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ABSTRACT

The first part of this work describes the uses of aperiodic
structures in optics and integrated optics. In particular, devices
are designed, fabricated, tested and analyzed which make use of a
chirped grating corrugation on the surface of a dielectric waveguide.
These structures can be used as input-output couplers, multiplexers
and demultiplexers, and broad band filters.

Next, a theoretical analysis is made of the effects of a random
statistical variation in the thicknesses of layers in a dielectric
mirror on its reflectivity properties. Unlike the intentional
aperiodicity introduced in the chirped gratings, the aperiodicity in
the Bragg reflector mirrors is unintentional and is present to some
extent in all devices made. The analysis involved in studying these
problems relies heavily on the coupled mode formalism. The results
are compared with computer experiments, as well as tests of actual
mirrors.

The second part of this work describes a novel method for con-
fining 1light in the transverse direction in an injection laser. These
so-called transverse Bragg reflector lasers confine 1ight normal to
the junction plane in the active region, through reflection from an
adjacent layered medium. Thus, in principle, it is possible to guide
light in a dielectric layer whose index is lower than that of the sur-
rounding material. The design, theory and testing of these diode

lasers are discussed.



TABLE OF CONTENTS

Part I

APERIODIC STRUCTURES IN OPTICS AND INTEGRATED OPTICS

Chapter 1. General Introduction

Chapter

Chapter

1.1 Integrated Optics and Optical Communication--
Introduction

1.2 Periodic Structures
1.3 Aperiodic Structures and Outline of Thesis Part I
Chapter 1 References

Appendix 1-A - Solution to Electromagnetic Propagation
Inside a Dielectric Slab Waveguide

Appendix 1-B - Coupled Mode Theory

2. Broad Band Filters

2.1 Introduction

2.2 Theory of Broad Band Filters

2.3 Fabrication of the Broad Band Filter
2.4 Testing and Evaluation

2.5 Conclusion

Chapter 2 References

Appendix 2-A - Exact Solution of Coupled Mode Equations
for Broad-Band Filters

Appendix 2-B - Linear and Enhanced Sensitivities of the
Shiplev AZ-1350B Photoresist

3. Chirped Gratings Used as Input-Output Couplers

3.1 Introduction

3.2 Grating Fabrication Considerations

3.3 Wavequide Coupling

15
17

P

40
40
40
51
52
55
59
60

76
76
76
84



Chapter

Eo R T - T -
B oW ™

S -
(@3]

Chapter 5.
541
b2
5.3

-vi-

Calculation of Power OQOutput Distribution for
Chirped Gratings

Experimental Results
Conclusion

Chapter 3 References

Statistical Analysis of Bragg Reflectors
Introduction

Low Reflectivity Limit

Coupled Mode Theory

Connection between 5222. L, and a(o), b(o),

02 of the slab reflector considered in the low

reflectivity 1imit section

Computer Results

A Phenomenological Expression for p(lp[z)

Experimental Results

Conclusion

Appendix 4.A

Appendix 4.B

Appendix 4.C
4

Appendix 4.D - Computer Program

B

Appendix 4.E

~

Appendix 4.F

Chapter 4 References

Additional Uses of Aperiodic Structures
Introduction
Effects of a Tapered Coupling Coefficient

Perturbation Solutions to Aperiodic Bragg
Reflectors

89

105
106
109

110
110
112
112
126

166
166
166
171



Chapter

Chapter

Chapter

5.4

5.5 Use of Aperiodic Dielectric Mirrors to Reduce the

5.6

—
.

w

-
3.3

-vii-

Pulse Compression

Electric Field Intensity
Conclusion

Chapter 5 References

Part II
THE TRANSVERSE BRAGG REFLECTOR LASER

Introduction

Chapter 1 References

Theory of Braga Waveguides
Introduction

Design of Structures

Calculation of the Loss Constant
Conclusion

Chapter 2 References

Fabrication and Experimental PResults
Introduction

Fabrication and Testing

Conclusion

Chapter 3 References

178
182

187
188

190
192

193
193
193
200
218

219

220
220
220
232
233



PART 1

APERIODIC STRUCTURES IN OPTICS AND
INTEGRATED OPTICS
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Chapter 1
GENERAL INTRODUCTION

1.1 Integrated Optics and Optical Communication--Introduction

The invention of the laser almost twenty years aao brouaht with it

the possibility of optical communication. There were, however, many
problems to overcome. The optical communication systems, as envisioned
at that time, consisted of bulky, heavy components requiring careful
alignment and protection from temperature fluctuations and vibrations.
The most difficult problem to overcome was that of the high attenuation
of light propagating in the atmosphere or in existing class fibers. The
major breakthrough came with the chemical vapor deposition techniques that
enabled Corning to produce fibers with losses as low as 1 or 2 dB/km.
The alignment and vibration problems have been largely overcome by the
technique of integrated optics; that is, fabricating optical components
on a small chip where light is waveauided in a thin film from one fixed
optical component to the next.

There are a number of advantages in optical communication. There are
large savings in size, weight, power consumption and cost; silicon is much
lighter and cheaper than copper. Furthermore, no around loop problem ex-
ists and the system is free from electromaanetic interference. These
advantages are important for applications ranging from aeronautics and
avionics to the telephone industry.

The greatest advantage of optical communication, however, is the
extremely large bandwidth and high data rates possible. The evolution
of increasing carrier frequency started with AM radio in the kHz range,

proceeded to FM transmission in the MHz range, and on to microwaves in

the GHz range. The carrier frequency available if optical methods are
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used is almost one million GHz. That is, if methods can be found to
modulate, transmit and process the optical signals, a factor of almost
one million can be gained in the data rate over that of microwave com-
munication.

There are many problems to be overcome if such high data rates are
to be realized. One of the principal problems is that of pulse spreading
or broadening in a fiber, which is a result of multimode group delay or
material dispersion. Figure 1.1 shows three kinds of fibers which can be
used.] Figure 1.1b is a multimode fiber and a pulse will typically spread
at a rate of 50 nsec/km as a result of multimode group delay. This sets
an upper limit of about 20 MHz in pulse rate for a one kilometer long
fiber. 1If the index of the multimode fiber is graded as in Figure 1.1c,
the pulse rate can be increased to about 2 GHz. For maximum data rates,
however, a single mode fiber as in Figure 1.1a must be used. The main
source of pulse spreading in this fiber is material dispersion, and for a
single mode injection laser with a frequency width of 1R, 100 GHz data
rates should be possible over a one kilometer long fiber.

The Tight source for the system should have adequate output power,
long lifetime, high efficiency, ease of modulation, lTow cost and fiber
compatibility. The double heterostructure diode laser is superior to the
LED and solid state laser in these requirements. The rise time of the
injection laser is a fraction of a nanosecond (due to the finite carrier
recombination time), thus making direct modulation of up to several
hundred megahertz possible. This may be sufficient for multimode fibers,
but in order to take advantage of the small pulse spread in single mode

fibers, external modulators may be employed.
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One of the best materials to use for modulation, switching and
guiding of light is LiNbOa. It has a high electrooptic coefficient, and
directional couplers can be used to efficiently switch light from one
channel to another. Guides operating near cutoff can be made to guide
light or radiate 1ight, depending on whether an external voltage is
applied. Lens, prisms, beam splitters and gratings can all be fabri-
cated on the L'iNbO3 processing chip. A large part of this thesis inves-
tigates the uses of gratings and in particular chirped gratings in the

processing of optical signals.

1.2 Periodic Structures

The study of periodic structures in nature, as well as man-made
structures, has occupied scientists since before the time of Lord
Rayleigh in the 19th century.2 The interaction of various kinds of
waves, from sound to electromagnetic to quantum mechanical, with peri-
odic structures plays an important part in our understanding of nature.
The special properties of periodically stratified media have been used
to make devices ranging from electric filters to linear accelerators to
distributed feedback lasers.

Our study and understanding of crystals are largely based on the
interaction of these crystals with x-rays. In 1928 B1och3 generalized
the results of Floquet and formulated the basis of a theory of electrons

in crystals.

The mechanical and structural engineer must understand the prop-
erties of periodic structures if he is to understand the interaction of

a bridge or skyscraper with its surroundings.4’5 Even the biologist
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encounters layered media when he studies nature. The cornea of a horse-
fly eye is coated with a periodic set of layers and the rhabdom of a
Buckeye butterfly eye or the rhabdom of a skipper eye has reflecting
fi1ters.6
However, it is the man-made device or technological application
of periodic structures which most interests an applied phyﬁicist or
engineer. The material scientist may work with zeolite crystals and
superlattices which can now be grown with molecular beam epitaxy.7'11
The high energy physicist will corrugate a linear accelerator in order
to slow the microwave to a velocity comparable to that of the particle

12 In order to perform the complementary function and

being accelerated.
remove enerqy from a beam of particles and convert it to electrical
energy, the electrical engineer uses the traveling wave tube.]3 Electri-
cal filters, pulse compressors, and antenna arrays are further applica-
tions of periodic structures in electrical engineering.

Perhaps no other field makes greater use of layered media than
optics where reflectors, filters, antireflection coatings, polarizers,

14

pulse compressors and beam splitters are used extensively. In

integrated optics and integrated surface acoustics the distributed

feedback laser (DFB),"B']7 distributed Bragg reflector laser (DBR),]s‘]9

second harmonic generator, mode converter,ZO’Z] E24R5

24,25 21,26

grating coupler,

deflector, transducer and modulator are all familiar devices.

There are several methods of analysis available for the propaga-

tion of waves in periodically stratified media. They include the use of

the Floquet theorem,27 Hill and Mathieu functions and differential equa-

; 6,28 "
tions, the transfer matrix and matrix mu]tiplication,]4‘29

30,31 B

and the

coupled mode formalism.
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Because of the ease and versatility of the coupled mode equations,
these equations will be used extensively in this work. They are easily
adaptable to the study of aperiodic structures and, although they do not
give exact solutions as do other methods, they give accurate closed form
solutions in many cases of practical interest. An outline of this impor-

tant method is given in Appendix 1-B.

1.3 Aperiodic Structures and Qutline of Thesis Part I

As can be seen from the previous survey, the field of periodic
structures has been studied extensively for over one hundred years, and
thousands of articles, books and theses have dealt with the topic. By
contrast, aperiodic structures, or almost periodic structures, have been
largely ignored until quite recently. One of the main reasons for the
lack of literature on the subject is due to the mathematical difficulty
in solving problems involving aperiodic devices. Most of the previously
mentioned methods cannot be used, except perhaps if perturbation techniques
are employed. It is the purpose of Part I of this thesis to study practi-
cal aperiodic devices in optics and integrated optics. Aperiodicity in a
device can be of two varieties; intentional or unintentional. In the
class of intentional aperiodicity, we will describe the use of chirped
gratings on the surface of dielectric waveguides. A chirp is simply a
monotonic variation in the period of a grating. The concept of chirping
is familiar to electrical engineers who have studied radar. It was used
in Great Britain during World War II to measure weak reflected radar sig-
nals reflected from distant targets.

In Figure 1.2a,b,c a chirped pulse is emitted, reflected from a

distant target and enters a dispersive element. If the lower frequency



a)
/\/\fwm
EMITTER
b)
[<:: - EE— ’\[\Jf\v/”\\_//”‘\\\‘_",/——-\\\\ -__<E;—A‘
RECEIVER
c)
OUTPUT INPUT
N - =F e~
DISPERSIVE
ELEMENT

Fig. 1.2 a) Chirped radar pulse being emitted. b) Pulse after reflection
from target. c¢) Pulse amplitude is increased after propagation
through a dispersive element.
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longer wavelength part of the signal travels faster in the dispersive
element than the shorter wavelength, then the pulse is compressed and
the increased amplitude can be detected more easily.

Figure 1.3a shows light guided in a dielectric waveguide. The
1ight is confined inside the quiding layer by total internal reflection
from the dielectric interfaces. A summary of the analysis of this guid-
ing is presented in Appendix 1-A. Figure 1.3b shows a chirped arating
which has been etched on the air-quide interface of the structure. The
possible effects of such a corﬁugation are shown in Fiqures 1.4 and 1.5.
In Figure 1.4a the 1light is coupled out of the auide and focused along

32

a line normal to the plane of the paper. In Fiqure 1.4b the light is

33,34 It should

reflected straight back and remains inside the quide.
be noted that an output coupler similar to that in Figure 1.4a, but with
uniform grating, couples out a plane wave rather than a focused wave.
Similarly a reflector such as that shown in Figure 1.4b, but with uni-
form corruaation, will also reflect light, but over a much narrower
bandwidth; that is, the use of chirped grating produces a broad band
filter and will reflect light over a wide frequency range, while the
uniform grating will only reflect a tiny frequency range proportional
to the reciprocal of the length of the corrugated region. The design,
fabrication, and analysis of these two devices is presented in Chapters
2 and 3.

Figure 1.5 indicates a third use of such a device. Here the
normal to the grating makes an anale o (o = 45°) with respect
to the sides of the waveguide. When light is coupled into the guide

parallel to the edge it is reflected in the plane of the guide as shown

in the figure. Since the grating is chirped, different wavelengths of
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a) Output Coupler
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W\/

b) Reflector or Broad Band Filter

Fig. 1.4 a) Chirped grating used as an output coupler.
b) Chirped grating of smaller period being used as a broad
band filter.
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light will be reflected from different locations along the grating;
short wavelengths are reflected from the left side where the grating
period is small, while longer wavelengths are reflected from the right
side where the grating period is 1onger.35 The condition

A= 2neff Acos o is simply the Bragg condition and is familiar to those
who have studied x-ray diffrdction. The device thus acts as a multi-
plexer or demultiplexer. If a multiplexed siagnal is coupled into the
left side of the quide, the various components, A], AZ' A3, will separ-
ate. Conversely, if several frequencies are coupled into the quide from
above at various positions, they can be combined and coupled into one

optical fiber joined to the left edge of the guide.

In Chapter 5 additional aperiodic structures are presented, in-
cluding a review of the work of others, notably Streifer and co-workers,
Kogelnik, Kock, Cross and Apfel. Topics covered are the effects on the
gain in distributed feedback lasers of chirped grating or, what is equi-
valent, the taperina of the thickness of the quiding layer. Also
considered are the effects of taperina qrating depth (constant period)
and period variation in dielectric mirrors so as to reduce the electric

field intensity inside hiah power laser mirrors.

The second class of aperiodic structures consists of "unintentional"
period variations. For example, any dielectric layered medium made by
man is aperiodic. It is not possible to manufacture perfect structures,
and the effect of these imperfections is analyzed in Chapter 4 . The
coupled mode equations are used in this statistical analysis of Bragg re-

flectors and the results compared with a computer experiment in which
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1500 different mirrors are analyzed and average properties determined.

As expected, the peak reflectivity decreases and the bandwidth widens

for these imperfect structures.36
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Appendix 1-A

In this appendix we outline the solution for the electric field
and propagation constant inside a dielectric slab waveguide. We consid-
er only the case of TE waves (Ex = EZ = 0) for confined modes and air
radiation modes, since these solutions will be used elsewhere in this
thesis. The case of TM waves, as well as substrate radiation modes and
leaky waves are solved by A. Yariv and D. Marcuse.]'2

Consider the slab structure shown in Figure 1-A.1. The field must

satisfy the wave equation

VE-LE = 0 (1-A.1)
c
We assume it has the form
E(x,z,t) = E(x) e BZ 71wt (1-A.2)

Combining equations (1-A.1) and (1-A.2) we find

d2E (x

dx

L+ (n%2 - 62) E(x) = 0 (1-A.3)

k = %- , n, > n, >n

This equation must hold in all three regions of the guide. If we first

consider the case of a confined wave we get

E(x) = A g 0X for x > 0 (1-A.4)
= Alcos kx - %-sin KX ] for 0 > x > -d (1-A.5)
= Alcos xd + % sin kd] eY(X+d) for x < -d (1-A.6)
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2
— Q. —

N, > Ny >Nz

Fig. 1-A.1 Geometry of dielectric slab waveguide
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where G = (n? K2 - 82)1/2 (1-A.7)
y = (8% - n% k2y1/2 (1-A.8)
5 = (8% - n§ k2y1/2 (1-A.9)

It is easily verified that these equations satisfy equation (1-A.3)
for the three regions and the form was chosen so that E(x) is continuous
across x = 0 and x = -d, and 3E/3x is continuous across x = 0. Requir-
ing that 5E/9x also be continuous across x = -d, we can combine equa-
tions (5) and (6) and find an eigenvalue equation for the propagation

constant £ ,

tan kd = K39 (1-A.10)
K - v6
For a gquide which carries a total power P, where
p = J (E x H), dx (A1)
- _B 2 N
mi [E,(x)]? d (1-A.11)
we find a value for the remaining constant A
2
4 p
a2 . * %Mo (1-A.12)

[8]0d + = + I+ 67

Upon examining equations (1-A.4) through (1-A.9) we see that in

order to have confined modes we require

kn, > 8] > kn,, kng (1-A.13)
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If kny < |8] < kn,, substrate radiation modes exist; that is, the

light is not confined but radiates into the substrate. For the case

0 < |B] < kn (1-A.14)

3
air radiation modes will exist for which 1ight will radiate both into the
substrate and superstrate (air).

We again use the Helmholtz equation given in equation(1-A.3) with @

in the range given in equation (1-A.14). The solution is

E(x) = G cos Ax + H sin Ax for x > 0 (1-A.15)

= L cos ox + M sin ox for 0 > x > -d (1-A.16)

= N cos D(X+d) + P sin p(x+d) for x & -d (]-A.]?)

A= <n§ K2 - g8)1/2 (1-A.18)

o = (nf K - g%)1/2 (1-A.19)

o= (n5 K - g%)1/2 (1-A.20)
Again we match boundary conditions at x = 0 and x = -d and are

able to eliminate four of the coefficients in equations (15), (16) and

(17). We find

E(x) = C.[cos ax + (D)F; sin ax] for x > 0 (1-A.21)
= Cr(cos ox + F, sin ox) for 0 > x > -d (1-A.22)
= C.[(cos od-F.sin od)cos p(x+d) for x < -d (1-A.23)
+

%(sin 0d+F1.cos od)sin p(x+d)



=2

where Cr is again determined by the power carried by the mode, just as
in the guided mode case, and Fi can be chosen arbitrarily. Expressions

for Cr are given in the main body of the thesis.

References for Appendix 1-A

1. A. Yariv, Quantum Electronics, 2nd ed. (John Wiley and Sons, New
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2. D. Marcuse, Theory of Dielectric Optical Wavequides (Academic Press,
New York, 1974).
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Appendix 1-B

In this appendix we introduce the coupled mode equations in their
general form which will be used extensively in this thesis. We start
with Maxwell's equations for a non-magnetic bulk material with no ex-

ternal charges or currents.

>
_ 9H =
VxE=-u s¢ (1-B.1)
v xH=x2 (e B) (1-B.2)
at ’
V- H=0 (1-B.3)
V' (eE)=0 (1-B.4)
where
E = electric field
o= magnetic field
My = free space magnetic permeability
e = permittivity of dielectric

After taking the curl of equation (1-B.1) and using equation

(1-B.2) we find

V¢ + 9(V-E) = +u0€w2E (1-B.5)

In arriving at (1-B.5) we have assumed ¢ is constant in time and

the time dependence of the electric field is e_1wt. If we next use

equation (1-B.4) we find

veE +v[ﬁ- §1—] + n2k%E = 0 (1-B.6)

&
E
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where nzkzzfuoswz, k =

ole

Finally, we will consider, for simplicity, the case of the TE
wave, that is E=E y and an € = e(x) dependence. The geometry is
shown in figures (1-B.2a) and (1-B.2b). With these restrictions eq.

(1-B.6) reduces to the familiar Helmholtz equation.

v2E + K2n%E = 0 (1-B.7)
k=2

v
n = n(x) = index of refraction

Next we take the electric field and index of refraction to have

the following form

. i(w/A_)x -i(m/A_)x
E(x,z) = R(x)e'®Z e~ 07 4+ 5(x)e'®? e L (1-B.8)
nz(x) = no2 + n]2 cos(%ﬂ-x + ¢(x)) (1-B.9)
0
dp 2m 2 2
dx “A_>M = Ny
0
Since in this derivation we have taken a time dependence e'iwt,

R(x) represents the amplitude of the forward traveling wave, while

S(x) is the amplitude of a wave traveling in the backward direction.

