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ABSTRACT

Over the past few decades, ferromagnetic spinwave resonance in
magnetic thin films has been used as a tool for studying the properties
of magnetic materials. A full understanding of the boundary conditions
at the surface of the magnetic material is extremely important. Such
an understanding has been the general objective of this thesis. The
approach has been to investigate various hypotheses of the surface con-
dition and to compare the results of these models with experimental
data. The conclusion is that the boundary conditions are largely due
to thin surface regions with magnetic properties different from the bulk.
In the calculations these regions were usually approximated by uniform
surface layers; the spins were otherwise unconstrained except by the
same mechanisms that exist in the bulk (i.e., no special "pinning" at
the surface atomic layer is assumed). The variation of the ferromag-
netic spinwave resonance spectra in YIG films with frequency, tempera-
ture, annealing, and orientation of applied field provided an
excellent experimental basis for the study.

This thesis can be divided into two parts. The first part is
ferromagnetic resonance theory; the second part is the comparison of
calculated with experimental data in YIG films. Both are essential
in understanding the conclusion that surface regions with properties
different from the bulk are responsible for the resonance phenomena
associated with boundary conditions.

The theoretical calculations have been made by finding the wave

vectors characteristic of the magnetic fields inside the magnetic
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medium, and then combining the fields associated with these wave
vectors in superposition to match the specified boundary conditions.
In addition to magnetic boundary conditions required for the surface
lTayer model, two phenomenological magnetic boundary conditions are
discussed in detail. The wave vectors are easily found by combining
the Landau-Lifshitz equations with Maxwell's equations. Mode
positions are most easily predicted from the magnetic wave vectors
obtained by neglecting damping, conductivity, and the displacement
current. For an insulator where the driving field is nearly uniform
throughout the sample, these approximations permit a simple yet ac-
curate calculation of the mode intensities. For metal films this
calculation may be inaccurate but the mode positions are still ac-
curately described. The techniques necessary for calculating the power
absorbed by the film under a specific excitation including the effects
of conductivity, displacement current and damping are also presented.
In the second part of the thesis the properties of magnetic
garnet materials are summarized and the properties believed associated
with the two surface regions of a YIG film are presented. Finally, the
experimental data and calculated data for the surface layer model and
other proposed models are compared. The conclusion of this study is
that the remarkable variety of spinwave spectra that arises from
various preparation techniques and subsequent treatments can be ex-
plained by surface regions with magnetic properties different from the

bulk.
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Chapter 1
Introduction

1.1 The Thesis

Over the past few decades, ferromagnetic spinwave resonance in mag-
netic thin films hassbeen used as a tool for studying the properties of
magnetic materials. (The reader not acquainted with ferromagnetic
resonance will find a brief overview of the subject and the importance
of the boundary conditions in Appendix VI.) A full understanding of the
boundary conditions at the surface of the magnetic material is extremely
important. Such an understanding has been the general objective of this
thesis. The approach has been to investigate various hypotheses of the
surface condition and to compare the results of these models with experi-
mental data. The conclusion is that the boundary conditions are largely
due to thin surface regions with magnetic properties different from the
bulk. In the calculations these regions were approximated by uniform
surface layers; the spins were otherwise unconstrained except by the same
mechanisms that exist in the bulk (i.e., no special "pinning" at the sur-
face atomic layer is assumed). The variation of the ferromagnetic spinwave
resonance spectra in YIG films with frequency, temperature, annealing, and
orientations of applied field provided an excellent experimental basis
for the study. A brief review of the observed phenomena is given in the
following section of this chapter.

This thesis can be divided into two parts. The first part is
ferromagnetic resonance theory; the second part is the comparison of
calculated with experimental data in YIG films. Both are essential

in understanding the conclusion that surface regions with properties
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different from the bulk are responsible for the resonance phenomena
associated with boundary conditions. The theories presented in
Chapters 2-4 are not new but are presented here in a complete and
concise form; however, most of the equations have only appeared in
the literature in the form of special cases (e.g., perpendicular
resonance, parallel resonance).

The theoretical calculations have been made by finding the wave
vectors characteristic of the magnetic fields inside the magnetic
medium, and then combining the fields associated with these wave
vectors in superposition to match the required boundary conditions.
In addition to magnetic boundary conditions required for the surface
layer model, two phenomenological magnetic boundary conditions are
discussed in detail. The wave vectors are easily found (Chapter 2)
by combining the Landau-Lifshitz (1935) equations with Maxwell's
equations. Macdonald (1950) may have been the first to combine these
equations to obtain a quartic equation for the propagation vectors of
spinwaves when the mean magnetization is oriented perpendicular to
the direction of propagation. Ament and Rado (1955) solved the prob-
lem of parallel resonance in a planar sample obtaining the same
equation as that of Macdonald. Akhiezer et al (1961) extended the
calculation to the case where the magnetic field and the mean magnet-
ization were perpendicular to the sample surface. Vittoria and co-
workers (1970) developed the theory for arbitrary angle of applied
magnetic field in planar structures. The theory was further refined

by Liu (1974).
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Mode positions are most easily predicted from the magnetic wave
vectors obtained by neglecting damping, conductivity, and the dis-
placement current; these approximations are presented in Chapter 3.
For an insulator where the driving field is nearly uniform throughout
the sample, these approximations permit a simple yet accurate calcu-
lation of the mode intensities. For metal films this calculation may
be inaccurate but the mode positions are still accurately described
(see Appendix III). The final theoretical chapter (Chapter 4) pre-
sents the techniques necessary for calculating the power absorbed by
the film under a specific excitation including the effects of conduc-
tivity, displacement current and damping.

The second part of the thesis is contained in Chapters 5 and 6.
In Chapter 5 the properties of magnetic garnet materials are summarized
and the properties believed associated with the two surface regions of
YIG film are presented. In Chapter 6 the experimental data and cal-
culated data for the surface layer model and other proposed models are

compared.
1.2 Summary of Experimental Phenomena

This section describes the relevant results of spinwave resonance
experiments in thin YIG films. The films were subjected to various
environmental treatments which changed the surface properties of the
film. The films are single crystals grown on gadolinium gallium
garnet (GGG) substrates by either Liquid Phase Epitaxy (LPE) or
Chemical Vapor Deposition (CVD). One experimentally interesting

phenomenon is that at one of the two limiting orientations of the
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applied magnetic field, parallel or perpendicular to the film plane,
the resonance spectrum can show one or sometimes two spinwave modes
at a higher field than the largest absorption mode; these modes are
called surface modes.

The first surface mode reported in YIG films (Brown et al
(1972)) was observed with the film in the parallel resonance con-
figuration. Surface spinwave modes of this type were observed in
YIG discs grown by CVD on both (100) and (110) GGG substrates.

Yu et al (1975) continued the investigation of these CVD grown films.
They presented the angle and temperature dependences of the spectra
and discussed the creation of the surface pinning condition necessary
for the existence of surface modes by controlled annealing of the
films. A set of stick diagrams representing the parallel resonance
spectra for a series of annealed YIG films is shown in Fig. (1-1).
These spectra are from samples annealed in a dry oxygen atmosphere

at the temperature indicated. The height of the 1ines gives an indi-
cation of the relative intensities observed. For the film annealed
at 1200°C two surface modes exist.

For a .49 um [111] oriented YIG film the spinwave spectrum for
several angles of the applied magnetic field and a frequency of
6 GHz is shown in Fig. (1-2). The high field spinwave mode observed
at parallel resonance (B = 90°) is a surface mode. As the applied
magnetic field is rotated towards the perpendicular orientation, the
high-field surface mode increases in intensity while the other modes

all decrease in intensity. At about g = 30° the surface mode becomes
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Fig. (1-1) Stick diagrams representing the parallel resonance
spectra of a series of YIG films showing the effect
of annealing .on the resonant-field position of the
spin wave modes (After Yu, et. al.,1975).
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single surface mode at the parallel resonance orientation,
g=90°.

Fig. (1-2)




wPa

the only mode observed; beyond this angle, the higher-order modes are
again observed. In some cases (as in perpendicular resonance in Fig.
(1-2)) magnetostatic contributions to the modes have been observed.
However, the resonance positions and other phenomena studied in this
thesis are independent of the sample shape; therefore, magnetostatic
contributions are negligible.

The Tocalization of a surface mode was investigated by etching
a sample away in many steps; such experiments show indeed that the
surface modes are localized at the surfaces. For a film with a single
surface mode, the variation of the signal intensity with film thick-
ness for the largest absorption mode and the surface mode is shown in
Fig. (1-3). In this particular experiment the mode was localized at
the film substrate interface.

Typically in a film with one surface mode localized at the in-
terface the parallel resonance spectrum has the following temperature
dependence. Upon lowering the temperature from room temperature, the
surface mode increases in intensity while all other modes decrease in
intensity. At a critical temperature the once surface mode has a
maximum intensity and all higher order modes nearly vanish. At tem-
peratures above the critical temperature, there is an angle (e.g.,

B = 30° in Fig. (1-2)) where all higher order modes vanish.) The
temperature dependence of this angle (called the critical angle) is
such that it moves toward the parallel orientation and at the above

critical temperature is in the plane of the film.
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Fig. (1-3) "Variation of the peak-to-peak intensity with film thickness
for a body spin wave (x) and a surface spin wave (o).
(After Yu et. al.,1975) Note that the intensity of the

surface mode is constant as the film is etched away until the

film is very thin indicating that the mode is localized at the
film-substrate interface.
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The existence of surface modes at the perpendicular resonance
orientation in LPE grown films has been reported by Henry et al
(1973). The boundary conditions necessary for this surface spinwave
to exist were produced by either SiO2 sputtering or ion implantation.
Some of the properties of this surface mode are the following:

(1) If the 51'02 is removed using buffered hydrofluoric acid this
surface mode persists. (2) If approximately 1008 of garnet is re-
moved using concentrated hydrofluoric acid the surface mode disap-
pears. (3) Upon rotating the film from the perpendicular to

parallel configuration, this surface mode becomes the only spinwave
observed at 30 to 40° from perpendicular. (4) No high field surface
mode is observed in parallel resonance. (5) When a film is annealed
at 1050°C for 30 minutes in an 02 atmosphere the surface mode dis-
appears. Omaggio and Wigen (1974) continued the above work by
examining the surface mode behavior as a function of temperature (from
20-300K) and orientation. At room temperature the spectra were meas-
ured at 23 and 34 GHz as a function of orientation. A critical angle
was observed at all temperatures and frequencies. At room tempera-
ture the perpendicular resonance spectrum was frequency independent;
however, a dependence was observed at other angles of the applied
field. As the temperature was decreased, the surface mode was seen
to go from 106 Oe above the second spinwave mode at 300°K to 423 Oe
at 85°K. Below 85°K the trend is reversed.

Stakelon (1975) irradiated a 1.7 um YIG film with 1.5 MeV He4
ions; ions of this energy have an estimated range of 2.5 microns

through the YIG and its substrate. Therefore, defects were introduced
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throughout the thickness of the sample. At room temperature the
resonance linewidth increases from 1.0e to 50e after irradiation at

]7ions/cm2. Further, the resonance field for this sample was

10
changed. At perpendicular resonance it increased and at parallel
resonance it decreased; this shift is characteristic of a film with
a larger magnetization than the original.

At temperatures less than 100°K photo-induced changes in the
spinwave spectrum of annealed YIG thin films have been observed by
Stakelon et al (1976). These changes are believed to arise due to

the presence of Fe2+

at the surfaces of the sample.

The above experimental data show the remarkable variety of
spinwave spectra that arise from various preparation techniques and
subsequent treatments. Up to the present time, there has been no
hypothesis or model for surface conditions that is physically mean-
ingful and plausible which can explain such behavior. It is the con-
clusion of this thesis that these phenomena can be explained by

surface regions with magnetic properties that are different from the

bulk.
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Chapter 2

The Wave Vectors

A secular equation for the spinwave propagation vectors of the
spin system in a uniform magnetic material can be obtained by simul-
taneously solving Maxwell's equation and the Landau-Lifshitz equation
of motion. It is assumed that the sample is a slab of thickness d,
infinite in the x and y directions, and that the direction of the
mean magnetization, Mo’ is described by the spherical polar angles g
and ¢. The sum of the static Maxwellian field, Ho’ and the effective
static anisotropy field, Ha’ is parallel to ﬁo. The field Ho is a
sum of the applied, Happ’ and the static demagnetizing field. The

Maxwellian field, H, and the magnetization, M, are assumed to be of the

form

=

H=H_ +
© {2-1)

M=M +m

For propagation vectors normal to the film surface,

Fl—= h— e'i(kZ + mt)
. (2-2)

]'F e‘i(kz + U-)t)
0

m =

The magnetization, M, is assumed to change orientation in accord-

ance with the Landau-Lifshitz equation

%:-M‘x[ﬁ+ﬂ" +h _+h, +h+h.] (2-3)

o et
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The gyromagnetic ratio y is taken to be a positive number so that the
negative sign is required. The term ﬁéx is an effective field due to

exchange coupling between the adjacent non-parallel spins:

2
= A gl=_ ZAK” =
h = —E-V m = 5 M . (2-4)

ex M M

where A is the exchange constant and k is the wave number of the spin-
wave.

The magnetic damping is treated phenomenologically by intro-
ducing ﬁ%, an effective damping field. It is often written in one or
the other of two nearly equivalent forms (sometimes called Landau-

Lifshitz and Gilbert damping fields, respectively):

(2-5a)
M x (Ho + Ha i hrf . hex . ha)
or
- A dm - dm
h, = - = —a— (2-5b)

The magnitude of the damping is described by the relaxation frequency
A, or by the dimensionless damping constant o = %ﬁn Provided o is
much less than unity (e.g., a < 0.1) the difference between these two
forms is not significant. It is trivial to show that Eq. (2-3) with
(2-5a) is identical to Eq. (2-3) with (2-5b) if y in the first case is
replaced by v(1 + az). For the ferromagnetic films treated in this
thesis a < .005. This represents a change in the gyromagnetic ratio of

5

less than 3 parts in 10° ; therefore, no observable difference
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occurs. Eq. (2-5b) is easier to manipulate and is used throughout
the remainder of this thesis.

The effective static and time varying anisotropy fields, Ha and ﬁa
respectively are easily calculated by variational techniques from the
anisotropy energy, E;. This energy depends on many things like the
crystal make-up, the crystallographic directions of M, and the stresses
or strains. In the calculation of ﬂa and ﬁa spherical polar coordinates
can be utilized so that the computations and
notation is somewhat simplified. The static effective anisotropy field

is given by

Ha = 8, R, # a, Ha¢ (2-6)
where
ok
= A
Hao = -1/ 30
- aEa

Ha¢ T "M sin® 3¢

The time varying anisotropy field is obtained by taking a small signal

expansion of H;

m. [0 H m a H
e M a\ o a
"a ”M_( A sﬁne(acp ) (2-7)

Since the angular derivatives of the spherical unit vectors are

=
ch, e sF, ba, (2-8)

r’ a9

| @
[e>]
| @



da da da
_r = 1 _._6 = o _____Q = _(a 2 —
5% a¢s1n6, 3 a¢cose, 5% (ar sing + aecose)
H; in terms of m is given by
~ - 5 ”
har Haro arg
h =1 H i = 1 ; m (2-9)
ao M aeo ab¢ = W "™ i
: m
H (0
Jhatb Hage 290
where
Har-e - ”Hae Har¢ - Ha¢
aH BH
" af = .1
Hago 30 Haes = 5T (5o - a¢ = Hpy080)-= H, o
oH
- a - __Ji
Hase 36 Hago s1n6( * Hagc0s8)

When this development is used, the

the magnetization contain only hae

linearized equations of motion of

and h Therefore, for later

agp”’

(2-10)

convenience the following are defined
97 = Hype/4M
92 = Haga/amM
93 = H ¢9/4TrM = H e¢/4"M
In the

present;

absence of microwave excitation, only static fields are

and Eq. (2-3) reduces to the equilibrium condition
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0= -ﬁéx[ﬁb + ﬁ;] (2-11)
Egs. (2-10) and (2-11) are used throughout the later analysis in this
thesis. For the crystal structures and orientations used, they are
written out explicitly in Appendix I.
The form of Eq. (2-3) ensures that M remains fixed in magnitude.
This means that (for small motion) m is normal to Mb to first order;
therefore only two components of m are independent. Substituting

Egs. (2-1) and (2-2) into Maxwell's equations

v x E=-1/c & (F+ 4af)
F=dmop, e 3E
VXxH-= = E + z 3 (2-12)
vV (H+ 41M) =0
V€E=0
gives
2 2 _ w4 4ﬂc'w = _
khzaz-kho T?—(h_o*'q"mno) (2]3)
or in component form
41Tmx +Q hx =0 41rm¢ +Q h¢ =0
4vm +Qh_ =0 4 Mg 0
mm - or mm,. + =
Y Y ¢ cosze + Q sinze
4nmZ * hZ =0
Q=1-—12—52k2
2 c2
§ = g/
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g' = o + jwe/dm

The result of substituting Eq. (2-1) into Eq. (2-3) eliminating
h by Eq. (2-13), and using the g;'s defined in Eq. (2-10) is

. W . _
i (;—- i4mM q3) my = T 4tM m

)
: . (2-14)
- C%—+ 14mM 93) mg = mp 4mM m,
where
&bl . = @ 28K” | dwa oo+ A 4 (2-15
™ " o ¥ Q 9 =15}
2 3 2 o i
2Ak i ' cos 0 + Qsin”o

41rMn2=+—ﬁ——+—$"i+Ho+4rrM ( QQ )- 4mM g,

By =, R,

This linear homogeneous set of equations for My and m¢ has a non-
trivial solution only if the determinant of the coefficients is zero.
This determinantal condition is in effect an algebraic equation of the
4th degree for k2, and the roots of the determinant provide the wave
vectors for which Eq. (2-2) represents a correct solution to the

2 Eq. (2-14) may be

equation of motion. For each of these values of k
solved for the respective ellipticities and direction of precession of

m. The expansion of the determinant is

8 6 4 2 _
K8 + Ak + ALK + A, K2 + Ay = 0 (2-16)
222
AO = -(K] + K2)+ i de
A = K Kg - aet 4 4262 [1 + cos®e - 2(Kf + K5)]



-] 7=

2 2 2 2 2 [K§|R|2 + K%] sinza
Az = i2e ZK-'K2 - K1 - + 5
1+ |R|

+ 2152 (1 + cosze - K% - K%)}

A

2 2 2 ]
FIGIRIS #.K5T sin"H
= 424 {;cosze - K%K% + Kg + K2 i ]2
1+ |R|

3 1

where

*
K? = -i@'R - n + g, - o, Kg = iQ'/R* -n + g, - iaQ

_(sinze + g, - 91)' J£l|9'|2 + (grgz-sinze)2

R PATTh

e = pj2nMisl |, k% = A 5 k

27mM

2

o Lt - W
s Ho/4nM . R ?ﬁﬁﬁ_

Q' =Q+ ig3 -

Although Eq. (2-16) has appeared in many articles, it has never
been published in this simple form. It is easily seen that in the
limit of zero magnetization the non-zero roots are simply the
propagation vectors found for non-magnetic materials (k2=-21162).

In the 1limit of no conductivity or displacement effects the non-zero
solutions are K = l(.I and K = K2' The approximations presented in
the next chapter are based upon the assumption that the conductivity
and displacement do not significantly affect the roots K] and KZ'
This is true for materials like YIG where 62 is small compared to K]
and Ky however, in metal films (e.g., permalloy) this assumption is

not valid. The behavior of these solutions has been discussed in
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detail by (Liu 1974); the roots K1 and K2 are discussed in chapter
three of this thesis.

