispersion present. This can be estimated by setting the 

apparent phase errors from Equations (2S) and (27) equal to each other to get 
2 

wl 
ow = ~ (38) 

Thus, we speak of this 13c irradiation frequency as being the apparent 

resonance frequency. 

Figures SA and B show spectra taken for the values of the 13c 
irradiation frequency above and below, respectively, the apparent resonance 

frequency. These spectra were taken 10 Hz apar~ so we would expect to see 

a phase difference of ~ owT equal to about 101°. It is difficult to determine 

from the spectra exactly what the phase errors are because this was not done 

with a high resolution spectrometer, and thus the dispersion phase signals can 

overlap somewhat. However, we can still estimate that Figure SA is about 4 Hz 

above the apparent resonance frequency and Figure SB is about 6 Hz below, 

corresponding to phase errors of +40° and -60°. Very accurate measurements 

could, in principle, be made to very precisely determine the apparent 13c 
resonance frequency. 
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IV. IMPLICATIONS OF THE EXPERIMENT 

We discuss here two important applications of the experiment described 

in the foregoing sections. One of these is the precise determination of 
13c f · th h h b t · f h · th 1H t resonance requenc1es roug t e o serva 10n o c anges 1n e spec rum, 

as described in Section II, C. Since the sensitivity of the technique does 

not depend on the magnetogyric ratio, Ys• of the S spins it potentially is a 

highly desirable method for the detection of low-y spin resonances . The only 

condition for being able to perform the experiment is that the doublet of the 

S-spectrum is well resolved,and under the reasonable assumption that J as well 

as the linewidth (due to field inhomogeneity) is proportional to Ys· it is 

clear that the magnitude of Ys does not impose any limitation on the 

applicability of the method. The other main application is the measurement 

of T2's associated with forbidden transitions, in our case T23 and T14 . 

Although we will not give an extensive treatment of the various relaxation 

mechanisms that possibly might prevail, we wish to illustrate the particular 

significance of these relaxation times by the following very simple model. 

Suppose that the spin relaxation of an AX system is caused by randomly fluctu­

ating local fields ~HI and 6Hs at the sites of the nuclei I and S, respectively, 

and let us assume that these fields are parallel to the external Zeeman field . 

Defining 6w1(t) = y1 ~HK(t) and 6ws{t) = Ys ~H 5(t), we then have for the 

fluctuating random Hamiltonian 

(39) 

Since only diagonal elements are involved in H'(t), the relaxation rates of 

the various off-diagonal density matrix elements are given by( 3) 
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1 - (H' - H' )2 
T Tmn - n m 

(40) 

where the bar denotes the ensemble average and T is the correlation time 

of the fluctuations. Hence, we find for this simple model 

1 - 1 - 1 - !J.w2 (L)S T 
2 - T12- T34- s 

(41) 

1 
123= 

2 2 (6w1 + 6w5 - 2uw1tJ.w5) T 

While the normal relaxation times depend on ~J.w 1 2 and 6w5
2, which measure the 

strengths of the fluctuating fields, the times T23 and T14 are in addition 

related to 6w1 6ws· Thus, measurement of the T2's of forbidden transitions 

provides information about the cross-correlation between the two local fields. 

One should be aware that this result strongly depends on the particular 

relaxation mechanism chosen. For instance, fluctuating fields perperdicular 

to the Zeemen field with very short correlation times give rise to uniform 

relaxation rates for all the off-diagonal elements of the density matrix, 

(L) = _1_ = _1_ = ~(6wl2 + l:J.ws2) T 
T2 S T23 Tl4 

(42) 
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Nevertheless, we feel that the physical picture emerging from the first 

example will have general implications, and that knowledge of relaxation times 

like T23 and T14 will be of help in the determination of the detailed nature 

of molecular motions, such as anisotropic tumbling. 

Furthermore, the phase interferometric technique is in general 

applicable whenever we have a system with two or . more inequivalent transitions 

having one quantum mechanical level in common. It can, for instance, be 

applied to systems consisting of two coupled nuclear spins, a nucleus and a 

free electron,or a nucleus with quadrupolar interaction. 
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FIGURE CAPTIONS 

Figure 1. Energy level diagram for an AX spin system. The a and s represent 

Figure 2. 

the two eigenstates spin up and spin down of the spin ~ particle. 

The first Greek letter represents the state of the 1H spin and the 

second represents the state of the 13c spin , so that two 1H transitions 

are shown with single arrows, while the two 13c transitions are shown 

with double arrows. The numbers 1, 2, 3, 4 are used to refer to 

the various energy levels or to the eigenstates to which they 

correspond. The relative Zeeman energies for 1H (56.4 t~Hz) and 
13c (14.2 Mhz) have been drawn to scale, but the effects of the weak 

coupling have been greatly exaggerated for emphasis. 

Radio frequency pulse sequence used. A n/2 pulse is app 1 i ed to both 
1H transitions. Then a selective pulse of 1 ength T iS applied to 

one of the 13c transitions. A n pulse is then applied to both lH 

transitions at a time ~T after the n/2 pulse, which creates a spin 

echo at a time 2~T after the n/2 pulse. The signal is recorded 

from 2~T(t = 0), defined to be the middle of the echo for Fourier 

transformation. 

only 

Figure 3. Proton phase interferometric $~ectra for different values of T. 

The doublet split by 195Hz is due to the 1H coupled to the 13c in 

those formate ions containing 13c. The small peak at the center of the 

doublet is due to the 1H in the formate ions containing spinless 12c, 

while the large peak on the far left is due to the small amount of 

1H impurity in the solvent. The five spectra are for values of 

T = 0, 28, 56, 84, and 112 msec, corresponding to values of 

w1T = 0°, 180°, 360°, 540°, and 720°. 
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Figure 4. Comparison of experimental and theoretical values of the amplitudes of 

the peaks of the proton doublet vs. the value of e =wiT· The 

amplitudes of the peaks are plotted on the vertical axis, normalized to 

the peak amplitude for the special case ofT = 0. The value of wiT 

( in degrees) is plotted on the horizontal axis. The triangles indicate 

experimental data for which the echo time (2~T) was 90 msec, and the 

circl~s are for 2~T = 280 msec. In all cases the same value of 

w1 = 112 rad/sec was used. 

A. This solid line corresponds to the theory for the value of the 

parameter R = 0. The dashed line represents the theory for 

R = .02. 

B. The solid line represents theory for R = .20, the dashed line is 

R = .18, and the dotted line is R = .22. 

Figure 5. Proton phase interferometric spectra (for e = W1T 
13c off-resonance effects. 

A. This spectrum was taken with the 13c irradiation about 4 Hz 

above the apparent 13c resonance, thus the doublet shows a phase 

error of about+ 40°. 

B. This spectrum was taken with the 13c irradiation about 6 Hz below 

the apparent 13c resonance, thus the doublet shows a phase error 

of about - 60°. 
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CHAPTER 5 

BASIC THEORY FOR THE EXPERIMENTS UTILIZING 

DIPOLAR OSCILLATIONS 
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I. Introduction 

Beginning with the cross-polarization decoupling experiments of Pines, 

et al. (l), there has been renewed interest in nuclear magnetic double resonance 

experiments. There had been, for quite a while in fact, interest in liquid 

NMR experiments utilizing CW techniques like the nuclear Overhauser effect 

(NOE}( 2) and spin-tickling( 3); however, this resurgence was focused on pulsed 

methods in solids which utilized the dipole-dipole interaction. 

Our particular thrust in this area was aimed at developing such pulsed 

NMR experiments which could yield geometrical and perhaps motional information 

in polycrystalline materials. Chapters 7 and 8 describe experiments which do 

just that by using the heteronuclear and homonuclear dipole interactions, 

respectively. (Chapter 7 uses systems containing 13c - 1H,and Chapter 8 

uses a 1H- 1H system.) Chapter 6 describes an important set of experiments 

which set the stage for the work of the subsequent two chapters. It is the 

purpose of this chapter to examine the theory, in detail,of the spin dynamics 

of the dipole-dipole interaction, in order to facilitate understanding of the 

experiments in Chapters 6, 7, and 8 of this thesis. 

II. Spin Dynamics of the Heteronuclear Dipolar Hamiltonian 

A. Theoretical 

By spin dynamics, we mean the actual time development of a quantum 

mechanical system. This means, essentially, that we are interested in the 

solution to the time-dependent Schroedinger equation rather than the time-

independent Schroedinger equation. So, since we want to solve this equation, 

let us first look at the actual Hamiltonian involved. 

Two spins interact via the direct dipole-dipole Hamiltonian 
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Yy Ys " ,.. 
H1s = - 3- (I S - 3(1 r) (~ . r) ) 

r 
(1) 

where r is the distance between the two spins, r 1 and Ys are the magnetogyric 

ratios of the spins I and S, ~ and ~ are dimensionl ess spin angular momentum 

operators, r is the unit vector pointing in the direction from I to S, and 

factors of 1r are ignored. Since we are doing these experiments i n a large 

magnetic field, H
0 

(about 14 kG) along the z-axis, we have a large Zeeman 

interaction 

(2) 

w~ere wi = yi H0 and w5 = Ys H0 . Since the dipolar fields are only on the 

order of lOG, the Zeeman interaction is much larger, and we keep only the 

secular part of HIS' that part which commutes with Hz . When lwi - wsl >> w0• 

where w0 is the dipolar frequency, we speak of "inequivalent" spins I and s. 

In this case, the secular or truncated dipolar Hamiltonian is 

Y1Ys 2 
Hrs(secular) = ~ (1 - 3 cos e) Iz sz (3) 

where o is the angle between r and the z-axis. From now on when we refer 

to Hrs• we will mean this secular Hamiltonian. If all we needed was to 

calculate the dynamics of this I S Hamiltonian, our job would be easy, but z z 
unfortunately it is not quite so simple. In the actual experiments we apply 

periodic and cyclic radiation to the spin system and observe it stroboscopically 

at certain points in time. To do the time development correctly, we use the 

Magnus formalism( 4). To lowest order of approximation, this is just average 

Hamiltonian theory( 5•6>. (We do not consider higher-order approximation in 
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this work, for the most part.) Thus, application of the radiation modifies 

the average dipolar Hamiltonian in the interaction frame of the radiation 

so that we no longer have just the form Iz Sz. 

We now consider the general forms of all such interactions for our two 

spins! and S. For simplicity of calculation, we will assume I =~and S = ~ . 

and thus all of our theory will only be applicable for spin ~ particles. Since 

we have two spin ~ partic les, we can describe our system with a set of four 

basis states, which we will choose as aa, af3, ea. and BB or 1, 2, 3, and 4. 

The a and ~ refer to states having a z-component of angular momentum of +~ 

and -~. and the first Greek letter refers to the I spin while the second refers 

to S. Thus, we can describe our system with a 4 x 4 density matrix. Any 

Hamiltonian that acts in this space can be written as a linear combination of 

a set of 16 rna trices. One can consider SU4 syrm1etry or many other schemes to 

choose these 16 matrices, but we feel that the easiest and most straightforward 

concePt is to consider the direct product symnetry of two SU2 groups and to 

incorporate the concept of irreducible tensors. This is essentially a 

sophisticated way of referring to a very obvious and simple idea which says 

that any Hamiltonian, Hgeneral IS' which operates on these two spins is of 

the form 

Hgeneral IS = a + I: b. I. + I: c. S. + I: d I S 
,. 1 1 . J J mn m n 

J mn 
(4) 

where i, j, m, and n are summed over values of 1, 2, and 3 corresponding to 

x, y, and z, and a, bi, cj, and dmn are constants. 

Note that we have a total of 16 constants which are the coefficients of 

the 16 matrices. A slight rewriting emphasizes the irreducible tensor idea 
(5) 

Hgeneral IS = a + b I + c S + e s + f (! X S) + g (IS) h 
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where a, b, c, e, f, g, and hare a set of 17 constants, of which only 16 - - -
are independent. The symbol (2~) in Equation 5 is understood to be the 

synrnetric dyadic 

I s~ + I sx IX s + I s 
IX s X ~ z z X 

X 2 2 

I s + I~ sx I~ Sz + Iz s~ (! ~) 
X ~ I s 

2 y y 2 (6) 

IX s + Iz s I s + I s~ z X ~ z z 
Iz s 

2 2 z 

By setting Equations 4 and 5 equal to each other we get the following relation 

di. =~(g. h. +g. h.) + 8 .. e + E c .. k fk 
J 1 J J 1 1J k 1J 

(7) 

Equation 5 shows the irreducible tensor character clearly because the I · S 

term will transform like the zerot~order spherical harmonic, the I x S term 

will transform like the first-order spherical harmonics, and the (!~) term will 

transform like the second-order spherical harmonics. 

All of this is fine for the consideration of the general form for 

our average Hamiltonian; however, it is not extremely useful in actual 

calculations. It seems as though a difficult calculation is not assuaged by the 

pressure of more sophisticated mathematics in this case. In addition, this 

formalisrn can obscure the physica l interpretation of the experiments somewhat. 

So we shall attack the problem of the spin dynamics of such Hami ltonians by 

explicit calculation with particular representative Hamiltonians. It turns 

out that any average Hamiltonian can cause really only four types of physical 

phenomena: 1) no behavior at all, 2) precession of magnetization, 3) linear 

oscillation of magnetization, and 4) transfer of magnetization between the 
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I and S spins. 

This first phenomenon is not as trivial as it might at first seem to be. 

