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Abstract

A novel technique for detecting light scattered by extrasolar planets is presented that has the poten-

tial to constrain orbital inclination and planet mass. To develop this technique, I have commissioned

a high precision polarimeter on the Hale 5-m telescope at Palomar Observatory. The high mass X-

ray binary Cygnus X-1 has been observed, which is a proxy for extrasolar planet studies. The single

scattering model of Brown et al. (1978), widely used in the literature, predicts an orbital inclination

for Cygnus X-1 that is inconsistent with the lack of observed X-ray eclipses to 4σ − 5σ. Previous

studies have hinted at this discrepancy, but data quality was such that the confidence in such a

discrepancy was not statistically significant. My observations represent the highest precision study

of this object, and they illustrate the overwhelming complexity of the supergiant/black hole system.

They also call into question the validity of the Brown et al. (1978) formalism, widely used by the

community, for inclination estimation in binary systems.

Extrasolar planet host stars have also been observed, and precision of order one part per million

has been achieved on bright targets. Precision attained on fainter host stars is of order one part in

105. While scattered light from extrasolar planets has not been conclusively detected, a planetary

transit in the HD 189733 system may have been observed in polarized light. Such an event is observed

to be 1,000 times weaker in polarized light than in photometry, and it indicates a planetary transit

of the Southern Hemisphere of the host star. Such geometric information is difficult to determine

by other methods.

The integrated polarization of the debris disk surrounding γ Ophiuchi has been observed to high

precision, and the position angle of net polarization is aligned with the disk major axis as seen by

the Spitzer Space Telescope. This indicates the disk is primarily composed of forward scattering

dust grains larger than the wavelengths of visible light.

Finally, Neptune-mass extrasolar planets orbiting close to their host stars have been modeled to

be far too warm for liquid water oceans to exist in their upper atmospheres.
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Chapter 1

Promises and Pitfalls of
Polarimetry

1.1 Introduction

Imagine an observational technique, differential in nature, that takes full advantage of the informa-

tion content a photon has to offer. Photometric conditions would be unecessary, allowing ground-

based telescopes to outsrip their space-based counterparts for uses where imaging is not required.

Indeed, such a technique has been around for decades in the form of polarimetry. Why, then, are

the numbers of polarimeters and polarimetrists so few? Does the bright side of polarimetry simply

fall on blind eyes?

In 1852, Sir George Gabriel Stokes invented a formalism for decomposing the electric field oscil-

lations of light that is still used today. Consider a right-handed, Cartesian coordinate system with

light propagating in the ẑ direction. The electric field of this light beam varies in time as

~E(t) = Ex cos(ωt− δx)x̂+ Ey cos(ωt− δy)ŷ (1.1)

with amplitudes and phases Ei and δi. The path of the electric field vector, when projected onto

the xy plane, describes an ellipse. Such light is therefore “elliptically polarized”.

The Stokes parameters I,Q, U , and V are defined by the time-averaged quantities
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I =
〈
E2
x

〉
+
〈
E2
y

〉
(1.2a)

Q =
〈
E2
x

〉
−
〈
E2
y

〉
(1.2b)

U = 2 〈ExEy cos(δx − δy)〉 (1.2c)

V = 2 〈ExEy sin(δx − δy)〉 . (1.2d)

Thus, the Stokes I parameter describes the total intensity of the beam. Stokes Q and U are mea-

sures of the “linear” polarization of the light beam, where Stokes Q represents the net electric field

component along the x̂ (+Q) or ŷ (−Q) direction and Stokes ±U describes the net electric field

component at ±45◦ from the x̂ direction. Stokes V , a measure of the “circular” polarization of the

light beam, represents the net electric field component that rotates clockwise (+V ) or counterclock-

wise (−V ) at constant angular frequency.

The orthogonal basis vectors of linear polarization, Q and U , are only separated by 45◦ in physical

space. Rotation of a light beam by ±90◦ reverses the sign of Q and U . Therefore, periodicity in

linear polarization occurs by rotation through 180◦. When projected onto the sky, Stokes +Q points

north/south, −Q east/west, +U northeast/southwest, and −U is northwest/southeast (Figure 1.1).

Stokes parameters are usually normalized to the intensity of light, I. The fractional degree and

position angle of net polarization are then

P ≡

√(
Q

I

)2

+
(
U

I

)2

+
(
V

I

)2

(1.3a)

Θ ≡ 1
2

arctan
U/I

Q/I
. (1.3b)

Polarimetry is therefore a differential technique, where the fractional degree of polarized light and

its orientation are the relevant quantities. This is in contrast to absolute techniques such as pho-

tometry, which require stringent calibration to determine whether fluctuations in data are intrinsic

to the source or are due to systematic effects.

To utilize photometry as a differential technique, one must monitor photometric standard stars
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Figure 1.1: Stokes parameters projected onto the sky. The ellipse indicates a general, elliptically
polarized light beam with Stokes parameters −Q, +U , and +V , where Q > U .

simultaneously with the target. The non-uniformity of the Earth’s atmosphere forces one to choose

standard stars at a small angular distance from the target. Thus, if a pocket of turbulence passes

through the line of sight of both stars roughly simultaneously, the scintillation event should be sub-

tracted out. Even for high quality calibration, however, photometric precision better than one part

in 103 is extremely difficult to achieve from the ground. Space-based telescopes overcome scintilla-

tion from the atmosphere, but their smaller apertures ensure that even photon shot noise-limited

operation rarely produces precision less than one part in 104. However, I will show in subsequent

chapters that I have achieved polarimetric precision on bright stars of order one part per million.

Unfortunately, polarimetry still requires calibration. The largest source of uncertainty in polari-

metric measurements is usually polarization intrinsic to the telescope and instrument. Polarization

of light is sensitive to the geometry of scattering as well as the optical properties of the scatterer.

Therefore, asymmetries in mirror coating, as well as asymmetry in the angle of reflection integrated

over the mirror surface, will generate intrinsic polarization. Analogous to dark subtraction in pho-

tometry, subtraction of this telescope/instrument polarization is required. Generally this progresses

by observing “unpolarized” standard stars. Since polarization is sensitive to asymmetry in the
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source, nothing in the Universe is truly unpolarized. However, it is possible to measure polarization

consistent with zero for some stars. Sky subtraction proceeds identically in polarimetry as it does in

photometry, and conventional flat-fielding is required in imaging polarimetry. In addition, polarized

standard stars are observed to ensure that the gain of the system is calibrated. This is effectively

flat-fielding for single-pixel detectors. Since appropriate calibration can indeed be performed, what

are the benefits of observing polarized light from the sky?

1.2 Promises of Polarimetry

1.2.1 Extrasolar Planets

Extrasolar planets are one of the most exciting objects in astronomy to study. Questions such as

“How did we get here?” and “Are we alone?” are directly applicable to the study of extrasolar

planets. Regarding the former question, planet formation is the result of accretion of material in

circumstellar disks. Polarimetry can provide valuable clues to the nuances of this process and will

be discussed later. As for the latter question, the existence of planets around other stars has been

sought since recorded history. Evidence of Earth-like, or at least life-supporting, planets could have

enormous impact on virtually all aspects of society, not the least of which would be the impact on

planning and funding future astronomical investigations.

The first extrasolar planets were discovered around a pulsar in 1992 by observing periodic Doppler

shifts in its pulses (Wolszczan & Frail 1992). These three nearly Earth-mass planets have masses

0.020 ± 0.002, 4.3 ± 0.2, and 3.9 ± 0.2 M⊕ and orbit PSR B1257+12 with periods of ≈ 25, 67,

and 98 days, respectively (Konacki & Wolszczan 2003). Beginning in 1995, hundreds of close-in,

Jupiter-mass planets have been detected by periodicities in stellar radial velocity (Mayor & Queloz

1995). Recently, extrasolar planet research has progressed from planet detection to the beginning

stages of planet characterization. Infrared planetary emission has been directly detected (Deming et

al. 2005), and dayside/nightside contrast in that emission has been observed (Knutson et al. 2007).

Moreover, while the initial detected population of extrasolar planets was of order one Jupiter mass,

refinement of the radial velocity technique has permitted Neptune-mass planets to be discovered

(Lovis et al. 2006).
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However, to truly begin to characterize individual planets, their most basic characteristic, mass,

must be accurately determined. Since the radial velocity technique is insensitive to stellar reflex

motion in the plane of the sky, estimation of precise masses for the large majority of known planets

is hampered by the inability to measure orbital inclination, i. Measured mass, m, is only a lower

limit to the true mass, M , because m = M sin i. Planets in edge-on orbits transit the disk of their

host star every orbit, which causes a periodic dip in the stellar flux as the planet transits the disk

of its parent star. The shape of the system lightcurve is indicative of orbital inclination, so inclina-

tion estimates from transit observations can be coupled with radial velocity data to derive accurate

masses. Indeed, masses of transiting planets can be measured with a precision of less than one

Jupiter mass. The transit of HD 209458 was discovered by Charbonneau et al. (2000); since then,

dozens of transiting planets have been discovered. However, the probability of transit occurrence in

a sample of systems with randomly distributed inclinations scales as R∗/a, where R∗ is the stellar

radius and a is the planetary semimajor axis. This is because the solid angle subtended by the

transit shadow is 2π × 2R∗/a out of a total 4π steradians. Thus, transiting planets only comprise

≈ 10% of known extrasolar planets.

Astrometry holds promise for determining masses of planets, because the star’s motion in the

plane of the sky is observed. The astrometric motion a∗ of an extrasolar planet host star is simply

the star’s lever arm with respect to the center of mass of the system:

a∗ = a

(
Mp

M∗

)
. (1.4)

Since typical mass ratios for extrasolar planets/host stars are of order one part in 10−3, the astro-

metric motion of a star 100 parsecs away with a planet at a = 0.05 AU is of order 0.5 µas. While

space-based interferometers have the potential to graze this regime, astrometric mass measurements

are more likely for planets at larger semimajor axes. The same selection effect occurs for direct

imaging of planetary emission, because a star’s diffracted halo decreases in brightness with increase

in angular distance. Therefore, orbits of extrasolar planets seen astrometrically or by direct imaging

are more likely for planets at large semimajor axes.

This differs from the radial velocity technique, because close-in extrasolar planets are preferen-

tially selected for because of two reasons. First, stellar velocities scale as
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v =
2πa
T

=
2π√
a

(1.5)

for circular orbits, where a is orbital semimajor axis. Second, close-in planets undergo more orbits

in a given amount of time than do planets at larger semimajor axes, so confirmation of statistically

significant periodicity requires a shorter temporal baseline.

We are developing an observational technique that has the potential to determine system incli-

nation for close-in extrasolar planets (so-called “hot Jupiters”). System inclination, and therefore

unambiguous mass, can be found by monitoring the polarization of the system throughout its orbit.

Polarization of hot Jupiters arises by scattering of incident starlight by gas molecules, aerosols, and

dust grains in the planet’s atmosphere. For a face-on orbit (Figure 1.2a), the planet is always seen

at quadrature and will always have half of its disk illuminated. Since the intensity of light scattered

by the planet is constant throughout the orbit, the degree of polarization will also be constant.