In two particular orientations, ﬁs perpendicular and parallel to
the film surface, Eq. (2-16) factors allowing solutions simpler than
the most general. In the perpendicular (8 = 0) orientation it factors
into two quadratics; at the parallel (6 = 90) orientation it factors
into a linear term and a cubic. In the perpendicular orientation the

two quadratics are

Kb+ K2 (-KE + i2ef) + i2ef (kS + 1) = 0 (i=1,2) (2-17)
where i=1 gives roots with positive spin precession and i=2 gives
roots with negative spin precession. (Positive spin precession is
determined by the vector product -m x ﬁg.) In the parallel
orientation, the linear term gives the propagation vector also

found for nonmagnetic materials

2

K2 = -2i/68 . (2-18)

It is easily shown that the excitation corresponding to this wave
vector does not involve the magnetization; and the associated h

is linearly polarized along ﬁs. The other three roots come from the

cubic /

2 2y . .2 2 [ 22 .2, .2 2
K8 + g* {f(K1 + K5) + 125:} + K {:K1K2 + 1262 (1-K8 - Kz{}
2. .2 . .2
Ke1rlZ + K
+ j2¢e? {;K$K§ . _ijﬁ____mié_:} = 0 (2-19)
1+ |R|



-19-

In summary, the equations of motion will be satisfied by
solutions in the form of Eq. (2-2) not merely for one wave vector but
in general for a set of 8 given by Eq. (2-16). A complete solution to
the boundary value problem in question, therefore, involves a super-

position of waves

i(knz + wt)
ﬁh - ﬁ;n e
L i(knz + wt)
mo=m, e , (2-20)

with eight k values. In this form a solution for m will be called
a spinwave excitation. A plot of the power absorbed bj the material
versus applied field will be called a spinwave spectrum, and peaks
in this spectrum will be referred to as spinwave modes.

In all cases analyzed in this thesis the magnetization is
assumed to have a constant direction throughout the sample.
Except in parallel and perpendicular resonance, this is an
approximation due to the static effects of any proposed
boundary condition. The effects of this approximation are
assumed small; however, no attempt has been made to analyze the
subsequent errors. This assumption is mandatory if the results
of this chapter are to be applied to a magnetic film without

free surface spins.
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Chapter 3

Simplest Approximation

3.1 General Discussion

The simplest approximation for calculating ferromagnetic resonance
phenomena comes from neglecting displacement and conductivity (e-0)
and taking the magnetic losses into account by making perturbation
calculations on the lossless solutions. The calculations give mode
positions with sufficient accuracy; however, the mode intensity and
linewidth are only accurate for insulators or very thin metal films
(~ 500A) where the r.f. magnetic field is nearly uniform throughout
the sample. In fact it can be seen from Eq. (2-13) that the approxi-
mation o = € = 0 is equivalent to letting the external drive field
penetrate the medium without attenuation or phase shift.

In the 1imit € = a = 0 Eq. (2-16) becomes

A48 .2 . 2y 2 . 22\ L

K*(k ~(K] + K3) K° + K{KZ) = 0 (3-1a)
K2 = -iQ'R - n + g (3-1b)
1 2

K2 = iQ'/R* - n + (3-1c)
2 n+* 9

Here the K = 0 roots correspond to the electromagnetic branches in

the 1imit of infinite skin depth. The other two roots are the positive
and negative precession spinwave branches, respectively. Further,

K% and Kg are real numbers; therefore, the wave numbers are either

real or imaginary. For most spinwave modes K] is a real number;

these spinwave modes are commonly called body modes. Spinwave modes
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with imaginary K1 are called surface modes. The K2 root is usually im-
aginary. It will be shown that the excitation amplitude associated with
K2 is typically very small near the surfaces and completely negligible
elsewhere. The mode shape and amplitude is therefore quite adequately
described by the component associated with the wave vector K] . Extreme

values of the anisotropies can conceivably give real values to K but

2 ]

such values have not been observed in the laboratory. For the K, and K

1
roots the ellipticity and sense of precession of the magnetization are

2

given by

r-"-e-) = R (Tﬂ) = -1/R* 3-2
(%1 ), - v (3-2)

Dispersiqn curves or plots of K] and K2 versus ¢ are displayed
qualitatively in Fig. (3-1) for perpendicular (6 = 0) and parallel
(6 = 90°) resonance. The real and imaginary parts of K are K' and K",
respectively. In both cases, the allowed propagation constants for
small Q2 are imaginary, corresponding to exponentially damped or
growing excitations (as a function of z). For 8 = 0 or perpendicular
resonance, the two branches start at K" = /4 . As Q increases K"
increases for the negative precession branch. The K" for the posi-
tive branch decreases with increasing ©. At Q@ = n, the propagation
changes from imaginary to real and (K‘)2 increases as (Q-n). This
region with real K, corresponds to a propagating, plane wave type
excitation. For parallel resonance (6 = 90°), the behavior is
similar except that the two branches are split at © = 0, and the
conversion from real K to imaginary K occurs at @ = V(n + T)n. As

the orientation swings from perpendicular to parallel under constant
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Fig. (3-1) Schematic general spinwaye manifold for magnetization
orientation variation from parallel to perpendicular
at constant internal field, n.

Fig. (3-2) Schematic general spinwave manifold for magnetization
orientation variation from parallel to perpend1cu1ar
at constant frequency,
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internal bias field (n = constant) the dispersion branches sweep out

the general spinwave manifold. Since the normal experimental tech-

nique is to sweep field, field swept dispersion curves at perpendicu-
lar and parallel resonance are displayed in Fig. (3-2).

In a driven lossless mechanical system resonance occurs when the
external drive frequency is equal to the frequency of a normal mode.
Further with damping the change in the required drive frequency is
second order in the damping parameter; therefore, for small damping the
change in the drive frequency is negligible, In addition, the linewidth
can be Tinearly related to the damping constant by an approximation
which becomes more accurate as the damping approaches zero. For the
uniform excitation (k;= 0) it is shown below that similar considerations
apply to the magnetic system. By including the time varying demagnetizing
field (h = -4&Eig: k) and the linearly polarized drive field,

h = hoeiwtﬁ;, Eq. (2-3) in component form with k;= 0 is

(e - = (Ao oy in® 4=
1(;-- i4mM gs) m¢ = mg ( T + H0 + 4m™ sin” o 4nMg])

Y (g - dwo e -
-1(§-+ i47M 93) my = m¢ ( - * H0 4wMgz) Mh0

The solution for m¢ is

(3-3)
(n + sin28 - gy + iof) h0/4n

m =
¢ @'ar o+ (n+ sinfe - g))(n - g,) - oo’ + ifa(2ntsino-g,-g;)

If o is small, resonance occurs near the frequency where the real part

of the denominator in Eq. (3-3) vanishes. Therefore, at resonance
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-Q'Q'* + (n + sin28 = 91)(n ™ 92) - ﬂzaz & 0
and
-i(n + sinze - g ¢t jaf) h0/4n
My, 5 (3-4)
fa(2n + sin“e - g, - g;)

From Eq. (3-4) one can obtain the following results:

1) h and m, are approximately 90° out of phase.

¢
2) With a change in a the condition for resonance changes

by a term which is second order in o.
From Eq. (3-3) the half power field swept linewidth, AH, can be

determined. For perpendicular and parallel resonance

(3-5)

if AH is small compared to the total internal field. At all other

values of ©

An = 200
but
An # %;M

because of the fact that the magnetization is not aligned with the
applied field.

Although figures (3-1) and (3-2) show a continuum of wave vectors,
only certain ones will produce a resonant response or oscillate freely
when the spins are perturbed from the equilibrium position. A parti-
cular wave vector is resonant if the associated mode shape satisfies
the magnetic boundary conditions. The relations for the allowed wave
vectors and expressions for the associated mode amplitudes are devel-

oped in the following sections.
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3.2 Spinwave Mode Amplitude

If the magnetization variation consists of the purely sinusoidal or
hyperbolic components that satisfy the magnetic boundary conditions, Egs.
(3-3) and (3-4) no longer apply though the qualitative remarks about
resonant frequency and linewidth are still applicable. The amplitude and
power absorbed can be obtained by balancing the total drive torque and
total dissipation torque. Note that except for k = 0 these torques do
not balance locally; however, the exchange interaction is so strong that
insignificant changes in spinwave excitation are able to provide the
local torque balance without significant change in amplitude.

The power per unit volume expended by the drive field on the mag-
netic system is h-am/at = H3$} and the power per unit volume absorbed
by the system due to the losses is ahz/yM . The integrals of these
through the sample have to balance; therefore, the average power absorbed

per unit area of film is

d/2 d/2
% & (2 = [Gm
A 4:/.?“<m>tdz f\h m,tdz
-d/2 -d/2

where the averaging is with respect to time. Using the facts that h

is linearly polarized along the x-axis and 90° out of phase with m¢

it is easily shown that

= 20 Ty (3-6a)

w 0 2y 2
w <Fﬂq(1+v )m¢:>

and
2 {m,>E
abs a
<YM“+V ) my >

where v=|me/m¢|, d is the total film thickness, and the averages are

)
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through the thickness of the film. Note that o ,y, M and v are in-
cluded within the average since they can be functions of position. In
the models considered, v is a function of position for Mb at all angles
except perpendicular resonance. The parameters a, y, and M will be
considered constant except in the case of a nonuniform film. In this

case M, a, and y of the bulk and surface can all be different.

3.3 Boundary Value Problems
The three boundary conditions that have been most used to explain
resonance phenomena are treated here. These are:
(1) uniaxial perpendicular surface anisotropy (Bailey et al 1973)
(2) tensorial anisotropy (Yu et al 1975)

(3) surface layers of different properties than the bulk material
(Ramer and Wilts 1976)

The appropriate surface boundary conditions for the two anisotropy
models are derived in Appendix I. The approach is to find the wave
vectors for which the associated mode shapes satisfy the magnetic bound-
ary conditions. Once the allowed wave vectors have been determined the
resonant mode shapes and several other things can be determined. The
mode amplitude and power absorbed can be determined from Eq. (3-6). The
field position of the absorption peaks can be determined from Eq. (3-1)
and the equilibrium conditions on the magnetization (Eq. (2-11)).
Typically the calculated sbinwave spectrum will have one large power ab-
sorption peak and several smaller ones. If there are no surface modes
the highest field position mode will have the largest power absorp-
tion; the wave vector k1 for this mode is the smallest of the al-

Towed wave vectors. If there are one or two surface modes (a maximum
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of two are allowed), then no specific statement can be made about the

relative power absorption of the modes; for example, the surface modes
have a higher field position than the body modes and the associated ab-
sorption can be larger or smaller than that for the body mode with the
highest field position.
3.3.1 Perpendicular Surface Anisotropy

If the perpendicular surface anisotropy energy is assumed to
have the form E = =K cos2o (as first proposed by Kittel (1958))

the boundary condition on M is

dm K
W P 25 = -
" el o my, cos 8=0 (3-7a)
dm K
6 S _
Hﬁ_'+ A Mg cos 20 = 0 (3-7b)

Here n is the coordinate along the outward film normal.
For a given frequency and applied field, the spinwave excitation

for a film with asymmetric surface boundary conditions is

=
I

mn cos k]z + m]2 sin k1z ik m21 cos k,z + m22 sin kzz

2
(3-8)

M1 - .
b —E—-cos k]z + —ﬁ—-51n k1z - R*m21 cos kzz - R*m22 sin kzz

1]

m

where k] and k2 are given by Eqs. (3-1) and (2-16). Substitution of
Eq. (3-8) into Eq. (3-7) gives a Tinear homogeneous set of equations
for {mij} i3j = 1,25 this set has a nontrivial solution only if the
determinant of the coefficients is zero. The roots of this deter-

minant give the allowed values of k] and k2. The relations between
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Ky and k2 and the elements of the 4 x 4 determinantal equation for

determining k1 are given in Appendix II. Schematically
det [aij] =0 (3-9a)

At perpendicular resonance, the symmetry is such that the positive
and negative precession spinwave branches uncouple; and Eq. (3-9a)
becomes

2 k;d kyd >
2121 {(k11 - K cot —-)(k; + K tan —-) + aK°} =0 (3-9b)

where K = (K., + Ksz)/ZA and AK = (Ks1 - Ksz)/ZA' The (i=1) factor

sl
gives the allowed positive precession spinwave wave vectors. If KS

1
and Ksz are large and negative, the (i=2) term can give only two
allowed negative precession spinwave wave vectors; however, values
of the surface anisotropy of this magnitude are believed unrealistic.
Therefore, for values of surface anisotropy normally required to
match experimental data the spinwave excitations associated with this
model have purely sinusoidal or hyperbolic excitations corresponding
to the allowed values of k].

For each allowed k1 and k2 the required applied field can be
calculated from Eq. (3-1) and the equilibrium condition for the
static magnetization. Solutions to Eq. (3-9) for a symmetric film
at perpendicular and parallel resonance are plotted in Fig. (3-3)
and (3-4). For positive K at parallel resonance and negative l(s

at perpendicular resonance there is always one and sometimes two

surface modes (i.e.,k] is negative); for the other sign of Ks there
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Fig. 3-3 Solutions (k]d/n) to Eq. (3-9) for a symmetric film at

perpendicular resonance versus st/ZA.
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Fig. 3-4 Solutions (k]d/n) to Eq. (3-9) for a symmetric film at

parallel resonance versus st/ZA.
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are no surface modes. It can be shown that at perpendicular reson-
ance if there are two surface modes then there is no allowed value of
k] in the range (0 <k1d/n-<1); this may not be true at parallel reson-
ance as can be seen in Fig. (3-4).

Ratios of the coefficients in Eq. (3-8) can be determined for
each allowed value of kT and k2° A particular coefficient can be as-
sumed unity or related to the applied field through Eq. (3-6a). For a
symmetric film at the parallel orientation, plots of m¢ normalized to
unity at the film center are shown in Fig. (3-5)., Note that the k2 com-
ponent (i.e., -R*mZ]cos kzz) is concentrated at the surfaces; this is
typically the case since k2 is usually a large imaginary number.

Since the k, components are concentrated at the surfaces and

2
have a small amplitude only a small error is made if these components
are neglected when calculating the power absorbed from (Eq. (3-6b).
With this approximation |v|% = [R|? and the power absorbed per unit

area of film is

2
. . hozde cos | sin kld/z 2
abs 20, (1+[R]2) k]d/ 2 + sin k]d cos 2y
k]d
(3-10a)

where

p = tan™' (mg,/my;) (3-10b)
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il (3-10c)
11 851 an an
422 aq0 a2

and the aij's are given in Appendix II. For a symmetric film Eq.
(3-9) factors into two parts. One factor gives wave vectors which
correspond to mode shapes that are symmetric around the film center
(even modes); the other factor gives wave vectors which correspond
to antisymmetric mode shapes (odd modes). For the antisymmetric mode
shapes cos ¢ = 0; therefore, these modes are not excited (i.e., Pabs
= 0). For the symmetric mode shapes cos y = 1, and the power
absorbed by the symmetric modes normalized by the k = 0 absorption
is plotted versus k]d/2n in Fig. (3-6). If a highly localized sur-
face mode exists (i.e., k]d/n is a large imaginary number) the next
even mode has a wave vector in the range (%-<§%n<1)(see Fig. (3-3)
and (3-4)); therefore, it is possible to have a surface mode (highest
field mode) with a power absorption smaller than the first body mode.
Eq. (3-9) has been expanded for the parallel resonance orienta-
tion; the result of this expansion is given in Appendix III along

with other results for some permalloy films at both the perpendicular

and parallel resonance orientations.
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Fig. (3-5) The first three spin wave excitations at parallel resonance for a film
with YIG parameters, Ks=.05 ergs/cmz, and d=.4 microns
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3.3.2 Tensorial Anisotropy
The tensorial anisotropy energy proposed by Yu (1975) gives
the following boundary condition on m (see Appendix I)

(n is the coordinate along the outward film normal)

N o,
Adn (gLFosze + K| sin® @) = 0 (3-11)

or

dm

AE o KT(O)m =0

For spinwave excitations given by
e 2 — —
m = 121 m; cos kiz + My, sin k.z (3-12)

and asymmetric boundary conditions, the secular equation for ki is

2 k;d kyd 2
{(k,i - K, cot =) (k; + K tan —) + (8K)°} = 0 (3-13)

i=1
where d is the film thickness, KT1(B) and KTZ(B) the anisotropies at
the two surfaces, K_ = (KT1(6) + KTZ(B))/ZA, and AK = (KT](G)

- Kyp(8))/2A.
Equation (3-13) is identical to Eq. (3-9b) if KT1(6) = K¢

0

and KTZ(G) = K52 . therefore, the comments after Eq. (3-9b)
applying to uniaxial perpendicular anisotropy at perpendicular
resonance apply at all angles here. For a symmetric film and m at
an angle 6 the allowed values of k] Versus KS = KT(e) are plotted

in Fig. (3-3). Finally, based upon an approximation for the uniaxial
anisotropy developed in chapter 4 the tensorial and uniaxial models

have similar properties if
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(3-14)
KR
K[| = =
1+ |R|
The power absorbed for a film with this boundary condition is

given by Eq. (3-10a) where

-AK cos kld/Z
k1 cos k]d/2 + Ko sin‘kld/2

i P £
™M™
Recall that for a symmetric film and symmetric modes this expression

normalized to the k; = 0 absorption is plotted in Fig. (3-6).

3.3.3 Surface Layer Model

A physically plausible model is that the surface regions of
the film have a chemical composition and structure different than
the bulk of the film. This can be due to diffusion of elements
into the film or chemical reaction. As a first step in understanding
the properties of this model, the film may be assumed to have surface
layers of uniform magnetic properties which are different from the
bulk properties. As required for a clearer understanding, the model
can be later extended to one in which variation in properties is rep-
resented by adjacent layers with graded properties or by an explicit
functional dependence. The greater part of this thesis is restricted
to simple layers at each surface. The properties given these layers
represent a kind of average of the properties of the actual regions. It

will be shown in Chapter 6 that this model can quantitatively or in
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some cases only qualitatively match most behavior observed in YIG
films. Some of the failures are believed to be due to the variation
of the magnetic properties near the surface; that is, the assumption
of uniform layers is simply not accurate enough.

A schematic representation of the model is given in Fig. (3-7);
the figqure is schematic for a YIG film grown on a GGG substrate. The
two surface layers are obviously different and the exact properties are
unknown; but experimental and theoretical data suggest the properties

which should be ascribed to each.

In each of the three uniform regions Eq. (3-1) applies when the
appropriate material constants are used. It is assumed that the
direction of the static magnetization in the surface region is the
same as the static magnetization of the bulk; at all angles of m
other than parallel and perpendicular to the film plane this is an
approximation not only in the surface region but also in the bulk
near the interface. Because of the exchange interaction, there is a
continuous smooth transition between the angles of equilibrium;
the transition region extends from the interface into both the bulk
and surface layers. At 9 GHz the maximum variation for a half
magnetization surface layer is about 6° for YIG and 20° for Permalloy.
With the above assumptions the required boundary conditions at the
interface of the magnetic regions are easily derived from torque con-

siderations. They are

™ . Ps
Mb Ms
(3-15)
hE A B
M. oz M 9%z

o
wn
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Fig. (3-7)

Schematic representation of the surface layer model
for YIG. It is assumed that the static magnetization
in each region is in the same direction as in the
bulk of the film.
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where ﬁb, ﬁ; are the rf magnetization vectors; Mb and MS are the

saturation magnetizations; and Ab, AS are the exchange constants in
the bulk and surface regions, respectively. At all surfaces between

magnetic and nonmagnetic materials the spins are taken to be free;

am _
™ U

Spinwave excitations for a symmetric film with free spins at

this requires that

z = i(g-+ L) are given by

Mop = mlb cos k1bz + m,, COS kZbZ
b *
Myp = —ﬁg-cos KipZz = Ry My cos k,z (3-16)
m., =m,. cos k (z+D L) +m, cos k (z:tD L)
fs 1s 1s ‘iﬁ 2s 2s g%
Ms
m. =5 D ¥ D
¢s R, cos Ky (ztth) - Ry m,y. cos ko (zt§¢L)

These spinwave excitations and the boundary conditions in Eq. (3-15)
give a 4 x 4 determinant for determing the k-values. The following

secular equation is obtained for k]b'

kip Ap tan (k]bD/E) =
2 2 - 2

T]S[(|R2| ;1)(|Rs| +;)T25+|(];RbRs)l T2p*1RyRs | "To Tab (3-17)
. 2 i

| (H#R.R ) [ “T, (R | “+1) ([R | 1) Ty +[ Ry -R | T
where

T = kqAg tan(ky L)

Toe = kyAg tan(k, L)

T2b = kZbAb tan(k2b0/2)
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2
Is

2

e, d i e B 2
K =-J8 RS + A(Klb +j§y Ry-cos”6 ga)+cos 6+g,

2 2 v o, .2 .2
K K]s - Jé]ﬂsl + (gls - 9y - sin 0)

S

2 "2 g o
K-Ib - A'le ¥ (g'[b = gzb = 51n 6)

=
n

This analysis for an asymmetric film gives a secular equation in
the form of an 8 x 8 determinant; this determinant is given in
Appendix II. Given the frequency, the angle of the static magneti-
zation, and the magnetic properties of the bulk and surface regions,
the secular equation can be solved for the spinwave wave vectors
that satisfy the boundary conditions. For each allowed wave
vector the required applied field H; can be determined from Eg. 3-1
and the equilibrium conditions for the static magnetization in the
bulk region (Appendix I). (Note that (Eq. 3-17) can be applied to
a film having only one surface layer by replacing D/2 by D. The other
surface would naturally have free spins.)

