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ABSTRACT

A phase and amplitude, off-axis hologram has been synthesized
from three computer-generated transmission masks, using a multiple-ex-
posure holographic recording method. Each of the masks controls one
fixed-phase component of the complex hologram transmittance. The basic
grating is generated optically, relieving the computer of the burden of
drawing details the size of each fringe. The maximum information
capacity of the computer plotting device can then be applied to the
generation of the grating modulation function. By this method large
digital holograms (25 mm by 25 mm) have been synthesized in dichromated
gelatin. The recording method is applicable to virtually any holo-
graphic medium.

The modulated grating hologram was designed primarily for the
application of spatial filtering, in which the requirement is a hologram
with large dynamic range and large free spectral range. Choice of a
low-noise, high-efficiency medium such as dichromated gelatin will allow
exceptionally large dynamic range. Independence of the optically-
generated carrier grating from the computer-generated modulation func-
tions allows arbitrarily large free spectral range.

The performance of a holographic spatial filter will be limited
ultimately by noise originating from imperfections in the holographic
medium. The characteristics of this noise are analyzed, and in the
case of a high diffraction efficiency hologram are shown to differ sig-
nificantly from previous analyses. The dominant noise source in holo-

grams of high diffraction efficiency will be scattering of the first-
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order or imaging wave by deformations in the hologram surface or other
effects of low spatial frequency. Experimental measurements in various

low-noise holographic media verify these predictions.
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CHAPTER I
INTRODUCTION

The generation of holograms by computer and the application of
holograms as spatial filters for image deblurring have been subjects of
intensive research in recent years. In this thesis I have concentrated
on two aspects of these subjects, a method which I have developed for
making digital holograms, and the ultimate limitations on the perfor-
mance of a holographic spatial filter imposed by noise in the holographic
medium.

Chapter II presents several basic topics directly related to
the subjects of Chapters III and IV in order to acquaint the reader who
is not a specialist in holography with these topics, and to place the re-
search in the context of what has been done before. The first section dis-
cusses the diffraction behavior of thick holographic gratings. The
discussion of holographic diffraction gratings found in most texts
treats only the limiting cases of very thin and very thick holograms.
Many holograms, including the ones in the experiments of this thesis,
are of an intermediate thickness, and neither 1imit adequately describes
the behavior of these gratings. For this reason I have decided to pre-
sent, in some detail, the theory for holographic gratings of arbitrary
thickness. The theory for this general case does not provide the number
of simple analytic relationships that derive from the theory for the
thick 1imit, but it does offer more insight into the physics of the dif-

fraction process and provides equations which may be easily evaluated

with a computer.
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The section on digital holograms presents a brief review of some
of the methods which have been developed to generate holograms using a
computer. The space-bandwidth limitations inherent in any digital holo-
gram are discussed.

The section on holographic spatial filters presents a brief
review of the work that has been done in image deblurring with coherent
optical processors, and a discussion of the analog and digital methods
which have been developed for the synthesis of deblurring filters. Most
of the research in this field has concentrated on achieving filters of
large dynamic range. The real limitations of coherent optical process-
ing may not be in the dynamic range of the filter, but in noise and
nonlinearities in the input medium. A computer simulation of a deblur-
ring experiment shows the effect of these imperfections.

The modulated grating hologram was designed with the spatial
filtering application in mind. In principle, it offers a digital holo-
gram with large dynamic range and large free-spectral range, which
should be ideal for spatial filtering. Chapter III presents first a
discussion of the basic idea and its inherent advantages over previous
methods, followed by a detailed description of the experimental system
to synthesize such holograms. The performance of the system is
evaluated and judged to be inadequate for the synthesis of precision
spatial filters. Suggestions are made for future improvements. The
synthesis of digital holograms in dichromated gelatin is demonstrated.

Chapter IV discusses the ultimate limits on the performance of

holographic spatial filters, assuming all problems such as noise and
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nonlinearities in the input medium and optical system noise have been
eliminated. The ultimate 1imit is assumed to arise from noise in the
holographic medium. The characteristics of this noise are analyzed
and, in the case of a high diffraction efficiency hologram, are shown
to differ significantly from previous analyses. The dominant noise
source for high efficiency holograms will often be scattering from the
imaging wave, an effect which has not previously been analyzed.
Experimental measurements in various low-noise holographic media veri-
fy this effect.

I have tried to make this thesis a thorough, yet readable pre-
sentation of research. In many places in the main text, I have
simply stated results and left the derivations to appendices. Included
in the appendices are details of derivations, details of experiments,
and several topics which turned out to be peripheral to the main sub-
Jject of the thesis.

The thesis is a Tittle longer than initially planned, primarily
because of the inclusion of some basic topics for the benefit of the
reader who is not a specialist in holography, and the inclusion of
detailed appendices, which may be useful for the continuation of this
research.

The synthesis of computer-generated holograms, and spatial fil-
ters in particular, is an area of research I believe worthy of further
study. Limitations of time and resources in this study have prevented
the synthesis of a precision spatial filter using a modulated grating
hologram. It is my hope that this thesis will provide a good founda-

tion for further development of these holograms.
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CHAPTER 11
BASIC TOPICS IN HOLOGRAPHY AND SPATIAL FILTERING

In this chapter several topics are presented which are basic to
an understanding of the research presented in later chapters. Before
moving on to these topics a brief discussion of units and notation is

in order.

The electric and magnetic fields in this thesis are assumed to be

time harmonic:

E(r,t)

Re{E, (F) e™1“%} (2.1)

Re{H_(F) e 1w

H(r,t) .

Eb and Hb are complex vector functions of position ¥ . Holographic
media, being dependent on photo-ionization and excitation mechanisms,

respond to the time-averaged energy density in the electric fie]d,(])

w> =)e<E.E>= leE.E
2 I o "o

. (2.2)

Sensitivity data and other related experimental measurements are
commonly given in terms of exposure e(x,y), (e.q., m1111j0u1es/cm2),
rather than electric or magnetic fields. In this thesis the optical
field amplitude at a point (x,y) in a given plane is represented by a

complex scalar function, a(x,y) = a(x,y) ei¢(x,y)’ with the property that

S (x,y) = Tl'é(x,y)l2 T: exposure time (2.3)

and ¢ 1is the phase of the electric field. This representation is valid
when the electric field is linearly polarized and perpendicular to the

plane of incidence defined by the two waves exposing the hologram. In
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situations of more complex polarization, the vectorial nature of the

field must be considered. For a simple, linearly polarized plane wave
a(x,y) = [%{e/u)]/z]]/z E,(x5y) (2.4)

2.1 Holographic Diffraction Gratings

The recording and reconstruction processes in most holograms can
be analyzed in terms of elementary periodic gratings. If the recording
wavefronts are sufficiently smooth, ray directions may be defined at each
locality of the hologram, as shown in Figure 1. Interference fringes are
formed along planes which bisect the angle between the two rays. These
fringes are recorded as a periodic variation of the refractive index or
absorption constant of the medium.

If the object wavefronts have a large angular bandwidth, however,

the ray directions may vary considerably over several fringe periods,

i OBTECT RAY
REFERENCE 4 INTERFERENCE
Wave H\\\\\\ FRINGES
5 REFERENCE
_H: : HOLOGRAPHIC RaY
COHERENTLY MEDIUM
ILLUMINATED L
OBTECT

Fig. 2.1 Illustration of the formation of an elementary periodic
grating at each point in the hologram.
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and the grating may therefore have no Tocal periodicity.

An alternative view, which is valid also for large angular band-
widths, is to consider the hologram as a linear superposition of elemen-
tary periodic gratings, one for each plane wave component of the incident
object wavefront. This view requires that the hologram exposure be suf-
ficiently low that the linear range of the recording medium is not
exceeded.

In the extreme situation of large exposure, large angular band-
width holograms, the analysis of the hologram in terms of periodic
gratings will be very difficult. The recorded pattern in this situation
will have no local periodicity, and the fringes may not even be con-
tinuous through the finite thickness of the medium. Since most holo-
grams are not of this extreme category, an understanding of the
diffraction behavior of periodic gratings will be sufficient to predict
the behavior of more complex holograms in most situations.

In the discussion to follow, we will consider the hologram as an
infinite periodic grating, with fringes perpendicular to the surface as
shown in Figure 2. An incident wave of unit amplitude forms an angle

& with the z axis. The amplitude of this wave at the xy plane is

given by
- —1n0kosin(8)x
a(x,y) = e (2.5)
ko = 2ﬂ/la
Aa = wavelength in air
n_ = refractive index of external medium
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Fig. 2.2 Diffraction of an incident wave into various orders by a
periodic grating of finite thickness,

INCIDENT -in k sin(6)x
WAVE e DIFFRACTED WAVES
+2 +1
> Z
GRATING PERIOD d:%: 9 0
IMMERSION MEDIUM
INDEX n
THICKNESS T —| k— A

In order to make the analysis simple, the refractive index of the im-

mersion medium, n_, will be the same as the average refractive index

0°
of the grating. This assumption will eliminate multiple reflections
and changes in ray directions at interfaces, but will preserve the
essential physics of the diffraction process.

The simplest model considers the hologram thickness T to be

much smaller than the fringe period d . For a simple sinusoidal ab-

sorption grating the amplitude transmittance may be written as

t(x) = tmax(%-+ %—m cos Kgx) (2.6)

K
g

2n/d

The modulation parameter m may vary from zero to one. For a unit

amplitude incident wave, as shown in Figure 2, the transmitted field
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will consist of only three diffracted waves:

-1n0k051n(8)x tmax mtmax iKgx mtmax -iK_x

e [ e t oy 9 (2.7)

For tmax =m=1, the maximum amplitude of the first order wave is
1/4. The diffraction efficiency is defined as the square of the rela-

tive amplitude, and for a thin, sinusoidal, amplitude hologram:

ag 1/16 = 6.25% (2.8)

For a thin sinusoidal phase grating, the transmittance may be

modeled as a pure phase shift:

id cos(Kgx)

[]

t(x) = e

) konTT/cos(e) (2.9)

The grating medium in this case is assumed to have no absorption, and

a refractive index given by

n(x) = i, + n]cos(Kgx) (2.10)

The amplitudes of the diffracted orders may be expressed as Bessel
functions
ip cos(K x) LK _x
e 97 =T it e 9
This well known formula may be derived from the generating function for
Bessel functions(z) or from an integral representation of the Bessel

functions_(3)
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The diffraction efficiency for the first order wave in this

case is

ny(0) = 35(6)

n has a maximum of 33.9% at ¢ = 1.84 radians.

The thin grating models are adequate to explain the basic holo-
graphic recording and wavefront reconstruction principles and many of
the properties of specific media. Thin hologram models have been used
successfully to analyze the effects of noise(4) and non]inearities(s) in
holographic recording. These simple models fail to explain, however,
the high diffraction efficiencies and observed sensitivity of thick
gratings to small changes in incident wave ang]e(ﬁ).

The diffraction of 1light by a thick holographic grating is
similar to the diffraction of light by acoustical waves, a problem
which has been studied extensively for many years.(7’8’9)
Holographic gratings differ from acoustooptic devices mainly in the
fact that in holographic gratings absorption may play a prominent role
in the diffraction process, and the holographic fringes are not neces-
sarily normal to the surface of the grating. Studies of holographic

(10.17) who derived a solution for

gratings include those of Burckhardt
a nonabsorbing sinusoidal grating. Burckhardt's solution uses a matrix
eigenvector method to solve a finite set of coupled differential equa-
tions. Boundary conditions are applied at both sides of the medium,
allowing for multiple reflections within the grating. Unfortunately

these details tend to obscure the essential simplicity of the method

and make the resulting numerical results difficult to interpret.



=10

Koge]nik(lz) has derived some very general solutions for the case of
very thick holograms, in which only two coupled waves are present. This
reduction in the number of coupled equations allows the derivation of
several simple analytic relations which would never be apparent from
inspection of numerical calculations. Kogelnik's solutions apply to
sinusoidal gratings which may have any degree of slant (including the
case of reflection holograms) and may be phase type or absorbing type
holograms. For the phase transmission hologram of Fiqure 2 (with T
very large), Kogelnik's theory would predict a first order diffraction

efficiency (see Appendix K)

ny = sinlf (VP )27 (1 + %) (2.11)
Trn]T
VE s e - 92
a
E = ﬂ6/60 (60 = d/T)
§ =6 -eB << 1 radian
By = arcsin(la/Znod) Bragg angle (2.12)

The parameter v represents the strength of the wave coupling constant
in this two-wave theory, and & the deviation from the Bragg angle

bg - At the Bragg angle (§ = 0) the equation reduces to
ny = sin®(¢/2) (2.13)

which is the form first derived by Phariseau. For weak holograms

(¢ << 1) the diffraction efficiency will be a simple function of &
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with a maximum at fg and the first null at ¢ = 6y -

An extension of Burckhardt's solution to gratings of arbitrary
profile (nonsinusoidal) and arbitrary absorption has been presented by
Kaspar.(]3) Numerical results are compared with Kogelnik's theory in
this paper, and good agreement is shown for thick gratings.

Holograms in a real experimental situation often exhibit behavior
somewhere between the Timiting cases of thin and thick gratings. This
is the case for the holograms used in the experiments of this thesis.
For this reason it is worthwhile to explore this intermediate region in
more detail. The equations for an arbitrary thickness grating may be
programmed and endless solutions plotted for various specific cases.

It is possible, however, to reduce these solutions to a few convenient
parameters in order that the results be generally applicable to gratings
in any range.

A numerical solution for an unslanted dielectric grating was im-
plemented using Burckhardt's matrix eigenvector method. The essentials
of this method are most clearly presented in a paper by Fillmore and

Tynan.(]4)

The derivation here follows a similar line of reasoning.
A wave equation for the electric field in the holographic medium

of Figure 2 can be derived from Maxwell's equations:

(v2+ K2) E(x,z)

-v[(1/e) E - ve] (2.14)

K = K2z

2
o°r
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Variations in both refractive index and absorption constant are included
in the complex relative dielectric constant Er . Assuming the grating
is periodic in x , this constant can be written as a Fourier series:

imK x
g

Er(x) = % Erm e (2.15)

For fields polarized in the y direction, the term E -Ve s
zero, and equation 2.14 reduces to a simple scalar Helmholtz equation:

(v2+ K2) E,(x,2) = 0 (2.16)

We will assume a solution of the form

-in_k sin(8)x LK x
e ] V() e 9 (2.17)

g2

Ey(x,z) = e

This assumption can be justified by considering the fields entering and
leaving each thin section Az of the grating. If the fields entering
each section consist of a set of discrete spatial frequencies separated
by multiples of the grating frequency, then the transmitted fields will
contain only those same spatial frequencies. Only the relative ampli-
tudes of the component waves Vl(z) change as the waves propagate
through the medium. A more rigorous mathematical solution can be ob-
tained by solving the differential equation 2.16 using separation of
variab]es.(10’15)
Equations 2.15, 2.16, and 2.17 may be combined to give:
(Vo k2 ) & e e TV, (z) e M L g (2.18)
0 & rm . %

ap = ﬂKg - nokosin 5]
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[f we carry out the indicated differential operations and combine terms
of the same spatial frequency, equation 2.18 can be written as:

1a£x
rmVQ—m(Z)]e =0 (2.19)

2 i 2 2 ¢ =~
% [(d°/dz%) Vﬁ(z) = gy N, (2] tk, ) €
m
1ulx
The coefficient of each e must be zero for this equation to be true.

This gives an infinite set of coupled differential equations for Vg(z).
Er,tl 2

the coefficients of the fundamental frequency of the periodic grating,

Each wave & 1is coupled to its nearest neighbors &-1, 2+1 by

and to its neighbors 2+m by coefficients of the mth harmonic.

The set of coupled differential equations in equation 2.19 repre-
sents an exact solution for a periodic grating of arbitrary thickness
and can even be extended to slanted gratings by allowing Erm to be a
function of z . These equations may be truncated to represent a finite
set of waves and solved by a straightforward numerical 1ntegration.(16)
A sufficient number of equations must be retained in the analysis to
include all waves in which there is any significant fraction of the in-
cident power. Usually, most of the power will be diffracted into orders
clustered about the central, or zero order, and very few equations are
needed.

A much faster procedure for solution of the coupled wave equa-

tions is the matrix eigenvector method. The truncated set of equations

is written as a matrix differential equation:

(/d2°) Vy(2) + ] Ay Vo(z) = 0 (2.20)
p
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M
- 1Ll 2 2 ~
Alp - (kogro B QR)Szp * k0 m§1 Er‘m({sl-m,p+ 5£+m,p) (2.21)
1 L=p
6 =
In equation 2.21 we have assumed €. = € This will allow a

rm r,-m
simpler solution for the matrix eigenvectors. Since the grating was

presumably formed by the interference of two plane waves, we may choose
the origin of the coordinate system so that the exposure distribution,
and hence the resulting grating, has even symmetry in x .

The matrix differential equation can be solved if we can find a

complete set of eigenvectors UéJ) such that

g U = e ol (2.22)

These eigenvectors represent steady state solutions of the form

ii/?; z

VEJ)(Z) = uéj) & (2.23)

The eigenvalue Yj will be positive for propagating solutions and nega-
tive for exponentially decaying solutions (evanescent waves).

The complete solution for waves propagating to the right is then:

L

_ v (3)
VQ(Z) = jE—L c; UQJ e

1«?3'2
(2.24)

The 2L+1 coefficients cj are determined by the conditions at the

left boundary of the medium,
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L

(J) -
jZ_L c;Yy B,

I

V,(0)

-1
¢; [ugj] B, (2.25)
Inclusion of boundary conditions at the right side of the medium will

allow solution for the left traveling waves a]so.(10)

Equation 2.24 is an exact solution of the scalar diffraction prob-
lem (assuming only the validity of the truncation to a finite number of
orders). Solutions for the alternate polarization are given by

(10)

Burckhardt and by Koge]nik.(]z)'

A FORTRAN subroutine has been written using the above methods to
solve for the diffracted wave amplitudes of an arbitrary thick phase
grating. (WAVES subroutine--Appendix B) Given the incident wavelength '
and angle, grating period d, and thickness T, and the Fourier coeffi-
cients of the grating profile ¢ , the subroutine returns the complex

rm

amp11i tudes V2 of the diffracted waves. The restriction to non-

absorbing gratings is necessary only to simplify the calculation of
eigenvectors. For phase only gratings, the matrix will be real-

symmetric, and the Householder method may be used to find the eigenvec-

(17)

tors. Use of a more general routine at this step would allow con-

sideration of absorptive gratings as welT.(]B)
Figures 3 through 5 show some results of computations using the
WAVES subroutine. The gratings for these calculations were assumed to

be purely sinusoidal phase gratings:

EIr(X) =€y T Epy 2 cos(Kgx) (2.26)

ro
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S = 0 for m > 1

From the relation n2 = g and the assumption e

" £ = , relations

rl ro
between the n's of equation 2.10 and e's of equation 2.26 are easily

derived:

I

=
ro

€e1 = MM (2.27)

ng for index matching

The parameter ¢ , defined for a thin grating in equation 2.9, may be
similarly defined for the general case even though the physical reason-
ing leading to the definition of ¢ as a phase shift does not apply for
thick gratings:

s = 2T

(2.28)
ngA,cos 8

rl

A very thin grating (Figure 3) follows the predicted Bessel func-
tion behavior well past the first peak in the diffraction efficiency
- The almost complete absence of Bragg effects is seen in the over-
lapping of the plotted points for waves of equal plus and minus orders.

For a very thick grating (Figure 4) the calculated points follow

(12) The

very nicely the sine waves predicted by Kogelnik's theory.
number of diffracted orders retained in the calculation, NL, was set to
2 for this plot. Similar calculations with NL = 12 showed the same
results for power in the 0 and 1 orders, and almost no power in any

other orders.
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Figure 5 shows the predicted behavior for gratings with param-
eters typical of the holograms used in the experiments of Chapters 3 and
4. These gratings were formed in gelatin layers from Kodak 649F plates
(T = 12 ym), using an argon laser (Aa= 0.488 um) with an interbeam angle
of 9.8° (in air). This results in a grating with a period 2.86 um, and
a Bragg angle 3.18° (internal to the medium, index n,= 1.54).

The self-consistency of these calculations was checked by monitor-
ing the power in each diffracted order and the total power of all the
waves, As the modulation parameter ¢ 1is increased on the thinner
gratings, power spreads into higher orders. Eventually a significant
fraction of power reaches the edge orders and "spills over". The total
power at this point drops abruptly from 1.0 and the calculations become
very erratic.

A parameter which is commonly used to characterize holographic
gratings is

Q = 2m A, T/nod2 (2.29)

For Q > 10, Kogelnik's theory is said to give good resu]ts.(12) The
plots of Figures 3 through 5 are consistent with these observations.
For application as holograms, the quantity of most interest in
these plots is Ny s the first-order diffraction efficiency. Figure 6
shows a plot of Ny VS. ¢ for various values of the thickness param-
eter Q . This set of curves was generated assuming gratings of fixed
thickness, T = 12u. A similar set was generated setting d = 2.5u and
varying T . The two sets of curves were found to coincide except for

thin gratings (low Q) at very large modulations (¢ = 2m).
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Although it is apparent, in the theory on which these calcula-
tions are based, that the set of curves could be characterized by two
parameters, d and T (normalized to unit wavelength), the reduction to
one parameter Q 1is not at all obvious., The parameter Q appears

in several theories of ultrasonic diffraction.(]g’zo)

Typically, in
these theories, approximations are made to reduce the coupled second-
order differential equations to first-order equations. The effect of
these neglected second order terms would explain the discrepancies
observed for thin gratings of very high modulation. For most holo-
graphic applications, it appears that Q and ¢ are quite adequate
to completely characterize the grating behavior (at Bragg angle inci-
dence). To illustrate this point, the diffraction efficiencies at
the first maximum are plotted in Figure 7 for gratings in which T
and d vary independently over a wide range. A very similar curve

has been derived from an ultrasonic diffraction theory.(21)
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2.2 Digital Holograms

Many applications of holography require holograms which cannot
be produced by the recording of readily available wavefronts. Examples
of such applications are spatial filtering,(zz) in which the desired
filter function may be an arbitrary complex function, or interferomet-

ric testing of aspheric optical components, (23)

in which the de-
sired reference wavefront may be difficult to obtain with combinations
of simple optical elements. For many of these applications, digital
holograms are ideally suited. The term "digital hologram" is applied
here to any hologram in which the recorded wavefront is obtained
directly or indirectly from a computer. Many methods for producing
such holograms have been invented over the last few years. A good

survey is found in the review paper by Huang.(24)

The following sec-
tions present a brief description of some of the basic types of digital

holograms.

2.2.1 Thin Amplitude Holograms

An ordinary hologram recorded on a photographic plate contains
a microscopic pattern of dark bands corresponding to the interference
fringes in the recorded wavefronts. Such a pattern may be simulated by
drawing millions of little lines on a computer plotting device, and
photoreducing the resulting plot. A more efficient method was presented

by Brown and Lohmann . (25226)

An array of short lines is drawn with the
computer and photoreduced. The resulting hologram consists of an array

of transmitting apertures on a dark background, as shown in Figure 8.
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X HOoLOGRAM
Re‘le ))) DIFFRACTED
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wave )
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Fig. 2.8 Binary detour phase hologram. Aperture position p deter-
mines transmitted phase,and length L determines amplitude.