However, the position angle of polarization will rotate through 360◦ each orbit. This is because

the position angle from single scattering events is perpendicular to the plane containing the light

source, the scatterer, and the observer (i.e., the scattering plane). In contrast, an edge-on viewing

geometry will generate large, periodic variability in the degree of polarization (Figure 1.2b). For

this geometry, the planet will appear to go through the complete cycle of full to new phases, just

like the Moon. However, the scattering plane will always lie in the plane of the orbit, so the position

angle of net polarization will not vary during the orbit. In general, a hot Jupiter system will exhibit

variability in the polarization vector that is indicative of orbital inclination.

Hot Jupiters have orbital periods of a few days, so they intercept about one part in 105 of their

parent star’s flux. Disk-integrated polarization of Jupiter itself is of order one percent (Hall & Riley

1976), and spatially resolved polarization of comparable magnitude has been observed on Uranus

and Neptune (Figure 1.3). Therefore, the precision required to detect hot Jupiters is one part per

million to one part in ten million of the star’s total flux. The polarization of the host star itself

is at the level of one part in 104 or lower and is primarily due to interstellar extinction. Since the

planet’s orbital frequency is known to high precision from radial velocity, stellar polarization and its

variability can be separated from the planetary signal.
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Figure 1.2: Theoretical orbital modulation of system polarization for a hot Jupiter system. The
degree of polarization is represented by the white, illuminated portion of the planet. The position
angle of net polarization is given by the orientation of the red lines. The face-on case is shown in
(a), and the edge-on case is shown in (b).

H. M. Schmid et al.: Imaging polarimetry of Uranus and Neptune. I. 659

Fig. 1. Intensity image of Uranus (left) and Neptune (right) in the
i-Band. North is up and East to the left. The size of the images is
6.1′′ × 6.1′′.

polarimetric imaging. But the data can still be used for a rough
estimate of the polarization level at these wavelengths.

3. Intensity images

Figure 1 shows intensity images of Uranus and Neptune taken
in the i-band. Also indicated are the limb, the equator, and the
south pole of the planets. The south pole of Uranus is near the
east limb of the planet.

The Uranus image clearly shows the higher reflectivity of
the southern high latitude regions compared to the northern lat-
itudes. The same asymmetric intensity distribution is also visi-
ble in HST images of Uranus (e.g. Karkoschka 2001). In addi-
tion HST images of Uranus and Neptune from August 2003 are
available (see press release STScI-PRC2004-05), which were
taken just a few months before our observations. Of course the
HST data show many more details due to the significantly higher
spatial resolution when compared to our seeing-limited observa-
tions.

4. Stokes Q and U images for Uranus and Neptune

Stokes Q and U images of Uranus and Neptune are shown in
Figs. 2 and 3, respectively. The Stokes parameters for the linear
polarization are defined as Q = I0 − I90 and U = I45 − I135,
where Ix is the intensity for a polarization angle x measured from
North over East. The grey scale in the Stokes Q and U images is
normalized to the peak intensity Ipeak on the planetary disk and
goes from −0.005 Ipeak (black) to +0.005 Ipeak (white).

The same quadrant pattern is visible in Q and U for Uranus
and Neptune. Q is positive at the northern and southern limbs,
negative at the eastern and western limbs, and essentially zero in
the center of the planetary disk. For U the same pattern is visible
but rotated by 45 degrees. In Neptune the polarization pattern
is significantly stronger for the R-band when compared to the
z-band (Fig. 3). This indicates that the polarization is lower for
longer wavelengths. The same trend is seen for the i and z-band
observations of Uranus.

The Stokes Q and U images of Uranus and Neptune indi-
cate that in both planets the polarization is low near the disk
center and high at the limb. The position angle of polarization
is perpendicular to the limb everywhere. This basic polarization
pattern is expected for backscattering from a Rayleigh-scattering
atmosphere. The quadrant pattern in the Stokes Q and U images
is highly symmetric. This indicates that the limb polarization has
along the entire limb a similar strength.

It should be noted that, due to the very steep intensity gra-
dients at the limb the resulting strength of the Q and U limb

Fig. 2. Stokes Q (left) and U (right) images for Uranus in the i-band.
The grey scale in the Stokes Q and U images is normalized to the
peak intensity Ipeak and spans the range from −0.5% (black) to +0.5%
(white).

Fig. 3. Stokes Q and U images for Neptune taken in the R-filter (top) and
z-filter (bottom). The grey scale is normalized to the peak intensity Ipeak
and ranges from −0.5% (black) to +0.5% (white).

polarization features critically depend on an exact centering
of the different planet images (e.g. I‖(0◦), I⊥(0◦), I‖(45◦), and
I⊥(45◦) for the Q image). Experiments with the Q images of
Uranus show that an artificial displacement of one of the four
images by 0.2 pixel in the North-South direction reduces the
positive Q-feature at the northern limb to almost zero, while
the feature at the southern limb is strengthened. A displacement
in the opposite direction reverses the effect at the northern and
southern limbs. Standard star observations show that the relative
position of the two star images on a given frame (the ordinary
and extraordinary images from the Wollaston) is only stable to a
precision of about 0.05 pixels for different half-wave plate posi-
tions and telescope pointings. From this limited stability of the
instrument (and the lack of adequate calibration measurements),
we have to conclude that small differences in the polarization
level on opposite limbs should not be over-interpreted because
of the limited resolution and alignment precision of our data.
Despite this, we would however see extended polarization struc-
tures along the limb that deviate more than 50% from the average
limb polarization. Such features are not seen in our data.

Figure 1.3: Imaging polarimetry of Uranus. This figure is taken from Figure 2 of Schmid et al.
(2006). The left image is Stokes Q/I and the right is U/I. Black pixels indicate polarization of
−0.5%, and white pixels have polarization of +0.5%. North is up, east is to the left, and the disk of
the planet, South Pole, and Equator are outlined in white.
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The precision required to observe the modulation in polarization due to the hot Jupiter is one to

two orders of magnitude more stringent than the modulation in photometry of the system. However,

ground-based photometric observation alone cannot achieve this high precision due to the difficulty

in achieving such stringent calibration. Even if the requisite calibration were attained, perhaps from

space-based observatories, the low information content from photometry would preclude estimation

of system inclination. Polarization is a vector quantity, containing both degree of polarization as

well as position angle, while photometry is a scalar quantity. The added information content per

photon from polarimetry allows inclinations to be determined. Figure 1.4 (taken from the models

of Stam et al. 2004) demonstrates that the amplitude of orbital modulation in polarization of a hot

Jupiter is dependent on system inclination. The frequency of polarization modulation is the second

harmonic of the orbital frequency because polarization follows a cos(2θ) profile through rotation.

That is, polarimetric position angles θ and θ + 180◦ are identical.

In addition to constraining system inclination (and therefore mass) of extrasolar planets, polar-

ization of these planets can yield information about the atmospheric structure. Calculations of Stam

et al. (2004) suggest that both the total reflected flux spectrum and the degree of polarization versus

wavelength should be different depending on whether the atmosphere is clear, has cloud layers, or

has both cloud and haze layers (Figure 1.5). The maximum polarization of the planet through its

orbit will be dependent on the existence or lack of these layers (Figure 1.6b) while the minimum

polarization of the planet is dependent on the system inclination (Figure 1.4).

Polarimetry also has the potential to determine the stellar hemisphere transited by an extrasolar

planet. This is because the asymmetry in stellar polarization caused by a transiting planet will

be reversed between transit ingress and egress. This causes a rotation of the position angle of net

polarization of the system throughout the transit, and the sign of rotation on the sky is indicative of

the hemisphere that is transited. That is, the position angle of net polarization during a Northern

Hemisphere ingress is the same as the position angle during a Southern Hemisphere egress, and vice

versa. I will present tentative observations of a transit of the HD 189733 system in Chapter 3.
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Fig. 7. The flux F and degree of polarization P of the reflected starlight averaged over the wavelength region between 0.65 and 0.95 µm, for
model atmosphere 1 and different orbital inclination angles: 0◦ (dot-dashed line), 30◦ (dashed line), 60◦ (dotted line), and 90◦ (solid line).

0.0 0.2 0.4 0.6 0.8 1.0
Orbital period

0.0

0.1

0.2

0.3

0.4

0.5

Fl
ux

 F

model 1
model 2
model 3

a.

0.0 0.2 0.4 0.6 0.8 1.0
Orbital period

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
eg

re
e 

of
 p

ol
ar

iz
at

io
n 

P b.

Fig. 8. The flux F and degree of polarization P of the reflected starlight averaged over the wavelength region between 0.65 and 0.95 µm, for an
inclination angle of 90◦ and the three model atmospheres.

Fig. 3b). For models 1 and 2, P > 0 for phase angles smaller
than about 165◦, and the reflected starlight is thus polarized per-
pendicular to the planetary scattering plane. For larger phase
angles (when only a narrow crescent of the planet is visible),
P < 0 and the direction of polarization is thus parallel to the
scattering plane. This negative polarization is characteristic for
light that has been scattered twice by molecules in the plane-
tary atmosphere. For these large phase angles, the contribution
of the twice scattered light to P can be significant because the
single scattered light is virtually unpolarized. For model 3, with
the high altitude haze, P < 0 across a broader range of phase
angles, because the haze particles themselves scatter negatively
polarized light (see Fig. 3b).

4.3. Flux and polarization as functions of orbital period

As said before (in Sect. 4.2), the phase angles α an extra-
solar planet can be observed at when it orbits its star range
from 90◦ − i to 90◦ + i with i the orbital inclination angle.
In Fig. 7, we have plotted F and P for the clear atmosphere
(model 1) during an orbital period for various inclination angles
and a circular orbit. Like before, πB0r2R2/(d2D2) is assumed to
equal 1.

Figure 7 shows that except when i ≈ 0◦ (when the orbit
is seen face-on), F and P vary significantly during an orbital
period: F is maximum when the planet’s day-side is observed
(at 0.75 orbital periods in Fig. 7) and zero when the planet’s
night-side is in view (at 0.25 orbital periods), while P peaks

at 0.0 and 0.5 orbital periods, when α = 90◦. The polarization
curve during the first half of the orbit (from 0.0 to 0.5) differs
slightly from that during the second half (from 0.5 to 1.0), re-
flecting the asymmetry of the model 1 curve in Fig. 5b. When
i = 0◦, the observed fraction of the planet that is illuminated is
constant, and F is thus constant. P’s absolute value is also con-
stant, but the direction of polarization, that will generally be
perpendicular or parallel to the planetary scattering plane, can
be seen to rotate with the planet as it orbits the star. The vari-
ation of P along the planetary orbit, either in absolute value or
in direction, would help to distinguish the signal of the planet
from possible background polarization signals, like that from
zodiacal dust.

Interestingly, unlike the reflected stellar flux (Fig. 7a), the
maximum degree of polarization that can be measured along
the planetary orbit is independent of the orbital inclination an-
gle (Fig. 7b). Because this maximum value does depend on
the planetary atmosphere (see Fig. 5b), polarimetry could thus
provide information about the planetary atmosphere without
knowledge on the inclination angle.