For YIG material constants and 6 = 0°, 30°, 60° and 90° the two
sides of Eq. (3-17) are plotted versus le/Zw in Fig. (3-8). Note that

in the range 6 = 7m/3 to w/2 there is a root giving a surface mode (i.e.,

k, is imaginary). The angle where ky =0 satisfies Eq. (3-17) has been

1
called the critical angle; a more in depth discussion of the critical

angle will be given later.
Since garnets have widely varying losses depending on their compo-

sition and preparation, it is plausible that the damping parameter, a,
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could be different in bulk and surface layers. The effects of this on
the relative intensity of the modes can be calculated as follows. Using
£q. (3-5) and ignoring the contribution of the k2 components the power

absorbed is

h2 sin k]bD/Z 2C sin k]sL 2
BE v ks (3-18)
S
P, = : ;
abs % o sin(2k,, D/2) c2q sin(2k, L) )
2 1b S 2 Is
(1+|R°|) (D+— oy (1+| R| ) (2Lt ——=—)
IR1) o, Kb o, 8 1s !

* L * *
. M cos(kypD/2)(T,  (RyRy"=1)+Ty  (1+R, R~ ) -(RyR +R R )T, )

* * * x
Mb cos (k-ISL) (TZS(RbRS-'l)+T2b(1+R5RS)-(RbRS+RSRS)T~Ib)

This expression normalized for k = 0 and ub/as = 1 has been plotted
in Fig. (3-9) for ub/as = 1, .3, and .1. The increase in absorption
at kD/2m = 7 or 8 is due to the surface layer going through its
uniform resonance (i.e., k]s = 0). Note that the increased surface
o has more effect on the surface mode intensity than on the body
modes (except where k]s: 0).

By making approximations in equation (3-17) one can deduce some
of the physics of the surface layer model. By assuming that Rb:RS
and that k]sL is sufficiently small to approximate tan(k]sL),

Eq. (3-17) becomes

- 2
Abklb tan k.Ib D/2 = 'Agk15L

This equation is in the form of the secular equation for a symmetric

film with an anisotropy energy, Km, and easy direction along Mo. In

this case

) 2
Kp = -Askis

’ L (3-19)
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An anisotropy field can be defined

ZKm 2A
” . - Sl
Hy = ﬁ;f' M. "1s (3-20)

This is approximately the exchange field necessary to satisfy the
resonance condition in the surface region. If Hm is positive the
highest field mode will have a sinusoidal excitation in the bulk

and an exponential excitation in the surface region. If Hm is
negative the highest field mode will have an exponential excitation
in the bulk (surface mode) and a sinusoidal excitation in the surface
region. Fig. (3-10) shows several spinwave mode shapes at perpendi-
cular resonance. The angle at which H, = 0 is approximately the cri-
tical angle (see next section), and corresponds to the angle at

which both regions resonate with a "uniform excitation".

Finally the following interesting correspondence between the sur-
face layer (Yb=vs) and the perpendicular uniaxial anisotropy is worthy
of note. It was shown by Bajorek and Wilts (1971) that for thin surface
layers on permalloy at perpendicular resonance these two models have mode
positions which are in very close agreement no matter how thin the cen-
tral bulk layer if the uniaxial model has the following properties. First
the film is uniform with bulk properties and the same magnetization as
the layered film. Secondly, the value of K is given by Eq. (3-19) evalu-
ated at perpendicular resonance with k1b=0 . At parallel resonance
Wilts and Ramer showed that the same close agreement existed
(unpublished). For YIG material constants (Yh =Ys) Fig. (3-11)
is a comparison of the two models at all angles of the applied field.

It will be pointed out in Chapter 6 that the agreement is not as

remarkable for thicker surface layers on YIG or when Yb # Ye &
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Fig. (3-11) Comparison of the surface layer model and the uniaxial
model using a value of K_ deduced for very thin syrface
layers. The surface is “a half magnetization 200A
layer, D=4550A . For the surface anisotropy d=4650A
and K.=.061 ergs/cm?.
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3.4 Critical Phenomena

The typical spinwave spectrum has one large power absorption peak
and several smaller ones; the mode with the largest absorption usually
has the highest field position. However, in some films one and some-
times two modes have a higher field position than the mode with the
largest absorption; these modes are called surface modes, and it will
be shown that they have properties similar to the surface modes in-
troduced mathematically in the previous sections. It has been observed
that if the surface modes exist at one of the Timiting orientations
(i.e., applied field parallel or perpendicular to the film plane) they
do not exist at the other. When films with surface modes are rotated
with respect to the applied field from the one 1imiting orientation,
the highest field mode increases in absorption intensity while the
largest absorption peak decreases in intensity. This behavior continues
until the highest field mode is observed to have the largest absorption
and some of the modes that were prominent actually vanish. In some
films all modes (except the highest field mode) vanish at about the same
angle. In other films there are two angles where some of the modes
are observed to vanish, but a particular mode does not vanish at more
than one angle. Beyond the angle where a particular mode has dis-
appeared it reappears and grows in intensity; but the highest field
mode remains the largest. Even in films where the highest field
mode at both limiting orientations is dominant there are angles where
some of the lower field modes vanish.

In films with symmetric surface conditions or films where the

air film interface has been treated to ensure that the spins at this
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surface are free (%E—= 0), all modes except the highest field mode
vanish at or very near one angle of the applied field. Since all
modes do not vanish at exactly the same angle, this critical phenomenon
is characterized by that angle at which the second spinwave mode
vanishes, hereafter called the critical angle BC. The temperature
dependence of this critical angle is believed important in deter-
mining the particular mechanism producing the surface pinning.

In terms of the surface models the observed small amplitude high
field modes are the surface modes introduced in the previous sections.
For the tensorial model and a symmetric film, there is one allowed
surface mode for 0>KT(e)d/A>*2 and two allowed surface modes for
KT(e)d/A<-2; the second mode, however, is antisymmetric and is not
excited (i.e., cos ¥ in Eq. (3-10) is zero). Further, no other

antisymmetric mode is excited.

For the tensorial model and an asymmetric film, corresponding

values of KT(e) at the two surfaces (KT1(8) and KTz(e)) required
for 0, 1, and 2 surface modes are plotted in Fig. (3-12). The

boundaries between the regions were determined from the condition
for a uniform precession mode. This condition (easily obtained

from Eq. (3-13) by setting k1 = 0) is given by

=0 (3-21)

where

X; = KTi(e)d/A'
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In the region for 2 surface modes and when KT1 # KTZ’ the second sur-
face mode is excited (i.e., cos y # 0); this mode is called a quasi-
antisymmetric surface mode. The first or high field surface mode is
called a quasi-symmetric surface mode. It is easy to see from Fig.
(3-6) and Eq. (3-10) how these two surface modes could have a smaller
“absorption than the third mode; mathematically this is due to their
hyperbolic decay away from the film surface versus the sinusoidal be-
havior of the third spinwave (first body) mode.

If KTl(e/Z) and KT2(6/2) have values which will give the spinwave
spectrum two surface modes and KT](O) and KTZ(O) are both positive
then as the magnetization is rotated from the pafa]]e] to perpendicular
resonance orientation, the surface modes become the two highest field
body modes. Further, three conditions can exist which will cause mode

to vanish as observed experimentally,

Krp(0) = Kpp(6)

or KT](e) - KTZ(e) =0 .

For the condition KT](G) = -KTZ(B) the allowed wave vectors are

k1 = nn/d n=1,2,3,4,--- (3-22)

From Eq. (3-10) the power absorbed for n even is zero and the power ab-
sorbed for n odd is not zero unless KT1(6) = KTZ(B) = 0 . The modes
corresponding to n odd and even are called quasi-antisymmetric and quasi-
symmetric, respectively. The mode corresponding to n = 0 (the quasi-

symmetric uniform precession mode) only occurs under this condition if
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KT] = KT2 = 0; under this condition all modes except the uniform pre-
cession mode vanish. It was pointed out that for a symmetric film
the antisymmetric modes are not excited; therefore, under the condition
KTT(G) = KTz(e)quasi-antisymmetric|nodes become antisymmetric modes
and vanish.

In the above description of the mathematical behavior of the
tensorial model the variable © is the angle of the magnetization. In
the experimental situation the film is held fixed with respect to the
angle, B, of the applied field; however, the direction of the magnet-
ization varies only slightly as the magnitude of the applied field is
swept over the range of interest. The surface layer and perpendicu-
lar uniaxial anisotropy models are mathematically more complex. It
can be shown that they too have a mathematical behavior which can
explain the above experimental behavior; in fact, this is shown
roughly by the following argument. The surface layer has properties
similar to the uniaxial anisotropy model (see the previous section);
the uniaxial anisotropy has properties similar to the tensorial model
if KL and KII are given by Eq. (3-14). Since the tensorial model can
represent the above experimental data the others will also.

The critical angle, Bc’ was defined as the angle where the
second spinwave mode in a symmetric film vanishes. This angle can be
estimated for the various models by solving simultaneously Eq. (3-1),
the magnetization equilibrium conditions and the applicable equation
for the propagation constant k1 = 2n/D (e.qg., Eq. (3-17) for the sur-

face layer). This is only approximate for the uniaxial
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and surface layer models; the absorption amplitude is not zero be-
cause of the surface layer and the negative precession components of
the mode in the bulk contribute to the excitation.

The angle of the magnetization, BC, when g = B k1 = 2n/D

c?
discussed for the three models below. For the uniaxial perpendicu-
lar anisotropy, 6. is plotted versus K, in Fig. (3-13). The range

of values that is reasonable for analyzing experimental data for YIG
films is (-.3«:KS< .3). At the Tower limit there is a highly
localized surface mode at perpendicular resonance; at the upper limit
there is a highly localized surface mode at parallel resonance.

Within this region of Ks’ BC only varies a few degrees. This behavior

does not match the observed experimental data. For the tensorial

mode] GC is given by

0, = tan'1(-Kl/K]1) (3-23)

Therefore, any variation of ec can be matched by the appropriate choice
of Kl and K]T’ although this would not be physically meaningful unless
some understanding of the origins of KL and K., were established.
Finally for the surface layer model, the critical angle variation
depends on the assumed properties of the layers; the physics required
to match the observed variation is discussed in greater detail in later

chapters.
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Fig. (3-13)

The calculated variation of ec with Ks in the

perpendicular uniaxial anisotropy model.
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Chapter 4

Absorption Calculations
4.1 Introduction

In this chapter, the techniques used in calculating the power
absorbed by ferromagnetic films are presented. The theory as devel-
oped in Chapter 2 and this chapter has been discussed by many
authors; in particular the magnetics group from Yale University has
been very active in this area (at the head of this group is Dr.
Barker). The material in this chapter has been repeated because of
simplification, additions, and for completeness. The simplifications
are apparent only if one is familiar with the previous work; there-
fore, they are not discussed. The additions are the approximations
to the boundary conditions discussed in the final section; these ap-
proximations are useful because the computer computations are
simplified. The calculated power absorption data presented for an
asymmetric film with surface layers were obtained using this method;
this method is believed to accurately represent the resonance process.

In the typical resonance experimental situation the magnetic
film is placed in a cavity or strip line at a position of no tangen-
tial electric field and a large tangential magnetic field. Since
power is absorbed by the magnetic sample, a small tangential electric
field is required at the surface; therefore, the fields inside the
sample chamber are perturbed in order to meet this demand. The
large tangential magnetic field, however, is little changed by this

perturbation. Two methods for calculating the power absorbed by the



-55-

film have been used. Both of these methods have field configurations
around the sample which approximate the experimental situation
described above. These field configurations are briefly described
below. In any case, it is implicitly assumed that the perturbation
in field structure is negligibly small and that the differences in
the calculated power absorption are less than experimental error or
resolution.

In the first method, the magnetic field is provided by incident
and anti-incident plane waves. (Due to the film structure and the
possibility of a transmitted wave, it is not proper to use the term
reflected wave.) The incident plane waves of amplitude h0/2 are in
phase, linearly polarized with magnetic field along E&, the perpendic-
ular to the film plane projection of the magnetization. The solution
requires that the anti-incident plane waves be slightly elliptically
polarized with a small component of the magnetic field perpendicular
to the incident plane wave; this anti-incident wave is out of phase
with the incident wave and its magnitude is such that the amplitude
of the total field along E% is slightly different than ho. In the
second method the incident and anti-incident plane waves are nearly
equal in magnitude and are oppositely elliptically polarized such that
the magnetic fields at the film surfaces are in phase, exactly lin-
early polarized along Eg with amplitude ho. In both methods the
resultant electric fields can have both 5; and 5} components of
arbitrary (small) amplitude and phase as demanded by the magnetic

medium.
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4.2 Power Absorption
The general situation shown in Fig. (4-1) is described as follows:
From the space surrounding the magnetic film there are waves incident
upon both surfaces of the film (E}+, F}’); propagating into the
surrounding space away from the magnetic film are anti-incident waves
(ﬁ;t ﬁ;'). Inside the magnetic film the magnetic field is given by a
superposition of eight terms like Eq. (2-2);
8 ,
R(z) =z  ellknz * wt) (4-1)
n=1 "
From the second of Maxwell's Equations (Eq. (2-12)) the electric field

inside is given by

g 8 .
—_y - ic = = i(k .z + wt) (4-2)
e(z) = 2= a, x §=1hnkn e \'n

where o' is given in Eq. (2-13). The time varying magnetization is

related to the magnetic field h(z) by Eq. (2-13). The ratio,

hyn/hxn = v,» can be obtained from the equation of motion of the
magnetization (Eq. (2-14)) and Eq. (2-13);
‘iTr.I
\)n = - o cos © Z (4_3)

At z = d/2 the continuity of tangential electric and magnetic

fields requires that

=t =t = +—
hy +0,° =hea, + hyay (4-4a)
+— +—
€i+ " E; = e, tea (4-4b)
+ + 4 {a -
where h_, hy, ey» and e  are the components of h(z) (Eq.(4-1)) and

e(z) (Eq. (4-2)) at z = d/2.
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Thin Magnetic Film

_ i(k_z+wt)
ma--z_hnunQn e'n
n=1
surface values
-— - + +
z=d/2: hx’ hy, etc.

ot g
=-d/2: hx’hy’ ey etc.

Fig. (4-1) Schematic representation of the magnetic film and
mathematical fields.
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By using simple relations between electric and magnetic plane

waves in free space Eq. (4-4) can be written in component form as

hix * hax - h: (4-52)
h3, + hay = hy (4-5b)
-Zoh:y + Zoh;y = e, (4-5¢)
Zhiy - Zh, e; (4-5d)

Finally, the following continuity equations at z = d/2 are easily

obtained from Eq. (4-5)

A + + (4—6a)
220h1.x zohx ¥ ey

+ + _ + 4-6b)
220 hiy Zohy e, (

At z = -d/2, a similar procedure to the above gives

T = ? e (4-7a)
220 hix ZO hx ey
220h1.Y = Zohy o (4-7b)

Similar expressions to Eqs. (4-6) and (4-7) can be obtained for the

anti-incident waves at each surface. These expressions are useful

in obtaining an understanding of the required waves in free space.
From the Poynting theorem, the average power flow per unit

surface area into a region is given by
il

f %T-(e_ x ) * ndsdt (4-8)
0 surf
where the integral is over the entire bounding surface with inward

A

unit normal n, and surface area S. For sinusoidal time variations

this can be written as
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H=%Re[ fﬁ—;(?xﬁ*)'n_dS] (4-9)

surf
For the planar geometry considered here, the power absorbed through

both surfaces per unit area of one surface (or as is commonly called

per unit area of film) is

C

—t —* —
P = EF'RE[‘G Xh - a,+e xh - az] (4-10)
where E+ and ﬁ+ are the fields at z = g-and e~ and h- those at z = - %
; [T L c I " }
p Re{sw (e Wy =& hy') + g (-e) by + exhe™)f (4-11)

The continuity equations Eqs. (4-6) and (4-7), the continuity of
tangential fields at all interfaces between magnetic material of
different properties, and the magnetic boundary conditions at all
surfaces and interfaces provide enough equations to solve for the

unknowns (h:, e+, h

; x’ etc.) provided the incident‘fie1ds(ﬁ? F}')

n
are specified. Therefore, the power absorbed can be calculated from
Eq. (4-11). For ﬁ}* = ﬁ}' = ;9- eimt E% the above description con-
stitutes the first method discussed in the introduction. This
method is easily adapted to the study of transmission of electro-
magnetic radiation through films, where the second method discussed
below does not contain this flexibility.

When the magnetic fields at the film surfaces are specified
(i.e., method number two in the introduction), the computation or
computer time required to calculate the power absorbed can be

Tani fi += T o= +=_=
significantly reduced. If hx hx h0 and h.y hy 0, then the
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power absorbed per unit area of film is

ch

S L 1
P =& Re(ey e ) (4-12)

by

The equations necessary for the computation of (e; - e;) come from
the magnetic boundary conditions at all surfaces and interfaces
between magnetic materials of different properties, the continuity
of tangential fields at all interfaces, and the following surface

equations.

8 :
+ _ 4 ik _d/2
hx =1 = Z_ hnx e n (4-13a)
n=1
8 .
“ o -ik_d/2 L
hx =1-= E_ hnx e n (4-13b)
n=1
8 .
o e +ik_d/2 a
hy =0 = Z_ hnx p e n (4-13c)
n=1
8 4
- .- -ik_d/2 ’
hy =0 = Z=] hnx voe (4-13d)
8 k
+ - _ = 2 nd
& "8 = " I §=] Kphnx 10 = (4-13e)

This set of equations is one more in number than for method one,
but e; - e; can be directly determined.

Due to the factoring of Eq. (2-16) at parallel and perpendicular
resonance orientations, the power absorption calculations at these
orientations are simplified. At parallel resonance the tangential
fields associated with the six wave vectors from Eq. (2-19) and the

two wave vectors from Eq. (2-18) are linearly polarized perpendicular
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and parallel to ﬁ;, respectively. In terms of the equations this

gives
h_ =0 n=17,8 (4-14a)

=1,2,3,4,5,6 (4-14b)

<
i

o

= |
I

6 .

o, 2 e ik _d/2

hx =1=13 hnx e n (4-15a)
n-1
6 .

L = ik _d/2

hx =1 = 2_ e (4-15b)
n=1

S g P - g k h _ sin k_d/2 (4-15

€ ~ &% T Zmo n=1 N nx S0 %, -15¢)

Since the summation extends only to n = 6, the parallel resonance
calculation is simplified. For the perpendicular resonance orientation
Eq. (2-16) factors into two quadratics in K2 (Eq.(2-17)). Associated
with each quadratic are four field components with circular polariza-
tion; the sense of precession or rotation of this polarization is

positive (negative) for the fields with wave vectors from the

i =1 (i=2) equation. Using method two, the linearly polarized inputs

+ + - - _ ; .
. s hy =0, hx =1, hy = 0) are resolved into two oppositely
polarized circular waves of half magnitude; these polarizations are

(h

completely uncoupled, i.e., the response of the system associated
with one sense of precession is not affected by the other. In
general, this is true at perpendicular resonance for any magnetic boun-

dary condition that requires isotropic pinning of the magnetization.
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The power absorbed can be calculated for each of the two circular
drive fields individually (see Appendix IV). The power absorbed due
to the negative precession drive is small, slowly varying and can be
neglected when compared to the resonant characteristics of the
positive precession response.