Fig. 2.9 Lee-Burckhardt method. Relative shading of the three bands
within each zone determines amplitude and phase of the dif-
fracted wave.
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The array is illuminated obliquely, and the desired wavefront is ob-

tained in the far field of the apertures. The hologram is divided
into zones in the x direction of Figure 8, each zone corresponding to
2m phase shift of the incident reference wave. The position p of
the apertures within each zone will determine the phase of the dif-
fracted wave at that location, and the lTength L will determine the
amplitude. This type of synthetic hologram is called a binary detour
phase hologram. Variations on this method include modulation of the
width of the apertures instead of the length, and splitting each aper-

ture into a pair,(27)

controlling the amplitude of the wave by the
separation of the pair in the x-direction. The scheme illustrated in
Figure 8 is particularly suited to mechanical plotting devices with a
fixed pen width,

Another method for producing a digital hologram, which takes
advantage of the capability of a CRT plotting device to produce variable

density plots, is the method introduced by Lee(28)

¢.(29)

and Tlater simplified
by Burckhard In this method the 0-2m phase zones in the hologram
are divided into three bands as illustrated in Figure 9. Amplitude and
phase of the diffracted wave are controlled by the relative shading of
the bands in each zone. Photographic processing must be more carefully
controlled than in a binary hologram, in order to insure repeatability
of the density levels.
Both these methods involve photoreduction of a two-dimensional

graphic pattern, and hence are inherently limited to thin holographic

media. The maximum theoretical diffraction efficiency for thin binary
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amplitude holograms is obtained when the width of the aperture is half

the width of the phase zone. The relative amplitude of the diffracted

wave will then be:

n/2 )
S [ el dqp = ]E (2.30)
-m/2

The maximum diffraction efficiency is then

N o= (2)2

— =) & 10.1% (2.31)

A similar result for the three-zone hologram is obtained by placing
Timits +n/3 on the integral (equation 30). The maximum diffraction

efficiency for the Lee-Burckhardt hologram is

Nay =[x Sin(n/3)1 = 7.6% (2.32)

m

2.2.2 Thin Phase Holograms

A thin phase hologram, called a kinoform,(30)

which has high dif-
fraction efficiency and makes good use of available plotter capacity,
can be synthesized by recording only the phase part of the desired
wavefront. The wavefront will, in general, have both amplitude and
phase

3(x,y) = alx,y) e oY) (2.33)

but in the case of a diffuse object, the average intensity at the holo-

gram will be nearly constant.
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The function ¢(x,y) (modulo 2m) is generated on a suitable
graphic device and recorded in a thin phase medium, such as a bleached
photographic emulsion. The kinoform is illuminated with an on-axis

reference wave, and the transmitted wavefront is then

EK(x,y) = a, ei¢(x,y) (2.34)

The discarding of amplitude information results in noise in the recon-
structed image, but for applications such as displays, this may not be
a problem.

Kermisch has presented an analysis of the noise in kinoform

1mages.(3])

If there are no nonlinearities or imperfections in the
recording of the phase function, 78% of the total energy goes into re-
construction of the original image, and the remaining 22% goes into
noise in the form of multiple self-convolutions of the image.

The kinoform is an on-axis hologram. Elimination of the carrier
grating results in large savings of plotter capacity, since the resolu-

tion cell of the plot need be no smaller than the sampling interval of

the phase function ¢(x,y).

2.2.3 Phase and Amplitude Holograms

A true phase and amplitude hologram has recently been synthesized

in a multilayer color fi]m.(32)

Phase and amplitude functions are re-
corded in separate layers of the same emulsion. If the reconstruction
wavelength is in the red region of the spectrum, then the transmitted

amplitude will be controlled primarily by the red absorbing layer of the
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emulsion, and patterns recorded in the blue and green absorbing layers
will cause a phase shift of the transmitted wave. This method allows

synthesis of an on-axis hologram with 100% maximum theoretical recon-

struction efficiency.

The holograms are synthesized on Kodachrome II in order to take
advantage of the highly standardized commercial processing. The color
film is very grainy compared to high resolution holographic emulsions,
and this may cause noise problems in applications such as spatial fil-
tering. Also, the medium is not suitable for immersion in a liquid
gate, because the phase image depends on surface relief effects.

The phase shift due to dye absorption in the medium may be cal-
culated from an integral derived from the Kramers-Kronig relations.
Given the spectral density function D(w), the phase shift ¢(mo) is

shown in Appendix P to be

(e}

D(w)w_dw
_ #n(10 0
¢(m0) = _i"ﬂ__)_ P.V. £ m— (2.35)
0

where P.V. means the principal value integral.

Numerical calculations using this integral and experimental
data from Kodachrome II film indicate that the expected phase shift
at the wavelength of the HeNe laser due to absorption in the dye is
much less than one wavelength (see Figure 10). The original data for
the dye absorption, obtained from Kodak, showed a peak density of about
one. The data for the calculation were multiplied by three to repre-
sent a more heavily dyed layer. A program for computing integrals of

the above form is shown in Appendix P.
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For application as a hologram, a phase shift of at least one
wavelength is necessary, and it would be desirable if this phase shift
did not depend on surface relief. A dye with a sharp edge in the
absorption characteristic near the operating wavelength could possibly
produce the necessary phase shift.

A rather unique hologram, which may be synthesized in any holo-

graphic medium, is that of King et al.(33)

In this method, a series
of perspective views of a three-dimensional object are computed and
drawn as ordinary two-dimensional images. The series is recorded by
ordinary holographic techniques in sections on a large holographic
plate. The result is a computer-generated holographic stereogram
which simulates the calculated three-dimensional image. The hologram
shown in the paper was recorded on dichromated gelatin and shows a
bright reconstruction of an assembly of random intersecting lines.
This method has recently been applied to the generation of disp]ays.(34)

Application as a spatial filter does not seem possible.

2.2.4 Space-Bandwidth Limitations

Information for the synthesis of a computer-generated hologram
must be stored in the form of a finite number of discrete samples.
This will impose certain fundamental limitations on the reconstructed
wavefront analogous to the bandwidth limitations on a sampled function
of time.

Consider a square hologram of side L which is constructed

from N by N uniformly spaced samples (see Figure 11). Ideally, the
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hologram will be an array of N by N small areas, each with its own
independently controlled phase and amplitude transmittance.

The diffracted waves are imaged in the back focal plane of a
lens. Each point in the focal plane corresponds to a unique spatial
frequency in the wavefront a(x,y) transmitted by the hologram. In
a real hologram the lens is often incorporated into the hologram as a
spherical phase factor, but is shown separately here for clarity.

If we apply the sampling theorem to the reconstructed wavefront
a(x,y), we find that a must have a spatial frequency band limit
B = 1/2d, where d is the sample spacing. Considering both positive
and negative spatial frequencies, the space-bandwidth product in one

dimension of a(x,y) will be

28L. = 2L/2d = N

The space-bandwidth product in two dimensions is then N2 , the total
number of samples.

The regular array of N by N samples will reconstruct several
images in the focal plane, one for each diffracted order of the array.
In order that the images not overlap, they must have a maximum size A

equal to the spacing of the diffracted orders.
A = of = (NA/L)F (2.36)

The minimum separation of two resolvable spots in the image is given

by the Rayleigh criterion as:

§ = (AWL)f (2.37)
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The total number of resolvable spots in the two-dimensional image is

then

Ng = (a/8)% = NP (2.38)

which is the same as the space-bandwidth product of the wavefront
a(x,y).

Another way of stating the space-bandwidth limitation is that
the reconstructed wavefront must have a Timited angular bandwidth. For
the holograms of Chapter 3, L =25 mm, N = 1000, and X = 0.5u . The

maximum angular bandwidth is then
8 = NAL = 0.02 radians

A useful criterion for comparing various digital holograms is
the space-bandwidth efficiency, or ratio of number of resolution cells
required of a plotting device to the space-bandwidth product of the
reconstructed wavefront. Ransom(as) has compared several hologram
coding schemes on this basis. (Space-bandwidth efficiency as defined
above is the inverse of Ransom's p factor.)

The binary hologram (Figure 8) typically requires 10-50
resolution cells per sample, depending on how much noise is tolerable
in the image. Holograms generated with a variable density plotter
typically require far less resolution. Lee's hologram, as modified by
Burckhardt (Figure 9) requires three resolution cells per sample. The
kinoforms and color film holograms require one resolution cell per
sample. The modulated grating hologram (Chapter 3) requires one cell

per sample.
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2.3 Holographic Spatial Filters

One of the major applications of computer generated holograms is
spatial filtering. Spatial filtering can be used to perform a number

of interesting operations on images, including recognition of predeter-

mined patterns(36)

(38)

» coding of images(37), and restoration of blurred
images. The process of linear, spatial-frequency filtering of
images is often performed by using a digital computer. This is especi-
ally convenient for images which are already in digital form, such as

(39)

spacecraft photos. The computer is also able to perform a large

variety of nonlinear operations on an 1mage.(40)

The major advantage
of coherent image processing is speed. An optical processor performs
instantaneously, Fourier transforming and filtering operations which

take nearly a minute on the fastest computer.(4])

2.3.1 A Simple One-Lens Processor

A simple one-lens optical processor for performing spatial filter-

ing operations with holographic filters is illustrated in Figure 12.

4Lx-, Yo x,)/

X}a)?

OBJTECT

OGRAPHIC
TRANSPARENCY "°"””‘" PLANE

Fig. 2.12 A simple, one-lens, optical processor using a holographic
spatial filter. Vertical dimensions are greatly exaggerated
for clarity.
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Coherent optical processors occur in many configurations. A descrip-
tion of the more basic types can be found in several texts(42’43) and

in the paper by Arsenault(44).

A processor of the type shown in Figure
12 was used by Ragnarsson(46) in experiments with deblurring filters.
An analysis of this processor is given in Appendix N. A brief intui-

tive description of its operation follows.

The object transparency containing the image to be filtered

t(xo,yo) is illuminated with a converging spherical wave, focal dis-
tance d0 . The holographic spatial filter placed at this focal
plane contains a lens-like phase factor which images points on the
transparency onto points in the output plane. Imaging of the central
point is shown by the dashed lines.

The object transmittance function can be written as an integral,
or summation of its Fourier components

i2m(x v _+ )

y.v
= (| T 0°x “o'y
t(xg¥g) J[ T(vysvy) e dv, dv (2.39)

y

vx,vy: spatial frequencies

Eacn Fourier component deflects part of the energy in the converging
wave to a new location (x,y) in the filter plane, the angle of deflec-

tion being proportional to the spatial frequency.

X = Adovx

(2.40)

Ad v

Y oy

The Tight incident on the filter is not an exact Fourier trans-

form of t(x ), but differs by a spherical phase factor associated

0 ’yO
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with the distance dO . This spherical phase factor is compensated in

the hologram transmittance function:

Sikx - ik(x2+ y2)/2f

H(x,y) e (2.41)
K =k sin 8].
k = 2n/x
= -1
f = [1/d, + 1/d;]

The function ﬁ(x,y) is the complex filter transmittance, and the
phase factor is the paraxial approximation to an off-axis converging
spherical wave. The focal length f 1is chosen to image the transpar-
ency onto the output plane. The processor is,in effect, an imaging
system in which each spectral component of the image may be modified
by a complex factor H .

The impulse response of the filter may be obtained at the output
plane by placing a pinhole (delta function) at the center of the input
plane. The amplitude at the output plane can be written as a convolu-

tion of this impulse response with the input function
a;(xi,y;) = tox Alxg,y,) (2.42)

The analogy between optical processors and electrical filters is
often stressed in optical texts. A significant difference is that the
impulse response for an electrical filter must be zero for time < O,
resulting in a fixed relation between the real and imaginary parts of
the filter transfer function ﬁ(w).(45) No such restriction exists
for spatial filters, and we are free to choose any arbitrary complex

filter function.
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2.3.2 Deblurring Filters
An application of spatial filtering which has received consider-
able attention is the restoration of blurred images.(38’46’47)
A simple incoherent blurring process, such as camera motion, mis-focus,

or certain types of instrumental defects, may be represented as a

linear, space-invariant convolution.

Ib(x,y) = I0 * b(x,y) (2.43)

Io(x,y): original image intensity
b(x,y): point-spread function

Ib(x,y): blurred image intensity

The essential assumption here is that the point-spread function does
not change over the image area to be filtered. The treatment of space-
variant processes is considerably more comp]icated.(48)

The blurring process may be written in terms of the Fourier

transforms of the above intensity distributions:

~

Fooyvy) = Fow,avy) Bluwy) (2.44)
F = HD
B = #ib}

Ideally, one may recover the original image spectrum, and hence

the original unblurred image, by a process of Fourier transform division
I,(x.y) = ¥, /B) (2.45)

In the system of Figure 12, this process could be accomplished

by recording the blurred image on the input medium so that the amplitude
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transmittance is proportional to blurred image intensity,

to(xo,yo) o« Ib(xo,yo) lTinear recording (2.46)

The spectral distribution incident on the filter will then be the

blurred image spectrum,
T(vx,vy) o Jﬂb(ux,vy) (2.47)

A filter must be synthesized which is inverse to the blurring
function:

ﬁ(vx,vy) = §_](vx,vy) (2.48)

The amplitude at the output plane will then be proportional to the ori-

ginal unblurred image intensity:

a5 (x5.y4) = I,(x5.¥,) (2.49)
X; = (_di/do)xo
yi = (-dy/dgly,

The problem is that the spectral blurring function B may have
zeroes. A simple example is that of blurring due to mis-focus. The
point-spread function is a small disc of uniform intensity,

1

b(r) = 5 circ(r/r,) (2.50)
Tr
0
1 r <
circ(r/ro) = 0
J g

o [0 goy 2
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The spectral blurring function for this circularly symmetric

case is found by a Fourier-Bessel transform.(49)
B(p) = Jy(2mp)/mp (2:51)
A N normalized spatial frequency
v = (vi + vi)]/z

This function and its approximate inverse is shown in Figure 13. Any
physically realizable filter will have a 1imited dynamic range, and the
poles in the inverse filter must be truncated in some fashion. This
truncation results in holes in the overall transfer function, as shown
in Figure 14. It is desirable to have a filter with as large a dynamic
range as possible, in order to minimize the loss of information asso-
ciated with these gaps in the recovered spectrum.

The dynamic range is defined as the ratio of maximum to minimum

usable filter transmittance,

< H(v_,v. ) <H

. (2.52)
min S max

This ratio will depend on the process by which the filter is made.
Filters generated by analog methods are typically limited by the linear-
ity range of the recording medium. Computer-generated filters may avoid
the nonlinearity problem by pre-distortion of the filter function in the
computer. The dynamic range limitation in this case will be due to
noise in the medium or in the recording processes, including quantiza-
tion noise inherent in the digital process. The fundamental limitation
will ultimately be noise in the holographic filter medium. This is the

subject of Chapter 4.
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Fig. 2.13 Spectral blurring function B(p) and optimum inverse filter
H(p) for an image blurred by a circular point-spread function.
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Fig. 2.14 Overall transfer function for the linear blurring-deblurring

process of Figure 13.
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Noise in the input medium will also fundamentally limit the de-

blurring process. For this case an optimum linear estimation filter

was derived for He]strom(SO)

(51)

by the method of linear mean-square estim-
ation.

Assuming the noise is Gaussian and additive, Helstrom showed that
the linear filter which results in the least overall mean-square devia-

tion of the recovered image from the original is given by:

fi(vgavy) = BT (v v )1 + oy (ag|B]%)]7 (2.53)

E(vx,vy): Spectral blurring function

@N(p) : Noise power spectral density, isotropic

o . 2
®S(vx,vy). Signal power spectral density, l,gﬂJ

In areas of the filter where the blurred-image power spectral density,

&SIBJZ, exceeds oy the optimum filter is simply 5_1.

Where the
blurred signal falls below the noise, the filter transmittance drops
rapidly to zero.

The maximum quantity of information in a blurred, noisy image

may be stated, by analogy with the information capacity of a noisy com-

munications channe],(sz) as
o e 2
Q = N 1092[1 + o.B /@N] (2.54)

where N2 is the number of independent image components, or equiva-
lently, the space-bandwidth product. The above formula would apply to

an optimally-coded image degraded by Gaussian, additive noise. Quite
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often in images the noise is multiplicative and non-Gaussian, and the
above formula must be applied cautiously. The point to be made here,
however, is that the blurring of an image in the presence of noise
entails loss of information. In a deblurring process the remaining
information is merely modified to a form more suitable for assimila-
tion by an observer. Thus, characters which are unreadable in a
blurred image may be made easily legible in the deblurred image with-

out violating the laws of information theory.
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2.3.3 Synthesis of Deblurring Filters

Spatial filters for image deblurring may be divided into two
classes, depending on the method of synthesis. In analog methods the
filter is produced by optical techniques from the recorded point-spread
function. In digital methods the filter is computed, and appropriate

masks generated to produce a hologram with the desired transmittance.

Analog Methods

The synthesis of spatial filters for image enhancement has been
intensively studied for many years. Maréchal and Croce(53) first
demonstrated the principle of spatial filtering by increasing the con-
trast of an image with a simple attenuative filter. Tsujiuhhi(sq)
constructed a filter with positive and negative real transmittance
values. The 180° phase shift was obtained by vacuum deposition of a
thin layer of MgF2 in zones where the filter transmittance was nega-
tive. The use of a hologram as a spatial filter was demonstrated by

(65)

VanderLugt, in his early experiments with character recognition

filters. The use of a hologram allows the synthesis of filters with
arbitrary complex transmittance functions.
A method of generating a holographic spatial filter for image

deblurring was shown by Stroke and Zech.(56)

This filter is generated
as follows: The point-spread function b(x,y) is first recorded on
film. This film is placed as the input to a processor, and the blurring
function B is obtained at the transform plane. The essence of this

-1

method is the realization that the filter B~ may be obtained as a

product of two easily recorded filters:
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57 (vyov,) = (B5)(1/1B]2) (2.55)

The first filter, B*, is available as the conjugate wave in a hologram
recorded at the transform plane. The second filter is a purely attenu-
ative (real) transmittance obtained by recording the intensity pattern
|E|2 on a photographic negative. Exposure and development parameters
must be carefully controlled on the second filter, and even then the
desired inverse characteristic is obtained only over a limited range.
Extension of this range requires a series of carefully controlled mask-

(57)

ing steps in the generation of the second filter,. Examples of

images deblurred by this method are shown in several papers.(47’58’59)
An alternative method for recording holographic filters for de-
blurring is the "weak reference" filter of Ragnarsson.(46) This method
produces in a single recording step, filters of high diffraction effi-
ciency and relatively large dynamic range. Normally, in a holographic
recording the reference wave is made much stronger than the object
wave in order to produce a linear recording of the object. An inver-
sion effect may be obtained by making the reference wave much weaker
and exposing the hologram in the saturation region. With a constant,
weak reference wave, increasing the amplitude of the object wave in-
creases the total exposure and drives the medium further into the
saturation region. With the proper combination of exposure and develop-
ment, the desired inverse characteristic can be obtained over a

relatively large range. Ragnarsson used a special monobath developer

and a chloride bleach to obtain holograms with a 250:1 exposure range.
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Tichenor(so) has extended the range of weak reference filters
by sandwiching the filter with a "primary filter" which performs the
same function as the attenuative filter in Stroke's hologram.
The large dynamic range is absorbed in the primary filter, allowing
the holographic filter to operate within its optimum range. By using
a cascade of such filters, the dynamic range may be extended beyond
the range of each emulsion.
An alternative to cascading of filters is to place them side-by-

side in a multichannel processor.(G])

Each filter operates only on
that part of the object spectrum within a limited amplitude range.
The different spectral components of the image are recombined at the
output plane. Alignment of the system is critical in order to insure
proper relative phase of each of the components.

The major problem in synthesis of deblurring filters by analog
methods has been the achievement of large linear ranges in media which
are inherently nonlinear. Also, since the point-spread function is
first recorded on film in the above methods, the class of filters
which may be synthesized is limited to those filters with a real im-

pulse response,

Digital Methods

The problem of nonlinearities in the recording of filters by
analog methods is avoided in digital generation of filters. Whatever
nonlinearity exists in the various media and processes in the genera-
tion of a digital hologram may be pre-compensated by distortion of the

functions in the computer, provided only that the processes are well
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enough controlled to produce a repeatable nonlinear characteristic.
The inherent flexibility of the digital computer also allows synthesis
of any arbitrary complex filter function.

Digital holographic filters may be synthesized by any of the
methods discussed in Section 2.2. The principal limitation in a
digitally recorded filter is the relatively small space-bandwidth prod-
uct compared to analog filters. The problem is not in the recording
of the required filter function H , which typically has a small space-
bandwidth product, but in generating the high-frequency carrier grating
which is necessary to insure adequate separation of the diffracted
orders (cf., Fig. 2.11). If the filter were recorded on a minimum-
frequency grating, the small image corresponding to the impulse re-
sponse of the filter would just touch the images from adjacent orders
at the output plane. The minimum necessary grating frequency in a
spatial filter will be determined by the required separation of orders,
which depends on the size of the image to be filtered.

On-axis holograms avoid the separation-of-orders problem, but
may be subject to other limitations. The color-film holograms, at
least with presently manufactured emulsions, may be too noisy for high
quality spatial filters. The possibility of using this type of hologram
as a spatial filter is presently being investigated.(ﬁz) The kinoforms
are out of the question because of noise problems.

A method has recently been proposed to produce a digital filter

(63)

on a high-frequency carrier. The filter function is first synthe-

sized on an ordinary binary hologram. The hologram is placed as an
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input to a processor, and the first-order wave (filter function H) is
extracted using a properly located aperture at the transform plane.

The function H may now be recorded on a second hologram with a high
grating frequency. The result is a filter with a much larger free
spectral range, but the dynamic range can be no larger than that of the
initial digital hologram,

The modulated grating hologram (Chapter 3) was designed with the
spatial filtering application in mind. In principle, it offers large
dynamic range and large free-spectral range. Presently, it suffers
from certain technological problems which prevent its application as a

precision spatial filter.

2.3.4 Noise Problems in Coherent Optical Systems

Images which have been deblurred in coherent optical systems are
generally of very poor quality in comparison to what can be done digi-
tally. Much of the problem is not related to dynamic range
Timitation in the filter. The major practical problem is that of
obtaining a clean, linear recording of the blurred image. Noise and
nonlinearities in the recording of the blurred image will severely de-
grade the restoration, as shown in the computer simulation following.

In a coherent imaging system noise is often much worse than in
incoherent imaging systems. Noise arising from dust and scratches is
coherent with the image and can cause large fluctuations in image in-
tensity. Multiple reflections of the highly collimated 1ight from lens

surfaces can produce false images overlapping the primary image. The
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presence of hard apertures may cause "ringing" at the edges of bright
areas in the image. Liquid gates are often necessary to eliminate
pnase noise at emulsion surfaces. A spherical wave passing through a
flat liquid gate will suffer aberrations. In general, extreme care

is needed in the design and use of a coherent optical processor.
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2.4 Computer Deblurring Experiment

In order to illustrate the deblurring process and some of its
practical limitations, and to show what might ultimately be done with
a coherent optical filter, a computer simulation was carried out.

A spoke target was generated on a 512 by 512 array, shown in
Figure 15a. This array was transformed using a two-dimensional complex
Fast-Fourier-Transform (Appendix C). The power spectrum of the trans-
formed target is shown in Figure 15b. The full density range in this
image corresponds to six decades on a logarithmic intensity scale.

The point-spread function for this demonstration was chosen as a
circle function (equation 2.50) with Fog © 10 sample spacings. The

discrete PSF can be written as:

. 1/2
b, = ”—1:2— cire[(m+ n2)1/2 /] (2.56)

0

The discrete spectral blurring function is

B = J1(2ﬂouv)/(ﬂpuv) (2.57)
puv - rosuv = 10 Suv
Sy - (1%+ w2} 7 512
u,v = [-256,255]

Application of this blurring function to the spectrum of 15b results

in the power-spectral distribution of 15c. The transform of this
blurred spectrum gives a blurred image, 15d. The loss of high spatial
frequencies in an image spectrum corresponds to loss of fine detail and

sharp edges in the image.
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Inspection of the spokes in 15d shows areas of reversed contrast.
The spectral blurring function is negative for these frequencies. The
phase reversals are more apparent in a high-contrast version of the
same image, 15e. This image was obtained by using a binary intensity
scale, with the threshold set at the middle of the intensity range of
15d. It can be seen from this figure that no simple increase in con-
trast can deblur an image when the blurring process is severe enough
to cause phase reversals in certain spatial frequencies.

A deblurring filter of the form of an optimum linear filter
(equation 2.53) was simulated by assuming a constant signal-to-noise

power spectral density ratio. The discrete filter is then

[URY) [94Y) HV (2'58)

The plot in Figure 13 was obtained from a scan through the center of
this filter. The peak values for a continuous filter with the above
value of C would be +500. The irregularity of the peaks in the dis-
crete filter is due to the sampled nature of the function. The overall
transfer function of the blurring-deblurring process is shown in Figure
14, which was obtained from a product of the two discrete functions
(2.57 and 2.58).