The value of polarimetry along a planetary orbit for the
characterization of EGPs is further illustrated in Fig. 8, which
shows F and P along the planetary orbit for an inclination an-
gle of 90◦ and the three model atmospheres. Because the in-
clination angle is 90◦, all three polarization curves in Fig. 8b
are zero at 0.25 and 0.75 orbital periods, when, respectively,
the planet’s night (α = 180◦) and dayside (α = 0◦) are turned
towards the observer. Clearly, the maximum P of each curve
depends strongly on the planetary atmosphere. Obviously, the

Figure 1.4: Modeled orbital modulation of polarization of a hot Jupiter, given as Figure 7b from
Stam et al. (2004). The dot-dashed, dashed, dotted, and solid lines represent inclinations of 0◦

(face-on), 30◦, 60◦, and 90◦ (edge-on), respectively.
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Fig. 4. The flux F and degree of polarization P of starlight reflected by three Jupiter-like EGPs for α = 90◦. Planetary model atmosphere 1
(solid lines) contains only molecules, model 2 (dashed lines) is similar to model 1, except for a tropospheric cloud layer, and model 3 (dotted
lines) is similar to model 2, except for a stratospheric haze layer.

and the sensitivity of the degree of polarization of the reflected
stellar radiation to the structure and composition of the plane-
tary model atmosphere.

4. Results

4.1. Flux and polarization as functions of wavelength

Figure 4 shows spectra of the reflected flux F and degree of po-
larization P for the 3 model atmospheres and a planetary phase
angle α of 90◦. These spectra have been calculated at the same
1-nm intervals at which the CH4 absorption cross-sections have
been given (Karkoschka 1994). In order to present general re-
sults in Fig. 4, we have set πB0r2R2/(d2D2) (see Eq. (5)) equal
to one. In fact, Fig. 4a thus shows 1

4 a1(λ, 90◦), with a1 the
(1,1)-element of the planetary scattering matrix S (cf. Eq. (6))
and Fig. 4b, −b1(λ, 90◦)/a1(λ, 90◦). Using Eq. (5), scaling the
fluxes presented in Fig. 4a to obtain results for a Jupiter-like
extrasolar planet in an arbitrary planetary system is a straight-
forward excercise. Note that P (Fig. 4b) is independent of the
choice of r, R, d, D, and B0, because P is a relative measure.

The flux and polarization spectra in Fig. 4 can be thought
of to consist of a continuum with superimposed high-spectral
resolution features that are due to absorption by CH4. Recent
Earth-based spectropolarimetric measurements of the gaseous
planets of our own Solar System using ZIMPOL show a similar
spectral structure (Joos et al. 2004).

For model 1, which is the clear atmosphere, the continuum
F decreases steadily with λ (Fig. 4a), following the decrease
of the molecular scattering optical thickness with λ. The con-
tinuum P (Fig. 4b) increases with λ, because the smaller the
molecular optical thickness, the less multiple scattering takes
place within the atmosphere; and multiple scattering tends to
lower the degree of polarization of the reflected light. Multiple
scattering also decreases with increasing absorption by CH4.
For model atmosphere 1, this fully explains the high values
of P within the CH4 absorption bands (Stam et al. 1999). In
the strong absorption band around 0.89 µm, P = 0.95, and thus
almost reaches its single scattering value at a single scattering
angle of 90◦ (which corresponds with a planetary phase angle α
of 90◦), namely 0.96 (see Fig. 3b).

For model 2, which is the atmosphere with the tropospheric
cloud, both F and P (Fig. 4a and 4b) at the shortest wave-
lengths are similar to those of model 1, because at these wave-
lengths, the molecular scattering optical thickness of the atmo-
spheric layers above the cloud is so large that hardly any stellar
light will reach the cloud layer. In the strong CH4-absorption
band around 0.89 µm, With increasing wavelength, the molec-
ular scattering optical thickness decreases, and, at least at con-
tinuum wavelengths, the contribution of light scattered by the
cloud particles to the reflected F and P increases. The slope of
the continuum F is less steep for model 2 than for model 1,
because while the molecular scattering optical thickness de-
creases with wavelength, the cloud’s (scattering) optical thick-
ness increases. The decrease of the continuum P for model 2
(Fig. 4b) is due to the increased multiple scattering within the
cloud layers, as well as to the low degree of polarization of light
that is scattered by cloud particles (see Fig. 3b).

In the CH4-absorption bands, F is generally larger and P
smaller for model 2 than for model 1, just like at continuum
wavelengths. In the strong absorption band around 0.89 µm,
however, F and P of the two models are similar, because at
these wavelengths, hardly any stellar light can reach the cloud
layer due to the large molecular absorption optical thickness
of the atmosphere above the cloud. The light that is reflected
at these wavelengths, has thus been scattered in the highest at-
mospheric layers, which are identical in model atmospheres 1
and 2.

For model 3, the atmosphere with the tropospheric cloud
and the stratospheric haze, F is at all wavelengths somewhat
larger than for model 2, even at the shortest wavelengths, where
model 2 is almost indistinguishable from model 1 (Fig. 4a).
The influence of the optically thin haze on F is explained by
the relatively small molecular scattering and absorption optical
thickness above the high-altitude haze layer: at all wavelengths,
a significant fraction of the incoming stellar light reaches the
haze layer and is reflected back to space. The degree of polar-
ization P (Fig. 4b) for model 3 is at all wavelengths signifi-
cantly lower than that for model 1 and 2 mainly because light
that is singly scattered by the haze particles has a very low de-
gree of polarization (see Fig. 3b). In particular, P is very low
in the strong absorption band around 0.89 µm. Whereas in the

Figure 1.5: (a) Spectrum of scattered flux from a hot Jupiter. (b) Polarized spectrum of a hot
Jupiter, taken from Figure 4 of Stam et al. (2004). Models 1, 2, and 3 are for a clear atmosphere,
for an atmosphere with a tropospheric cloud layer, and for an atmosphere with both a tropospheric
cloud layer and a stratospheric haze layer, respectively. It can be seen that absorption bands are
more strongly polarized than the continuum.
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Fig. 5. The flux F and degree of polarization P of the reflected starlight for the three model atmospheres as functions of the planetary phase
angle α, averaged over the wavelength region between 0.65 and 0.95 µm.

clear and cloudy atmospheres of models 1 and 2, the reflected
light in this band has been scattered by molecules, in the atmo-
sphere of model 3, the depolarizing haze particles are the main
scatterers.

4.2. Flux and polarization as functions of phase angle

The flux and degree of polarization of reflected starlight not
only depend on the planetary atmosphere, but also on the plane-
tary phase angle α. As seen from the Earth, the gaseous planets
of our own Solar System can only be observed at small phase
angles (the maximum phase angle for Jupiter is, for example,
about 11◦, and for Saturn, 6◦). The phase angles at which an ex-
trasolar planet can be observed along its orbit range from 90◦−i
to 90◦+ i, with i the orbital inclination angle (i = 0◦ for an orbit
that is viewed face-on). When α ≈ 0◦ or α ≈ 180◦, it will be im-
possible to spatially separate the extrasolar planet from its star
and thus to measure F and/or P of the reflected starlight with-
out including the direct stellar light, because in those cases the
planet is located either behind or in front of the star. For com-
pleteness, we do include these phase angles in our calculations.

Figure 5 shows F (assuming πB0r2R2/(d2D2) is equal to 1)
and P for the three model atmospheres as functions of α, aver-
aged over the wavelength region between 0.65 and 0.95 µm.
We average over a wavelength region rather than present
monochromatic results because due to the faintness of extra-
solar planets, the first direct observations will probably be per-
formed using broadband filters. We average over this particu-
lar wavelength region (the I-band) because that is where po-
larimetry with the CHEOPS instrument (Feldt et al. 2003) and
ZIMPOL (Povel et al. 1990; Povel 1995) for the VLT (Feldt
et al. 2003) is planned to take place.

The reflected flux in Fig. 5 equals 1
4 a1, and thus, at α = 0◦

the planet’s geometric albedo AG (in this case averaged over
the wavelength region between 0.65 and 0.95 µm). As can be
seen in Fig. 5a, the reflected fluxes F are smooth functions
of α. Only the curve for model atmosphere 2, with the tropo-
spheric cloud layer, shows a slight depression at small phase
angles. This depression can be attributed to the local mini-
mum in the single scattering phase function of the cloud parti-
cles (see Fig. 3a) for scattering angles between 165◦ and 180◦.
Apart from the albedo, the reflected flux appears to be insensi-
tive to the composition and structure of the model atmosphere.
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Fig. 6. The reflected flux F for the three model atmospheres as
functions of α, averaged over the wavelength region between 0.65
and 0.95 µm, and normalized at α = 0◦.

This is illustrated in Fig. 6, where we have plotted the fluxes for
the three model atmospheres normalized at α = 0◦, thus in fact,
(see Eq. (8)) divided by the geometric albedo AG For model
atmosphere 1, we find AG = 0.31, for model 2, AG = 0.39,
and for model 3, AG = 0.43. From the curves in Fig. 6, we can
conclude that without accurate information on πB0r2R2/(d2D2)
of an extrasolar planetary system, measuring F will yield little
information about the atmosphere, even when the planet is ob-
served at different phase angles.

The phase angle dependence of P depends strongly on
the model atmosphere, except for reflection near the backward
(α = 0◦) and forward (α = 180◦) directions, where P is zero
regardless of the model atmosphere, because of symmetry prin-
ciples. As explained before, such small and large phase angles
will not be accessible for polarimetry of spatially resolved ex-
trasolar planets anyway, because the planet will be either be-
hind or in front of the star. From the Earth, the gaseous planets
of our own Solar System are only observable at small phase
angles. Earth-based polarimetry of these planets therefore al-
ways yields low values of P (see Joos et al. 2004 for recent
Earth-based polarimetric measurements of Jupiter, Uranus and
Neptune).

For all three model atmospheres in Fig. 5b, P peaks near
α = 90◦, because P of the light that has been singly scattered
by the gaseous molecules, which are present in each of the
model atmospheres, is largest at a scattering angle of 90◦ (see

Figure 1.6: (a) Scattered flux and (b) polarization of a hot Jupiter through orbit, taken from Figure
5 of Stam et al. (2004). Existence of clouds and haze can be deduced from the maximum planetary
polarization over the orbit.

1.2.2 Black Holes and Neutron Stars

Orbital inclination of high mass X-ray binaries, consisting of an OB supergiant and either a black

hole or neutron star, may also be determined from polarimetric monitoring. While the mechanism

generating net polarization of the system is different for hot Jupiters and X-ray binaries, phase-locked

modulation can give an estimate of inclination. The hot photosphere of the supergiant in such a

binary generates significant free electrons which Thomson scatter the stellar flux. Tidal distortion

of such a circumbinary envelope, as well as of the supergiant itself, imparts an asymmetry to the

system which causes polarimetric modulation. For rigidly rotating, static structure, this modulation

occurs at the orbital frequency and first harmonic. Thus, spurious variability at other frequencies

can, in principle, be filtered out.

Once the inclination of the system is known, radial velocity data can then provide accurate masses

of the compact object, assuming the mass of the supergiant is known. Evolutionary modeling of pro-

genitor stars would greatly benefit from a large sample of known black hole and neutron star masses.