The equations necessary to solve for the power absorbed in the
following four cases are given in Appendix IV.

1. A film with asymmetric perpendicular uniaxial anisotropies
and the magnetization at a general angle, 6.

2. A film with asymmetric tensorial anisotropies and the
magnetization at a general angle, 6.

3. A film with asymmetric tensorial or perpendicular uniaxial
anisotropies; the magnetization is in the perpendicular resonance
orientation. The symmetries discussed above and method two are
utilized.

4. A film with asymmetric surface layers with the magnetization
in the perpendicular resonance orientation. The symmetries discussed

above and method two are utilized.

In the first two examples the equations for both method one and

two are presented.
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4.3 Approximate Absorption Calculations

The calculations discussed in the previous section are not too
unreasonable for the anisotropy models where the maximum number of
equations is 9; however, when the asymmetric surface layer problem
was considered it was found to have 24 unknowns. The surface layer
model also required the roots of three equations like Eq. (2-16) to
be found. Even the symmetric film calculation at perpendicular
resonance had 9 equations. An approximation was believed to be in
order. The calculated power absorption data presented in Chapter 6
for an asymmetric film with surface layers were obtained using this
approximation. The positive and negative precession spin wave vectors
were approximately factored from Eq. (2-16). Secondly, the boundary
condition at the interface between the layers was approximated such
that the negative precession wave vectors were not required. These
approximations were found to give very good results for symmetric
films at parallel resonance where they are the least accurate.
The approximation to the secular equation will be presented here
and the approximation to the boundary condition is presented in
Appendix V. Results from the calculations are presented for the
perpendicular uniaxial anisotropy and the surface layer model at the
end of this section.

Equation (2-14) written in matrix form is
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)
= 0 (4-16)
iQ' ™ m¢
or
Gwm= 0

With € = 0 the matrix G can be exactly diagonalized by a similarity

. 4 > .
transformation U G U (Kobayashi, 1973).

1 R
(1+ |r]%)1/2 (1 + [R5V
Iy e (4-17)
_R* 'l
L1+ |R]A)1/2 (1 + [R|?)172 ]

S
Upon applying this transformation to G, the following is obtained

A1 Mo Mg
avtm = ut =0 (4-18a)

A1 Ay M

2 2
il 2 2 R +
Apq = K4 + K2 (-Kg + §2e2) + i2e (-K2 + 1Rl ng_e) (4-18b)
, 1+ |R|
2 2
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2 2
R = KY 4 KE (K + 127 4 12e® (o 4 L :°?R|§ 1R ) (4-184)

As before, the dispersion relation is given by det (A) = 0; however,
if A]Z and AZI are negligible, it is approximately given by A11=A22=0.
The secular equation approximation (Yelon et al 1974) is to neglect
Ay, and A,y (Note Ay, and A,, are zero for perpendicular resonance).
The ellipticity and sense of precession of the components of the
magnetization for Al] and A22 are found by examining each eigenvector

independently. The eigenvectors obviously are

1
i (o) for Ay, =0 (4-19a)
and
. (0
2 \1 for A, =0 (4-19b)
where
+ [ Mg ) 1
L (e u](o (4-19¢)
¢
m 0
TH R “z( ) p (4-19d)
m¢ 1

Multiplying the above by U gives

1/
Mg 1700 + |R|%) 2 m, .
My N 2 Vo) D> == = -IR (4-20)
My, -R /(1 + | R %) ¢
and
1/
2 2 m
m R/(1 + |R[€) ~ 0
o). 2( o 1/, BEe = R (4-21)
17(1 + |R|F) ¢
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Therefore, A11 = 0 gives two spinwaves with negative precession;
like the negative precession spinwaves of perpendicular resonance,
these will contribute 1ittle to the resonance phenomena. The spin-
waves given by A22 = 0, however, have positive spin precession and
are the major contributors to the resonance behavior. The spinwave
ellipticities here are the same as those associated with the K.| and
K, wave vectors in Eq. (3-2).

If the boundary conditions are such that the positive and
negative precession spinwaves are not coupled, then one would proceed
as follows: 1) the linearly polarized input ('ﬁ'+ of method two)
would be resolved into two oppositely polarized elliptical waves with
hxp = h:/(l + |R|2), R * |R|2 h:/(l ¥ |R|2) and ellipticies (R cos 6),
(-cos B/Rﬁ, respectively. (These can be matched by the film plane
projection of the positive and negative precession spinwave fields
respectively); 2) The power absorbed for each of these polariza-
tions would be calculated as in the perpendicular resonance case
discussed earlier.

Of the three boundary conditions treated in this thesis only the
tensorial model falls into the class of uncoupled positive and
negative precession spinwaves. Therefore, further approximations
had to be made to simplify the calculations involving the other two.
The uniaxial anisotropy model is approximately a tensorial model with

(see Appendix V)

K.I_ = K (4-22a)
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2
K IR

K - RS S —
T

(4-22b)

By using the procedure outlined above it was found that the “exact"
spectra and those due only to the positive precession spinwaves

had almost exactly the same characteristics (i.e., mode position, mode
linewidth and relative mode amplitude); but, the power absorbed by

the positive precession mode, P+, was not in good agreement with the

"exact" calculation. It was found, however, that if hx was changed

P
to

hyp = ho2 2 (4-23)
P (1 + |R|® cos® 8)

then even the power absorbed was in very good agreement at all angles
O%AEEQ magnetizat{;ﬁ. A comparison is given in Table (4-1). Here
the amplitude, linewidth, and peak positions of P+ is compared with
method two calculations for a symmetric permalloy film; the power
absorbed by the negative precession spinwaves was small and slowly
varying.

An approximate boundary condition for the positive precession

spin waves at the interface of two magnetic layers was deduced from

Eq. (3-17) (See Appendix V)

] H2b 1 H2s
- (4-24a)
(1 + IR (0 + [RIPNZ M (4 rR) M
du A du
A 2b _ s 8. )

Mb (] o RbRS*) dz MS((1 + |R512)(1 & |Rb|2))1/2 dz
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A comparison of the "exact" and approximate, P+, calculations at
parallel resonance (the orientation at which the approximation should
be the least accurate) is given in Table (4-2) for a YIG film.

(Note: Eq. (4-23) was used for hxp') The excellent agreement found
in this case and the uniaxial case presented earlier, lets one use

this approximation with confidence that the calculated data represents

the resonance process.
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Table (4-1)
llExactll P+ “Exact“, P+ !IExactll P+

& Amplitude Amplitude Position Position AH* AH*

(era/cm?) (erg/em®)  (Oe) (Oe) (0e)  (0e)
0 6.884x10° 6.884x10° 3179.9 3179.9  43.1 43.1

4.503x10° 4.503x10°  2878.5 2878.5  21.1 21.1

6.005x10% 6.005x10%  2122.1 2122.1 18.4 18.4

1.450x10% 1.45x10%  876.8 876.8 17.6 17.6
30 1.038x107 1.038x107 2082 2081.9  40.5 40.5

3.811x10° 3.853x10°  1799.4 1799.3  21.3 21.3

4 4

4.144x10° 4.378x10 1047 .2 1047.0 18.4 18.4

7 7

80 1.502x10° 1.502x10 882.4 882.4 38.1 38.1

7

90 1.513x107 1.513x10 860.9 860.6 3/.9 38.0

Film Properties

M =887.4 G
Rho = 14.3 Micro-Ohm-cm

d = 2023 A

Alpha = .00457

A =1.183x107°

K51 = K52 = .22 Erg/cm2

f = 9.44 GHz

vy = 1.8484x10" inv Oe-sec

9y =9, =93=0

* AH is the inflection point linewidth
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Table (4-2)

Film Properties

M, = 138.1 6
o = o = .0010

A, = A, = 3.593x1077 Erg/cn

£ = 9.16 GHz

Yb = Ys = 1.767x107 inv Qe-sec
M /M = 1.95

L = 470 A

D = 4230 A

FMR Position (0e) Linewidth (Oe)

Mode NR FMR Position Linewidth Absorption (erg/cmz)
(Ph) "Exact" ) "Exact" (P") "Exact"
1 2596 .6 2595.6 3.9 3.9 1.053X'|07 1.054x107
2 2494.0 2494.0 3.9 3.9 2.018)(]07 2.015x107
3 2026.6  2426.6 3.9 3.9 1.426x10° 1.426x10°
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Chapter 5

Surface Layer Properties

5.1 Introduction

It has been asserted earlier that the surface layer model can
be made to match the experimental resonance spectra observed in YIG;
however, the required surface layers must represent a realistic
average of the properties believed to exist in the surface regions.
Some evidence for the existence of surface regions of different prop-

erties than the bulk properties is given below. Etching experiments

on YIG films have shown that the source of surface modes is located
within 100-8003 of the surface. An example of the mode field position
behavior during an etching experiment on a film with two surface modes
is provided in Fig. (5-1). The lower surface mode made the transition
to a body mode in the first 200 or 3008 of etching. Presumably this
mode was concentrated at the film-air interface. The field position
of the other surface mode was invariant until the film was less than
15008 thick. The remarkable behavior below this thickness indicates
that there was an interface surface region of considerable thickness
with properties different from the bulk. This second mode only ap-
peared if the film had been annealed in this case at 1200°C for 6
hours; this in itself is suggestive that a diffusion may occur between

substrate and film.

Surface modes were observed at perpendicular resonance by Henry

t al (1973) after overcoating with $i0, or argon implantation.

It is physically plausible that these processes would give a region
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Fig. (5-1) Effect of etching on the resonant-field position of the high-field spin wave
modes for a YIG film having two surface modes. After Yu et. al. (1975)
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at the air-film interface with magnetic properties different than
the bulk.

In the following section some of the properties of bulk garnet
materials are described. The final section presents some of the
properties to be ascribed to the two surface layers of a YIG film;
other properties will be presented in the next chapter as needed to

explain the experimental data.

5.2 Properties of Garnet Materials

The simplest chemical formula for garnet materials is R3P2Q3012.
The basic crystal structure is cubic with eight formula units per
unit cell, i.e., 160 atoms 96 of which are oxygen. Each oxygen ion
lies at a vertex that is common to four polyhedra of oxygen, one
octahedron, one tetrahedron, and two dodecahedra, as indicated in
Fig. (5-2). The orientations of the polyhedra vary throughout the
unit cell, although the type of symmetry for each is retained. The
cations occupy the interstitial sites. The cations denoted by P and
Q occupy the octahedral or [a] sites and the tetrahedial or [d] sites,
respectively. The other metal ions, R, are surrounded by eight
oxygen ions located at the corners of a skewed cube, or, as it is
often called, a dodecahedron, [c] sites.

In the magnetic garnets, R is typically a trivalent combination
of rare-earth and yttrium ions; P and Q are trivalent combinations of

+3 +3 +3 .
Fe ¥, Ga © and A1 ~. An example is (Gd0_7Y].55Yb0_75) Gao.gFe4_]01

3+

2|
In a magnetized state the net moment of the P jons in the (a)

+ . < .
sites and the net moment of the R3 jons are in one direction and
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that of the 03+

jons in the (d) sites are in the opposite direction.
The alignment is due to superexchange interactions of the Q3+ ions
in (d) sites with those in (a) and (c) sites via 02' intermediaries.
The moment of an Fe3+ jon is 5 Bohr magnetons.

In rare earth substituted YIG the variation of the net moment of

the Fe3+

system with temperature is similar to that of ferromagnetic
metals. The moment contribution due to magnetic R‘?'+ ions, however,
is quite different as shown in Fig. (5-3) for Gd3Fe5012. The net

3+ less that

moment at absolute zero (that for R ions and (a) site Fe
for (d) site Fe3+) can be fairly large. As the temperature increases
for garnets like Gd3Fe50.|2 the net moment decreases to zero at a

temperature called the compensation temperature. Above the compensa-

3* in the (a) sites dominates and

tion temperature the moment for Fe
does so up to the Neel temperature where the moment again drops
to zero.

Fig.(5-4)shows the net magnetization of several garnets as a

3+ and Al3+ for Fe3+

function of temperature. Introduction of Ga
is known to reduce the moment and the Neel temperature of the material.

"The rules for ionic site preference in the garnets may be
summarized as follows:

1. The octahedral and tetrahedral sites appear to prefer exclu-
sively ions with spherical or pseudospherical electronic configura-
tion. The dodecahedral sites are not selective in this regard.

2. Site preferences depend on relative ionic sizes: (a) If

an ion has a spherical electronic configuration in both octahedral

and tetrahedral crystal fields, the larger the ion, the greater
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Fig. (5-4) Experimental values of the spontaneous magnetization of
various simple garnets as a function of temperature.
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for each curve ( After R. Pauthenet)
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will be the preference for the octahedral site. The dodecahedral
sites are usually occupied by the largest metal ions present.
(b) The substitution of one ion for another in a particular garnet
is limited by the relative sizes of all of the ions involved."
(Geller 1970)

The garnets are magnetostrictive and the dominant crystalline
anisotropy of the rare-earth garnets is cubic with easy axis along
the body diagonals; however, a number of techniques are known to add
large anisotropies to these films. An example of these large
anisotropies is the growth induced anisotropy in bubble related
garnets. This anisotropy results from site ordering of the two or more
rare-earth ions incorporated in the particular garnet; the magnitude of
this anisotropy is in part determined by the size differences of the R
ions involved. (Rosencwaig et al (1971), Gyorgy et al (1973).

Another anisotropy observed at low temperatures (i.e., less than

2+

100°K) is associated with Fe® ions in octahedral sites. In the

situations where this anisotropy has been most studied, the Fe?* was

4

generated by introducing 514+ into the lattice. The Si' is believed

to be in the tetrahedral sites because of the small size and pref-

2+ is believed to

erence for a coordination number of four. The Fe
be in the octahedral sites because of the larger size and a preference
for a coordination number of six. The Fe2+ ion is about the same size
as the Sc3+ jon which prefers octahedral sites exclusively in the
garnets. There are four types of octahedral sites, distinguished
by a different local symmetry and characterized by the local trigonal

axis which lies in one of the four <]111> directions. Electrons
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(Fe2+ jons) in sites whose trigonal axis is nearest to the magne-
tization direction have a slightly lower energy than those in other
sites. At low temperatures the excess electrons become trapped in
those sites and produce anisotropy. The magneto-optical effects of
this anisotropy have been thoroughly studied. Irradiation
with white 1ight leads to a redistribution of electrons that

essentially destroys the anisotropy (Gyorgy et al (1970)).

5.3 Surface Layers in Garnet Films

It was schematically pointed out in Fig. (3-7) that the properties
to be ascribed to the two surface layers are different. The prop-
erties of a particular layer depend upon the history associated
with the film; therefore, it is impossible for universal properties
to be determined; however, some properties that could be easily

associated with a particular layer are given below. In general,

any magnetic material constant may be different; this includes the
magnetization, M, the gyromagnetic ratio, y , the exchange constant,
A , the damping parameter, o, and the anisotropies, Ka . Of these

A and o are expected to make little difference for very thin layers
but may play a role if the layers become thicker. Variations of M,
Ka, and vy however, have considerable effect on the field position of
the spinwave modes. Significant variation in vy 1is unlikely except
near compensation in ferrimagnets, therefore this effect

should only appear as a sensitive function of temperature. Variations

in M or Ka have effects that are not easily separated.
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5.3.1 Film-Air Interface

The physical mechanism producing the surface anisotropy or
spin pinning at this surface is not clear; however, through etching
experiments, it has been isolated to a thin surface region. In any
orientation a mode localized at a surface will exist if the surface
layer tends to resonate at a larger field. Two possible origins of
this are: (a) a layer with different anisotropy energies than the
bulk or (b) a layer of different magnetization. In the latter case,
the surface mode appears in perpendicular resonance (8 = 0°) if the
surface magnetization is increased, and in parallel resonance (8 = 90°)
if the surface magnetization is decreased.

One possible source of a larger surface magnetization is the
existence of oxygen vacancies in the surface region causing Fe2+ ions
in the octahedral sites. A reduction of the total moment in the
octahedral sites would increase the total magnetization. Further,

the Fe2+

may have the effect of producing significant anisotropies
at lower temperatures, and these anisotropies could be sensitive to

irradiation by light.

5.3.2 Film-substrate Interface
This surface region is believed to be of variable chemical

composition Y3_de Fes_xGaXO12 where the thickness of the layer,

Y
and y and x are dependent on prior annealing treatment. The behavior
of the Gd moment in the partially substituted YIG should be Tittle
different than that of stoichiometric GdIG shown in Fig. (6-2)

except for a reduced value of MGd‘ If the Gd magnetization is suf-
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ficiently high, the strong temperature dependence of the gadolinium
magnetization will produce a compensation temperature where the net
magnetization vanishes. Further, it is expected that at temperatures
below compensation the resultant magnetization in the surface layer
will be anti-parallel to the applied field since the principal ex-
change coupling is through the iron sublattices and because the
surface layer is believed thin compared to the width of a typical
domain wall. The gyromagnetic ratio for a ferrimagnet varies with
the sublattice magnetization in accordance with an effective g

factor (Wangsness (1953, 1954, 1956))

M. - M

g - € Gd
eff  Fro - Tog
Ire Y94

The temperature dependence of the critical angle associated with
this interface can be explained if 9k > 954 and if the surface layer
has a compensation temperature near 110°K. From effective g measure-
ments in Gd1G, it was deduced by Calhoun et al (1958) that 9q IS
slightly lower than Ire- By varying the frequency and measuring the
perpendicular FMR field, 9pe Was determined to be 2.008+.002. Based
on these considerations, the values of Ire and 9gq Were chosen to be
2.008 and 2.000, respectively. In order to have a compensation
temperature near 110°K, it was estimated from experimental and
molecular field analysis data of Figures (5-3) and (5-4) that the

room temperature magnetizations in the surface layer should be in
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the range .4 MFe < MGd < .3 MFe‘ In the analysis, the room tempera-
ture ratio of MGd to MFe was varied within the above Timits with MFe
chosen 15-25% lower than the bulk value due to the possibility of
gallium substitution.

Any atomic substitution in the surface layer may also give rise
to an in-plane strain since the layer is epitaxial with thick film
and substrate. Through magnetostrictive interactions this can give
rise to a substantial perpendicular uniaxial anisotropy such as is
well known in bubble material garnets. This anisotropy is to a large
extent indistinguishable from a change in magnetic moment. Therefore
in what follows a change in 4wM in the surface layers could be in

part a change in this anisotropy.
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Chapter 6

Comparison of Experimental

and Calculated Data

6.1 Introduction

The previous chapters have introduced experimental phenomena
(Chapter 1), theory (Chapters 2-4), garnet material properties (Chap-
ter 5). This chapter will address the thesis that observed surface
phenomena in thin YIG films can be explained by surface layers with
magnetic properties different from the bulk. Calculations utilizing
the other models of surface pinning are also provided where instruc-
tive.

Experimental data from four films are compared with calculated
spinwave spectra. Comparison of calculations with experimental data
from other than these four films are qualitative. The material con-
stants for these four films are given in Table (6-1); for convenience
the samples have been designated CIT 1, CIT 2, OSU 1, 0SU 2. The two
samples measured in this laboratory were cut from a single garnet film
grown by CVD process on a [111] oriented wafer. One sample (CIT 2)
was annealed in dry 02 for 6 hours at 900°C. The unannealed sample
(CIT 1) has a surface mode at perpendicular resonance while the
sample CIT 2 has one at parallel resonance. The surface mode of the
CIT 1 sample is believed localized at the air-film surface since it
had been overcoated after growth; the surface mode of the CIT 2 sample
was shown to be localized at the air-film interface by etching away

the outer surface. The data for the other two films are taken from a
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paper by Yu, Tuck, and Wigen (1975). Both films were cut from a
single garnet film grown by CVD on a [100] oriented wafer. One of
the films (0OSU 1) was annealed at 1000°C for 6 hours and has a single
surface mode at parallel resonance. The other film (0SU 2) was an-
nealed at 1200°C for 6 hours and has two parallel resonance surface
modes. In the latter case, two surface modes indicate that both sur-
faces of the film have been altered. This was confirmed by an etching
experiment (see Fig. (5-1)).