In order to cause no change in the spin system, we need to have an average 

Hamiltonian in which all the constants except "a" of Equation 4 are zero. We 

focus in particular on making the dmn = 0. Since we are starting out with 

HIS « Iz Sz, this means we must manipulate the Hamiltonian in the interaction 

frame of the radiation to average to zero. This is the "decoupling" criterion 
. (o) 

in which HIS = 0, where the bar and the superscript zero indicate the zeroth 

order term of the Magnus expansion, which is the average Hami l tonian. In the 

experiments of Hartmann and Hahn(?), a well-known double resonance matching 

condition was introduced. This was essenlially just a condition which gave 
(o) 

H1s a particular form which caused mutual effects between the spins. The 

proper generalization of this condition is that the two spins will be coupled 
(o) ( ) 

whenever H ! 0 8 
IS 

The second phenomenon is precession of magnetization. For instance, 

suppose we have an average Hamiltonian of the form: 

iJ(O) = bl + cS 
n Z Z 

(8) 

To calculate the dynami cs of this situation we use the Liouville equation for 

the evolution of the density matrix viewed stroboscopically in the interaction 

frame (S, 6) 

p = (9) 

Since H(o) is not explicitly a function of time, the solution for p(t) is 

straightforward 

(10) 
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We have merely to use this to calculate the magnetization from the following 

equation 

<M(t)>= tr (p(t) M) (11) 

where ~1 = lx, IY, Iz, Sx, SY, Sz 

All of our initial states in these experiments correspond to spin 

systems either in thermal equilibrium, thus having magnetization along t he 

z-axis, or with some non-zero transverse magnetization, created by a very 

short r. f. pulse. Thus, we have, in general, for spin !z particles 

p(O) = 1 + K1 I + KI I + KI I + Ks s + Ks s + Ks sz X y y z X X y y X z z 
(12) 

Using Equations 10 and 12 we have 

p(t) = 1 + KI 
X 

(IX COS (bt) + Iy sin ( bt) ) 

+ KI 
y (Iy cos (bt) IX sin ( bt) ) 

+ KI 
z 

Iz (13) 

+ Ks (Sx cos (ct) + s sin ( ct) ) 
X y 

+ Ks 
y 

(Sy cos (ct) - Sx sin ( ct) ) 

So we then observe magnetization calculated from Equation 11 

<I (t) > <I > cos (bt) - < I > sin (bt) 
X X 0 y 0 

<I (t)> = <I > cos (bt) +<I > sin (bt) y y 0 X 0 

<lz(t)> = <lz>o 
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<S (t)> = <S > cos (ct) <S > sin (ct) (14) 
X X 0 y 0 

<S (t)> = y <S > y 0 
cos (ct) + <S > 

X 0 
sin (ct) 

<S (t)> = z <S > z 0 

where the subscript zero refers to values at t = 0. Thus we see the x- and 

y-magnetizations precess about the z-axis, but the z-magnetization is static. 

Any Hamiltonian of the form 

b•I+C S (15) 

will exhibit such precession of the I and S magnetizations. There is always 

some general transformation of coordinates which can bring it to the form 

of Equation 8. 

The third kind of phenomenon is linear oscillation of the magnetization. 

The Hamiltonian causing this behavior is of the form 

(16) 

In order to calculate the effects of these and later Hamiltoni ans, we rely 

heavily on the following relations which hold true only for spin ~particles 

IX 
2 I y 

2 = Iz 
2 = ~ 

I I = - I I '2 i Iz X y y X 
(17) 

I I = -y z I I = z y '2 i I X 

I I = -
Z X 

I I = 
X Z 

'2 ; Iy 
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We can use Equations 17 to calculate 

eiBtlzSz = cos (~ Bt) + 4 i 1
2 

S
2 

sin (~ Bt) (18) 

From Equations 10, 12, 16, and 18 we have 

p(t) = 1 + KI {IX COS ( ~ Bt) + 2 Iy S
2 

sin (~ Bt)} 
X 

+ Kl {ly cos (~ Bt) - 2 IX S
2 

sin (~ Bt)} 
y 

+ Kl 
z 

I z (19) 

... Ks {Sx cos ( ~ Bt) + 2 s Iz sin (~ Bt)} 
X y 

+ Ks 
y 

{Sy cos (~ Bt) - 2 sx I z sin (~ Bt)} 

+ Ks s 
z z 

Using Equationsl9 and 11 we get 

<1 (t)> X <I > cos 
X 0 

(~ Bt) 

<I (t)> y <I > y 0 cos (~ Bt) 

<I (t)> = z <I > z 0 
(20) 

<S (t)> 
X 

<S > X 0 
cos (~ Bt) 

<Sy<t)> = <S > y 0 
cos ( ~ Bt) 

<S (t)> z = <S > z 0 

So we see that the 1
2 

S
2 

Hamiltonian causes x andy components of I and S 

magnetization to linearly oscillate rather than precess, as was the case 
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for simply Iz or Sz Hamilt0nians. This can be explained in terms of a 

very physical model which we shall introduce later in this chapter. Any 

Hamiltonian of the form 

(21) 

can be brought by a transformation to the form of Equation 16; thus, all such 

Hamiltonians cause such oscillatory behavior. 

The fourth kind of behavior is transfer of magnetization between the 

and S spins. The Hamiltonian causing such transfer is of the form 

(22) 

In the course of the calculation we make important use of the fact that for 

spin ~ particles 

(23) 

and thus 

(24) 

From Equations 24, 22, 12, and 10, we find 

p(t) = 1 + KI {I cos 
X X 

(~ Bt) cos (~ Ct) + 21 s y z sin ( ~ Bt) cos (~ Ct) 

+ s X sin (~ Bt) sin (~ Ct) 21z sy cos (~ Bt) sin (~ Ct)} 

+ KI {ly cos (~ Bt) - 2 IX s sin (~ Bt)} 
y z 

(~ Ct)} 
(25) 

+ KI {lz cos ( ~ Ct) + 2 IX Sy sin 
z 



-78-

+ Ks {S cos 
X X 

(~ Bt) cos (~ Ct) + 2 s y I z sin (~ Bt) cos (~ Ct) 

+ Ix sin (~ Bt) sin (~ Ct) 2 sz I y cos (~ Bt) sin (~ Ct)} 

+ Ks {Sy cos (!; Bt) - 2 s Iz sin {~ Bt)} 
y X 

+ Ks {S
2 

cos (~ Ct) + 2 s Iy sin (!:2 Ct)} 
X z 

And then from Equation 11 we find 

<I · {t)> 
X 

<I > 
X 0 

cos (~ Bt) cos (~ ct) + <s > 
X 0 

sin (l:2 Bt) sin (!:2 Ct) 

<I (t)> y <J > y 0 
cos (!:2 Bt) 

<I (t)> = <I > cos {!;, Ct) z z 0 
(26) 

<s (t)> = <s > cos (~ Bt) cos (~ Ct) + <J > sin {!;, Bt) sin (!:2 Ct) 
X X 0 X 0 

<s ( t) > y 
<s > 

y 0 cos (~ Bt) 

<s (t)> = z 
<s > cos z 0 

(~ Ct) 

These equations show that a Hamiltonian of the form of Equation 22 causes 

x-magnetization to be transferred oscillatorily between the I and S spins, 

while y- and z-magnetization merely oscillates as in the third phenomenon. 

For the simple case of B = C, 

(27) 

and we observe that the magnetization oscillates between the I and S spins 
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with a frequency of B. 

A slightly more general form of the Hamiltonian 

(28) 

ultimately leads to 

<I (t)> =<I > cos (~ Bt) cos (~ Ct) + <S > sin (~ Bt) sin (~ Ct) 
X X 0 X 0 

<I (t)> =<I > cos (~ Bt) cos U2 Dt) + <S > sin (~ Bt) sin (~ Dt) y y 0 y 0 

<I (t) > =<I > cos (~ Ct) cos (~ Dt) + <S > sin (~ Ct) sin (~ Dt) z z 0 z 0 
(29) 

<S (t)> = <S > cos (~ Bt) cos (~ Ct) + <Ix>o sin (~ Bt) sin (~ Ct) 
X X 0 

<S (t)> = <S > cos (~ Bt) cos (!-~ Dt) + <I > sin (~ Bt) sin ('2 Dt) y y 0 y 0 

<S (t)> = <S > cos ( ~ Ct) cos (~ Ot) + <I > sin (~ Ct) sin (~ Ot) z z 0 z 0 

So we see that this form of the Hamiltonian causes oscillatory transfer of 

x, y, and z components of magnetization. 

These four effects represent the only types of behavior that a coupled 

spin~ system can exhibit. Of course, complications can arise when there 

are Hamiltonians of several different types acting simultaneously. These 

problems become very complicated and unless specific experiments warrant it, 

examination of such situations should be avoided. In the crucial experiment 

described in Chapter 7, the Hamiltonian is of the form: 

H(o) = B I S + C S + 0 I 
z z z z (30) 

This form is particularly simple because all the terms mutually commute. 

This means that we could compute the effects of all three separately, with 
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no real increase in work . Also, since we were observing transverse 

magnetization of the S spins, we were able to remove all the effects due to 

the C Sz term with a normal spin echo, leaving only the effects of the B Iz Sz 

term. 

An idea we plan to try soon is to use a phase-altered multiple pulse 

cycle to create a Hamiltonian of the form 

This will lead to 

c cos (~ (w+ w_ ) t) + d cos (~ (w+ + w_) t) 

w± = /(~ B ± D) 2 + E2 

c = 1 {E2 - ( (!2 B + D) - w+) ((~ B - D) + w_)} 2 

4 {w+2 - w+ (~ B +D)} {w_ 2 + w (~ B - D)} 

d = 1 - c 

For the limiting case that D O,Equation 32 becomes 

(31) 

(32) 

(33) 

This shows that if ~B >> E, then the magnetization oscillates with essertially 

the frequency !2B, and i f E »~B . then it does not oscillate. This 

i s possibly very useful because we would like to observe oscillations in the 

magnetization due to the B Iz Sz term. However, if we have one S spin and 

more than one I spin in our system, we can get destructive interference due 

to the various local fields the I spins create at the site of the S spin. 

But by choosing the size of E to be small compared to ~B for some of the I 
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spins and large compared to JaO for other I spins, we hope to essentially remove 

the effects of distant I spins while only slightly modifying the effects of 

close I spins in a predictable manner, thus giving us better "resolution" 

in determining dipolar frequencies in solids. 

The problem of oneS spin and more than one I spin is, in general, 

not an easy one to handle. The first two phenomena described earlier, 

decoupling and precession of magnetization, are straightforward to adapt to 

more than one I spin; however, the situation is more difficult for the 

oscillation and transfer phenomena. For a system of one spin of type S and 

N spins of type I, we consider the following average Hamiltonian 

This 

{o) N 

His I 
j=l 

B. I . 
J JZ 

s z 

leads to the fo 11 uwi ng 

<I. {t) > 
JX 

<I. > 
JX 0 

cos { ~ Bjt) 

<I. {t) > 
JY 

<I. > 
JY o cos (~ Bjt) 

<I. (t)> = <I. > 
JZ JZ 0 

N 
<S (t)> = <S > rr 

X X 0 j=l 
N 

<S (t)> <S > n 
y y 0 j=l 

<Sz{t)> <Sz>o 

cos 

{34) 

(35) 

So for the linear oscillating case, we see that each I magnetization oscillates 

only with its own dipolar frequency and "sees" only the S spin and not other 

I spins. However, the S magnetization oscillates as the product of cosines 
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of all of the dipolar frequencies, thus giving rise to sum and difference 

frequencies of the various dipolar frequencies present. 

The extension of the transfer phenomenon to more than one I spin is 

even more difficult. For the system of one S spin and two I spins consider 

the Hamiltonian 

(36) 

The resulting time development of the magnetization is very complex and we 

state the results only for the case 

(37) 
<1 1 > = <1 2 > = <I > xo xo xo 

In this case we find that 

B 2 
<I 1x(t)> <I > {1 + ~ 1 (cos (/s/ + B 2 t) - 1)} 

X 0 B 2 + B 2 2 
1 2 

B 2 
<12x(t)> <I > {1 + ~ 2 (cos (/B/+ B 2 t) - 1)} (38) 

X 0 B 2 + B 2 2 
1 2 

so the x-magnetization of both spins is transferred to the S spin, and the 

frequency of the transfer back and forth is ;ls1
2 + s2

2 The effect of two 

I spins is to mix the frequencies B1 and B2 in a complex manner. For three 

or more I spins and one S spin the situation gets pretty hopeless. It is 

for this reason that in the experiments of Chapter 7, we created a Hamiltonian 

of the form !
2 

S
2 

and not 1
2 

S
2 

+ IY SY. Use of the former allows relatively 
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simple interpretation of the dipolar oscillations , while use of the latter 

makes interpretation difficult if not impossible for a number of I spins. 

It is instructive to consider the meaning of the terms in Equations 

19 and 25 which are bilinear in I and S. These do not correspond to observable 

magnetization of either the I or S spin . For instance, the term 2 Iy Sz s in(~Bt) 

in Equation 19 corresponds to <Iy Sz> 1 0. But <lz Sz> is not equal to 

<ly><Sz>. This term corresponds to a correlation between IY and Sz, and 

essentially it means that there is a probability of finding the magnetization 

of the I spin along the y-axis while finding the magnetization of the 

coupled S spin along the z-axis. It is a type of cross-product ordering 

which essentially creates a certain right or left "handedness" between the 

I and S spins. As might be expected, this order is related to entropy, 

and the observable magnetization is also a kind of order which is related 

to entropy. For systems like ours in which we have only a few spins 

interacting and we do an exact quantum mechanical calculation, we must expect 

the entropy of the system to be constant. We can use the equation for the 

entropy, S, as a function of time 

S(t) = -kBoltzmann tr {p(t) ln(p(t))} (39) 

to show that only if these nonobservable terms are taken into account do we 

have cons tant entropy. So the entropy is maintained, but it is passed back 

and forth between the Zeeman order and the heteronuclear dipolar order. 

One can use this insight to create a very physical picture of what is 

occurring in these systems. We can understand an I S Hamiltonian by assuming z z 
that the I spin sees a small magnetic field along the z-axis created by the 

S spin and vice versa. The I spin precesses about this magnetic field, but 
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since at normal temperatures half of the S spins are in the "spin up" and half 

are in the "spin down" state, then half of the spins precess clockwise and half 

precess counterclockwise. This leads to a net linear oscillation of the 

magnetization due to rotating and counter-rotating components. Thus, there 

is a correlation between the I magnetization and the S magnetization, and 

it is precisely this correlation that the nonobservable terms of the density 

matrix signify. However, this linear oscillation arises from a statistical 

probability of having initial quantum states "up" and "down", as opposed to 

arising from a quantum mechanical probability, as the linear oscillations of 

Chapters 3and 4 did. Theoretically, one could cool down the spin system to the 

point where the high temperature Boltzmann approximations are no longer valid, 

and one could observe net precession as well as linear oscillation, since 

the rotating and counter-rotating components would no longer be present in 

equal measure. 

B. Experimental 

We now discuss briefly some actual pulse sequences which create the 

various types of Hamiltonians discussed in the theoretical section. We will 

consider two basic categories: 1) those which do not decouple I spins from 

each other, and 2) those which do decouple I spins from each other. If we 

want to see the undulations due to the various I-S Hamiltonians of the last 

section, we must have uncoupled I-S spin pairs. But if there 

are many such I-S pairs which are strongly coupled to each other via an I-I 

interaction, then the Swill interact with a many-body "bath" of I spins 

instead. This situation is not desirable if we are trying to measure the 

dipolar undulation frequencies due to a single I-S pair. Thus, in Chapter 6 

we did experiments of both types 1) and 2) in order to see the effects of this 
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1-1 decoupling. In Chapter 7 we did experiments decoupling I spins in order 

to accurately measure dipolar oscillation. Chapter 8 contains a homonuclear 

version of a dipolar oscillation experiment in which we did not decouple spins 

but merely chose a system having already isolated 1-I pairs. 