The form of the index of refraction indicates a stratified media with

variation in the x direction. For ¢ = 0, we have a periodic structure.
Before proceding, a further comment is due regarding the assumed

form of the solution taken in equation (1-B.8). From the Floquet theorem
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we expect an E field of the following form for ¢(x) = 0.

o . i(2np/A_ + k)x
E=Y Ee'fZe g (1-B.10)

If this is substituted into the Helmholtz equation (1-B.7) and

terms of similar x dependence are equated we find

2. 2

2 k™n
2np 2 _ k%p 2 ol -
{( A % K) + B k“n, Ep , {Ep_] + Ep+]] (1-B.11)
Furthermore, we are free to restrict - %ffg_m ;_%4~ in order to
0 0

obtain a unique solution for (1-B.10). The sum in (1-B.10) represents
an infinite sum of forward and backward traveling waves (space harmonics)
and equation (1-B.11) indicates that Ep is only coupled to Ep_] and

Ep+1 to first order in (n12). The coupling between Ep and E and

p-2

E is proportional to (n1 and so on. Thus to first order in n]z,

p+2

we need only consider a single interaction; that is, Ep interacts with

Ep+q and Ep-q only for g=1. For coupling between a forward and reverse

traveling wave, this requires interaction between the smallest positive
value of (%ﬂ—p + k) and the largest negative value of (%1 (p-1) + «).

0 0
For k positive and thus p=0, interaction between the forward traveling

. kX : ) il - 20/ )X
space harmonic e and the reverse traveling harmonic e ( /o)

is dominant. This is the only interaction between a forward and reverse
traveling wave to first order in (n]Z).
Using equation (1-B.11), taking p = -1 and ignoring the non-

interacting qu term, we find
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E
E ., = 0 (1-B.12)
1 2 (—27r/A0+»<)2+82~ 2y 2

Similarly for p = o equation (1-B.11) becomes
k2n12 E_]

E - (1-B.13)
0 2 2. .2 2 2

[<“+8° - k%n ]

For maximum coupling, the denominators in equations (1-B.12) and

(1-B.13) should both approach zero. This can only happen when

2
(K --%[) »~K2 or kK =

:>|=I

0

This condition results in maximum interaction between the forward

iTrx/Ao -imx/A
traveling wave ~ e and the reverse traveling wave ~ e and
is the reason for the assumed form of equation (1-B.8).

After combining equations (1-B.7) and (1-B.8) we find
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" i(mx/A ) : =i(mx/A)
m (dgxx o1BZ o' _ dai ) o182 4 0%y

i(2n/n )% + ¢(x)) X e-i(ZTrx/!\O) + cp(x)))(R(x)eiBZ ei(w/!\o)x

+ 5 (e

—i(ﬂ/Ao)x

; S(x)eiBZ 5 ) =0 (1-B.14)

dR

2 2
d“R d=s
We have assumedl 2 (n/Ao) iy

dsS

2 (m/A )a—‘and thus

| | dx® | a dx® 0" dx

neglected these terms in equation (1-B.4). An inspection of equation
i(mx/A) -i(mx/n,)

(1-B.14) indicatesterms with x dependence e and e

and <<

<<

. We
can thus separate equation (1-B.74)into two equations, each equation con-

taining only coherent terms. This is the coupled mode approximation.

R_ier=-nse?
(1-B.15)
ds io

a;'+ 188 - n* Re



o

i
(k n, - R§ - B
with = 9 (1-B.16)
ZW/AO
o 22
-ik™ny A
N A (B T=B.
ns-igs= = ( )

These are the coupled mode equations. The term & is often
referred to as the phase mismatch term and must be near zero for
effective interaction between the forward and backward traveling waves.
The quantity n is the coupling constant and depends on the amplitude
of the modulation of the refractive index.

If we make the substitution

R(x) = R'(x) eiéx

Lt

(]_Br]B)
-i8x

S(x) = S'(x) e

the equations can be put in a more compact form which is often easier

to use

g% = -7 S! ei(rb - 26)()
(1-B.19)
das' _ m* R e-1(¢ - 26x)
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This form also provides an obvious physical interpretation of |n]|

dS'/dx

amplitude reflected/unit length| (71-p.20)
RI

amplitude incident

In| =

From equation (1-B.13) we have for n% << ng and ¢ = 0

2
n
- 1 2m
n(x) N, * - COS (K; x)

(1-B.27)

It is well known that light incident with electric field parallel to

the dielectric discontinuity is reflected with the amplitude

nL COSSL - nR COS@R

n cosg + np cosép (1-8.22)

Where 6 is the angle of incidence and quantities with L and R
subscripts refer to regions on the left and right side of the dis-

continuity. For small discontinuities equation (1-B.22) can be replaced
with

A(n cosB) _  An
?n cosB > 2 (1-B.23)
n cos 6

Snell's law ( n sin & = constant) was used for the right side of

equation (1-B.23) and



G

dn(x)
T dx

n(x) cos“o
is reflected from a slab of thickness dx. If this is summed over one

Thus for the continuous case being considered, an amplitude

period, with the phase factor included, we find an expression for the

amplitude of 1ight reflected per unit length.

0
. dn 21kxx
amplitude reflected/unit length -1 dx © dix
amplitude incident Ao 2n cosze
0
A
T n]2 1(2w/A ) x T™n 2
- 7 7 7 sin 21 x e ° > ?
2 N, Ao cos 6 0 4 h.. AO cos 0
0

In arriving at equation (1-B.24) we have taken the x component of
the wave-vector k(kx) as being equal to W/Ao. and have considered only

the case of the incident electric field being parallel to the slab Tlayers
(TE modes). That is, the device is a "quarter wave stack" (ki: kzng -82).
il

SIS —— r in
nOAOcos 5 and the expression

Referring to Figure 1-B.1, we see k=

equation (1-B.24) reduces to (k2n$ﬂo)/4ﬂ which is in agreement with

equation (1-B.17) for

22
k n]Ao

) o =
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z
A
kx fpe -y
A 2]
B=k,
kn0
cos @ = Kx
No
K> n§ - B2 = k2
3= (1K-T;) A
X Kg 2m
ky = 110

Fig. 1-B.1 Wavevector geometry and relationships
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The case of finding |n| for a slab structure with actual dielec-
tric discontinuities is straightforward. (See Ficure 1-B.2b.) If the

reflection from each dielectric interface is ris then

In| = AT (1-B.2'5)
A0/2 Ao(nL + nR)cosza

2 2

n n

_ 1 - o1 ; o -

If we take n = n_ + 2n, and np = ng 2n. equation (1-B.15) be
comes

2

M (1-B.2 6)

Inl = = 2
n, A cos” 8

Taking the ratio of |n| given in equation (1-B.24) and (1-B.26)
gives

2(4) _m

"(16) (1-B.27)

This was to be expected, since the slab structure can be Fourier
decomposed into a series of sinusoidal variations and the amplitude
of the first harmonic is %

A final important case to consider, after the previous cases of
slab structures, is that of wavequiding in a thin film with a periodic
perturbation on a surface, leaking to the transfer of power from one
mode to another (Figs. 1-B.2c,d). Note that now, in order to follow
convention the coordinate system has been changed with the periodicity
in the z direction. Again the coupled mode equations provide an excel-

lent means of analyzing the phenomenon. Expressions for the coupling
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o2
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Bgi= L n, _é‘n_./ L |
2n I
o - ) I | I o
a) Index profile for a b) Index profile for a
sinusoidal slab reflector discontinuous slab
(Note coordinate system reflector

used for slab structure)

b I b
XL.:TI—L,—LW XL’{M/\/

Z
c) Cross section of a d) Cross section of a
dielectric waveguide with dielectric waveguide
square wave perturbation with sinusoidal surface
(Note coordinate system perturbation

used for waveguide structure)

; Slab and guiding structures for which the coupled mode
Fig. 1-B.2 ;i :
equations are applicable.
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constant n have been given by several authors. A. Yariv 1 has found

that for well confined modes and a "square wave" surface corrugation

between a guide of index N, and a superstrate of index ny» the coupling

constant for contradirectional coupling is given by

il - 2r° & (ny" - ny%) (3)3 [+ 3 2a
3L n t 2 2 2\1/2
2 (n," = n,%)
2 1
2
+ 3 (Wa) ] (1-B.28)
4w2 n 2 _ n 2)
i 1
where
a = height of square wave perturbation
t = waveguide thickness
£ is an integer given by R = %ﬂ-with B the propagation
]

constant of the mEh order mode (m = 1,2,...)

A = wavelength of light
In a slightly different analysis Yen . has arrived at the fol-
lowing equation for the contradirectional coupling constant for the

mEﬁ mode for a square wave surface perturbation.



3=

0
. L 2
we sTn=y
=0 2 2y|em
In] = A7 (n2 ny°) Ey(x) dx
-a
.ol .
sin —= sin(2 «_ a)
- ﬁffE_ETfh_' %'(nZZ - n12)k2 N 4 « (sz - 6m2)
m “eff m
Sm
+ — (1 - cos(2¢ a)) (1-B.29)

where teff is the effective width of the guide

+](5

1
=t+._.
Y m

g Oios T defined in Appendix 1-A.

m’> "m

m subscript denotes the mEﬂ mode

; _ A&m
£ defined through By = K;

If a << t we can find an approximate expression for |n| to first

order in a as

2

K a
In| = —v— £=1,3,5 (1-B.30)
e Bm teff

In a similar manner, for a sinusoidal corrugation (Figure 1-B.2d),
Flanders ° has shown

2

In| 2 “m (1-B.31)
Hl 2 s -B.3
48 teff
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Once again, if we take the ratio of n to we find

sinusoidal "square
the same result as for slab structures; again because the square well
can be Fourier decomposed into sinusoidal functions with the amplitude

of the first Fourier harmonic being %n

Insinusoidall o T

(1-B.32)
|"square | 4

Streifer et a1.4have worked out the calculation of |[n| for an
arbitrary corrugation, including blazed aratings.
We now proceed to give the solution to the coupled mode equation,

equation (1-B.19). The boundary conditions on equation (1-B.19) for a

stratified structure extending from x = 0 to x = L are

R'(0)

i
—

(1-B.33)
gLy = ©
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The solutions to the equations for the case ¢(x) = 0 are

16K
| . _=In* e sinh[T(x - L)] R .3
$'(x) § sinh(TL) + 1 T cosh(TL) (1-B. 34)

-16x

R'(X) = SsTRR(TLY 77 T cosh(rry { - © sirhlT(x - 1] (1-B.35)

+ 1 T cosh[T(x - L)]}

where T

i

A
I

(o23

Kk = - in = real number

For waveguide structures with the periodicity along the length
of the guide, it is customary to define the direction along the length
of the guide as the z axis (see Fig. 1-B.2). In this case S'(x)~+S'(z)
and R'(x) +~ R'(z) in equation(1-B.34) and (1-B.35).

Figure ]-B.32 is a plot of the incident field R(z) =E1(z) and re-
flected field S(z) = Er(z) for kL = 1.0 and «L = 4.0 indicating the

effect of increasing coupling.

Except for special cases, such as ¢(x) being quadratic in x(5) or
¢(x) being a very small perturbation,6 equations(1-B.15) cannot be
solved exactly. They can, however, be transformed into a first order
nonlinear Riccati equation7 which can easily be solved by numerical

means. We first make a change in variables
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N
n
O
N
I
—

=y

| L]

waveguide

m
£
N
> ——

|

«L=1.0

e
IE,(0)|? i
I
|
|
0 L
I
|E.(0)]? |
kL=40 |
lEr(O)l2 : .
- |
T |
. |
- r(2)|2 : :
B ||Ei(l_)|2
| 4 e -
O L/4 L/2  3L/4 L z

Fig. 1-B.3 The behavior of [Ei(z)[2 and |Er(z)|2 in a periodic

wavequide with «L = 1.0 and 4.0 (AB= 0).  (From reference

2.)
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¢

(]

g=ts

The x-derivative of this is

dr

S S
dp _ (dS/dx = dx .do Sy i
i = iTx v €

After combining this with equation (1-B.5) we find

P = i(-26 + o + n(1 + 09

(1-B.36)

(1-B.38)

The boundary condition onequation (1-B.38) is p(L) =0 and the reflec-

tion coefficient p(0) is the quantity of interest. Some of the important

numerical results are presented elsewhere in this thesis.

This appendix has merely been an outline of some features of

the coupled mode formalism. Additional details can be found in the

references.
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Chapter 2
BROAD-BAND FILTERS

2.1 Introduction

In this chapter the properties of a dielectric wavequide with a
chirped corrugation with periods approximately ZOOOR are studied. The
period of the grating is such that guided light is retroreflected in the
guide; that is, a mode which propagates with a z dependence e1602 will

interact with the grating and be converted into a mode which propagates
-iBg_z
as & 2, Figure 1.4 of Chapter 1 illustrates this effect. The chirp

in the grating has the effect of reflecting a broad band of frequencies.
This tends also to decrease the amount of light reflected at any one
frequency, thus allowing a simple analysis based on direct integration
of the coupled mode equations and the use of the method of stationary
phase. More exact results follow if asymptotic expansion of the parabolic
cylinder functions are used.

The fabrication and testing of several broad-band filters is
covered and the experimental results are found to be in excellent aaree-

ment with theory.

2.2 Theory of Broad-Band Filters

Following coupled mode theory, we assume the field in the guide can

be represented by
E(z) = R(z)e'i(ﬂlﬂ(o))z & S(Z)ei(n/A(O))z (2.1)

Rand S are the complex amplitudes of the forward and backward traveling

modes under consideration, and A(0) is the grating period at z = 0. If
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the guide is multimode we assume that the corrugation is such that the
only interaction is between a particular forward and reverse traveling
mode and that these do not couple to the other modes.

These amplitudes are related by the usual coupled mode equations
which were presented in Appendix 1-B (eq. 1-B.5).

R iR = - nse 2 (2.2)
ds —iyz?

& * i6S = - n*Re” 'Y (2.3a)
z

n = ik, k is real (2.3b)

N is the coupling constant which depends on the amplitude of the

grating perturbation. The period of the grating can be approximated by

2m  _ 2m 2.4
Mz - A0y ~ °Y? VA
where A is the grating period and v is the chirp factor of the grating.
. o _ T _ i . =
§ is the phase mismatch and & = 0y 80. BO is the propagation con

stant of the unperturbed guide. In uniform grating & must be small if
we are to have substantial interaction between the forward and backward
traveling waves. This is not necessary for chirped gratings. For
large chirps we expect the incident wave to be coupled into the back-
ward running wave for a large range of wavelengths and for many cases

the reflection may be small. Setting S = 0 in equation (2.2) gives

+idz

R=e (unit intensity). We now replace R on the
right side of equation (3a) with e+16z and let S' = Se'°2, This
results in

ds ' ¥2i8z -iyz®

e = - n*e e Y (2.3b)
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Before integrating this equation, we will modify it to include attenu-
ation by replacing & with s + l% , where %~1s the attenuation factor
for the wave amp1itude.]
+2i(6_+ iz . .2

&' we O 20 vz (2.3c)

We take our grating region between z = 0 and z = L and use the boundary

condition S'(L) = O

L.
.2 +2i(s. + i3
$'(0) = J - n*(z)e Y2 € T8y + T3 dz (2.5)
0
(oo
"
Do 2
s'(0)| =le Y n(u + —2)e U v du (2.6)
%
Y

Most of the contribution will come from a region of width ~ ;%:

vy

2u2

Ol a5 1 - au + az and then

centered about u = 0. We thus expand e
extend the 1imits of integration from minus infinity to positive infinity.
The result is

2
S'(0)| = Reflectivity = E:f—(za) e

for 0 < Zp < L

= 0 otherwise
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O

%o
o
almost all cases of interest 27 << 1 and that factor can be dropped in

where zg = is the point where the Bragg condition is satisfied. In
4

¥
equation (2.7). Alternatively we may write equation (2.7) as:

2
n(zg)
Reflectivity = ——7;jL— g~ 202, (2.8)
where
3
z =z, - —= 5
o] B 32y

Note that z, < 2z for the case of 1;sses (¢ > 0) and z, >z for the
case of gain (o < 0).

If our reflection is not small, equations (2.2) and (2.3a) can be
combined to give second order differential equations for R and S.
The solutions of these equations are the parabolic cylinder functions,2
and are presented in Appendix 2-A. By matching the boundary conditions
for R and S and using the asymptotic expansions for the parabolic
cylinder functions we get

2
_ TK

Reflectivity =1 -e v (2.9)
This asymptotic expression is good for cases when the Bragg point is

Sk -5 3
5

far from the grating edges. That is, when R Ry k. If losses

-20zZ
are included, equation (2.9) must be modified by adding the factor e B
Next we will take a specific case corresponding to typical re-

flection grating made by the author. For small arating depth4

N
K T'E'g‘ —"'"—-—'—'N— (2.10)
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n. = index of guide cover
ng = index of substrate
ne = index of film
. %0
N
0
Ao = %ﬂ-= wavelength of 1light in vacuum
0
1 1
W =t + = + —
eff 9% Pg
t = guide thickness

a = grating depth
2 _ . R, Hilf2
0 e ko )

i 2y1/2
0 S 0]

If we take the followina values

a = 350 A
ne = 1.540
g = 1.510

N = 1.524
Ao = 6,000 A

t = 75 1

we get k = 2300 m !

If we take a chirp of A 1960 to 2060 R over a 1.0 cm length v =

8 x 10/ m!
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From equation (2.9), reflectivity = .19; equation (2.8) (a=0) gives
reflectivity = .21. This agrees favorably with the experimental results
for which the measured reflectivity was 18%.

Thus far we have assumed a linear chirp in %%ET . If we do not

make this Tlinear approximation5

2m _2n 5] i -

) sin-? + . -
J(z-zf) + )'(.f

(2.11)

where

L cos(¢ +-%)

_ 5
U sin2é cos(¢ - ?)
0
L cos (¢ + 3)
_ 2 . 0
2F T T sinzg SI0 =

P,
¢ = tan" (5)

Equation (2.11) follows from the well known result that the grating

period formed by the interference of two plane waves with wavelength X

A
1 + I3 (4
sin 61 sin 92

incident on a surface at angles 61 and 82 is given by

The quantities 6, Xps Zgs d and f are all defined in Figure 2.1

2 &
For (z - zf) << Xg
om 2 | .oe, (Z-2) (2.12)
Mzy =% |7t T

which is the linear approximation.

For a general A(z), the coupled mode equations can be written.
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A7 -

%;'_ S e 75 BT (2.13)
gg_ = - p*pt 'Y (2.14)
Z
2n

\F(Z)= ﬂz—)— dz - 2802

We will, for simplicity, neglect losses in the following derivation.
Again, for large chirps the reflection may be small. After replacing

R' with 1 in equation (2.14) we obtain

S(0)=-| n(z) e¥(2) 4, (2.15)

We can evaluate equation (2.15) by the method of stationary phase

EVe ABueFos i
(z - zB) d W(ZB)

"

dz

where

(2.16)
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The quantity zé is the new Bragg point and from equations (2.11) and

(2.14)
pa
dw(zt) AR 3/2
B 2m 0 . B\ 2
= - (— - sin %) ] (2.17)
dZZ kxf [ T 2
2 1 (Zé - Z‘F)2
T = 2 2
f (zg - zg)" + x¢
After integrating equation (2.15) we get
s 2m Kz(zé) TTKZ(Zé)
S'(0)| = Reflectivity = 5 = B 377 (2.18)
d¥(z,) i "o . B2
B v' [1 -( - sin ?) ]
s T
dz
for 0 < zé < L
= 0 otherwise
where v' = ——
)\xf

As pointed out in the last section, for effective conversion of

the forward traveling mode to backward traveling mode, the light had to

be coupled into the end with smaller grating period.

2m _
zg)

At the point

2B, (2.19)
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we have the desired coupling, but at the points %%ET 38, knS
we couple to the substrate radiation modes. If

21 =
= 2 .20
Mz ) ~ Bo * kns ’ ( )

S

then clearly z, > zp for effective coupling, but if zZ is too close
to zp it will still interfere with the desired reflection.

Most of the 1ight is reflected in a region of width ~ :g-about

A
the point z,. In fact at the point + [T -\ beyond z,, the reflected
B 2 ?'/§ B

intensity is down to 10% of the value, far to the left of the Bragg
point.