Typical experimental data consist of a set of spinwave spectra
obtained at different angles of applied field. Field locations of
the three highest field modes are shown for a case in Fig. (6-1). The
most important feature in this figure is the separation of the modes
from the (calculated) uniform mode location. Because of the large
variation in the uniform mode location, there is a great 1oss‘of
detail unless this separation is plotted instead of the actual mode
location. A1l subsequent figures will show only the separations from
the calculated uniform mode location. Comparison of experimental data
with the calculated uniform mode location has one inherent difficulty;
Fig. (6-1) shows that a small error in alignment will affect the uni-
form mode position negligibly at perpendicular and parallel resonance,
but a significant error may result at other angles (e.g., a .1° error
in alignment changes the uniform field by about 5 Oe at B8 = 30°). This
may be the source of some of the difference between the calculated and

experimental data presented later.
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Fig. (6-1) Angle dependence of the resonant-field position of the

highest three field modes of sample CIT2. The solid
curve is the calculated field position for the

uniform precession mode.
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In attempting to duplicate the experimental spectra, the sur-
face layer thickness, magnetization and in the case of substrate-film
layer the ratio of MGd to MFe were varied to give a best fit to the
mode locations at all angles. The material constants that were de-
termined for the four films are given in Table (6-1). Film thickness
for YIG is usually measured by an optical interference method. In
the thickness range of .5 um, this appears to give an accuracy only
of the order of 10%. Since the spinwave spectra are very sensitive
to thickness, it was necessary to vary the film thickness from the
optically measured value.

The orientation of the magnetization depends on the orientation
of the applied field with respect to the crystallographic axes. For
simplicity of calculation, the experimental data were taken with the
applied field in the orientation described below. For the [100]
oriented films the applied field was in a (100) plane at an angle R
from the film normal. For the [111] oriented films the applied field
was at an angle B from the film normal in a plane defined by the

normal and a line in the film plane 30° from the [112] axis.

6.2 Comparison of the Angular Spinwave Mode Field Position Data
Surface layers can force the bulk material to support surface or
body modes as the highest field mode depending on whether the surface
layers tend to resonate at a higher or lower field than the bulk.
A layer with a reduced magnetization will resonate at a higher field
at the parallel orientation and a lower field at the perpendicular.
Therefore, a film with a reduced magnetization layer will have a
surface mode at parallel and not at perpendicular. A Tlayer with

increased magnetization produces the opposite effect.
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Figures (6-2) and (6-3) show the angular dependence of the
resonance fields for the observed and calculated spinwave spectra
in the samples CIT 1 and CIT 2, respectively. For both films, the
best fit to the experimental data was obtained by using two surface

layers, and a total film thickness of about .47 uym. The calculated

and experimental data for the two [100] oriented films (OSU 1 and

0SU 2) are shown in Figures (6-4) and (6-5). The best fit for
sample OSU 1 was obtained by using a single surface layer. Two
surfaces were obviously required for sample OSU 2. .The best fit to
the data for both films was obtained using a total thickness of about
.47 um. The thickness reported by Yu et al (1975) was .56 um; this
reported thickness is clearly inconsistent with the experimental
perpendicular resonance mode spacings and must be in error. The above
mode position calculations utilized Eq. (3-17) for the sample with
one free surface and the 8 x 8 determinant in Appendix II for the
films with 2 layers. The respective g's and magnetization equilib-
rium relations for the [100] and [111] oriented films are given in
Appendix I.

One important observation can be made from the layer thickness
data given in Table (6-1).The total thickness required to match the
mode position data in an annealed film is slightly larger than that
required for an unannealed film or film annealed at a lower temper-
ature. The effect, however, is small.

It is instructive to compare the above with the results from the

tensorial and uniaxial surface anisotropy models. The best fit to
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Fig. (6-2) The angle dependence of the magnetic field separation
of the observed and calculated positions of the spin-
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uniform mode, U, for sample CIT 1.

e
T




-90-

200
l+ﬁﬂftﬁ;++
8+ § EXPCRTMENTAL DHTA
+ +
| at
g +
. a +
A et
Ll §+e st Pray “f'a w g
O B+ +
v +
[][:“+5|-'|E+P+ﬂ,,a+ : + +
| ; - " e pbpw ® i
J
T 4 s
= ¥
' g B +
B aphe @
b MAGNET ANGLE <DEG) =8

Fig. (6-3) The angle dependence of the magnetic field separation of
the observed and calculated positions of the spinwave
modes, HA, from the calculated positions of the uniform
mode, HU, for sample CIT 2.



-9] -

20
+ CRLCULATED DATH
£ b 0 EXPERIMENTAL DATH
P+t b7 @ gt
+
g ¢+
o}
d
+
El*'ﬂ
A
& B4 g @
h.ll B+
O
V$+ﬂ*'ﬁ+ﬂ+$+ﬂ+++
8 g +
Tt o
I 4B Rt ot o 0 b o @ 8,08 3
I 85 n @ _*
] U B
T { ‘e
¥al
- B
e
i -
-
@ MHGNET HNGLE <{DEL > =e
Fig. (6-4) The angle dependence of the magnetic field separation

of the observed and calculated positions of the
spinwave modes, HA, from the calculated position of
the uniform mode,HU, for sample OSU 1.



L.

ot 8+ o+ 4 a

ATED i
MENTRL DRTH

+
[ I S
g ' +o

HU—HRAR <OE >

}

B g + g 4

:lst:

Fig. (6-5)

MAGNET HNGLE <(DEL > ¢5e
The angle dependence of the magnetic field separation
of the observed and calculated positions of the spin-

wave modes, HA, from the calculated position of the
uniform mode, HU, for sample OSU 2.



-93-

the experimental data from sample OSU 1 is shown for all models in
Fig. (6-6). A first conclusion would be that nothing has been proven
since all the models can be made to predict the same behavior;
however, closer observation of Table (6-1) shows the following contra-
dictory result in the cases of the tensorial and uniaxial models.

The thickness required for two films with different annealing histories

but initially from the same wafer are significantly different. Fur-
ther, the thickness required to match the mode data in an annealed
film is smaller (not larger) than that required for an unannealed
film or film annealed at a lower temperature. Since this is such
good evidence that the pinning cannot be due to a surface interaction
of the type postulated, it is considered in greater detail below.
Basically it is to be shown that the mode position data for samples
OSU 1 and OSU 2 cannot be matched with reasonable accuracy if 0SU 2
is required to be of equal or greater thickness than 0SU 1. The

mode spacings at perpendicular resonance simply will not allow it.
Similar arguments can be made for the two CIT films. The perpen-
dicular uniaxial model will be used for this discussion; however,
since Kl_and Kll are related via the critical angle similar state-
ments can be made for the tensorial model. For sample 0SU 2 the two
surface energies were chosen to match the field position of the two
parallel resonance surface modes; this match actually has only a
slight dependence upon the thickness of the film. The film thickness
was then chosen to match the separation of the perpendicular

resonance modes. Is it possible to match the 0SU 1 data with this
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thickness? For sample OSU 1 the value of KS] at one surface was de-
termined by matching the position of the surface mode at parallel
resonance (again this is nearly independent of film thickness). Using
this value and Ksp= 0 at the other surface, and the above thickness,
the separation of the perpendicular resonance modes from the uniform
mode is 7.4, 66.6 and 186.8 Oe. Note that these are not near the
experimental values of 9, 56 and 154.5 QOe. If KSz is greater than
zero the separation at the higher order modes is greater than above.
If I<52 less than zero the higher order mode separations can be re-
duced but a perpendicular resonance surface mode is produced; this
was not experimentally observed. The only way to obtain complete
agreement is to increase the thickness. Conversely, if the film with
two surface modes had the thickness which gives a good fit for 0SU 1,
then the mode spacings for OSU 2 at perpendicular resonance are 19.6,
80.3, 186.0, which is not in agreement with the experimental values
of 25.1, 100.1, 223.1. Considering the accuracy of the experimental
measurements, these differences are very large.

The above suggests that the tensorial and uniaxial models can
at best represent some sort of averaging of the surface layer prop-
erties; this was initially proposed by Bajorek and Wilts (1971). In
section (3.3.3) it was pointed out that the surface Tayer and uniaxial
anisotropy have similar properties if I<S is determined from Eq. (3-19)
and the film thickness, d, is determined by requiring the total mag-
netization in the two models to be the same. Table (6-1) gives a com-

parison of this KS and thickness with the KS and thickness required to
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match the experimental data. Note that the agreement is good for
the films with thin layers while for the films with thicker layers

the agreement is not necessarily good at all.
6.3 Comparison of Spinwave Mode Intensity and Linewidth Data

Experimentally it is observed that the linewidth of the surface
modes is typically wider than the other resonance modes. For sample
CIT 1 the surface mode linewidth is larger by as much as a factor of
two. Using the theory presented in Chapter 4 the observed spinwave

mode intensity and Tinewidth variation can be explained if the damp-

ing parameter, O 5 of the surface layers is assumed larger than the
damping parameter in the bulk of the material. Two experimental facts
from earlier work support this assumption. First, the resonance line-
width of rare-earth substituted garnets ("bubble materials") can be
many times (20-100) larger than that observed in good YIG films.

4 ions

Secondly, the resonance linewidth of films irradiated with He
(Stakelon et al (1975)) is wider than the Tinewidth of non-irradiated
films. Therefore, disordering of the lattice (ion implantation) and
impurity substitution ("bubble materials") both apparently increase
the Tosses. Since the surface Tayers are believed caused by either a
diffusion (impurity substitution) process or by lattice disordering
(ion implantation) the assumption that ub/as < 1 is plausible.

For sample CIT 1 the ratio ab/as = .3 was required to match the
linewidth variation observed at perpendicular resonance. With this
ratio the theory also gives reasonable quantitative agreement (Table
6-2) for the intensity and linewidth variation in the two observed

modes at all angles where the mode position is accurately matched

(see Fig. 6-2). If the experimental and calculated data are compared
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based upon mode separation from the uniform precession mode, then
there is reasonable quantitative agreement for all angles. For
comparison, calculated data using the uniaxial model are also provided
in Table (6-2). Note, this model does not qualitatively match the
experimental data and cannot unless an additional mechanism is pos-
tulated at the surfaces; the same comments are true of the tensorial

model.
For the annealed [111] oriented film (sample CIT 2) even better

results were obtained as shown in Table (6-3). At angles where the
calculated and experimental field positions match (Fig. (6-3)), the
linewidth and intensity data (calculated and experimental) are again
in good agreement if ab/as = .54 in the 700 K Tayer and ub/as =.9
in the 200 R layer. Data from the uniaxial model are also provided
for comparison. The uniaxial model shows no difference in linewidth
between the surface and body modes and the mode intensities are in
poor agreement with the experimental results. Note that at perpendic-
ular resonance orientation the second mode is smaller than the third
for both models; this is expected since the second mode is quasi-
antisymmetric and should be smaller than the quasi-symmetric third

mode. For this sample (CIT 2), absorption derivative curves were

shown earlier in Fig. (1-2) for eight angular orientations.

6.4 Comparison of Temperature Dependence Data

The temperature dependence of the critical angle and the parallel
resonance spectrum have been reported by Yu et al (1975). Measurements
were made with films that showed both one and two parallel resonance

surface modes at room temperature; these cases will be discussed
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TABLE (6-2)

For film properties see Table (6-1) sample CIT 1.
A11 amplitudes given below are normalized to 100% for the largest
amplitude mode.

Angle

10
15
20
30
40
50
60
70
80
90

@ not determined

Surface Layer Uniaxial Anisotropy Experimental
AH % Amp AH % Amp AH % Amp
2 1 2 1 2 1 2 1 2 1 2

11.5 5.7]125.6 100.| 5.7 5.7 |50.2 100.|11.6 5.7 [15.4 100.
11.9 6.2]31.8 100.| 6.1 6.1 [62.1 100.|11.1 5.8 |22.0 100.
@ @ @ @ @ @ @ 1 5.8(90.9 100.
12.0 7.4|74.6 100.| 7.1 7.0(100. 71.9]16.9 6.9]100. 11.
9.2 7.7|100. 7.4 7.5 6.9 |100. 6.7(7.0 a [100. a
8.0 @ | 100. .03 1.2 a |100. a |7.5 a |100. a
7.1 7.5]100. .31 6.7 @ |100. BN T2 T2 |100. <7
6.5 6.5| 100. 2.5 6.3 @ |{100. 1.1]7.0 6.9|100. 1.3
6.1 6.3] 100. 3.0 §.9 5.3|100. 2.7]6.3 6.3 |100. 1.7
5.9 6.2 100. 3.3 5.7 5.2 [100. 3.0|5.4 5.4(100. 2.1
5.8 6.2] 100. 3.8 5.6 5.2 |100. 3.0 5.4 5.4 (100. 2.1

a not observed
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individually below. The sample (OSU 3) with one parallel resonance
surface mode was [100] oriented, .37 pum thick, and annealed at 1000°
for 6 hours; this is not one of the films listed in Table (6-1). Upon
lowering the temperature below 300°K, the parallel resonance surface
mode increased in intensity while the body modes decreased; at a
critical temperature the once surface mode presumably became a uni-
form precession mode and the other body modes were not excited. The
position of the critical angle was observed to shift toward the paral-
lel orientation (Fig. (6-9)) such that at the above critical temperature
the critical angle was in the plane of the film. Below the critical
temperature, Yu observed no critical angle or surface mode (i.e., only
body modes were observed).

It has been pointed out in Chapter 3 that the uniaxial model is
incapable of explaining these experimental results. The tensorial
model can be made to match almost any variation. but physical explana-
tion of the variation in Klland KL is not convincing. The degree to
which the surface layer model predicts the above behavior is explored
below. For the following reasons the temperature dependence calculation
was made using the material constants associated with OSU 1:

1) Only the temperature dependence data were given for sample
0SU 3, so that accurate material constants are not known.

2) The computer analysis showed that the temperature variation
of the critical angle depends almost entirely on the mag-
netic characteristics of the film-substrate surface layer so

that the difference in total thickness is unimportant.
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3) The two samples had identical annealing histories: there-
fore, it is reasonable that the surface properties should
be approximately the same.

4) The detailed temperature dependence of the interface layer

magnetization can only be estimated in an approximate way.

Using the properties for the substrate-film layer given in Chapter 5
the temperature dependence was calculated roughly by holding MFe con-
stant and increasing MGd linearly with decreasing temperature. In
view of the Targely qualitative nature of the comparison sought, a

more accurate treatment of the temperature variation of M., and M

Gd Fe

was not warranted.

Figures (6-7) and (6-8) show the calculated temperature depen-
dence of the two highest field modes at parallel and perpendicular
resonance; Fig. (6-9) shows the calculated temperature dependence of
the critical angle. Note that the calculated and experimental data are
in qualitative agreement down to the critical temperature where the
critical angle is observed in the film plane, and the uniform preces-
sion mode is excited at parallel resonance. However, at a lower
temperature or higher MGd the model predicts a phenomenon that was not
observed by Yu, that is, a low temperature perpendicular resonance sur-
face mode and associated critical angle (below 100° in Figs. (6-9) and
(6-8)). It was speculated that this disagreement in experimental and
predicted behavior was due to over-simplification of the model. In
any real system, diffusion will not produce a uniform layer but rather

an inhomogeneous region with a compensation layer that moves through
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it as the temperature changes. In order to try to understand the
effects of nonuniformity, the interface region was represented by
three adjacent surface layers of different thicknesses and different
properties. Here the results were not entirely straightforward. Some
geometries produced results similar to the above and others predicted
completely different behaviors; however, in all cases, there was a low
temperature perpendicular resonance surface mode. A final mathemati-
cal attempt involved integration of the equations of motion through
the thickness of an inhomogeneous film at perpendicular resonance;
this also predicted a low temperature perpendicular resonance surface

mode.

In view of these results one therefore would expect a low
temperature perpendicular resonance surface mode if the above assump-
tions are valid. Experimentally Yu and Wigen did not see such a mode;
sample CIT 2 was carefully examined and showed no such mode. However,
the expected mode was observed by Ramer and Wigen on a narrow line-
width, [111], LPE film annealed in a dry 02 atmosphere for 6 hours
(sample CIT 3). For this sample, the perpendicular resonance absorp-
tion derivative curves at six temperatures between 90° and 50°K are
shown in Fig. (6-10); note the clear indication of the surface mode
below 80°K. It was confirmed by etching away the outer surface that
this mode was associated with the film substrate interface. In spite
of this apparent agreement, an inconsistency between the surface layer
model and the data was noted. This is shown in Fig. (6-8) where
the observed surface mode resonant field for sample CIT 3 is roughly

plotted versus temperature for comparison with the predicted behavior
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T=91°K T=87°K

T=79°K

T=70°K

surface
mode

+ increasing field -+
T=60°K
T=50°K

surface

mode

Fig. (6-10) Derivative absorption curves at six temperatures taken at
perpendicular resonance for sample CIT3. The curves
show the formation of the perpendicular resonance
surface mode and that it has almost vanished at
T=50°K.
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for sample OSU 1. The experimentally observed mode does not con-
tinue to shift in field position as predicted by the model. Further
from Fig. (6-10) it can be seen that with decreasing temperature the
mode decreases in intensity; it was not detected at temperatures below
43°K. This rapid decrease in intensity would be expected if the mode
continued to move away from the uniform mode as predicted by the
model, but it would not be expected if the mode remained roughly
stationary as indicated by the experimental data.

If the surface layer model is to represent the experimental data
at Tow temperatures, some other cause must be found to account for
the behavior observed. There is one mechanism at low temperatures
that has not yet been considered. In the analysis the net magneti-
zation on the surface side of the compensated region was assumed
aligned anti-parallel to the magnetization in the bulk of the film,
this alignment being due to exchange interaction between neighboring
Fe sites. Since exchange is not the only torque acting on the
magnetization, complete alignment may not be achieved and some sort
of quasi-domain wall may be generated; the effects of such a quasi-
wall on the resonance boundary conditions are unknown and not easily

calculated.

The temperature dependence of the parallel resonance mode
spacings for a film with two surface modes as measured by Yu is
shown if Fig. (6-11). Since there is some question about the
interpretation of this data, the following quotation is extracted
from their paper. "Without exception, it is found that the high-

field surface mode, the quasi-symmetric surface mode, is observed
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Fig. (6-11) Separation of the first body mode and the first and

second surface modes, respectively, at parallel
resonance as a function of temperature for a YIG
film annealed at 1200°C. After Yu et. al. (1975)
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to shift downward and becomes degenerate with the lTow-field surface
mode.. The data points are the resonance-field separations between
the two surface modes and the first body mode. At a temperature
near 100°K, these two surface modes become degenerate in their reson-
ance-field positions. Below this temperature, this surface mode is
observed to appear at a nearly constant field separation above the
first body mode."

Physical data for this film is not given, but it is believed
similar to OSU 2 except for somewhat greater thickness. For the same
reasons that OSU 1 was used in the calculations for temperature depen-
dence, 0SU 2 is used here; this dependence is shown in Fig. (6-12). In
this figure the mode positions with respect to the uniform mode posi-
tion have been computed and plotted assuming that the properties
of the air-film interface are constant. Note that the behavior
for the higher temperatures is in qualitative agreement with
the above; that is, the quasi-symmetric mode increases in field
position away from the body modes then "shifts downward". However,
at the lower temperatures the two surface modes are not degenerate.

It has been pointed out earlier that the surface layer model does

not predict the Tow temperature behavior accurately. This is be-
lieved due to the supposed invalid approximation of anti-parallel
spins in the diffusion region. If this is indeed true for the dif-
fusion region produced by annealing at 1000°K then it probably has

a larger effect on films annealed at 1200°K; that is, the diffusion
region is thicker and closer to the thickness of a typical domain wall

(v 15008 in YIG). In any event, the following may explain some of the
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Fig. (6-12) The calculated temperature dependence of the magnetic
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uniform mode,Hu, for sample osu2.
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discrepancy between the above calculations and the description of the
experimental data; however, it is speculation! 1In Figs. (6-11) and
(6-12) the second mode is a quasi-antisymmetric mode. It can be
shown that at the position marked by a * this mode is nearly
antisymmetric and has at most a very small excitation. Within the
temperature range *—: in Fig. (6-12) this quasi-antisymmetric mode
grows in intensity and becomes a large absorption mode. Therefore,

a similar transition from surface mode to nearly vanishing

antisymmetric surface mode to large body mode in a small temperature
range may have resulted in a misinterpretation of the experimental
data. If the air-film interface also has properties dependent on
temperature as has been observed by Omaggio (1974) at perpendicular
resonance the behavior might be even more complicated and difficult

to interpret.