The first type of experiment we consider is that in which I-I interactions 

are not suppressed. Figure 1 shows several pulse sequences which could be 

applied to the I and S spins. Table 1 summarizes the various average 

Hamiltonians which result from application of these pulse sequences. Note 

that all of these cause either no change, linear oscillation, or oscillatory 

transfer as discussed in the theoretical section. One of the experiments 

of Chapter 6 involved transfer of polarization by the application of a cycle 

like that of Figure 1B to both I and S spin systems. 

The second type of experiment we consider is that in which I-I inter­

actions are suppressed. Figure 2 shows an eight-pulse cycle(g) applied to the 

I spins while any of five different cycles is applied to the S spins. This 

I cycle very effectively removes I-I interactions, thus allowing us to 

clearly see effects of the I-S Hamiltonian. One of the experiments in 

Chapter 6 involved the application of the eight-pulse cycle to the I spins 

while applying S3 to the S spins. This caused an oscillatory transfer of 

magnetization between I and S. The experiments of Chapter 7 involved 

applying S5 to the S spins. This meant merely applying the eight-pulse 

cycle to the I spins and doing nothing to the S spins. The resulting 

Hamiltonian can be transformed to the for1n Iz Sz, and thus it leads to linear 

oscillation of the magnetization. Another way to achieve similar results 

would be by application of S2. The sequence S4 is very intriguing because 

it would transfer any component of magnetization while suppressing I-I and 
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S-S interactions. We usually have not worried about suppressing S-S inter­

actions due to the normally low isotopic abundance of the S species. The 

application of Sl not only suppresses I-I interaction but also removes the I-S 

interaction. This could prove useful in an experiment similar to that of 

Chapter 7, except that we would observe the I spins instead of the S spins. 

This would mean that instead of conventional hete~onuclear CW decoupling, we 

would employ a pulsed decoupling like Sl, which at the same time suppresses I-I 

interactions. 

Figure 3 shows the first experimental evidence we found of dipolar oscil­

lation. We applied the eight-pulse cycle to the spins (19F) while doin g nothing 

to the S spins (207Pb), which is S5 of Figure 2. Figure 3 is the Fourier 

transformation of the dipolar oscillations of the 19F signal. Note that there 

are "sidebands" at the dipolar frequency. These represent 19F next to 207Pb, 

while the large center peak represents 19F next to spinless 206Pb or 208Pb. 

The pioneering CW off-resonance, magic-angle decoupling experiments of 

Hester, et al. (lO,ll)utilize an average Hamiltonian of the form: 

_(o) 
HIS = B (40) 

which can be transformed into the form 

_{o) 
B __!__ (I S HIS = + I Sy) ,16 z z y (41) 

Thus, we see that these experiments involve oscillatory transfer of and S 

magnetization, while at the same time suppressing I-I interactions. Later 

work of Hester, et al . (l2) done independently of and simultaneously with the 

dipolar oscillation experiments of this thesis, utilize a four-pulse cycle 

to suppress I-I interactions while maintaining an I-S interaction of the form 
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(o) 1 

i 15 = B -3 (I + I + I ) S 
Z X y Z 

(42) 

These experiments exhibit linear oscillation rather than oscillatory transfer 

of magnetization. 

The classic CW technique of cross-polarization developed by Hartmann and 

Hahn(l) and used to enhance signal-to-noise by Pines, et al. (1), is used in 

a great variety of experiments, including those in Chapter 7. In this technique 

the I-I interaction is not suppressed, and the average Hamiltonian is of the 

fonn 

(43) 

Thus, magnetization is transferred between the I and S spins, but no oscillations 

are seen because the I spins act as a "bath." The I and S magnetizations 

quickly reach a steady state value in which both spin baths have the same 

"temperature." Oscillatory transfer may be seen in rare cases where the I spins are 
isolated(l3). 

III. Spin Dynamics of the Hcmonuclear Dipolar Hamiltonian 

For the case of the homonuclear dipolar Hamiltonian, we consider spins 

I and S to be "equivalent." By this we mean that lw1 - w5 1 « wD' where 

Wo is the dipolar frequency, and wi and w5 are defined by Equation 2. For 

purposes of clarity,we now set I = I1 and S = r2• since both spins are of 

the same species. The secular part of the dipolar Hamiltonian now becomes 

2 

HII(secular) = ~ :~ (1 - 3 cos
2 

e) (3 I1z I2z - ~1 · !2) (44) 

If we allow this Hamiltonian to operate without application of any radiation, 

the average Hamiltonian is then of the form 

(45) 
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Starting with a density matrix of the form 

<l1x>o = <I > = <I > 2x o x o 
{46) 

we find the time development of the density matrix to be 

p( t) = 1 + Kx {(Ilx + 12x) cos (t Bt) + 2 (Ily 12z + 11z I2y) sin (~ Bt)} 

+ K y {(I ly + 12y) cos (t Bt) - 2 (I1x 12z + 11z 12x) sin (t Bt)} 

+ K {1 1 + 12 } z z z 

This finally leads to equations for the magnetization 

<11x(t)> <12x ( t) > = <lx>o cos (~ Bt) 

<lly{ t) > <12y( t)> <ly>o cos (~ Bt) (48) 

<llz(t)> <12z(t)> = <I > z 0 

So we see that the average Hamiltonian of Equation 45 leads to linear 

oscillation of magnetization, analogous to the 1
2 

S
2 

case for the heteronuclear 

experiments. Note also the nonobservable cross-product order terms in 

Equation 47. These terms are necessary to conserve entropy, and they indicate 

a correlation between the two spins 11 and 12, just as similar terms did for the 

case of I and S spins. 

(47) 
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Chapter 8 discusses an experiment in which a system with isolated I-I 

spin pairs was allowed to evolve under the influence of the average 

Hamiltonian of Equation 45. This homonuclear dipol ar oscillation was used 

to extract geometrical information in a polycrystalline solid, in an analogous 

manner to the heteronuclear dipolar oscillation experiments of Chapter 7. 
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Table 1. 
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Table of average Hamiltonians resulting from the application 

of various pulse cycles of Figure 1 to the I and S spins. The 

letters A, B, C, D, and E on the left refer to which cycle of 

Figure 1 is being applied to the spins. The frequency Bin the 

average Hamiltonians is just the normal dipolar frequency. 
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Table 1 

Sequence Applied Sequence Applied 
to I Spins to S Spins Average Hamiltonian 

A A 
B B 
c c ~B(I S + I S ) 
0 0 

z z y y 

E E 

A B ~BIZSZ 

B c 
~BIYSY 0 E 

B E 
l;oB(IzSz + IiY) c E 

B 0 l;,BI (S - S ) c 0 y y z 

A E l;,B(I + y Iz)Sz 

A c 0 A 0 
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FIGURE CAPTIONS 

Figure 1. 

Figure 2. 

Figure 3. 

Various pulse cycles to be applied to I and S spins, which do 

not suppress I-I interactions. The five cycles, A-E, are com­

posed entirely of goo pulses. The letters x and x, etc., refer 

to the phase of the r.f. pulse, with the x and x indicating 

pulses 180° out of phase. 

Various pulse cycles to be applied to I and S spins, which do 

suppress I-I interactions. Th~ eight-pulse cycl e, designated 

by I, is applied to the I spins while simultaneously one of the 

five cycles, S1-S5, is applied to the S spins. All pulses are 

goo, and the x and x, etc., refer to the phases of the r . f. 

pulses. The average Hamiltonians are also listed . 

Fourier transform spectrum of 1gF dipolar oscillation due to the 

effects of 207Pb in a single crystal of a-PbF2. The 19F-19F 

interaction was suppressed by applying an eight-pulse cycle to 

the 19F, and the 19F-207Pb interaction was maintained by applying 

no radiation to the 207Pb. The center peak is due to 19F near 

spinless 206Pb and 208Pb. The sidebands are due to the dipolar 

oscillation of the 19F near 207Pb. 
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X X X X X X X X 

A 11111111 

X X X X X X X X 

B 11111111 
- - - -

X X X X X X X X 

c 11111111 

X X X X 

D I I I I 
- -

X X X X 

E I I I I 
Fig. 1 
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X y y X X y y X 

I I I I I I I I I 
X X X X 

S1 I I I I 
(o) 

17 = 0 IS 

X X X X 

S2 I I I I 
fl{o) = li s 

IS 3 z z 

X X X X 

S3 I I I I 
17( 0 ) = _! ( I S + I S ) 

IS 3 z z y y 
- -

X y y X X y y X 

S4 I I I I I I I I 
f7( 0) = 1 (I s 

IS 1 z z +IS +IS) 
y y X X 

S5 f7(o) = l(I + I )S 
IS 3 x z z 

Fig. 2 
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CHAPTER 6 

EXPERIMENTAL HETERONUCLEAR DIPOLAR SPIN DYNAMICS USING 

MULTIPLE PULSE DOUBLE RESONANCE 

(Chapter 6 is essentially an article by M. E. Stoll, W.-K. Rhim, and R. 

W. Vaughan, entitled "Heteronuclear Spin Dynamics Using Multiple Pulse 

NMR Techniques". This article was published in the Journal of Chemical 

Physics, Vol. 64, No. 11, p. 4808, June 1, 1976.) 
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Polarization transfer between two spin systems, first demonstrated by 

Hartmann and Hahn (1), has been exploited recently (2) to enhance the signal­

to-noise ratio in detection of rare spin species, and such polarization 

transfer can have an oscillatory character containing structural information (3). 

It has been recently demonstrated by Hester, et al (4) that detailed structural 

information can be extracted if the resolution of the dipolar spectrum i s 

enhanced by suppressing the homonuclear dipolar interactions during the 

cross-polarization process. 

It is the purpose of this Communication to demonstrate that heteronuclear 

polarization transfer can be induced and controlled under pulsed NMR conditions 

in contrast to the above measurement which used continuous irradiation. In 

par·ticular, both a pulsed version of the original Hartmann-4ahn experiment 

is dem~onstrated, and a multiple pulse sequence is used to demonstrate simul­

taneous transfer of polarization and suppression of homonuclear dipolar 

interactions. The extension of the use of multiple pulse techniques into this 

domain furnishes an increased flexibility for design of double resonance 

experiments to furnish el ectronic, structural, and dynamical information. For 

example, the multiple pulse sequence used here has been the most effective 

means so far den~nstrated (5) to suppress homonuclear dipolar interactions. 

The results in Figure 1 i ndicate the capability of pulsed techniques to 

induce heteronuclear polarization transfer both with (Fig. lA and lC) and 

without (Fig. lB) suppression of homonuclear dipolar broadening. While 

extensive dipolar oscillations are not expected within 8PbF2 due to indirect 

Pb-F-Pb interactions, results of the suppression of homonuclear dipolar 

interactions are evident in these spectra. 
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For the decays illustrated in Figure lA, an eight-pulse cycle (6) 

(t 
1 

= 48 microseconds) was applied to the 19F (I spins) while simultaneously eye e 
applying a cycle of four 90° pulses to the 207Pb (S spins) within a 8PbF2 
single crystal (7). This four-pulse cycle consisted of applying 90°x pulses 

coincident with each x pulse of the eight-pulse cycle, and 90°_x pulses 

coincident with the -x pulses (all orientational information (x,y,z) refers 

to directions in the appropriate rotating reference frame). The zeroth order 

average Hamiltonian for the I-S dipolar interaction in the interaction 

frame of the rf is covariant to that of Hartmann and Hahn (1) and is: 

and thus one would expect only the x-spin polarization to be transferable 

from one spin system to the other. 

In order to produce a graphic demonstration of the versat i lity available 

with these techniques, a phase alteration (6,8) was introduced into the 

x-pulse of the eight-pulse cycle to cause the I magnetization to precess in 

the x-z plane. The transverse components of the magnetization parallel to 

the x-axis in both I and S spin systems are observed at the end of successive 

cycles and illustrated in Figure lA. As evidence of intimate and prolonged 

contact of the two spin species, the S spin polarization in the x-direction 

is observed to follow the component of the I spin polarization in the x-direction 

with a time lag of approximately 50 microseconds . (An analysis of this data 

is being used to furnish a precise characterization of the transfer process 

(9).) Note that while the oscillatory curve observed for the I spin 



-100-

polarization is due to the precession of the magnetization, the oscillatory 

behavior observed for the S spin system is due to an actual change in 

magnitude of the S spin polarization. 

Figures lB and lC allow one to compare the ''sharpness" of the double 

resonance condition with and without suppression of the homonuclear dipolar 

coupling. In Figure lB both spin systems were subjected to simultaneous 

0 0 0 0 ( . ) 90 x-t-90 x-t-90 x-t-90 x-t pulse cycles t = 8 m1croseconds , a pulsed 

analog of the original Hartmann-Hahn experiment . Polarizationwas initially 

produced along the x-direction in the I frame with a 90~ prepulse, and 

the signal was observed in both spin systems (along x-axis) only at the 

end of successive cycles. For the cases in which the double resonance 

condition is matched, one observes that the magnitude of the S spin polarization 

rises rapidly and then decays slowly as the I spin temperature rises . The 

behavior of the S spin polarization under a variety of mismatch conditions 

is illustrated and demonstrates the "diffuseness" of the double resonance 

criteria in this pulse analog of the Hartmann-Hahn experiment (1). In 

Figure lC the multiple pulse sequences described in the discussion of 

Figure lA were used with a phase alteration in the 90°Y pulses to produce 

an I spin locking field along the x-axis (6) and a pulse length alteration of 

the 90° (s-system) pulsesto produce an equivalent effect for the S spin 
-X 

system. One notes that an order of magnitude smaller mismatch of the 

double resonance condition is needed in the dipolar suppressed case to 

interfere with polarization transfer. In fact, the matching condition in the 

dipolar suppressed case is critical enough to require substantial care that 

experimental problems such as rf field inhomogeneity do not interfere with 

the polarization transfer. (Therefore, a single coil probe was used here.) 
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It has been demonstrated that polarization transfer can be induced and 

controlled under multiple pulse conditions. Thus. the full capability of 

the multiple pulse techniques, to control separately the form of various 

parts of the spin-spin interaction Hamiltonian, can be exploited to devise 

and investigate a broadened class of double resonance experiments. both 

involving and not involving polarization transfer. We are presently 

investigating the nature, interrelationships, and potential utility of the 

wide variety of experiments made possible with this approach (9). 
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FIGURE CAPTION 

F1gure 1. 

Time development of polarization for both 19F and 207Pb in 8PbF2. 