1.2.3 Circumstellar Disks

Vink et al. (2005) observe polarization of seven T Tauri and Herbig Ae/Be objects. They find the

position angle of polarization of three objects to be consistent with the position angle of the disk

major axis from near-IR interferometric imaging. The remaining four objects have polarimetric po-

sition angle ≈ 90◦ from the position angle of the major axis. They interpret these results in terms of
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single or multiple scattering by optically thin or thick disks, respectively. They also observe a change

in degree of polarization versus wavelength across the Hα line. This is interpreted as scattering of

starlight by a rotating accretion disk, because the strongest degree of polarization is expected for

scattering through 90◦. This occurs for material at quadrature phase, which will be moving almost

entirely along the line of sight. This material will therefore lie at the Doppler shifted wings of the line.

Nearly edge-on disks of UX Ori objects show increased polarization during times of photometric

minima. This is interpreted in terms of dust clumps partially occulting the central star, while light

scattered and polarized by the disk is unaffected. Since the amount of polarized light stays roughly

constant, while the amount of unpolarized light decreases, the degree of polarization during these

occultations increases (Grinin 1994, Grinin et al. 1994, Oudmaijer et al. 2001).

Graham et al. (2007) observe polarization perpendicular to the edge-on disk around AU Mic,

which indicates single scattering in an optically thin disk composed of micron sized particles.

1.2.4 Evolved Stars

The process by which nearly spherical stars generate planetary nebulae of strongly asymmetric shape

is poorly known. González Delgado et al. (2003) observe a polarized shell of material around the

carbon stars R Scl and U Ant (Figure 1.7). Polarimetric modulation of post-AGB stars can be

partly explained by non-radial pulsations (Henson et al. 1985, Magalhães et al. 1986, Raveendran &

Rao 1989, Yudin & Evans 2002), which may play a role in the production of non-spherical planetary

nebulae. Trammell et al. (1994) observed 31 post-AGB stars, and they claim 75% of the sample

shows evidence for intrinsic polarization. They take this to be evidence for asphericity in the sys-

tem. In addition, they observe polarimetric variability which is interpreted as mass loss in the form

of clumps. Johnson & Jones (1991) and Bieging et al. (2006) find a positive correlation between

evolved star mass loss rate and net polarization (Figure 1.8).
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D. González Delgado et al.: Polarised dust shells around carbon stars 1025

Fig. 1. Images showing the polarimetric information in the F77 filter of the light scattered in the circumstellar medium around R Scl. Upper
left panel: measured normalized Stokes qm. Upper middle panel: measured normalized Stokes um. Lower left panel: measured polarisation
degree pm. Lower middle panel: brightness distribution of the scattered light Ish. Upper right panel: vector map showing the shell polarised
intensity (Psh) and polarisation angle (θsh) averaged over square-boxes of 1.′′3 (the total intensity image is shown as a grey contour). Lower
right panel: AARP of the polarised intensity (Psh; dash-dot line), total intensity (Ish; solid line) and polarisation degree (psh; asterisks) of the
scattered light. A fit of a step function, convolved with the seeing Gaussian, to the total intensity has been added (dotted line). The AARP of the
CO(J = 3 → 2) radio emission seen towards this star (Olofsson et al. 1996) is included for comparison (triangles). The CO peak value, which
is reached inside the region probed by these observations, has been normalized to the plateau value of the fit to the total scattered intensity.

4. Imaging of circumstellar polarised light

4.1. Results towards R Scl

The images in the F77 (Fig. 1) and F59 (Fig. 2) filters of the
circumstellar scattered light around R Scl display the measured
Stokes parameters (qm, um), the polarisation degree (pm), as
well as the distribution of the total intensity (Ish). The qm, um,
and pm data, in both filters, reveal geometrically thin distribu-
tions of scattered polarised light, which are clearly detached
from the central star (which lies behind the central mask). On
the other hand, the Ish images show disk-like distributions very
similar to those obtained in the direct imaging observations
presented in Paper I (the quality of the data is such that we
cannot exclude small-scale structure inside the disks). These
results are consistent with the presence of a hollow (meaning
depleted of gas and/or dust inside a certain radius), spherically
symmetric, detached shell around R Scl. Photons scattered
along any line-of-sight passing inside the shell outer radius
contributes to the observed total intensity, which is therefore
detected as a disk-like structure. On the contrary, only those
photons which are scattered nearly perpendicularly towards us
produce polarised light. This 90◦ scattering takes place most ef-
fectively in the 2D-cut of the spherical shell which is contained
in the plane of the sky through the star, and hence, ring-like

structures, such as those exhibited by the Stokes and polar-
isation degree images, result. Thus, the imaging polarimetry
observations effectively reveal the spatial structure of the scat-
tering medium. They allow a determination of the shell inner
radius (see Sect. 5.3), which is not measurable in observations
of scattered light using direct imaging techniques.

Some quantitative results obtained from these images are
also shown in Figs. 1 and 2. The vector maps show the
polarised intensities (Psh) and polarisation angles (θsh) at dif-
ferent positions around the star. In both filters there is a centre-
symmetric polarisation pattern, typical of isotropic illumina-
tion from a central point source.

The azimuthally averaged radial profiles (AARPs) of the Ish

images are relatively constant in both filters, i.e., at both wave-
lengths the scattered light shows a uniform-intensity brightness
distribution. The AARP of Ish in the F77 filter image extends
to an outer radius of 20.′′8 (corresponding to 1.1 × 1017 cm at
the adopted stellar distance of 360 pc). The outer radius is de-
fined as the half power radius of a step function (convolved
with the seeing Gaussian) fitted to the observed radial profile
(this smoothed function was introduced in Paper I to provide
a size estimate, as well as to show that the gradual brightness
decline is not an effect of the seeing). The decrease in the total
intensity inwards of 15′′ is very likely not tracing the scattered

Figure 1.7: Imaging polarimetry of R Scl from Figure 1 of González Delgado et al. (2003).
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Figure 1.8: Correlation of net polarization and mass loss rate for evolved stars. This figure comes
from Figure 3 of Johnson & Jones (1991) and is reproduced by permission of the AAS.
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1.3 Pitfalls of Polarimetry

1.3.1 Telescope Polarization

The largest systematic effect in high precision polarimetry is usually telescope and instrument polar-

ization. It is generally present at less than one part in 104, which is below the noise floor for imaging

polarimetry. However, observations of polarimetry in integrated light, which are necessary in order

to reach precisions required for extrasolar planet and other high precision observations, must cali-

brate telescope polarization. The procedure generally involves observing with an altitude-azimuth

telescope with the field de-rotator disabled. Stars thought to be unpolarized, and consequently

non-variable on a night-to-night timescale, are observed through a range of parallactic angles. Such

stars are generally nearby, so the effect of interstellar polarization is minimized (section 1.3.2). Since

telescope polarization dominates the signal, the modulation of observed polarization as the Earth

rotates gives a measure of the telescope polarization (Figure 1.9). However, this process is very time

consuming, and it must be performed each night. Indeed, Hough et al. (2006b) estimate 20% of

observing time is taken up by telescope polarization calibration.

For equatorial mount telescopes, such as the Hale 5-m, one must observe net polarization of

stars that are known to exhibit intrinsic plus interstellar polarization that is consistent with zero.

This requires identification of such stars from previous, high precision polarimetric investigations

on alt-az telescopes. We therefore consult Hough et al. (2006b) for such zero polarization standard

stars observed with the PlanetPol instrument.

1.3.2 Interstellar Polarization

Alignment of interstellar dust grains by the galactic magnetic field causes preferential extinction of

the electric field component of background starlight parallel to the long axis of the grains (Davis &

Greenstein 1951). This large-scale alignment can be seen in the polarization maps of Mathewson

& Ford (1970), shown in Figure 1.10. Serkowski et al. (1975) determine empirically that stars

for which interstellar polarization dominates will have a distinctive spectrum of polarization versus

wavelength:

P (λ)
Pmax

= exp
[
−1.15 ln2

(
λmax

λ

)]
. (1.6)
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1310 HOUGH ET AL.

2006 PASP, 118:1302–1318

Fig. 5.—Left: Directly measured Qinst-polarization as a function of parallactic angle for a number of stars within 25 pc. Right: Qinst-polarization after removal
of interstellar and/or intrinsic polarization after a Gauss-Newton minimization. Note that the Qinst-polarization is not in the equatorial coordinate system.

Fig. 6.—Directly measured Qinst-polarizations (left) and Uinst-polarizations (right) for stars that have very small interstellar and/or intrinsic polarization. Note
that the Qinst- and Uinst-polarizations, showing a phase shift of 45", are not in the equatorial coordinate system.

Figure 1.9: Telescope polarization of the 4.2-m William Herschel Telescope in La Palma, Spain,
which is found to be (16.4± 0.4)× 10−6. These plots are reproduced from Figure 6 of Hough et al.
(2006b) by permission of PASP and the University of Chicago Press.

Figure 1.10: Interstellar polarization aligned to the galactic magnetic field, from Figure 1 of Math-
ewson & Ford (1970).
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Here, Pmax is the maximum polarization as a function of wavelength and λmax is the wavelength of

maximum polarization (Figure 1.11). Wilking et al. (1980) refined this relation further:

P (λ)
Pmax

= exp
[
−1.7λmax ln2

(
λmax

λ

)]
. (1.7)

The empirical relation of Serkowski et al. (1975) is predicted by the model of interstellar dust

proposed by Li & Greenberg (1997). They model dust as cylinders with length to diameter ratio of

two, which consist of a silicate core and an organic, refractory mantle. Indeed, Figure 1.12 shows

a comparison between polarization predicted by such grains (solid line) and observed interstellar

polarization (dotted line). The inset illustrates the prediction of the Li & Greenberg (1997) model

of the circular polarization (dotted line) sign change at the wavelength of peak linear polarization

(solid line), λ = λmax. Figure 1.13 shows the first observations of this effect by Kemp & Wolstencroft

(1972).

Interstellar polarization represents a significant systematic effect that is difficult to calibrate. This

is because observed polarization is the sum of the telescope, instrument, interstellar, and intrinsic

polarization vectors. While telescope and instrument polarization may be calibrated, calibration of

interstellar polarization is less straightforward. Additionally, the degree of interstellar polarization

increases with distance to the target (Figure 1.14) because of the increased number of dust grains

in the line of sight column (Mathewson & Ford 1970, Barrett 1996, Fosalba et al. 2002). Therefore,

interstellar polarization is significant for almost all targets of interest. For imaging polarimetry,

and other relatively low precision polarimetric investigations, one can consult polarization maps to

determine the degree and position angle of polarization for stars near the target (Figure 1.10). The

mean interstellar polarization in the neighborhood of the target can then be subtracted from the

observed polarization of the target.

Four types of observations are generally used to separate the interstellar and intrinsic components

of observed polarization: polarization versus wavelength, rotation of position angle with wavelength,

circular polarization, and temporal variability. For objects whose polarization spectrum differs from

the Serkowski et al. (1975) relation, it is likely that the difference is due to intrinsic polarization of

the source. The wavelength of peak polarization λmax is comparable to the mean grain size along



16

1
9
7
5
A
p
J
.
.
.
1
9
6
.
.
2
6
1
S

Figure 1.11: Empirical wavelength dependence of interstellar polarization from Equation 1.6. This
figure is taken from Figure 3 of Serkowski et al. (1975).