6.5 Comparison of Frequency Dependence Data

The frequency dependence of the experimental mode positions is
dependent on the orientation angle of the applied field. At perpendic-
ular resonance there is little dependence. For ion implanted films at
perpendicular resonance Omaggio and Wigen (1974) reported no frequency
dependence at room temperature. The uniaxial and tensorial models pre-
dict no frequency dependence at perpendicular resonance. The surface
layer model contains a frequency dependence at perpendicular resonance if
the gyromagnetic ratio of the bulk and surface regions are different;

however, this effect is smaller than the experimental resolution.
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At any other angle the experimental data show a frequency depend-
ence. The parallel resonance configuration was chosen for comparison
because the equilibrium position of ﬁ6 is not a function of the
applied field strength. The largest observed effect was in the posi-
tion of the parallel resonance surface mode. The measured mode sep-
arations at 6 and 25 GHz for sample CIT 2 are presented in Table (6-4).
The calculated separations for the surface layer and uniaxial models
are also given. Note that both models predict the experimental be-
havior; this is not surprising considering the agreement shown in Fig.
(3-11) between Ky and the surface layer with Y= Y¢+ The tensorial
model has no frequency dependence, unless Kllor Kl has a frequency or

field dependence.

6-6 Discussion and Conclusions

The data presented in this thesis are believed to show the
following:

1. The observed phenomena cannot be explained by the uniaxial
and tensorial models.

2. The observed phenomena are explained by surface regions with
magnetic properties different from the bulk properties.
These regions were approximated by uniform surface layers.
In the case of low temperatures where the model predicts
behavior which is not observed, it is believed that other

assumptions made to facilitate computations are not valid.

The extent to which each of the three models predicts the experi-

mental data is summarized below. Also discussed is the microscopic
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model for the tensorial surface anisotropy field at the film-
substrate interface proposed by Wigen and Puszkarski (1976).

The perpendicular uniaxial anisotropy has been used by many
workers to match experimental data in metal films. In these films
this model and the surface layer model cannot be distinguished. In
permalloy a 2ZR half magnetization surface layer is equivalent to a
KS = .22 ergs/cmz; this represents a significant anisotropy and an
insignificant (]]R) change in the total film thickness. However,
YIG samples cut from the same wafer but with different annealing
histories must have significantly different thicknesses when this
model is used to match the experimental data; for example, the thick-
ness required for an annealed sample is as much as 4008 thinner than
that required for an unannealed sample or sample annealed at a Tower
temperature (see Table (6-1)). This thickness difference cannot be
understood in terms of a surface interaction alone. In addition to
the above, this model cannot explain the following phenomena.

1) Temperature dependence of the critical angle (see Fig.
(3-13)).

2) The observed linewidth and intensity variation with mode
number and orientation of the applied field (see Tables

(6-2) and (6-3)).

This model does, however, predict the observed room temperature fre-
quency dependence if the values of KS and film thickness are chosen

to match the spectra at one frequency (see Table (6-4)).
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The tensorial model was proposed by Yu et al (1975); in effect
this model is a generalization of the Puszkarski (1970) model which
assumes the surface spins are affected by a surface field that is
independent of the magnetization. The tensorial model assumes a
surface anisotropy field dependent on the mean orientation of the
magnetization, but not on the instantaneous orientation. As in the
case of the uniaxial anisotropy this model cannot er]ain why the
required thickness for an annealed sample is as much as 4003 thinner
than that required for an unannealed sample or sample annealed at a
lower temperature (see Table (6-1)). In addition to the above, this
model does not explain the observed linewidth and intensity variation
with mode number and orientation of the applied field (see section
(6-3)). This model can be made to match the observed frequency
dependence and the variation of the critical angle with temperature;
however, these are not physically meaningful unless some understand-
ing of the origin of KL and K” is established. Wigen and Puszkarski
(1976) proposed a microscopic model for Kl and Kllthat combines two
independent mechanisms. The first mechanism involves an isotropic

3+ 3+ cations in a

static mean field interaction between the Gd~ and Fe
diffusion region at the film substrate interface; this field is de-
pendent on the temperature and applied field. The second field
arises from a uniaxial energy in the Hamiltonian which is propor-
tional to <(§3ﬁ)2> ; it is proposed that this term is due to Fe2+
interacting with strong crystal field gradients at the interface.

The latter anisotropy is considered independent of the temperature and
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applied field. The isotropic term increases in magnitude with de-
creasing temperature. Therefore, the desired temperature dependence
of sL and K|lis qualitatively generated. To explain the effects of
changing the frequency on the spectra, it was proposed that the iso-
tropic term was field dependent. The hypothesis that Fe'?+ is present
at the surfaces was tested (Wigen et al (1976)) by observing a photo-

induced change in the spectrum of a film at low temperatures (less

4

than 100°K); in view of the effects observed in Si * doped YIG (Gyorgy

et al (1970)) this is considered good evidence for the presence of
Fe2+. Assuming that the effects of the surface regions are Tumped
into SL and Kll, I feel that this model cannot be correct for the
following reasons:

1) Only the static effects of the above mechanisms are in-
cluded. The dynamic effects are not second order and
unimportant. For example, if the assumed tensorial field
depends on the instantaneous position of the magnetization
the boundary conditions on m are changed and are in fact
identical to that of the perpendicular uniaxial anisotropy
with K. = Kl|— SL (see Appendix I).

3+ and Gd3+ exists it has

2) If an interaction between the Fe
to be in a finite region; the material in this region will
be ferrimagnetic and should be treated dynamically as such.

3) The Fe2+ is probably distributed throughout the surface re-
gion; therefore, the plausible effect is an anisotropy like

that observed in bulk materials. A temperature dependence

is strongly suggested by the photo-induced effects (i.e., if
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white light can change the effect then thermal agitation

probably can).

The effects of inhomogeneous films have been considered by many

workers at perpendicular resonance (Portis (1964), Sparks (1970),

Bajorek and Wilts (1971)); however, due to the mathematical complica-

tions, work at the other angles has been limited. In this thesis the

effects of inhomogeneous surface regions are considered by assuming

uniform surface layers with properties that are averages of the actual

properties. The results from this model are summarized below:

1)

2)

The film thickness required for an annealed sample is
slightly greater than the thickness required for an un-
annealed sample or sample annealed at a lower temperature
(samples cut from the same wafer). This is consistent with
a diffusion process (see Table (6-1)).

The Tinewidth and intensity variation with mode number and
orientation can be explained by making the plausible assump-
tion that the surface layer has a larger damping constant
than the bulk (see Tables (6-2) and (6-3)).

The room temperature frequency dependence of this model is
the same as experimentally observed (see Table (6-4)).

The temperature dependence of the critical angle is quali-
tatively explained down to the critical temperature (see
Fig. (6-10)). The temperature dependence of the surface
mode spacings are qualitatively explained down to the criti-

cal temperature (see Figs. (6-11) and (6-12)). Below the
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critical temperature the assumptions that the magnetiza-
tion in the surface regions is anti-parallel to the magnet-
ization in the bulk is believed invalid.

5) Although not addressed explicitly, the effects of Fe2+ ca

n
easily be incorporated into the surface Tayer model by an

additional anisotropy like that observed in bulk materials.

Below the critical temperature a significant portion of the dif-
fusion region is believed to have a magnetization that has passed
through compensation. If exchange was the only torque exerted on the
spins the above magnetization would be anti-parallel to the magnetization
in the bulk. However, a variation in direction is believed to exist
producing a quasi-domain wall; the effects of this variation are not
known. It is therefore apparent that more work is necessary before
all resonance phenomena in YIG films are fully understood. This thesis
has introduced a model which may explain the origin of many of these
phenomena; the phenomena not explained are believed to be due to
mechanisms (like the variation in the direction of M mentioned above)

which are not easily incorporated into the computations.
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Appendix I

I-1. Discussion of YIG Anisotropies and the Equilibrium Conditions on ﬁ;

The equations which describe the effects of anisotropies on the
resonance process are given by Eq. (2-10) in terms of the anisotropy
energy. The dominant anisotropies in YIG films are the cubic crystalline
anisotropy and magnetostrictive anisotropy. The effects of the crystal-
line anisotropy in YIG are well described in terms of the standard first
order expansion of the direction of M (i.e. K1>>K2). The crystalline
anisotropy energy is usually written in terms of the direction cosines
of M from the cubic axes

_ 2. 2 2 2 2. 2 2. 2. 2
EA-K][a]a2+a2cx3+c13fx.|]+K2[a1a2u3] I-1

When written in terms of the spherical polar coordinates of the text,
the expression is different for different film orientations. For the K]

term and the [100] oriented films

K
o & . ol 2
EA = é—-[ sin

o sinZ2¢ + sin%2e ] 1-2

For the [111] oriented films with - ¢ measured from a (112) axis

: 4
Ep = Kl 512 2 - (%g sind coso cos3¢p + E%E—E-]

I-3

If the tension is along the film normal, it is shown below that
for the [100] and [111] oriented films the magnetostrictive anisotropy
is uniaxial with easy or hard axis normal to the film plane. With the
tensor components of the tension given by Uij=oyiyj (the direction
cosines of the tension are Y1s Yo 73), the magnetostrictive energy

is (Morrish (1965))
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= 2 2 2 2 2 2
Ey = =2 Moo (o177 + ap™vp" * a3ty )
1-4
-3y770 (aqapvyv, + ajagv,vg + agagygyy )
For the [100] oriented films and Y3=1s ¥1=7,=0
_ =3 3 _ =3 2
EM ot 2 A1006a3 = 2)]000 COS 9 1-5

For the [111] oriented films and v;=v,=v5= 1/Y3 the non-isotropic terms

of the energy are
EM = - A]]]U (u]az + a203 + 3331 ) 1_6
It is easily shown that
S
cos@ = 5 (ag + ay + u3)
therefore, for the [111] oriented film
-3 4

The gi's for Eq. (I-2) are

_Hk

g](ﬂatb) = oM [(3s1'n2

8 cosza - sin4e)sin22¢ + 2cosds ] 1-8

-H
_ k g i ;2 Z i P
92(8,¢) = §;ﬁ-[2 sin“e cosd4¢ + sin“8 cos“8 sin“2¢ +

sinde cose/2sine ]
-3H, 2
93(649) = 7 [ sin“e coso sindg ]
where H, = 2K,/M. The g,'s for Eq. (1-3) are
gj(e,¢) = —(Hk/BnM)[ _8sin%s + 7sin%e - %cose £
v 2 cos3¢ sin2e (1 - %—sinze)J

s 2
gz(e,¢) = -(Hk/SnM)[§%;Lj§1 = %—cos4e +v 2 cos3¢ sin2e (1 +
%sinze)]

~(H MZ 4nM)(sin3e)(2sine - 3sin0)

I

93(0,9)
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The gi's for a uniaxial anisotropy E = R cosz(e) (like Ey in Eq. (1-5)
and (I-7)) are

g,(0) = ~(K /2nM?) cos2o
g,(0) = -(K /2M%) cos®e 1-10
93(9) =0

In general the equilibrium conditions can be determined from the
requirement given by Eq. (2-11). The equilibrium conditions which are
applicable to the experimental and calculated data presented in
chapter 6 are presented here. For the [100] orientation with applied
magnetic field, Happ’ in a (100) plane at an angle g8 from the normal,

the equilibrium condition is

0 = (47M - ZKU/M)sinZB - 2Ha sing - (Hk/2)51n49 I-11

pp
where Ku=-3A1OOc/2 from Eq. (I-5), and Hk=2K]/M. The equilibrium con-

dition for the [111] oriented film with the applied field, Happ’ at an

angle g from the film normal in a plane defined by the normal and a Tine

in the plane 30° from the (112) axis are
0= (Hkﬁfﬁnsinze coso sin3¢+'(f§Happsin¢ sing)/2

- (Happ/Z) cos¢ Sing I-12

0 = Happ (-cosg sine + (/3/2) cose cos¢ sing + .5cose sing sing)

+ (41M - 2K /M)cose sino - (Hk/2)[sin3e cose - (4/3)cosesine
-VZ cos3¢(sine- (4/3) sinte)]

where Ku=-3l o /2, and Hk=2K1/M. Note that in Eq. (I-11) and (I-12)

111
that the uniaxial anisotropy field substracts from 4«rM and has an
identical angular dependence. This is also true in the resonance

equations.
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1-2. Surface Boundary Conditions

The surface boundary condition is generally a statement that the
surface anisotropy torque is balanced by a surface exchange torque.
Since we are at the boundary of the ferromagnet, the surface exchange
is related to the slope of the magnetization, dm/dn, rather than to its
second derivative. The anisotropy torque can be defined in terms of an
equivalent surface field or a surface anisotropy energy. In the first
case the surface torque requires the elementary calculation ﬁkﬁ; when
the magnetization is perturbed from its equilibrium position. In the
second case the torque can be obtained by taking appropriate angular
derivatives of the energy function. If desired, calculation of these
derivatives can be interpreted as calculation of an equivalent
anisotropy surface field. An unresolved question is whether this
surface field varies with the dynamic (small angle) motion of the
surface magnetization or depends only on the equilibrium position of the
magnetization or is completely independent of the orientation of M.
None of these assumptions complicate the analysis, they simply give
different boundary conditions.

If the anisotropy energy is expressed in terms of the angular
orientation of M (i.e.,o and ¢) then a satisfactory procedure is to
define an equivalent anisotropy field which is at all times perpendicular

to M.

HS F HSO * hS

where H_ = - vaS/aM . a is the lattice constant



— 1 =2
n = (855 * STne & TR
hs = (1/M) (m Vm) HSO
s m
tm - v - a_ -a_
(m - v) = m. =5 *te 3%

The field ﬁ; is written as an expansion in terms of ﬁ;o the field when
M is in its equilibrium position and F; a small additional component
which arises from a small displacement of M from its equilibrium

position (M = Mo + mee, + m.e,

In the equilibrium position, the surface torque per unit area (on

one atomic layer) is

= aMO X HSo .

Tso
and this is balanced by an equilibrium exchange torque between the
surface spins and ( for simple cubic lattice) the spins in the next

atomic layer. With an arbitrary displacement m, the surface torque

becomes
Ts = a(MO +m) x (Hso + hs)
+ a(M0 X HSO + Mo X hS +mx Hso)
where the second order term m x Fg has been omitted. For this same

displacement, the exchange torque per unit area becomes

T.=1[ -aM, x He a(—meHS

ex * m¢Hse ) €p

¢

% EﬂfiTﬁg - ga.iTpg- ]
Man ~6 Man "¢

It will be noted that the first and second terms in T;x are the
negative of the first and third terms of T;, so the equilibrium
condition (Tex + Ts) = 0 becomes

=0

te + Lox
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s () 3
am A oM
- (2R 4= 2R 8=
tex_(Manee Man S

When the anisotropy field is obtained in other ways which give a
radial component, then one must include the 6 and ¢ components of

m x ﬁ;o which are not cancelled by the second term in the exchange
torque.

tS = a [(—Mhs

- m¢Hsor)Eé + (Mh , - mBHsor)E; ]

It should be noted that the partial derivatives in Eéx do not include
the static or equilibrium values of the derivatives which are required
to balance the equilibrium torque aﬂg X ﬁ;o. The equilibrium values
of the derivatives are much larger than the dynamic derivatives by a

factor of the order of MO/m since this is roughly the ratio of the sur-

face torques balanced by these two components of the exchange torque.

Example 1 Uniaxial anisotropy ES = KS sinze
P _Ks 3 -
HSO = E‘ﬁ"‘ sin 26 ee
> —= [ cos 26 m, e, + c0s"6 m, e,
aM
2K5 2 - _
t, ™ —ﬂ—{ cos"6 m, e, - cos 20 my €, ]

This gives the boundary condition given in equation (3-7).
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Example 2  Tensorial field (Yu_ et al (1975)) (assumed constant with
respect to dynamic M variations.

2 2 ) &

HSo = [(ijos 6, * H[I sin 0 . X
(H|| - Hl.) sin 8, COS 6, EB ]
H; =0
2K 2K
Let HLza_M'L Hy| = a—Mﬂ

2K 2K - B
t = [ i 0529 + —ﬁlL-sinze 1 ( m¢ €q = My €, )

This gives the boundary condition given in Eq. (3-11).

Example 3 Tensorial field but allowing it to vary with dynamic M.

T 2 e 3 b
HSO = [(HJ_cos o + H|| sin 8) CHE (H|l - Hl) sine cose ee]
= _1 .2 2 = =

hS -5 i (Hl~s1n o + H|| cos“e ) m, ey + H|| m¢ e, ]

t, ﬁ—{( Kl. KII) cos 8 m, g (Kl. Kll) c0s28 My €4 ]

Note that this gives the boundary condition given in Eq. (3-7) with

KS = (KJ—"K”).
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Appendix II

The elements of the determinants given in Eqs. (3-9a) and (3-10c)
are given below.
aj7=4K cos(26) cos(k1d/2)

a12=-k1 sin(kId/Z) . KO cos(28) cos(k]d/Z)

a,5= oK cosz(e) cos(k]d/z)
a)4° -k] sin(k]d/Z) + K, cosz(e) cos(de/Z)
a5¢= k] cos(k1d/2) + I(0 cos(2e) sin(k]d/Z)

a59% AK cos(28) sin(k]d/Z)

ay5= k; cos(k;d/2) + K, cos2(e) sin(k,d/2)

" 2 .
54" aK cos“(8) s1n(k1d/2)

a31= AK cos(2e) cos(k]d/z)

a,,= -k

3 2 sin(kzd/Z) + Kocos(ZB) cos(kzd/Z)

a35= -RR* AK cos(kzd/Z)
a34=_RR* (-k2 sin(kzd/Z) + K0 cosz(e) cos(kzd/2)
an

42

= k cos(kzdlz) + Ko cos(26) sin(kzd/Z)

2
= AK cos(2e) sin(kzd/Z)
= -RR* (k, cos(k,d/2) + K, cos’(0) sin(k,d/2))

= -RR* AK cos2(e) sin(k,d/2)

Y3
A4

2 2 A

. . 2 2. 1/2
g ™ l(-I - W{‘”Q | % +(91'92‘ sin“(e )"} /

,K52 are the surface anisotropies at the two surfaces; and

K0= (KS1+KSZ)/2A, and AK= (KSI'KSE)/ZA



-129-

The elements of the determinant for the secular equation using
asymmetric surface layers are:

0=ay=2py=ay,=agy=ay 37853787, =3g =) g™y =a7=8gc=a1 77857787 g=Agg

aq9= cos(k]bD/Z)
0= sin(k]bD/Z)
ag,= COS(kZbD/z)
61" sin(kZbD/Z)
agy= -cos(kygyly)
agy= ~cos(kygqly)
a35= -cos(kygoly)
agp™ ~cos(kygoly)

42779

952~ %51

8go”
333~ a31/Ry
3= 247/Ry

*

Ry

_ *
363 ~351 Ry
;3= 3a71/Rgy

*
Rs1

=361

a53= ~5)

483" %81
34” a12”‘53
ay4= ~37 Ry
4347233
4447733



3= Ky, 3

5= K1p 23
355="Kopag

365~ Kapdsy

a75= kg1 sinlkygyly)
ags™ ~kpgy sinlkygly)
316™ Kygp sinlkygols)

6= kpgp Sinlkygols)

428 "26"s2
a3~ "937
438 %7
358~ ~%57

-130-



1=
368~ 367

The film characteristics are illustrated below.

k]sZ

1b 1s1
Kos2 Kop Kos
R
s2 Rb Rs]
1—L2 b D ’k—L—-I—J
‘ "
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Appendix III

Amplitude of ferromagnetic spin-wave resonance in thin
films

C. H. Wilts and O. G. Ramer

California I of Technology, Pasad California 91125
{Received 27 September 1974 in final form 17 October 1975)

Thz effect of omdnchm-y on the spin-wave spec of thin P lloy fs agnetic films has been
gated. If cond ity effects are included and a simple surface anisotropy is assumed, it is known

that the calculated mode locations and amplitudes for Permalloy films are in excellent agreement with

some expmmenul data in the range B00-2700 A in thickness. If conductivity effects are omitted, a much
is possible, but the error i in mode location and amplitude has been unknown. Fer both

perpaldlcullr and parallel resonance g iled calculations reported here have shown that mode

locations are not significantly affecled over the above thickness range, and that the main mode amplitude is

in error by only 20% at 800 A thickness. However, for 2000 A thickness, the main mode amplitude is in

error by a factor of 2.5.