The magnitude of the observed magnetization in the x-direction of the 

respective rotating frames is plotted on the ordinate, with one unit 

representing the room temperature thermal equilibrium polarization. In 

part A the 19F polarization ( o) is shown with the 207Pb transferred 

polarization (~)with 19F homonuclear dipolar couplings suppressed and the 
19F polarization forced to precess. In part B the results of performing 

the pulsed analog of the Hartmann-Hahn experiment are plotted with the various 

symbols representing 207Pb polarization transferred with different degrees 

of mismatch of the double resonance condition: (o)- matched,(~)- 4.06 kHz 

mismatch, ( o) - 9.62 kHz mismatch, and (0) - 18.75 kHz mismatch. In part C the 

207Pb polarization transferred with homonuclear dipolar couplings 

suppressed is plotted for: (0)- matched and (..6)- 1.67 kHz mismatched 

conditions. 
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CHAPTER 7 

EXPERIMENTAL DETERMINATION OF STRUCTURAL INFORMATION IN 

POLYCRYSTALLINE SOLIDS USING 

HETERONUCLEAR DIPOLAR MODULATED CHEMICAL SHIFT SPECTRA 
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PART ONE 

(Part One is essentially an article by M. E. Stoll, A. J. Vega, and R. 

W. Vaughan, entitled ''Heteronuclear Dipolar Modulated Chemical Shift 

Spectra for Geometrical Information in Polycrystalline Solids". This 

article was published in the Journal of Chemical Physics, Vol. 65, No. 

10, p. 4093, November 15, 1976.) 



-107-
INTRODUCTION 

Means of using the heteronuclear dipolar interaction between two spin 

~nuclei together with chemical shift information to furnish geometrical 

information have been widely discussed in the literature in the past year or 

two(l- 4). It is the purpose of this paper to present and demonstrate a 

scheme for combining multiple pulse NMR techniques< 5•6) with dilute spin 

double resonance techniques(]) to furnish a particularly convenient scheme 

for determining local structural parameters near the dilute spin in solids 

including polycrystalline materials. The proposed scheme is an example of 

two-dimensional spectroscopy as recently discussed by Aue, et al.(S) and 

embodies concepts demonstrated by Hester, et a1~ 3 • 4 ) and discussed by Waugh(g) 

that one could obtain local structural information from the heteronuclear 

dipolar interaction by: (i) suppressing homonuclear dipolar couplings, and 

(ii) using the chemical shift tensor of a dilute spin species to orient the 

observed heteronuclear dipolar oscillations. 

It was pointed out by Muller, et al. (1) that one could observe oscillations 

in the polarization transfer between two unlike spinY, nuclei if a material 

were chosen in which the homonuclear dipolar interaction were reduced in size. 

VanderHart( 2) has reported the use of initial cross-polarization rates, even 

in a case where the homonuclear dipole-dipole interaction is large, to orient 

the carbon chemical shift tensor in the molecular frame. Hester, et al. (3•4) 

have more recently reported that resolved heteronuclear dipolar polarization 

oscillations could be obtained by reducing hon~nuclear dipolar broadening 

with off-resonance irradiation at the magic angle, and Waugh(g) has discussed 

advantages of using the effective field heteronuclear dipolar interaction rather 

than polarization transfer heteronuclear dipolar interaction. Stoll, et al. (10) 
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demonstrated that multiple pulse techniques could be used to remove homonuclear 

dipolar broadening while simultaneously allowing polarization transfer between 

spin systems. The use of multiple pulse techniques is particularly attractive 

in this regard since they give the experimentalists control over the effective 

form of the various spin Hamiltonians, and thus give substantial flexibility 

for designing a variety of schemes to extract information from solid state 

NMR spectra. We have investigated, both theoretically and experimentally, a 

variety of such schemes and will present this information comprehensively 

in another paper(ll). 

The experimental scheme being presented here: (i) suppresses homonuclear 

dipolar interactions with multiple pulse techniques using an eight-pulse cycle(6); 

(ii) allows the spin system to evolve under an effective Hamiltonian which has 

IzSz as the heteronuclear dipolar interaction and is, therefore, equivalent 

to the AX case of spin-spin coupling or J spectra; and (iii) refocuses the 

effects of chemical shifts and other static field inhomogeneities in the 

dilute spin system to allow separation of the time development due to dipolar 

oscillations. This latter step, in separating the time evolution due to the 

heteronuclear dipolar interaction from that produced by the spread in chemical 

shifts, makes the scheme particularly applicable to polycrystalline materials 

where otherwise the spread in the chemical shifts would prevent an accurate 

characterization of the dipolar frequencies. 

While this manuscript was in the process of being refereed, two additional 

papers have been published which relate to the work reported here: J. S. 

Waugh(l2) has discussed the use of the IzSz heteronuclear dipolar interaction, 

while Hester, et al. (IJ) have demonstrated a multiple pulse double resonance 

scheme for performing such experiments. This latter experiment(IJ) is 
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similar to the scheme proposed here but differs fundamentally in that no 

refocusing of the chemical shift effects in the dilute spin system is 

performed. 

THE MULTIPLE PULSE DOUBLE RESONANCE TECHNIQUE 

The multiple pulse double resonance scheme used here is illustrated in 

Figure 1 and can be separated into three sections. In the first, preparatory, 

period a transverse magnetization for the S (dilute) spin species is produced 

and any net magnetization in the spin system is destroyed (the destruction 

of the I spin magnetization is not theoretically necessary but is an 

experimental precaution). The S spin transverse magnetization is created 

here by a Hartmann-Hahn(l4 ) transfer of polarization from the I (abundant) 

spin system to make use of the signal-to-noise enhancement gained with th i s 

procedure, and the transverse magnetization in the I spin system is destroyed 

by turning off the I spin-locking field a millisecond or two before the 

initiation of the second, evolutionary, period. 

In the second period an evolution of the 1-S heteronuclear dipolar 

Hamiltonian is allowed to take place for a period, <, while simultaneously 

suppressing the abundant spin dipole- dipole interaction with an eight-pulse 

sequence{G). One notes that there are n0 rf fields on the S spin system 

during the period, <, in which the eight-pulse sequence is being applied. 

Thus, since the total rf satisfies the cyclic and periodic conditions necessary 

for the application of the average Hamiltonian formulatioJlS), one can consider 

the zeroth order Hamiltonians present (all spin lattice effects are being 

ignored here as well as homonuclear dipolar interactions among the dilute {S) 

spins). For the I spin systen1, only a small chemical shift and off-resonance 
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Hamiltonian exists (besides the H{o)) for a properly tuned cycle(6). 
IS 

H(o) 
ol 

a~w+w a.) 
= E 0 ZZl 

i 3 
(I . + I .) 

Xl Zl 
(1) 

while the S spin system is evolving under the off-resonance and chemica l shi ft 

Hamiltonian, 

H( 0 ) = r (t. w + w a J.) s . 
OS j o ZZ ZJ 

and the heteronuclear dipole-dipole interaction, 

where, 

(I . +I .) S . 
Zl Xl ZJ 

2 ( 1 - 3 cos 9 .. ) 
lJ 

An important point for later interpretation is to note that these zeroth 

(2) 

(3) 

order Hamiltonians all commute, and thus the effective time evolution that 

occurs is simple to predict. Note also t~at the scaling facto~ 6 >, a, appeari ng 

in the H~~) term, is identical with that appearing in the off-resonance 

Hamiltonian in I spin system. This provides a convenient means of experimentally 

determining the numerical values for a by observing spectra of the I spin sys tem 

as a function of the frequency offset, t. w. 

After the desired amount of dipolar evolution, T, has occurred, the 

eight-pu l se sequence is replaced by a simple decoupling field on the I spin 
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system, and this causes the heteronuclear dipole-dipole interaction to go to 

zero. The S spin system is still evolving, however, under its off-resonance 

and chemical shift Hamiltonians. The next step within this evolutionary 

period is to refocus the time development of the off-resonance and chemical 

shift Hamiltonians in the S spin system by the application of a 180° pulse 

to the S spin system, causing the production of a spin echo at a later time 

(the phase of the 180° pulse was chosen parallel to the initial cross-polarizing 

field so that one gets an echo of the Carr-Purcell-Meilboom-Gill type). 

The third period involves digitally recording the second half of the 

S system echo which provides the signal for further processing. 

Thus, the total net time evolution of the S spin system that has occurred 

at the point where data collection is started, t=O, is due to the heteronuclear 

dipole-dipole interaction, Equation 3, for a time period •· During the data 

collection period, t, however, only the off-resonance and chemical shift 

Hamiltonians are producing the time evolution of the S spin system. Thus, 

the data collected are easily interpreted since the heteronuclear dipolar 

information is in the initial amplitudes, and the chemical shift information 

is in the time evolution during the data collection time period, t. For the 

case of a single nearby I spin (applicable to both systems studied here), the 

S magnetization has the form: 

<Sx> 0:: 1: (cos nj ,) sin [ ( C1 j zz wo + ll w) t ] (4) 
j 

<S > 0:: 1: (cos nj ,) cos [{ojzz w
0 
+t~w) t] (5) y j 

nj = ~ (6) 
3/2 
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When the time decays of the magnetization are Fourier-transfonned, one obtains 

powder patterns containing the heteronuclear dipolar evolution as a modulati on. 

If the chemical shift powder patterns are assumed to be broadened by a Lorentzian 

broadening function and no broadening in the dipolar frequency spectrum i s 

assumed, one obtains for a dipolar modulated spectrum: 

where 

21T 1T 

f(w,·r) = f fcos [n(G,<jl)TJ{[w(O,<jl)- w] 2/w2 + 1}-1sino de dij> (7) 

ayHyC 2 
[1 - 3 {sin x sin o cos(<jl - w) + cos x cos e} J 

3/2 r 3 (8) 

where (ox, oy, o z) are the principal components of the S-chemical shih tensor, 

and (x. w) designate the polar angles of the I-S vector with respect to the 

principal axis of the chemical shift tensor. Further, w is the half width 

of the chemical shift broadening function. 

lhis expression was evaluated numerically by computer in order to generate 

the theoretical spectra discussed in the following sections of this paper. By 

collecting spectra for different values of the time, T, of the dipolar evolution, 

detailed geometrical information can be obtained. This includes orientation 

of the 1-S vector in the chemical shift principal axis system and a determinati on 

of the I-S vector length and, as is illustrated in some of the data presented 

here, information on the motion of the 1-S vector in the laboratory frame . 

This particular scheme has a number of advantages. Since no rf irradiation 

is on the S spins during the dipolar evolution, there is no rf matching condition 

which must be met and for which a mismatch could cause distortions(lO) (in fact, 

one should generalize the Hartmann-Hahn matching condition for pulsed measure­

ments such as these to the simple statement, 11i~) 1- 0). 
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Since the only remaining possible rf errors are those in the proton radiati on, 

these can be removed, or calibrated out, separately by observing the proton 

magnetization. (In fact, small errors in the proton irradiation will not distort the 

S spin spectra to any appreciable extent( 6•11 ). Finally, the form of an interaction 

Hamiltonian, H~~). which commutes with both the I and S Hamiltonians simplifies the 

interpretation of the data obtained and allows a very simple extension to 

systems involving additional simultaneous I-S interactions or such complexities 

as the presence of molecular motion. For example, since the Hamiltonians 

co~nute, additional I spins near the S spin result in the observation of 

dipolar frequencies which are simply sum and difference frequencies of the 

individual 1-S interactions. 

EXPERIMENTAL DETAILS 

The apparatus used is the one des igned for the pulsed polarization transfer 

experiments previously published(lO). It consists of a low frequency multipl e 

pulse spectrometer(l6) which has been altered by replacing the original probe 

with a single-coil probe which is simultaneously tuned for both protons 

(56 . 4 MHz) and carbon (14.18 MHz), and by the addition of rf electronics 

at the carbon frequency (a James Millan amplifier capable of 150 watts at 

14.18 MHz and a wideband Avantek receiver). Thi s single-coil probe design made 

it possible to have good H1 homogeneity (< 0.5%) and large H1 field for both 

carbon and proton frequencies (40-50 gauss) with relatively low power rf 

transmitters. 

Cross-polarization fields of 8.1 gauss on the protons and 33 gauss on 

the carbons were used, while a decoupling field of 20 gauss was applied to the 

protons. The proton-decoupling field was larger than necessary for decoupling 
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but was maintained at this high level to avoid matching the Hartmann-Hahn 

condition(l4) during the 180° pulse applied to form the carbon-13 echo. The 

multiple pulse sequence used is the eight-pulse sequence discussed in detail 

elsewhere( 6), and it was carefully tuned as described to keep error 

Hamiltonians{ 6) smaller than 200 Hz . The frequency-scaling f actor, a 

(a number close to unity), was determined by observing a proton line as a 

function ~f frequency offset, ~w. Since the dipolar frequencies encountered 

are large (over 20 kilohertz) care was taken to measure the small nonlinear 

dependence of the scaling factor, a, on the size of the off-resonance field. 

A 5% effect in 10 kilohertz, and this was incorporated into the spectra 

synthesis program as a calibration factor. 

Only absorption spectra are reported in the paper to conserve spacP; 

however, the dispersion spectra were available, and they did confirm 

the information obtained. A few comments on the procedure used to assure 

that phase and amplitude information would be comparable from spectrum to 

spectrum would appear to be in order, however. First, the 180° carbon pulse 

was set at a fixed delay ( greater than the longest T value desired ) from 

the end of the carbon cross-polarization pulse, and it remained fixed throughout 

the experiment. Then the precise point to begin digitization (t = 0) was 

determined by summing several adamantane(ll) decays taken at different offset 

frequencies (with T = 0) and adjusting the digitizationpointuntil no l i near 

phase shift appeared in the spectrum. The phase was then set to observe the 

absorption spectrum and not changed throughout the experiment. Samples 

enriched in 13c were used in this work, 15% for the benzene (one site/molecule 

@ 90%) and around 6% for the calcium formate. 

A cross-polarization time of 12 milliseconds was used on the benzene, 
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but it was not possible to completely remove the distortion in the spectra 

caused by benzene rings oriented at the magic angle, and this slight 

distortion is observable in the experimental spectra. In all cases, a cycle 

time of 50 microseconds was used for the eight-pulse cycle, and the proton 

frequency was on resonance. 

RESULTS AND DISCUSSION 

a. Benzene 

In order to experimentally test the concepts and techniques suggested 

above, experimental spectra were taken on a benzene sample where the proton 

serves as the abundant species and carbon-13 as the rare species. 