An impulse response of the deblurring filter was obtained by
transforming the discrete filter (2.58). A scan through the center of

this impulse response is shown in Figure 16. The prominent features
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in this pattern are a series of sharp concentric rings of alternating
sign. The spacing between groups of these rings is about the diameter
of the blur circle. It is easy to imagine how such a function, con-
volved with the blur circle, would give a restored function nearly
zero everywhere except at the center where the circle lines up

exactly with the rings.

A real-symmetric point-spread function results in a real-
symmetric (but possibly negative) deblurring filter. Likewise, the
filter impulse response will be real-symmetric.

Application of the deblurring filter (2.58) to the blurred
image, 15d, results in the restored image, 15f. The restoration is
visually nearly perfect, although a small amount of noise can be seen
in the original photograph.

Figure 15f shows what might ultimately be possible in a coherent
processing system. The performance of such a system, however, will be
severely degraded by noise and nonlinearities in the blurred image.
Blurred images are typically found in one of two forms: a photographic
record or a digital record. Photographic films are subject to non-
linearities, and digital image intensity values are typically quantized
to levels representable by a few binary bits.

A simple nonlinearity was applied to the values representing the
blurred image, 15d. A plot of this nonlinear function, which resembles
a film characteristic, is shown in Figure 17. Application of the
deblurring filter (2.58) resulted in a restored image with degradations,

154
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f(x)

|
fix) = | + (2=-2x)"

0

(o) X I

Fig. 2.17 MNonlinear scaling function applied to the blurred image 15d,
resulting in degradation of the restored image, 15g.

The effect of quantization noise was simulated by truncating the
low-order bits of integers representing the intensity distribution of
the blurred image, 15d. Quantizing the blurred image to 128 levels
resulted in the degradation of the restored image shown in 15h.
Quantization to 256 levels eliminated most of the noise, and quantiza-
tion to 32 levels totally obliterated the image.

The effect of various degradations on the spectrum of a con-

tinuous tone image can be seen in a paper by Anderson and Huang.(64)
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CHAPTER III

THE MODULATED GRATING HOLOGRAM

The modulated grating hologram is a computer-generated, off-
axis hologram made by a multiple exposure holographic technique. This
nyorid digital-optical method combines the flexibility of the computer
with the advantages of optical methods in the generation of large area
holograms. Unlike other methods, the modulated grating hologram can be
synthesized in virtually any holographic medium. In applications such
as spatial filtering,where dynamic range is of great importance, the
cnoice of a low-noise, hign-efficiency medium such as dichromated gela-
tin will allow the synthesis of holographic spatial filters of excep-

tionally large dynamic range.

3.1 Basic Idea--Multiple Exposure Wavefront Synthesis

The basic idea in the synthesis of modulated grating holograms
is illustrated in Figure 1. Several wavefronts of fixed phase but
varying anplitude may be recorded by multiple exposures in a holographic
medium. The functions wn(x,y) are assumed to be real and non-negative
since tney represent wavefronts obtained from computer-generated masks
whicn control only the intensity of the transmitted wave. The phase
o is set independently for each exposure. If the total exposure does
not exceed the linear range of the holographic medium, then the recorded
wavefront may be taken as a linear superposition of the several fixed-
phase wavefronts. The reconstruction is illustrated in Figure 2. The

diffracted wave is now represented by the complex function wix,y).
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By appropriate choice of the functions wn(x,y) and phases ¢_ = one may
construct a wave of any desired phase and amplitude. If ﬁ(x,y) is a
real function (positive and negative values) as in certain classes of
spatial filters, then only two functions w, are needed, with

¢y = 0° and 180° . If w(x,y) 1is an arbitrary complex function, then
three phases are needed, b, * 09,120° and 240°. The decomposition of

a complex function into three fixed phase functions is illustrated by
tne phase diagram, Figure 3. The significance of this simple mathemati-
cal relationship to the synthesis of holograms was pointed out by
Burckhardt(1). It was, in fact,an earlier paper by Burckhardt and

(2)

Doherty wnich was the inspiration for this work An algorithm for
decomposition of a complex function into its three components is given

in Appendix C (subroutine CUMPON).

120°

idrn/3

Wix,y) = W (x,y) + \«fz(x,y)s.-"i?'“/3 + walx,y)e

Fig. 3.3. Three fixed phase wavefronts are minimum necessary to gen-
erate an aroitrary phase and amplitude wave.
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The first problem one must consider in any scheme to generate a
hologram by the above method is that of phase aberrations in the wave-
fronts wn(x,y). These wavefronts are obtained from computer-generated
masks, which may introduce severe phase distortions in the transmitted

(3)

wave. In an earlier paper Appendix A) several methods were suggested
for eliminating phase distortions, including use of a liquid gate and a
contact printing method. The latter method is illustrated in Figure 4.
The transmission mask for each exposure is placed in direct contact with
the holographic medium. If the angle between the two grating-forming
waves is small, then each wave suffers the same phase delay due to mask
aberrations, and there is no shift in the recorded grating.

The recording process may be thought of as the superposition of
two or three component gratings in the same hologram, the amplitude of
each grating being independently modulated by its corresponding mask
function Mn(x,y) . The result is a hologram with a basic grating or

~ . X
WS (X,Y) E“ ¢h

\
HOLOGRAPHIC
MEDIUM

Fig. 3.4. Elimination of phase errors in component waves by contact
printing.
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"carrier"” which is generated optically and a modulation function or

"envelope" which is determined by the masks. Several advantages over

previous digital holographic methods are apparent:

| @

There is complete freedom in the choice of holographic
medium. We are not confined to a thin amplitude medium

or any special emulsion. Choice of a high-efficiency, low-
noise medium such as dichromated gelatin will allow the
synthesis of digital holographic spatial filters of excep-
tionally large dynamic range. A photo-resist medium might
be used if one is interested in making a surface relief
digital hologram suitable for mass production by an em-
bossing method.(4)

The basic grating is generated optically, relieving the com-
puter of the burden of drawing details the size of each
fringe. The maximum information capacity of any given
plotting device may then pbe applied to the generation of
the modulation functions. This can result in considerable
savings in computer time and plotter information capacity
in the synthesis of large digital holograms. The maximum
theoretical space-bandwidth efficiency is obtained, since
one complex transmittance coefficient may be specified for
each resolution cell of a continuous tone graphic device.
In these experiments, holograms one inch square with a 3u
grating period were synthesized using mask functions with
a 1024 by 1024 array of resolution spots. A hologram of

the Lee-Burckhardt type with the same grating period and
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number of resolution cells would be one millimeter square.

3. By varying the shape of the recording wavefronts,it is pos-
sible to incorporate any desired phase function in the
hologram without recomputation of the masks. The spherical
waves shown in Figure 4 will produce a hologram with a simple
lens phase function. If the hologram is to be used in an op-

tical processor, this will allow the elimination of one lens.

A simple analysis may be presented for the recording and recon-
struction process in a thin amplitude hologram. We assume an ideal
nologram material in which the amplitude transmittance of the developed
hologram at each point (x,y) is proportional to the total exposure inci-
dent at that point during recording.

Tp(xsy) = o J E (X,y) (3.1)
n
Each component exposure is the product of exposure time <t and inten-
sity
o
n Vi
I (3.2)

tn(x,y) = T|anS e MW

R

The mask functions Mn(x,y) are considered real, since any phase factor
does not affect the intensity. The total transmittance can be written
as the sum of three terms

_ 2 2 2

a T(wg * ) My

n .
=1
¢n

T, (%)

+
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uTwS szMne
n .

~ % 7 1qul
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The three terms in the transmittance will be separable in an optical
system provided the bandwidth of the modulation does not exceed one-half
the carrier frequency. As an example, consider the hologram of Figure 5.
The tnree terms in the transmittance function result in diffraction of
three waves. The desired wave propagates along the z-axis and may be
separated from the other waves if its angular spectrum does not overlap
that of the other waves.

A similar analysis may be carried out for other types of holo-
grapnic media. In the case of thick holograms the Bragg condition may
result in cancellation of all but the first-order wave, and if the grat-

ing is very thick there may be a band-limiting effect on the first-order

wave,

| ExampLE ®
W (x,y) = | iy
\,,/S( Y) erKX r7 -
R x.‘/ !
% @ |
RECONSTRUCTED WAVE : :
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+ e T ( % ane—{‘an €
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Fig. 3.5. Diffracted waves from a modulated grating hologram in an
ideal thin amplitude medium.
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3.2 System for Generation of Modulated Grating Holograms

3.2.1 Electronically Stavilized Interferometer

Synthesis of the modulated grating hologram requires that the re-
cording wavefronts pe stable in both amplitude and phase over long
periods. A schematic of the hologram recording system used in these
experiments is shown in Figure b.

Holograms were recorded on 4" by 5" glass plates with wave curva-
tures 580 nm and -1740 mm at the hologram plane, giving holograms of
435 mm focal length. The two waves were set to equal intensity by a
variavle attenuator. The fringes recorded in the holographic medium are
modulated in amplitude by a mask held in contact with the hologram. The
masks are photographic plates two inches square with density patterns
one incn square obtained from a CRT computer plotting device. The 25u
mask registration tolerance is maintained by an alignment jig, a simple
mecnanical structure with no adjustments, mounted on the hologram plate
nolder.

The recording procedure requires two or three exposures, depending
on the nature of the hologram transmittance function, each exposure with
a separate mask and fringe phase setting. Exposure time is controlled
vy a shutter and digital timer. Typical exposure times for dichromated
gelatin are 20 seconds with 54u uw/cm2 at the hologram plane. Intensity
is stabilized by controlling the laser tube current as shown in Figures
7 and 8. The laser is operated single mode to obtain high fringe con-
trast at the hologram plane. Mode stability is monitored with a spectrum
analyzer, and adjustments are made with the laser etalon prior to each

exposure.
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The fringe phase is controlled by rotation of a glass flat in
one leg of the interferometer. This phase shifter is part of a servo-
loop with the fringe phase controlled at the hologram plane by a small
auxiliary grating. Details are discussed below.

Al1l of the optical components are mounted on a cast iron table
which is isolated from floor vibrations by a pneumatic suspension sys-
tem. The interferometer is enclosed in a styrofoam box to eliminate

air turbulence.

3.2.2 Mask Generation System

The masks used in these experiments were Kodak precision flat
nign resolution plates (SP0Obb0) of the type used in the semiconductor
industry for integrated circuit mask making. These are two-inch square,
.UoU" thick glass plates with a fine grain emulsion 6u thick. Character-
istics of the emulsion and glass, including flatness specifications, are
given in publications by Kodak.(s’b)

Tne mask density patterns are first generated on 70 mm film
(Kodak S0G272) with a computer CRT plotting device‘(7) With this device
we generate a 1024 by 1024 array of spots, 25u spot spacing, and one-
incn square total array area. Each spot has 256 density levels
corresponding to a density range of 1.2 on the film.

The mask patterns are transferred from the film to the high

resolution plates by contact printing. This is necessary to

- put tne mask on a suitable substrate for use in the
interferometer

- extend the density ranye U-3D
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- insure proper mask alignment
- eliminate raster in the recorded patterns.
Use of a computer controlled microdensitometer would allow
direct writing of the masks and greatly simplify the above procedure.
Generation of the tapes from which the masks were made was done
on an IBM370 at the Caltech Computing Center. The programs are listed

in Appendix C.

3.2.3 Fringe Phase Control System

Proper recording of the multiple exposure hologram requires a
stable, accurate setting of the fringe phase at the hologram plane
during exposure. The required fringe stability is obtained by making
the pnase shifter part of a servo-loop, with the phase being controlled
by a small grating just behind the hologram plate (Fig. 6). This
grating causes a mixing of the two waves which pass just above the edge
of the mask. Large, hign contrast fringes are projected onto a photo-
diode. A nigh-frequency, small-amplitude oscillation is superimposed
on the phase shifter driving signal, and this oscillation is detected
in the photodiode current by a lock-in amplifier. When the projected
fringe intensity is minimum, the error signal will be null. Deviation
of the fringe phase to eitner side of this null point will result in
an error signal of tine proper polarity to return the system to equili-
brium. Locking onto the fringe minimum in this manner insures that
tne phase setting is not affected by variations in the fringe intensity
arising from fluctuations in the laser or other system instabilities.

Details of the phase control electronics are given in Figure 9.
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Utner systems for fringe stabilizaticn have been presented.(S’g)
In thnese systems the fringes at the hologram plane are magnified by a
microscope objective and projected onto a photomultiplier tube. The
very small amount of light power available from one fringe at the holo-
gram plane results in signal-to-noise problems and requires a sensitive
photomultiplier. The essential difference in our system is the use of
a grating instead of a microscope objective. The light intensity
available at the photodetector is the same as at the hologram plane,
and a simple silicon photodiode may be used to sense the fringe phase.
The disadvantage of the grating method is that each change of the
interferometer configuration requires exposure of a new grating.

The control gratings used in this experiment were half-inch
squares of dichromated gelatin plate. Exposure was adjusted to give
projected fringes of maximum contrast.

Fringe spacing at tne hologram plane is 3y, so a displacerent of
the control grating over 1.5y will shift the phase of the recorded
fringes by 180°. These small displacements are produced by a differen-
tial spring mechanism which is mounted directly on the hologram plate
holder so as to minimize any error resulting from thermal gradients or

imnechanical stresses.
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3.2.4 Phase Accuracy of the Interferometer

In order to test the phase errors introduced by the interferom-
eter and masks, several gratings were made with double exposures of
equal amplitude and opposite phase. The amplitude of the resultant
grating will then be a measure of the phase error, as shown in Figure
10. Variations in the amplitude of the component gratings will also
give a non-zero resultant. These variations are due mostly to instabi-
lities in the laser beam mode structure. Intensity at the center of
tne beam showed fluctuations of about 10% in spite of regulation of the

total beam power to better than 0.1%. A 10% error in the amplitude of

FIRST EXPOSURE
00

- -
=

lﬁfﬂ"gagf:ﬂgﬂfﬁﬂ’#

1
SECOND EXPOSURE

RESULTANT

Fig. 3.10  Double exposure test for phase accuracy of fringes.

one component will be equivalent to about 6° phase error.

Figure 11 shows the results of measurements from several double
exposure gratings made with various pnase settings. The phase shift
is assumed proportional to the micrometer setting on the differential
spring translator. The dots are for gratings made with no mask.
wrating amplitude was computed as the square root of the measured dif-
fraction efficiency. The plus or minus sign ambiguity was resolved in

favor of the best fit to a straignt line through all the data points.
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Most of the points seem to fall within 10° of the best fitting straight
line. Direct measurements on the interferometer using a second grating
and lock-in also indicated about 10° error in the resetability of the
pnase. Tne error seems to be the result of hysteresis in the action
of the springs in the translator. A more careful design could perhaps
improve this resolution.

A double exposure was made with a mask substrate in position.
The mask was inverted for the second exposure so that the effect of any
wedge in the mask substrates would be doubled. Fiqure 12a is a photo-
graph of the diffracted T1light from the resulting hologram. A piece of
black tape was placed across the lower third of the mask area. The
oright areas at the top and bottom of the hologram show the gratings

formed by the first and second exposures alone. The light from the

- .5
1 s
 WITH MASK

1.3 ~
w

-+ .2 o
o 10
X
r 45 50 .55 60 65 MM
a O 4 + + y
= 1 MICROME TER

SETTING

© -2
=
- 1-.3
<{
o« g
= 4

+-.5

Figs: 3z Grating amplitude for several double exposure
holograms showing interferometer and mask phase
errors.
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central area is tne result of incomplete cancellation of the two ex-
posures and is an indication of phase errors in the mask. Inspection

of tine hologram in Figure 12 shows some points in the central area to
be about as brignt as the top and bottom reference areas, indicating

da phase error of about 60°. The accuracy of the interferometer on
this hologram was good, as shown by the nearly complete cancellation of
the grating outside the mask area.

a) b)

Fig. 3.12 a) Douule exposure with inverted mask substrate showing
result of mask phase aberrations. b) Interferogram of
the same mask.

Measurements of the diffraction efficiency were made at several
points in the central area of the hologram in Figure 12. The area of
the laser beam used to probe the hologram was much larger than the fine
structure which is evident in this picture, so the measurement must be
considered a local average of the diffraction efficiency. The mean and

standard deviation for this set of measurements is plotted in Figure 11.
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ATl the holograms in this figure were exposed and processed under the
same conditions (see Dichromated Gelatin Process II in Appendix G for

details).

3.2.5 Mask Phase Errors

It is apparent that the largest source of phase error in the
recorded fringes is the mask substrate. Results similar to Figure 12
were obtained using masks both with and without emulsions.

An analysis of the fringe phase errors due to the mask substrate
is illustrated in Figure 13. The two rays A and B,which form the
fringes at any given point in the hologram enter the mask substrate at
slightly different points. The fringe phase error will depend on the
flatness and polish of surface 1. The phase error due to the surface

figure or flatness is given by

% = NoT - 360° (3.4)
X
MASK i | __ HOLOGRAM
SUBSTRATE

® er | T Rl —Tel

MASK

Fig. 3.13 Fringe Phase Error Due to Mask Substrate
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wnere I 1s the number of fringes per unit distance in the x direc-
tion due to surface 1 , 6 1is the beam angle in radians, and T is
tne mask substrate thickness. Figure 12b shows a transmission inter-
ferogram of the two-inch square mask. If we assume that the fringes
are due entirely to surface 1, and assume a maximum of five fringes per
inch, with 6 = 10° and T = .060", the above formula will give 199 as
the maximum phase error. Interferograms of several other possible mask
substrates are shown in Appendix D.

The phase error due to imperfections in the polish on surface 1

may be calculated by
© = (n-1) T - 360° (3.5)

where h is the surface height difference for two points separated by
a distance 6T , n 1is the refractive index of the mask substrate,
and X is the wavelength in air. A table of surface smoothness for
various polished glass specimens is given in the book by Ho]land.(10)
ror a fire-polished microscope slide hrms = 563. If we set h =1OOR,
n=1.52 and A = 4880R, equation 5 predicts ¢ = 3.8°. An h of
13603 would be required to produce a phase error of 60°. The phase
errors in the hologram of Figure 12 seem to be the result of ripples in
tne back surface of the mask supstrate which are too small to be re-
solved in the interferogram.

Another possible source of fringe phase error may be failure of

tne mask to rest flat against the hologram surface due to irregularities

in the gelatin. The phase error in this case is
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0% = (n-1)(8T6/2) » 360° (3.6)

where ¢ s the angular misalignment in radians. Considerable care is
taken in the manufacture of high resolution plates for semiconductor
mask making to insure that the gelatin layer is uniform and f]at,(]])
so this snould not be too much of a problem. Assuming a worst case
deviation of by across a 50 mm plate, we get & = 10-4 and ¢ = 10.2%
The severity of the phase aberrations in these masks makes the
synthesis of a precision spatial filter impossible. Further experimen-

tation is needed with various substrates to find one that has acceptable

surface quality and is available at reasonable cost.
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3.2.6 Suggested Improvements in the System

Synthesis of nign quality spatial filters with the modulated
grating hologram will require further development of the apparatus and
procedures described above. Suggested here are several improvements
wnich could easily be made in a redesign of the system and
some possible solutions to tne mask phase error problem.

The speed and accuracy of the fringe stabilizer could be im-
proved. The loop response time for fringe locking is about a third
of a second, limited by mechanical resonances in the glass flat phase
shifter. This makes phase control difficult with the more sensitive
holographic media. A lightweight mirror on a piezoelectric device
would pe much faster, allowing shorter hologram exposure times.

The interferometer phase accuracy which is currently limited
vy mecnanical provlems in the grating translator could be improved by
mounting the grating on a sensitive capacitance micrometer.(12) Such
devices have been used to measure displacements as little as 10']]mm.

Location of the control grating behind the holoaram plane is
inconvenient for exposure of holographic med{a which scatter or dis-
tort the incident waves. Placement of a small mirror or beam splitter
in front of the hologram with the control grating off to the side
would alleviate this problen.

Exposure intensity stability could be improved Ly use of a
laser with a more stable mode structure or by placing the photodiode

so as to regulate intensity at the center of the hologram plane.
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The most serious problem seems to bDe phase errors introduced
by the mask substrates. Further testing of substrates is necessary to
find one with acceptable phase error available at a reasonable price.
The trade-off is between thickness and flatness. Thin substrates are
more difficult to grind flat. In the system described above, a substrate
of thickness .U60" would require surface flatness 1/4 fringe per inch
(in transmission) to reduce the phase error to 19, A very thin sub-
strate, say .005", would require a flatness of only 3 fringes per inch
for tne same phase accuracy. A fire polish would probably provide
adequate surface smoothness.

Another possible solution to the problem might be the use of
a liquid gate, either at the hologram plane, or with the mask separate
from but imaged onto the hologram plane. Precise index matching could

(13) Use of

be obtained by mixtures of high index and low index fluids.
lTiquid gate requires that the mask substrate be thin and homogeneous.
A .060" glass plate with index variations &n = ]0-5 would show a phase
error of 11°.

Perhaps a set of high quality reusable substrates is the answer.
An antireflection coating would eliminate any problems with multiple

(]4) or a

reflections. The use of a mask medium such as photoresist
pbleachable dye in gelatin suspension would eliminate the film grain
noise in the masks. Dichromated gelatin holograms made with such masks
might be the ultimate in noise-free digital holograms.

Direct writing of these masks on a computer-controlled micro-

densitometer would be very desirable. This would greatly simplify the
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mask making procedure and minimize problems with mask alignment and

density variations.
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3.3 Conmputer-Generated Holograms in Dichromated Gelatin

Une of the major requirements of a computer-generated hologram
for use as a spatial filter is large dynamic range. This range will
be limited fundamentally by the maximum diffraction efficiency and the
minimum noise level of the medium. The hign diffraction efficiency and
very low light scattering of dicnromated gelatin make this a very at-
tractive medium for spatial filters.

Synthesis of holograms in dichromated gelatin is, however, more
difficult experimentally tnan synthesis in the more conventional holo-
graphic media. The low sensitivity of the medium requires long
exposures with a hign power laser. Repeatability of results depends on
tine utmost care in handling and uniformity of processing. The developed

holograms are unstable in humidities above 80%.

3.3.1 woise and Diffraction Efficiency in a Modulated Grating Hologram

Several nolograms were synthesized in dichromated gelatin in
order to test the noise and efficiency properties relating to dynamic
range. Processing details are given in Appendix G. The holograms were
made withh a single exposure using the interferometer of Section 3.2.
Tone mask had 17 areas of uniform density.

[Mleasurements of the diffraction efficiency and noise were made
as shown in Figure 14. The diffraction efficiency is defined as the
ratio of power diffracted into the first order beam to power in the
incident beam. Noise was measured with the detector just off the first

order spot (9 = 7.8 milliradians in Figure 14). Details of the
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Fig. 3.14 Measurement of diffraction efficiency and noise in a
nolograpnic medium.

experimental systew are given in Appendix F. Experimental data for
three identically processed nolograms are shown in Fiqure 15. The dots
indicate diffraction efficivney as a function of exposure and show that
witn careful processing dichromated gelatin can give uniform and re-
peatable results.

Relative amplitude of tne diffracted wave (square root of the
diffraction efficiency) is plotted in Figure 15 to illustrate the
lTinear response of the medium. The theory for an ideal holographic
medium predicts a linear relationship between diffracted wave ampli-
cude and grating modulation at low exposures.(]s)

Tne diffracted wave amplitude will reach a saturation level
due to depletion of the main beam and diffraction into other orders,
even though the medium is perfectly linear. The expected curve for a

linear mediun will be of the form
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yn = Vnmax sin(ak) (3.7)

The exact functional form will vary slightly, depending on the thick-
ness of the grating, but the sine function may be taken as a good
approximation, at Teast over the first peak in the diffraction ef-
ficiency. A plot of this function (with Mo 50% and o adjusted

to give a best fit over the linear region) is shown as a dashed line

in Figure 15. On the logarithmic scale of this figure, a linear medium
would show a fairly sharp cutoff at maximum diffraction efficiency.

The more gradual falloff of the experimental data is a result of sat-
uration of the medium for very strong exposures. The curve deviates
from a straight line at low efficiencies due to a minimum noise level

in the system. A curve of the form

/A= /A sin(af) + C (3.8)

with C=2.10"%

is plotted through the data points at Tow amplitude.
The minimum noise level C is a function of the detector solid angle.
A smaller detector aperture would measure the same diffraction effici-
ency but smaller noise level. The signal-to-noise ratio, therefore,
cannot be taken as an intrinsic property of the medium, but is still
useful in comparing one medium to another.