A. Li & J.M. Greenberg: A unified model of interstellar dust 573

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. Linear polarization provided by the same infinite cylinder par-
ticles as in Fig. 3 (solid). Also shown is the “observational interstellar
polarization” represented by the Serkowski law (λmax " 0.55µm)
(dotted) and a power law P (λ) ∝ λ−1.8 in the NIR (dashed). Both
are normalized to the peak polarization (Pmax). The inset plots circu-
lar polarization (dashed line) as well as theoretical linear polarization
(solid) and the Serkowski law (dotted).

particles, then we investigate the shape effects by comparing the
results for the exact solutions of coated infinite cylinders with
those for the MGEMT.

We have carried out calculations for spherical core-mantle
particles on the basis of (1) the homogeneous representation
plus the MGEMT; and (2) the exact solutions. The best fits
to the interstellar extinction are, for both, provided by the
particles with a size distribution of ai = 0.11µm, ac =
0.070µm, q = 2 which leads to a mantle to core volume ra-
tio vm/vc ≈ 2.12. Fig. 5 presents the model results for both
cases where for comparison, both of them are normalized at
the visual extinction cross section of the MGEMT case. They
are clearly very close. Actually, up to λ−1 % 2.8µm−1, they
are almost identical. Some discrepancies occur in the range
3µm−1 < λ−1 < 8µm−1 with the most prominent discrepan-
cies at λ−1 % 4µm−1 and λ−1 % 7µm−1. The former results
from the fact that the extinction produced by the dust particles
peaks at λ−1 % 4µm−1; the latter is due to the strong resonance
in the optical constants of the silicate particles in that wavelength
range. However, as shown in the insert in Fig. 5, the largest dis-
crepancy σ(λ), defined as (AMG(λ) − ACM (λ))/ACM (λ), is
only 7% and σ(v) % 1.8% (AMG(λ) is the extinction cross
section for the MGEMT; ACM (λ) for the exact solution). Thus
we conclude that the differences between the MGEMT and the
exact solution for spherical core-mantle particles are certainly
not critical, even though all of the dust grains in the distribution
have a size parameter x = 2π a/λ > 1 in the FUV.

We have also modeled the core-mantle particles using the
exact solutions for coated infinite cylinders (Greenberg 1968;
Shah 1970). The modeling procedure is the same as the MGEMT
one except the exact solutions are adopted instead of the homo-
geneous infinite cylinder solutions plus the MGEMT. The best
match to the observations are given by: ai = 0.104µm, ac =
0.030µm, q = 2. Comparing the MGEMT model results shown
in Fig. 3 and Fig. 4 with those in Fig. 6 and Fig. 7, one finds
that the differences are negligible. In addition to that, the fact

0 2 4 6 8 10
0

1

2

3

4

5

Fig. 5. Extinction by spherical core-mantle particles having a size dis-
tribution with ai = 0.11µm, ac = 0.07µm, q = 2 and an aver-
age size 0.1 µm. Solid line corresponds to the homogeneous sphere
Mie solution based on the MGEMT (AMG(λ)). Dotted line corre-
sponds to the exact solution for coated spheres (ACM (λ)). Both of
them are normalized to AMG(v). The upper-left insert in the fig-
ure shows the errors σ(λ) introduced by the MGEMT approximation,
σ(λ) = (AMG(λ)−ACM (λ))/ACM (λ).
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Fig. 6. Extinction by core-mantle infinite cylinders (solid line) with
a size distribution of ai = 0.104µm, ac = 0.030µm, q = 2
in terms of exact solution. Note that both the core and the mantle
have the same length in this solution. The dotted line corresponds
to the extinction by core-mantle finite cylinders (see Sect. 5.2) on
the basis of the MGEMT. The grain size distribution is given by:
ai = 0.066µm, ac = 0.070µm, q = 2. The finite cylinder curve
beyond λ−1 = 4µm−1 where further calculations are limited by com-
puter capability is extrapolated from those shortward of 4µm−1.

that in both cases, the volume ratios of the mantle to the core
(vm/vc ≈ 2.87 for the MGEMT and vm/vc ≈ 2.94 for the
other) are almost the same further convinces us of the validity
of the MGEMT approximation adopted in the model calcula-
tions. We note that the differences in the parameters (ai, ac)
are mainly due to the different cylinder length : in the homoge-
neous plus MGEMT case, the mantle length is longer than the
core length since the core and the mantle have the same elonga-
tion; while in the exact core-mantle solutions, both the core and
the mantle have the same length. We conclude that, for the cur-
rent purpose, the MGEMT can also be applied to nonspherical
core-mantle particles.

Figure 1.12: Theoretical wavelength dependence of interstellar polarization from Figure 4 of Li &
Greenberg (1997). Note the agreement between theory (solid line) and observation (dotted line).
The inset shows the reproduction of circular polarization (dashed line) sign change at the wavelength
of linear polarization (solid line) maximum, λ = λmax.
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Figure 1.13: Observed circular polarization sign change near λ = λmax, labeled q, from Figure 1 of
Kemp & Wolstencroft (1972). Linear polarization data, labeled p, are from Coyne & Gehrels (1966).No. 2, 2002 GALACTIC STARLIGHT POLARIZATION 765

FIG. 2.ÈDistribution of sources with Galactic latitude, distance, polar-
ization degree, and extinction. In the top panel, the number of stars in the
two central bins are displayed beside them as they are far above the plotted
range.

q B 0.4 ] 0.5 sin (2l ] 190¡) . (6)

For Galactic longitudes l B 50¡ and l B 230¡, we Ðnd
minimum values of q ; i.e., the stellar polarization vectors
are orthogonal to the Galactic plane, Noteh

p
B 0¡, 180¡.

that at the Galactic plane, these directions approximately
intersect the Cygnus-Orion spiral arm that suggests that, on
average, polarization vectors there do not align with this
Galactic structure. Moreover, we also Ðnd minimum values
of the polarization degree (or extinction as they are nearly
linearly correlated) for these Galactic longitudes. Approx-
imately, along these directions (as one moves away from the

FIG. 3.ÈPolarization degree with (quoted) error bars (top panel) and
extinction (bottom panel) in linear distance bins. Solid lines show best-Ðt
curves to third-order polynomials, eqs. (1) and (2).

Galactic plane) one Ðnds the edge of a supernova remnant,
the spherical shell of Loop I (see red sources in Fig. 11).
Thus, a possible explanation for the values of the stellar
parameters along these directions is that exploding super-
novae in the Scorpius/Ophiuchus star cluster centered at
l B 0¡, b B 20¡ (see Zweibel & Heiles 1997) could cause
polarization vectors to be strongly aligned with the Galactic
structure left by the supernova remnant.

On the other hand, maximum values of the polarization
degree and q parameter are found at l B 140¡ and l B 320¡,
where the polarization vectors of dust grains are parallel to
the Galactic disk structure, (see light-green sourcesh

p
B 90¡

in Fig. 11).
We note that the results shown in the lower panel of

Figure 5 for the longitude dependence of the q parameter
are in good agreement with the analysis presented in
Whittet (1992) for about 1000 nearby Galactic plane stars
(d \ 0.6 Kpc, o b o \ 3¡).

4.3. Behavior with Galactic L atitude
As discussed in ° 3, most of the sources in our subsample

are in the Galactic disk (75% of the stars are found at
o b o \ 10¡ ; see Table 1). There is a statistically signiÐcant
fraction of the sources at high Galactic latitudes (25% of
sources at o b o [ 10¡), however, that allows us to investigate
the mean variation of the correlations between stellar pa-
rameters as a function of latitude. For this purpose we have
averaged the data in 10¡ (linear) latitude bins.

Figure 1.14: Increase in degree of interstellar polarization up to d ≈ 2 kpc. Note the correlation of
polarization with extinction. This figure is from Figure 3 of Fosalba et al. (2002).
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the line of sight to the object. Therefore, if both grain size and orientation vary along the line of

sight, the position angle of linear polarization will be a function of wavelength (Messinger et al.

1997, Whittet et al. 2001).

While both grain size and orientation must occur for interstellar polarization to generate a ro-

tation of position angle with wavelength, only a change in grain orientation is required to generate

circular polarization. This effect was predicted by van de Hulst (1957), and circular polarization

of stars dominated by interstellar polarization was observed by Kemp (1972) and Kemp & Wols-

tencroft (1972). From theoretical modeling of polarization due to grains with varying orientation,

Martin (1974) discovered that the handedness of interstellar circular polarization changes sign near

the wavelength of peak linear polarization, confirming the observations of Kemp & Wolstencroft

(1972).

Polarimetric variability of many stars is observed in high precision campaigns. It is assumed

that variability on nightly timescales is indicative of intrinsic polarization, because the interstellar

medium is not thought to be variable on those timescales. However, Walker (2007) observe lensing

of the quasar Q0954+658 by an AU-sized, interstellar dust cloud d ≈ 500 pc away from Earth (Fig-

ure 1.15). The timescale of this event is ≈ 100 days, with dramatic changes evident on a one week

timescale. This shows that ISM variability is probably not important during an individual observing

run, but it may be significant from run to run for strongly polarized sources.

Of the combination of the four types of observations listed above, polarimetric variability (linear,

circular, or both) phase-locked to orbital or pulsational cycles is the strongest indicator of intrinsic

polarization of the source. Additionally, deviation of polarization as a function of wavelength from

Equation 1.6 indicates intrinsic polarization. For strongly polarized sources, with P ≈ 1% or larger,

rotation of polarimetric position angle with wavelength coupled with a lack of observed circular

polarization may also indicate intrinsic polarization. This is because line of sight change in grain

orientation is expected to convert linear polarization to circular polarization with ≈ 1% efficiency

(Martin 1974, Avery et al. 1975). Thus, intrinsic polarization of order 1% incident on a column of

grains with varying orientation along the line of sight should generate detectable circular polariza-

tion of order one part in 104.

Lack of circular polarization towards such a target could imply intrinsic Rayleigh scattering.
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Figure 2. As Figure 1, but showing only 400 days around the event. Over-
laid on the original data are 24-day average fluxes, plotted as squares; the
time intervals for averaging are such that Time = 0 corresponds to an inter-
val boundary. Neither of the two frequencies manifests flux conservation in
the light-curve, as is evident from the high values of the four central squares
in the 8.1 GHz (upper) data and the low values of the central two squares in
the 2.7 GHz (lower) data.

are measured from the apparent symmetry point (Time = 0), so to the extent
that the event is time-symmetric the two halves should display the same be-
haviour. Within the event itself – which we take to be the central four averaged
data points at 8.1 GHz and the central six averaged data points at 2.7 GHz –
this is almost satisfied. The one discrepancy is the outermost pair of the six
points at 2.7 GHz. Both of these points lie close to the baseline flux value but
after the event the baseline is lower than that beforehand; we put aside the
interpretation of this baseline shift until §3. For now the reader should ignore
the right-hand (Time > 0) portion of the low-frequency light-curve, bearing in
mind that we are attempting to discriminate between two different symmetric
models so asymmetries are a distraction. The left-hand portion of the 2.7 GHz
light-curve shows a mean flux during the event which is lower than the unlensed
flux, while at 8.1 GHz both halves of the data clearly show an average lensed
flux which is higher than the unlensed flux.