PACS numbers: 76.50., 75.70.

INTRODUCTION

The existence of standing spin-wave modes in evapo-
rated polycrystalline ferromagnetic thin films was es-
tablished many years ago and the approximately quadra-
tic dispersion has been used by several workers for
measurement of the magnetic exchange constant. '+ At
a fixed frequency, the modes were spaced in applied
field approximately as the square of integers which
describe (roughly) the number of half-waves in the
standing-wave pattern, Using a semiclassical theory of
spin-wave dispersion in an insulating medium, the ob-
served deviations from a square law were explained
qualitatively® by inhomogeneity in the film or by a sur-
face anisotropy which provides partial pinning of the
spins at the surface. Attempts to explain the observed
amplitudes of the resonances have had only limited
success. "*®* However it is uncertain whether disagree-
ments were due to poor samples, due to imposition of
improper boundary conditions, due to the neglect of
conductivity in the film, or due to inadequacy of the
phenomenological model for magnetization dynamics.

Several papers in the last two decades have given a
mathematical formulation for treatment of conducting
media utilizing Maxwell’s equations and the Landau-
Lifshitz equation. =® None of these have applied this
formulation to a theoretical comparison with experi-
mental data. A recent treatment by Bailey and Vittoria®
is the first serious attempt to use this formulation to
match experimental data. Mode locations were matched
with very good accuracy, but due to an invalid approxi-
mation in treating the magnetic losses, the predicted
amplitudes and linewidths for the higher (shorter-wave-
length) spin-wave modes deviated widely from the ex-
periment. After correction of this error,'” the theoreti-
cal predictions were in good agreement with experiment
for all modes observed in a set of four Permalloy films
ranging in thickness from 800 to 2700 A, Although the
inclusion of conductivity effects greatly complicated the
calculations; no effort was made by Bailey and Vittoria
to confirm the importance of including this effect. The
purpose of this paper is to compare the results of such
accurate calculations with simple approximations which
ignore the effect of conductivity.

Ferromagnetic resonance is observed with a static
magnetic field applied in any direction with respect to
the film, For simplicity of analysis, the experiments
are often done with the magnetic field parallel or
perpendicular to the film plane even though resonance
at an oblique angle is a more powerful technique. Paral-
lel and perpendicular resonance are the only cases con-
sidered in Ref, 9 and are therefore the only ones con-
sidered in this paper.

MATHEMATICAL FORMULATION

Since a quantum-mechanical treatment of this system
is intractable, it is customary to use Maxwell’s equa-
tions coupled with the Landau-Lifshitz phenomenological
equation. In this equation M is treated as a vector of
fixed magnitude which moves in reaction to the total
effective field and a small phenomenological dissipative
term provides an energy loss. These equations of mo-
tion have been amply discussed in the references cited
earlier. However due to differences in notation, the
Landau-Lifshitz equation is repeated here,

.

dt
The gyromagnetic ratio ¥ is taken to be a positive num-
ber so that a negative sign is explicitly used in Eq. (1);
H, is the static internal field including the static de-
magnetizing field; h_, is the local rf magnetic field in-
cluding both applied fields and rf demagnetizing fields,
The term h,, is an effective rf field due to exchange
coupling between the adjacent nonparallel spins:

h,, = - (24%*/ M*)m, (2)

where A is the exchange constant and k is the wave
number of the spin wave m=m,expli(wi+ ky)]. The vec-
tor m is the rf{ component of M, assumed small in
magnitude compared to M, and therefore (to first order)
perpendicular to the equilibrium position of M, i.e., M
=M,+ m where M, is parallel to H, and m is perpendic-
ular to H,. The magnetic damping is treated phenomeno-
logically by introducing h,, an effective damping rf field
field. It is written here in the Gilbert form'':

== "MX(H,+h +h +h +-0) (1)

A dm a dm
bh=-TaF 4 = M at " @
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The magnitude of the damping is described by the re-
laxation frequency A, or by the dimensionless damping
constant o= A/ ¥M. Additional fields to represent crys-
talline or uniaxial anisotropies are readily included.
Since they do not contribute to the effects studied in this
paper, they have been omitted.

The boundary condition on M is an unsettled matter
although most workers invoke one of four situations:
(1) spins unpinned, (2) spins completely pinned, (3) a
uniaxial anisotropy energy with easy or hard axis along
H,, or (4) a surface anisotropy energy with easy or hard
axis perpendicular to the surface. The last of these
appears to be more consistent with experimental results
and is used both in Ref, 9 and here, The surface anisot-
ropy energy is assumed to have the form W,
=~ K, (n*1)?, where n is the outward pointing unit vector
normal to the film surface and © =M/M is a unit vector
in the direction of M. However a layer of reduced
magnetization or a surface layer of reduced demagnetiz-
ing field has an equivalent effect in “pinning” the magne-
tization at the surface if the anisotropy constant K, and
the surface layer thickness are given appropriate
values.? In terms of the surface anisotropy, the bound-
ary condition on M is

Sty K o a
%‘ +-f m (nev,) =0, (4a)
3% a5 =1]=0, (4b)

n A

where v,=M,/M, and 6 and ¢ refer to polar coordinate
directions with respect to the normal n.

The solution to the above model is descibed below in
greater detail than in Refs. 7 and 8 in order to facilitate
comparison with the approximate solution developed
later. The excitation is uniform linearly polarized
electromagnetic radiation normal to the film surfaces.
Appropriate boundary conditions are satisfied and power
absorbed is calculated from the Poynting vector at the
surface. Small-amplitude sinusoidal motion is assumed
80 that the equations are linearized. Calculations of the
power absorbed and the steady-state standing-wave
pattern are carried out by digital computer.

At a given frequency, amplitude of external rf field,
static magnetic field, and film orientation, the calcula-
tion predicts the amplitude of m and h throughout the
film and the power absorbed. The resonance condition
is determined by locating a maximum in the power ab-
sorbed while sweeping either field or frequency. There
are four components of the standing-wave pattern, each
with a characteristic polarization and complex propaga-
tion constant k. For the case of perpendicular reso-
nance, the response breaks up into circularly polarized
pairs. One pair has positive precession (in the sense
- m*Hy), the other negative. Hence in the analysis, the
external field is resolved into components of opposite
circular polarization,

The following discussion relates to the positively
polarized components which are the only ones that par-
ticipate significantly in the resonance process. The two
components are not in phase with each other and since
even one component varies in both phase and magnitude

through the film thickness, all components of m and h
are described by complex numbers. In the discussion
below, the subscripts () and (im) refer to real and
imaginary parts of these complex numbers and
subscripts 1 and 2 refer to the components correspond-
ing to the two values of &k, ordered so that |k,| < |k,|.
The coordinate system is shown in Fig. 1, where the
y axis is normal to the film. The basic normalization
is to set the magnitude of the circularly polarized rf
field at both surfaces equal to i/,, with phase chosen
so that at 1=0

hy=hy GL) %y (GL) = Sho,
hy=~m (L) -k, (1L)=0.

For fields and frequencies normally used in the labora-
tory for spin-wave spectra of metal f[erromagnetic
films, the components have the following characteristics
at resonance: the component k, (y) is nearly indepen-
dent of y and approximately eqﬁal to %h,; the components
hayyy By, and hy,, are all much smaller than k, for all
values of y. The magnetization component m,(y) being
proportional to ,(y) is also nearly independent of y, but
is small. The component m,(y) is proportional to i,(y),
but the proportionality constant is so large that m,(y)

>» my(y) even though k,(y) is small. The significant com-
ponent m,(y) is largely imaginary and varies with y in a
manner governed by the spin-wave k value, k,. Since &,
is nearly purely imaginary, the variation of m, is nearly
sinusoidal. In otherwords, to a rough approximation

ha, is equal to the external rf field and its degree of in-
dependence on y coupled with the smallness of /i, shows
the degree to which the magnetic field is uniform’ in the
metal. The resonance variation of m is described by

m ., which is roughly sinusoidal in y and 90° out of
phase with the r{ magnetic field, h,. All other compo-
nents of m and h are small,

To summarize, the quantities of interest are as
follows:

(1) applied field at resonance, H, = H, —41M;

(2) spin-wave k value = (k,), :

FIG. 1, Field relations at resonance in the perpendicular res-
onance configuration,
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(3) resonance amplitude of m = my, (0);

(4) relative surface amplitude of m (a measure of
surface pinning) is approximated by the ratio

[y, BLIV [y _(©O)]):

(5) power absorbed per unit area equals the sum of
Poynting vectors at the two surfaces,

Although the power absorbed is given directly, the
power absorption due to resonance requires subtraction
of the “background” power which is a significant part
of the total for some modes. This is done most simply
by plotting the power as a function of applied field, and
drawing a smooth curve under the resonances,

Similar considerations hold for parallel resonance,
except that the applied field is linearly polarized per-
pendicular to M, and with amplitude k,. There are three
elliptically polarized components of m instead of two
circular polarizations. In general one of these has posi-
tive polarization and describes the (roughly) uniform rf
field driving the magnetization, the other of positive
polarization is the resonant spin-wave mode, and the
third of negative polarization is a surface component of
negligible amplitude. The fourth component is linearly
polarized but is not excited by the assumed external
field.

AN APPROXIMATE SOLUTION

The simplest approximation for locating resonant
modes neglects both conductivity and A losses. Max-
well’s equations neglecting conductivity and displace-
ment current include the rf component of demagnetizing
field due to the component of m perpendicular to the
surface, h,= - 4mme,. Combining this with Eq. (1)
gives simple relations for the mode locations. In the
ferromagnetic insulator (0=0), if the A losses are very
small (<< 1), the amplitude of resonance and power
absorbed can be approximated by assuming the external
driving rf field to penetrate the medium without attenua-
tion or phase shift and the resulting magnetization varia-
tion to consist of purely sinusoidal or hyperbolic com-
ponents again without phase shift.

If the driving torque integrated over the thickness is
balanced against the dissipation torque also integrated
over the thickness, the resonance amplitude is obtained.
Note that these torques do not balance locally. However,
the exchange interaction is so strong that insignificant
changes in mode shape are able to provide the local
torque balance without significant change in amplitude.

As discussed earlier for the case of perpendicular
resonance, attention is focused on a positive circularly
polarized magnetic field of amplitude Lh, and frequency
w. For perpendicular resonance there is no rf demagne-
tizing field and the Landau-Lifshitz equation becomes
simply
'%nr ~-ym:<u,,(H +g{}-.r. ) - YMv, +h, + an, xi”—. (5)
For positive values of K and for sulficiently small
values of damping (a << 1), all mode shapes are nearly
simple sine waves with negligible phase shift through
the film. At resonance, the relation between M and h_,

is shown in Fig. 1. The entire pattern rotates about H,
with angular velocity w. The vector dm/d! is equal to
the first term on the right-hand side of Eq. (5), so that
the resonance condition is

2A
=(H,+ 7 7 k). (6)
The last two terms of the equation balance in the sense
described earlier that the torque Mi,%h_ integrated
over the thickness balances the dlulpatlon torque (a/
YW, ¥dm/dt also integrated over the thickness.

Using a sinusoidal mode shape and the surface anisot-
ropy boundary condition of Eq. (4) with (r*9,)=1, it is
not difficult to show that the secular equation for the
resonant spin-wave k values is

[k — K, cot(5kL)][k + K tan(3kL)] + (AKF =0, (7a)

where L is the {ilm thickness, X, and K, the surface
anisotroples at the two surfaces, K, = (K +K,)/ 24,

and AK = -K,)/2A. For our present purposea, it is
adequate to cous .aer the symmetric case K, K,z, in
which case only half of the k values are taken (i.e.

those corresponding to symmetric rather than anti-

symmetric mode shapes). The symmetric modes are

obtained by setting the first factor of Eq. (7a) equal to
zero,
[& = K,cot(3kL)]=0, (o)

Recognizing the H, is the sum of the applied field H,
and the demagnetizing field — 47M, the resonance
occurs at the field

w 24
H.=41TM+; —I{-F, (8)

where k is a solution of Eq. (7). Assuming the magne-
tization m has an amplitude m,cos(ky), where y is mea-
sured from the center of the film, the relative ampli-
tude at the surface is cos(}kL). From the discussion
following Eq. (6), it readily follows that the peak am-
plitude is given by

m _2vhy _sin(3kL) 9
M = Taw kL +sin(kL) '

and the power dissipated per unit area of film is

2r3yML  [sin(ieL)]
a RL{EL + sin(kLY] *

For the case of parallel resonance v, is parallel to
the z axis, v,=e,. The field h_, outside the sample is
linearly polarized, h.e , and the x component inside the
film is assumed to have the same value, The boundary
condition on m is given by Eq. (4) with (#-5,)=0. The
magnetization variation is no longer a circularly polar-
ized spin wave, but is a linear combination of two el-
liptically polarized standing waves. It is easily shown
from Eqs. (4) and (5) with v,= e, that these standing
waves are either sinusoidal or hyperbolic, and are
characterized by wave vectors k.8, and k,e . If the wave
numbers are ordered so that | &,| < |&,|, then &, is
usually imaginary for all modes, while k, is real for all
modes except the [irst, in which case the sign of k';' de-
pends on the sign of K,. The wave numbers &, and k, are
obtained from the roots of a dispersion relation which

Py=

(10)
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is somewhat more complicated than Eq. (7a):

{+ Rieglk, + Kycot(3k,L)] + Rk, [k, + K, cot(5h,L)]}
{Rky[k, - K tan(ie, L)) + Rk, [k, — K, tan(bk,L)]}
x [Rkytan(lk,L) + Rk, tan(3k,L)]
%[ Rk, cot(ik,L) + R 'k, cot(k,L)|(AK) =0,

RI=k2 - (20M?/A)(1 + 42072,

R=20[1+ (1+ 40*)/3]1,

and

R=w/4TMY.

As in the case of perpendicular resonance, if the
boundary conditions are symmetric, then AK =0, and
the equation factors into separate relations for the sym-
metric or antisymmetric modes. The symmetric modes
are those obtained by setting the first factor of Eq.
(11a) to zero. With some simplification this becomes

K 1 by
e (1-trrammr) <ot (3
s ! BaL),
*“z;‘,‘(“msm) '=°‘(z )“-"-

Using Eq. (5) and the value of &, obtained from Eq.
(11), the resonance field H, is found to be

H, = 2aM[(1 + 4Q%)'/? — 1] - (24/ M)k},

The two components corresponding to &, and k, have
quite different characteristics. For K, > 0, the principal
component corresponding to &, is hyperbolic in y for

the main mode, and sinusoidal for all other modes. It
has a positive precession and an ellipticity given by

(11a)

(11b)

(12)

(m,/m,)‘ ==-iR. (13a)

The smaller component corresponding to k, is hyper -
bolic in y for all modes. It has negative precession and

ellipticity.
(m,/m);=+i/R.

The amplitude of »m_ at the center of the film can be
written as the sum of the two components m_(0) = (m,,

(13b)

TABLE II. Predicted mode properties from insulator model.

TABLE I. Assumed properties of magnetic {ilms.

Thickness (A) 2023 790
4™ (G) 11151.4 11216, 7
A (erg/cm) 1.143 %10 1.143x10°%
¥ (Oe sec)! 1.8484 x107 1.8484 x107
a 0. 00457 0. 00455
o (esu) 6.3 x10'% 6.3 x10"
K, lerg/cm?) 0.275 0.200
f (GHz) 9.44 9.44

a=6,3%10' corresponds to a resistivity of 1,426 x10%Qem,

+ miy,), where

Myg _ _kysin(ie,L)

My, ks slnzii L) * (14)
and at the surface the amplitude is

m_ (§L) = my,cos(sk, L)+ my, cos(tk,L). (15)

The maximum value of m,, is |my,| cosh(l 5k,|L). For
thin films of typical ferromagnetic metals, it can be
shown that this maximum value is about two or three
orders of magnitude smaller than m,,. In consequence
the amplitude of m and power absorbed can be approxi-
mated closely by ignoring m,. With this approximation,
the amplitude becomes

sin(ik, L)

4h yM ( 1 )
aw \1+ R/ kL +sin(k,L)’
and the average power absorbed per unit area of film is

_4h3yML ( 1 ) [sin(ik,L)F
=" a 1+ R*) kyL[k,L+sin{k,L)]"

It should be noted that when k, is imaginary, Eqs. (16)
and (17) should be used with k, replaced by the magni-
tude of &, and the sines replaced by hyperbolic sines.

It should be emphasized that the results given in Eqgs.
(6)—(17) are approximations based on assumptions of a
uniform driving rf field, negligible phase shift of m and
h through the film thickness, and sinusoidal or hyper-
bolic mode shapes. For insulators, small values of a,
and for film thicknesses normally encountered, the er-
rors are negligible.

m,(0)= (18)

17)

Thickness 2023 A 790 A

Mode No. 1 2 3 4 1 2
Perpendicular resonance

H, ©Oe) Eq. (8) 14327.9 14011, 7 13252, 0 12005.3 14334.1 12588, 6

k em™!) x10°% Eq. (7) 1.122 3.679 6.559 9. 561 1.891 A.469

mo/M Eq. (9) 0.04073 0. 00893 0.00337 0.00168 0.03736 0. 00391

m (4L} /m (0) cos (§kL) 0.423 —0.837 0.939 ~-0.970 0. 734 -0.979

Power (erg/em’)x 107 Eq. (10) 1.732 0.0700 0, 00933 0.00226 0.7107 0.00495

% power 1009 4,04 0,54 0.13 1000 0.70
Parallel resonance

H, (Oe) Eq. (12) 162,28 618,12 BG1, 33

k em=') x10+ Eq. (11) 0.433 1. 048 0, 566

wi{0) /A1 Eq. (16) 0, 0616 0, 00246 0. 0634

m (L) /m () cos(ik, L) 1.089 —0.9%0 1.019

Power ferg/cm?) x10rT Eq. 07) 4,386 0. 00248 1,338

‘. power 1007} 0.073% 100,
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In the cases of perpendicular and parallel resonance
respectively, Eqs. (7)—(10) and (11)—(17) can be used
to predict the location of the resonances, the spin-wave
l value, the amplitude of the magnetization precession,
the relative magnetization amplitude (effective pinning)
at the surface, and the power absorbed. Only the [irst
and last of these are experimentally observable, Equa-
tion (7) for dispersion, Eq. (8) for resonance field, and
Eq. (10) for power dissipated in resonance are also
obtained by the quantum-mechanical treatment of
Puzkarski.'* His Eqs. 13,24 and I1 1. 8 reduce to Eqgs.
(7) and (10) in the limit that the lattice constant ap-
proaches zero. Similar equations for parallel resonance
have not been found in the literature,

COMPARISON OF CALCULATION

For comparison of the approximations above with
calculations which accurately include the effects of con-
ductivity, two of the films tested experimentally and
theoretically by Bailey and Vittoria® have been chosen.
In particular a thick film (2023 A) was selected where
the effect of conductivity is expected to be significant,
and a thin film (790 A) where the effect of conductivity
is expected to be small. The physical constants chosen

in Ref. 9 have been used except that an average surface
anisotropy has been assumed at both surfaces, the only
effect being to eliminate excitation of the very small
antisymmetric modes and to simplify the approximate
calculations. The specific values of the physical con-
stants are given in Table I.

In the case of perpendicular resonance, the spin-wave
number k£, mode location, magnetization rf amplitude,
surface pinning, and power absorbed were calculated for
the first four symmetric modes of the 2023-A film and
the first two symmetric modes of the 7T90-A film. The
results for the insulator approximation [Eqs. (7)—(17)]
are given in Table II. For parallel resonance the same
data are tabulated for the first two symmetric modes
of the thick film and the first mode of the thin film,

Only the larger in-plane component of m is tabulated.