A more fundamental characterization of the medium is the noise
power spectral density, @ (]ines/mm)"z, which is defined as the frac-

tion of incident power scattered into an aperture of unit spatial

frequency. It is related to the fraction of incident power scattered
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per unit solid angle by

_ 2
¢(vx,vy) dvxdvy = QQ(GX,ey) ds/ A (3.9)

wnere thie spatial frequencies “x’vy are given by

Uy = sin ex’y/k (3.10)

® 1is used rather than ¢, Decause ¢ will be independent of wave-
length A in film noise models which assume a two-dimensional
transmittance function such as the random checkerboard or overlapping

circular grain mode]s.(lﬁ)

For a real emulsion, & may vary with
wavelength due to the wavelength dependent nature of the scattering
from film grains in a thick emulsion.

Ihe scale on the right side of the graph applies to the noise

measurenents

log ¢ = ]og[nlévxévy] (3.11)

where n is in this case the noise equivalent of diffraction effi-
ciency.

Noise measurements for one of the holograms in Figure 15 are
shown on the graph by + symbols. Comparison of these levels to
tnose for gratings made without a mask shows that the mask is the
dominant noise source. The mask noise probably originates from
film grain in the 70 mm film (Kodak SU272) on which the density pat-

terns were written. Tnis film hdas much lTarger grains than a typical
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nolograpnic emulsion, and the noise from this source willbe transferred
to tne nigh resolution plates and recorded in the hologram. Direct
writing of the masks in a low-noise medium would alleviate this problem.

A Tiquid gate was formed by placing one of the high resolution
plate substrates over the hologram emulsion with a drop of xylene for
index matching. This had no effect on the noise levels at low dif-
fraction efficiency, and at high efficiency actually increased the
noise scattering. This result is to be expected if the noise is re-
corded in the hologram and is not the result of surface deformations
in tne gelatin. The increased scattering at high efficiencies is
probably due to scattering of the diffracted wave by the glass-air
interface of the liquid gate. The surface relief pattern on these
gylass plates which is evident in Figure 12a would be expected to add
a large amount of low-frequency phase noise to the transmitted wave-
front.

The low noise gratings used as a comparison in this experiment
were made by varying the exposure time. The noise levels for these
gratings, indicated by the squares in Figure 15, are more indicative
of the dynamic range which might ultimately be obtained with these
nolograms. Further measurements and comparison of the dynamic range

in various holographic media are presented in Chapter 4.
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3.3.2 A Simple Three-Phase Hologram

The multiple exposure wavefront synthesis idea has been illus-
trated for the two-phase case in the double exposure hologram of
Figure 12. To demonstrate the synthesis of a modulated grating
nologram in the case of a general complex transmittance function
requiring three fixed-phase exposures, a hologram of a simple non-
syminetric object was generated.

The object consists of three bright spots on a dark background.

Tne modulating function for this object is given by

N i2ﬂvax iEMua(x+y) 12ﬂubx

H(x,y) = e + e + @ (3.12)
where x and y are spatial coordinates in the hologram plane (see
Figure 1v) and tne spatial frequencies Va and v, are related to

displacements of the brignt spots from the center of the image plane

y  dy ~ POINT
HOLOGRAM T SOURCE
PLANE

[MAGE THREE
PLANE BRIGHT
i SPOTS

Fig. 3.1b. Hologram reconstruction geometry for the three spots

nologram.
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Dy

(3.13)

1]
>

Vab = *a,b/79 y

The total transmittance function for the first order wave of an ideal

hologram is given by

iKx - ik(xo+y2)/2f

Tax,y) = Hix,y) e (3.14)
o PN .
modulation carrier

The carrier grating has a linear phase term corresponding to the off-

set angle Oi 3

K =k sin 05 k = 2n/\ (3.15)

and a quadratic term which is the paraxial approximation to a spheri-
cal wave of radius f . In order to focus the point source onto the

image plane, the hologram focal length f must be such that
| S O -
g m e (3.16)

In this case, the amplitude at the image plane is related to the mod-
ulation function by a Fourier transform.(]7)
o 2 2N 4
1k(x1 + yi)/Zdi

n(x.

; (3.17)

i) = FH(x,y)} « e

Since we are interested only in the intensity at the image plane, the

phase term may be ignored and we get
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“(x.i ,y1) - é(xi_xa’yi) + a(xi_xa’yi*ya) + (S(Xi‘xb’.y.i) (3-18)

In a real optical system, the & functions will be replaced by func-
tions of finite width which are the transform of the hologram pupil
function.

A modulated grating hologram was generated in dichromated gela-
tin using the function from equation 12. This complex function was
computed on a TuZ24 by 1024 array of sample points and vroken into

tnree real functions, using the prograwms in Appendix C.

H(x,y) = Hy(xy) + Hy(x,y)e + Ha(x,y)e

Tne real functions were scaled from 0 to 255 and written out as three
separate frames on the CRT plotter. wo attempt was made to compensate
for nonlinearities in tne CRT and photographic emulsions.

Contact prints of the three masks are shown in Figure 17a.
Tnese tnree masks were made into a hologram using the apparatus and
procedures of Section 3.2. A photograph of the resulting hologram is
shown in Figure 17b. Tne hologram is illuminated from behind with a
tensor lamp, and areas where the grating is strong appear bright, due
to tne diffracted light. The modulated area in the center of this
nologram is one inch square. The visual appearance of this hologram
is even more striking. Tne focusing and dispersive properties of the
grating cause the ooserver to see the pattern in a brilliant spectral

color wnich varies from red to blue as the head is moved from side to
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side in the focal region.

Tne hologram was illuminated with a point source as shown in
Figure 1o, with an aperture placed so that only the modulated area of
the hologram was illuminated. The projected image was recorded
directly on high-contrast film placed at the image plane. A series
of exposures was made with increasing exposure time to bring out the
defects in the image. Prints of three of the negatives from this
series dre shown in Figure 17c. In addition to the three predicted
spots, the image shows a spot at the center of the image plane and
some spots which result from nonlinear mixing of the three primary
spots. The central spot corresponds to zero spatial frequency in the
nodulating function I , and is tne result of an imbalance in the
three exposurcs. Tnis imoalance is evident also from the incomplete
cancellation of the grating in areas outside the mask (see Figure 17b).
Errors in the phase of the recorded components can result in terms in
the nologram transmittance which are the complex conjugate of the de-
sired transmittance. These conjugate image terms appear as a faint
inverted image reflected through the origin of the image plane.

The nonlinearity spots, which appear in an evenly spaced array
around each of the bright spots in the image, result from nonlineari-
ties in the computer plotting device, the mask emulsions, and the
holographic medium. These nonlinearities cause the appearance of
terms at spatial frequencies which are the sums and differences of

multiples of the original image spatial frequencies.
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Two faint spots are visible 45 mm either side of the center
spot on the most heavily exposed photograph in Figure 17c. This
distance in the image corresponds to 40 lines/mm at the hologram,
whicn is the raster frequency of the array of sample spots. If each
spot were a & function, the image would be repeated in an infinite
array at the x-y plane. Since the spots have a finite width, how-
ever, we would expect these higher order images to be attenuated.
Inspection of the masks under a microscope shows the spots to be wide
enough to merge with their neighbors, and no raster is visible at
all. The faint spots in these photographs are all that remain of the
nigner order images.

An analysis of the nonlinearities could be carried out as
follows:

The complex transmittance for the first order wave of a thick

phase hologram is related to the index modulation by Kogelnick's

coupled wave theory(lg) (see Appendix K),
i(dct o(x5y))
~ " T S
To(x.y) = 1 sinlz—=—5-n1(x:3)] &
a B
— e 2 2

dg(xay) = Kx = k(x“+y“)/2f (3.20)

T ‘a0 and Uy are the hologram thickness, wavelength in air, and

bragg angle of the grating, which is assumed to have fringes perpen-
dicular to the hologram surface, and e is the spherical phase fac-
tor for the unmodulated grating. The index modulation parameter n,
is determined from a Fourier series expansion of the refractive index

of the mediun.
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nix,y) = ] ng(x) g W (3.21)
==
ny(y) = ng(x.y) e10(XY) (3,22)

Tne index of the medium is computed from the exposure by a Taylor

series,
n{g) = ay + a]E + aZEZ + o (3.23)

Tnie o coefficients may be experimentally determined by methods such
as tnose used by Fillmore and Tynan.(19)

The exposure is related to the mask transmittance function by
_ 2 B .
E(xay) = T My (xoy) ELT + cosCigt )] (3.24)

assumning fringes of maximum contrast. The mask transmittance functions
are related to the components of the modulation function H by some
function f which represents the nonlinearities in the CRT plotting

device and the photographic mask-making processes,

M, = f(Hn)

2
fo + len * szn LR {3.25)

A simple modulation function with a few discrete spatial fre-
gquencies, such as equation 3.12, will result in a hologram transmit-
tance function (3.20) with a multitude of spatial frequencies which
arc sums and differences of multiples of the original frequencies.
This accounts for the location of the extraneous spots in the images of

Figure 17c.
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Precompensation of the nonlinearities for the entire process
is not difficult. It is not necessary to determine the Taylor coef-
ficients or any details of the process above. As long as some stable
relationship exists between the diffraction amplitude of the final
hologram and the number 0-255 generated by the computer, a simple
routine may ve used to precompensate the functions in the computer.

Appendix H presents an analysis of the nonlinearities in-
herent in the diffraction process and in the response of the holo-
gran medium to a given exposure. The Taylor series method is applied
to the analysis of thin amplitude, thin phase, and thick phase holo-
grams. For each of these cases a formula is derived for the magnitude

of tne lowest order intermodulation products.
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3.4 Summary

A new method for synthesis of digital holograms has been pre-
sented. The generation of an arbitrary complex wavefront can be
accomplished by a Tlinear superposition of at most three fixed-phase
wavefronts in a multiple exposure hologram. The fixed-phase wave-
fronts are obtained from computer-generated transmission masks. The
masks may be placed in contact with the hologram to reduce the effect
of phase aberrations.

The advantages of this method for generating holograms include:
1) Arbitrary choice of recording medium, including high-efficiency
thick phase media. 2) Efficient use of plotter capacity in generating
large holograms with high grating frequency. 3) Variation of the
recording wavefronts allowing the incorporation of a lens or other
phase function in the hologram without recomputation of the masks.

An experimental system was shown for generation of modulated
grating holograms. The basic requirement of the recording interferom-
eter is a stable amplitude and a stable, controllable phase of the wave-
fronts at the hologram plane. Phase control may be accomplished with
an electronic feedback loop, including an auxiliary grating to sense
the phase at the hologram and a mechanism to shift the phase in one
leg of the interferometer.

Tests with double exposure holograms showed that the major
source of error in the recorded wavefronts is still phase aberrations
in the masks. Synthesis of precision spatial filters will require
correction of this problem. Suggestions were made for future improve-

ments in the masks and recording system.
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Holograms were synthesized in dichromated gelatin to demonstrate
the generation of a digital hologram in a thick phase medium and to
explore the properties of this particular medium relevant to the gen-
eration of spatial filters. DCG holograms are much more difficult to
process than conventional photographic media, but the data of Figure
15 show that it is possible to get repeatable diffraction efficiency
over a very large exposure range. This uniformity is essential if
nonlinearities are to be precompensated in the computer.

Noise measurements were made on the holograms, and the dominant
noise source was found to be the masks. Most likely this noise
originates from the coarse grains in the original mask recording films.
With an improved mask process, holograms of very large dynamic range
could be synthesized in dichromated gelatin.

A simple three-phase hologram was synthesized to demonstrate
the generation of a hologram with a general complex transmittance func-
tion. The reconstructed image shows the effects of nonlinearities and
other defects in the recording process. An analysis of the nonlineari-
ties in a modulated grating hologram is outlined, and further dis-
cussion is deferred to Appendix H.

The modulated grating hologram was designed with the spatial
filtering application in mind, but it may find application in other
areas as well. The generation of large holograms by this method may
be useful in the synthesis of wavefronts for testing aspheric optical

(20) (21)

elements

or for generation of aspheric hologram lenses. In

such situations the desired wavefront may have no focal region where a
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small hologram can cover the entire wavefront. A large digital holo-

gram may be necessary for synthesis of these wavefronts.



o

3.

10.

11.

12.

13.

14.

-101-

References
C. b. Burckhardt, "A Simplification of Lee's Method of Generating
Holograms by Computer", Appl. Opt. 9, 1949 (1970).

C. B. Burckhardt, E. T. Doherty, "Formation of Carrier Frequency
Holograms with an On-Axis Reference Beam", Appl. Opt. 7, 1191 (1968).

D. MacQuigg, "Complex Wavefront Synthesis by Multiple Exposure
Holograpny", Uptics Comm. 8, 76 (1973).

R. A. Bartolini, "Characteristics of Relief Phase Holograms Recorded
in Photoresists", Appl. Opt. 13, 129 (1974).

hodak Publication No. P-47 (1972), "Kodak High Resolution Plate".

Kodak Publication No. Q-35 (1971), "Physical Characteristics of
Glass for Kodak Photographic Plates”.

Video Film Converter at the JPL Image Processing Laboratory.

U, o. Newnann, H. W. Rose, "Improvement of Recorded Holographic
Fringes by Feedvack Control", Appl. upt. 6, 1097 (1967).

H. W. Rose, H. D. Pruett, "Stabilization of Holographic Fringes by
FM Feedback", Appl. Upt. 7, 87 (1968).

L. Holland, The Properties of Glass Surfaces, Chapman & Hall, London,
1964, Table 2.3, p. 119.

Kodak Tecn Bits (1972), No. 2, p. 8., "Kodak High Resolution Plates
Feature Improved Emulsion Thickness Uniformity."

R. V. Jones, J. C. S. Richards, "The Design and Some Applications of
Sensitive Capacitance Micrometers", J. Phys. E, Scientific Instr. 6,
589 (1973).

R. W. Green, "lmmersion Media for Liquid Gates in Coherent Optical
Processing", Tech. Rep. ECOM-00013-92, Willow Run Laboratories,
University of Michigan, 1967.

J. P. Kirk, G. L. Fillmore, "Model of Negative Working Photoresists
as Continuous Tone Photographic Materials", Appl. Opt. 11, 2347
(1972).



15

lo.

1.

18.

19.

20.

21.

-102-

R. J. Collier, C. B. Burckhardt, L. H. Lin, "Ideal Wavefront Recon-
struction and Ideal Recording Material" in Optical Holography,
Academic Press, 1971, Section 10.6, p. 273.

E. L. G'Weill, Introduction to Statistical Optics, Addison-Wesley,
1903, Chapter 7.

J. W. Goodman, Introduction to Fourier Optics, McGraw-Hi11l, 1968,

Cn. b. tquation 3.17 is similar to Goodman's equation 5-22.
Hotation is changed and a few irrelevant constants are dropped.

H. Kogelnick, "Coupled Wave Tneory for Thick Hologram Gratings",
Bell System Tech. J. 48, 2909 (1969).

G. L. Fillmore, R. F. Tynan, "Sensitometric Characteristics of
Hardened Dichromated-Gelatin Films", J. Opt. Soc. Am. 61, 199 (1971).

A. J. MacGovern, J. C. Wyant, "Computer-Generated Holograms for
Testing Optical Elements", Appl. Opt. 10, 619 (1971).

D. H. Close, A. Au, A. Graube, "Holographic Lens for Pilot's Head-
Up Display", Hughes Research Labs, Tech. Report to Naval Air
Development Center (August 1974).



-103-
CHAPTER 1V

NOISE LIMITS ON THE DYNAMIC RANGE OF HOLOGRAPHIC SPATIAL FILTERS

The dynamic range of a holographic spatial filter will be
lTimited fundamentally by the maximum diffraction efficiency and the
minimum noise level of the holographic medium. This chapter presents
a brief discussion of the noise problem in spatial filters and some
experimental measurements comparing several low-noise media.

In general, the dynamic range of a spatial filter will be af-
fected by other factors as well as intrinsic noise and diffraction
efficiency. Nonlinearities in the hologram medium may result in dis-
tortion products which make the usable diffraction efficiency much less
than the maximum. In a coherent optical processor, noise and non-
linearities in the input medium as well as other noise sources in the
system may be the limiting factor. These other problems will not be
considered in detail here. Nonlinearities in a computer-generated
hologram may in principle be eliminated by pre-distortion of the func-
tions in the computer. Various techniques exist for extending the

linear range of holograms made by optical methods.(]'4)

The only
fundamental limitations on the dynamic range of a spatial filter are
the maximum diffraction efficiency and the minimum noise level intrin-
sic to the medium.

The concept of noise power spectral density in photographic
(5)

media was first introduced by Jones as a method of characterizing

photographic granularity. Since then, there have been many studies
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of noise in photographic media for use in coherent optical systems(6-12)

and many studies which apply specifically to holographic media(]3'21).
The results of these studies are difficult to apply to the
evaluation of holographic media for use as spatial filters. The
problem is that the noise is treated as originating only from scatter-
ing of the zero-order or specular wave in the hologram. This is a
valid approximation for weakly diffracting holograms, but in a strong
hologram the dominant noise source is often scattering from the first-
order wave due to surface irregularities in the emulsion or other
noise sources of low spatial frequency. The study which comes closest

to treating the problem is that of Lee and Greer,(17)

who measured
signal-to-noise ratios in media for holographic memories. The low-
frequency effects are not apparent in these data, probably the result
of low diffraction efficiency and the presence of intermodulation
noise. No attempt was made to eliminate the intermodulation noise,
as this was one of the wain effects being studied.

In the experiments reported here, noise measurements were made
in several low-noise holographic media using single point images, so as

to eliminate intermodulation products. The scattered noise 1ight is

shown to be strongly dependent on diffraction efficiency.
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4.1 Dynamic Range and Signal-to-Noise Ratios

The dynamic range of a nolographic spatial filter for image

deblurring will be defined here as the ratio H___/H

mait n’ where H

mi max

and Hmin are maximum and minimum useful values of the filter trans-
mittance function. The concept of dynamic range is normally applied
to nonlinear media, in which the transmittance may vary over only a
finite range without introducing unacceptable distortion in the re-
corded function. In a filter for which the nonlinearity has been
corrected, a dynamic range may still be specified, based on the mini-
mum acceptable signal-to-noise ratio at the output plane of the
processor in which the filter is to be used.

In the processor of Figure 1, the signal is shown as a single
brignt point, although in general it may be a diffuse image. The

noise occurs as scattered light within the image area. The hologram

is assumed to have a transmittance (for the first-order wave) of:

SiKx = ik(xZ+y2)/2f

H(x,y) e (4.1)

The function H is the complex filter transmittance, and the phase
factor represents an off-axis converging spherical wave. An analysis
of the operation of this processor is presented in Appendix N.

”max for the filter will be Timited by the maximum diffraction

efficiency of the medium, H for a typical deblurring filter (see

min
Chapter I1) will be the transmittance at the center of the filter.

Lowering H to achieve greater dynamic range will result in less

min
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Fig. 4.1 Coherent Optical Processor showing degradation of
the image (signal) by noise at the output plane.

image intensity at the output plane, and lower signal-to-noise ratio.
The exact relationship between dynamic range and signal-to-noise
ratio will 1in general depend on the particular characteristics of the
filter function and image distribution. Tichenor(Z]) has derived a
relationship for a filter in which all of the scattered light is
assumed to originate from the bright central spot in the filter plane.
This ignores the high diffraction efficiency effects mentioned earlier,
A signal-to-noise ratio may be defined as the ratio of maximum
intensity of the impulse response to average noise intensity, IS/<IN>.
A more careful definition for a coherent optical system must take
account of the random fluctuations due to interference of the signal

with the noise,(]4)

- 2 1/2
IS/O = IS/ [<IN> + ZIS<IN>] (4.2)
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o is the root-mean-square fluctuation in intensity due to noise in
the coherent image.

Signal -to-noise ratios are useful for comparing one medium to
another under similar circumstances, but do not represent a fundamental
property of the holographic medium. For a point image the signal-to-
noise ratio will be proportional to the hologram area. For a diffuse
image the signal-to-noise ratio will depend on the image area.(]ﬁ)

A more fundamental characterization of the medium is &(p,q),
the noise power spectral density, or fraction of incident wave power
scattered per unit spatial frequency, at frequency (p,q). Complete

specification of this function will allow calculation of signal-to-

noise ratios in any particular situation.

4.2 Noise in Holographic Media

The sources of noise in a thick holographic medium are illus-
trated in Figure 2. In addition to the diffracted waves, which arise
from periodic modulations in the absorption or refractive index of
the medium, there will be a portion of the incident energy which is
scattered randomly. This random scattering results from film grains
or other inhomogeneities in the medium and from irregularities at the
surface of the emulsion,

In a simple model, the total effective amplitude transmittance

of the hologram can be written as:

Thoy) = To(xy) - Ty(x.y) (4.3)

signal noise
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Fig. 4.2 Sources of noise in a holographic medium.

This model ignores any dependence of the noise on the signal trans-

mittance TS , and also ignores the finite thickness of the medium.

TS represents the deterministic part of the hologram transmit-

tance, and includes all diffracted orders:

N ig,(x,y)
To(xy) = ) Ty e (4.4)
2

¢2 is the spherical phase factor for the zth order wave.

TN includes all random deviations from TS and is assumed to

nhave a mean value 1:

=
=
x
<
~—
1]

T+t (x,y)

<tN> = 0 (4.5)

Consider now the hologram imaging situation of Figure 3. A

point source (pinhole) illuminates a hologram which projects an image
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Fig. 4.3 Geometry for analysis of noise in a holographic
medium,

onto the plane (xi,yi). The angle 6, must be large enough that the

image Ties outside the specular wave. In the case of the spatial fil-
ter of Figure 1, the image would be the impulse response of the filter.
Only three terms in the total transmittance contribute sig-
nificantly to the image and noise within the image area.
1(\()‘! '|Ll)-l -

~ ~ ol 0~ .
Tx,y) = Tye + Tee ty * Te ty (4.6)

signal No N]

noise terms

The first of these is the signal wave, and in the case of the spatial

filter it may be assumed to have the same form as equation 1,

T, 06y) = H(x.y)
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The second term represents scattering of the zero-order wave, or
specular term,into the image aperture. This will produce a distribu-
tion of noise 1ight over the image area which is uniform and uncorre-
lated with the signal, as shown in Figure 4. The third term repre-
sents scattering of the first order wave by low-frequency noise in the

medium, The noise power spectral density is much higher at low spatial

I I

S No N1
: rvx]_ = L Bk x'i X1-
SIGNAL NOISE FROM NOISE FROM
SPECULAR WAVE FIRST ORDER
WAVE

Fig. 4.4 Signal and noise intensity distributions at the
image plane for a single point signal.

frequencies, and the noise from this term is therefore sharply peaked
around a single point image. For a diffuse image, the noise will be
more evenly distributed, but will still increase with diffraction
efficiency. Noise scattering from other diffracted orders will
generally be of the same form as INO and can be included in this
term,

The average noise intensity at the image plane in Figure 3 due

to scattering from the zero-order wave is easily evaluated. The average

noise powar passing through a small aperture AX; NY; at the image
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plane, due to the scattering from a small area dxdy at the hologram

may be written as:

d <INo(xi’yi)> AXj DY = Io(x,y) dxdy @(p,q) Ap Aq (4.7)

Ap Aq Ax; Ay, /(Adi)2

Io(x,y) is the intensity of the zero-order wave transmitted by the
hologram. @(p,q) 1is the noise power spectral density for the medium
at spatial frequencies (p,q). Using paraxial approximations for the

angles in Figure 3, these spatial frequencies are:

12

POGXy) = (sin 6.)/% = (x;/d; - x/d; - x/d,) /A (4.8)

12

A(ysy;) = (sin 8 )/A = (y;/d; - y/d; - y/d) /2 (4.9)

Integration of equation 7 gives

Sy (X50y3)> = ;gﬁg- ff I,(x,y) ©(p,q) dxdy (4.10)
h

i A
with Ah being the aperture at the hologram plane. Kozma(ls) has
deduced this same relationship (with Io constant) on the basis of a
scalar diffraction theory presented by Goodman.(]4)

In the derivation of equation 10, we have assumed that each ele-
ment dxdy contributes incoherently to the total noise at the output
aperture AX;0Y ;5 This assumption breaks down if the hologram area
dxdy 1is not much larger than the correlation area gxly of the noise
processes at hologram plane, or if the sample aperture AxiAyi is not
much Targer than the speckle correlation area at the image plane.