One could argue that at 2.7 GHz there might be some flux refracted through
large angles that we are missing in our accounting by restricting attention to
the central data points. This is a contrived argument because the 2.7 GHz
flux drops rapidly away from the peaks at |Time| " 40 days, suggesting that
we are not missing any significant contribution in our averaging. Moreover
this argument fails to explain the behaviour at 8.1 GHz, where the refraction
angles are much smaller and the average lensed flux is higher than the unlensed

Figure 1.15: Scattering of quasar radio emission by an interstellar dust cloud. Boxes indicate binned
observations over 24 day intervals. Top curve represents high frequency (8.1 GHz) observations, to
which a 1 mJy vertical offset was applied. Bottom curve shows low frequency (2.7 GHz) monitoring
of the event. Reprinted by permission from Walker (2007), Figure 2.

Rayleigh scattering occurs in neutral gas, which may be present in cool stars and accretion streams

(Mason et al. 1974, Kallman & White 1982, White et al. 1983, Kitamoto et al. 1984). However,

the gas density in the ISM is not significant to provide Rayleigh scattering of background starlight.

The position angles of the intrinsic and interstellar polarization components will be different, so the

superposition of intrinsic, Rayleigh scattering (P ∝ λ−4) and interstellar polarization (Equations

1.6 and 1.7) will cause a rotation of position angle with wavelength. For comparable degree of

polarization between both components, the blue end of the optical spectrum will be dominated by

intrinsic polarization while the red end will be dominated by interstellar polarization.

Conversely, the presence of circular polarization with a magnitude much higher than 1% of the

degree of linear polarization implies an intrinsic source of circular polarization. Strong magnetic

fields are thought to be the cause of such intrinsic circular polarization. This effect has been ob-

served in Cepheid variables (Rudy & Kemp 1978) as well as in the high mass X-ray binary Cygnus

X-1 (Michalsky et al. 1975a, b; Severny & Kuvshinov 1975; Michalsky & Swedlund 1977).

It is difficult to determine whether polarization of weakly polarized objects is intrinsic or due
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to interstellar polarization, which is one of the major pitfalls of polarimetry. As will be seen later,

I determine the position angle of net polarization of the γ Oph debris disk to be aligned with the

major axis of the disk as observed by Spitzer. This is clear evidence for intrinsic polarization of the

disk. Since geometric information about circumstellar disks is of great importance for star, disk, and

planet formation/evolution scenarios, polarimetry is necessary to understand these objects. How-

ever, the role of interstellar polarization in the neighborhood of such objects is not always clear, and

this can limit the contribution expected of polarimetry.

1.3.3 Intrinsic Polarization Variability

The hot Jupiter parent stars τ Boö (Walker et al. 2008), HD 179949 (Shkolnik et al. 2005, Shkolnik

et al. 2007), and HD 189733 (Hébrard & Lecavelier des Etangs 2006, Croll et al. 2007, Winn et

al. 2007, Pont et al. 2007, Shkolnik et al. 2007, Moutou et al. 2008) are known to have significant

starspot activity, and some spots appear to corotate with the planet. Since starspots are associated

with magnetic field activity, it is likely that they induce polarimetric variability at the orbital fre-

quency. This has been observed in τ Boö with PlanetPol, where the planetary signal appears to be

swamped by polarized starspots (Hough et al. 2006a). While observations both on and off spectral

features may distinguish between starspots and the planet (Figure 1.5), the reduction in throughput

will decrease the precision of the measurement. Thus, observations of light scattered by hot Jupiters

likely requires 10-m class telescopes or larger.

The lack of true phase-locking observed in Cygnus X-1 (Wolinski et al. 1996) and other OB

supergiant/compact object binaries (Dolan & Tapia 1984, 1988) is due to stochastic variability in

the system. This may hamper accurate measurement of the orbital inclination with polarimetry.

Indeed, it appears that co-adding the modulation from many orbits may not produce the mean state

of the system. Thus, single-orbit observations may be necessary, which reduces the polarimetric

precision that can be attained. As a proof of concept of the polarimetric technique, I commissioned

a polarimeter on the Hale 5-m telescope. The goal of this instrument was to observe and characterize

the polarimetric modulation of the Cygnus X-1 high mass X-ray binary. The next chapter describes

the engineering and initial results from the instrument.
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Grinin, V. P., Thé, P. S., de Winter, D., Giampapa, M., Rostopchina, A. N., Tambovtseva, L. V.,

van den Ancker, & M. E. 1994, A&A 292, 165.

Hall, J. S. & Riley, L. A. 1976, Icarus 29, 231.
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Chapter 2

The POLISH Instrument

2.1 Introduction

While most astrophysical objects require many parameters in order to be fully described, black holes

are unique in that only three parameters suffice: mass, spin, and charge. Mass and spin describe

the black hole’s gravitational field and event horizon location. Therefore, black holes provide a rare

opportunity for theory and observation to jointly pursue two quantities to completely describe one

of the most exotic kinds of objects in the Universe.

Though observational and modeling precision is somewhat effective in constraining black hole

spin (McClintock et al. 2006), important constraints on black hole mass exist in the case of high

mass X-ray binaries (hereafter HMXBs). These binaries consist of an O or B type supergiant and a

black hole or neutron star. The most well-studied of these, Cygnus X-1, is thought to consist of a

40± 10 M�, O9.7Iab star and a 13.5− 29 M� black hole at a distance of 2.2± 0.2 kpc (Ziólkowski

2005). While the constraints on the mass of the compact object are tight enough to declare that it

is a black hole, they are insufficient to permit precise modeling of the progenitor star’s mass. We

have commissioned a polarimeter on the Hale 5-m telescope at Palomar Observatory in California to

provide an independent method for determining black hole mass. This polarimeter has the potential

to constrain the mass of the Cygnus X-1 black hole to a few solar masses.

1The following paper is derived from this chapter: Wiktorowicz, S. J. & Matthews, K. 2008, PASP, 120, 1282.
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2.2 Black Hole Mass from Polarimetry

A wealth of radial velocity data exists for Cygnus X-1 (Gies et al. 2003) and other HMXBs. However,

in the same way that precise masses are elusive for non-transiting extrasolar planets, determination

of precise black hole mass is hindered by unknown orbital inclination. This is evidenced by the end

product of radial velocity observations, the so-called “mass function”. For Cygnus X-1, Gies et al.

(2003) quote the following value:

f (MX) =
Mopt sin3 i

q (1 + q)2 = 0.251± 0.007M�. (2.1)

Here, MX is the mass of the black hole, Mopt is the mass of the visible binary component, i is the

system inclination, and q is the mass ratio of the visible component to the black hole. Thus, an

observational technique to constrain orbital inclination can take advantage of radial velocity data

and offer an estimate of black hole mass.

Since system polarization is a geometric effect, the polarization of an HMXB system can be used

to determine geometric information about the system, such as orbital inclination. The effective

temperature of the supergiant in an HMXB is Teff ≈ 30,000 K, which is hot enough to ionize

photospheric hydrogen. This causes a high density of free electrons that Thomson-scatter emitted

light from the supergiant. While net linear polarization from a spherical cloud of free electrons is

zero, asymmetry in the system causes net polarization. The tidal effects of the black hole cause such

an asymmetry in the circumbinary envelope, and the orbital modulation of polarization is the key

to determining orbital inclination. For instance, consider a face-on HMXB with zero eccentricity

and an optically thin circumbinary envelope (Figure 2.1a). The total amount of observed polarized

light is independent of orbital phase, and the degree of polarization is therefore constant. However,

the angle of net polarization rotates as the binary progresses in its orbit.

In contrast, for a nearly edge-on geometry the degree of polarization varies significantly through-

out the orbit, while the angle of net polarization is roughly constant (Figure 2.1b). Therefore, the

modulation of the degree and angle of net polarization is a unique measure of orbital inclination for

synchronously rotating HMXBs. Combining Equations 1 and 2 from Friend & Cassinelli (1986) and

Equation 2 from Brown et al. (2000), the polarization of an axisymmetric envelope due to Thomson

scattering is
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Figure 2.1: Orbital modulation of system polarization for HMXBs. The degree of polarization is
represented by the black tidal bulges (the exact cause of polarization is irrelevant to this figure),
and position angle of net polarization is given by the orientation of the grey lines. The face-on case
is shown in (a), and the edge-on case is shown in (b). The circumbinary envelopes have been drawn
displaced from the center of mass for clarity.

P =
3
16
σT
(
1− cos2 φorb sin2 i

) ∫ r2

r1

∫ µ2

µ1

ne (r)
(

1− R2

r2

) 1
2 (

1− 3µ2
)
drdµ. (2.2)

Here, stellar radius is R, the electron number density is ne (r) = noR
2/r2, system inclination is i,

and orbital phase in radians is φorb. Two polarization periods occur per orbital period, because of

the cos2 φorb term.

This technique has been utilized by a few groups (Kemp et al. 1979, Dolan & Tapia 1989, Wolinski

et al. 1996), and Cygnus X-1 has been found to have variable polarization of order ∆P ≈ 0.1% of

its unpolarized flux. However, measurement precision from the above groups is of order one part

in 104. The derived inclination estimates were questioned by the community (Milgrom 1979, Aspin

et al. 1981) on the grounds that significant underestimation of error occurred because of limited

measurement precision. Measuring inclination to 5◦ requires polarimetric precision of one part in

104 to one part in 107 (Aspin et al. 1981), depending on system inclination. This requires at least

108 to 1014 detected photons, which necessitates the use of 4-m class telescopes. Since our system

combines a high precision instrument with a 5-m telescope, we aim to measure the polarimetric

variability of Cygnus X-1 to better than one part in 104.
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Figure 2.2: Plan view of the POLISH optical path. The telescope beam is directed into the page
through the center of the PEM aperture (the “X” in the figure). The PEM is rotated to θPEM = ±45◦

with respect to the centerline, and the instrument itself (dotted box) can be independently rotated
on the telescope through ∆φ = 360◦. Field stops are located between the field lenses and detectors.

2.3 The Polarimeter

Polarimeters require the following fundamental components: a polarization modulator, analyzer, de-

tector, and demodulator. The modulator induces a known, periodic characteristic to the unknown

polarization of the input beam. The analyzer converts modulation in polarization to modulation in

the beam’s intensity, since most detectors are sensitive to intensity and not polarization. Finally, the

demodulator extracts the component of the detector’s output that varies at the known frequency of

the modulator to reject noise. See Figure 2.2 for a block diagram, Figure 2.3 for a ray trace diagram,

and Figure 2.4 for photographs of the instrument.