Figure 2 illustrates the results expected theoretically from applying 

the pulsing sequence described above to a benzene sample in its rotator phase, 

that is, in the temperature range where the molecule is spinning rapidly around 

its sixfold symmetry axis. The results are a function of two independent 

variables and form a surface in a three-dimensional space . In Figure 2 

two projections of three-dimensional plots are shown for the integration 

of Equation 7 for benzene in its rotator phase. This is a 

convenient frame of reference since single experiments (i.e., the collection 

of data as a function of t for a fixed T and Fourier transformed) produce sets 

of data points in the f-w plane corresponding to that value of •· The spectrum 

for T = 0 is thus the normal c13 chemical shift powder pattern for benzene. 

In this case of a benzene molecule spinning rapidly around its sixfold 

symmetry axis, both the dipolar and chemical shift tensors exhibit axial 

symmetry around the rotation axis, and the only parameters needed to specify 
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the full surface in Figure 1 are: the chemical shift components, ol and oil' 
the carbon-proton distance, r (1.09 ~). the chemical shift scaling factor, a(6) 

and experimental broadening functions. In order to be able to compare this 

theoretical plot with our experiments, a broadening function for the chemical 

shift axis was taken from a computer fit to a normal 13c powder pattern, 

and we assumed that only the nearest C-H dipolar interaction need 

be considered. The chemical shift scaling factor, a, was determined 

experimentally as described above from the proton multiple pulse spectra. 

Thus, the surface plotted in Figure 2 is fully determined. While the surface 

is complex, for the special case of benzene simple oscillations are observed 

if one takes planes in the f, ' pla~e for fixed w since the dipolar and 

chemical shift tensors have the same symmetry axis and map isomorphically onto one 

another. Experimental data were taken over the full range of T considered in rigure 2 

(600 microseconds), and the first half is shown in rigure 3 along with an 

expanded version of the bottom projection from Figure 2. The 

experimental three-dimensional plot in the top half of Figure 3 was obtained 

by simply connecting all data points with straight lines to their neighbors, 

and thus each intersection of two lines is a data point, and the ripple 

noted in the surface is a measure of the experimental scatter in the data. 

One notes that there is good quantitative agreement with the 

predicted spectra for the structural features appearing in the experimental 

data. A quantitative comparison can also be made by comparing the calculated 

and experimental data as plotted in Figure 4. In Figure 4 the spectra 

(Fourier transfonns of the time decays) for the various experimental values 

of ' are plotted beside the predicted spectra for the same '· Care has been 
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taken to be sure that the relative magnitudes of each of the experimental 

spectra have been reproduced quantitatively. Amplitude comparisons can be 

made between the corresponding experimental and theoretical spectra (i .e ., 

the theoretical spectra have been normalized to the experimental at only the 

, ; 0 spectra, and all other amplitudes are as predicted or as measured). 

Thus, one obtaios good quantitative agreement as well as qualitative agreement 

over the range of, considered in Figure 3 (0-250 microseconds). The only 

lack of agreement occurs in the portion of the spectra near w ; all' where a 

reduction in amplitude is noted which gets progressively worse as , gets 

larger until in the bottom spectra the last oscillation in the far right of 

the theoretical spectra is almost complet~ly absent in the experimental spectra. 

If one compares the re9ions corresponding to (w = all) in the 

projections of Figure 3, one notes that this corresponds to the reduced 

amplitude of the depression closest to the observer in the experimental 

3-D plot, by comparison with the theoretical 3-D plot. One notes that this 

corresponds to the region of the highest dipolar frequencies and might be 

expected to suffer from our assumption of a single C-H dipolar frequency 

before other portions of the spectra. 

This kind of quantitative comparison begins to fail at longer T values, 

and the amplitude of the oscillation in both wings of the spectra begins to 

decay below the predicted values until at , = 600 microseconds onl y the center 

third of the spectrum remains, as is indicated in Figure 5. The observed 

frequency of oscillations in this remaining center portion corresponds 

accurately to what is predicted but the amplitude has decayed to approximately 

half of what is predicted. It is to be noted that it is that portion of the 

spectra containing the smaller dipolar oscillations that has lasted the 
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longest, and there appears experimentally to be a broadening function on 

the dipolar frequencies proportional to their magnitude. The cause for this 

degradation at long times is presently under study , and it i s not yet clear 

whether it will be attributable to secondary C-H dipolar interactions, low­

frequency motion in the so lid benzene at this temperature (-90° C) or due to 

some broadening mechanism involving so-far-neglected interactions. 

It is clear, however, that an excellent agreement is obtained for shorter 

decay times and that this technique furnishes a potentially useful and accurate 

method for extracting geometrical information in polycrystalline solids. 

b. Calcium Formate 

Experimental and theoretical results were also obtained for calcium 

formate since it represents a more complicated situation than that found in 

benzene. There is still only a single carbon-proton vector to deal with, 

but one does not see the unique situation in benzene where the 

dipolar and chemical shift tensot'S have the same symmetry. However , the room 

temperature results obtained illustrate another potential use for these 

techniques in the study of molecular motion and its characteri zation. 

Ackerman, et al. ( 18 ) have reported values for the carbon-13 chemical 

shift tensors in calcium formate and found that there are two slightly 

inequivalent tensors. The polycrystalline powder patternsweobtained at 

room temperature were not compatible, however , with the reported results, 

ours giving a pattern 20% too narrow. This pattern was well fit with the 

powder pattern for a single tensor with the following princi pal values: 

o11 = -92, o22 = -59, o33 = +18, which give an anisotropy roughly twenty 

percent smaller than reported by Ackerman, et al. ( 18 ): o11a = -106, 
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a11b = -105, a22a = -61, a22b =-57, a33a = a33b = 24 ppm. Since 

the center of mass of the patterns reported here was similar to that 

of Ackerman, et al. (18), one could speculate that our echo spectra 

are exhibiting the effects of motional averaging of the chemical shift 

tensor at room temperature. Powder patterns were taken as 

the temperature was lowered to the minimum presently possible in our 

probe, -170° C; while the powder pattern grew broader, it did not reach 

the reported values of Ackerman, et al. (18). 

To observe what effect such molecular motion might have, theoretical 

spectra were calculated by using the fitted values of the chemical shift 

tensor and a broadening function from the conventional powder pattern (T = 0) 

and assuming a single dipolar frequency corresponding to a C-H distance of 1.12 ~. 

The lower portion of Figure 6 is a projection of the three-dimensional plot of one 

such calculation in which the least-shielded tensor component was assumed to 

be parallel to the C-H vector. The projection in the top portion 

of Figure 6 is the experimental data taken at room temperature, and one sees 

rather large qualitative differences between the two projections. 

These differences are illustrated in Figure 7, where the theoretical and 

experimental spectra for the same value of T are compared. We did a large 

number of simulations varying the orientation of the C-H vector and its l ength, 

attempting to fit the experimental pattern and could not do better than the 

spectra shown in Figure 7. In fact, one can make a simple argument to 

show that it will not be possible to fit this spectra with any realistic 

assumptions, so long as one ignores the molecular motion present. We have 

already assumed an unrealistically long C-H vector in the spectra calculated, 
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1.12 A, and no matter which direction we point the C-H vector, it will invert 

a portion of the powder pattern by the first observation point (T = 50 

microseconds). Since our experimenta l spectra have substantially larger area 

than the predicted spectra, they will not fit. Thus, one can , by using only the 

top two experimental spectra (T = 0 and T = 50 microseconds) from Figure 6, 

conclude that substantial molecular motion is present. 

Presently we are in the process of 

building into our theoretical synthesis program means to model such molecular 

motion ~nd hope to be able to fit a series of spectra such as shown in Figure 

7 to characterize the molecular motion present. 

SUMMARY AND CONCLUSIONS 

A double resonance, multiple pulse scheme has been proposed, and has 

been demonstrated, that will allow the extraction of geometrical, orienta­

tional, and motional information from polycrystalline chemical shift powder 

patterns. The particular scheme developed embodies concepts recently discussed 

by Hester, et al. (3•4) and has been designed and developed to so lve a number 

of problems: it allows increased signal to noise by first providing an initial 

cross-polarization period; it does not involve dipolar evolution with polarization 

transfer since such schemes as we can devise are sensitive to small errors and 

mismatch condition of the rf fields; it provides for a separate means of 

calibrating the chemical shift scaling factor; and it produces spectra in 

which the dipolar modulation appears in a particularly simple form for data 

analysis, and the requirements for rf fields on the S spin are the minimal 

required for nonnal cross-pola rization powder pattern experiments. As discussed 
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in the Introduction, while this manuscript has being refereed two papers 

appeared in print< 12•13) which relate to the work reported here, and in particular, 

the single crystal, double Fourier transform experiment described by Hester, 

et al. <13) has many of the advantages of the scheme reported here, although no 

attempt is made in that work(lJ) to refocus the chemical shift effects. 

The results reported here cl early indicate that the experimental scheme 

proposed for observing dipolar modulated chemical shift spectra can produce 

results in agreement with theoretical expectations. The rather drastic 

changes that occur in the spectra even for short times of dipolar evo lution, 

'• make it possible to orient C-H vectors in the chemica l shift frame accurately 

from polycrystalline powder samples and, even in cases where single crystals 

can be obtained, will provide an attl 'lCtive alternative to the laborious 

collection of rotation spectra. Since the dipolar modulated chemica l sh i ft 

spectra orient the I-S bond vectors in the chemical s hift principal axis frame 

in contrast to s ingle crystal rotation s tudi es whi ch orient the chemical shift 

tensor in the crystalline unit cell, two types of measurements can be used to 

supplement one another when detailed crystal structures are not available. 

This particular scheme shou ld find particu l arly fruitful application in 

areas of solid state chemistry where systems without long-range order (surface 

adsorbed species and polymers, for exampl e) require characterization of 

geometrical and el ectronic properties. 
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FIGURE CAPTIONS 

Figure 1. Schematic representation of the pulsing scheme used. 

Figure 2. Theoretical dipolar modulated 13c chemical shift spectra for benzene 

undergoing rapid rotation around its six-fold axis. The spectra 

were calculated by numerical integration of Equation 7. The height, 

or value, along the f axis corresponds to the intensity expected for 

a given value of the length of the dipolar evolution period, T, at 

a particular resonance frequency, w, in the adsorption spectrum. The 

surface is viewed from an angle of 45° away from the f axis and at 

-45° (top projection) and +45° (bottom projection) from the T axis. 

The lines of constant T are at 50 microsecond intervals, while the 

lines of constant ware at intervals of 3.45 ppm (corresponding to 

an experimental sampling rate of 50 KHz). 

Figure 3. Theoretica l and experimental (-90° C) spectra for benzene undergoing 

rapid rotation around its six-fo ld axis. Nomenclature is the same 

as in Figure 2, but results are only shown for T out to 300 micro­

seconds. The top spectra are a plot of the experimental data obtained 

by making straight-line connections between each data point and its 

nearest neighbor in both T and w. Thus, each intersection is the 

location of a single experimental data point. The theoretical 

calculation was done for the same points on the surface f (w, T) for 

which data were avai l able so a direct point-by-point comparison could 

be made. 

Figure 4. Sections through the surface f (w, T) for planes of constant T 

for both theoretical (left portion of figure) and experimental spectra 
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(right portion of figure) of benzene rotating rapidly around its 

six-fold axis. The values of T (in microseconds) corresponding 

to each spectra are: A,O; 8,50; C,100; 0,150; E,200; and F,250. 

The experimental and theoretical spectra were normalized at T = 0 

only, and quantitative compari sons can be made of the theoretical 

vs. experimental amplitudes in the remaining spectra. The horizontal 

scale is 3.45 ppm/point. 

Figure 5. The experimental spectra for benzene obtained with T = 600 micro­

seconds. The abscissa covers the same total range as the spectra in 

Figure 4 and each point i s3.45_ppm. 

Figure 6. Theoretical and experimental spectra for dipolar modulated 13c chemical 

shift of calcium formate. The lower spectrum r epresents the result 

of numerically integrating Equation 7, while the upper stereographic 

projection i s a plot of the experimental results produced by making 

straight-line connections between each data point and its nearest 

neighbor in both T and w. The scales are the same 

as in Figures 2 and 3 (50 microseconds between lines of constant T, 

and 3.45 ppm between lines of constant w). 

Figure 7. Sections through the surface f (w, T) on planes of constant T for 

both theoretical (left portion of figure) and experimental spectra (right 

portion of figure) for the calcium formate results in Figure 6. The 

values of T (in microseconds) corresponding to each spectra are: 

A,O; B,50; C,100; 0,150; E, 200; and F,250. The abscissa scale is 

3.45 ppm/point . 



<1> 
(/) ___, 
:J 
0.. 

co 
c 

~ 
-r--~ 

_t_~ 

-126-

I 
I 
I 
I 

: t 
, I ....., 
', I 

,- -• I 
--\..:- __ _,0 

, 
' 

, 
\ 

I _, 

' " 
1 

' 



-127-

Ffg. 2 



-128-

Fig. 3 
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PART TWO 

(The material in Part Two represents a continuation and update of the 

work in Part One. This material is drawn from an article by M. E. 

Stoll, A. J. Vega, and R. ~J. Vaughan, entitled "Structural Information 

in Polycrystalline Systems Via Dipolar Modulated Chemical Shift 

Spectra". This article was puhlished in the Proceedings of the XIXth 

Congress Ampere, p. 429, Heidelberg, 1976.) 
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I. INTRODUCTION 

In Part Two of Chapter 7, we present the results of a continuation of 

the work of Part One. The nature of this additional work is largely theo­

retical, meaning that we have attempted to improve our understanding of the 

data taken in Part One, and no new experiments were performed. Although the 

results of the benzene studies in Part One are encouraging, the agreement 

between theory and experiment still is not totally satisfying. So in this 

section we consider the effects of a system with one S spin and more than 

one I spin, with the goal of getting better experimental and theoretic~l 

agreement. Since we were using benzene enriched to 90% at a single site, 

is a good approximation that we have only one s( 13c) spin in our system. 

There are a total of six I(1H) spins in a ring, however, and the inclusion 

it 

of the effects of all six changes the theoretical spectra substantially from 

those of Part One, which include only the effects of the nearest neighbor I 

spin. These new calculated spectra agree both qualitatively and quantiti­

tatively with experimental results of Part One. It is crucial that we have 

confidence in the validity of the heteronuclear dipolar modulation technique, 

because we can then speak with more authority in the case of the calcium 

formate which does not exhibit good agreement at all between theory and 

experiment. 

A second important aspect of the dipolar modulated chemical shift 

spectra is explored. By merely determining the areas of the series of 

spectra with different periods of modulation time, '• one can determine the 

I - S bond distance, although one then loses all orientational information. 
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We present theoretical and experimental comparisons of the areas of such 

modulated spectra in benzene and calcium formate. 