Since the average speckle size is inversely related to the hologram
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area, this latter condition sets a minimum area for the probe beam in
a measurement system (such as Figure 5).

The expected noise intensity due to scattering from the first-
order, or signal wave, is more difficult to evaluate since this noise
term is correlated with the signal. In this case the noise amplitude
at the image plane can be written as a convolution of the signal ampli-

tude with the random part of the filter impulse response,
5 o > ~
iy (xqy7) = xa;'ff ag(n) fiy(£-n) dn (4.11)

g = (X1,y]) = (x'i+ (K/k)d-isy-i)

(coordinates centered on first-order wave)

The noise-free signal is given by:

o1}

a (x75¥7) = Xg;;{ﬂ(x,y) POGY)T (v0,) (4.12)

a,: amplitude incident on hologram
P(x,y): hologram pupil function

(vx,vy) = (x]/Adi, yllhdi) spatial frequencies

and the noise impulse response by:

hy (%7 .5) = )\Jj—i?{ﬁN(x,y) POGY)E (vy5v)) (4.13)

X

The expected value for the noise intensity is:
<l (Xq,y7)> = <|5 |2>
NT *1297 N1
Iy led> = *é;?‘JJJ( a (g -n) ag(e ‘”')<EN(n)ﬁﬁ(ﬂ')> dndn' (4.14)
i

Further reduction of this integral requires some specific assumptions
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about the noise statistics and the signal distribution:

i) <ﬁN(n) ﬁﬁ(n')> decorrelates over a distance p = |[n-n'|
much smaller than the overall variation of <]hN12>, and
within this distance the autocorrelation function is iso-
tropic. Physically, this means that the average speckle is
much smaller than the total noise distribution and has no

preferred orientation.

£-n \r/\’-h\\

\ . ‘
i 25 P, Z_."ﬂ
p=b

ii) The autocorrelation function is separable as a product,
<fi(n) W*(n')> = <[R(n)|%> Ry(p) (4.15)

Not all distributions which satisfy i) will meet ii), but

we will proceed with this assumption.

-
>

|
l
0 A p

iii) The signal distribution Es(g) does not vary siqgnificantly

over the correlation distance A ,
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. - o )
ag(&-n) a (&-n') = I_(&-n) (4.16)
This is perhaps the most restrictive assumption of the
three, as it 1imits our consideration to images well

below the resolution T1imit, with no details the

size of the speckle.

With the above assumptions the expected noise intensity can be written
as:

oo

<Iyp(£)> = ;ﬁbﬁ-ff g(e-n) <liymI® [ Ry(o) 20 a0 (4.17)
i 0

The integral over p is roughly the average speckle area,

J R (p) 2mp dp = ar® = A2d2/A (4.18)
N i"h
0

Ah: hologram area

The noise impulse is related to the noise power spectral density by
~ 2. .o 242
<|hy(n)|“> = (A/2°dS) o(n/Ad,;) (4.19)
N h i i
The expected noise intensity in terms of measurable quantities is then

(0> = o [[ 1,0 s(nndy) an (4.20)
i
By means of this formula and the noise power spectral density data for
a point image, one can calculate the expected noise intensity in a more
general image distribution, due to scattering of the image wave. The

formula is strictly true only when the assumptions i) - iii) are satis-

fied, but it should provide a useful approximation in any case. A more
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accurate result would require evaluation of the integral (4.14) with a
specific image distribution, or a more exact specification of the noise

statistics for the particular case being considered.
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4.3 Measurements of Diffraction Efficiency and Noise in Several Media

Measurements were made in several low-noise media to determine
their relative performance as holographic spatial filters. The method
of these measurements is illustrated in Figure 5, Experimental details
are given in Appendix F. A laser beam with a Gaussian profile was
passed through the test hologram. The hologram which was recorded with
spherical waves, focuses the first order beam onto the output plane. A
photodiode with a small aperture samples the signal and noise intensi-
ties at this plane. The aperture is large enough to include all of the
power in the signal spot. Recording and measurement wavelengths were
both 4880R.

The recorded signal was a single bright point, in order to elim-

inate any intermodulation noise which could occur with a more complicated

LASER BEAM

Po

M

— HOLOGRAM

FIRST ORDER
BEAM P]

10° OFF AXIS

Fig. 4.5 Measurement of noise power spectra. 6 1is proportional to
spatial frequency. PD is a photodiode.
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signal. The measured noise pattern should be similar to that which
mignt occur in a real spatial filter in which the impulse response is
very localized.

Noise power spectra were plotted for several gratings in each
medium at different levels of diffraction efficiency. The scattering
angle © measured from the central spot is proportional to spatial
frequency at the hologram plane.

Signal-to-noise intensity ratios were measured in all cases with
the detector 7.8 milliradians off the signal spot,in order to facili-
tate comparison of the media. This angle was chosen to be as close to
the signal spot as possible without interference from 1ight in the
sidelobes of the signal. The Gaussian beam profile is essential to
reduce thesc sidelobes. The shape of the power spectra does not vary
much from one medium to another, and the measurements at 7.8 mr can be
taken as roughly proportional to the total noise power.

The plots in Figures 6 through 12 show the results of these
measurements. In each graph the measurement system noise levels are
plotted as dashed lines. Any point more than 3 db above these levels

can be considered entirely hologram noise. The levels labeled Py
0

were determined from measurements of the noise scattered from a glass
plate 10° off axis. These levels represent the minimum scattering of
the zero-order wave, and were determined from measurements on a clean
glass plate obtained from one of the holograms with the emulsion re-

moved.
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The levels ¢M1 are 58 db below the signal spot, and represent
the noise associated with the first-order wave of a noise-free holo-
gram. This noise is the result of scattering of the laser beam by
mirrors, lenses, hologram substrate, and other elements of the measure-
ment system. Lacking a perfect hologram with which to make this
measurement, a worst case calculation was made from the measurements
on a glass plate. Auxiliary lenses were placed in front of the holo-
gram to provide beam convergence, and the noise was measured from a
glass plate 7.8 milliradians off the main spot. This noise level was
58 db below the main spot. The auxiliary lenses introduce several db
additional noise into the measurement. This fiqure, therefore,
represents a worst case for the measurement system with a noise-free
hologram. Details of these measurements are given in Appendix F.

The dichromated gelatin media (Figures 6 and 7) show a linear
relationship between diffracted wave amplitude and exposure over a
very wide exposure range. The silver bromide media show no such
behavior. The simplicity of the photochemical mechanism in dichrom-
ated gelatin as compared to the complexity of reactions in a photo-
graphic grain undoubtedly accounts for this behavior.

Several of the spectra show an anomalous bump at 10-12 mr.
Heavily exposed photographs of these noise patterns showed these
bumps to occur in two rings around the signal spot. The origin of
this noise was found to be the inside edges of the apertures used to
define the beams in the recording system. Larger apertures, placed

further from the pinhole spatial filters would alleviate this problem.
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The HNO3 bleach gratings showed very large scattering at low

frequencies. Inspection of the emulsion showed a very rough surface,
probably the result of dissolution of some of the gelatin by the nitric
acid. This is probably an erratic result, due to subtleties in the
nethod of processing. This process, when it works, is supposed to

produce very low noise ho]ograms.(zz)

Both the HNO3 processed plates

and Hariharan's bleach plates showed considerable darkening during the

experiment, due to the print-out effect of unstabilized AgBr grains.
Details of the processing of each of these media are given in

Appendix G.
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4.4  Summary

The dynamic range of a holographic spatial filter is limited
fundamentally by noise originating in the holographic medium. The
definition of dynamic range, which is normally applied to nonlinear
media, can also be applied to a Tinear medium in which the only
limitation is signal-to-noise ratio at the output plane of a coherent
optical processor. Signal-to-noise ratios do not represent a funda-
mental property of the medium, but are useful in comparing one medium
to another under similar circumstances.

A simple model for the noise sources in a hologram was pre-
sented. The model leads to two terms for the average noise intensity
at the image plane. One of the terms is dependent on diffraction
efficiency, and this term will be the dominant noise source in holo-
grams of high diffraction efficiency.

Signal-to-average-noise intensity ratios were measured for each
of the media in Figures 6 through 11. These ratios are plotted in
Figure 13 versus the diffraction efficiency of the gratings.

The dichromated gelatin media showed about the same signal-to-
noise ratios as the silver bromide plates. This was surprising con-
sidering the visual appearance of these media. Apparently the
relatively noisy appearance of the bleached media is due to wide angle
scattering by film grains, and the small-angle, or low-frequency
scattering, which is the dominant noise source in these holograms, is

about the same for the various media. The coincidence of the noise
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levels for the cleanest dichromate process and the 649F unbleached
plate suggests a common source of noise. The gelatin for the DCG
plates was obtained by fixing unexposed 649F plates. The removal of
photographic grains may leave voids or small inhomogeneities in the
gelatin which could cause the same scattering as the original grains.
Measurements of noise in unexposed, fixed emulsions of various thick-

(20) Further experimentation with

nesses support this hypothesis.
freshly coated gelatin layers could perhaps give media with much

higher signal-to-noise ratios.
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An arbitrary complex wavefront can oe synthesized by a multiple exposure of three photographic transparencies
on a single holographic plate with 120° phase shift in the reference wave between exposures. This method has several
advantages over ordinary compulter generated holograms. Applications include spatial filtering, hologram optical

elements, and image subtraction.

1. Basic wavefront synthesis idea

An arbitrary complex wavefront, represented by
the complex function w(x,)), can be synthesized as
the sum of three real-valued, non-negative functions
of fixed phase:

W(x,p) = wy(x,0) + wylx,»)e?™3 + wi(x,y)ed V3,
w,.(x,v) real, non negative.

As shown in fig. 1, a minimum of three fixed phase
vectors are required to cover the complex plane. A
holographic diffraction grating which will generate the
desired complex wavefront from a plane wave can be
produced from three real wavefronts as shown in fig. 2.
Each of the three component wavefronts is record in
succession on a holographic plate with 120° phase

shift in the reference wave between exposures. The
result is a hologram with an effective (off-axis) trans-
mittance w{x,y). The wavefronts w, (x,1) are obtamned
from photographic transparencies, which may be
generated by computer or by other means.

Let the amplitudes of the reference and subject
beams at the hologram plane be R exp|i(kx—¢,)] and
wp(x,3), n=1.23:¢,=0,2n/3,4n/3. The 1otal film
exposure is then:

1 Research supported in past by the Air Force Office of
Scientific Research.

76

E=2 E = Er'|R expli(kx—0,)] + w,(x,y)I?
=T [.'SR2 + Eui + R exp(ikx) 25w, exp(—i¢,)
n n

+ R exp(—ikx) 2w, exP(i¢,,)].

where r_ is the exposure time for each step. Assuming
linear recording of the hologram, the last term in the
above expression gives the desired complex transmit-
tance on a carrier exp(—ikx). The other terms occur at
widely separate spatial frequencies.

The addition of wavefronts by multiple exposure
holography has been demonstrated in the context of im-
age subtraction [1, 2] and holographic interferometry
[3,4). The wavefront synthesis idea is also related to the
grid coding techniquesof Pennington [5] and the meth-
ods of Burckhardt and Doherty [6] except that the “*grid™
here is formed by the interference of the two waves.

The multiple exposure technique has several ad-
vantages over purely digital techniques [7, 8] in the
synthesis of wavefronts. The generation of the basic
grating by optical means relieves the computer of the
burden of drawing details the size of each fringe and
allows the production of much larger holograms. If we
think of the hologram as a high frequency carrier
(grating) modulated by a two-dimensional complex-
valued envelope, then it is cicar thai all the information ~
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Fig. 1. IWustrating the generation of an arbitrary complex
function as the sum of three fixed phase functions with non-
negative coeflicients.

is contained in the envelope and none in the carrier.
The optimum use of the information capacity of any
computer plotting device will result if it is used only
to gencrate the envelope function. This can result in
enormous savings in the generation of certain image
enhancement spatial filters where the envelope isa
slowly varying function.

Another advantage of this method is that the holo-

gram be generated directly in a low noise high efficiency

thick medium such as dichromated gelatin [9, 10]
whereas the digital techniques require a thin hologram.
The maximum theoretical diffraction efficiency for a
thick phase grating is 1007 as compared to 6.25% for

MASK

MIRROR

HOLOGRAM

Fig. 2. (a) Recording of component wavefronts by multiple
exposure. (b) Reconstruction gives desired wavefront.

a thin sinusoidal amplitude grating and 107 for a
binary amplitude grating [11].

2. Technique for generating the desired grating

The major problem encountered in the making of
these plates is phase aberrations in the masks used to
generate the component wavefronts w, (x,y). These
wavefronts need not be perfectly plane. In fact, the
optical phase may show a large systematic error due
to other components in the system. However, the

\;r\\—l—"f? ‘ = B
APERTURE L R
HOLOGRAM OLC,’,,a
Hy

Fig. 3. Wavefiont modulator plate (H ) used to eliminate phase errors in mask function wy

77



-134-

Volume B, number 1

phase at the hologram plate must be consistent within
a few degrees from mask to mask over the entire
(several cm) aperture.

The brute farce solution of the phase probhlem in-
volves precise index matching in a liquid gate with a
mixture of high index and low index fuids. In addition
the mask substrate must be thin and homogeneous. A
0.040" glass plate requires that index inhomogeneities
An be less than 105 to hold the phase error under 7°.

Another approach is to place the masks in direct
contact with the hologram plate. The phase aberrations
of the substrate will then affect both beams equally
and result in no net distortion of the grating on the
hologram plate [12].

A third approach is the use of a second hologram
as a “wavefront modulator plate™. Referring 1o fig. 3,
each of the aberrated wavefronts wy, w,, wy is separ-
ately recorded with reference beam w on hologram
H; with a small change in incident angle. The optics is
arranged so that rotation of the mirror causes wavefront
W, to pivot about the center of hologram H, . The
transmittance of H, contains terms u:; Wy, wa,, and
w;w,. When re-illuminated with the original aberrated
wavefronts, the reconstructed terms become Iw, izwr,
I\rzl-’-u" and Iwalzwr which can be recorded by mul-
tiple exposure on hologram H;. The phase aberrations
in the reconstrucied wavefronts are due to w, and the
substrate of H; and are consistent from mask to mask.
Interfering terms wwow,, etc. fall off axis and are -
easily separated out by a small aperture. The advantage
of this method over contact printing is the ability to
filter out noise and raster in the computer generated
masks by placing a small aperture in the focal plane of
beam w,.

An interesting feature of both the contact printing
and modulator plate methods is the squaring of the
mask functions. This can be very useful in the making
of spatial filters as it allows a doubling of the dynamic
range of the filter. If the available range of transmit-
tance of the computer generated mask is 103 then the
final filter can have a range of 106,

3. Applications of multiple exposure wavefront syn-
thesis

The multiple exposure method of wavefront syn-
thesis should prove most applicable in cases where the

78
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desired wavefront varies slowly in phase and amplitude
with respect to some easily generated reference wave-
front. Such applications include spatial filters for iinage
enhancement, pattern recognition and image coding.
Other applications such as generation of artificial
Fresnel holograms, in which the wavefront shows very
large fluctuations over short distances, may be im-
practical because of the necessity of kecping each mask
aligned within micron tolerances.

Synthesis of hologram lenses and optical elements
may be possible in cases where an approximate wave-
front can be generated optically. For example, using a
plane wave and a spherical wave it would be possible
to synthesize a hologram which converts an incident
plane wave (o a parabolic wave.

Image subtractions may be accomplished by using
two exposures with 180 shift in the reference wave.
This has been done by Gabor [1] and by Collins (2],
but they svoided the phase aberration problem by
using the same object for both exposures, blocking
part of the object with an opaque mask for the second
exposure. Bromley [13] used photographic film in a
liquid gate for his image subtractions. To the best of
my knowledge, the contact printing method has not
been used in image subtraction experiments.

Applications of the above method to the generation
of spanial filters for image enhancement are now being
studied and results will be reported later.
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APPENDIX B
Computer Programs for Analysis of Thick

Holographic Diffraction Gratings

The following are Tistings of the subroutine WAVES used in gen-
erating the plots of Chapter 2, and a typical program using the WAVES
subroutine. This subroutine was written in collaboration with Alan
Mickelson. The method of computation is presented in Chapter 2. This
is a general purpose subroutine to compute the amplitudes of the dif-
fracted waves from an unslanted phase grating of arbitrary thickness and
arbitrary (but symmetric) grating fringe profile.

Usage:
CALL WAVES (WVLG, THETA, D, T, EPS, NL, VL)
WVLG: Wavelength in air
THETA: Incident wave internal angle (degrees)
D,T: Grating period and thickness

EPS: Array containing Fourier coefficients of the grating
index profile

NL: Number of orders retained in the calculation

VL: Complex array of wave amplitudes

EPS and VL must be dimensioned at least NL. Wave amplitudes are returned
with zero-order coefficient in VL(LO). LO = (NL+1)/2.
Timing: Approx. 120 msec on IBM 370/158

Storage: 8936 bytes
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Subroutines Ca]]ed*

HSEHLD: Finds eigenvectors and eigenvalues of a real-symmetric matrix,

by the Givens-Householder method.

EQSOV: Simultaneous equation solver uses Gaussian elimination with

iterative improvements.

*Documentation available at the Caltech Computing Center.
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SUBRCUTINE WAVES( WVLG,THETA,Dy TyEFS,AL,VL )

GIVEM WAVELENGYE ANP INTERNAL ANGLE OF THE INCINDENT WAVE, GRATING
PERIOND D AND THICKNESS T, AND THE FOURIER CDEFFICIENTS OF THE GRATING
ORCFILE FPS, SUARDOUTINE RETURNS COYPLEX AMPLITUDES VL FCR THE NL DIF-
FRACTEC wWAVES CENTEPRPFD ABCUT THE ZERO ORDER.

DIMENSICN FOS(210,A(21+21),Ul214521),GAMI2L,5),B(21),C(21)
DIMENSTON UBLCK(SGy21)

EQUIVALENCE(UPLOK L, 1)+ ALL,1))

QEAL KOUWKO2Z)KG,KSTHKIZEPS(21)sNO, TUPTI/6.2831853/

COMPLEX VLIZ2L1),E(21)

LD = (NL*L)/? Lo : T ndex o zero order
KO=TUPI/WVLG

K(C2=KC¥KO .

KG=TUuP1 /D = J?T—

NO = SQRT( FPS(1) ) No 2

KST = KOXNG*SIN( THETA%*0.0174333 )
A0 106 N=1.ML ~
KN2FEFS(N)=K)2%FPS (N)
DO 200 I=1.NL

L =1 =100
ALFL=1%KG-KST by 2
ACT,11=KO2FPS{1)-2LFL*ALFL + ™

OC 300 J=2,NL ? Compute

J¥L=g-1

DN 30C I=1,JM1

N=J-T+1 : )
ALT 4J)=K02EPSIN) _ / i and
CALL HSEHLDI(NL,21,A5U,GAM) Find elgenvectors h
DN 500 J=1,ML v ejyenva!'ld?s GA
DD £06C I=1,NL

URLOK(Lyd)=U(T,J)

BlLO) = 1. ' Given bouncfnr;f coenditions 8,

R = 2 ) cerents €
CALL FQSOVINL,URLCK,B,MAX,1.E=3,C,1T,0) 5°/*¢ for coelf 7
IF(IT.GE.MAX) PRINT 60y MAX WVLGyTHETA,Dy T, (EPSINI4yN=146),NL

AQ FORMAT (' NO COGNVERGENCE "4+13,1Pl0ELOL3,415)
C PREC'™ FERE IF CNLY T HAS CHANGED

TCC

7CS
T1C
rCC

ENTRY NEWT(T) ,

Do 71C leer_ C°"1PM+9 éXPo.nen‘/‘-R/ ‘FR&!"OP.!
GAMMAJ=GAN(J, 1)

IF{GAMMAJ.LT.O0) GC TN 705

PHI=SORT(GAMMAJ)*T

E(J)=CMPL XICOSIPHI),SIMNIPHI)) )

GO TC 710 J
E(J) = EXPlL —AMIN1ISQRT(-GAMMAJ)I*T,50.) ) AmING 1o aves
CONTINUE uvnderflow

DO ESC I=1,NL

VLUT)=(Cuy0.) Compute diffracied
PO REQ J=1,NL orders
VLOL)=VLEI) #C LI LT, J)V2E(J)

RETURN

END
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r7 SET fIccC=10

r/ EXEC FCRTG
f/SYSPLTON OC SYSOUT=N
//7FCRY cn *

C FFCGRAM TO PLOTY FI®ST ORCER DIFFRACTICN EFFICIENCY FOR PHASE
c TREANSMISSICN GRATINGS.

NATA P1 /3.141592¢65/7

CIMENSICN EPS(12),P(12)4X(60),Y(60,10),Q1(10)

COMPLEX VLI(12)
[ INITIAL TATA VALUES

DATAE OI/0el9ler2ev3erberSerbasBay10.420.7

REAL NO/l.54/

WVLG = (.5

T & %2.0

NL = 12 .
€ INITIAL CALCULATED VALUES

LO = (NL+1)/2 Lo : Z ERD ORDER
. EPS(1) = NO®NO EPS () = Elps

n s =

NN SEC I8 = 1,10 eran B

Q = QI(10)

N = SORT( 2.%PI%WVLG*T/(NO+Q) ) Caleutate D

THETAR = AQSIN(WVLG/(2.*NO%D)) BrAGe ANEGLE

C1 = WWLG#NN*COS{THETAR)/ (2.P%T)
THETA = (180./PT)#THETAP
WRITE (4,27) NOyWVLG,THETA D, T,CL AL+ Q
27 FORMAT (/1%X,5F17.2,E15.3,110,F1043)
C BFGIN LCCP TC FILL PLCTTING ARRAYS X,Y.
DO 400 I = 1,50
PHI = Q4%Pl%( -
EPS(2) = Cl&PHI ePs(2) = €n
CALL TIMFIN
CALL WAVES (WVLG, THETACsTHEPSy NLpVL)
CALL TINOUT
¢ CALCULATE POWER IN DIFFRACTED ORDERS
SUM = 0.
DO 405 L = L,NL
VR = REAL( VLIL) )
VI = AIMAGL VLIL) )
PIL) = VR$VR + VI#VI
405 SUM = SUM + P(L)
WRITE (6,29) FHI,FsSUN
26 FORMAT (1X,14F9.4)
C STCRE CATA FOR PLOTTING
Y(I,IC) = P{LO#L)
400 X(I) = PHI .
CALL TIMSUM Timing Summaty
50C CONTINUE

C SAVE CATA FCR LATER FLOTTING
PUNCH SCy X,Y
E0 FORMAT (20A4)
WRITE (64310 (XCE)o(Y(I,IQ),[Q=1,10),1=1,50}
1 FORMAT (//(1X,11F11.3}))
C PREGIN PLCTS
CALL SCALE(l 34422152954 90:92.%P140.91l. )
D7 70C 1IQ = 1,10
700 CALL PLCTLN( X,Y(1,IQ1,50 )
CALL AXIS( 040.+40.42.%P[,10 )
CALL AXIS{ 90+0epCeslesl0 )
sTOP
END
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APPENDIX C

Computer Programs for Image Processing and Generation of Holograms

C.1 Image Processing page
FFT2 144
FILTER JINC JNCINV 145
Filtering Program 146

C.2 Hologram Generation

COMPON 147
SCALEX SCALEQ 148
PHASE W2048 149

This appendix provides 1listings of the programs used in process-
ing the images in Figure 2.15 and generating the holograms of Section
3.3. Several programs of general usefulness are listed also.