Traditionally, the modulator is a rotating halfwave plate that rotates the linear polarization of

the incident beam. The highest modulation frequency attainable with this component is of order

100 Hz, which is not fast enough to freeze out atmospheric turbulence or to mitigate electronic 1/f

noise. Additionally, inhomogeneity in both the retardance and cleanliness of the plate can intro-

duce spurious signals, because the beam samples different sections of the halfwave plate at different

times. The polarization goal for our instrument, POLISH (POLarimeter for Inclination Studies of
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Figure 2.3: Ray trace diagram of the POLISH optical path. The telescope beam enters the instru-
ment from the top right of the figure.

Figure 2.4: Photographs of the POLISH instrument, mounted at Cassegrain focus of the Hale 5-m
telescope.
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High mass x-ray binaries/Hot jupiters), is one part per million on bright, unpolarized stars, which

necessitates the use of a photoelastic modulator (hereafter PEM; see Kemp 1969).

A PEM is a bar of optical materials (fused silica for use in optical light) in which a resonant

acoustic signal at frequencies of tens of kilohertz is induced. The stress-birefringent property of

the silica causes time-varying, sinusoidal retardance of the component of polarization oriented at

±45◦ with respect to the compression/extension axis, while the polarization components at 0◦ and

90◦ with respect to that axis experiences no retardance. For example, a PEM at θPEM = ±45◦

with respect to the Stokes Q axis will cause retardance to the Q/I Stokes parameter but not to the

U/I parameter. Since peak retardance is a function of the amplitude of the acoustic signal, both

peak retardance and wavelength of peak retardance can be easily modified. We set the retardance

amplitude to β0 = 0.383 waves at 500 nm wavelength to give uniform PEM efficiency for both low

and high linear polarizations. This also causes linear polarization to be directly proportional to the

amplitude of the AC signal divided by the mean DC signal, which is derived in Appendix B.

The high frequency of PEM modulation strongly reduces both atmospheric turbulence and elec-

tronic 1/f noise. Additionally, the beam always samples the same optical path during the modu-

lation, because the strain on the modulator element is only of order ten parts per million (Kemp

1969). Operationally, a PEM is the opposite of a rotating halfwave plate: while the plate has a

constant retardance and time-variable fast axis orientation, a PEM has constant fast axis orienta-

tion but time-variable retardance. Since the absolute value of the PEM’s retardance determines the

polarization of the beam at any instant, compression and extension of the fused silica bar affect the

beam identically. Therefore, linear polarization is modulated at twice the frequency of the PEM

modulation. We use the I/FS50 PEM and PEM100 controller from Hinds Instruments, Inc. The

modulation frequency of this PEM is 50 kHz, and modulation of linearly polarized light occurs at

100 kHz.

Directly downstream from the PEM is a 95R/5T beamsplitter at 45◦ incidence that allows ≈ 5%

of the stellar flux to fall on a Xybion CCD camera for guiding, while the remaining ≈ 95% is re-

flected into a Wollaston prism toward the detectors. The beamsplitter has a 50-mm diameter, fused

silica substrate from Edmund Optics with a custom 400 to 700 nm coating from Opticorp, Inc. The

surface accuracy on the substrate is one-tenth of a wavelength.
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We utilize a two-wedge, calcite Wollaston prism from Karl Lambert, Inc., as our analyzer. This

prism separates each component of a single Stokes parameter into two beams. That is, the +Q/I (or

+U/I) component is split into one beam, and the −Q/I (or −U/I) component is in the other beam.

Both beams have equal deviation of 7.5◦ from the optical axis, which allows the optical layout to

be symmetric with respect to the optical axis. A two-wedge prism is used because the larger beam

deviation of a three-wedge design would cause the instrument package to be larger than necessary.

The surfaces of the Wollaston prism have an antireflection coating in the wavelength range 400 to

700 nm. The transmission in V band is ≈ 97% per surface. By injecting light through a linear

polarizer with known fast axis orientation and then through the Wollaston prism, we find that the

left beam seen from downstream is vertically polarized (−Q/I when projected onto the sky for a

Cassegrain ring angle of 0◦). The right beam is horizontally polarized (+Q/I at 0◦ ring angle).

Each Wollaston beam then impinges on an f/5.6, MgF2 antireflection-coated field lens from

Melles Griot. These lenses image the telescope secondary mirror onto the detectors, and they ensure

starlight is uniformly spread over the detector active area even in the presence of image wander.

Field stops are located in the image plane, after the field lenses, but these are not currently used

because contamination of stellar polarization from the sky field is not significant. The beams reach

the detectors with a diameter of ≈ 3 mm, which underfills all detectors.

Since Cygnus X-1 has V magnitude ≈ 9, but the polarization standard stars we observe can be

as bright as V ≈ 3, POLISH has two interchangeable pairs of detectors. Stars fainter than V ≈ 7

are detected at a higher signal to noise ratio with the pair of Hamamatsu H9307-04 photomulti-

plier tubes (PMTs), while objects brighter than this will destroy the PMTs. The brighter stars are

observed with custom-made Advanced Photonix SD197-70-72-661 (red enhanced) and SD197-70-74-

661 (blue enhanced) avalanche photodiode modules (APDs). The high quantum efficiency of APDs

is desirable on bright stars to minimize photon shot noise, while the low dark current of PMTs is

desirable on fainter stars to minimize detector noise.

Since these detectors are not downstream from spectral filters, they are integrated light detec-

tors in both spatial and spectral senses. Spatial resolution is unnecessary, as the angular size of the

Cygnus X-1 system is much smaller than the atmospheric seeing disk. Spectral resolution, while

desirable, would seriously degrade the precision attainable with this instrument. Such resolution

must be left for future generations of POLISH. The instrumental throughput is calculated to be
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74%, 77%, 58%, and 23% in B, V , R, and I bands. The throughput of the telescope/instrument

system is calculated to be 60%, 62%, 47%, and 19% in those bands.

The PMTs are identical, side-on modules with active area dimensions 3.7 × 13.0 mm. Their

quantum efficiencies are quoted from the manufacturer to be 18%, 15%, 7%, and 0% in B, V , R,

and I bands. The PMT gain can be set by a potentiometer, and we set this gain to G = 5× 106 for

all observations. The modules also have a B = 200 kHz bandwidth amplifier with transimpedance

TA = 105 V/A. The quoted output noise voltage resulting from dark current is σ′V = 10 (typical) to

100 µV (maximum), which implies a noise equivalent power of NEP = 0.04 to 0.13 fW/
√

Hz. Dark

current is i′d = 0.1 nA.

The APDs are custom-built from Advanced Photonix, Inc., and have 5 mm diameter, circular

active areas. Customization of the APDs allowed lower noise at the frequency of linear polarization

modulation. The APDs are not identical, as one beam is sampled by the red enhanced module while

the other is sampled by the blue enhanced one. The quantum efficiencies for the red enhanced mod-

ule are quoted as 24%, 62%, 88%, and 75% in B, V , R, and I bands. The blue enhanced module is

quoted to have 75%, 82%, 67%, and 35% quantum efficiencies. The blue module operates at a quoted

gain of G = 300, and the red module operates with an observed gain of G = 220. Transimpedance is

TA = 4× 106 V/A for both modules, and amplifier bandwidth is B = 100 kHz for the red enhanced

and B = 90 kHz for the blue enhanced modules. After the APD chip is thermoelectrically cooled

to 0◦ C, dark current is measured to be i′d = 4.5 nA and 3.5 nA at the output of the red and blue

modules, respectively. Therefore, the noise equivalent power for each module is NEP = 39 fW/
√

Hz

and 9.7 fW/
√

Hz, respectively. Each detector is supplied ±12V and +5V, and a 12V case fan blows

heat from the APD heat sinks to keep current draw stable.

The demodulator picks out the component of the detected signal that varies at the reference

frequency and ideally rejects signals at all other frequencies. The demodulator can either be software

or hardware; POLISH makes use of one Stanford Research SR830 digital, dual-phase lock-in amplifier

for each detector. The PEM controller sends a square wave reference signal to the lock-in amplifiers

at twice the frequency of the PEM modulation, and each lock-in amplifier recovers X (in phase with

reference signal) and Y (90◦ out of phase with the reference signal) components of the detector signal.

Together, X and Y determine amplitude R and phase Φ of the detector signal whose modulation

frequency is the same as the reference.
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Table 2.1: Stokes Parameters Given by Positive AC Phase

Cassegrain angle (◦) Left Beam (Detector 2) Right Beam (Detector 1)
0 −Q/I +Q/I
45 −U/I +U/I
90 +Q/I −Q/I
135 +U/I −U/I
180 −Q/I +Q/I
225 −U/I +U/I
270 +Q/I −Q/I
315 +U/I −U/I

R =
√

2 (X2 + Y 2) (2.3a)

Φ =
1
2

arctan (Y,X) (2.3b)

The lock-in amplifiers record the RMS components of the in-phase and quadrature phase signals,

so multiplication by a factor of
√

2 is necessary to determine the amplitude of the AC signal. The

notation of the argument of the arctangent is meant to account for signs of X and Y when deter-

mining phase.

Signal phase allows direct measurement of the sign of each Stokes parameter (+Q/I versus −Q/I,

for instance). This is important, because insensitivity to sign would preclude direct measurement of

more than 90◦ of rotation of the Cygnus X-1 system. By placing a linear polarizer with known axis

orientation in front of the PEM, we have determined the Stokes parameter sampled by each beam

as a function of Cassegrain ring angle. See Table 2.1 for a list of parameters measured for positive

AC phase.

Both AC and DC signals from the detector must be recorded to measure polarization (Appendix

B). The AC signals are recorded by the lock-in amplifiers, and each detector’s DC signal is recorded

by a separate HP 34401A digital voltmeter. The time constant and sampling frequency of the lock-in

amplifiers, as well as the sampling frequency of the voltmeters, must be chosen with care. To reject

60 Hz noise and its harmonics, each DC reading by the voltmeters consists of an integration over

10 power line cycles. Thus, the voltmeters record data at 6 Hz. The lock-in amplifiers may only
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sample the AC signal at powers of two in frequency, so we choose to record the AC data at 8 Hz.

The discrepancy in sampling rates between AC and DC data is not important, because AC data

should be normalized by mean DC data and not in a point-by-point fashion.

In order to Nyquist sample the AC data, we set the lock-in time constants to 30 ms. For the

steepest filter rolloff, 24 dB/octave, the effective noise bandwidth is given by ENBW = 5/(64τ),

where τ is the lock-in amplifier’s time constant. For a time constant of 30 ms, ENBW = 2.6 Hz.

Therefore, we sample the AC data 8/2.6 ≈ 3.1 times per effective time constant, which both satisfies

the Nyquist criterion and reduces aliasing. The lock-in amplifiers therefore measure the component

of the AC signal that varies in the frequency range f0

(
1± 1.3× 10−5

)
, where f0 is the reference

frequency. The auxiliary DC output of one lock-in amplifier is connected to a chopping motor on

the telescope secondary mirror. This lock-in amplifier sends a voltage signal to the secondary mirror

chopping motor, which causes the secondary mirror to chop north to a sky field for sky subtraction

of both AC and DC data.