Combining equations (2.19) and (2.20) we get

1 1 _ _
2“[@*@]—Bo-kns—k(h{-ns)

Thus the condition for the radiation modes not to interfere with

1 i

the reflection is z. - 25> % 7

or
(.&_Z_{N_n )2
Y = s
This condition is easily satisfied by our gratings, but could present

a problem in cases where N v N
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Finally for the lossless case and for small reflections we
expand k(u + zB) in equation (2.6) about u = 0, and integrate term by

term. The result is

N K(Zp)(ZB)
Reflectivity = %- )

(2.22)
p=0 2% pi (-iy)P

Typically the ratio of two successive terms in the sum in (2.19) is

1

N o—s 100
YLZ

4

where we have taken y ~ 1q9§2 and L 10_2m as in our samples. Thus,

equation (2.19) usually reduces to (2.7) for large chirps.
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2.3 Fabrication of Broad-Band Filters

Glass waveguides were fabricated by Sputter deposition of a
layer of Corning 7059 glass on glass microscope slides. Two parts
of Shipley AZ-1350 photoresist were diluted with one part thinner
and spun-coated at 3600 rpm on the wavequide, resulting in a layer
of resist 1700 R thick. AZ-1350 resist was used because of extensive
studies which the author had conducted previously on its properties.
These are reported in Appendix 2-2 and have been pub]isheds.

The chirped grating was recorded in the photoresist film by
exposing the resist to the interference fringes of a plane wave and
a cylindrically focused beam. An Ar' laser (4579 E) was used, but
in order to create the 2000 E period grating it was also necessary to
use a prism containing a Xylene solution as shown in Figure 2.1. Since
the index of refraction of the Xylene is approximately 1.5, the inter-
fering 1ight which produced the grating had an effective wavelength
of 4373 ~ 3053 A.

The angle between the plane incident wave and the bisector of
the converging beam was 102° and thus resulted in a grating whose
period was 1950 3 in the central portion. Using the results of Appen-
dix 2-8,6 the samples were exposed for one minute and developed for
ten seconds in AZ-303A, diluted 6-1 in deionized water.

The grating pattern was then transferred into the glass film by ion-

beam etching with argon ions of energy 2 keV. For maximum efficiency
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in grating transfer, it is necessary that the etch rates of the re-
sist not be substantially higher than the glass underneath it. This
in fact occurs at low ion beam energies and it was found that the
higher energies of 2 keV gave good results. Figures 2.2 are SEM photo-
graphs of a typical structure.

For convenience in later testing, only single mode waveguides
were used and their thicknesses were measured with a Sloan-Dektak.
The refractive index of the substrate was measured by the Brewster
angle method and the index of refraction of the film was determined

. 10-12
by the prism coupler method.

2.4 Testing and Evaluation

Figure 2.3 is a schematic of the filter evaluation setup. Light
from a tunable dye laser (linewidth ~ 1 R) is coupled through a high
index prism into the wavequide, is reflected contradirectionally back
through the prism, reflected by a beam-splitter and measured by a de-
tector. By changing the frequency of the light output from the dye
laser, the shifting Bragg point or point from which the light is re-
flected is readily evident. As mentioned earlier, in order to avoid
excessive losses into the substrate, it was necessary to couple the
light into the end of the grating with smaller period. Thus longer
wavelengths penetrate further into the grating and undergo larger

attenuation before being reflected. The loss factor o was determined
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Fig. 2.2 SEM photograph of typical waveguide and surface corrugatlion.

Q

Guide thickness is .77 u and corrugation depth is 350 A.
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experimentally and the observed reflectivity at X was multiplied by
the factor ezuZB(x) to obtain the intrinsic filter reflectivity.

Table 2.1 summarizes the properties of three tested filters. The
measured reflectivities, after being corrected for waveguide losses,
are in good agreement with theoretical predictions (within 10%),
while the filter bandwidths are in excellent agreement with the
values for which the devices were designed. The spectral response for
the three filters are plotted in Figure 2.4 with the response of the

one uniform-period filter shown in detail in the inset.

The author wishes to thank C. S. Hong for much of the experimental
work as well as for his quidance during the fabrication process.

2.5 Conclusion:

The broad-band filters with a typical response of 300 3 have
been fabricated and a simple theory based on a direct integration of
the coupled mode equations gives results that are consistent with
experiment. Both the general and Tlinear chirped gratings are
analyzed this way. For the case of the linear approximation, the
results compare favorably with the more exact theory based on asymp-
totic expansions of the parabolic cylinder functions. For the case
of a combination smooth taper and large chirp, the response depends
strongly on the value of the coupling constant at the Bragg point
and weakly on the derivatives of this constant at the Bragg point.

Losses have been included in some of the study and it is found
that they lead to a response that decays as e 292y This corresponds to

tha attenuation due to the round trip distance to the Bragg point. If
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Fig. 2.4 Reflectivity vs wavelength for three grating filters. Circle

represents filter 1, and dot represents filter 2.

Details

of the filter with uniform period are given in the inset.
(After reference 14.)
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higher order terms are kept inthe loss, the effect can be interpreted as a
new round trip distance, Z5» larger than Zg for gain and less than Zp

for losses.
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Appendix 2-A
EXACT SOLUTION OF COUPLED MODE EQUATIONS FOR BROAD-BAND FILTER

We start with the coupled mode equations

2
gg-- iR = - nSelY? (2-A.1)
ds -1 22

Fra + i8S = -n*Re” 'Y (2-A.2)

After making the substitution

R' = Re 162 (2-A.3)
+i6z
S' = Se (2-A.4)
we find
, . .2
%%_ _ nS'e(_2162 + iyz“) (2-5.5)
85" peelicz - iyz%) (2-A.6)
z

Equations (2-A.5) and (2-A.6) can then be combined, giving the defining

equation for the parabolic cylinder functions

2
d°R' .. dR' 2., _
dx? Ll (2-A.7)
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where x = z - 2z

- ; )
zp = Braaq point ==

n = ik Kk is real

The solution to equation (2-A.7) is

R'(x) = x']/z exp(—i%-xz) [G-NK,U(iyxz)

+ H-w_K’u(-inZ)] (2-A.8)

where K = - l-+ i

KZ
4 '4'_\7,1—[:]/4

In equation (2-A.8) Wy u(z) is the Whittaker function and G and H are

constants of integration to be determined by the boundary conditions. After

substituting equation (2-A.8) into equation (2-A.5), S' is found to be

: 2 : 2
g i(yzy - 28z5) i X
g o=l %8 B! -3/2 3%
K

[6+4(- 3 - 2 K) Wy (ivx®) = 2Hyq  (ivx®)}
1 2 1
tHA(- 5 - 2 KW (HivxT) - 2(u+ K+ ) (0 - K- 5)

-
W_-1,u-1vx0) 4] (2-A.9)
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After using the approximation Yx% +e in equations (2-A.8) and

(2-A.9) and using the asymptotic expansion for wK'v' we find

R'(0) = P(x) R'(x) + Q" (x) S'(x) (2-A.10)
S'(0) = Q(x) R'(x) + P(x)" S'(x) (2-A.11)
where
2 g2
P(x) = eTr B (Yx2)1 3 N L . r(%—+ i %; (2-A.12)
VT
KZ 5 Kz
ax) = & B (3 B ) s (2-A.13)

. ST

iyz i 2
i " B[:Z_*‘e lora 5
v vy Y

After using the initial conditions R'(0) = 1 and S'(L) = O

together with equations (2-A.12) and (2-A.13) we finally derive the ex-

pressions
2 M
RUL)| =e ¥ (2-A.14)
|s'(0)| = reflectivity =1 -e ' (2-A.15)
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It should be pointed out that in order to use the asymptotic

expressions for the parabolic cylinder functions, the following must

hold
¢ o= = (2-A.16)

In other words, the Bragg point or region of maximum interaction

cannot be near the edge of the grating region. The key result is

contained in equation (2-A.15). Fiaures 2-A.1, 2-A.2 and 2-A.3 are plots
of the power reflected at various points along the guide for increasing
values of Kz/Y. The power reflected at the far right side (z = L) is
zero from the boundary conditions, while the reflectivity at z = 0, which
is the most important single parameter of the reflector, is given by
equation (2-A.15) if equation (2-A.16) is satisfied. Because the para-
bolic cylinder functions are difficult to work with directly, except in
certain asymptotic limits, the plots were made by directly solving equa-
tions (2.2) and (2.3a) of the main body of this chapter numerically. It
should be noted from the fiqures that although the reflectivity (at z=0)
increases as k increases, it is also necessary to increase the length

of the grating as k increases if a steady state non-oscillatory solution

near z = 0 is desired.
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Appendix 2-B
LINEARITY AND ENHANCED SENSITIVITY OF
THE SHIPLEY AZ-1350B PHOTORESIST

Current work in integrated optics requires the fabrication of
relief grating structures on photoresist and the subsequent chemical
or ion beam etching through the photoresist.1 1f the period of the
grating is to be less than .4ym the Shipley AZ-13500 photoresist is
commonly used. The properties of this positive acting photoresist

24,3

have been examined in detail and it was found that the photoresist

exhibits strong nonlinearity, especially for etch depth ranging from

4,5 and other56 have shown that

0.05 to .2 um. Bartolini
a different developer, namely the AZ-303A, used with the AZ-1350J
photoresist removes the nonlinearity and improves the sensitivity by
a factor of two or three. Linearity and speed or sensitivity are

always of practical 1nterest.7'8

The AZ-303A developer has not been
used in conjunction with the AZ-1350B photoresist because of the un-
acceptable etch rate of unexposed AZ-1350J resist, namely 150-2008 per
second. It is the purpose of this appendix to show that the AZ-303A
developer can be used with the AZ-1350B photoresist, resulting in improved

sensitivity and linearity.

Barto]ini5

has shown that for a positive acting photoresist
the following relationship exists between etch depth Ad and exposure

E (in units of energy per unit area):

Ad = T[r] - Ar exp(-cE)] (2-B.1)
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where T is the development time in seconds, ¢ is the exposure constant
characteristic of the photoresist, " is the rate of etching of exposed
molecules, and rs is the rate of etching of unexposed ones and Ar = (r]-rz).
If the term cE is much less than 1, equation (2-B.1) can be linearized as

follows:

A ~ Ar TcE + rzr (2-B.2)

In this work the parameters involved in equation (2-B.2) are de-

teymined for the Shipley AZ-1350B photoresist used with the AZ-303A devel -
oper. The samples used were NO-3010 microscope slides made by Clay
Adams, which, cut in half, resulted in a size of 38 mm x 25 mm x 1 mm.
The samples were cleaned according to the method presented in Ref. 6,
and for some experiments the back surface was painted black with
3M Nextel 101-C10 velvet coating. The AZ-1350B photoresist was then
deposited in a single iayer, and after 30 seconds it was spun at 6000
rpm for 30 seconds. The samples were baked next for 30 min at 125°¢.
The first experiment involved the determination of the etch
rate of the unexposed resist as a function of development time, for
various solutions of AZ-303A developer with distilled water. For this
purpose the samples were half immersed in the developer for the re-
quired time, rinsed with deionized water for 2 minutes, and then
baked under vacuum at 100°C for 30 min. The step size was measured
using a Sloan Dektat instrument and the results are shown in figure
(2-B.1). The 4:1 solution (4 parts distilled water, 1 part AZ-303A devel-
oper) gave unacceptably high etch rates, and the 8:1 gave low and non-

linear ones. In all the experiments a 6:1 dilution was used, since it
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SBr
© DEVELOPER TEMPERATURE 25°C
AZ-303A
E 5
50.2
I
i._
EL-
A
I E
et
i O.1
0 1 1 i 1 1 |
0O 10 20 30 40 50 60
DEVELOPMENT TIME (sec)
Fig. 2-B.1 Etch depths in um of unexposed AZ-1350B photoresist as a func-

tion of development time in seconds, for various dilution
ratios of AZ-303A developer. The slope of  the ﬁurves deter-
mines r,, which for the 6:1 dilution is 358 + 5A.
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exhibited a linear behavior and an acceptable etch rate of rs =3SR tsx
per sec. The development time chosen for the subsequent experiment was
10 sec.

For comparison, the experiment was repeated using the Shipley
MF-312 developer. This developer is free from trace-metallic elements
and is commonly used in the fabrication of photoresist gratings in
semiconductor substrates. Figure 2-B.2 shows the unexposed etch rate
as a function of development time in minutes for the manufacturer's
recommended dilution of 1:1. In this case rs is 5ﬁ ilﬂ per sec, which
is a much lower etch rate than the one for AZ-303 developer. If resist
thickness is small, if long exposure times are acceptable, and if
linearity is unimportant, this may indeed be a better choice.

To demonstrate the thickness change as a function of exposure time,
the .4416 um line of a He-Cd laser was used to illuminate half of the
sample. The back surface of the sample was coated with black paint to
avoid interference fringes. The intensity distribution of the laser was
better than 5% across the surface of the sample. The photoresist was
exposed for a given time, and then developed for ten seconds in the
AZ-303A developer 6:1 dilution. Figure 2-B.3 shows the thickness change

as a function of exposure energy. It can be clearly seen that the behavior

of the photoresist in the important range .1 ym to .2 ym is linear. In

contrast, the MF-312 developer gave very small thickness changes for
the same range of exposures. In order to verify that the stylus of the

instrument was not scratching the surface, the same samples were aluminized

and then tested.
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To demonstrate the feasibility of using AZ-1350B photoresist with
the AZ-303A developer in making high efficiency gratings, the follow-
ing experiment was performed. Photoresist was spin-coated on samples
at 3000 rpm, kesu]ting in a resist thickness of about 3.1 um. The
gratings were generated by exposing the samples to the sinusoidal
intensity distribution produced by the interference pattern of two col-
Timated Ar' laser beams. The wavelength used was .4579 um, the angle
between the beams 94.5°, and the intensity per beam was .60 mw/cmz.
The exposed samples were developed in AZ-303A developer, baked under
vacuum, and the efficiency of the gratings was measured. Figure 2-B.4
shows the absolute efficiency of the gratings as a function of exposure
for two different development times. It is clear that high efficiency
23% resulted by developing the samples for 10 seconds. To verify the
theoretically predicted period and the peak to trough height, a scan-
ning electron microscope was used . The period was measured to be
.31 pym, and the peak to trough height was .28 um.

In conclusion, it has been found that the use of AZ-303A developer
with the AZ-1350B photoresist results in an unexposed etch rate of
oY 353/sec and significantly increases the sensitivity and linearity of
the photoresist in the .05 to .2 um range. Gratings with constant and

variable per‘iod9 have been made using this method, and they have been

transferred to glass using ion beam etching techniques.
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Chapter 3

CHIRPED GRATINGS USED AS INPUT-OUTPUT COUPLERS

3.1 Introduction

In the last chapter we dealt with the topic of chirped gratings
used as broad-band filters. The grating period had to be of the order of
2000R for reflection. If, however, devices are made with longer periods, say
30003, light will be coupled out of the guide and into the air and the
substrate. With conventional,uniform grating output couplers the light
is coupled out as a plane wave. If chirped grating is used, however,

the 1ight is coupled out as a converaing or diveraing wave and can be
focused to a line parallel to the quide and normal to the propagation
direction, with different wavelengths focusing in different positions.
Thus long grating regions can be used to efficiently couple out weak sig-
nals and focus them to a line where they can easily be detected. Con-
versely, external line or point sources of light may be coupled to wave-
guides more efficiently using chirped input couplers thanuniform grating.

In this chapter we will consider in greater detail the design

considerations involved in making chirped gratings. The relationships
among key parameters such as period variations, F number of lens, length
of grating region and recording geometry are established. Next, the
coordinates of the point where light coupled out of the guide is focused
is found and compared with experiment. Finally a comprehensive theory

is presented which relates power output to grating and quide parameters.

3.2 Grating Fabrication Considerations

The grating is fabricated similarly to the broad band filter

grating, except that now the xylene filled prism is not needed, since the
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period is larger., Figure 3.1 is a schematic diagram of the setup used. The

recording plate is located at the x = 0 plane, the angle of incidence
of the plane wave is 6/2, and the angle subtended by the collimated beam
and the bisector of the converging beam angle is 6. The interference
pattern is recorded over a distanceAL on the recording plate. The
converging wave is generated by a cylindrical lens of focal length f and
width d, and the focus is located at point P(xf,zf).

Simple geométrica] calculations relate the focal line coordinates

with f, L, d-and 6, namely

-L cos(¢+ g)

= i o 3.1)
X¢ 7 sin2e cos(¢ - 7) (
and '
6
L cos(¢d + =)
= 2 i = @_ (3.2)
Z¢ =y sz Sinle -2
where
¢ = tan'](g?J

is the convergence half angle. We note that in Eq. (3.1) Xg is always
negative, while ze can take negative or positive values depending on
the angles 6 and ¢.

The electric field in the recording plane (x=0) is given by the

sum of the reference wave and converging one and is given by:

ik{{(z~zf)2+xf2]1/2} (3.3)

Ae-ikzsin(e/Z) e

E(x=0,z) =

where k = 2m/) is the wave number for the incident field, A and o the

amplitudes of the plane and converging wave respectively. If we assume
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Cylindrical
Lens

Fig. 3.1 Recording arrangement and geometry for the fabrication of

chirped gratings. (After reference 1.)
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that the transmission function of the recording medium t is proportional

2
to ‘EE* , and that A = a,then

t = B[1 + cos{kzsin(0/2) + k (z—z1,)2 + xfz}] (3.4)

where B is a proportionality constant. The period A for this particular

grating is given by:

AMz) = A (3.5)

sin(6/2) +
\/(Z-Zf) Ixf

In the paraxial approximation (z-zf)2<< xfz Eq.(3.4) and (3.5)

reduce to:

[1 [ 24 (x sin(or2) - ) szz}]
t = B[l + cos{s— z" + (k sin(0/2) - — )z + kx, + (3.6)
] 2Xg Xf f eXg
The corresponding expression for Eq. (3.5) is therefore

A(z) = A (3.7)
sin(o/2) + f

i

It is seen from Eqs. (3.1), (3.2) and (3.5) that the period variation
A(z) depends on the F number of the lens (F = f/d), 0 the angle sub-
tended by the collimated beam and the bisector of the converging beam
angle, X the wavelength of illumination, and L the length of the grating.

The dependence of the period variation on F is illustrated by
3.2 and 3.3. In Fig. 3.2 the angle is set at 60° and the grating has a total
length of 1 cm. For various F numbers period variationg from0.8 um to

0.4 um are obtained. The lower the F number the greater the period
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Fig. 3.2 Period variation as a function of the F number of the converging
lens (F = f/d). The angle 6 = 60° is suitable for variations

of 0.8 um to 0.4 ym over a distance of 1 cm. (After reference

14
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Fig. 3.3 Period variation as a function of F number. The angle 6 has
a value of 90° and the range of period variation is from .45

to .28 um, again over a distance of 1 cm. (After reference 1.)
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Fig. 3.4 Period variation as a function of o (the angle between the plane wave and
the bisector of the converging wave). The F number of the lens
is 1.33 and the illumination wavelength is .4579 um. The re-

cording distance is kept constant at 1 cm. (After reference 1.)
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Fig. 3.5 Period variation as a function of recording distance L. The
total amount of chirp is the same for all curves; the Tinearity
of variation is seen to improve for large values of L. The
angle © 1is 90 degrees, the F number is 1.33 and the wavelength

is .4579 um. (After reference 1.)
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variation; higher F numbers result in smaller and more linear period vari-
ations. In Fig. 3.3 the angle 6 has the value of 90°. Here the maximum
period variation is for an F=1 lens and it extends from .45um to .28um
over a distance of 1 cm. It is noted that large values of 0 produce
smaller period variations.

This particular point is illustrated in Fig. 3.4 where an F=1.33
lens was chosen and ¢ was varied from 45° to 120°. Again the grating
extends over a distance of 1 ecm. It is seen that with ¢ = 120° the
period varies only by 0.05um, while for 0 = 45° the period variation is
.5um.

The Tinearity of the period variation as a function of grating length
L is shown in Fig. 3.5. It should be noted that the beginning and
end period is identical for all values of L. Again the F number is

1.33 and the angle 6 is 90°.

3.3 Waveguide Coupling

Chirped grating etched onto a dielectric waveguide results in a
simultaneous output coupling and focusing to a point P(XA’ZA) which
will vary as a function of the modes supported by the wavequide and the
wavelength of the guided modes.