II. Effects of Six Protons on 13c Dipolar l1odulated Spectra in Benzene 

Since we are using the experimental results of Part One of this chapter, 

we refer the reader to that section for the details of the experiment. 

Equation 3 of Part One sh~~s that the I - S average Hamiltonian during the 

period of dipolar evolution, T, is of the form IzSz. We know from the dis­

cussion of Chapter 5 that such a Hamiltonian causes linear oscillation of the 

magnetization. This is reflected in Equations 4, 5 and 6 of Part One, ~hich 

show the S magnetization to be linear oscillating with a modified dipolar 

frequency. We now take into account that there are in fact six spins in 

the benzene, and not just one. In order to do this we refer to the theoret-

1cal discussion of Chapter 5. He recall that Equation 35 of Chapter 5 shOI'Ied 

that the effect on the S magnetization of more than one I spfn was to cause it 

to oscillate as a product of cosines, each I spin contributing one cosine 

factor. Thus rather than exhibiting a single dipolar frequency, the S mag­

netization oscillates with sums and differences of all the various I - S 

dipolar frequencies. We can then include these effects by modifying Equations 

4, 5 and 6 of Part One to read 

(1) 
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aB 
n • 

j 

(2} 

(3) 

where the subscript j refers to the S spins, and the subscript i, running 

over the values 1 through 6, refers to the six I spins on the same benzene 

ring. 

Figure 1 shows a comparison of the experimental data with the results 

of theoretical calculations based on Equation 1, 2 and 3 of Part Two and 

Equations 7, 8 and 9 of Part One, for heteronuclear dipolar modulated 

chemical shift spectra of benzene in its rotor phase near -9o•c. The agree­

ment is both qualitative and quantitative. Figure 4 of Part One shows a 

comparison of experiment and theory, taking only the nearest I spin into 

account. Note that forT c 250 ~sec, Figure 4F, there is already substantial 

discrepancy. However, for the case of all six I spins considered, Figure 1 

of this section shows good agreement for times as long as T = 500 sec. These 
0 

theoretical plots were based on the accepted value of 1.09A for the C-H bond 

length, as well as other accepted geometrical constants for the benzene ring. 

The plots were made with just two adjustable parameters, the ultimate line­

width (the parameter w of Equation 7 of Part One) for various isochromats 

summed to get the powder pattern, and the normalization of the spectra. These 

two parameters were fixed by the spectra for T = 0, and there are no adjustable 

parameters for the theoretical spectra for T>O. We feel that these results 

confirm the validity of the heteronuclear dipolar modulation technique. 
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Figure 2 shows a comparison of theoretical dipolar modulated chemical 

shift spectra for benzene with only one I spin included (left side) and with 

all six I spins included (right side). The top and bottom are just different 

views of the same spectra. These plots are similar to the ones found in Part 

One of this chapter. Note that the effect of the extra I spins is to "wash 

out" some of the detail of the spectra by making the valleys and troughs not 

as deep and the peaks and ridges not as high. In general the details are not 

as pronounced. This can be understood as the many sum and difference dipolar 

frequencies begin to destructively interfere for longer values of T, thus 

leading to the greatest discrepancies in the two spectra for the longest 

values of T. 

III. Areas of Heteronuclear Dipolar Modulated Spectra 

It is a well-known fact that the area of a Fourier transform (FT) 

frequency spectra is proportional to the size of the corresponding time signal 

at t = 0. Thus we can see from Equations 1, 2 and 3 that the area, A, for our 

spectrum should be 

6 
A(T) a: r n cos(n .. T) 

j i : 1 Jl 
{4) 

By normalizing our areas to the area for T : 0, and by assuming an isotropic 

distribution of crystals in our sample, we get 

(5) 
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where the i refers to the various I spins, and the j has been dropped 

because it is now implicit in the sum over all solid angles. The sineded~ 

is just the usual differential element of solid angle. 

Figure 3A shows experimental and theoretical comparison of this area 

ratio in benzene as a function of T. The solid line is the area ratio from 

Equation 5 taking all six protons into account, while the dashed line is the 

theoretical area ratio including the effects of only the nearest proton. 

The experimental points seem to fit the six-proton theory very well. Note 

that for values ofT greater than 500 usee, we expect no net area. This does 

not mean that we cannot see a spectrum anymore, but it does mean that the 

spectrum will have equal amounts of positive and negative area. 

By examining Equation 5, we see that observation of the area ratio 

yields no orientational information because it is all integrated out. 

However, the answer still depends strongly on the internuclear C-H distance • 
• The theoretical plots in Figure 3A used a C-H bond length of 1.09A. If one 

does not have isotropically distributed crystals, then one measures the 

appropriately weighted average 

So actually, even in our isotropic case we really measured the average 

< 1 > 
~ 

(6~ 

(7) 

Thus we actually determine a measure of the bond length by finding the 

quantity in Equation 7 from the area ratio. This quantity may be very sen-
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sitive to thermal expansion and could conceivably be used to study changes 

in bond length as a function of temperature. 

Figure 38 sho~1s the theoretical and experimental area ratios for 

calcium formate. The solid line corresponds to the accepted value of the 
0 0 

bond length, r, of 1. 09A, while the dashed line is for r = 1.19A. Neither 

of these curves fits ~1e 11. In fact, one can shm~ that there is no va 1 ue 

for r which will fit well. We can rule out the effects of other I spi ns as 

a source of this enigma by noting that in Figure 3A the result of several I 

spins is to cause the area ratio to damp out much more quickly as a function 

of T. But Figure 38 shows that the experimental area ratio for T = 250 ~se c 

is still quite large, to~us indicating that there is little clestt·uctive inter­

ference and hence only one important I spin . (Note: we have plotted the 

benzene and calcium formate data with T scales differing by a factor of two. 

We did this because the spinning benzene rings reduce the dipolar interacti on 

by a factor of two.) 

IV. Conclusion 

From the close agreement between theory and experiment of the benzene 

dipolar modulated spectra and their area ratios, we conclude that the dipol ar 

modulation technique is sound and can be used as a tool to measure bond an gl es 

and bond distances in polycrystalline solids. Our total failure in calcul­

ating the calcium formate spectra and area ratios, even including effects of 

other I spins, seems to indicate that the suspicions we raised in Part One of 

this chapter are correct. We assume that there is some molecular motion 
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causing major changes in the dipolar modulated spectra. We hope that 

further work on this anomaly will prove that these techniques can be very 

useful in the determination of molecular motions in solids. 



Figure Captions 

Figure 1. 

Figure 2. 

Figure 3. 
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Experimental (left) and theoretical (right) heteronuclear 

dipolar modulated chemical shift spectra in benzene, taking 

all six protons into account. The spectra are for values of 

the dipolar modulation time, T, of 0, 100, 200, 300, 400 and 

500 sec from top to bottom. Each channel in the experimental 

plots is 3.45 ppm for the horizontal scale. 

Calculated dipolar modulated chemical shift spectra comparing 

one-proton theory (left) with six-proton theory (right). The 

top and bottom represent two different views of the same 

spectra. Each figure incorporates spectra with values of T 

from 0 to 600 ~sec at 50 ~sec intervals. These pseudo 3-di­

mensional plots are similar to those in Figures 2, 3 and 6 of 

Part One of Chapter 7. 

Theoretical and experimental area ratios of dipolar modulated 

chemical shift spectra as a function of T, in (A) benzene and 

(B) calcium formate. (A) The solid line is the six-proton 

theory and the dashed 1 i ne is the one-proton theory. (B) 
0 

The solid line is for the C-H bond 1 ength, r = 1.09A. The 
• 

dashed line is for r = 1.19A. Both these curves are for a 

one-proton theory. 
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CHAPTER 8 

EXPERIMENTAL DETERMINATION OF STRUCTURAL INFORMATION IN A 

POLYCRYSTALLINE SOLID USING 

HOMONUCLEAR DIPOLAR MODULATED CHEMICAL SHIFT SPECTRA 

(Some of the material in Chapter 8 is drawn from an article by M. E. 

Stoll, A. J. Vega, and R. W. Vaughan, entitled "Structural Information 

in Polycrystalline Systems Via Dipolar Modulated Chemical Shift 

Spectra". This article was published in the proceedings of the XIXth 

Congress Ampere, p. 429, Heidelberg, 1976 . The rest of the material in 

Chapter 8 is taken from an article being prepared for publication.) 
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I. Introduction 

In this chaoter we present the results of a homonuclear dipolar modu­

lated chemical shift experiment which detennines geometrical parameters of 

trichloroacetic acid (TCAA) from a polycrystalline sample. This experiment 

is the homonuclear analogue of the heteronuclear dipolar modulated chemical 

shift experiment of Chapter 7, and thus the motivation is also analogous. 

We would like to have a method for determining structural parameters without 

the necessity of having a single crystal sample and accumulating many 

rotation spectra. To achieve this goal we make use of the orientationally 

dependent dipolar interaction to modulate the conventional high resolution 

chemical shift po1~der pattern. By computer simulations of the spectra for 

various parameters, we are able to determine a proton-proton bond length and 

its orientation with respect to the principal axis chemical shift reference 

frame. Unlike the exoeriments of Chapters 6 and 7, we do not suppress any 

dipolar interactions during the n~dulation period . We instead rely on the 

natural crystal structure to provide us with the necessary dipolar structure 

to see long- lived dipolar oscillations. This is s imilar to the work of 

Mueller, et al. (l), in which transient oscillations in 1H-13c cross polar­

ization experiments in ferrocene were seen only because of the high degree 

of natural fine structure in the dipolar spectrum. 

The spin dynamics of the relevent average Hamiltonian was discussed in 

Chapter 5, in the section dealing with the homonuclear dipolar Hamiltonian. 

To aid in the understanding of the details of our experiment, we shall refer 

the reader to that section. 
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II. Experimental 

Trichloroacetic acid (CC1 3COOH) is known to dimerize in the solid state. 

This leads to 1H (proton) pairs which are well isolated, and Goldman fi rst 

reported seeing well-resolved dipolar split doublets in the proton NMR 

spectra of single crystals of TCAA (2 ). The high degree of isolation of the 

I - I pairs ensures that the normal polycrystalline proton NMR powder pattern 

will be rich in detail also. Figure 1 shOI>~S a Fourier transform (FT) 

spectrum 1·1e obtained from a normal free-i nduction decay (FlO) of a powdered 

sample of TCAA. The spectrum is a classic doublet, axially symmetric tensor 

powder pattern {3), and the crispness of outer shoulders indicates the high 

degree of isolation of the proton pairs. 

In Figure 2 we show a diagram of the relevant part of the TCAA solid 

structure. The ring formed by the two carboxyl groups is flat to within 
• 

• OlA. Hydrogen bonding between the t1-10 carboxyl groups is responsi ble for 

the dimerization. These hydrogen bonds are shown schematically by dotted 

lines. The splitting between the peaks in a spectrum like that of Figure 1 

is 

{1) 

where 6v is the splitting (in Hz), y 1 is the proton magnetogyric ratio. and 

r is the proton-proton distance. From Equation 1 and Figure 1 we conclude 

that r = 2.56 ± .04A, in agreement with the literature {3). So from the 

standard FT spectrum we can already determine the I - I separation, and in 
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order to be useful, our homonuclear dipolar modulation experiment must give 

us additional information. 

In Figure 3 we show schematically the r.f . pulse sequence applied 

during the dipolar modulation experiment. First, a transverse proton magne-

tization is created by the application of a 90° pulse. A period of time, T, 

follows in which nothing is done to the I spins. During this dipolar evolu­

tion period, the I - I pairs are strongly coupled by the dipole-dipole 

Hamiltonian. At time t = 0, we apply a standard eight-pulse cycle (4) which 

uses the techniques of coherent averagin~ 5~o remove the I - I dipolar inter­

action. By viewing the magnetization stroboscopically at the frequency of 

the eight-pulse cycle, we are able to acquire a signal which we Fourier 

transfonn to yield a solid state high resolution chemical shift powder 

pattern. We then collect these FT spectra for various values ofT. Figure 

4 sh~~s just such a series of spectra. The number on the spectra are the 

values ofT in units of 4.17 ~sec, so the last spectrum has had a dipolar 

evolution time of almost 300 ~sec. The eight-pulse cycle time was 50 ~sec. 

During the period T, the total average Hamiltonian that is acting on 

each proton pair is 

iT {O) = 8(31 I - !
1
·I2) + t::.w1I + t::.w2I 

12 2z - z1 z2 

2 

B = l~ (1- 3 cos2e) 
2 r" 

(2) 

where factors of~ are ignored, !
1 

and ! 2 are the dimensionless spin angular 

momentum operators for the two protons; B is the angle between the proton-
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proton vector,~· and the z-axis, and ~w1 and ~w2 are the off-resonance 

frequencies. We note that the off-resonance terms commute with the dipolar 

term. This is crucial because it means that the developments due to each 

can be separated. Although we did not do so, one could, in principle, 

refocus the effects of the off-resonance Hamiltonian with a short 180° pulse 

placed at~ T. This could be very important if the chemical shift anisotropy 

were large and the inherent signal-to-noise were small, because without re-

focussing, only a fraction of the proton magnetization remains a time t = 0. 

Since neither of these was a problem for us, we did not use such a spin echo. 

Linear phase effects in our spectra resulting from the off-resonance 

Hamiltonian not being refocussed ~~ere calibrated and compensated for, by 

empirically measuring the proper phase corrections in proton H20 spectra 

taken off-resonance by various amounts, for each value ofT. Thus we can 

confine our attention to only the dipolar term 

according to Equation 45 of Chapter 5. 

(3) 

~quation 48 of Chapter 5 shows that this Hamiltonian leads to linear 

oscillation of the magnetization at the frequency 3 B/2. As in Chapter 7, 

we synthesize a theoretical powder pattern by numerically sun~ing the pattern 

from a series of Lorentzian broadened isochromats, representing an isotropic 

distribution of crystals. The equation for the actual theoretical spectrum 

is 



-150-

f(w, T) (n(e, <Ph) (4) 

where we have 

(5) 

x {1 - 3(sin x sin e cos (~ - ~) + cos x cos e) 2} 

and also 

where a is the empirically detennined off-resonance scaling factor of the 

eight-pulse cycle (6), 6w is the off-resonance frequency, w0 is the Lannor 

frequency of the protons, (ax, ay' az) are the principal components of the 

proton chemical shift tensor, (x, ~) are the polar angles of the I - I vector 

with respect to the chemical shift frame, and (e, ¢) are the polar angles of 

external magnetic field, also in the chemical shift frame. The parameter w, 

in Equation 4, is the half-width of the Lorentzian broadening function. 

From symmetry we know that the chemical shift tensors of the two protons 

(see Figure 1) are identical and that these protons have the same local 
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environment. Thus we have identical spectra from each of the two I spins. 