FFT2 is a 512 by 512 complex Fast Fourier Transform. FILTER
generates a two-dimensional filtering function from a given radial
function. JINC and JNCINV generate the circle blurring function and
its inverse. COMPON separates a complex function into three fixed-phase
components. SCALEX and SCALEQ apply nonlinear transfer functions to
compensate film nonlinearities in the generation of digital holograms.
PHASE and W2048 are useful for calculating phase factors for diffusers

and computation of Fresnel integrals using the Fast Fourier Transform.
FIiz
This routine is essentially a large matrix transpose with a one-

dimensional Fourier transform (Subroutine FORT) on the input records
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(horizontal transforms) and final output records (vertical transforms).
I[N and IOUT are FORTRAN file numbers for the input and output files.
File 99 is used as an intermediate. The Fourier transform operation
performed by this program can be represented by:

i(2m/N +nv
Ry, = (0 gty eI (c.1)
m

e M2

n
1

>

mn: input complex array (N by N)

b=}
<
=

output transformed array (N by N)

The factors (_)(m+n) and (-)(“+U) are applied to shift the origin
of the transform to the center of the array [i.e., zero spatial-frequency
at point (257,257)]. Notice that the transformed array is transposed.

In this application the orientation of the matrix is unimportant. If
a re-transpose is necessary, this may be accomplished by running the
program with a dummy FORT routine.

A description of the Fast Fourier Transform method(]’z) and the

specific algorithm used in the FORT routine(B) can be found elsewhere.
Timing: (on IBM 370/158)

97 sec for transforms
19 sec for data shuffling (Dummy FORT)
116 sec Total

Storage: 142K bytes
Files Required: Two or three random-access disk files, 512 records,
4096 bytes per record. (The output file may be the

same as the input).
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SCALEX, SCALEQ

These routines were written to apply a nonlinear scaling function
to a computed image array for the purpose of compensating film and other
process nonlinearities. The standard linear interpolation routines
(YNTERP) would be far too slow for these large arrays. A compromise
must be made between speed and accuracy. SCALEQ determines scaled
values by indexing in a precomputed table. This routine is extremely
fast, but limited in accuracy. The input array must be normalized 0 to
1000 prior to calling this routine. SCALEX performs a binary search in
a precomputed scale table. For a limited number of output functional
values (e.g., 0-255) this routine provides an exact scaling, but it is,

of course, slower than SCALEQ.

SCALEX SCALEQ
Timing:™ (IBM 370) 65 msec 14 msec
Storage: 2K 3K bytes

PHASE

This routine simulates a "fly's-eye" phase diffuser. In genera-
tion of digital holograms phase coding is often necessary to disperse
the spectral energy and lower the dynamic range of the recorded wave-

front.(4’5)

An image represented by the real array & will have
typically a large fraction of its spectral energy concentrated near zero

frequency. PHASE performs the following operation:

*FORTRAN H compiled. Timing for one line of 1024 values.
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i¢
~ mn
a =
mn 4 €

¢ cos(2mm/32) cos(2mn/32) (C.2)

mn q’max

The degree of phase dispersion can be adjusted with ¢max'

W2048

In computing the Fresnel integral, a factor w = e1qb must be
evaluated at each point in the field. If 2048 uniformly spaced values
for ¢ (over the interval 0-27) is sufficient resolution, then this

routine will provide an extremely fast evaluation of w ,

~  i2mn/2048
W, =@ (C.3)

The routine uses a pre-computed cosine table for speed and a bit
shifting and masking technique to reduce the total number of stored
values in the table to 513. A similar routine could be written for any

eiZTrn/N

set of values ﬁn = , where N is a power of two.

Timing: 130 usec to return one complex value
Storage: 3K bytes
Documentation for routines FORT, BESJ1, WRTLN, YNTERP, IAND,

and SHIFTR is available at the Caltech Computing Center.
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C PROGRAM TO PERFORM Tw0O DIMENSICNAL FAST FOUR IER TRANSFORM CN
C A COMPLEX ARRAY, S12 BY £12

SUBROUT INE FFT2 (IN,ICUT )

DIMEASICON S(128)

COMPLEX RLOCKI(512,32)4,BUFFER(32,32),BUFF1(512),BUFF2(512)

EQUIVALENCE (RUFF1(1),BUFFER(L1,1)),(BUFF2{1),BUFFER{L,17))
C IMITIALIZF SINE TABLE ANC 10 FILES

CALL FORT (8LOCK,$,S+Cy IERR)

DEFINE FILF 99(512,1024,UsNXT99)

C FILE IS RRCOKEN INTO 16 BLOCKS AND PROCESSED ONE BLOCK AT A TIME
PO SN0 18BLOK = 1,16
C PASELINE FCR RECCROS IN INPUT FILE
IRLINF = (IBLOK-1)%32
CC 200 LINE = 1,32
IREC = ITRLINE + LINE
C =2FAD IN CATA FRCM [RLCK IN FILE *IN®* AND PERFORM HORIZONTAL TRANSFORMS
CALL RERADIMI IN,IFREC, FLCCK{Ll,LINE) )
200 CALL FOST( BLOCK(14LINE),9,5,2,1ERR )
C TRANSFOSE BLNCKS, WRITE CNTO INTERMECIATE FILE 99
N1 4SC ISECT = 1,16
IBMIN = (ISECT-1)#32
DO 450 LINE = 1,32
DN 45C ITEM = 1,32
45C RUFFER[ITEM,LINF) = ALCCK(IBMIN#ITEM,LINE)
IREC =. IRMIN + 2#%[RLOK
WRITE( SE*IREC-1 ) BUFF1
490 WRITE( S9'IREC) EUFF2
50C CONTINUE
c
C READ IN RLCCKS FRCM FILE 95, TRANSPOSE SEGMENTS WITHIN EACH BLOCK
D0 906 IBLCK = 1,16
IRLINE = (IRLCK-1)%32
nn 700 ISECT = 1,16
IREC = TBLINE # 2%ISECT
REAC( 9S9*IREC-1 ) BUFF1
REAC( 99'IQEC ) RUFF2
[AMIN = (ISECT-1)%32
DN 700 ITEM = 1,32
DN 700 [SEG = 1,32
7CC BLOCK{IRMIN#ISEG,ITEM) = BUFFERI(ITEN, [SEG)
DO B00 LINF = 1,32
C PERFNRM VERTICAL TRAMSFCRMS
CALL FORT ( RLOCK(L,LINE) +9+5,2+[ERR)
IREC = IRLINE + LINE
8CO CALL WRTOUT( IOUT,IREC,BLCCKI(L,LINE) )
SOC CONTINUE
RETURN
END
SUBRCUTINE READIM( INLIREC,A )
COMPLEX A(512)
REAC( IN'IREC ) A
C APPLY PHASE FACTOR (-)*®(M&¢N) TO SHIFT DRIGIN OF FFT
€ NC = 2 IF CCCy 1 IF EVEN
NO = 1 ¢ IANC(1l, IREC)
DC SO0 N = NOy51242

50 A(N) = -AI(IN) DG SO N = NO,512,2
:;;unu 50 A(N) = —-A(N)
X : WRITE( IDUYT*]IR
SUBRNUT INF WRTOUT { 10UT s IREC,A ) et T RRES HiR
COMPLEX A(512) END

NO = 1 + IAND(1,IREC)
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SUBPCUTINE SILTER (M,F,HR)

c
C RETURNS LINE M OF 512 BY 512 FILTER FUNCTION Hs FOR A GIVEN RADIAL
C  FUNCTICN HR
C
REAL H(512),HR(37C)
C ARRAY IS SYMMETRIC ABOUJT PCINT (257,25T)

NY = LBS({ M-257.0 )
CY2 = NyxDY
C ASSIGN VALUFS IN LEFT HALF PLANE EQUAL TO HR VALUE AT NEAREST INTEGER RADIUS

0OC &CC N = 1,257
DX = 257 - N
NR = SQRT( NXANX + DY2 )
NR = CR + 1,5

SCC HIN) = HREINR)

C RICHT FALF PLANE FRCM LEFT HALF DATA
NN ECC N = 25R,512
G0 RIN) = F(514=N)
RETURA
END

SURRCUTINE JINC (FER)

€ CIRCLE RLURF ING FUNCTINN, HR({L) IS CENTER VALUE
NIMENSTICN HRE{TD) .
CATE PI1/3.141592&6%/,,RCMAX/S.0/

C TRANSFCRM NCRMALIZATION FACTOR INCLUCED IN FILTER
ALF = 1./1512.%512.)
Cl= PI®ROMAX/256.

HR(1l) = ALF
DC 15C-NR = 2,370
DR = NR-1 BEST] : Bessel Function 7,

PIRC = CL%DR
15C HKIANR) = ALF®*RESJI( 2.*PIRO ) / PIRQ
WRITE (6,431) HR
31 FORMAT (/' CIPCLE BLURRING RADIAL FUNCTION®*/(1X,1P10E12.3))
RETURN
END

SURECUTINE JUNCINVI(HR)
C INVERSF FUNCTICN FCR CIRCLE BLURRING

REAL HR(37D) ,JINC
CATA PL/3.14159265/,RCMAX/5.0/
ALF = 1./(512.%512.)
Cl = PL#*ROMAX/256.
C2= 1.0F-6
HR{1) = ALF /7 (1.0 ¢ C2 )
DN 150 NR = 2,370
OrR = NR-1
PIRC = C1%DR
JINC = BESJL(2.*%PIRD)/ PIRO

150 HRINR) = ALF*JINC/(JINC*JINC + C2 )}
WRITE (&y41) HR

41 FORMAT (/* CIRCLE DEBLURRING RAOIAL FUNCTION®*/(1X,1P1CE13.3})
RETLRN
END
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//FILTFR EXEC FCRTG
//ETCIFO0L DD CSN=DRM.FILER,LMNIT=5YS5Q,VOL=SFR=ACS002,DISF=CLD
//FTSSFONL O UNIT=SYSSQ.SPACE=(40G36,+512)
//FCRT DO =
DEFINE FILE G(512,1024,L,NXT9)
REAL H(E12),HR(37C)
CCMPLEX ALlS12)
c
CALL FFT2( 9,5 )
C
C APPLY FILTER FUNCTIOAN
CALL JUNCINVI FR )
DA SCC ¥ = 14512
CALL FILTER( MyHsFR )
RZAC( 9" ) A .
DO 48C N = 1,512
490 AlhY = A(N) * H{N)
500 WRITF ( 9'™ ) A

(=]

CALL FFT2( 9,9 )

M = 287
READ ( S'M ) A
WRITE (6,28) MyA

28 FOPMAT (14/10(1X,2F6.0))
STOP
END .

//LCAD DD =
FBJECT CECKS FFT2 FILTER  JUNCINY

//STEPO EXEC FCRTG
//WRTLNOL DD UNIT=TAPF7,VCOL=SER=CITOTO,LABEL=(2+BLP)+DCB=(TRTCH=C),
&4 DISP=(CLCyPASS)

//FTCEFCCL CO CSN=CRM,FILEP,UNIT=SYSSQ4VOL=SER=ACS002,DISP=0LD

//FORT ro *

C REACS CISK FILE AND WRITES REAL VALUES ON VFC TAPE
NEFINE FILE 9(512,1024%4,U,NXT9)
COMPLEX®%8 AlL512)
INTEGER®? LINE(512) L INEN
NPRINT=C
NO 300 M=1,512
RFAC (9'M) A
DN 3CS N=1,%512
LINEN= A(N)
ITF{LINFMA.LT.O) LINEN=-LINEN
[F{LINEN.GT.255) LINEN=255

305 LTNE(N)= LIENEN

CALL WRTLAN(LINE,S512)

C PRINT NUT SAMPLES FRCM EVERY 20TH LINE
NPP INT=NPRINT -1
IFIANPRINT.LELC) GC TO 900

200 CONTINUE
C EOF

write 512 byfes on
fqpe

CALL WRTLANILINE,OQ)
sTnP
90C NPRINT=20
WRITF(6,441) (LINE(T) s1=14512,20)
41 FORMAT (/(1X,2515))
GO TO 3Q0
END .
//LCAC co *
CBJECT CECK WRTLN
//
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SURRCLTINE CCMPCN (H,MNFLsNH2,NH3)
C SEPARATES COMPLEX FUNCTICN H INTO THREE FIXED PHASE CCMPONENTS
CCMFLEX H{S512)
INTEGER%22 NHLI512)4NH2{512)+NH3({512)
INTEGER %4  HX,HY
CATS PREONT3/2.5772502¢&9/
29 20C M = 1,512
HX = REAL{ HIN) )
HY = AINMAC( H{N) ) * FRCOT3
IF { HY . LT.0.AND.FX.GT.HY ) GO TO 170
IF [ FXJLE.-TARS(HY) ) GO TO 160
C 0 <= PKI < 120

16C NHL(N) = HX # HY
ANE2IN) = 2 = Y
AH3I(N) = ¢ L2
GO TN 2cC0
C 120 <= PHI <= 240
16C NHLI(NY = O
MH2 (M) = —HX + HY
ANH3I(N) = =-HX - HY
GG TC 2CO
€ 240 < PHI < 1260
L70 NHI(N) = X - HY H .
NH2(N) = 0 ' y
NE3(N) = =2 * HY
200 COCNTINUE
RETURN
END

~ !‘ B ‘.2”‘3 {. .
7= ue?. HoviHy = H + Hye """ p o777
G iven :':"; ,"‘v . Solve Tnoi— ff,f 5 ‘L/i 5 H! o _/;I'_ee "C’?i‘ahs:
iy A
o P o
]) ’L*‘.‘,' x> ) A .;J' H,‘ > = H}. /ﬁ (0 < 4) < l 20 )
Thow: H, o= Hy +O/IH, H = (AN3H, Hy =0
o e N
o H, < - 1y /] (120° ¢ § < 2%0° )
Then: H =0 Hy = =Het (1/3)H, Hy = = Wy = O/FF) H,

T H,< 0 and He > HJi5  (240° < @ < 360°)

Then: ,’f',’ = f/.- N (“'/s?) }/y H} =0 #3 = 7 (2 /'? ‘4/,
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SURROUTINE SCALEX (HC,LINE)
BINARY SEARCF IN A PHKECCMPUTED SCALE TABLE GIVES INTEGER VALUS 0-255
FCR FVERY VALUE HC.
INTECER#2 LINE(1024)
[MTEGFR=4 TRITS(RI/1284€4,32,16,8,49241/
R=AL HC(1024),SCALE(256)
nJ 50C N = 1,1224
HCN = HC(IN)
INNDEX = C
BITS OF INDEX DETERMINFD BY BINARY SEARCH
Cn S1¢ 1 = 1,8
NEWADX = INDEX # IBITS(I)

S10 IF ( HONJGELSCALE (NEWNCX)}) INDEX = NFWNDX

S0C LINE(N) = INDEX
RETURN
EMTRY SCALEL

RELD IN PCALINEARITY CUPVE, 16 VALUES CF LOG DIFFRACTICN AMPL ITUDE

VE NN KUMAEE, INCREASING CRDER. GENERATE SCALE TABLE FCR BINARY SEARCH.
PEAL CNE1A),TN(L16)
PEAD (S5,1C) (CNCI)oTNIT),1=1,16)
WO TTECAy1C) (DNCT), TNCL) s I=1,16)

10 FORMAT (RF10.2)
DN POC I = 1,256
ANT = I - 1 ,
TI = YNTERP (DNyTRoDNI,16,1) Linear

A00 SCALEAT) = 10.0%%TI
WOTTE (6,43) SCALE .

43 FOPVYAT(/* SCALING FUNCTIDN'/(}X,10F13-6"
RETURN
END

fnftrfafn¥fon routfine

SURROUTINE SCALEQ ( L INE ) Fast ronfine

RESCALES LINE TO COMPENSATE FILM NINLIMEARITIES.

INTEGER®2 LINS(L1024),ISCALE(1000) . o s g

00 100 T = 1,1024 LiyE ES IETed

IF( LINE(I).GT.959 ) LINE(I) = 999 c<caled o0 -/lo00
1CC LINE(I) = ISCALE( LINE(I) # L )

RETURN

ENTFY SCALE1
READ TN NOMLINFARITY CURVE, 16 VALUES OF DIFFRACTION IATENSITY VS DN NUMBER,
INCRFASING GPNER, ANC GENERATE 1300 PCINT SCALING FUNCTION.
DIMENSTON DNU16)Y,T(16)
REALC (5410) (DNUID),T(I)yI=1,18)
WRITF(6E,1C) (CNIEIDoTUI) I=1,16)
1¢ FORMAT (RF10.3)
RESCALF T CN LINEAR AMPLITUDE SCALE, © T2 999
FACTOR = 999,0 / 10.0**T({16)
NN 2C0 T = 1,16
200 T(1) = FACTCR = 10.0%#T (1)
WRITF (6,11) T
11 FORMAT (1X,'"AMPLITUDE TRANSMITTANCE FUNCTION'/{1X,8F10.3))
DN 250 1 = 1,1000
TT = I=-1
ASSIGN A N NUMRFR FCR EVERY POSSIBLE VALUE OF T
TON = YRNTERP( ToDAsTTel641l )
2C ISCALE(I) = MAXO( O,IDN )
WRITE (6412) ISCALE
12 FORMAT(LX,"SCALING FUNCTICN'/(1X,2515))
RETURN
END

Limnear rhferfo/ﬂﬁhh
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SURROLTINE PHASE (A,M)
C APPLIES PHASE CISPERSION FUNCTION TQ ARRAY A,
COMFLEX A(512),W(32,32)
J = TANC (M,31) + 1
DO 200 N = 1,512

1 = IAND (N,31) + 1 - _ i er‘ﬂ,m
200 A(N) = A(N) * W(I,J) Anp nm
RETLRN

€ INITIALIZATICN DF PHASE FUNCT ION
ENTRY PHASE1l (PMAX)
DATA PI/3.141592€5/ ¢ = P cos (ERR) cos (B
DN 300 J = 1,32 it Tax
DO 200 1 = 1,32
P1J = PMAX * COS (PI%1/16.) * COS (PI*J/16.)

300 wWilsJd) = CMPLX ( CCS(FIJ),SINIPIJ) )

RETURN
END

SLAROUTINE W2048 ( VAL,NEXP )

€ RETURNS EXP ( I2PI *= NEXP / 2048 )
DIMEASICN CL513)
CCMPLEX VAL

C CCSINE AMD SINES TARLE INDICES, MODULO 512

IC = TAND [(MASKL,NEXP) + 1 Low nend AND
IS = 514 - IC J

C IPFASE FRCM RITS 10 AND 11
NEXPT = NEXP o cakht 9 bits
CALL SHIF TR{NEXPT,9) Shitt - /0

IPHASE = TAND(MASK2,NEXPT) + 1
GC TO (1+2+3,4), IPHASE

STOP 187
1 VAL = CMPLX( CLIC), C(IS) ) c2mn [2048
RETLRA vAL = €
2 VAL = CMPLX(-C(IS), C(IC) )
RETURN -
3 VAL = CMPLX(-CI(IC),=C(IS) )
RETURN
4 VAL = CMPLX( CLIS),-C(IC) )
RETURA
ENTRY WINT

C INITIALTZATICN OF CCASTANTS ANC COSINE TABLE
MASKL = 512 = 1
MASKZ = 3
ALF = 3.14159265 /7 1024.0
092 100 1T = 1,513

100 C(I) = CAS( ALF*(I-1) )

RETLRN
END
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APPENDIX D

INTERFEROGRAMS OF VARIOUS HOLOGRAM AND MASK SUBSTRATES

A simple and inexpensive, large-aperture interferometer can be
built using a hologram, as shown in Figure D1. The hologram is re-
corded with no test object. The developed hologram, when replaced in
the interferometer, causes a mixing of the two waves. The interference
pattern is recorded on high contrast sheet film (Kodak 4154, Dev. D-11,
5 min). Expensive optics is not required because the hologram compen-
sates any distortions in the lens. By adjusting the location of one
of the pinholes, a prismatic or spherical correction can be made. The

hologram used here was a high-efficiency dichromated-gelatin plate.

HOLOGRAM

] ==

LENS-PINHOLE
<:j/:;ST OBJECT

FILM

ON XYZ TRANSLATOR

Fig. D1. A simple large-aperture interferometer for making trans-
mission interferograns.
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Fringes of maximum contrast were obtained with nearly equal beam ratios.

The interferograms in Figure D2 were made using the above inter-
ferometer with an argon ion laser () = 48803). The aperture in each
case is 2" square. Figure D2a shows the high-contrast flat fringes
obtainable over this aperture. The interferometer was offset slightly
to produce the fringes. Interferograms (b) through (i) show the phase
distortions introduced by various hologram media and their substrates.
The performance of a hologram spatial filter will be severely degraded
by such distortions. For application as a spatial filter, spherical
distortions will cause only a slight shift in the location of the
image plane. Therefore, the interferogram from a best fitting spheri-
cal wavefront is shown when this resulted in some improvement.

The interferograms (b) and (c) are for normally processed
dichromated gelatin plates (Appendix G), obtained from Kodak 649F
4"x5" holographic plates. Most of the distortion is due to the gelatin
layer, as shown by the interferogram for a bare glass plate (d). The
gelatin Tlayer on the 0.250" Kodak microflat plates is apparently much
more uniform as shown by the interferogram (e) obtained from a bleached
hologram,

A simple 1iquid gate was made by placing a 0.060" glass plate
from a Kodak 2"x2" precision flat high resolution plate against the
emulsion side of a DCG hologram on 0.040" glass. A drop of xylene
fills the space between the plates. The resulting interferograms are
shown in (f) and (g). Other commonly used hologram substrates are

polyester film bases such as found in (h) Estar film base from 35 mm
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Kodachrome II film, and (i) Estar thick base from 4"x5" Kodak Ectapan

sheet film.

Interferograms (j) through (r) show phase distortions of various
possible mask substrates. Spherical distortion is not tolerable in the
masks for the holograms of Chapter 3. The Kodak high resolution plates
on 2"x2" "precision flat" 0.060" glass show considerable variation in
the distortions from one plate to another. Interferograms (j) and (k)
are indicative of the best and worst plates in this series. The emul-
sion on these plates is very flat and most of the distortion arises from
the glass plate, as seen by comparison of the same mask with (1) and
without (m) the emulsion. Interferogram (n) is for a 1"x3"x0.0375"
commercial polished quartz slide (Engelhard Industries). For the holo-
gram mask generation application of Chapter 3, a very thin substrate
could tolerate much worse phase distortions. An interferogram (o) for
a very thin microscope cover glass is shown (Corning No. 0, 22 mm2,

0.11 mm thick). A typical microscope slide is shown in (p): (Corning
#2947, 75 mm by 50 mm by 1.2 mm thick). (q) shows a 0.030" thick slide
cover glass of the type used for mounting 2" square photographic slides.

The effects of a rolling mill are apparent in (p) and (q).
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(a) No plate, tilted (b) DCG plate, 0.040" (c) Same as (b). BFS
wavefront glass

(d) Bare 0.040" glass (e) Bleached hologram (f) Liquid gate
plate. BFS on microflat. BFS

(g) Same as (f). BFS (h) Estar base, 35 mm (i) Estar thick base
film 4x5 sheet film

Fig. D2 Interferograms for various hologram substrates made using the

interferometer of Fig. D1. BFS is best fitting spherical wave-
front



(j) Mask substrate 1 (k) Mask substrate 2

(m) Same without emul- (n) Quartz slide, (o) Microscope cover
sion 0.0375" glass 0.11 mm

(p) Micro-slide (1.2mm) (q) Slide cover glass (r) Saran-wrap,
tilted wavefront

Fig. D2. Interferograms for various possible mask substrates
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APPENDIX F

Measurement of Woise and Diffraction Efficiency in
Holograpnic Media

Tnis appendix provides details of the experimental setup and
Procedures used in generating the noise plots of Chapter 3. Figure Fl
is a diagram of the experimental setup. A 4880& beam from a power
stavilized argon laser is directed at a holographic grating which is
syntnesized by exposure at the same wavelength in the interferometer
of Cnapter 3. The intensity of the first order wave is measured with
a sinall aperture photodetector, and the relative amplitude is com-
puted as the square root of the diffraction efficiency. Thic ampli-
tude is plotted for gratings of various exposure levels in different
media.