For the more accurate conductivity model, in addi-
tion to the basic case, four other cases were considered
corresponding to conductivity reduced by a factor of 10,
100, and 1000 and finally conductivity reduced by a fac-
tor of 1000 and &« reduced by a factor of 10, Results for
perpendicular resonance are given in Table III where
they are also compared with data for the insulator ap-

TABLE I1I. Predicted mode properties in perpendicular resonance.

Loss parameter Thickness
- a 2023 A 790 A
Mode No. i 2 3 4 1 2
6x10'F 0,0046 14327.7 14013.2 13252.3 12005.4 14334.1 12588.7
6x10' 0, 0046 14327.9 14011, 9 13252.0 12005, 3 143341 12588, 6
H, (Oe) 6 x10M 0.0046 14327.9 14011,8 13252, 0 12005.3 14334.1 12588, 6
ax10t? 0,0046 14327.9 14011, 7 13252, 0 12005, 1 14334.1 12588, 6
6 x10% 0,00046 14327.9 14011, 7 13252, 0 12005,7 143341 125688, 6
Insulator model 14327.9 14011, 7 13252, 0 12005, % 14334.1 12588, 6
1.439 3,673 6. 5569 9,561 1.956 R.469
1.190 3,679 6. 559 9. 561 1.901 B.469
k {em=!) x10°" 1.153 3.679 6. 559 9. 561 1.897 8.469
1.149 3.679 6. 559 9, 561 1.897 8,469
1.122 3,679 6. 559 9.561 1.891 A.469
Insulator model 1.122 3.679 6. 559 9. 561 1.891 8,469
25,9 17.9 7.65 3,96 71.0 10.0
687.5 21.4 8,21 4.11 94.6 10.4
% mg/M 83.4 21.8 B, 27 4.12 97.4 10.5
85,5 21.9 8,28 4.12 87.7 10.5
98.3 21.9 B.28 4.12 99.8 10,5
Insulator model 100.0 21,9 8,29 4,12 100.0 10.5
Relative surface 0,071 - 0,840 0,940 -0,970 0,702 -0,979
amplitude 0,277 - 0.837 0.940 ~-0.970 0,726 -0.979
w (4)/m (0) 0,322 - 0,837 0,940 -0.970 0.728 -0.979
0,327 - 0,837 0, 940 -0.970 0,728 -0,979
0,422 -0,837 0. 940 -0,970 0,734 -0.979
Insulator model 0,423 -0.837 0,940 -0,970 0.734 - 0,979
19,1 3.26 0. 50 0.13 81,7 0.66
% power A6.5 3.4 0. 53 0.13 97.8 0.69
098.4 4.01 0,54 0,13 99,8 0,70
absorbed 99,8 4.01 0. 54 0.13 100.0 0.70
98,4 4,03 0. 54 0,12 29,8 0.70
Insulator model 100,0 4.04 0. 54 0,13 100.0 0,70
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FIG, 2, Variation of mode intensities with conductivity for
case of perpendicular resonance,

proximation. Five quantities are compared: applied
field (mode location), wave number k, magnetization rf
amplitude, surface pinning, and power absorbed. As
remarked earlier, only the first and last of these are
experimentally observable. It is immediately obvious
that there is no significant difference in mode location,
The main resonance for the thickest film is given within
0.2 Qe by the insulator theory. The second mode is the
one which is most affected by conductivity effects, since
it rides well up on the side of the main resonance for
thick films. Even so, it is within 0.1 Qe for 790 A, and
the approximation deviates by only 1.5 Oe for 2000 A,
Reducing conductivity by a factor of 10 brings the two
models in agreement within 0.2 Oe even for this mode
of the thick film.

On the other hand the power absorbed by the 2000-A
film exhibits serious disagreement (factor of 2.5) for
the first mode, moderate disagreement (2077) for the
second mode, and good agreement only for the higher
modes. In the case of the 790-A film, even though the
first mode is located by both models within 0,1 Oe, the
amplitude of resonance is in disagreement by nearly
207%. However the amplitude of higher modes is in ex-
cellent agreement. Data for power absorbed by all
modes is shown in Fig. 2.

Results for parallel resonance are shown in Table IV,
There are fewer modes than for perpendicular reso-
nance, but the results are in similar agreement except
for two features: (1) the second (symmetric) mode of
the thick film is in significant disagreement (16 Oe) for
basic conductivity; (2) except for the lowest loss cases,

TABLE IV, Predicted mode properties in parallel resonance,

Loss parameter Thickness
a a 2023 A 790 A
Mode No, 1 2 1
6x10'" 0.0046 BG2,04 002,13 861,34
H.(©Oe) 6x10' 0.0046 B62.28 G15.6 861,33
. 6x10'" 0.0046 862,28 617.9 861,33
6x10" 0,00046 862,28 618.12 861,33
Insulator model R62.28 618,12 861,313
a 3.152 a
k <1y 51078 a 3.066 a
om0y 0.625 3,058 0,696
0.433 1,048 0.567
Insulator model 0,433 3,048 0, H66
44.6 2.8 83.7
89.0 3.8 94,0
% m/M 99.9 4.0 99.9
08,7 4.1 99.7
Insulator model 100% 4.0 1007
Relative 1.097 —0.997 1,019
surface 1,089 —0,997 1.019
amplitude 1.088 —0,996 1.019

w (AL} /m ©) 1.089 —0.890 1.019

Insulator model 1.089 -0,990 1,019

44.8 0.08% 83.6
% power 89,0 0.06® 97.9
absorbed 99.8 0.06% 99,8
98.7 0.074 99.6

Insulator model 100% 0,073% 1007

*The two & values are roughly equal in size so that it is not
poasible to assign the designation “spin-wave" component to
either value.

"Mode amplitude extremely small, and shape of resonance
highly asymmetric so that amplitude can only be estimated.

the main mode in parallel resonance is characterized by
three &k values, two of which are roughly of equal size.
Neither can be clearly designated as belonging to the
“spin-wave" component. Nevertheless, the observable
quantities, mode location and power absorbed, are ob-
tained for the main mode with essentially the same ac-
curacy as in the case of perpendicular resonance. Al-
though the field location of the second mode at 2023 A

is not obtained with high accuracy, its amplitude is less
than 0,177 . It is unlikely that such a mode would be
considered in attempting an accurate measurement of
exchange constant,

Study of Tables I—-IV and Fig. 2 shows that the
conductivity must be decreased by a lactor of 10 before
the first mode amplitude is predicted with 107 accuracy
at 2000 A, For 800 A, reduction of o by a factor of 2
will give 1077 accuracy. In any case the excellent agree-
ment at low conductivity in all tabulated data of Tables
Il and IV demonstrates the validity in the correlation
between the components of the two solutions discussed
earlier, and the validity of the approximations used in
the insulator model at least in the range of magnetic
losses up to those observed in Permalloy films,
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Appendix IV
IV-1. Anisotropy Models
The perpendicular uniaxial anisotropy has been considered by
many workers; it has been shown by Bailey et al (1973) that different
or asymmetric surface anisotropies can be chosen in order to match
experimental data in a set of permalloy films. When considering method

one (presented in the text) Eqs. (4-6) and (4-7) are given by

8 .
+ ik _d/2
ZZc'hx_i nE] hxn (Zo + Zn) e n IV-la
8 5
+ ik _d/2
zzohyi - nzi hxn v (Z0 + Zn) e n IV-1b
8 .
_ ) -ik d/2 )
zzohxi = n51 hxn (Z0 Zn) e n IV-1c
8 :
- _ -ik d/2
Zzohyi = nET hxn v (Zo Zn) © n IV-1d
Zn = ickn/4n0 IV-le
For the resonance calculations it was pointed out in section (4.1) that
+ - ¥
hxi = hxi h0/2 IV-1f
+ —§ 5 - -

For transmission calculations (sometimes called antiresonance

calculations), the following conditions are imposed (Liu (1974))
+
xi
hZ: =h's=h; =0 IV-2b
xi = yi " lyi

The magnetic boundary conditions given by Eq. (3-7) can be written as

. 2 ik _d/2 IV-3a
1 Q, hyn (1kn + (KsllA) cos“8) e 'n

h . = h0/2 IV-2a

0=

-
[T e = = T B e

——

iknd/2

o
n

Q0 v' h. ( ik, + (Ksl/A) cos206 ) e

n'n xn Iv-3b

= |
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8 "
; 4 2.\ -ik d/2
0 nz] Q, hy, ( -k, + (K ,/A) cose) e” "n IV-3c
8
; ; i -ik _d/2
0 nzl Qn v hxn ( 1kn + (KSZIA) cos268) e ''n Iv-3d
vﬁ = me/m¢ = 1n1/9' = —vn/cose IV-3e

A computer program has been written that solves the above equations for
the eight unknowns (eight hxn)’ and calculates the power absorbed by
Eq. (4-4).

If the tensorial anisotropy (Eq. (3-11) were to be considered

Eq. (IV-3) would be replaced by the following equations.
8

‘ =n£] Qn hxn (ikn * KT1(9)/A) elk"dlz Iv-4a
8 )
0= : Q, vi h . ik + Kpq(8)/A) e1kpd/2 IV-4b
n:
8 .
g = : Q, h(-ik, + Ky, (0)/A) e~ 1knd/2 IV-4c¢
n:
8
) : : -ik_d/2
0=1 Q v' h._ (-ik_ + Ke,(8)/A) e TKp 1V-4d
pn=] M Noxn n T2

If method two is to be used Eqs. (IV-1) are replaced by Eqs. (4-13).

The magnetic boundary condition equations remain unchanged.

IV-2. Perpendicular resonance with asymmetric anisotropies

In this orientation it has been shown that the polarization
of the fields associated with a specific wave vector have either
positive or negative circular polarization; and the linearly polarized
input can be resolved into two oppositely polarized circular waves of
half magnitude. Further, the two polarizations are completely
uncoupled; one is made up of the positive precession wave vectors and

the other the negative precession wave vectors. The wave vectors
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are given by solutions to Eq. (2-18). The development is the same for
both the positive and negative polarizations, therefore only the
positive precession is treated. The KS can be either the energy
associated with either the perpendicular uniaxial or tensorial
anisotropies.

The six boundary conditions come from the continuity of
tangential components of h and e and pinning conditions on m at each

surface. Since the polarizations are circular only the equations for

h:, h 5 e; ; are used. The equations are:

4 ik _d/2 +

T X e 'n = h_ = .5 IV-5a
n=1" A

4

-3 x Z, sin(ik d/2) = et-e” IV-5b
n=1 " L yy

4

I Q, x, (ik, + K /A) eikpnd/2 _ g 1V-5¢
n=1

4 ik df2 = h> = .5

L xn & n X . IV-5d
n=1

g Q. (-ik. + K,/A) e kpd/2 g IV-5e
_1n n 2

=
—_—

The power absorbed perzunit area is then given by

h
= c o T
P =Re [ 8 3 ( ey ey)] )

IV-3. Surface Layer Model

The surface layer model is a simple extension of the cases
already presented; it simply involves more unknowns and hence more
equations. The mathematics are the same. In the most general case there
are 24 unknowns. The magnetic boundary conditions imposed on m at the

interfaces are given by Eq. (3-15). The spins at the outer surface
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of the film are assumed free (i.e. dm/dn=0). In each region of the
film there are eight wave vectors and Eqs. (4-1)-(4-3) apply to each
region. Since it is a trivial exercise to write down the equations
necessary to solve for the power absorbed, only the case of
perpendicular resonance with asymmetric surface layers is given below.
One surface layer has properties with the subscript f, the other has
properties with the subscript g. The magnetic boundary conditions at

the z=D/2 interface are

4 . 4
1 ik, D/2 1
=—— % Q. b_ e "bn e F 0 g IV-6a
Mp p=1 bn N Mg n=1 9n °n
A 4 - 4
b ik, D/2 _ A )
M E an bn kbn e "bn __£L_E an 9, kgn IV-6b
b n=1 Mg =1

The magnetic boundary conditions at the z=-D/2 interface are

4 4
1 -k, D/2 1
=L Q. b_ e "bn — I Q. f IV-6¢
My p=1 PN N Me nel fn 'n
A 4 ; A. 4
b -ik, D72 _ °f 2
Mb nE1 an bn kbn e "bn Mf n§1 an fn kfn IV-6d

The equations specifying the continuity of tangential h at the + and

-D/2 interfaces respectively are

4 . 4

: b e*n?? =z g IV-7a
n=1 " n=1

4 . 4

: b e kpn?/2 - 5 ¢ IV-7b
n=1 " n=]

The equations specifying the continuity of tangential e at the + and

-D/2 interfaces respectively are
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4 s 4
1 ik, D/2 1
—— I b_k. e "bn = —p— B g Kk IV-7c
% n=1 N bn 99 n=1 N 9"
1 4 : 4
s £ b k. e kP2 - 1 5 ¢ Iv-7d
b =7 1 bn O¢ p=1 N fn

The equations specifying the free magnetic spins at the z=D/2 + Lg

and z=-D/2 - Lf surfaces respectively are

Q e'gntg 1V-8a

_n=1 an gn k

9

f kfne'ikfan IV-8b

n ™~
—

an

=3

The equations specifying the continuity of tangential h at the
z= D/2 + Lg and z= -D/2 - Lf surfaces respectively are (note that
method two of the text is used here)

4 s
b=z g e‘kgnLg IV-9a
T |
n=1
4 ik L
I fn e fnf I1V-9b

.5 =
n=1 ¥ _
Finally the condition specifying ey - ey is

: 4 :
+ - _ dic el ik L
SRR [(;; 9, kgy € Ton9)

n=1
IV-10
- o 2 f k. e kerle)]
9% =1 n fn
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Appendix V

V-1. Approximations to Boundary Conditions

It was pointed out in section 4.3 that if the boundary conditions
are such that the positive and negative spinwave branches uncouple then
the approximate positive and negative precession wave vectors can be
used to match the boundary conditions separately. Unfortunately, of
the three models presented only the tensorial model falls into this
class. Therefore, further approximations had to be made to simplify
the calculations involving the other two. These approximations are
presented in the following sections.
V-1.1 Uniaxial Perpendicular Anisotropy Approximation

For the uniaxial perpendicular anisotropy model the approximation
was found by applying the similarity transformation U of Eq. (4-17)
to the boundary condition given in Eq. (3-7). The result of this

transformation is

- 2
d . Kg KSR sin"e u;
dn " A 2
A(1 + |R|F)
-K_R" sin’e Kt =g W
S d S M
2 an YR -
A(1 + |R|%)
where K; = Ks([RI2 c0s26 + cosze)/(l - [R|2)
K; = K (cos2e + |R|2 cosze)/(l + IR|2)

The approximation is to drop the off diagonal terms. The boundary con-

dition for the positive precession spinwave branches is

+
d._ug + KS = V-2
dn I 0
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The approximate power absorbed can now be calculated as outlined in the
text of chapter 4.
V-1.2 Surface Layer Model Approximations

For the surface layer model there are two approximations to Eq.
(3-17) which will be considered. The first approximation yields an
effective surface anisotropy with easy or hard axis along the
equilibrium direction of the magnetization. In calculations involving
this effective anisotropy the power absorbed in the surfaces is
neglected; therefore, for thick layers a significant error exists in the
calculated spinwave mode intensities. The second approximation gives
an approximate boundary condition between the bulk and surface layers
in which the positive and negative precession wave vectors are
uncoupled. With this approximation the power absorbed due to the
positive precession spinwave can be calculated. This calculation

gives an accurate picture of the resonance process.

V-1.2.1 Surface Layer Effective Anisotropy
The first approximation to the surface layer problem is obtained
by dividing the numerator and denominator of the right hand side of

Eq. (3-17) by A Kop, tan(kZbDIZ), and dropping all terms remaining

b
with Akab tan(kZbD/Z) in the denominator. The result is )

* 2
-(k]ST]S(I + Rst) + |RS - Rbl k

(R 1% + 1)(IR % + 1)

Tae)
A 2s 2s

b

The secular equation for a symmetric film and boundary conditions given

by an anisotropy with easy or hard axis along ﬁb and energy KL is
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A, ky. tan k]bD/Z = K V-4

b "1b i
Comparing Eq. (V-3) and (V-4) shows that the surface layer can be
approximated by an effective anisotropy energy, KL’ given by the
right hand side of Eq. (V-3). For this approximation of the surface
layer the power absorbed can be calculated in the same manner as
discussed for the other anisotropy models.
V-1.2.2 Surface Layer Approximate Boundary Condition

By making a further approximation to Eg. (V-3) an approximate
boundary condition between the bulk and surface layer can be deduced.

This approximation is to assume that IRs - Rbl2 = 0. With this

approximation Eq. (V-3) becomes * 2
'(k1sT1s(] .l Rst)

V-5
2 2
(IRgIZ + D[R [ + 1)

Agkqptan(k, D/2) =

An approximate boundary condition between the bulk and surface m
which gives this secular equation and the C in Eq. (3-18) with the

same approximation is

1 Mob 1 Mos
R12) "™ (1+RR A, it
(1+ R %) M (1+RR) M
1 . :m¢b a 1 ; :m¢5 V-6b
z z
M (1 + RR.) M1+ R IT)
The corresponding expression for my is obtained by replacing m¢ by mB/R.

By using Eq. (4-21) the approximate boundary for Mo is
given by Eq. (4-24).
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Appendix VI
Ferromagnetic Resonance Introduction

The theories of ferromagnetism propose that the magnetization is
due primarily to the magnetic moment of the electron. Although the
origin of this moment is quantum mechanical in origin, most of the
phenomena involving ferromagnetism can be addressed classically. In
this approach the ferromagnetic material is characterized by a magneti-
zation, M, which is associated with an opposite angular momentum
C=M/y (y is the gyromagnetic ratio). The motion of the magnetization
is usually analyzed in terms of the Landau-Lifshitz equation. This equa-
tion is easily obtained by equating the rate of change of angular

momentum and the torque (MxHeff)

M ==
dqt = “YMxHes

In this equation ﬁ;ff is the total effective field acting on M ., The
sources of these fields are presented in the text of the thesis.
Ferromagnetic resonance is a phenomenon in which the magnetization
of a ferromagnetic sample exhibits a resonance when subjected to a har-
monic magnetic field. The magnetic resonance is manifested by a maximum
in the harmonic response of the magnetization or by a maximum in the
power absorbed from the driving system. In a resonating elastic system,
the resonances are found at (or near) the eigenfrequencies of the normal
modes of the lossless elastic system. These modes are strongly depen-

dent on the sample shape and boundary conditions; and the oscillations
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can be treated by an analysis of the elementary excitations, phonons.
Similarly in ferromagnetic bodies, the resonances are found at (or
near) the eigenfrequencies of the normal modes of the lossless mag-
netic system. These modes are also strongly dependent on the sample
shape and boundary conditions. The magnetic variations can be treated
in terms of elementary excitations; these excftations are magnons in
the quantum mechanical description and spinwaves in the classical
description. The spinwaves are described by functions of the form
moei (K+r +uwt) .

To eliminate the shape dependence in ferromagnetic resonance
the samples are usually made in the form of thin films. These samples
are then driven by an approximately uniform magnetic field applied in
phase at both film surfaces. In this case the excitations are stand-
ing spinwaves with k normal to the film plane. Even with this simple
geometry, the mode locations and intensities are dependent upon the
magnetic boundary conditions at the surfaces. The normal modes of the
system depend not only on the frequency, but on the static magnetic
field which is used to ensure that the magnetic system is not broken
up into magnetic domains and to establish the resonant frequency in a
range convenient for experimental observation. The resonances can be
excited as "lines" of the spinwave spectrum by sweeping the frequency
at fixed magnetic field, or by sweeping the magnetic field at fixed
frequency. For reasons of experimental convenience and accuracy the
latter scheme is almost invariably used.

Spinwave spectra have been investigated for a number of reasons.
In principle they provide one of the most accurate means of determin-

ing a number of the fundamental magnetic constants: saturation
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magnetization, M , gyromagnetic ratio, vy , exchange constant, A , to
name just a few. They also provide a powerful method of studying
relaxation or loss processes in magnetic materials. However, to
exploit the potential accuracy of this method in almost all of these
applications it is necessary to have an accurate analytic statement
of the boundary condition at the surface of a ferromagnet. It is
surprising that this understanding remains elusive after 15 or 20

years of continuous research effort.