Ill. Results and Discussion 

Using Equations 4, 5 and 6, we have synthesized theoretical spectra 

for comparison with experimental spectra. Figure 5 shows such a comparison 

for spectra corresponding to value ofT= 1, 7 and 10 units of 4.17 ~sec. 

The agreement is quite close, and all spectra used the values for the para­

meters of Equation 4, 5 and 6 of x = 76• ± 1•, w 22•± 5•, and (ox, cry, oz) 

= (-21.8, -18.2, -.9) ppm. with respect tQ TMS. 

We feel that these results confirm the validity of the homonuclear 

dipolar modulated chemical shift technique. By using it 1·1e have determined 

the orientation in the chemical shift frame of a proton-proton vector in a 

polycrystalline material. This type of experiment could prove very useful 

in certain metallic hydrides or in other samples which have a small group of 

isolated spins. 

Using the dipolar modulated experiments, we can determine, from a powder, 

some information about the relationships of the molecular frame and the 

chemical shift frame, ;.e., internuclear vector angles and lengths. Single 

crystal rotation experiments can provide information about relationship of 

the crystallographic frame to the molecular frame, however the presence of 

more than one site can l ead to ambiguities. By using the ti'IO techniques in 

tandem, one should be able to resolve some of those ambiguities. 
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Figure Captions 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 
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Fourier transform of proton free-induction decay in poly-

crystalline trichloroacetic acid. Each horizontal channel 

represents 488 Hz. 

Diagram of carboxyl groups of dimerized TCAA. The hydrogen 

bonds are represented by dashed lines. The distances shown 
• are in A. 

Schematic diagram of r.f. pulse sequence used. A 90• prepulse 

is given and fol101~ed by the period of dipolar evolution, T. 

From time t = 0, the eight pulse cycle is applied to the 

protons to remove the homonuclear dipolar interaction. 

Homonuclear dipolar modulated proton chemical shift spectra 

in polycrystalline TCAA. The numbers indicate the length of 

dipolar evolution time, T, in units of 4.17 ~sec. The spectra 

on the right have been vertically magnified for convenience. 

On the horizontal axis, each channel represents .71 ppm. The 

proton resonance was at 56.4 M Hz. 

Experimental (points) and theoretical (solid) TCAA com-

parison of homonuclear dipolar modulated chemical shift spectra. 

The numbers represent values forT in units of 4.17 ~sec. On 

the horizontal axis, each channel is .71 ppm. Spectra for 

T = 7 and T = 10 have been vertically magnified by factors of 

2 and 5, respectively. 
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CHAPTER 9 

EXPERIMENTAL DETERMINATION OF THE 13c CHEMICAL SHIFT TENSOR IN 

K2Pt(CN)4Br0. 3·3H20 USING 

HETERONUCLEAR DIPOLAR AND QUADRUPOLAR INTERACTIONS 

(Chapter 9 is essentially an article by M. E. Stoll and R. W. Vaughan, 

R. B. Saillant and Terry Cole, entitled "13c Chemical Shift Tensor in 

K2Pt(CN)4Br0. 3·3H2o ... This article was published in the Journal of 

Chemical Physics, Vol. 61, No. 7, p. 2896, October 1, 1974. ) 
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13 We wish to report measurement of the C chemical shift tensor within 

K2Pt(CN) 4Br0 •3 ·3H20. Because of the anisotropy in its transport 

properties (it behaves as a one-dimensional conductor) this compound has 

been of considerable interest and has been the subject of numerous 

investigations (1). Controversy still exists over the mechanism 

responsible for _the high conductivity in materials of this type, and 

knowledge of the carbon chemical shift tensor of the cyanide ligands can 

furnish information about the electronic structure of the platinum complex . 

In addition, although recently developed NMR techniques are being presently 

used to measure carbon chemical shift tensors in solids (2,3), there have 

been no reported measurements of transition metal complexes. The results 

repor.ted here furnish information on the anisotropy in the electronic 

structure of the cyanide in this square planar platinum complex and can be 

13 compared, for example, with measurements of the C chemical shift tensor 

in HCN. 

In order to have sufficient sensitivity for conventional pulsed NMR 

studies, single crystals of the compound were grown from cyanide 607. 

13 enriched in C by a process previously reported (4). Crystals grown by 

this method have been extensively analyzed and are well characterized (5). 

Spectra were obtained by conventional pulsed NMR at 14.2 ~illz with some 

signal averaging <~ 500 scans per spectra). The crystal orien~ations were 

determined from the anisotropic optical properties of the crystal along 

with the NMR spectra. 

X-ray studies by K. Krogmann and H. D. Hausen (6) have characterized 

the structure of this compound, and Figure 1 schematically illustrates the 

relevant part of the structure and identifies the orientations of the 
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coordinate systems used in this work. Due to a high degree of symmetry at 

each carbon site, one can fix the orientation of the principal axis of the 

chemical shift tensor (7) as indicated in Figure 1. The o11 axis is taken 

parallel to the C-N bond axis, o
33 

is parallel to the Pt-Pt axis , and o22 

is perpendicular to both o11 and o33 • The square planar platinum 

complexes are stacked in columns with the Pt atoms on the column axis to 

produce the solid structure. Each alternate layer, i.e. platinum complex, 

is rotated 45•, and since the crystal structure i s tetragonal, there are 

two inequivalent carbons. K. Krogmann and H. D. Hausen (6) report C-N 

distances of 1.19 + 0.12 A for the cyanides parallel to the a or b axes and 

• 1.13 + 0.12 A for those at 45• angles to the a and b axes. It was not 

possible to detect any differences in the chemical shift tensors of the two 

carbons, and analysis of the ~ffi spectra yields an effective C-N distance 

• 
of 1.14 ~ 0.01 A, ignoring possible spin-spin interactions. 

The ~ spectra exhibit, in addition to the desired chemical shift 

tensor, the effects of dipolar interactions between the various nuclei with 

non-zero magnetic moments. Since the 13c-14N and 13c-195Pt nearest 

neighbor dipolar interactions are by far the largest dipolar interactions 

present, they were treated explicitly and all other dipolar couplings were 

incorporated into a Gaussian broadening function. 

The treatment of the 13c-14N dipolar interaction has some novel 

features not normally encountered and deserves some special discussion. 

14 The N nuclei have electric quadrupole interactions in this material which 

are of comparable size to their Zeeman interactions. Consequently, there 

is an orientationally dependent mixing of the normal 14N Zeeman 

eigenfunctions, and these new eigenfunctions must be used in calculating 
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the dipolar splitting of 13c by the 14N. One must solve for these new 

eigenfunctions by diagonalization of a combined Zeeman-quadrupolar 

Hamiltonian. This was done for the case of an axially symmetric electric 

field gradient with its symmetry axis along the C-N bond. 
2 A value of e qQ 

of 3.467 MHz for the quardupole interaction was obtained from the work of 

Ikeda et al. {8) on a similar compound, K2Pt{CN) 4 •3H
2
o. Thus the 

Hamiltonian given in Equation 1 was used to determine the 14N energy levels 

as a function of the angle, n, between the magnetic field direction and the 

symmetry axis of the electric field gradient. The resulting energy levels 

are plotted in Figure 2a (solid lines) along with the levels for a pure 

Zeeman Hamiltonian (dotted lines), ignoring the quadrupolar interaction. 

"zQ •- YN~H0Iz + i e2qQf[r~- i(r+I- + I_r+J]~(3cos2n- 1) 

+ (r! + r~]i sin
2

n + (r+Iz + Izl+ + I_Iz + Izr-Ji- sin(2n)~ (1) 

13 Using the eigenfunctions of Equation 1, the C energy level splittings 

13 14 expected from the C- N dipolar interaction are calculated as a function 

of n, and these are plotted in Figure 2b (solid lines) along with 

splittings expected had there been no quadrupole effects on the 
14

N (dotted 

lines). Equation 2 is the final expression needed to calculate the 13c 
14 dipolar splittings caused by N, where a, b, and c are the coefficients 

(determined from the Hamiltonian in Equation 1) for the nitrogen Zeeman 

states, mz • 1, 0, -1 respectively. 

2) ( 2 \ 312 l - c 1 - 3cos n} - --2- (a+ c)b sin(2n)l (2) 
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A point to be noted in the derivation of Equation 2 is that one 

obtains a secular (first order) contribution from terms in the dipolar 

Hamiltonian which normally make no such contribution. That is, one 

normally expands the dipolar Hamiltonian into six terms, A-F (9), and in 

cases of unlike spins,one obtains a secular contribution from only the A 

term. 14 However, since the appropriate N levels are now linear 

combinations of the nitrogen Zeeman levels, two additional terms, C and D, 

make first order contributions as well. This accounts for the gross 

difference between the two solutions plotted in Figure 2b and illustrates 

how the presence of the nitrogen quadrupolar interaction produces large 

13 qualitative effects in t he C spectra. Note, for instance, that the 

solutions ignoring the effects of the nitrogen quadrupolar interaction 

always produce a symmetric triplet for the carbon spectra, while with the 

nitrogen quadrupolar interaction taken into account, one can obtain highly 

asymmetric doublets,and symmetric triplets at only three angles. It should 

also be pointed out that the dipolar interaction can only split the 

spectra, thus the center of mass of the spectra remains a function only of 

the chemical shift tensor. 

Because 33.7~ of the platinum nuclei are 195Pt with a spin of 1/2, the 

195 13 effect of the Pt- C dipolar interaction will be to generate a pair of 

satellite lines around each of the 14N-13c lines with approximately 1/4 the 

intensity of the main line. 13 Thus the final C spectra consists of peaks, 

the center of mass of which are determined by the chemical shift tensor, 

and which are split according to the solid lines in Figure 2b with, in 

13 14 addition, a pair of satellite lines around each of the C- N lines caused 

13 195 
by C- Pt dipolar interactions. The position of the platinum split 

lines was calculated using the reported (6) C-Pt distance. 
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To obtain a spectrum for comparison with experimental data,it is then 

necessary to add the appropriate chemical shift, o (Equation 3) (9), to the 

c•lculated dipole split spectrum and to then superimpose such spectra for 

each carbon in the structure. The chemical shift can be expressed in terms 

of three principal values, o11 , o 22 and o33 and the angles, e and ~. which 

specify (see Figure 1) the orientation of the magnetic field. 

0 · · o cos2e 2 2 2 2 
33 + o22sin esin ~ + o11sin ecos ~ 

Figures 3a-f reproduce three of the experimental and calculated 

spectra. Although the procedure for determining the effects of dipolar 

interactions on the carbon spectra appear complex, there are few adjustable 

parameters in the final equarions. The spectrum in Figure 3a (taken very 

close to e • O) was used to determine: (A) o
33

, (B) the effective C-N 

interatomic distance (from the splitting of the two outside peaks), and (C) 

the effective line width (by adjustment until a fit with the spectra was 

obtained). All of the remaining two dozen spectra, taken as a function of 

e and ~. were synthesized by adjusting only the remaining two components of 

the chemical shift tensor, o 22 and o11 • Good qualitative agreement between 

experimental and calculated spectra were obtained in all cases,thereby 

furnishing strong justification for the validity of the analysis presented 

here. Figures 3c-f have been included to give some feeling for how sample 

rotation affects the observed spectra. The asymmetric nature of the 

14 spectra generated by the presence of the N quadrupolar interaction is 

evident in Figure 3c, while the asymmetry in Figure 3e is being generated 

by the large difference in the chemical shift components o11 and o22 as 

14 well as N quadrapolar effects. 

(3) 
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Because of the sensitivity of the NMR spectra to the value given the 

C-N interatomic distance and the fact that the x-ray values contain rather 

large error limits, an effective value for the C-N distance was determined 

from the spectra in Figure 3a and used in all remaining spectral 

calculations. This value of 1.14 + 0.01 A is more precisely known than the 

x-ray values; however, it may be in error due the .presence of anisotropy in 

electronically coupled spin-spin interactions (9), which have been ignored 

in this analysis. 

The values obtained for the principal values of the carbon chemical 

shift tensor are o11 • + 261 ± 10 ppm, o22 a - 48 ± 10 ppm, and o33 a 

- 10 ± 5 ppm, relative to the carboxyl carbon in a concentrated acetic acid 

solution. This gives an isotropic average, o of 68 ppm, an anisotropy, 

f,o = 011 - i(o22 + 033) of 290 ppm, and an asynur,ctry, (o33 - 022)' (oll - o} of 

0.2. The isotropic value is the same, within the accuracy of the measurement, 

to the trace value of HCN (10), and liquid crystal measurements of the HCN 

carbon chemical tensor have yielded an anisotropy of 280 ± 20 ppm (11) 

which is equivalent to the value reported here. Thus, the effect of the 

cyanide bonding to the platinum, and all associated effects due to the 

particular solid state structure, primarily affect the carbon chemical 

shift tensor by producing a nonzero asymmetry (0.2) around the C-N bond. 
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FIGURE CAPTIONS 

Figure 1 

Figure 2(a) 
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A portion of the structure of K2Pt(CN) 4Br0 •3 ·3H2o is 

illustrated, as determined by K. Krogmann and H. D. 

Hausen (6). The principal axes for one of the carbon 

atoms is illustrated, as is the nomenclature (6 and ~) 

used to specify the crystal orientation with respect to 

the external magnetic field, u0 • 

The energy levels for 14N are shown as a function of n 

(the angle between the Zeeman axis and the symmetry axis 

of the quadrupole tensor). The solid lines are the 

levels determined for the combined Zeeman-quadrupolar 

Hamiltonian, while the dashed lines are the levels for a 

pure Zeeman interaction. (One vertical unit equals 

3e2qQ/4 • 2.60 MHz). 

(b) The dipolar splitting of the carbon by the nitrogen is 

shown as a function of n (note that the symmetry axis of 

the nitrogen quadrupole interaction was assumed to be 

parallel to the C-N internuclear vector). The solid 

lines were obtained by using the combined Zeeman-

quadrupolar Hamiltonian for the nitrogen, while the 

dashed lines were obtained by assuming the nitrogen 

states were determined from a pure Zeeman Hamiltonian. 

(One vertical unit equals YcYN{
2
!(r

3
cN) • 1.48 kllz.) 



Figure 3 
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13 CoMparison of experiMental and theoretical C spectra. 