Consider the geometry described by Fig. 3.6. When the guided mode
is propagating unperturbed in the wavequide its z dependence is given by
e-iBz, where g = kn]cose]. When the wave reaches the perturbation
the radiated mode will have a z dependence given by e’ikzz. At point

z=0, kz is given by
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Fig. 3.6 Geometry for a chirped grating etched on the top surface of a
waveguide of index Ny The substrate has an index nz,and n,
is the index of refractioﬁ of air. A wavequide mode will focus
at point P(xi,zk) depending on the chirp of the grating and the

wavelength., (After reference 1.)
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_ 2T
k2(0) = 8 - gTo7 S
and at z = L
_ 2
k(L) = 8 - 7Ly 39

Equations (3.8) and (3.9) simply express conservation of momentum

for light incident on a periodic medium. Referring to Fiqure 3.6 we have

kx(z=0) ]szng-kz(O)

tan @, < K,(z=0) ~ & (0)
k, (z=L) kzng-ki(L)
tan B, = — =
L~ KD L)

=~
"
0|E

The equations for ray 1 and ray 2 are

x
[}

z tan GO

=
I

(z-L) tan 8

The point of focus P(x ZA) is thus found to be

A’

L tan B w kZ(O) LJ/k n3‘-kZ(L)

zZ. = = (3.10)

A tan 6 -tan 6,
TTET0 0) SRS - k(1) JEE k(o)




=B =

and

[Z_ 201
k- k2(0) (3.01)

The focusing effect and especially the variation of the focus as
function of wavelength and period variation is illustrated by Fig. 3.7.
Taking n, = 1.565, N, = 1.51, Ny = 1.0 and a waveguide thickness of
d = 1.35um the eigenvalue equation for g was solved for wavelengths
ranging from 4SOOR to 6500A. Having thus determined 8 for the unperturbed

waveguide we calculate kZ(O), kz(L) for various ranges of period variation.

It can be seen from this figure that (a) the larger the period variation
the closer to the waveguide the locus of the focal points will be,

(b) the smaller the period variation the larger the separation between
the different wavelengths and the larger the distance of the locus of the
focal points from the waveguide, and (c) if the average pneriod of

the crnirped grating is increased the focus will shift towards greater

values of z.
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Fig. 3.7 Locus of the foci of various wavelengths for different

chirps. The grating is located between z = 0 and z = 1.0 cm

at x = 0. A(0) is the longest period and A(1 cm) is the shortest.

The waveguide mode is traveling in the positive z direction.

(After reference 1.)
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3.4 Calculation of Power Qutput Distribution for Chirped Gratings

In the previous section the characteristics of the chirped gratings
and some of their properties were discussed. To complete our theoretical
discussion we present a calculation of the actual power radiated into air
by a chirped grating.

To analyze this problem we expand the electric field of the
perturbed waveguide in terms of the guided modes, the substrate modes
and the air modes. This work is essentially an extension of Marcuse's
work(3) for which the symmetric case was treated. In our case the wave-
guide is not symmetric, but the notation and method are similar
to Marcuse's.

A closed form solution for the ‘power radiated into air by a
chirped grating is presented and the solution is illustrated with
examples of gratings where the amount of chirp and the wavelength of
the guided radiation is varied.

Consider the geometry and notation as presented in Fig. 3.8a.

Using the results from Appendix 1-A, we have for the TE guided modes

g, = =X for x 2 0 (3.12)
= A[coskx - g-sinmx] for 0 2 x 2 -d (3.13)
= Alcoskd +% sinnd]eY(X+d) for x < -d (3.14)
where
- B (519
Y = (82—n22k2)]/2 (3.16)
5 = (8%-n,2K?) /2 (3.17)
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Geometry for a dielectric waveguide.
Dielectric wavequide with a chirped grating etched on the top

surface. (After reference 1.)
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where Ny, N,, N, are the indices of refraction of the waveguide,
substrate and air, k is the wavenumber in air and B describes the

z dependence of the electric field. It should be notea thac the factor

e1mt e_162 has been suppressed in Eqgs. (3.12)-(3.14). Furthermore,

the constants x, v, and & can be determined by the eigenvalue

equation:

tan Kd = M

K -y¢é

(3.18)

The amplitude of the electric field A is related to the power
carried by the mode,namely:

2 4K2wu0P (3.79)
8] [d+1/y+1/6] (2+5%) |

- _B 2
P = 2uu J lgyl dx

where P is the power carried by the mode, d is the thickness of the gquide,
w is the radian frequency and Mo is the magnetic permeability of
vacuum.
These guided modes occur for kn, S| < kny. For the region
kn3 5 |8 : kn, the substrate modes exist, and finally in the region
0 < |B| < kny the TE air modes of tkz continuum occur. For the
purposes of this discussion we consider the air mode since we

want to calculate the power radiated by the waveguide into the air.

Appendix 1-A gives the electric field as:
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%; = Cr[cosAx + (c/A)FisinAx] for x 2 0 (3.20)
- Cr(c05cx+Fisincx) for 0 2 x = -d (3.21)
= Cr[(cosod ~ Fisinod)coso(x+d) 5 (3.22)
for x - -d
# %—(sinad + Ficosod)sinp(x+d)]
. (n32k2- 2y1/2 (3.23)
G5 = (n]2k2_82)]/2 (3.24)
3.:25
o = (n,2K2-2)1/2 (3.25)
where Cr is again related to the power carried by the mode
4w P 2 Z
2 _ 0 . o) . 2 2\A~-1
Cr = TR [(cosod - F151ncd)2 + ;ﬁ-(s1nod + Ficosod} + (1 + iﬁ-Fi )a]
(3.26)

and F1 can be chosen arbitrarily.

It is instructive to compare the solution for a confined, guided
mode with that of the above continuum modes. Matching boundary condi-
tions (Ey and ;;10 at x=0 and x=-d give four constraints on the solution.
A fifth constraint is obtained by the normalized power condition. Since
Maxwell's equations are second order and the field must be found in three
regions, we have to determine six constants using five conditions.

This cannot be done for the continuum case, and thus we have one

degree of freedom indicated by the F, coefficient. For the guided
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waves, however, the field must decay toward zero as x -+ +=, These
two added constraints give a total of seven constraints involving six
coefficients, with the well-known result being an eigenvalue equation
given by equation (3.18).

Since the Fi is arbitrary, it is convenient to choose two fixed
values F1 and FZ' An arbitrary continuum mode can then be given by
a linear combination of the F1 and F2 type modes. Following the
conventional pr‘ocedur‘e,F.I and F2 are chosen so that the two radiation

modes are orthogonal to one another

F],z > [(Uz-pz)sinZUd]_]{(cz-pz)cos2od - (%)(oz—az)
2
t [(0°-07)% + 2(p/8)(0%-p?) (0?-0%) + coszod +(?/n?) (?-0%)2]1/2)
(3.27)
where o
P 6(p-p') = 5o— fé Up)E2 o' )dx
2wmg | By y
Again the factor e.i“’te_iBZ has been suppressed in equations (3.20)-

(3.22); in this work B is an inherently positive quantity.

Next we expand an arbitrary T E electric field for the
perturbed waveguide in terms of the discrete guided modes and the

continuum of both substrate and air modes:

) g

a
FERD DAY A j st B sl + j (po2) € (0)do

discrete ; even 2y 1/2
0 oddk(n2 n3) (3.28)
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where ?; are the discrete guided modes, given by equations (3.12),
(3.13), (3.14) for the n values of g determined from the eigenvalue
equation (3.18). Simi]ar]y'gé are the air modes given again by equa-
tions (3.20), (3.21) and (3.22), where even and odd refer to the choice

of F, and Fy (Eq. 3.27). ¢ > are the substrate modes which have not
been presented explicitly since they will not affect this calculation.
It is to be noted that the above expansion for the total electric field
Ey is possible since the set of eigenfunctions is complete. The calcu-
lation is simplified due to the orthogonality of the modes as a result
of the choice of Fi'

The limits of intearation in equation (3.28) were found from
equation (3.25) and the requirement that for guided modes kn, < B ?'kn],
for substrate modes kns'? g8 2’kn2, and for air modes 0 < B '<"‘kn3 (B
inherently positive)

To determine the value of h(p,z), we substitute equation (3.28)
into the Helmholtz wave equation, multiply by &fa, inteqrate over X,

and using the orthogonality relations, get a differential equation for

h(p,z).

2

3°h . oh

=5 = 2ig—= H(p,7)
322 3z

The above differential equation is easily converted to an integral

equation.

Z

Hpaz) = Qlo) + R(p)e?TO% + oo [ [PTB(Z0) p(o,)ar (3.29)

where (o]
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2 [ee]
H(p,z) = %ﬁt—p [ECn(Z) fg*a(n)fng;ndx
n
kn -

o0

kn
2 ? oo
o[ doale [5,(pan (dx s [ aathlors2) [ B o) )
k(ng—ng)1 k(nz—n3) - (3.30)
where An2

describes the deviation of the corrugated guide dielectric

constant from that of a uniform waveguide.

Note that for An2=0, H(p,z)=0, and we have
h(p,2) = Qlp) + R(p)e? P2

When this is multiplied byE:k which contains a z dependence
e"1BZ, we get the sum of a forward traveling mode with z dependence
9-182 and a backward traveling mode with z dependence e+1Bz (time

dependence e+1wt). This, of course, was to be expected.

To solve equation (3.29) we use the Born approximation. In other

on
of C (z) and set g(p.z) = h(p,2z) = G in Ea.

words, we use Cn(O) = 6, where Son is the Kronecker delta, instead

(3.30), resulting in

oo

2 ¢«
H(g+2) = ﬁ‘jp— Ja a(p)AnEé“de (3.31)

-0

In the next step we assume that the perturbation of the guide from
its ideal shape is on the top surface of the quide as shown in Fig. 3.8b.

By taking a shallow grating and thus setting x=0 in the above eguation
we get



-96-

2 " .
Hp,2) = 5855 (ny2on ) F(2)E(0,0,2)8,(0,2) (3.32)

Equation (3.29) can then be divided into parts as follows:

+
h =Q - -é%-é I H(p,z)de (3.33)
0 z
i . .
h™ = IR + 5 fe 21820 rYdele? 182 (3.34)
such that 0
h=ht +h"

Recalling equation (3.28) we note that the contribution to the total
electric field arises from the product of h(p,z)'gf(p,z). The z

dependence of gﬁ(p,z) is e %2, If we consider the z dependence of

the product, then

Z
-3 73 iR (3.35)
h(p,z) E2(p,2) =h'e™ % [R‘“?'}“EJ e"21B% H(p,z)drle’ P2
(z dependence) 0

Then we can associate the h' part of the wave with the amplitude of the

forward traveling radiating mode and the term in brackets with the

negative traveling one.

The power radiated into air is given by

kn2
%;)radiatgd - egen J do { [In*(esL) +
into air odd k(ng—ng)%
[12212 o
PO D )1 ) [ — (3.36)
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The term involving the integration with respect to x gives the fraction

of the air mode radiated into the air. The remainder is, of course,

radiated into the substrate. Furthermore, the boundary conditions

require that
h*(p,z=0) = 0
+ 1

L
=5 h = - E?E'L H(p,z)dz

h (pazel]) = 0

-2iBC 2iBz

h™ = [g%g [ e H(p,z)dz] e

(3..37)

(3.38)

Using the above conditions and equations (3.32), (3.12) and (3.20) we get

. ) kzhﬁz- n;)
h™(p,L) = 4iwuP b, AC,
h™(p,0) = GTwonp ¢ ACr
where L
i(8-8,)z
0 = 0,(8,L) = [ F(2) e dz
0
and L
-i(B+8,)z
¢_ = ¢_(B,L) = J f(z) e dz
0

(3.39)

(3.40)

(3.41)

(3.42)
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Using equations (3.19) and (3.26) we can calculate h+(p,L), namely

4, 2 2 2
‘ lsol[d+1/voa-1/501(K04—50)ﬂ|5|
2
[(cosod-—FisinUd)2 + gﬁ'(sinod*+Ficosod)2 (3.43)
p

, .
o 2y Aq-1
+ LT * Ez F1 ) El

where Ko Yo’ 60 refer to the zero order mode solutions for equations

(3:15)s (3.16); (3.17), and (3.18).

Similarly

I (o,L). %16 |2
Ih™(0,0), 1% = - (3.44)
! [,

Finally, to calculate the fraction of the air mode Fadiated into

air we use equations (3.20), (3.,21) and (3.22)

a 2 2
J IE”! 1+ %o F 2
.- NS = A 5 (3.45)
2 2.0 2
J E3% a0/ gyen  1HVE H s R
—00 odd
where v, = cos od - F.sin o¢ (3.46)
w, = %-(sinod + Ficossd) (3.47)
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Now using (3.45), (3.44), and (3.43), equation (3.36) becomes

P)radiated into o Clo 1%+ [4_17]
air per unit g

" % (48)
& [(v) 2w ) P, 1 Ly ) 5wy % 2wy
(3.48)
02 2
where u; = 1+ ZE'Fi (3.49)
and
kq(n]z- n32)K§
g = (3.50)

2, .2
|8, 1(d+1/Y +1/8 ) (kg +6)m

Equation (3.48) shows the fractional power radiated per unit beta for
an arbitrary perturbation on the top surface. Once the perturbation
is given, then b, and ¢_can be calculated.

For the particular case of the chirped grating with a transmis-

sion function given by equation (3.4), f(z) can be written as

f(z) = a sin(az-szZ) (3.51)

Direct substitution into equations (3.41) and (3.42) and using the

method of stationary phase results in

2

2 _ Ta
lo,1" = S5 (3.52)
if ¥>0, atB-B, < 0, and atf - B+ 2YL > O (a)
or Y<0, atB -B,> 0 , and o+ =Bt 2yL < 0 (b)

or Y<0, ot+B - B > 0, and ot - B+2YL <O (c)
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otherwise ¢, = 0.
Similarly,

|2 5 'I'Taz
4y

if y> 0, a-S—Bo < 0, and a~8—80 + 2yL > 0
or N %0, a-B—BO > 0, and a-B-Bo + 2YL < O

or yvy<0 a+B+Bo > 0, and u+8+80 + 2yL < 0

otherwise  |4_

(a)
(b)
(c)

These equations, (3,52a,b,c) and (3.53a,b,c) give the range

of B for which the guide radiates. They can be interpreted simply

as conservation of momentum equations for Umklapp processes.

scattering, an Umklapp process requires

_ 2T
B =8yt ANZ)

where A(z) is the period of the grating at point z, but

K%%T = %E-(az +y2%) = o+ 2yz

Thus, ~
B o= Bo ® o = ¥ Zyz

(3.53)

For forward

(3.54)

(.3.55)

(3.56)

Equation(3.56) must hold somewhere in the grating region (0 <z <L)

for scattering to occur. Considering the separate cases y > 0 and y < 0,

as well as the two sign possibilities in equation(3.56) results in the

conditions given in equations (3.52a,b,c). Since we have taken B as an

inherently positive quantity, the case of backward scattering must be con-

sidered separately and the equation governing it is
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B = 2m (3.57)
» 8o 1D

The above equation results in (3.53a,b,c).

To illustrate equation (3.48) we present Figure 3.9. The guide is 1.0 cm

long,. its thickness is .6425um and the index ot refraction n, = 1.55, The sub-
strate index of refraction is N, = 1.52 ,and that of air is taken to be

ng = 1.0. The film perturbation is of the form of equation (3.51) and a
was chosen to be 100R.. The calculation for the fundamental mode gave
Bo = 1.505 x 107(m_1) corresponding to a wave number of 9.78 x 10% w7,
The figure illustrates the fractional power output in the air per unit 8
as a function of 8 for various chirps. We see from the figure that the
lower the chirp (curve4 ) the narrower the range of g distribution, In
the 1imit of no chirp we expect the familiar delta function. For high
chirp we have a wide range of B distribution extending over most of the
theoretically possible range (kZ = 0 to k). The total power output
radiated into air is the area under the curves. For Figure 3.9 it ranges

from 10 to 15 percent of the incident mode power,
The sharp vertical boundaries to the curves are easily inter-
preted as follows. Consider, for example, curve 4 of Figure 3.9, for

which A ranges from .35p to .4 um.

' =g 2T 3.58
R By ™ F ( )
where B' = z dependence of field after interaction with the grating.
Using B, = 1.505 x 107/m and A = .35: we find &' = 3.0 x 10%/m.

Similarly for A = .4 , B' = -.66 X 106/m. These values are simply the
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Fig. 3.9 Fraction of mode power radiated into air per unit 8 as a

function of B or 8, where 6 is the angle of scattering with
respect to the z-axis (6= m-64, See Fig. 3. 6) for various
chirps. The area under each curve represents the total
qower radiated into air for a qiven chirp. (After reference
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range of permissible B values and mark the two sides of curve 4.

It is important to note that in the actual calculation the wave-
guide is divided into approximately one hundred sections. AP/P is calcu-
lated from the first section and then it is subtracted from the total P.
This new value of P is used as input power for the next section, and so
on. This enables us to handle large power coupling and not be Timited
by the first Born approximation. This particular point is illustrated in
Fig. 3.10. The total power output radiated into air is greater than
45 percent, due to the larger perturbation. In Figure 3.10 the film thick-
ness is 1.35 pym and its index of refraction ny = 1.565. The substrate
has an index of refraction n, = 1.51 and air ng = 1.0. The guide is
1.1 cm long and again the perturbation on the top surface is given by equa-
tion (3.51). In this case a is 5003, and the period varies from .295 to
.33 um. The dffferent curves represent the fractional power output
per unit 5 for various wavelengths. It can be seen from tnis figure
that different wavelengths radiate over different and non-overlapping
B ranges,

In addition, we have calculated the fractional power (per unit
8) radiated into air and substrate, and found that as predicted by the

theorys, it is twice as large as the one radiated into air.
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Fig. 3.10 Fraction of mode power radiated into airlper unit B as a
~ function of B for a chirp of .33 to .295 um and various
wavelengths. The amplitude of the chirp is set at SOOE, and
the corrugation extends over a length L of 1.1 ecm. (After

reference 1.)
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3.5 Experimental Results

The dielectric wavequides were made, as described in the previous
chapter, by sputterina Corning 7059 qlass with a Technics MIM Model
5.5 ion beam etching machine. The refractive index of the sputtered
glass was 1.565 and the film thickness of all samples, as measured
with a Sloan Dektak, was 1.35u.

Chirped gratings were fabricated on the surface of the waveguide
as follows: a layer of undiluted Shipley AZ1350B photoresist was spin
coated at 6000 rpm on the waveguide. After prebaking, the photoresist
was exposed to the interference pattern of a collimated laser beam with
a converging beam. As detailed above, such interference pattern gives
rise to chirped gratings. The A = 4579ﬁ Tine from an Ar laser was
used under the following conditions 6 = 94.5, F = 1.33, L = 1.2 cm,
resulting in gratings with periods varyina from 0.29 to 0.33 um over a
distance of 1.2 cm.

Typically the laser beam intensity was 0.6 mw/cm2 (in each leg)
and the exposure time used was 60 sec. Gratings of high efficiency were
obtained using AZ 303 developer, and 10 sec development time.

The photoresist was next post baked under vacuum for 30 min and
the waveguide was ion beam etched through the photoresist, at ion current
density 0.1 mA/cm2 and accelerating voltage of 1800V, for 30 min. The
sample was kept at an angle of 30° with respect to the ion beam. The
aratings thus fabricated in the glass had a peak to trough height of
about 5008,
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In the focusing experiment light was coupled from an argon laser

into the waveguide using a prism coupler. The light entering the cor-

rugated section was focused outside the waveguide. The position of the
focal point (xf,zf) was measured experimentally for various lines of the
argon laser. The experimental points are shown in Figure 3.11, along with
the theoretical predicted curve for this particular waveguide.

An output prism coupler was added at the end of the corrugated
region. The light intensity which was coupled out was measured for two
cases: a) 1light going through the corrugated region, and b) light
going through a neignboring uncorrugated region. The ratio between the
intensities in case (a) and case (b) was found to be 1:10. The fabrica-

tion and experimental work was done by Alexis Livanos and A. Katzir.