Woise is measured by moving the detector an angle 6 off the
diffracted spot. The measured noise may originate from any of three
sources: the hologram recording system, the holographic medium, or the
noise measurement system. Great care is taken to minimize noise
sources in the recording and measurement systems. The gratings are
recorded with spherical waves in order to eliminate a lens with its
scattering and multiple reflections near the hologram plane in Figure
F1. The self-convergent property of the hologram grating will then
focus all the diffracted power into a small spot at the detector aper-
ture. The Gaussian profile of the laser beam assures a sharp focus

with very low sidelobes.
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The recording system is enclosed in a flat blackbox, and stray
lignt is minimized by careful placement of black screens. Ideally, the
hologram should see nothing but two bright points. The major source
of noise seems to be scattering from the inside edges of the circular
apertures used to define the beams emerging from the pinholes. Without
these apertures there would be much more scattering from the lens mount
and other components in the system.

A worst case calculation may be made of the expected noise
level from a perfect grating in the measurement system of Figure F1.

We will assume that each of the diffracted waves carries the same rela-
tive noise distribution along with its perfect Gaussian profile. If
the grating is strong, then noise from the first-order wave will be

dominant. If the grating is weak, then most of the noise will be due

to scattering from the straight-through, or zero-order beam. These
levels are plotted in Figure 4.6 (@M and o, ). oy s the measured
1 0 0
scattering from a clean glass plate 10° off axis. o is 58 dB below
1

the diffracted amplitude of the assumed perfect grating. The 58 dB
figure was determined from measurements on the main beam illustrated

in Figures F3 through F6. Figure F3 shows the power distribution for
the bare beam (at 640 mm from the hologram plane). A Gaussian is
plotted for cowmparison. The plot does not reach the top of the graph
at 6 = 0 because the beam width exceeds the detector aperture and
some power is spilled over. The departure from the Gaussian profile
may be due to imperfections in the laser mode, or scattering from any
of the optical surfaces which the beam encounters. In order to provide

a more realistic profile for the beam, which is assumed to be sharply
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focused by the perfect hologram, lenses were placed just after the
mirror in Figure F1. These lenses focus the beam at the detector but
also introduce some additional noise, as shown in Figure F4. Placing
a glass plate in the hologram holder adds still more noise (Fig. F5).
This noise level (at 7.8 mr) was taken as a worst case expectation for
a perfect hologram on a normal glass plate. The scattering from the
lenses would not be present in the case of a perfect holoaram.

An unexposed (but normally processed) dichromated aelatin plate
shows slightly higher noise levels than the bare glass (see Fiq. F6).
These plates have a milky appearance due to wide angle scattering.

Noise in the recording system would have the effect of lowering
the 58 ds figure for a noise free hologram. The highest measured
signal-to-noise ratio was 51 dB (DCGI , grating number 6). It is con-
ceivavle that the recording system is introducing noise at this level.
The validity of the 51 dB measurement can only be established by com-
parison with some lower noise medium. We can, however, be assured of
the validity of the measurements for the more noisy media.

The experimental data were analyzed and results plotted in real
time using an HP 9820 calculator and plotter, the program for which is
shown in Figure F2. This procedure allows immediate correction of
experimental blunders which would otherwise require repetition of the

entire experiment.
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Fig. F1. Experimental setup used in measurements of hologram
noise and diffraction efficiency

—
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Schott glass neutral density filters, lightest toward beam. Remove
and replace in same order. ND = .30, 1.22, 1.22, 1.24.

Screw adjustments to direct beam to various areas of hologram.

(:) Aperture 2 is inserted on most sensitive measurements to eliminate
stray light. Piece of red plastic catches the reflection off the
back surface of the hologram and directs it to a flat black screen.

Hologram focuses first order wave into photodetector aperture
without scattering from additional lenses. Emulsion side faces
detector.

Photodetector assembly: Aperture (D = 1/16" diam.), opal glass
diffuser, silicon photodiode (UDT PIN 10C). Mounted on x-y trans-
lator. Center on first order spot for diffraction efficiency
measurement, move 5 mm to side for noise measurement.
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TABLE 1: Notes on Experimental Measurements

Diffraction Efficiency

- _ (ND-NDg )
n = Py/Py = m (Vy/v,) 10000

V,ND : detector signal voltage, neutral density factor

nO,VO,NDO: diffraction efficiency, voltage, and density for
a calibration grating

Photodetector Solid Angle

da = A/R} = wD%/4RE

D = 1/16" = 1.59 mm; A = 1.98 mn°
R] = 640 mm

4 = 4.8 -10" %y

Spatial Frequency

v = sin(g)/x = 9%%%%—(1ines/mm)
for X = .488u

Spatial Frequency Aperture

6vx6vy = dm/kz = 20.2 (Hnes/mm)2

Noise Power Spectral Density (fraction of incident power scattered

into solid angle spanned by unit spatial frequency)

b = n/ﬁvxﬁvy (nm)z

log & = 2 log/n - 1.31
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Scattering per Unit Solid Angle

®Q = n/d@ = @/AZ

log b = log ¢ + 6.62
(for A = .488 -10'3nm)

Base Level Noise (noise from measurement system with ideal noise-free

hologram)

109(¢M) = 1og(¢mo+ ¢M])

@H : noise scattered from main beam

109($H )= -9.45 (measured with bare glass plate and detector
v 10° off axis)

([)’

4]: noise scattered from first order wave

=2 log /n-1.31 - 5.8

(58 dB below first order spot, see Fig. F5)
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Fig. F2. Calculator program for HP 9820 used to perform real time
analysis and plotting of experimental data.
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APPENDIX G

Hologram Processing Schedules

The following schedules were used in processing the holograms
of this thesis.

The most recent and thorough work on dichromated gelatin seems
to be that of D. H. Close et a].(]’z) The DCG processes used in this
thesis are an adaptation of the methods presented by M. Chang(S) and
D. H. Close. In dichromated gelatin, a compromise must be made between
sensitivity and noise. The more sensitive, higher efficiency Process
I shows more light scattering, and the plates tend to be slightly
milky. The dehydration step (D) in these processes is critical. Rapid
dehydration at room temperature gives low-noise, less sensitive holo-
grams. Extending the dehydration process in steps of increasing alcohol
concentration and raising the temperature of the alcohol baths will
increase the sensitivity and noise. Prehardening of the gelatin in Kodak
Rapid Fixer results in lower noise and more stable gelatin layers.
Noise and diffraction efficiency data for the two DCG processes listed

here are given in Chapter 4.
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2. D. H. Close, A. Graube, "Materials for Holographic Optical Elements"
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PROCESSING OF DICHROMATED GELATIN HOLOGRAMS™

Process 1
A 1) Fix Kodak 649F plates 10 min. in part A of Kodak Rapid Fixer.
2) MWash in water starting at 21°C, rising to 32°C over 7 min.
period and holding at 329C for 15 min.
3) Cool in room air 1 min (plates horizontal--gelatin is soft).
4) Rinse 30 sec in distilled water with 2 drops per liter Photo-
Flo 600.

5) DryT overnight (plates horizontal).

B. 1) Soak 2 min in room temperature water.
2) Harden 10 min in Kodak Rapid Fixer (A and B).
3) Wash 15 min 21°C running water.
4) Rinse 30 sec distilled water with Photo-Flo.

5) Dry" overnight.

of

€. 1) Sensitize by soaking 5 min in 7.5% ammonium dichromate with
2 drops per liter Photo-Flo 600.

2) Dry" overnight with plates vertical.

B 1) Wipe crystals from glass side of plate with damp cloth.
2) Expose plates one to five days after sensitization.
3) Wash 5 min in 21°C running water.
4) Dehydrate rapidly in 100% isopropyl alcohol, 30 sec with
agitation.

5) Dry vertically in flowing dry air.

*Nilton Chang, "Dichromated Gelatin of Lmproved Optical Quality", Applied
Optics 10, 2550 (1971).

TDry plates in dark box with flowing air, humidity set to 32% by satu-
rated CaCl, solution.
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Process 11

Same as process 1, except:

G 1) 5% ammonium dichromate

D. 3) 4) 5 min each: Kunning water (21°¢C), 50% isopropanol (210C),

100% isopropanol (21°C).
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Processing of 649F Plates

Develop 5 min D-19 217L

Stop 30 sec

Fix 3 min Rapid Fixer

Wash 10 min Running water

Kinse 30 sec Deionized water with photoflow
Dry

*Kodak Plates and Films for Scientific Photography, publication Mo.P-315,

(Wov. 1973), p. 35d: Table 8, Processing Information Summary.

*
Bromine Bleaching Process

Process plate normally as above.

Bleach one hour with bromine vapor in a closed vessel.

*A. Graube, Hughes Research Report No. 484, Feb. 1974, "Advances in
Bleaching Methods for Photographically Recorded Holograms" (submitted

to Applied Optics).
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LLG Bleach Process

) Develop 649F Plates 5 min, D-19, 21°C.
2) Acid stop bath 30 sec
3) Rapid Fix 3 min
4) Rinse in distilled water 10 min
5) Bleach 10 min, 5% cupric bromide.
6) Rinse 30 sec, distilled water.
7) Desensitize 3 min, one part A, ten parts B.
8) Rinse 10 min, distilled water.

9) Dry in room air.

Desensitizer Solutions

A

Potassium permanganate hyg

DW to make 1 liter

B
Concentrated sulfuric acid 10 ml
Potassium bromide 40 g
DW to make 1 Titer

(Mix solutions immediately before using.)

*iI. Lehmann, J. P. Lauer, J. W. Goodman, Applied Optics 9, 1948 (1970),
“Hign Efficiences, Low Noise, and Suppression of Photochromic Lffects

in Bleached Silver Halide Holography."
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Hariharan's Bleach Process for 649-F P]ates*

1) Expose

2) Develop 5 min D-19 with 1.0g/liter sodium thiosulphate

3) Rinse 3 min distilled water (2 changes)

4) Bleach 5 min (see below)

5) Rinse 6 min distilled water (4 changes, add 2 m1/liter photo-
flow to the last bath)

6) Dry at room temperature and 40-607% RH.

Bleach Stock Solution A Stock Solution B
potassium dichromate 8g potassium iodide 2g
conc. sulphuric acid 10 ml DW to make 1 Titer

DW to make 1 liter

Mix 1 part A, 1 part B, 8 parts DW, just before use.

*P. Hariharan, et al., Optics Comm. 6, 75 (1972), "Simplified, low-noise
processing technique for photographic phase holograms."
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HNU3 Reversal B]eaching*

Immerse 649-F developed (but unfixed) plate in a shallow basin
of water. Add 1:1 concentrated nitric acid slowly with constant agi-

tation until the plate clears. Rinse in water and dry.

*M. Chang, N. George, Applied Optics 9, 713 (1970), "Holographic

Dielectric Grating: Theory and Practice."
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APPENDIX H

Nonlinear Distortions in Holographic ledia

In this appendix we analyze some of the distortions in the recon-
structed wavefront which result from various nonlinearities in the res-
ponse of the hologram medium and in the diffraction process. The
general approach is to expand the nonlinearity in a Taylor series and
derive the magnitude of the first significant intermodulation products.
Uther analyses of hologram nonlinearities have been presented by

(1,2) (3)

aoodman and by Friesem and Zelenka , using transform methods.
The analysis presented here is somewhat simpler and yields the same
essential results.

A modulated yrating hologram may be formed in any holographic
mediun, but the most likely applications will involve a thin amplitude
hologram, a thin phase hologram, or a thick phase hologram. Each of

these three cases is considered in detail.

H.1 Hologram Recording Geometry

In the analysis to follow, we will consider the hologram record-

ing geometry of Fig. Hl. The following definitions are to apply:

wy @ uniform amplitude plane wave (reference wave)

we(x,y): complex amplitude of slowly varying wavefront, spatial
bandwidth << K/21 = uq(]ines/nmﬂ gratina frequency

Fringe spacing: d = 2u/K. Grating number K = Zkasin Ba .
Wavenumber ka = 2w/ka, where Aa and 0a are the wavelength
and incident angle in air. Combining these definitions aives
the Bragg law: Ay T 2d sin 6,



Fig. Hl.

z if tne medium has finite thickness) will be given by

where

Incident

waves
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Hologram
medium

Nonlinearities

T: exposure time

" denotes a complex function

Hologram Recording Geometry for Analysis of

The exposure at the x,y plane (which we assume to be uniform in

E(x,y)

Ey(xsy)

E_(x,y)

t|wy e 5

EX e

(Wl + [wy(x.y) %)

= ZEW]WZ(X’)’) = Em(XJ) e

-i(k/2)x , ~ ei(K/Z)x‘Z

rx=1Kx

ip(x,y)

(H.1)
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The modulation exposure Em is always less then E0 in magnitude. In
most hologram recording situations, the reference wave is made much
stronger than the subject wave. In this case |ﬁ2| << wy , and the bias

exposure can be considered constant. This will be the assumption in the

analysis to follow.

H.2 Thin Amplitude Holograms

The quantity of interest in the case of a thin amplitude hologram
is the real amplitude transmittance TA , which will be a function of ex-
posure (Fig. H2). The medium is assumed to be infinitesimally thin.

The transmittance function can be expanded in a Taylor series

about EO as follows:

TA(E) = o + oy AE + a AE® ¥ oy RED 4 e (H.2)
where AL = E - E, = E_cos (Kx + ¢)
% = TA(EO)’ d1 = TA(EO) , ==+ , etc.

Fig. HZ. Amplitude Transmittance vs. Lxposure for a Thin
Hologram
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The coefficients « will depend on the medium, the method of
processing, and the bias exposure EO . The transmittance function

can be converted to a Fourier series as follows:

n
" un(AE)

where

S e iKx T % -7 Kx
AE = ?‘tm(x,y) e + ?-Em(x,y) e

Expand (/\E)n using binomial theorem

n ) .
. 1 zn-k zxk i(n-2k)Kx
()" = 7 (M) "N EN e
k? n m m
k=0 2
(n) = n!
k (h-k)T k!

Each term n in the nonlinear transmittance function will diffract a

set of waves with piase factors e1nKx, e1(n—2)Kx, LI e—](n—Z)Kx,
g KX summing all terms for which n-2k = ¢ gives
Tp(E) = ] T, et (H.3)
L==00
. o4 f ny 1 “n-k Zxk
To= 1 ooy L8 4 (&) 7 En En (H.4)
Y n=0 k=0 k,z—(n-w.) 2
] k = X(n-p)
I L AL
&, 1 -
k’g(”'Q) ( v, otherwise

Since TA(E) is real, i~v = f:
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The first few terms in the T coefficients are easily evalu-

ated from the above formula.

.—i
1]
V)
+
w
~

= ol 3 2 5 4 =

Tp=(zog +gag E* 16 %5 Ep * ) Ep(xuy)

. | 1 2 15 4 -

Tp=(gop *gog By ¥ ggog gt o) Eplxy) (H.5)

We are primarily interested in f] , the coefficient of the e1Kx
transmittance term. Assuming that K is much larger than any spatial

frequency in the modulating function E_(x,y), we can separate the

m(

first order wave from the other waves. The hologram transmittance may

then be defined by:
i—H(E) = {TA(E)}BL (H.6)

The symwol | e is used to denote spatial band 1imiting of the en-
closed function. This band limiting may be accomplished with apertures
in the optical system, or in the case of a thick hologram medium may be
a property of the grating itself. With this defini-

tion of hologram transmittance we see:

= - | R 3 2h = TKx

TH(E) - T-IE = ('2' u.-l * ‘8'(.13 Em) Em e (H.?)
I[f the hologram is re-illuminated with the wave w]e_T(K/Z)X (Fig. H1),

then the transmitted wave will be

i(K/2)x

- k3 5 .
wrlx,y) = [og + 5 ng E0] W Wy (x,y) e (11.8)
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The first term in the square brackets represents linear wavefront re-
construction, and the second term represents intermodulation products.
Unly the first terms in the series have been retained, on the assump-
tion that tne o coefficients decrease rapidly with n . Additional
IM products may arise from modulations of the o coefficients if
E_ is not constant. Making Wy > [QZJ assures that these products

0
will be small.

H.3 Effect of Distortion Products on lmage Reconstructiaon

image

e
']
~N

Hologram

W, L** T >

Fig. H3. Image Reconstruction System Showing Ghost Images
Due to Intermodulation Products

Consider the system of Fig. H3. An image is projected in the
focal plane of a lens placed behind the hologram. If the image is a
set of pright spots on a dark background, the effects of IM distortion
will be easy to analyze. For example, consider a reconstructed wave

with two discrete spatial frequencies,



N 1Ky x 1K, x
Wy (X,y) = wy(e + e ) (H.9)
Image spots will occur at
X1.2 = (Af/21) K],E (H.10)

and intermodulation product spots at

(Af/?ﬂ)(2K1~K2), (Af/Zﬂ)(ZKz—K]) (H.11)

[n general, tne IM spots will occur at frequencies which are sums and
differences of an odd number of image spot frequencies. This explains
tne absence of 42 terms in equation H.8. Lach of the terms in the
hologram transmittance, equation H.7, is on a carrier ein. Any
second order products will fall in the band at 2K or OK.

I[f the image is not a set of distinct spots, but a continuous
distribution, the effects of IM distortion are more difficult to
analyze. Goodman(z) has shown that the effect of nonlinearities on
image reconstruction can be represented as multiple self-convolutions
of the image amplitude distribution. For a continuous image, IM
products will appear as a broad distribution of background 1ight, more
concentrated around sharp borders of bright areas. If the bright areas
are distinct and widely separated, ghost images may appear at loca-
tions corresponding to the interaction of several of the bright areas.
Pnotographs of reconstructed images showing these effects are presented
(2) (3)

in the papers of Goodman and of Friesem
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A measure of the severity of IM distortion for the bright spot
images may be taken as the intensity ratio of IM spots to image spots.
From equation H.8 we find this ratio to be:

_9 232 .4
R = Tﬁ_(u]) L‘.m (H.]Z)

4.4 Tnhin Phase Holograms

The modulated grating hologram may find application as a thin
phase, or surface relief hologram. The physical characteristics of this
type make it especially suitable for mass manufacture by an embossing
technique(4). The thin phase hologram also finds application in op-
tfcal memories as a page composer in whicnh information is recorded as
surface deformations in a thermoplastic fi]m(E).

Distortion products in the thin phase hologram arise from two
sources. Wonlinearities in the response of the medium to exposure in-
troduce distortions in the recording. The diffraction process itself
also exhibits nonlinearities which will cause distortions in the re-
construction. An analysis of these nonlinearities for relief phase
holograms recorded in photoresists has been presented by Harto]ini(T?).

Assume a recording geometry as in Fig. Hl. The surface deforma-
tions of the processed hologram will result in phase modulation of an
incident wavefront and diffraction of several waves corresponding to
the various orders of the diffraction grating (Fig. H4).

The process of making a surface relief pattern from the exposure

distribution may involve photoresists, thermoplastics, or whatever, but

in general it may be characterized by a phase shift vs. exposure curve
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[ncident wave xﬁy Diffracted waves
i
+]
——7
0
-
Y. = -
Pniase modulation e

Fig. H4. Wavefront Reconstruction from a Thin Phase
Hologram

as in Fig. H5. The phase modulation function is written as a Taylor

series,
¢m(t) = uw + u]AE + uzAE t u3AE i
o F b =B AR LT me iR
AE = E E; =z E & tyEre (H.13)
P
%

Fig. H5. Phase Shift vs. Exposure for a Thin Phase Hologram
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This can be converted to a Fourier series as before:
TKx i 1

-ikx ] eiZKx

¢m(E)=‘pO+J2$]e 'Z(Z';e §$2 L U
N 1 2
do(Xsy) = oy + 5 a, E (X,y)
i 3 Zy =
3106Y) = (o) + 3 ag E2) E (x,y) (H.14)
The complex amplitude transmittance is
- g (E)
Tp(E) = e (H.15)

The amplitudes of the various diffracted orders may be computed with the

formulas
e]\,“‘ cos O = E 'indn((b) e1nt)
n=-ow
n:-CU
which are valid for any complex ¢(b). The Fourier exponential series

(equation H.14) is equivalent to a sine-cosine series

¢m(L) = i A]cos(Kx) t B]S]H(KX) i AZCOS(ZKX) 7 BZSIn(QKx)

RPN (H.17)

with

i
1 =75 (b - #) -« etc.
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Thie complex transmittance is then

o

gt 1 2E][I\Qcos(m) + Bysin(2kx)]

TA(E) = e
ip. = iA cos(2kx) B, sin(2kx)
=e 2 1 [e . g ~
=1
g o - i(n+n')LKx
= e uE] Ln%n' i (A)d i (By) e 1 (H.18)

Each term & 1in the Fourier series expansion of the nonlinearity dif-
fracts a whole set of waves witn angular spacing QK/ka . Only the

L =1 term contriputes to the first order wave. The hologram trans-

mittance as defined in equation H.6 then becomes

-~

T,(E)

{Tp(Ed}g,

'il.po

1l
(o]

~ ~ 2 1
i"0 (A)9,(B)) o LtA*)Kx (H.19)
ntn'=1] " s
To explore the behavior of this function we may assume &1 real
(¢ = 0 in equation H.1). This is equivalent to a small shift in the
coordinate x and does not alter the physics of the problem. With

this assumption

Ay = b B, = 0
1 n' =20
J.(m:{
i 0 n' #0
. io .
TL(E) = de © Jy(py) e (H.20)
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Tnis J] Bessel function behavior is a well known property of the dif-
fracted wave amplitude in a thin phase ho]ogram(7). A sketch of the
function is shown in Fig. H6. The nonlinearity is inherent in the
diffraction process and would cause distortions even if the medium were

perfectly linear.

1.84
1n‘¢x)L : 0.582  (n...= J5 = 33.90)
s ¥ |
- |
I ""J](q)])
+* |
i | 1 1 )
i 7% - T Lb]
2 |
i | II 1 B
U T T ' ¥ L )
1 2 3 4 5 "1

Fig. H6. Amplitude of First Urder Diffracted Wave in a Thin
Phase Hologram

The Bessel function can be approximated by(8)
J1(¢) = %—¢ - %g-¢3 + §%E’¢5 L L ¢ << 1 (H.21)

txpanding T, for small g gives
H "

. 1 1 3
Ty(B) = J1(0y) = 5 9y - 15 ¥
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o] 3 g2 _ 1 .3g29;
TH(E) =t [ 2_Ot'| + 8 0t3Em 16 OL] Em] [m(xd) (H.22)
H___/ - v et
lTinear distortion
term products

The ag  term in the distortion products is the contribution from the
medium nonlinearity (see equation H.7), and the uf term arises from
the diffraction process nonlinearity. The amplitudes of the two terms
may add or cancel depending on the signs of the o coefficients.
For a nologram with a few bright spots in the image, the inten-
sity ratio for Il spots to signal spots is (from equation H.22)
%% 1 242 4 )
¥ = E - A
R Ldlt] g "k, (H.23)
Comparison of this formula with equation H.12 shows the similarity of

the terms due to medium distortion and the added effect of diffraction

distortion.

H.5 Thick Phase Holograms

The high diffraction efficiency and angular selectivity of the
thick phase hologram make it a good candidate for such applications as

(9)

spatial filtering and laser machining In a material such as dichro-
mated ge]atin{lo) a modulated grating hologram can generate a wavefront
with very high diffraction efficiency, negligible higher order waves,
and very low noise.

As in the case of the thin phase hologram, distortion arises from

nonlinearity of the medium response during exposure and from nonlinearity

in the diffraction process during reconstruction. To analyze these
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nonlinearities we assume a recording geometry as in Fig. Hl with an
exposure distribution given by equation H.1 and the appropriate
restrictions on the bandwidth and amplitude of wave &2 . We assume
a medium of thickness T with negligible absorption of the exposing
Tight. The exposure will then be uniform in 2z . The refractive

index in the medium after development will be related to the exposure

Dy

g + uIA[ - uZAEZ + uBAE3 + ...

1

n(E)

H

AE cos(Kx + ¢) (H.24)

E-E =E
0

mn

n

Fig. H7. Relation between Refractive Index and Exposure for a

Thick Phase Hologram

The Taylor series is converted to a Fourier series as in the previous

cases.

oTKX l_ﬁ? o~ TKX

~ J2Kx 1 ~« -12Kx
n, e t oy, e T (H.25)
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If ﬁz = W, e | then ﬁ] =, el? and
n(g) = ng + n]cos(Kx + ¢) (H.26)

Tne wavefront reconstruction process is shown in Fig. H8.