The vertical scale is arbitrary but the saMe for all 

spectra, and the horizontal scale is 3 . 91 kHz per 

division . The dashed vertical line represents the 

location of the carboxyl carbon in CH
3

COOH which was used 

as a reference. Figures (a) and (b) are the 

corresponding experiMental and calculated spectra for 

e c 3° and+ • 0°, Figures (c) and (d) are the 

corrE!sponding experiMental and calculated spectra for 

e • 30° and • • 0°, while Figures (e) and (f) are the 

corresponding experimental and calculated spectra for 

e • 90° and • • 22.5°. 
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APPENDIX 

A SIMPLE SINGLE-COIL NUCLEAR MAGNETIC DOUBLE RESONANCE 

PROBE FOR SOLID STATE STUDIES 

(The Appendix is essentially an article by M. E. Stoll, A. J. Vega, and 

R. W. Vaughan, entitled "A Simple Single-Coil Double Resonance NMR 

Probe for Solid State Studies''. This article has been accepted for 

publication in Reviews of Scientific Instruments.) 
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I. Introduction 

A critical element of a pulsed nuclear magnetic resonance (NMR) spectro-

meter suitable for work in solids is the sample probe, a unit designed for 

application of intense rf magnetic fields to the sample and for detection of 

the resulting weak rf magnetic fields generated by the sample. This paper will 

describe a single coil, double resonance sample probe which has been used for 

a variety of NMR experiw.ents, including both high resolution solid state 

studies< 1•2•3) and liquid studies< 4>. While primarily designed for these 

experiments, which require the generation of rf fields in the sample with rotating 

components of ~0 gauss amplitude at two different frequencies simultaneously, 

as well as the ability to observe weak NMR signals at both frequencies, this 

probe should be useful for a wide variety of solid state double resonance 

experiments(S-lO). 

Since the probe characteristics often set the practical limitations on the 

performance of an NMR spectrometer, there have been numerous discussions of probe 

design in the literature in recent years(ll- 22 ), and we will limit our discussion 

to a presentation of the criteria needed for the recently developed solid state, 

double resonance experiments and a discussion of a particular design we have 

found convenient and satisfactory over a wide frequency range (from 12-270 MHz). 

This design is useful when the two rf frequencies are sufficiently separated (a 

factor of four in our experiments). 

II. The Sample Probe 

The high resolution, solid state double resonance NMR schemes developed 

require: (a) the generation of rf field strengths of near 50 gauss in the 

rotating frame at each of two widely separated frequencies, (b) a low degree 

of rf field inhomogeneity (less than 0.5% over the sample volume) at both 

frequencies, (c) the spatial pattern of rf field inhomogeneity within the 
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coil to be identical at both frequencies, and (d) the capability of 

detecting microvolt-level signals in the solid at each of the rf frequencies 

while subjecting, or within several microseconds after subjecting, the solid 

to a high-level (100 watt) irradiation at the second frequency . Essentially, 

all of these criteria are most easily satisfied by using a single coil for 

transmitting and receiving both frequencies( 11- 22 >, although it does require 

some electronic means of isolating, or separating, the two frequencies. A single 

coil configuration is particularly compatible with the restricted space 

available in the high field magnets. 

The design we have found most useful is illustrated in Figure 1. A piece 

of coaxial cable, one-fourth of a w~velength (A/4) at the higher frequency 

strves a critical isolation role( 15 •23 )by enabling the sinole coil L to be 

the inductance in two resonance circuits, each of which can be tuned and impedance 

matched at its own frequency. It also prevents high-frequency power loss 

into the low-frequency source while the loss of low-frequency power into the 

high-frequency source is prevented by keeping c3 small. This system allows 

both frequencies to have high Q response and yet furnishes the needed frequency 

isolation. This scheme has been used over the past two years at a variety 

of frequencies, and the detailed discussion of the 

probe ~ircuit will be divided into two sections: one to describe the lower 

frequency version used for 13c (14.2 MHz) - 1H(56.4 MHz) and 207Pb(l2.5 MHz) -
19F(56.4 MHz) double resonance in 14 kilogauss fields, and the other to describe 

the high-frequency version for 13c(68MHz) - 1H(270 MHz) experiments in a 

63-kilogauss superconducting magnet. 

A rather standard system of equations needs to be solved to estimate the 

component values for a particular case. Tuning and impedance-matching conditions 
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on the low-frequency circuit require, respectively: 

(1) 

(2) 

and similar conditions for the high-frequency circuit require: 

(3) 

(4} 

wl and wh are the low and high frequencies in radians per second; R
0

l and R0 h 

are the des ired input impedances;• and R is the effective series resi stance 

of the coil. These equations were obtained from an essentially zeroth order 

approximation that involves ignoring small res idual effects of c1 and c2 on the 

high- frequency response and of c
3 

and c4 on the low-frequency response of the 

probe. As long as the inequalities 
2 

Roc whC2 » whl (5) 

cl, c2 » c3 (6) 

(where R
0

c is the coaxial cable characteristic impedance) 

are maintained, thi s appears to be an adequate description , particularly since 

one must expect that the effective, in circuit, values will be affected (strongly 

at high frequencies ) by the geometrical configuration of the probe, and thus the 

final values of all components must be empirically adjusted(24 >. A proper choice 

of coil inductance, L, allows one to maintain inequalities. (5) and (6). 
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as long as the two frequencies are sufficiently different. The low-frequency 

impedance matching capacitor, c2, and the high-frequency impedance matching 

capacitor, c4, are shown as fixed capacitors since impedance matching is not so 

critical as to require continuously adjustable capacitors at those points, 

and the practice was to add in parallel small fixed ceramic capacitors( 2S) 

to arrive within a few percent of the desired impedance. c1 served as the 

low-frequency tuning capacitor while c3 maintained the high-frequency tuning 

condition, and although both capacitors affect the tuning of both high and 

low frequency resonance , the large difference in the size of the capacitors 
2 2 c1;c3 ~ wh /wl allowed nearly independent tuning. Point B i s the high-impedance 

(high voltage) point for the higher frequency, while point D is the high-

impedance point for the lower frequency, and, consequently, both capacitors 

c1 and c3 must be able to withstand the several kilovolts present at 100 watts 

of applied rf power. 

A. Low- Frequency Version 
w 

For the situation where the probe was tuned for _J.... = 14.2 1-1Hz and 
~ h 
2~ = 56.4 MHz and with R0 h = 200 n and R

0
l = 50 n, we obtained a circuit with 

Qh = 80, and Ql = 60 when we used a solenoidal sample coil 1.5 em long and 6 mm in 
diameter consisting of 14 turns of flattened #20 copper wire (measured inductance 
of 0.36 ~H). The nominal (low-frequency) values of the capacitors used were: 
c1 = 230 pf, c2 = 820 pf, c3 = 28 pf, and c4 = 94 pf. The actual effective, in 
circuit, values of these capacitive elements differed substantially, particularly 
for the larger values of capacitance, from the nominal values as can be seen in 
comparing the reported values with the results of Equations 1-4. 

The coil was designed to both furnish the desired inductance , L, and an intense, 
uniform H1 field (H 1 inhomogeneity was measured to be 0.3% over a 4 mm diameter 
spherical sample, and with 100 watts of input power on both high and low 
frequencies, H1 field strengths of 50 gauss were obtainable). 

This version of the probe was designed for operation within a 4.8 em wide 
gap of a conventional electromagnet, and consequently, no severe space problems 
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were encountered, and it was possible, for example, to use a conventional 

variable vacuum capacitor as part of c1. A simple variable ceramic trimmer in 

parallel with a fixed ceramic capacitor was used for c3. Temperature regulation 

capability was obtained by encasing the sample coil in a glass dewar (unsilvered) 

and simply passing the coil leads through the dewar walls. In addition, the 

probe was designed for use with an already existing rotational device for 

use in single crystal studies. 

It was found necessary to take care to remove all dielectric materials 

containing protons when the proton signal was to be observed. In particular, 

a teflon dielectric A/4 cable was used in this case, and likewise when the 

fluorine signal was to be observed, no fluorine-containing material was allowed 

as a dielectric. 

B. High-Frequency Version 

Because of the inherent difficulty of working with the high rf 

frequency used in this version (270 MHz), special care had to be taken in the 

physical construction of the probe and its components to avoid additional and 

undesirable inductances and capacitances. The solenoidal sample coil was 

again constructed from flattened copper wire (#16 flattened to a width of 2 mm) 

which was wound into a 9-turn,l.4 em long coil of 6 mm diameter . The measured 

inductdnce of the coil was near 0.16 ~Hand stayed frequency independent to 

well beyond 270 MHz. The high-frequency tuning and impedance-matching 

capacitors c3 and c4 were combined into a single cylindrical unit which is 

illustrated in Figure 2. The capacitor c3 was formed by the central copper 

rod (which is connected directly to the coil at point B) and the adjustable 

inner cylinder. This capacitor has a restricted, but usable tuning range of 

from 1.5 to 3.5 pf. The capacitance between the outer two cylinders is near 
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40 pf, and si nce the outer cylinder is grounded, it constitutes the main part 

of the matching capacitor, c4. Final adjusting of c4 was accomplished by adding 

11 f . d . . (25 ) b . C d h 1 . d Th. sma 1xe ceram1c capac1tors etween po1nt an t e outer cy 1n er. 1s 

geometrical configuration allowed effective shielding of the bulky c3 
capacitor and furnished a low inductance ground connection between the incoming 

cable shielding and the ground side of the coil L (the incoming cable was 

soldered to the bolt at point C and the ground to the outer cylinder at that 

point). In this geometry it was necessary to add 36 pf of additional capacitance 

between point C and the outer cylinder for a 50 ohm impedance ma tch with the 

incoming 270 MHz signal. For capacitor c1 a variable capacitor identica l in 

construction to that used for the c
3 

part of the cylinderical unit illustrated 

in Figure 2,was used with additional fixed ceramic( 2S) capacitors in parallel 

to give a total capacitance of 32 pf. The A/4 cable was a teflon-dielectric 

coaxial cable. The low-frequency matching capacitor, c2, was large, 350 pf, 

and care had to be taken in its placement in order to maintain its value because 

even short leads could add sufficient inductance to alter its impedance 

radically. The exact length of the co-axia l cable was determined experimentally 

such that the connection of the cable did not change the resonance frequency 

of the 270 MHz portion of the probe. With the A/4cable dis connected the Q of the 

270 MHz resonant circuit was 300, and upon connection of the A/4 cable, this figure 

dropped to 150. The Q of the 67.9 MHz portion was measured to be near 80, and no 

measurable power loss could be attributed to the A/4 cable at this frequency. 
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The application of 330 watts of 270 MHz power was required to produce H1 field 

strengths of 33 gauss, indicating some additional loss mechanism still 

unaccounted for in comparison to the low-frequency version. It wa s found 

t th . •t <25) . f th dd. necessary o use ree ceram1c capac1 ors in ser1es or e pa 1ng 

capacitor in parallel with the adjustable portion of c1 since the application 

of 300 watts was sufficient to cause arcing across a single capacitor in this 

position. 

III. Operational Characteristics 

The actual operational configuration for the probe is illustrated i n 

Figure 1. A power-activated diode {PAD) switch(2G) was used to couple the 

transmitter and receiver to the probe circuit for the lower frequencies, and 

a A/4 arrangement{14•22 )was used for coupling at the higher frequency. 

Commercially available filters<27 ) were used at the probe inputs as illustrated 

in Figure 1. A wideband receiver {5-300 MHz), which has been previously 

described< 28),was used for observing both frequencies by simply connecting 

the appropriate signal line to the receiver. The ability to use the same 

wideband receiver for both high and low frequency signals emphasizes the 

frequency isolation obtained with the combination of probe and commercial 

filters. 

The probe was operated in two modes. In one case it was necessary to 

observe one frequency in the midst of a complex pulse cycle where, during a 

window of a few microseconds, no rf was being applied at either frequency. 

In this case the commercial filters were not used since they hindered recovery 

times. A 100-watt signal applied to either input of the probe resulted in 

a 10-15 volt peak-to-peak leakage signal at the opposite input, and this was 
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further reduced to less than one volt by the time it arrived at the 

receiver. The receiver was designed to handle volt-level trans ients~8 ), 
and signals could be observed, for example, from either protons or carbon-13 

in the normal 4 microsecond sampling window of the eight-pulse cycle 

with a cycle time of 48 microseconds. In the second mode, it was necessa ry 

to observe one signal while simultaneously applying high rf power to the 

probe at the second frequency. The use of both of the commerci al filter s was 

necessary in this case in order to: (a) protect the receiver from over loading 

due to the high power rf signal at the second frequency, and (b) prevent 

the high-power input signal from containing any rf component at the detec ti on 

frequency (once a signal of this sort reached the probe, it could not be 

removed by any filtering without also filtering out the NMR signal to be 

observed). 

An example of the performance of the probe in this second mode i s 

illustrated in Figure 3, which i s an oscilloscope photograph of the 207Pb 

NMR signal observed in PbF2, with (bottom) and without (top) decoupling t he 
19r. In the upper trace no fluorine decoupling power has been appli ed and the 

207Pb signal decays too rapidl y (due to heteronuclear dipol ar interac ti ons) to 

be obs~rved on this timescale (5 msec total scan), while in the l ower t race 

fluorine decoupling power has been applied and the 207Pb signal i s cl early visible . 

One notes that the presence of the high-power level of fluorine irradiat io n has 

not produced any noticeableincrease in the noise observed at the 207Pb frequency . 

Other examples of the quality of data obtained can be found in recently 

published papers(2•3•4>. 
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Figure Captions 

Figure 1: (A) Schematic diagram of double resonance probe. The high-frequency 

connection is at point C , while the low-frequency connection 

is at point A. Inductor, L, represents the sample coil, 

R represents losses in the coil and remaining circuit,and l 

is the length (A/4 at the high frequency) of a piece of coaxial 

cable. 

(B) Connection of probe to receiver and transmitter. The optional 

filters (F1 and Fh) are shown with dotted outline, and the connection of 

either frequency to the broadband receiver is made through a 

conventional A/4 arrangement or a PAD switch (P). 

Figure 2: Cross section of unit which comprises capacitors c3 and c4 in higher 

frequency version of probe. Points B and C correspond to those in 

Figure 1. Respective diameters are: a = 0.32 em, 

b = 1.11 em, c = 1. 59 em, d = 2.22 em, e = 2.38 em, and f = 0. 64 

em. A similarly constructed unit, without the outer metal ground 

(d and e), served as the adjustable portion of capacitor c1. 

Figure 3: Free-induction decay of 207Pb in solid PbF2 without (top trace) 

and with (bottom trace) 19r decoupling. The hori zontal axis is 

5 msec full scale, and no 207 Pb NMR signal i s observed in the top trace 

on this timescale due to heteronuclear dipolar broadening, while 

the decoupled 207Pb signal is apparent in the lower trace. Comparison 

of the two traces shows no observable increase in the noise level 

on the 12.5 MHz channel ( 207Pb) when high power is applied to the 

56.4 MHz channel (19F). 
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THE END 