3.6 Conclusion

In this work the properties of chirped grating output couplers
have been studied. Expressions giving the grating period variation
for various geometries and recording conditions have been presented.
As one important application of this device, the focusing effect in a
waveguide incorporating chirped grating was demonstrated. The thick-
ness of this waveguide, and the chirp were chosen so as to focus the
light about 6 cm away from the waveguide. The theoretical calculations,
which were verified experimentally, show that the focal point moves by
about 1-2 cm when the wavelength was changed from 45798 to 51458. The
chirped grating structure therefore separates very well between propa-
gating beams of different wavelengths, while focusing them outside the

waveguide.
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Figi 31l EkperimentaT and theofetica1 results of the focusing of the

corrugated structﬁrc used. The solid 1ine represents the
theoretical position of the focus as a function of wavelength.
The solid dots represent the focus of the prominent lines of
the Ar' laser. The large circles are the experimental points
for these wavelengths as measured with a two-dimensional trans-

lation probe. . (After reference 1.)
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Finally, a coupled mode theory was presented which predicted the

amount of 1liaht radiated out of the guide at various angles.
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Chapter 4

STATISTICAL ANALYSIS OF BRAGG REFLECTORS

In previous chapters we considered the effects of introducing a
predetermined and controlled aperiodicity in an optical structure. We
now turn our attention to studying the effects of a random, statistical
aperiodicity in a multilayer reflector. We will no longer be able to
predict the reflection properties of any single sample, but only the
properties of an ensemble. Analytic expressions are obtained for <p>
and <pp*>, the expected value of the reflection and reflectivity coeffi-
cients as a function of o, the standard deviation in layer thickness.
These expressions are then compared with values obtained using a computer
routine which "builds" a reflector with the desired parameters and o
value, and then calculates the reflection. The results of the computer
experiment are presented in the form of p(po*), the probability distri-
bution function of a statistical Bragg reflector. Finally, simple
phenomenological expressions are presented for the reflectivity probabil-

ity distribution.

4.1 Introduction

Extensive studies have been made of the reflection of light from
ideal periodic multilayered media.]’2 Amona the many uses of such struc-
tures are coatinas for both high reflection and antireflection. Other
proposals involve the use of these structures for phase matching in non-

3,4,5

linear optical applications™? and for obtaining optical birefringence

in stratified media composed of isotropic or cubic materia156’7.
In practice, however, it is not possible to fabricate perfect struc-

tures, and to date the standard deviation in layer thicknesses of commer-
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cially made mirrors is typically 2% when monitored optically, and even

8’9. Great precision in Tlayer thickness

greater when measured mechanically
can be achieved by using new techniques such as molecular-beam epitaxy,

but these techniques are also costlier than the standard electron beam
evaporation.

Although there is ample literature on periodic structures, the study
of aperiodic structures has been rather limited'9>11:12, The primary effect
of a slight aperiodicity is to decrease the amplitude and broaden the
width of the reflectivity spectrum. It is the purpose of this paper to
study the effect on reflectivity of a random fluctuation in layer thick-
ness about an ideal thickness. There are many additional causes of a less
than ideal reflectance from a mirror. Among them are absorption, index
variations, and systematic errors in the manufacturing of reflectors.

What follows is simply an analysis of one of the imperfections, namely a

statistical fluctuation in layer thickness about some predetermined mean.

The case of a low reflectivity structure is easily handled using
the undepleted incident wave approximation. Next a perturbation solution
to the coupled mode equations is presented which gives results for arbi-
trarily large reflectances. Finally, a computer study is presented which
uses the formalism of the matrix and translation operator developed by Yeh,
Yariv and Hong2 to predict the expectation value of p and |o|2 as a func-

tion of o as well as p(|p|2), the probability of manufacturing a sample

. y 2
of given reflection. An analytic expression is then presented for p(lel®)

which agrees well with the results from the computer experiment.
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4.2 Low Reflectivity Limit

We start by calculating the reflectivity of a mirror with N cells in
the 1imit of low reflectance. Assuming a constant incident wave of unit

amplitude we obtain for the reflected wave:

210k i Ky bi) 2i[k, (a,+a,) +k, (b,+b,)]
o r][] + e 1x71 2x°10 . T =2 2x 71 72

L eZi[k]x(a]+a2+...aN)+—k2x(b1+b2+ ceetby)]

21 kyb 2i(

L
-rye * ][1 + e

Kixa1t kouba

2i[k, (a +---+a ) +k, (byt ++++b,)]
¥ ees o 1x* 71 N-1 2% 2 N

] (4.1)

-k
where Kix =2y 1=1.2, ry = Elﬁihpgi
Tx 2%
w 1is the radian frequency of 1ight, ¢ is the velocity of light, and N

is the index of refraction in a layer of material 1, and n, is the index
in a layer of material 2. N is the number of unit cells and the number
of dielectric interfaces is 2N+1,with " representing the magnitude of
the reflection from a single layer. ap is the thickness of the layer of
index n, in the pth cell, and bp is the thickness of the layer of index N,
in the pth cell (see Figure 4.1).

We denote thé random deviation of the layers' thickness by param-
eters up, vp defined by

(o) , =
- u = 1,N
ap = @ p P

- b(o) +
by Yp

(0) p(o)

ideal thickness of layers (4.2)

u_,v_ = random variables with assumed Gagssian
PP distribution and standard deviations oy and ap
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In the process of taking the ensemble average of r we use the follow-

ing theorem: If G is a random Gaussian variable with average value zero and

iG _

standard deviation Ogs then the ensemble average of e =~ = '8 = g% 9

e G.
This can easily be shown by expanding e1G in a Taylor series and averaging
term by term.

A typical term in (4,1) is

21[k1x(a]+---+ap) i k2x(b1+"'+bp)]

e
: (o) (o) : . o
i 2iplkya '+ ko bt°'] 210Ky, (ug+ --+up)-+k2x(v]+ +Vp)]
= @ e
(4.3)
The ensemble average of this term is
(o) g 2 o8 _ 2
2iplk, a0 * ko0 1 20Ky 00, +Koy POh] oy kn -2pkPo’
e e = e e
22 . ,2 .2 2 2
where k"o~ = k1x g # k2x o
b = (o) (o)
kA = k1xa * kab

We thus find the expectation value of p is

r . . 2 2
<p> = 1 n - e21(N+1)k1\ 5 2(N+1)k“0
72
2ikn ek
1 -e e
. 2 2
21k, b0 -2k o : gl B
e 2x o 2x %b () | G2iNkA -2NKT0y, (4.4)

The magnitude of this quantity is plotted in Figure 4.2 for the

- 2 2 2
case N = 25 and Fyp = 1.96 x 10 3. We have taken kgx O = k1x o, =

2 2

%—k g and o= .1 for o = 0 at the center of the band aap, as well

as ksz(o) - k1xa(°). 1t can be seen in Fiqure 4.2 that the nonzero

value of ¢ has the effect of broadenina the response as well as lowering
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it, as expected. For comparison Figure 4.3 is a plot of a chirped dielec-
tric mirror containing a total of 51 layers of index 3.4 and 3.6. The
variable & aives the chirp of the mirror. The length of the period on the
end of the structure nearest the incident light is Ao/ﬁ while that on the
other end is Aoa, with all layers between these varying geometrically from
one extreme to the other. The frequency scale is normalized to wAO/c. The
qualitative effect of the aperiodicity is quite similar to that of the
statistical variation illustrated in Fiqure 4.2. Figure 4.4 is a plot of
<p> as a function of ko for various values of N at the condition kA = m,
indicating the increasing sensitivity of <p>on ¢ for large N values. The

parameters of each structure have been chosen to give a 10% reflectance for

", 2ik, b o)
a perfect reflector. In the 1limit of Nk“o~ << 1, N >> 1, and e = =
expression (4.4) reduces to
0> = (2N+1)ry 1 - NkZo? ]
= r [1 - NKZ62] (4.4a)

o]

It is interesting to compare this expression to the well-known Debye-

Waller factor for X-ray diffraction from a crystal at a finite temperature

for which 13 5 2
‘gil_ 2
) : &% 2
P> = rg e R roll - o] (4.5)
where G = kin - kOut

(@]
i

standard deviation in atomic position due to lattice
vibration
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Note that (4.5) does not depend on N, the number of atomic layers, while
the correction factor in (4.4a) does depend on N.

The difference between (4.4a)and (4.5) can be reconciled. If we con-
sider a structure for which the thickness of each layer can be controlled
precisely, but for which the surface of each layer is not perfect but is
rough and uneven, then the reflection from the entire structure is reduced
by a term similar to (4.5), that is, independent of N. This can be seen
as follows. The reflection from a rough surface is g"i\.ren]4 by
Po exp[:gfgi-cosze], where Po is the reflection from a smooth surface,

A is the wavelength of liaht reflected, o is the standard deviation of
the surface from its averace, and 0 is the anale of incidence. Aoain,
taking the case where kab(O) = k1xa(°) = n/2 we find that the reflection
from each surface of a Braqg reflector is reduced by the factor exp[- %—ui_].

1
where

0. is the relative standard deviation,

Q
I

o
a .
;TET'for layers of index N

Q
1

o
b :
ETET for layers of index N,

Thus for a structure of many layers, we have

. w2
‘20!" ""Z'Ur

|
> =757, [e d + e b] (4.6)

2 2
rr[1-T(0°+0.°]
0 [ s 'y

which is independent of N.
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The quantity <pp*> can be calculated in a manner similar to <p>.
If we take, for simplicity, the case kA = 7, we arrive at the rather

complicated expression:

2 2

-2nk%o 2,2

<pp*>= |Y‘1|2 [NH % oL s [1 - (N+1)e2K TN

2k’
(1- )
2(N+1)k% 2o 2(N-1)K%6" Na2KZo? (N-1)
- ]] *[j 777 L1-
eZk g )

2 2 < -2

2.2 -2k -2ks. o
+ (N-])e2Nk ¢ i] [2 cos (2k, b% ))( 2x0b+-e 1x"ay

~ 1 (4.7)
o 1;;(;2 (121K 1)e2”k2°2)+N]J\(
(1 - e2K0°) i

In the limit of Nkzc2 << 1, (4.7) reduces to

coo®> = 1% {[2N%+ 241 - 2(NPeN) cos(Zksz(o))]

- kzﬁz[(4 N+ 2% S N) - 2(— N3+ NP+ E) cos(2k2xb(o))]} (4.8)

Equation (4.7) is plotted in Figure 4.5 for various values of N under the
same conditions as Figure 4.4, Although equation (4.7) is quite complicated
it reduces to [(2N+1)r‘1]2 for ko»0 and to (2N+1)(r%) as ko » « . This

is to be expected, since as o + 0, the reflections from each dielectric
interface are correlated and thus the amplitudes add. For large ko

values, the reflections from each interface are not correlated and the

intensities from the 2N+1 interfaces add.
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4.3 Coupled Mode Theory

In many cases of practical interest, we deal with high reflecti-
vities and the methods of the previous section are inappropriate. This
problem can be overcome by using the coupled mode theom}s’lﬁand the effects
of a random statistical variation in layer thickness can be included by using

a perturbation scheme similar to Streifer et a1.17

order.

, but carried to a higher

Consider a periodic structure which extends from z = -L/2 to z = L/Z2.

A wave propagating in the z direction, R(z)e1ﬁz, with time dependence g 1ok

will generate a contradirectional wave S(z) e 'BZ e take the dielectric

constant as varying according to cos(%ﬁz-+ ed(z)) where A, is the ideal
0

period and £4(z) describes the perturbation or deviation from this ideal
period. Although the dielectric constant of a periodic slab guide does not
vary sinusoidally, we can decompose the index variation into its Fourier com-
ponents and allow coherent interaction with the propagating wave and the first
Fourier harmonic of the structure.

The coupled mode equations at the Bragg condition 8 = n/ﬂo are
R' = ik e'¢% s (4.9)
¥ = i e o R (4.10)

where the prime denotes derivative with respect to z. In order to keep the
results fairly simple we will solve the problem at the Bragqg condition only.
In equations (4,9) and (4.10) « is the coupling constant. It is seen from

equation (4,10) that

- ’dS/dz‘ _ ‘amp]itude reflected/unit length|
R amplitude incident
" 2N "
- TR7Z T T

0
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The boundary conditions are

R(-2 L) =1 (4.11)
S(3L) =0 (4.12)
The filter function or reflection coefficient is defined as
1 L
o(- 1) = S(- 5) /R(- §) = S(- 5)
Equations (4.9) and (4.10) can be combined to give
1] s ] 1 2 ==
R" - ie¢'R' - kKR = 0 (4.13)
Next we expand R in a power series in e
R = R (2) + eRy(2) + e“Ry(z) *+ + - - (4.14)

When this is substituted in equation (4.13) and powers of £ are equated,

we get

 JF T = .]5
RS <R, = 0 (4.15a)
(I | 2 et - ] 1

RY' - <Ry = 1 ¢' Ry (4.15b)
RL' - k2R, = 4 é' RI (4.15¢)
2 R 1

RUC - PR =GR 0z (4.15d)

These equations, subject to the boundary conditions of equations

(4.11) and (4.12) are solved in Appendix 4-A where it is shown
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cosh(x(5 - 2))

Ry = Tosh wL (4.16)
z
. _— ; .
"o =ic T o' (8) Ry q(8) sinnlx(z -£)]de (4.17)
2
o L/2
; s1nh[K(§-+ 2)] )
- ;(C.I cosh kL ¢' () eri-](g) COSh[K(§ - £)]dg
-L/2
= 1y

The reflection coefficient p(-%&, is given by

—TE¢(--E—)

D(“lé‘) gt R'(‘%) (4.18)

If we consider an ensemble of these structures, each will have
a different reflection since ¢'(z) is a random variable for each

structure. In order to proceed we must consider the auto-correlation

function of ¢'(z) which we will take as

W
Ry(zo) = <¢'(2) ¢'(z + z()> = lim 3 ¢'(z) ¢'(z + z_)dz
0 Woreo 2
2 =l (4.19a)
Z
= £ (1 - lEQL) for ’z ‘ < £
(4.19b)

"
o
.ﬁ
o]
= 1
N

o
v
=
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Expression (4.19b) is an assumed form for the autocorrelation function.
Although other forms can be considered, the final result will not depend
on the exact form because of subsequent approximations (Appendix 4-B).
Also (4.19b) can be shown to be the unique autocorrelation function for
the case of a slab reflector (Appendix 4-D).
The quantity £ is a correlation length and 2 = <¢‘2> is the
standard deviation of the random variable. Also we assume <¢'> = 0.

This will be discussed further in the next section.

Using the results of Appendices 4-B and 4-C, we arrive at the

following results for <p(-%)> . <p(_%) D*(_%)>
(L) -1's¢(—12‘*) 225 (4.70)
<p(-7)> = ie tanh «L - —===[2C] - + S,S, - C.C .
2 8 o cf 174774 1°2
- C] + KLS]]
2
<D(*%9 p*(-%)> = tanh? gl = §?¢£ EL = %3-54 (4.21)
2 K C]
1 5 1

l

Where S, = sinh(nkL), C, = cosh(nkL). In the low reflection limit(4.20)

and (4.21) reduce to

g
-ie¢(-3) 2 &

(5> =de 2 (1 - L LY (4.22)
2 2

<o(_12-.) p*(_%)> S22 (¢ 52 Le, (4.23)

In the high reflection limit
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. L \
-jed(-% 2
<p(—~lé-)> = je Seanh ©l - E—BEZK—E (4.24)
< ( _1:.) * L - 2 EZ2 2.2 £ -2kl
P "2 P (-'2')> = tanh KL == —ZT e (2!([.. = ]) (4025)

2
R I EKi‘i (kL - ;—)]

4.4 Connection between 5222, and, a(o), b(o), and 02 of the slab

reflector considered in the low reflectivity limit section.

In order to apply the results of the last section which assumed
a sinusoidal variation of the index to the case of multilayered mir-

rors with abrupt index discontinuities, we establish the connection

between the parameters used in characterizing these systems.

We start by defining the local period through the relationship

Z z
Moy dz = i_'” - 23 onta) |az - 2’;\2 + o(2) (4.26)
0 0
_=2n
eo(z) = 5L sa(2) (4.27)
A
(o]

where 8A(z) is the local period variation.

Next we take the auto-correlation function of 6A(z) to be

RdA(zo) = <6A(z + zo) SA(z)> gh (1 - 12310 ]zo| < & (4.28)

= 0 otherwise

From equation 27) we obtain
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2 1 ] = 4'112
e7<¢'(2) ¢'(z + 2z )> = R <6A(z) 8M(z + z,)>

(0]
2 2 (. Lol _ a2 2 ., |%
FRn—F-drda-bh

From equation (4.29) we see immediately that

2

2 2 5%7_52 (4.30)
J’\O

£| = E (4-3])

Next we relate £ to AO = a(o) + b(o) and S2 to 02.

As shown in Appendix 4-D the autocorrelation function for a slab

reflector is given by

21z
at(z) ot(z + z,)> = & (- ol (4.32)
0
A
CIRRTE N S RO IO

The quantity At(z) is the deviation in the slab located at z
from its ideal thickness of 29~. Comparing equations (4.32) and (4.29)
we see that the correlation length 2 is equal to the slab thickness
A0/2. In order to find the connection between 52 and 22 (and thus 52
through equation (4.30), we compare either equation (4.22) to equation

(4.5), or alternatively, (4.23) to (4.8) (in limit of large N). 1In

either case for the equations to agree, we must take
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s2 = (25)2 (4.33)

2
e £ =80 (52 (4.34)
AO

Thus we have related the quantities EQ and AO/E which are assumed
known for our slab Bragg reflector to the quantities 5222 and ¢ which
appear in equations (4.20) throuah (4.25).

Also by comparing equation (4.5) to (4.22) or equation (4.8) to
(4.23) for large N, we again find k = (2Nr])/L.

After using equation (4.34) and 2 = AO/Z, equations (4.20) and

(4.21) become

- |5
~ie¢(- 5) 2 2
<p(- 2—)> = e ¢’ tanh «L - e [ 2 c?
Ao K C1
1
- 3515 - Gy - Gy # KLS]]} (4.35)
2 2
<p(- %J p* (- %J> = tanh?cL - 559——15 <l - T%‘S4
A e €
o] 1
S
o1 5 ]
2 2 (4.358)
= tanhzx _2m g L G(x)
ho
or
<pl by a2 L 2
(- 3) e*(- 7)> - tanh™x _, 2 2 6(x)
2 - 3 ( 2) x = L (4.36b)
tanh“x A tanh“x

o]
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S
_ 1 i ] 5
G(X)_-x—4(4sa-)‘)+—4-(cc +C-]-2C-I
2 G C
1 1
< x5 ¥ 5.8
1 4 7174
The function G(x) is plotted in Figure 4.6. fForsmall x, G(x) % %— 2

while for large x, 6(x) ¥ 2e2X(2 - l—).

Alternative Derivation Using Coupled Mode Theory

If equations (4.9) and (4.10) are used directly and a series expan-
sion is used in both R and S, we can avoid having to use equation (4.13)
which involves ¢' and instead work only with the random variable

¢. The procedure is outlined below

R' = ike % (4.37)
S' = -jke"TE0R (4.38)
R' = ikS + ix(e®?-1)s (4.39)
$' =-ikR - ix(e TE®_1)R (4.40)
where
z
W A w 2)A
ed(z) = =0y 5;1 uj +En, ;;] v (4.41)

The boundaries of the reflector are between z = 0 and z = L, and Y; and

v; are given in equation (4.2).

We define the random variable y = ik(e 18¢-1), assume it is small

and expand R and S in a series, with the nEh-term being of order X
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R = Ro + Ry + Ry + == (4.42)

S =S, + Sy S, + e (4.43)
with boundary conditions Rn(O) =8 > Sn(L) = 0. After substituting
(4.42) and (4.43) into (4.39) and (4.40) and collecting terms of order ¥
we find

R! ;

0 = kS, (444)

Sy = -ikR_ (4 45)

Ry = kS, + xS, nxl (446)

L.
Sp = -ikR + x* R 5% (4.47)

This system of equations can be solved iteratively for increasing
n. We will only consider first order and take the region of space
containing the reflectors between z=0 and z=L.