XY

|
Wy fiff W
v . N
o
- bg —
A e
— s e
T

Fig. H8. Wavefront Reconstruction from a Thick Phase
Hologram

Wnen re-illuminated with viy s this hologram will diffract a wave in

the W, direction corresponding to the +1 order. This is the only

wave wnich satisfies tihe Bragg condition, so all other diffracted orders
may be ignored. A1l terms in the n(E) series (equation H.25) except
the ny, term may be ignored for the same reason. No energy is dif-

fracted unless the waves phase match with the grating planes through-

out the wmediun.
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The effective hologram transmittance for incident waves at the

Bragg angle OB (in the medium) is shown from an analysis of coupled

wave theory to be(l]) (see Appendix K)

mT

TH(Xsy) =i Sin[m n](x,y)] ei(KX+{‘b) (H27)

Tnis equation was derived using the following assumptions:

1) Grating must be thick enough that coupled wave theory
is valid. Thickness parameter:

Q= ZHAaT/nOdZ > 10

2) Ny << ng

3) Index modulation fringes perpendicular to surface, no

absorption.

4) Incident wave at Bragg angle.

An estimate of the amplitude of the distortion products in equation
H.27 can be derived by inserting the series for " into the power
series for the sine function and keeping only the lowest order terms
in

Em .

3 3 2 _
n](E) = (!]Em i g %3 E"_I > ltBEm << o (H.28)

R T
T“(E) = S]n[i;cos (b n]J

. 3
= s1n(yn]) =y = %(Ynl)
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3 1 3 3x -3
=, 'Y(.!]En] + (E’Yﬁ.3 - g'\[ (x"l) Em (H.Zg)
signal distortion
wave products

The intensity ratio of these lowest order It products to the "signal"

wave is
. =3%3 ] aT 2 2.2 4
= [ﬁ'&?" 0 cos o) *1d Ey (H.30)
a7 B
medium diffraction

nonlinearity nonlinearity

This formula may be compared to equation H.23 for the thin phase
hologram and equation H.12 for the thin amplitude hologram. We
notice in all three cases the same term due to the medium recording
nonlinearity. The diffraction nonlinearity introduces additional
distortion winich may add to or cancel part of the medium distortion
depending on the signs of the o coefficients. HNormally ay > 0
and ag < U, s0 the effects are additive. The absence of Ei terms
in the distortion products from the diffraction nonlinearity (equation
H.29, H.22) follows from the absence of quadratic terms in the expan-
sions of the J] and sine functions.

In the derivation of all these formulas, only the lowest order
terms in Lm have been retained in any product or series expansion.
We must assume a well behaved Taylor series (wn rapidly decreasing with
EE
il

larger n) and « S0 If Em is large, the distortions will be

'3
severe and the approximations no longer valid. Also, the bias
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exposure will not be constant, and the resulting modulations of the
@ coefficients may produce several more terms in the distortion
products. The approximations will be good if Wy is a constant

amplitude wave with Wy << W,



10.

il.

12.
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APPENDIX K

Summary of the Results of Kogelnik's Coupled Wave Theory

for a Phase Transmission Hologram

This appendix provides a brief summary of the derivation of the
diffraction efficiency for very thick, phase transmission holograms, and
provides a bridge between the equations of Kogelnik and equations used
in this thesis. A more complete presentation of this topic, which is
very conplicated algebraically, can be found in Kogelnik's original
paper(]) or in several textbooks.(2’3)

In this discussion we assume a non-absorbing unslanted grating

of thickness T , as shown in Figure KI.

By - o T
"B + 8 __‘4-\
Y >
. \
medium |- —--— n(x) = no+n.|cos Kx
No T

Fig. K1. Interaction of coupled waves in a thick phase hologram
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Wave equation

(V2+ Kk2) E,(x,2) = 0 (K.1)
k2 = kg[n0+ n]cos(Kx)]2

kD = ZW/Aa Ny << ng

K= 2n/d

Assume a solution with only two coupled waves:

Ey(F) _ [R(Z) e'la'?_’_ S(Z) eig'éje-'imt (KZ)

p: incident wavevector, near Bragg angle Og (6 << 1)
o = p - Kx (grating condition is satisfied)

ipsr ig=r
L and e!”

Insert equation K.2 into K.3, set coefficients of e
separately equal to zero. The second-order differential equations are
reduced to first-order by assuming slowly varying solutions and neglect-
ing R" and S" terms. The resulting differential equations in R and
S can be solved with the boundary conditions R(0) = 1, S(0) = 0 . The
amplitude of the diffracted wave from a phase grating of thickness T

(4)

1s shown to be:

v =y T/, (CaCe) /2

,.
I

£ = §KT sin(¢ - “B)/QCS
¢: grating angle (900 in this case)

CR,CS: obliquity factors

For an unslanted grating with an incident wave near the Bragg angle,
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the obliquity factors, CR = CS =~ COS OB , and the above formulas can be

simplified. The diffraction efficiency is then:

ny = IS(M? = sinf(P+ e)V2/(1 + 217 (K.4)
v = van/Aacos Op (K.5)

g = m8/8, (8, = d/T) (K.6)

bg = arcsin(Aa/ZnOd) Bragg angle (K.7)

Summary of assumptions and approximations leading to equation K.4
1) Equation K.4 applies to a thick, unslanted phase grating with
no absorption.
2) Grating must be thick enough that two-wave theory applies.
Thickness parameter Q = ZMaT/nod2 > 10 .
3) Index modulation is sinusoidal with Ny <<ng .
4) Deviation from Bragg angle & << |

At the Bragg angle (§ = 0) equation K.4 reduces to
= sin®[unyT/x.cos 0,] (r.8)
”] I 1 Ag B N e

The thickness of gratings is most easily found by measuring the angle at
which the diffraction efficiency drops to zero. This first null occurs

when
(v2+ 52) = ﬂz

The cutoff angle is then

b = 60[1 - (v/u)z]]/z (K.9)

The angular bandwidth of the hologram is seen to decrease slightly with
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increasing diffraction efficiency. At n = 100%, v = /2, and

6. = .87 (d/T).
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APPENDIX N

A Simple One-Lens Optical Processor Using Holographic

Spatial Filters

This appendix presents an analysis of the processor discussed in
Chapter II. The analysis is based on the Rayleigh-Sommerfeld scalar
diffraction 1ntegra1(1)

) ] ; kryz .
3,00:55) = g5 || & 0qadte Brrp) sy, - k)

2 + cos(f-Fy,) dx;dy, (N.1)

S(X],y]): field at a point in the aperture I

Ez(xz,yz): field at a point in a plane to the right of &

SPE distance from point 1 to point 2
n: unit vector normal to plane 1
k = 2n/A

With the usual paraxial approximations and Fresnel zone approxi-

mations:

cos(ﬁ.r12) =

(1/20)(1/ 7y, = 1K) = =i/x

ikry, KL (xy-%,) %+ (y1-¥,)%1/2d

(e "2/ry,) = (e7%7d) e

(N.2)

d: distance from plane 1 to plane 2

and ignoring constant phase factors -iede, the diffraction formula can

be written:
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. ¢ (x,,y,) B T o %q0¥7)
a,(Xo,¥,5) = §%~e et Jf {ay(xq.yq)e L }
b
-i2n(X,X,+ Y ¥,)/7d
- e 172 7172 dx]dy] (N.3)

¢d(x,y) = k(x2+ yz)/2d (quadratic phase factor,

focal distance d)

Equation N.3 is a form very convenient for computation using the Fast
Fourier Transform (Appendix C).

Consider the processor (Fig. N1), with an object transparency,
amplitude transmittance to(xo,yo). The amplitude at the input plane

will be:

- ~1dgo(X53Y)
31 (xgaYg) = agty(x,.y,) e 0 7° (N.4)

Application of N.3 yields the amplitude incident on the filter:

i‘bdo(xf=Yf)

éf(xfsy.r) - (aO/AdO)E f(ﬂaﬂ) (N-S)
T(g,n) = F{t (x .50}
(€.an) = (xg/2dg,y¢/2d,)
t0 = 0 outside I
Filter transmittance:
_ —1Kxf— ik(xi*—y%)/Zf
H(xf,yf) e (N.6)

£ = [1/d0+ Udi]-l (focal length)
At the image plane:

L A0 (oa¥o) L -iKxem e Thy;
p0,p) = e [ Hagtxpypiie e 9

12T (X X0t Y e¥o )/Ad,
¢ @ -2 42 i dxfdyf
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Pg is chosen so that the spherical phase factors inside the integral
cancel,

Y40~ bf* 9qi = k(x% + y%)(1/d0- 1/f +1/d;)/2 =0 (N.7)

Then:

- a, i¢d1 = N -inf
az(xzsyz) = *?—““—'e II {T(Eaﬂ) H(Xfan) e }
A did0

=121 (XeXs + Yoy, )/Ad.
. @ e 72 i dxfdyf

Define:
Magnification factor: M = di/do
New coordinates centered on image:
Xj = X + Kadg/2m Yi = ¥o (N.8)

Amplitude at the image plane is then:

. a, i¢di - N -12w(xi€‘Fyin)/M
ai(xi’yi) = @ {I {T(&,n) H(AdOE,Adou)} e dédn
XO’yO xf,yf

POINT B " kP
SOURCE r“‘, =

OBJECT
TRANSPARENCY HOL??E@EHIC

TMAGE PLANE

Fig. N1. Coherent optical processor with a holographic spatial filter.
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The image field can be written as a convolution:

a. i . (x5,¥,) X: Vi
~ d AN
ai(x-i 5y1) = MO e ! h * tO( Ik M1) (N.g)

B X Y
T{H(Adog,xdon)} = h(j%; 7%0 filter impulse response

. y .
F{T(e.n)} = t (- ¢},- T%) inverted magnified image

The intensity distribution at the image plane is:

2

Li(xgys) = (I/MP) [Rx t(-x;/Ma-y; /1) (N.10)

ik(x5 + y5)/2d,
The phase factor e in equation N.9 causes a slight

tilt in the image plane. In most simple analyses this plane is assumed
to be perpendicular to the z-axis, but the focal plane in any simple
imaging system is actually a curved surface. Ray trace calculations
can be used to map the location of image surfaces in holographic lens

systems.(2’3)
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APPENDIX P

Relation of Phase Shift to Density in an Optical Medium

Phase shift of the wave transmitted through a photographic emul-
sion can be the result of surface height modulations or bulk index
variations. The recent synthesis of computer-generated, on-axis holo-
grams on Kodachrome I1I fi]m(]) has stimulated interest in the underly-
ing mechanism producing the phase shift in such media. An understand-
ing of this mechanism will perhaps enable us to make better holograms
through more precise control of the phase of the transmitted wavefront.

This appendix presents the derivation of a formula for that part
of the phase shift due to the refractive index variations resulting
from dye absorption in the emulsion layer. WNumerical calculations
using this formula show that for a typical commercial film (Kodachrome

II) the expected phase shift is much less than one wavelength.

P.1 Derivation of the Dispersion Integral

The phase shift in an emulsion layer due to refractive index

modulation by the dye can be calculated using the Kramers-Kronig rela-

tions:
Alw) = - Lp.v. [ Ll (P.1)
B(w) = —P.V [ %%ﬁt%fgi_ (P.2)

where P.V. denotes the principal value of the integral, and
Alw) + iB(w) = H(w) an analytic function with no poles in the lower

half « plane. A derivation of these relations is given in the text
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by Yariv(z). The application of these relations in such diverse

(3) (4)

fields as electrical network theory , dispersion of X-rays , and
dispersion in optical media(s) is an indication of the fact that the
analyticity of the functions representing these various quantities
follows from some very general assumptions about the physical nature
of these quantities. In general, a passive, causal, linear system can
pe represented by a transfer function H(w) with no poles in the lower
half p]ane.(s)
If the impulse response of the system h(t) is real, then
H(w) s hermitian (A(w) even and B(w) odd function of w ), and the
above relations can be put in a form more suitable for computation.
Multiply the integrands by (w' +w)/(w'+w) and eliminate terms with

odd symmetry.

Aw) = - i-p V. f Bm(-“iz-)ﬂj-zi"ﬁw (P.3)
0 w' - w
B(w) = % P.V. f A(“I’é W dw’ (P.4)
O W -

The functions A and B can be related to density and phase
shift in an optical medium. The wave equation for a linear, homogene-

ous medium is

(v2+ k%) a(¥) = o (P.5)
EZ = wzp e(w) - jou o(w) = mzu v (w)
emt time dependence assumed

Assume a solution of the form:
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B —in(w)k_z
alz) = a, e &
k0 = w/ﬁi;
fi(w) = n () + in; (o) = (g(w)/go)”2 (P.6)

The transmittance function for an emulsion layer of thickness £ may

be defined as

) -ik_% ~i(n(w) - 1) k.2
a(iL)/a0 e 9 =g a

T(w)

~i(n (@) =1k 2+ n(w)k g (P.7)
= e

The phase delay (in wavelengths) and density are related to n(w) by

k 2

(0) = 5= (n (w) - 1) (P.8)
D(w) = -Togya|T|Z = = —erlrr k & 1. () (P.9)
910 oy %o’ M4 -
Let us now consider a very thin layer & = & , koa <<
T(w) = 1 -di(n(w) - 1) kS (P.10)

\ ,
T (w)
The wave transmitted by the medium is just the superposition of the
original incident wave and the wave scattered by the medium. Since

Ts(m) is the Fourier transform of a real, finite impulse response of

a passive system, it satisfies the conditions for application of equa-

tion P.4.
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_‘
£
]

A(w) + iB(w) = ny(wk 8 + (1 = n (w))k ¢
= [- 20810) p(w)] + i[-2ne(w)] (P.11)

Substitution of A and B into equation P.4 gives

o

$(w) = 5”—“—21 P.V. J 9-(—“%’——‘1—“5—'— (P.12)

2 0 w' "= w

which relates the phase delay in wavelengths to the spectral density
of the layer. Since both density and phase shift are linearly propor-
tional to thickness & , this result, which was derived for a thin

layer, is valid also for layers of arbitrary thickness.

P.2 Phase Shift for a Photographic Emulsion

The phase shift for a monochromatic wave passing through a
color photographic film can be written as ¢(w) = ¢ (w) + ¢ (w) +dp(w)
where ¢S(m) is the surface relief phase shift, ¢D(w) arises from
the dye absorptions, and ¢C(m) is the remaining phase shift due to
other materials which may be present in the emulsion and to variations
in film base thickness and index.

The phase shift due to dye absorption may be calculated using
equation P.12 if the absorption spectrum of the dye is known. This
equation has been evaluated numerically by the method detailed in
Section P.3, using spectral density data for the blue absorbing layer

(6)

of Kodachrome II The results are plotted in Fiqure 2.10

The small x's on the density curve are data points, except for the
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point at 300 nm which is a linear extrapolation from the preceding
data points. The original Kodak data has a peak density near 1. The
data plotted here have been arbitrarily scaled up to represent a more
heavily dyed Tlayer.

We can see from this calculation that even with a peak density
of 2.5 in the blue, this particular dye will produce a phase shift of
only a fraction of a wavelength for red light. The observed phase
shifts of several wavelengths must therefore be due to surface relief
modulation or index modulation by some other material in the emulsion
layer. The extinction of these holograms when immersed in an index
matching fluid indicates that the phase shift is almost entirely a sur-

(7).

face effect It would be nice to have a hologram of this type which
could be immersed in a liquid gate to eliminate noise and aberrations
resulting from surface imperfections in the emulsion and base. The dye
used in commercial color films is by no means optimum for this applica-
tion. A dye with a sharp cutoff in the absorption near the wavelength
of interest might produce a much better phase characteristic, since the

phase shift is roughly proportional to the slope of the absorption curve

at any given wavelength.

P.3 Numerical Evaluation of the Dispersion Integral

We wish to evaluate the following integral:

Q0

o(g) = 105y J D(B')R dB
an '~ R
where ¢ is phase delay (in wavelengths), P.V. denotes the principal

value of the integral, D is the measured spectral density curve,
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£ 1is a parameter proportional to frequency w , or inversely propor-
tional to wavelength X .

The integral is evaluated in two sections as follows:

o(B) = c1(Qy+ Q) + error
¢; = (an 10/21%)
F-£
0 = D(p')R dp'
1 B.2_ o
By
By
Q =f D(R')p dB'
2 a2 62
Bte
gte
error = ¢, PN J Qiﬁélﬁ_%ﬁl
B'“- B

=&

i

£

D(B+x)dx . A

c P.V. J e =D (B)
£

= (cq/2) [D(B+e) - D(B-€)]

B] and BN represent the lower and upper limits of the density curve
D(8). The size of the excluded region ¢ 1in the K.K. integral is
chosen so as to minimize numerical error. Too small an £ will result
in error in the evaluation of Q1 and 02 , while too large an ¢
will make the ¢ D' error large.

The following is a listing of the proqram and data deck used

in generating the plot of Fiaure 2.10).



L SET TIME=]1,10C=10

/7 EXEC FORTG

//SYSPLTDN €D SYSCUT=N

//FORT DD ®

C KRAMERS—-KRONIG PHASE SHIFT PLOTTING PROGRAM

C PROGRAM PLCTS PHASE-SHIFT VS. WAVELENGTH FOR A PHOTDGRAPHIC EMULSION
C WITH A GIVEN DENSTTY VS. WAVELeENGTH CURVE. PHASE SHIFT IS CALCULATED
C USING THE KRAMERS-KRONIG INTEGRAL.

C

DIMENSICN X(0200) ,®HI (200) , INTVAL(1GQ) yWNIL20) 4 TITLE(3),W1(6E)},
C CELTWI{A)+EPSLCN(S)
EXTERNAL F
COMMCN 8,92 ,00,NC,BN(20),DN(20)
C FPHASF IN MLLTIPLES OF DNE WAVELENGTH
Cl =ALCCHIIN,. ) /{2.*3.14159%3,14159)
C PREAD IN INITIAL DATA
1 RZAC (5,10) NG, TITLFE,CFACTR
WRITE (£,10) ND,TITLE,Cl
16 FOPMAT (119,10X,3A%,20X,E15.5)
LF (UNEEQED) STLCP
C RFEFAD IM INTEGRATION FANGE SPECIFICATICNS
READ (5412) (Wl(!1),DELTW(I),EPSLONL{I), I=1,6)
WRITE (6412) (WL{T)+DELTWII),EPSLCN(I)sI=1,6)
12 FORMAT  (2(1Xs"9.1,F541,F10.5))
C NEMSITY CURVEZLT NGEST WAVELENGTH FIRST,NANOMETERS
REAC (5,11) (WMUT),DN(L),I1=1,ND)
WRTTE (&, L10(wNIT),ONILI),I=1,ND)
11 FOFMAT (4(1X,F9.0,1X,F9.3))
DO SC I = 1,ND
90 NDN(1) = CFACTR=DN(I)
e NPAW AXFS
CALL VLAREL [ 4.0,5.0,1000. +2004++8.0+840,0,0,"'(F6.0)1",5)
CALL VLAAFRL (3.041.U0+1100.+20001FUsFs"WAVELFNGTH {NANOMETERS) %
¢ 2540, [F6.01*,5)
CALL V0LABRFL 112 0'S 01w Ce O
CALL VLADEL {3 eSedaByp=1s
C 25,1, (Fa.11",6)
C AFTA = WAVFN'YMBER PER MICRCN
N L0 T = 1eND
100 RN{TI) = 1000./WN(T)
ANL = BN(1)
BNN = BA(AND)
C REGIN CALCULATICN OF PHASE SHIFT CURVE
NSECT = 0
C NFXT SECTICN
150 NSFCT = NSECT + 1
ERR = 0.0
CW = DELTWINSECT)
IF (Cw.EQ.0) GO TC 800
€ EXCLUCELC REGICN OF KK INTEGRAL
EPS = EPSLAN (NSECT)

6006+ "DENSTITY "y =T41,4"(F6.1)",6)
5«0y 4

Co
Dy y "PHASE DELAY {(WAVELENGTHS) ',

N = 0
C NEXT PCINT
1EO N = N + 1

W = WI{NSECT) - (AN-1)}*DW
IF (weLT.WLINSECT#1)) GC TO 700
A = 1C00. /W

B2 = B*R

D3 = 0.0

IF (AN1.LY.AR.AND,B.LT.BNN) DO = DIB)
C | OWER KALF TNTFCRAL

[F (R-EFS.LE.ENL1) GO TC 201



L
QL

=2 5=

AMINI(2-EPS,FNN]

STPSEN

(Fy ANT,BL 1 .0E-3,ITEST, INTVAL)

IE WITESTLERLPY '8 TC 202

WRITE
23 FORMAT
e FTal,14H

G2 T0 2C2

201 Q1 =
202 CCNTI

c UFPER FALF

0.0
NUF

(6.23) NyW, INTVAL
(224 NUMERICAL ERROR, STEP,I4,18H Q1 WAVELENGTH =,

INTERVAL = ,1012)

INTEGRAL

IF (R4EPS.GELENN]) GO TC 301

aL
02

LT

EMAX]Y
S1MSON

(R+5EPS,ANL}
(FeBL+BNN, 1 OE=-3,ITEST,INTVYAL)

[F (ITFSTLEQ.O) GO TEC 302
(E424) NLW,INTVAL

WRITE

24 FORMAT
& 5 0 M 5

GO TO 302

3cl Q2 =

0.0

302 CONTFINUE
C FRROR ESTTMATE

ERK1

ERR =

X (N}

= £8S

LE2H

NUMER TCAL ERROR, STEP,144,18H Q2 WAVELENGTH =,
INTERVAL = ,1012)

{ C(R+EPS)-C(B-EPS) )

AMALX1{ERRL ERR)

= W

SCC PHI(N) = Clx(GQl+C2)
GO TO. 1€0

700 NW =

ERR =
WRITE
22 FORMATY

WRITE

21 FORMAT
cC PLCT PHASE
CALL PLAOTXY

N—-1

Cl*ER2/2.,0
(€,22) IXCL)ePHILI) W1 = LyNW)

(/7/501%yF1CalyF1C.3))

(&4921) ERR

GO 1O 150
C PLOT CEASITY CURVE

80C CALL

PLCTXY

GO T 1

END

(LHO 244 MAXIMUM ERROR ESTIMATE ,E10.3/1H1)
SHIFT CURVE

(NWsXsPHI 31400.+y-100.y-2.0442.0,0,1,0,0,TITLE)

(NDy WNy DNy 14000y ~1002ar-0.5+4.551+2+4¢1,TITLE)

FUNCTICN FIRX)
[ IRTEGRAND NF KK INTFCRAL
CTMMCN ByBR2,D0

F = D(BX)*8

RETUF
END

N

/ (BX*BX-B2)

FUNCTION D(X)

C LINFAR INTEFPILATION IMN CENSITY CURVE
COMNMCN Ry B2.,D0,KD+BN(20),CN(20)
D = YNTERP

RETUR
END
//DATA oD
1e
1000.
20Cs
580.
516.
467.
444 .
412.

' 4

N

10.
C.0
010
.C58
670
846
« 135

(BNsDNyXyNDy 1)

K.K.PLOT 3.0

0.01 550. 2.0 0.005 300. 10.0
550. -022 533, 042 £23.
5C8. + 150 L95 . 250 480.
48, . 765 452, . 822 448,
4¢0. . 848 434, . 846 424,
300. 0.00

END

-.068
- 462
-832
- 805
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Symbol Definitions

Cl: Numerical constant

ND: Number of points in density curve

TITLE: Alphanumeric to appear in upper right corner of plot
DFACTR: Scale factor for density curve

Plot may be broken up into as many as six sections with differ-

ent integration parameters for each section.

WI(I): Wavelength at start of Ith section
DELTW(I): Plotting increment for Ith section
EPSLON(I): Size of excluded region in K.K. integral
WN: Array of wavelengths for density curve
DN: Measured densities

W: Wavelength (nanometers)

B: Frequency parameter g

BX: Integration variable g'

Q1: Lower half integral

02: Upper half integral

X2 Plotted wavelength array

PHI: Plotted phase shift array
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*
Subroutines
VLABEL: Draws axes and labels
SIMSON: Numerical integration of function F over specified

interval using Simpson's Rule
PLOTXY: General two-dimensional plotting routine

YNTERP: Performs linear and higher order interpolation in a
given data array

*
Documentation available at Caltech computing center.
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