_5,(0) + 5,(0)
P R, (0)

= 50(0) + s](o) (4.48)

Solving equations (4.44) and (4.45) we find

RO(Z) = coshC: (L-z) (4.49)
So(z) _ * 1 sinh E](L-;l (4.50)

Next we combine equations (4.46) and (4.47) to find an equation for S4
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sS4 - WSy = cikxS, + x*'R, + X*R) (4.51)

Using the boundary conditions on 51, integrating by parts to get rid

of the derivative of x* and using equations (4.49) and (4.50) we find

S](O) = (l:; T [{e_iw—]) cosh2|<(L—z)
] 0 (4.52)
- (eiE¢-1) sinhzn(L-zg]dz
pe* = |S{0) + s](o)IZ A |50|2 4 5]50* N 31*30 (4.53)
ar® = ppx - |5 |2 = s (5 - 8)) (4.54)

After using equations (4.50) and (4.52) we arrive at the result
L -
Arz = —gag_h_x_l__ (2 - e-iEq)(z)._e_iC(b(z))dz
cosh™klL

(4.55)

Next we average the above equation, recalling (see eq. (4.41)) that

2
ERr - LR 2 g
Cc
2zY
" S (4.56)
Z o2 2. 2 2
o= ‘2?2‘ [n] G + n2 Gb] (4-57)
L Z
-2k S -y 2 Sq N =Ny
<Ar‘2> = 1 (-] = 5 A)dz:- 1 NY + e -1 (4.58)
o g3 y
1 1

(@]
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Finally the fractional decrease in average reflectivity is

<ar’> _ -2¢ A Ny + e MYy
—7 : ; (4.59)
0 tanh kL cosh™kL

Although this formula is simpler than equation (4,36b), it is not as
accurate as we shall see in the next section. Greater accuracy could
be obtained by including higher order terms in S.

4.5 Computer Results

The analytical results of the last section are compared with cal-
culated reflectivity values of a large number of computer simulated
stratified media. The multilayer samples were "fabricated" such that
the thickness of each layer was a random variable assuming Gaussian
distribution about predetermined thicknesses a, and bO of the ny and
n, layers respectively. The same relative standard deviation was used

for all layers, i.e. oa/a(o) = cb/b(o). The reflectivity was calculated

using the matrix multiplication method. (For a detailed dis-
cussion of the method, the reader is referred to ref. [2]).

Samples of 50 cells each were prepared this way. The reflecti-
vity was calculated for each sample every 5 cells, giving reflecti-
vity values of stratified media of 5, 10, 15, 25, 30, 35, 40, 45 and

50 cells. There were 1500 such samples. The parameters used in the

n,A
calculations were: ny = 3.6 , n, = 3.4 a(o) = n2+g = 0.4857!\D 5
172
b(o) = n1A0 = 0.51430_ (A = a(°)+b(°) = LE and normal
n.+n : o ‘"o 5 (o)
12 2n]a
incidence.
Each sample structure has a different reflection, but all are
less than R

p - <OD*>p, the reflection from a perfect structure where
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o = 0. The average reflection <R> = <pp*> is then determined as well

as O¢r> =ka2> - <R>2 , the standard deviation of the reflection. The

standard deviation of the computed quantity <R> is then determined by
O<R>

YN

was taken to insure sufficient accuracy in <R>.

where N is the number of structures tested. The value N = 1500

The results of the computer experiment are presented in Table 1.

For comparison, results are also given for the two theories. The

o g
b

. . . a _ _
results are plotted in Fiaure 4.7. Values of O, * a(o) = b(o) .02

were used.

In Figure 4.8 are the results for a structure with 10 unit cells and
various values of O It can be seen that there is excellent agreement
between the computer results and the second order theory using ¢' for

small values of O The first order theory using ¢ also gives good

results.

Finally Figures 4.9 through 4.14 illustrate the probability distri-
bution function for various reflections. The points were determined by
the computer routine, while the solid 1line represents the theoretical
prediction which is described in the next section. P(R)dR gives the
probability of a structure having reflection between R and R + dR. The
vertical axis on the left hand side gives P(R)dR with dR specified.
Figures 4.9, 4.10 and 4.11 give the probability distribution for 10, 25,
and 50 cells with relative standard deviation of 2%. Notice how the dis-

tribution is broader for 25 cells than for 10 or 50 cells.
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In Figures 4.12, 4.13, and 4.14 we take a structureof 25 cells

and plot the probability distributions for relative standard deviations

of 5%, 7.5% and 10%. The same scale is used in these three figures and

the broadening of P(R) with standard deviation is readily seen.

The computer routine used in this analysis is presented in

Appendix 4-E.
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4.6 A Phenomenological Expression for p(LpLz)

As seen from Figures 4.9 - 4,14 the value of <pp*> = <R>, while an

important parameter of the reflector, does not describe the spread

in distribution, or the most 1ikely value of reflectivity. It also

does not answer the following important question. If the value of
o is allowed to increase, how many structures will no longer satisfy
a given required reflectivity. For example from Figure 4.14 we see
that although the reflectivity from a perfect structure is almost
80%, a substantial number of reflectors reflect less than 60%. Also
it may be desirable to relax the manufacturing tolerances if this
does not lead to a large increase in the number of "bad" mirrors.
Based on Figures 4.9 -4.14 we will fit these data to the function

c
r_-r
p

_ ¢3-1 e
p(r) = 11(q_-[) (r -r)q
p

(4.60)

where r = pp* is the reflection, I' is the gamma function, rp is the
reflection from a perfect structure, and the parameters C and g are
determined from the average value and standard deviation of the dis-
tribution function.

It is easily shown that the parameters C and q are related to

the average and standard deviation of p(r) through

2
=3+ L Vo (4.61)
q 2 2
<rSs> - <r>
2 2 2
(rp - <r>) [(rp - <r>)C + (<r®> - <r>T)] (4.62)

C= 2 2

S
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From equation (4.55) we have

KS

<r> = <pp*> = rp - -——§-]~ <f> (4.63)
¢y
L fed(z)_.-ice(z)
f = J [2 - e -e” ]dz
0
-NY
<f> = ZA[.Nl_.t_.quﬂ__H:.]_] (4.64)

We need only use equation (4.55) to find <r2>. Before proceeding, an
important point should be made. In the derivation of (4.58) we neglected
terms of order S o (ei€¢-1)n v (iee)” where n > 1. The solution

(4.58) is, however, of order ¢2, indicating that terms of 52 should have

been retained.

Nevertheless the results are in good agreement with experiment
as well as the more accurate second order results and because of its
simplicity expression (4.55) will be used to compute <r2> as well.
Equation (4.55) gives us

2s 2
Zpcs - Xpn© = g [<f2> - <f>2] (4.65)

Using the results of Appendix 4-F we find

2

S -
2 2 .1 2 (A?Z (4.66)

Combining equation (4.58) and (4.57), using the definition of o, and

keeping only the Towest order term in o, we find
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= 52
1 2
rp - <r> = = N (%) (7\_‘}2] (4.67)

1

5]

or the interesting result

<> - <rs? -2 ;7% 1.15
Y Z .

I s
p

We thus arrive at values for the parameters g and C

q =12 (4.68)

S — N2
C = %_f._l. NL (%)2(](%2‘] (4.69)

which when used in (4.60) give

~ G
. =-r
o(r) = C]l/4 e P
F(]1) (r —r)]5/4
4 p

r(4) = 21 % 1.608 (4.70)

The function p(r) is indicated in Figures 4.9 -4.14 by the solid

line and agrees well with the computer results.

Finally from equation (4.70) we find that the peak of the function

p(r) occurs at the point.

r =r S L 1y (“)2 5 )° (4.71)
peak P q p 15 .3 2/ \K/? .
1
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4.7 Experimental Results

As a final example we consider a multilayered dielectric mirror
manufactured by Spectra-Physics. The structure is designated by S,
HL(LH),? Air (S = Substrate, H = High index material, L = low index
material) and is depicted in Figure 4.15. It is a quarter wave stack
for Ao = 4500 3 (except for the double n stack) with a reflection
(for a perfect structure) of .986.

Twelve such devices were built and tested and the following re-

flections were measured:

.946
.972
.966
.954
.964
.973
.974
.974
.986
.972
.980
.974

<p> ¥ ,970, <A r2> = ,016

V<r2> - <r>? = 1.09 (4.72)
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Fig. 4,15 Dielectric mirror tested by Spectra-Physics
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Reflectivity measurements are accurate to .003 and the following
calculations do not consider any systematic errors. For example, the
index of refraction may increase slightly as the sample is grown due
to changing temperatures and growing conditions.

Using equation (4.59) with the following variable values

2

<Ar™> = .016
kL = 2.34
i ('E )2 1T2
N =25

we find

<Ar2> e Kk N E? o )2

sinh L cosh xL 2 Ao/2

or — .12 (4.73)

0/2

We next check to see if this is consistent with equation (4.66) and
the experimental value of V<r2> - <r>2 given in equation (4.72). From

(4.66) and \/<r2> - <r>2 = 1.09, we find E'/AO/Z =~ .10, in approximate
agreement with (4.73).
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4.8 Conclusion

The effect on reflectivity of a statistical variation in the
thickness of layers in a Bragg reflector has been studied using the
coupled mode equations. Closed form expressions were obtained for
the reduction in reflectivity, which agreed with a computer exper-

iment. These expressions are accurate for small values of o which

is typical for most cases. A phenomenological expression for the
reflectivity distribution function p(r) was presented which also
agreed well with the experiment. Results for arbitrarily large o
values vere obtained for low reflectivity reflectors. The formulas
were then applied to a structure which was grown and results were

found to be consistent.
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Appendix 4-A
In this appendix we solve
i 2 —
Ry' - KR, = 0 (4-A.1)
and
i T N
Rn' = K Rn =4 ¢ Rn~1 s n=1,2 (4-A.2)
subject to
R(- % L) = 1 (4-A.3)
and
S(3 L) =0 (4-A.4)
where
= 2 4-A.5
R =R, + Ry + cR, ( )
and
s = - je-ied (R (4-A.6)

K
The procedure for determining R0 is straightforward and the

solution is L
cosh[K(E -2)]

cosh(kL)
The boundary conditions on R' are, from (4-A.4) and (4-A.6) R'(%J =0.

Ry(z) =

Since these must hold for all values of £ we have
Ly - Ly Creedy 2 pecly - a-pA.7
Ri(-3) = Ryp(=3) = Ry(3) = Ry(3) = 0 ( )
A homogeneous solution to (4-A.2) is given by
B, sinh[(5 + z)] (4-A.8)

where Bn is a constant to be determined. The particular solution

is given by
z
Y] i etm Ry () sinhLe(zen)lan (4-A.9)
-L/2

This can be confirmed by differentiating (4-A.9) and substituting in
(4-A.2).
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The total solution is thus 3

o L ] - ] 1 1
Ry(z) = B sinhlk(z + z)] + - i ¢'(n)R_1(n) sinh «(z-n)]dn
-L/2
The boundary solution at z = -L/2 is also satisfied and Bn is
determined through the boundary condition Rﬁ (%& = 0. The result

is given by equation (4.17).
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Appendix 4-B

We wish to solve for the expectation value of p(-%J = <p(—%)>
A
given that <¢'(z) ¢'(z + zo)> = (1 - 4,21y and using equations

(4.16), (4.17), and (4.18),

L

R (-5)> = <R(-5)> + e<R(-5)> + &2

T B
<R5(-3)> (4-B.1)
After differentiation we find from equation (4.17)

L/2
-

K30 = <¢'(n)> Ry(n) coshlk(§ -n)Idn =0  (4-B.2)
-L/2 since <¢(n)> =0

Equation (4.18) also gives

L/2
R3(-3) = E%- 6" (€) Ry(£) coshlk(5 -£)1de (4-8.3)
-L/2
We now use equation (4.17) to express Ry in terms of R and ¢'.

The result is

Ly2 2
Ry(-5)> = =5 [ J <¢'(£) o' (n)>coshlk(z - £)]
2 n

=% n=- (4-B.4)

L
2

nofr—

<¢'(g)¢'(n)> -

L/2 L/2
- cosh[k(g - n)] sinh[x(%—- n)ldedn + = {
o
&

n=

Mo
roj—

+ coshlk(5 - £)] coshlk(5 + £)] coshlk(5 - n)] sinh[x(5 - n)]dedn

From equation (4.19) we have R¢(£—n) = <¢'(£)¢"(n)> = £ (1 -- En )

The integration is quite involved unless we make the approximation
Re(E = m) % £ 8(g - ) (4-B.5)
where 6(x) is the Dirac delta function.

This is a quite reasonable approximation and is good whenever g £ << 1.
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After using

b
f §(x) f(x) dx

= f(0) fora<0<b (4-B.6)
ad
and
b
J 5(x) f(x) dx = ;— £(0) for b > 0 (4-B.7)
0
we find
\ L _ 22 £ B _]_ =
Ry (-5)> = oo [- C,Cy - Cq + 2C] + LSy - 5. 5,1 (4-B.8)

1
When this is combined with (4-R.1) and equation (4.18) we arrive at

equation (4.20).
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Appendix 4-C
The expectation value of p(—%J p*(%) is calculated in a fashion

similar to <p(-%)>

o(5) = Le [RY (-5 L) + ¢ Rj(-3 L) + % Ry(-5 L]
(4-C.1)

& (_]_ L) *(_J,_ L)> = .l__ I:Rl R'* + 2 <R! R'*> 4+

PA=2 P77 2 tRo Mg T E MM (4-C.2)

A

] ™ 1 % ]
<R0 Ri¥* + R0 R2>]

2 L

Z=~"2“
A1l terms of order £ do not contribute since <¢'> = 0 (See
Appendix 4.B)
<R0 R2* + RO* R2> R0 <R2*> + R * <R2 . <R2», the
expectation value of Ré has been calculated in Appendix 4-B. Thus

we need only determine <Ri Ri*>
L/2 L2
L L i
Ry(-3) R*(-3)> = & <" (n)e' (€)>. (4-C.3)
L
5 L2
: L . L L L >
s1nh[x(§-- n)] s1nh[m(§ - £)] COSh[K(?'- n)] cosh[x(ér- £)]dnde
using (4-B.5) this reduces to
[ _ K Zz £ 1 -
<Ry (-—0 R *(- )> b e (32 4" 8 K) (4-C.4)

C]

After combining (4-C.2), (4-C.4) and 4-B.8) we arrive at equation
(4,21).
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Appendix 4-D

In this appendix we solve Rt(zo) = <At(z) at(z + zo)> =
W
Tim =0 At(z) At(z + 2 )dz (4-D.1)
W 2W 0 :
00
-W

Equation (4-D.1) can be interpreted as

<At(z) At(z + zo)> = 03 P (z E P (z.) (4-D.2)

where Pn.(zo) is the probability that two points separated by a dis-
i

tance z, will both be in the same cell of index ;.

From reference 18 we have

a lz
0 0
P =—(1- ) for |z | < a
n1 AO ao 0 0
(4-D.3)
=0 otherwise
b r
0 0
P =—(1 - ls—l) for |z | <b
n2 AO o 0 0
=0 otherwise
%2 %
where we have assumed — s H << 1.
0 0
Ao
If we now combine (4-D.2) and (4-D.3) and take a_ v by, v 5 >
we obtain
= 20
<ptlz) Atlz + zo)> =g (1 - ) \zo| <Aysm

A0/2

= 0 otherwise.
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Appendix 4-E

Computer proaram used as a check of the analytical expressions

nay
P=Jan=78 9121104

+TY RRA.FA4
CFLOTS FORDDR (DTSTRIBUTTONY OF THE SaMEL S,
G HAS THE OFTION OF FLOTTTNG ON THE YEFROX AN S0EL TG
GO PROGRAMMED RY . AGMOND
DIMENSTION RF CE000) y DU p il 1 OO0 )
DIEMENSTON ROSOT D) s RFS 1) » SNCCAY w SRAF 4
DITMENSTON YCT0001) y X 10001 ) o 4P 020 e Y72
NIMENSTION RAX (2 Yo RAY (2D s GRESOS ) o FFAR G0 0o S350
REAL N1sN2
NOURLE FRECTSTON NAMF o FI » XNN v FF
COMMONZNAMOOT /NAMIE
COMMON/Z XGF /XL
DATA NLsND2/J. Avi. 4/
INNATA RAS/ R FelkbS /7 RIS
naTa NN/s/3%0. s
Yo FORMAT (1 X e a)
1531 WRTTE (52500
PEHO FORMATCIXy “TY NEW )
ACCERT &0 sNEW
4O FORMAT (F5H.0)
TFINEW.FQ.0YGDTO1LS
ACCERFT SO0y 1o NSME 1SY
S50 FORMAT(AR/ZTA/ )
OFENCUNTT=1 o ACCHSS= 2 GEOIH o 11 F =R
XNN= (N /ND Y kD
TTEST=1
SLRL=,21
STTl.=, 21,
SS8CL=,21
STICK=.21
READCT « 101 Ny SNy RF
194 FORMATCI ZvFS .80k 7.6)
RF=0 0] o ~XNNEXNI DY 2 01 o 4 XNNXKNT Y Y kk D
3X3 FORMAT CLX e "6 o FE By X v "N w [ R By “ s o F 1O A
READCT » 100 CRF T v Tl o NSME)
100 FORMAT (PiOF7.4)
4 CONTINUE
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ACCERET A8y NTURMTN«EMAX v EMAX o XGFF | 130 NAME
FORMATC(F1O0.3/F10.3/F 10 3/F 1037110, Z/ai

LF AT L O 3 S TOE
ORES=1, /70010
KX=DTUXKRMINGL . 5
MINX=KX

KM T N=ROX
RX:=TITURRMAX AL . 5

MAX X=X

XMAX =KX

YMAXHGMAX

ENZEEIOIN

0o 21 T=1 s NSMP
RA=RAOFRE (] )
XNG=NGMF

Ryt /A XNG

WRTTECGe 333G N » RIP
WRITE (Sv 1OSYRA Y NSMEF

FORMATCLX s 7RA= o [FA, 5 2 (R OF SAMP FSss e 14w

CONT INUE

ACCERT 49,01

FORMAT (F10.3)

DO 5 T=1v 10001
SR(T)=0,

00 2 I=1sNGME

KD TUXKE €1 )41 45

SROK) =GROK) + 1 .
CONTTNUE

R =0

N 22 K=1510001
TECSROKY o) T REK ) GO
RFK =GR (KD

N

CONTTNUE

RKF K= (KPR =1 #11TU
XER=REK /NGMEX] OO0 .
XMN=RMINKL OO0 .

XMX = RMAXK L OO0 .

YMNEO

Y MX 5 MAX

NECC=NE

GO R=GIK 00 .
ENCOTE (10« 855 0 GIE) SUFR
FORMATC QD=7 g4 1v %7
ENCOINF (s 710 FEAK) RKFK v XFK

FORMATC FEAKC(R=" "7, 4y " 2= w60

ENCODFE 15y 700y SNCINC
FORMATC % OF CELLS 7 13)

v

‘ "/.

I

¥ "W,

St S
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FRF = b

[ A e 2

ENCODE 24 701 v SRAF DY ERF o F R

FORMAT C RF'=’ o 7. 693Xy “Rm o7 040
ENCODEC 11702 SRESINIFFS

FORMAT CDIR=‘  1FES, 1)

FORMAT C/RESOLUTTON= X7 v 14)

RAX = (RA-RMIND /A CRMAX -RMINY ¥, 4, 2
REX= CRF-RMINDY Z CRMAX ~RM TN %S, 4, 2
CALL FRASE

CALL LABEL (OO0 v XMNeXMX o 1%, v “REFI UM TY 0% 07 0 ] Bt

FERMX=YMX/NSMF

CALL | ARFEL (O v O vy YMNv FERMX o 10O v @ v 21 ORI/ O Sofiabe] v

FRM=FERMXXOTY

CALL LAREL (LS. v O s YMNyFREMy 1O, v 40 "E (R “ w0 )
KI=0Q

00 3 T=MINXsMAXX

YY=GR (1)

IFOYY LUE Q5 YBOTO3

K=K+

Y(RIY=YY

CONTINLIE

FORMAT(XT6)

CALL XYPLTC(RKIyXe Yy XMINs XMAX v QW v YMAX s DTy O 1T5Y D
RAX 1) =RA

RAX(2)=1AX (1)

RAY (1)=0,

RAY (2)=YMAX /%5,

CALL XYPLOT(2yRAXsRAY sRMINs RMAX v O« o YMAX o TILw O
XF (1) =R

XP(2)=XPC1)

YRPC2y=YMAX /D, x4 .

YF(L)=0.

L.AR=—1

CALL SYSSYM(RFXyl,r o 1vRFSy2:90,)

CALL SYSSYMIRAXT vl er el e RASyZ290.)

CALL SYSEYM(2.v 7.5 o155 80P v 1050, )

CALL SYSEYM(2.v 7, v 15 SNCy 1560,

CALL SYSEYM(2ev6: 750 0126 BRAF ¢ 2400, )

CALL SYSEYM(2.98,5 o 12 FEAK s 3850, )

CALL SYSSYM(2:v8:2% 9 12y SRESv1190.)

CALL XYFLOTC(2yXF o YFP o RMTNyRMAX vy O o YMAX « 1| A1
CONTINUE

GOTO1E

END

T A
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Appendix 4-F

In this appendix we find an expression for <f2> - <f=2 where

L : -
f = [ (2 - e188(2)_g-Tea(2)yy, (4-F.1)
0
Z -3
A A
i=1 i=1

The variables ui and Vs are Gaussian distributed as described

in the main body of this paper.

2

<f > = <

(2 - ei£¢(z)_e~ie¢(z)) (2 - eig¢(z‘)

Q Y
QY—ar

- e'ig¢(zl)) dz dz'>

L.
al® - 8L f e~ ied(2) g,

0
b2 ] ctelel@) + 6.y g
00
L L : 1
+.19 J’ f (e1€(¢(z) - '-'I)(Z ))>dZ dz' (4-F.3)
00

In arriving at (4-F.3) we used the fact that lele(z) +o(z')), |
e Te(e(2) + o(2")), q4c.
We now examine the second, third and fourth terms on the right

side of (4-F.3).



L L 2 2(
—— <¢
-8L I <e"1E¢(Z)>dz = - 8L J e
0 0
L G 8L, -Ny
= -8L | e " dz = NW'(E -1)
0

We now examine

LL

‘L

¢(z) and ¢(z') are not independent.

e Telo(z) + o(2")), 4, 4z

where z' > z we can write ¢(z) + ¢(z') =

(4-F.4)

Over the region of integration

2¢(z) + q(z'-z) where ¢ and

$ are independent and Q(x) has the same probability distribution

function as ¢(x). Thus

eie(o(z) + o(z')), o 21ed(z)

> <e

2

Vi
2 .7 = . %5 (z'-2z)>
_ e-2€ <p“(z)> . 2
4zvy Yy
= & (z'-2)
= e e i

with a symmetric expression for z > z'.

term we find

wle(o(z) + 6(2")), o 4o -

12 3 - Ny
w22 L & g

In a similar manner we find

[a%]
O —r
QT

T

Wi
=
|

LR '
ieqi(z -z)>

(4-F.5)

After integrating this third



=0 z'=0
After combining our results and expanding all expressions in a

power series in ¥, retaining terms up to order W% we arrive at the

desired result

4 , — 44
2 2 _ 4 2 .4 .22 o
<f > = <f> —_3-(N|_kp) o~ BNL (.2.) (ﬁ._]
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Chapter 5

ADDITIONAL USES OF APERIODIC STRUCTURES

5.1 Introduction

In this chapter we will study some of the additional properties
and uses of aperiodic devices in optics. The use of a tapered grating
to suppress the side lobes of the reflectivity spectrum in a broad-band
filter is first discussed. The analoqgy between this device and the
method of side-lobe suppression in the Solc filter is also covered.

Next a perturbation solution to the coupled mode equations is pre-
sented, which is used to study active devices such as DFB lasers and the
effects of tapering the quiding layer or chirping the feedback corruaa-
tions.

Finally, the topics of pulse compression and optical coatings to

reduce electric field intensities are discussed.

5.2 Effects of a Tapered Coupling Coefficient

In his 1976 paper Koge]m‘kI uses the coupled mode equations in the
form of a Riccati equation (see Appendix 1-B) to obtain numerical results
for reflection from chirped gratings and tapered gratings. The gratings
are corrugations on the surface of a dielectric waveguide as we con-
sidered in previous chapters. Figure 5.1 is a typical result of the broad-
ening of the reflectivity spectrum with increasing chirps.1 The notation
has been modified so as to be consistent with that used in previous
chapters. It was shown in Appendix 2-A that the reflectivity for frequen-

cies that reflect from arating reqgions sufficiently far from the grating
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edaes is given by 1 - e_(“Kz)/Y. The values of the reflectivity in

Figure 5.1 for small L are in agreement with the above formula. The
plot is also in qualitative aareement with Fiqure4.3 which is a plot
of the reflectivity spectrum of a chirped slab reflector.

A further interesting effect observed by Kogelnik which has not
been covered in this thesis is that of a tapered grating; that is, one
in which the period is constant, but the depth of the corruagation varies.
Figure 5.2 is a plot of the results. The form of the coupling constant

was taken as
Tz _L)Z
k =k (1 - 17 + ————jz*ﬁ (5.1)
0 1 L2

with T being an adjustable parameter; a positive T value represents a
corrugation that is shallower near the center of the gratinag than near
the edaes, while a negative T value represents the opposite. The arat-
ing region is located between z = 0 and z = L. The key result of
Figure 5.2 is that the side-lobe levels of the response characteristics
are strongly dependent on the T value. For quadratic tapers the side
lobes are strongly suppressed if the incident Tlight first encounters a
shallow grating, then a deeper arating, and finally a shallow arating.
Thus, while a chirped grating increases the filter bandwidth, a tapered
grating serves to suppress the side lobes. Cross, Matsuhara, and HT]]Z
also investicated this effect using various taperina functions such as
the Hamming function, raised-cosine or Hannina function, the Blackman

function, and the Kaiser function. This effect, which results in lower-

ing side-lobe response, occurs in other devices as well. For example,
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it is well known that Tight incident on a slit will produce a far field
pattern with side lobes. However, if the slit transmission function is
tapered, for example by using a variable transmission filter with maxi-
mum transmission near the center and decreasing transmission near the
edges, then considerable side-lobe suppression will result.

A further, novel application of this concept was investigated by
§01c in his study of the goTc fi]ter.B The original gb]c filter con-
sisted of a periodic stack of birefringent elements of equal thickness
placed between two polarizers. If the optic axis of the nth layer was
rotated by an angle (-1)"o with respect to the n-15t layer, then the de-
vice would transmit only one frequency of light. The bandwidth of the
filter narrowed as the number of layers was increased, but the response
characteristic contained side lobes as in Figure 2. These side lobes
were later suppressed by §01c when he "tapered the anqgles" through which
adjacent elements were rotated. That is, by destroying the periodicity
of the filter and rotating the birefringent elements near the center of
the filter by more than o and elements near the edge of the filter by
less than a, the side lobes were greatly reduced.

If we integrate equation (1-B.9) of Appendix 1-B for the case of

low reflectivity (R'(z) = const = 1) and 4 = 0 (no chirp), we find

5'(0)] = j <(z) e*1287 g, (5.2)
|S'(0)|, which is the reflectance, is simply the Fourier transform of
the coupling constant k(z). If «(z) is a constant between z = 0 and

z = L, and zero outside this reaion, then |[S'(0)| will be a sinc Function
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with side lobes. On the other hand, if x(z) is a Gaussian, then
[S'(0)| will be the Fourier transform of a Gaussian which is another
Gaussian, and thus [S'(0)| will not contain side lobes. Thus, this
interesting effect is readily apparent in the Tow reflectivity Timit.
Since the far field pattern resulting from light incident on an aper-
ture is the Fourier transform of the near field pattern, it is also

apparent why a "soft" aperture eliminates side lobes.

5.3 Perturbation Solutions to Aperiodic Bragg Reflectors

Although numerical methods must be employed for solutions to prob-
lems with the most general chirped or tapered gratinas, it is possible
to use perturbation techniques for cases of small variations. This was
demonstrated in Chapter 4 , where a statistical analysis of Braga re-
flectors was presented. Streifer and co-workers4 have also used this
technique. We start with the coupled mode equations given in equation

(1-B.5) of Appendix 1-B, but include the possibility of gain or loss for

which (1-B.5) must be modified by replacing ¢ with 6+ ia = iu
where 2a is the power loss or gain per unit length with o > 0 for loss.

After combining equations (1-B.5) of Appendix 1-B, we find

2

R" - (u% PR = -u'R+ (5 + i6') (R +1R) (5.3)

where the primes denote differentiation with respect to z. The arating

is in the region 0 < z < L and the period is assumed to vary according

to

cos(g%g + o(z)) (5.4)



-172-

The variables in equation (5.3) are taken to vary as x = Kot K1(Z),
W= pgt u1(z), R = Ro(z) - R1(z), where the terms with the subscript one
are assumed small and the R1 term represents the forward traveling wave

correction due to nonzero ¢', 4 and Hq values.

It is then straightforward to show4 that the reflectance is given
by
ep(-ig(0)) (%o S
o(0) = Lexelig T+ | ) Ry(e) (5.5)
0
where
.
Uy = ZKOK]RO + (zu1 + ig' + E;)(Ro + “oRo)
2 _ .2 2
= UO + KO

2 = vy cosh yL + My sinh L

{v coshly(L-2)] + y_ sinh[y(L-2)]1}

Q)=

R,(2) =

Ro(z) is, of course, the solution for the case ¢ = 0.
Figure 5. 3 is a plot of the filter response for simultaneous linear
variations in coupling strength and periodicity.4 The variations are taken

as

i

k(z)

KOE] + g %% ]

E(%JZ 22 (5.6)

S
|

Notice that for positive e, there is a larger response for positive &

values (shorter wavelenaths). This is easily explained. The grating
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Fig. 5.3  Filter response for simultaneous linear variations in
coupling strength and periodicity. (After reference 4.)
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depth is larger in regions where the grating period is smaller, and thus
these regions interact more strongly with the incident beam. This occurs
in regions where z is greater and the light travels a greater distance,
resulting in increased gain. The opposite effect occurs for negative €
values.
In Figures 5.4 -5.6 we have plotted the contours of equal reflectivity
E (o) 2
ﬁTU%, ) as a function of various chirp fac-
2 21 8e

tors. The grating period is taken to vary as AT - —TUT-+ ~—-z. The

(reflectivity =

oscillation condition for a DFB laser is that the ref]ect1v1ty be in-
finite (no input and a finite output) and this condition on the aain
and frequency is determined by the poles of the contour pTots.5 It is
seen that, to first order, the poles do not shift as the chirp is
increased. It is readily apparent, however, that the contours are pulled
in closer to the poles as the chirp factor € is increased. This is to

be expected, since for a chirped structure the reflectivity will drop.
Thus, for example, a contour of reflectivity equal to 600 (contour F)
must be drawn closer to the pole as the factor £ is increased.

It should be noted that the gain condition for laser oscillation
is changed either as a result of grating aperiodicity or, alternatively, if
the grating is uniform, by a tapering in guide thickness. In the latter
case, for a guide whose thickness is given by w + 9z, the appropriate ¢

value to use 156
2

2 B
mL=(n% - n )
. £ Nefs! 9 (5.7)
2ho Wops Nags

where Negs 1S the effective guide index, ne is the quide index, Wogg 1S
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the effective guide thickness, and Xo is the wavelength of light in
vacuum.

The perturbation analysis presented above is too crude to give
results which show how the gain condition for laser oscillation changes
as the guide thickness is tapered or the period of the grating is
chirped. For a more accurate analysis, we break up the nonuniform re-
gion into a series of nine approximately uniform regions. The transmis-

sion and reflection properties of each of these nine uniform regions is

determined. After the transfer matrix of each region is determined, the
matrices are multiplied together, and the oscillation condition thus de-
termined.

In Figures 5.7 and 5.8 the gain required for oscillation of the first
four Taser modes is plotted for xL = .4 and kL = 2.0. It is seen that
the gain condition for the lowest order mode increases, while the gain
required for higher order modes drops slightly as an aperiodicity is
introduced. As the chirp is increased, the modes become intermingled.
For a DFB laser 500u long and A = 3500%, the right side of the plots in

Figures 5.7 and 5.8 represent a change of 1% in the grating period..

5.4 Pulse Compression

A chirped grating or zone plate can also be used to compress a
signal. Referring to Figure 5.9, which is simply the broad-band filter
discussed in a previous chapter, we see that if a chirped frequency
pulse of light is incident on the reflector it may be compressed. For
example, if the high frequency part of the signal is leading, it will
be delayed upon reflection, since it is reflected from the far right

side of the reflector, while the trailing low frequency liaht is
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reflected from the closer left side of the reflector. A narrow pulse
which has been broadened after traveling through a long dispersive
single mode fiber may be partially compressed again by this device.
Figure 5.10 is reproduced from Kock's artic]e.7 A short pulse of
light has been directed at the entire zone plate and upon diffraction
is focused to a point. Some parts of the incident pulse must travel a
greater distance before returning to the point of focus, and thus the
short incident pulse is broadened (Fig. 5.10b). This process can also be
reversed (Fig. 5.10c); a rapidly rotating plane mirror (marked horn in
the fiqure) first il1luminates the more off-axis (more distant) portions
of the zone plate; later, through its rotational motion, it illuminates
the nearer portions. Since all areas reflect the single-frequency waves
back toward the focal point, all parts of the long reflected pulse can be
made to arrive at this focal area at approximately the same time by mak-
ing the rotational motion of the mirror match the travel times of the
various portions of the outgoing pulse. A similar effect can be
achieved with a uniform grating, but in that case a chirped light signal

must be used, rather than a "single frequency" pulse.

5.5 Use of Aperiodic Dielectric Mirrors to Reduce the Electric
Field Intensity

High electric fields within dielectric mirrors reflecting intense
pulsed laser radiation can damage the mirror.g This damace is a result
of absorption and the consequent heatina of the dielectric layer; the
exact mechanism is not understood at this time. Several theories have

been proposed, includina damage resulting from thermal induced stress
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within the fi]mg and the heating of the material to the point of melt-
1ng_10

Typically, the damage occurs in only one of the two dielectric
materials being used in the mirror. Thus if a method can be found to
suppress the peak or maximum value of the electric field intensity
within the critical layer, the resistance to laser damage will be in-

creased, Apfell1

has suggested coating a conventional quarter-wave
stack with additional layers of varying thickness, and he has described
a method of design so as to minimize the light intensity inside the
easily damaged dielectric material (at the expense of the stronger mat-
erial). In Figure 5.11 the intensity distribution within a conventional
quarter-wave stack is shown; it consists of layers of index N, and nq-
We assume that the layer with the intensity profile shaded is the
easily damaged layer (of index ”2) which must be protected. This is
done by adding two additional layers to the stack. The first added
layer of index n, is slightly thicker than the quarter-wave thickness,
while the second added layer of index n, is slightly thinner than a
quarter-wave thickness. The modified structure with resulting intensity

N It is evident that the maximum

distribution is shown in Figure 5.12.
field has been reduced in the critical Tayer of index no,. The con-
straints which Apfel places on the two added Tayers in order to calcu-
late their thicknesses are that the reflectance of the total multilayer
is a maximum and that the peak field intensity within the added n, layer
equals the peak field in the next high index layer. This second con-

dition is evident in Figure 5.12, where it is seen that the heights of the



h: doUadD lad f_m_u:d_,.ﬁ_

"JOMALW D14D3|ILP }0R)S IARM-AIIUEND © SPLSUL UOLINGLUISLP AJLsudiul  |L*G ‘Bt

-185~

e .. ‘\s
‘@Ns AN -




-186-

("|| 82UBJd3434 4313Y) "8JRIJNS DY) UO SUBAR| |RUOLYLPPE
OM} U3 LM 404U Ll DL[UFIBLBLP 3OBIS SABM-U3JJeNb © BpLSul UOLINGLIFSLP AFLSUBIUL  2|°§ ‘b4

2ns P 1A 4




-187-

first two shaded regions are identical. For even greater field reduc-

tion, additional Tayers may be added.

5.6 Conclusion

In this chapter additional properties of aperiodic structures were
covered. The possibility of using tapered gratings to suppress the side
lobes of the reflectivity spectrum in broad-band filters was discussed.
Next, in order to study effects of varying the thickness of the active
layer in DFB lasers, a perturbation solution to the coupled mode equa-
tions was presented. It was found that the gain condition was altered
more in some modes than others.

The possibility of coating a quarter-wave reflector with additional
layers of varying thicknesses for the purpose of reducing field intensity
in the reflector was reviewed. The process may be very useful for

mirrors designed to operate with intense laser pulses.
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PART 11

THE TRANSVERSE BRAGG REFLECTOR LASER
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CHAPTER 1
INTRODUCTION

It was shown in Appendix 1-A that the guiding of 1ight can occur in
a quide whose index of refraction is laraer than the surrounding material.
Since the medium surrounding the guiding layer is of lower index, the
electric field is evanescent in this reaion and the liaht is confined to
the high index region. It is possible, however, to confine the liaht
within a Jower index region if the material adjacent to the low index
region is a multilayered reflector medium.

In a conventional guide, the 1ight is confined as a result of total
internal reflection with the adjacent lower index material. In the Bragg
structure, the light is reflected coherently from successive dielectric
interfaces and thus the guiding layer can be of arbitrary index. This
mechanism of guiding will be referred to as Bragg waveguiding.

In 1970, E. A. AshI originally suggested the possibility of replac-
ing the conventionally used low index substrate with a lTayered medium.
Four years later A. J. Fox2 presented a plane-wave theory for this device
which he called the integrated optics grating guide. Fox analyzed the
problem by finding a transfer matrix relatina the field in one layer to
that of the adjacent layer. Subsequent to this, Yariv, Yeh and Honq3’4‘5
analyzed in detail, by using a Bloch wave formulation, the problem of
electromagnetic propagation in layered media. This general analysis in-
cluded as a special case the propagation of light in a Tow index guiding
region.

Recently this guiding has been demonstrated6 in structures grown by

Molecular Beam Epitaxy (MBE), a technique of crystal growth which allows
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7 The

great flexibility and accuracy in the growth of layered media.
successful demonstration of guiding in a passive structure immediately
suggested the possibility of growing injection lasers either by MBE or
LPE (Liquid Phase Epitaxy) which would contain a periodic layered medium
adjacent to the active layer.

Although a thick active layer may support several transverse modes
(normal to the junction plane), the Bragag reflector would not reflect,
and thus confine, all of these modes to the same extent. Thus it is
possible that the Transverse Bragg Reflector Laser (TBRL) would provide
a means to discriminate against certain poorly confined and thus high
Toss modes. It should also be pointed out, that unlike the conventional
high index guide, the TBRL structure makes it possible to quide light
with arbitrarily low losses in a layer of air surrounded by Bragg reflec-

tors:.*

*Actua11y, lossy (leaky) guiding is possible in a low index (compared
to surrounding material) quide, but the losses are usually quite high
and the loss constant increases as the third power of the reciprocal
thickness of the inner layer.



1s

= W ™

ks

-192-

CHAPTER 1 REFERENCES

A. Ash, "Grating surface wave waveguides," presented at

International Microwave Symp., Newport Beach, CA., May 1970.

A.
Ps
P
P
A.
A.

J. Fox, Proc. IEEE 62, 644 (1974).

Yeh, "Optical Waves in Layered Media," Caltech Ph.D. Thesis (1978).
Yeh and A. Yariv, Opt. Comm. 19, 427 (1976).

Yeh, A. Yariv and C. H. Hong, J. Opt. Soc. Amer. 67, 423 (1977).

Y. Cho, A. Yariv and P. Yeh, Appl. Phys. Lett. 30, 471 (1977).

Y. Cho and J. R. Arthur, Progress in Solid State Chemistry, Vol. 10,

Part 3, pp. 157-191 (Pergamen Press, 1975).



-193-

Chapter 2
THEORY OF BRAGG WAVERUIDES

2.1 Introduction

In this chapter design considerations and the loss constant of a
transverse Braqq reflector laser are studied. The condition for maximum
confinement of light inside the active reaion is used in order to mini-
mize radiation losses into the substrate; thus a quarter wave stack is
used as the reflector region. The substrate losses are then determined
in order to find an expression for the imaginary component of the index
of refraction of the active region required for steady state conditions.

Finally the loss constant a is calculated.

2.2 Design of Structure

The use of periodic structures in injection lasers is not new. Dis-

tributed feedback (DFB)]’Z’3 and distributed Bragg reflector (DBR)4

structures have been used to provide feedback and longitudinal mode
selectivity since the work of Kogelnik and co-workers in 1971.5’6
A grating is used to provide the feedback, rather than reflection
from the cleaved ends of a Fabry-Perot cavity. The use of a periodic
structure perpendicular to the junction plane to provide confinement and
mode selectivity (transverse) is new.

Figures 2.1 and 2.2 show a typical Bragg wavequide and field dis-
tribution for the case ng <ny. The case of a symmetric Bragg waveguide
structure is depicted in Figure 2.3. Figure 2.4 indicates how the field

7
structure changes for the case ng > Ny It has been shown that, for

maximum confinement of 1ight,the electric field or the rate of change of
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the electric field with respect to the x direction must be zero. Refer-
ring to Figure 2.5, the conditions for maximum reflection on radiation

traveling toward the right are:

i
o

Ey(x= interface, type A) hiah index on right

a%i(x= interface, type B)
X

=0 hiah index on left

Using these conditions and referring to Fiqure 2.4 , we have for

the case ng > n]

Ey(x) = ¢os kgxx "ty < x <0 (2.1)
kaxx

Ey(x) =Ae L R LA (2,2)
. em 2

kqx = N nq Nafe (Z.3)
_2m 2

kax - Ao Nefr = M (2.4)

A= Zn wavelength i

5 Eg av g n vacuum

We have suppressed the e182 factor and for the moment will concen-

trate only on the field in the guide and cover (superstrate) regions.
oE
Matching the boundary conditions on Ey and giz-at X = —tq, we arrive at

the following eigenvalue equation

tan(kqxtg) = r"ﬁ (2.5)

If we assume that ngs and A have been specified, then the easiest

W
way to design an optimum structure is to choose an arbitrary Neff?
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A) B)
N2 n n Na
z
z

. .

dE(x=0) _

E(":O):O ax = O
n, > ny
Fig. 2.5

The field condition at dielectric interfaces
for maximum confinement. (Field incident from left.)
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Ny < Nggge < ng,and use equation (2.5) to solve for tq. Next we must
solve for the thicknesses of the layers t, and ts in the reflector re-
gion. It is well known that maximum reflectivity is obtained with a
quarter-wave stack, and now that the dynamical variable Neff has been

chosen, it is a simple matter to calculate t] and t,

t'i = .2_E.T_ 'i = ]’2 (2.6)
1X
o [7
Kix =%, VM T Mers (2.7)

Note that eigenvalue equation (2.5) is the result of consider-

ing the case ng > Ny, For the case ng <N, we must have

Ey(x) = §in kqxx —tg <x <0 (2.8)
kX
= ax o0 o < -
Ey(x) = Ae - X < tq (2.9)
with resulting eigenvalue equation
( ) ;95 ( )
cot(k t ) = - 2.10
gx g gx

The case where ng >N, is of greater importance in the work to follow,
since the lasers tested were of this design. The steps involved in de-

signing the laser are summarized in Figure 2.6.

2.3 Calculation of the Loss Constant

As is evident from Figure 2.4, the electric field is not evanescent
in the reflector region, but is oscillatory under an exponentially decay-
ing envelope. For any real structure with a finite number of periods,

some of the field will leak out into the substrate, and in order to
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satisfy a steady state condition, it is required that enough acain be
produced to compensate for these substrate losses. In other words, the
index of refraction of the guiding layer must be complex in order to com-
pensate for the substrate losses.

We start with the wave equation and the usual assumed form of the

solution for coupled mode calculations:

VE, + (kZn® + K n*?)E, = 0 (2.11)
£, = R(x) o (K/2)x (182 | g(y) o 1(K/2)X o162 (2.12)
where
w = radian frequency of light
¢ = velocity of Tight in vacuum
2
a5l

A = period of reflector

K = 2n/h
sn'’= index variation = —(an) sin(kx) (nq > n1)
R(x) = amp]i%ude of incident field (field travelina toward the
right

S(x) = amplitude of reflected field

Note the importance of the proper sign and phase of 5n'2.

6n12 = +6n2 sin kx would be the proper choice only if nq <Ny, and in
neither case would anzcos kX be correct with a coordinate system

chosen for which x = 0 is the guide-reflector interface.
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If we combine (2.11) and (2.12), make the usual coupled mode ap-

proximations (ignore R"(x) and S"(x)) and collect "coherent terms", we

find

R' - i8R = -nS (2.13)
S' + i8S = -nR (2.14)
with

2

_ 1 2 .2 2 k
gl = s (kO n - g - T) (215)
n = E———T—k“ y k2"| = (2.16)

1x " 2% A

L = length of reflector region = NA
N = number of periods

The solutions to (2.13) and (2.14) are

S(x) = sinh[ n -8 (x-1)] (2.17)
R(x) = - ———s1nh[\!n - 62 (x-L)] - dn =8 cosh[ Jn = ﬁ (x =
(2.18)

These solutions are valid for x > 0. The solution at x = 0 is

E,(x=0) = S, 1Bz 4 R, otiBZ (2.19)
S0 = S(0)
R0 = R(0)

The solutions in region g (guide) and region a (cover region) are,
respectively,

-ik_ x +ik

E(x,2) = (S; e 9 +R e 9x7y o182 ~t <x<0 (2.20)
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y [ -ik__t k  (x+t )
E(x,2) = (S.e 994+ R ¢ 9%9) 23X 9" ¢1BZ (2.21)
b 4 o] 0
~o <X < -t
After matching 9E/9x at x = —tq, we find
2ik _t

ik (s/R)e 994

gx . 20’ o (2.22)

k - 2ik _t
ax ax
1 - (SO/RO) e

where from equations (2.17) and (2.17)
0 sinh( JnZ_ 2 L) (2.23)

ﬁ_—=

0 _ .
Eﬁzi;zgz cosh(yn“=6° L) - lH‘S-sinh(\lnz— 62 L)

W

(2.24)

1]
==1}
]

m

For most cases of practical interest the reflection from the multilayered
medium is quite high and thus ¢ << 1. For e = 0, ng is pure real, and to

first order in & we may take

k = k__+ ise (2.25)

where k o is a real number and s is to be determined. Combinina equa-

tions (2.22), (2.24) and (2.25) and equating parts of similar order in ¢

we find
th kax
0N order tan(qutg) = EE;— =tan(kgxtg) (2.26)

This is just the eigenvalue equation given by equation (2.5).

Next we equate terms of order € and arrive at
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15t order § = —F (2.27)
S 2 sinc(k t )(k1 < B
A ax sin k.t
r
_ -1
= Zkax (2.28)
Gty ¥ g
(kS + kS.)
gr ax

Equation (2.26) was used in arriving at (2.28) from (2.27). Refer-

ring to equation (2.24)

T sinh( Vn2- 62 L)

,/nz- 62 &
T cosh( vn _8% L) - lﬁ-sinh(Vnz-éz 1

[ 2 2 .
e = V= 87 otninl- s2 L) - 17 - lnﬁ (2.29)

n

Thus after combining (2.25), (2.28) and (2.29), we have

kgx kér + ikgi
A 8/n
qu = Kyp €] (2.30)
z[tq + —é-———?J
2 k™ + k
qar " a
[ > \
‘L—l;‘-s-— coth(\/nz—éz L) = 1 |
Kgi = Lt e = (2.31)
2ty + 5]
kgr+ kax
with tan(kgrtg) = kax/kgr'
s 2 L 2 gl 2 s s : ;
Since kgx = ng ko - g%, it is easy to show that in order to oscil-

late, the index of the guide must be complex and
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k
r
— 38
o ''gr

n is the imaginary part of the index in the guide, qu = kqx is

gi
determined by equation (2.26), ngr =~ n_ is the real part of the index, and
kgi is given in equation (2.31).

If we examine (2.31) in the 1limit of high reflectivity (large nL)

and § = 0, we find

-2nL
ki = s nk (2.33)
a
tu N 2 2
ke +k
ar = ax
or
-k -2nL
. qr e
Ngi 2 (2.34)
o] ngr . * -——‘39%r
9 K24k
ar a

In Figure 2.7 the imaginary part of the index of the active reaion is

plotted for various conditions. The quide parameters were those of the

laser which was tested, and are given in Fiqure 2.12 and equation (3.1).
Next we calculate the loss constant o which is defined by

a = (dI/dz)/I, where I is the light intensity. For the waveguide con-

sidered
Sx(x=L)
o = r————'—*
[ 5,00 ax

-0

< ; 1 x : : a
where S = Poynting vector = E—Re(E x H*). Physically, o is simply the

(2.35)
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Fig. 2.7 Imaginary part of the index of the active region required
for steady state condition as a function of the number of
periods in the reflector layer



-208-

power loss into the substrate per unit lenath, divided by the total
power flow in the z direction.

From the previous section we have

Ex = EZ =0 (2.36)
E (X Z) = R(X) e'i(KX)/(? e'iBZ. s S(X) e—'i(l{)()/z e‘iRZ
e ’
0 <x <L (2.37)
-ik __x ik, X .
ax ax 1Bz . P
Ey(x,z) (S0 e + RO e ) e . tq<:x -0 (2.38)
k. & -ik_t ) k__(x+t ) .
_ ax a ax q ax a 1Bz
- < X< —t
H =33 ¢ _-Bg i (2.40)
X wy 29Z Yy wy Yy :
_ =13
Hy = n 5% By (2.41)
_ ] -B 2
S, = 7 Re(EHY) = 550 IE| (2.42)
S =+ Re(E_H*) = »— Im(E. 2= E*) (2.43)
x 2 yZ 2w y Ox
Using(2.36) through (2.43), it is straightforward to show
5 {x=l] = (_rf:_*S_ZIE (2.44)
; :
An~ wy
L 2Nne-s2 L [ 2 |
I |E |2 dx = e 1 + 4(7‘] -4 )2+ %(‘)K (2 45)
0 Y . Lf/HZ-Kz n[K2+ 4(n“-67)] '
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0 2 .
=0 8

j IE. |2 dx = 2\n?-6% | I sin(2k .t )

+ Y L q n Zkﬂx

-t 1 g

S 2k .t
= 9 + COS( ax g) (2 46)
nkqx n kqx *

cos(quxtg)

_'t f E 2 ~
2 _ e2 n--8 2NInT=6
|E | dx 3 2 + &XL 0
J Ty e n

28 .
- ﬁ_'51n(2kgxtg) (2.47)

Finally, after combining (2.35), (2.44) through (2.47), and using
the eigenvalue equation tan(kgxtg) - kax/kgx to simplify the result, we
arrive at the final result for the loss constant o

2
28 Sk
-
-2Vn"-§ L] %4[; + e n n

62 K
OL=[(1-—2-)-8-6
n

1 1 vno-8 28 1 k
tg - Tl ke Tl \2-45)

Jn2~52 "Rax ax ax |

This result simplifies somewhat for the case & = 0,
-2nL
Lo <e for & = 0 . (2.49)
0 a{t + 2n & _l7+ 1
I %+ an 2n E;;

The key steps involved in calculating @ are outlined in Figure
2.8, while in Figure 2.9 we have a plot of a as a function of the num-
ber of periods. Equation(2.49) was used for this plot and the device

parameters are those of the actual laser tested, and are given in the
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Fabrication and Testing section. Figure 2.10 1is a comparison of the
effects of other Al concentrations with that of the actual device for
which the reflector layers were A1_256a.75As and A1.10Ga-90As. All other
parameters such as quide thickness and Al concentration in the super-
strate are the same for the four curves.

It is well known that if k ; and k2x differ substantially, the

]
coupled mode equations still aqive surprisinagly accurate results, despite
the fact that they were derived under the assumption k1x LY k2x' Neverthe-
less, because of the larqge differences often encountered in k1x and k2x’

a modification must be made in expression (2.15). Differentiating equa-

tion (2.15) we obtain

20k
B 0.2 B
AS = = [n ko -8 SE';]
2 2 . af
6 = &30 * = [n kO - B ‘(—ﬂz—] AkO (2.50)

If we evaluate & around the point § = 0 or, in other words,

near the frequency for which § = 0, we have

. 2 r 2 (0) 5B

1}
o

ko value for which §

0.

n
]

Ao value for which &

Using the above equations, together with Aén) = 89003, and guide

parameters as aiven in the section on laser fabrication, we find
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§ ~ -693 Aho

where AAO is aiven in ﬁ.
It is easily verified that the major effect of & occurs in the

exponent of equation (2.48). We thus find

P mIL

0 s § << 1

Figure 2.11 is a plot of the increase of the loss constant a as
the lasing wavelength is varied about the central wavelength for which
the structure provides maximum confinement. The structure drawn in
Figure 2.12 does, in fact, represent the device which was later tested.

Of course the power flow into the substrate is exactly balanced
by the power generated in the quide due to the complex index of refrac-

tion. This can be shown as follows:

Power aenerated by complex n, per unit volume = %— (P*E )
N 2
=g ngrngilEyl
- T -
where Py = polarization = s:o(ng 1)Ey
n_ =n + in _. ) n_ . <<n

g gr g1

In order to find the power generated per unit length of active

region, we must integrate along the width of the guide.

Power generated/unit length of quide = €W nqrngi
0
Ewn_n_. sin(2k__t
x J jEy]2 dx = -9 drgi ,2nl [t -—?P—*——iLJ (2.51)
-t
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where &= 0 has been used for simplicity. If we equate (2.51) to the

i B = ¥ :
power flow into the substrate, Sx(va) = Top o e find
-2nL
N ; STRTZK_t) (2.52)
26 pegng(ty + —g—=—)
g o

. . 2 . .2 N i

If we now use [s1n(2kgxtg)]/ 2kgx = kax/(kgr+ kax) which is a re

sult of eigenvalue equation (2.26), as well as kgr & kgx’ ngr = ng, we

find that (2.52) and (2.34) are in agreement, provided
; = Koy (2.53)

or kGx A=m

In order for the coupled mode equations to be valid, klxrkax“’kqx
thus (2.53) is just an expression of the Bragg condition.

Fox3 obtains a simple expression for the loss coefficient o of a
symmetric Bragg guide as shown in Figure 2.3.
-8.686 kgx 109QE

Btg

(2.54)

o =

where p = reflection coefficient.
Using the coupled mode theory, 6§ = 0, p = So/Ro’ and equations

(2.23) and (2.24) we find

10g,p = loge(1 = 2e74h) = -2e”#M

17.372 k
o = —'——-'é'f——-—gi E-an (2.55)
q
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2.4 Conclusion

In this chapter a simple method for the design of a transverse Braga
reflector laser has been presented. This method was based on the require-
ment that maximum confinement of light be provided for the radiation
within the active region. The imaginary component of the index of re-
fraction of the active region was then calculated, assuming steady state
oscillation and the Tloss constant o determined. It was found that a
device with 4 to 5 periods would reduce losses into the substrate to the
point where they were comparable to losses due to light coupled out the

cleaved ends of the laser cavity.
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Chapter 3

FABRICATION AND EXPERIMENTAL RESULTS

3.1 Introduction

This chapter describes the fabrication and testing of the first
transverse Bragg reflector laser. The device, which was grown using
liquid phase epitaxy, was designed so as to support only a Bragg reflec-
tor type mode. A thin active layer and asymmetric structure makes con-
ventional gquiding impossible. The laser was then tested and the longi-

tudinal mode spectrum and transverse mode profile measured.

3.2 Fabrication and Testing

The design of the first transverse Braga reflector waveauide is
shown in Figures 2.12 and 3.1. It was grown by Willie Ng and P. C. Chen
using liquid phase epitaxy, and consists of a GaAs substrate, followed
by nine layers of A1_]OGa.goAr—A1.25Ga.75Ar, the active region of pure
GaAs, a superstrate of Al 4Ga 6Ar, and a GaAs cap. The Al 4Ga 6Ar is p+
doped with Ge to a concentration of 1018cm3. The substrate is nt doped

. . 18 ,...3
with Sn to a concentration of 10"~ /cm

doped to a concentration of 10]7/cm3. The index of refraction profile

and the entire region is n

is shown in Fiqure 2.12 along with the expected field distribution.
Important design parameters are indicated in this figure and in addi-

tion, at A = 8900 A we have
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kK = 7.06 x 10%/m

Nefs = 3371

_ 6
kax = 3.96 x 107 /m

(3.1)
k. = 8,72 % 10%/m

gX

k. = 4.07 x 10%/m
T b

k., = 7.15 = 10%/m
2x ’

Figure 3.2 is a plot of refractive index of A1xGa1_xAs at

1.38 eV and is very useful in the design of the laser structures. A
thin layer of Au-Zn was evaporated on the p+ side of the device to form

a contact, after which the laser was lapped down to a thickness of about

100 u. The substrate side was then coated with Au-Ge and the sample
was annealed in flowing hydrogen at 400° C for approximately 5 minutes,
or until a color change was observed. The sample was then cleaved into
lasers with dimensions of 250 p x 500 p on the average.

Before growing the sample by LPE, several lasers were grown using
MBE, but because of restrictions on the MBE apparatus only samples with
pure GaAs (rather than A1.1Ga‘gAs) and A1_256a_75As could be grown. As
the Al concentration in GaAs is increased, the bandgap increases and the
index of refraction drops. Thus 1ight generated inside the GaAs active
layer is strongly absorbed in the MBE structure, but is not absorbed in
the LPE structure which contains only layers with A] outside the guiding
region. Since the majority of the radiation is outside of the active

gain region it is impossible for a device to lase if the material out-
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side the pumped region contains highly absorbent GaAs. Figure 3.3
(courtesy of Al Cho of Bell Laboratories) is an SEM of the MBE sample
containing pure GaAs in the reflector region, while Figure 3.4 is an
SEM of the LPE growth. The great precision in MBE growth is evident
from Figure 3.3.

It should be noted that although the guiding of light in a guid-
ing region of index lower than that of the surrounding material is
possible with Bragg waveguiding, it was not demonstrated in the laser
tested. Because of the problems with absorption, pure GaAs (high in-

dex) must be used in the active region, while lower index A1x6a1_xAs

is used in the other regions. It is well known that for an asymmetric
dielectric guide, a cut-off thickness exists for guiding. That is,
for guiding layers of thickness below a certain cut-off tc,no propa-
gation is possible. For symmetric structures, the guiding layer can
be arbitrarily thin and guiding is still possible. For the asymmetric
laser design shown in Figure 2.12 the cut-off thickness is approxi-
mately 900 ﬁ at the lasing frequency. Thus guiding in the conventional
sense is not possible and any modes must be of the Bragg Wavequide
type with field profile as shown inFigure 2.12.

The samples were pulsed at a rate of 140 hz with a pulse width
of 10 usec. Figure 3.5 is a plot of light output as a function of
current, indicating a threshold of about 4 amps or 5 ka/cmz.

Figure 3.6 is a plot of light intensity as a function of wave-
length. It is evident that approximately ten longitudinal modes are
lasing. The mode spacing is approximately 2.8 3 and agrees well with

what is expected for mode spacing in a Fabry-Perot cavity
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Fig.3.4 SEM of a Liquid Phase Epitaxy structure.
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B = n k £ =

off Ko £ = pn (3.2)

eff A

p integer

after differentiating equation 3.2 we find

2
A
Bk & —miB = (3.3)
eff
2£[neff ) ]
aneff & N
For AO = e - 0.25, neff = 3.37, Xo 8670, and £ = 350 v

(the measured length), we obtain Ax = 3.0 R. This is in agreement
with Figure 3.6, thus verifying that the measured modes are longi-
tudinal modes.

A final important measurement is that of the transverse mode pro-
file. This is shown in Figure 3.7 | where three oscillations under a
decaying envelope are apparent, thus indicating Bragg Waveguiding. It
is expected that each peak of the intensity profile decreases by a fac-
tor of (kzx) )from that of the adjacent peak. This is verified
in Figure 3

The apparatus for measuring the mode profile consists of a x43
microscope objective which images the near field onto a galvanometer
mirror which reflects the 1light through a 30 u slit and into a photo-
multiplier. The D.C. voltage which is used to rotate the mirrors is
measured by the x-input of an x-y recorder, while the output of the
photomultiplier is measured by the y-input of the plotter. The sche-

matic of the apparatus is shown in Figure 3.8.
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3.3 Conclusion

An analysis of Braga waveguiding has been presented and expres-
sions for @, the loss constant, as well as the imaginary part of the
index of the guiding layer have been derived. It appears that very
little light leaks into the substrate compared with Fabry-Perot losses
out the ends of the cavity for structures with more than half a dozen
or so periods.

A structure was grown by liquid phase epitaxy and successfully
tested. The sample was designed so as to support only a Bragg type

mode, and transverse mode profile measurements have confirmed this.
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