POLISH is located at Cassegrain focus to ensure beam reflections of ≈ 180◦. In addition, the in-

strument resides at the f/72 focus. Both of these steps minimize telescope polarization. To minimize

instrument polarization, the first optic the beam encounters after the telescope secondary mirror is

the PEM. The lock-in amplifiers and voltmeters are controlled by a laptop, which is mounted to the

instrument, via the GPIB interface. Matlab R2006a from The MathWorks, Inc., is used to control

the voltmeters and lock-in amplifiers, chop the secondary mirror, and rotate the Cassegrain ring to

allow access to both linear Stokes parameters.

2.4 Observing Strategy

A similar, albeit larger, instrument called PlanetPol is mounted on the 4.2-m William Herschel Tele-

scope in La Palma, Spain (Hough et al. 2006, hereafter HLB 06). The goal of this instrument is to

detect the modulation of linear polarization caused by stellar flux scattered by hot Jupiters. This

observation requires polarimetric precision of one part per million to one part in ten million, which is

a precision barely achievable with PlanetPol. We observed many of the polarized and “unpolarized”

standard stars from HLB 06 in addition to others from the combined polarimetric catalogs of Heiles

(2000). A list of the stars observed is given in Table 2.2, and polarization values in parenthesis rep-
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Table 2.2: Observed Standard Stars

Name Alt. Name RA Dec P Θ (◦) Refa V Type

Algenibb γ Peg 00 13 14.23 +15 11 00.9 630(10) × 10−6 118.1(5) 1 2.83 B2IV
HD 7927 φ Cas 01 20 04.92 +58 13 53.8 3.232(53)% 94.0(5) 1 5.01 F0Ia
HD 9270 η Psc 01 31 29.07 +15 20 44.8 60(30) × 10−6 158(14) 1 3.63 G7IIa
HR 5854 α Ser 15 44 16.07 +06 25 32.3 4.3(1.0) × 10−6 − 2 2.64 K2IIIb

HD 147084 o Sco 16 20 38.18 −24 10 09.6 3.490(35)% 32.1(3) 1 4.55 A4II/III
HD 154445 SAO 141513 17 05 32.24 −00 53 31.7 3.420(24)% 90.2(2) 1 5.64 B1V

u Herc HD 156633 17 17 19.57 +33 06 00.4 0.0(2)% − 1 4.80 B1.5Vp+
γ Ophd HD 161868 17 47 53.56 +02 42 26.3 80(10) × 10−6 33.3(3.6) 1 3.75 A0V

HD 157999 σ Oph 17 26 30.98 +04 08 25.1 1.010(35)% 85.9(1.0) 1 4.34 K3Iab
HD 187929e η Aql 19 52 28.37 +01 00 20.4 1.685(3)% 94.2(1) 2 3.5 − 4.3 (F6.5−G2)Ib
HD 204827 SAO 33461 21 28 57.70 +58 44 24.0 5.44(20)% 59.0(1.1) 1 8.00 O9.5V
HD 212311 SAO 34361 22 21 58.55 +56 31 52.8 0.02(5)% − 1 8.12 A0V
ζ Peg HD 214923 22 41 27.74 +10 49 52.9 100(30) × 10−6 138.0(8.5) 1 3.40 B8V

HR 8974f γ Cep 23 39 20.85 +77 37 56.2 5.2(2.2) × 10−6 130(25) 2 3.23 K1IV

a1−Heiles (2000), 2−HLB 06
bβ Cepheid, pulsator
cβ Lyrid, eclipsing binary
dDebris disk
eδ Cepheid, pulsator
fExtrasolar planet host

resent the 1σ uncertainty in the mean value. V band magnitude and spectral type for the δ Cepheid

star HD 187929 (η Aql) are from Bastien et al. (1988) and Oke (1961), respectively. The spectral

type of HD 212311 is from Schmidt et al. (1992). All other positional and spectral information is

from the SIMBAD database. Observations of Cygnus X-1 itself are detailed in Chapter 4.

After the target star is acquired, a scan of 15 seconds is initiated on both voltmeters simulta-

neously with a scan of about 30 seconds on both lock-in amplifiers. For the second half of the 30

second lock-in amplifier scans, the voltmeters transmit data to the laptop. For sky subtraction, the

telescope secondary mirror chops 25 arcsec north with respect to the target star. Another set of

voltmeter and lock-in amplifier scans is then started. After this has completed, the target star is

returned to the field of view and another set of scans begins. An integration “triplet” is defined to be

an on-source, 30 second AC integration scan and a 15 second DC integration scan both before and

after the same scan on a sky field. Sky levels in the optical are expected to be very small compared to

target star levels, so sky fields are observed with an asymmetric, 2:1 source to sky chop. See Figure

2.5 for a typical AC and DC measurement of the “unpolarized” HR 5854, and see Figure 2.6 for the

strongly polarized HD 204827. The increase in AC level, and therefore in polarization, between HR

5854 and HD 204827 is striking. The LED pulses from the laptop controlling the instrument can be

seen to contaminate the DC data for HD 204827, which was observed with the PMTs. Rejection of

these pulses is discussed in section 2.5.1.

Since two light beams with perpendicular polarization orientations experience the same retar-
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Figure 2.5: Typical raw AC and DC data for the unpolarized star HR 5854. The subscripts on X,
Y , and DC indicate data for detectors 1 and 2.
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Figure 2.6: Typical raw data for the strongly polarized star HD 204827.
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dance when passed through the PEM, the same polarization should be observed for the PEM at

θPEM = ±45◦ with respect to the optical axis of the instrument. We rotate the PEM between these

two positions to investigate the systematics of the PEM. The PEM is mounted to a gear driven

by a stepper motor with an 8:1 step ratio, where the center of the PEM aperture is coincident

with the rotation axis of the gear. Each motor step corresponds to a rotation of the PEM by

∆θPEM = 0.1125◦. For a Cassegrain ring angle of φ = 0◦, the home position of the PEM projects

its compression/extension axis northeast onto the sky (the +U direction). This will be referred to

as the “PEM +45◦” position. The “PEM −45◦” position causes this projection to be northwest on

the sky (the −U direction).

Rotation of a polarized beam follows a cos(2θ) profile, so we rotate the Cassegrain ring and

instrument through ∆φ = 360◦ to investigate the systematics of the rotation. The precision of the

Cassegrain ring angle is 0.1◦. A standard observing sequence begins with the Cassegrain ring at

φ = +180◦ and an integration triplet at the PEM +45◦ position followed by a triplet at the PEM

−45◦ position. The ring angle is then decremented by ∆φ = 45◦, at which point a PEM −45◦ triplet

and PEM +45◦ triplet are taken. This process occurs for each target star for Cassegrain ring angles

of +180◦ > φ > −180◦ in ∆φ = 45◦ increments to sample all ±Q/I and ±U/I Stokes components.

The next star will see the ring angles begin at φ = −180◦ and end at φ = +180◦. The endpoints of

φ = ±180◦ ensure that the ring will not “wind up” and be forced to de-rotate during an observing

sequence, wasting observing time. After each triplet, either the PEM or Cassegrain ring is rotated

but not both. Each standard star is generally given eight Cassegrain ring rotations (∆φ = 360◦) at

two PEM positions each (θPEM = ±45◦), and two chop integrations are taken at each PEM position.

Thus, most standard stars receive about 16 minutes of AC data and about 8 minutes of DC data

per night.

2.5 Data Reduction

2.5.1 Polarization and Noise Calculations

Mean X, Y , and DC values for each detector are found for all on-source and sky scans. The mean

on-source values are then subtracted by the mean sky values. Assuming Stokes Q/I is observed, the

polarization is calculated by the following (Appendix B):
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Qobs

Iobs
=
√

2
EPEM

√
(Xsrc −Xsky)2 + (Ysrc − Ysky)2

DCsrc −DCsky
. (2.4)

The efficiency of the PEM, EPEM, is the strength of the AC signal based on the choice of PEM peak

retardance, and it is derived in Appendix B. For POLISH, this efficiency is EPEM ≈ 86%. The sign

of the final polarization of each on-source scan is multiplied by the sign of the Stokes parameter

measured, as given by Table 2.1. That is, the sign of the calculated Stokes parameter is calibrated

by the phase from the lock-in amplifiers (Equation 2.3b).

Expected photon shot noise, detector noise, and observed noise are derived in Appendix C as

Equations C11 and C12a through C12c:

σPshot =
γ0

√
2

EPEMDC

{
1
tAC

[
BAC +

1
2

min (Bmax, B) (EPEMP )2

]} 1
2

(2.5a)

σPdetector =
γ
√

2
EPEMDC

{
1
tAC

[
BAC +

1
2

min (Bmax, B) (EPEMP )2

]} 1
2

(2.5b)

σPobs =
√

2
EPEMDC

{
1
tAC

[
X2σ2

X + Y 2σ2
Y

X2 + Y 2
+

1
2

(EPEMPσDC)2

]} 1
2

(2.5c)

Bmax =
(

DC
eGTA

) 1
2

. (2.5d)

Here, γ0 ≡ 2eGTADC, γ ≡ 2eG1+xTA(DC + i′dTA), e is the electron charge, BAC ≈ 2.6 Hz is the

bandwidth of the lock-in amplifiers, and tAC is the integration time of the lock-in amplifiers (Figures

2.5 and 2.6). The values i′d, x, B, G, and TA are the detector’s output dark current, excess noise

factor, bandwidth, gain, and transimpedance, which are listed in Table 2.3. A perfect detector will

have noiseless gain, x = 0, and dark current i′d = 0. Each of the uncertainties σX,Y,DC represents

the sample standard deviation of X, Y , or DC of the source added in quadrature to that of the sky.

The values X, Y , and DC in Equation 2.5c are sky-subtracted.

Short pulses can be seen in the DC data taken with the PMTs (see detector 2 data in Figure

2.6). These pulses have been traced to scattered light from LEDs mounted in the laptop controlling

the instrument. They are easily removed by subtracting off any linear trend in a DC scan and then
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Table 2.3: Detector Quantities

Detector G x TA B i′d
(A/A) (V/A) (kHz) (nA)

Blue APD 300 0.138 4× 106 90 3.5
Red APD 220 0.138 4× 106 100 5.6

PMT 5× 106 0.013 105 200 0.1

rejecting data points that lie more than one RMS from the median DC level. The linear trend is

then added back to the DC data before mean and RMS values are computed. The pulses are large

enough that few non-pulse data lie above one RMS from the median. Since the spurious LED signals

are scattered back into the instrument case, they do not pass through the PEM and therefore have

no effect on the AC data.

2.5.2 PEM Calibration

To determine the systematics of the PEM rotation in the lab, we injected pure polarized light into

the instrument by placing a linear polarizer between a green LED and the PEM. We aligned the

polarizer to the Wollaston axis by rotating it until the maximum DC signal was achieved. This

occurs for polarizer angle ψ = 0◦ with respect to the Wollaston axis, as shown in Equation A5.

It might seem that the best way to align the polarizer is by taking the ratio of the AC and DC

signal as in Equation 2.4, but it can be seen from Equation B10 that misalignment of the PEM

from θPEM = ±45◦ will cause misalignment of the polarizer with this technique. Thus, the PEM

was powered down when aligning the polarizer. With the polarizer aligned, Q0/I0 = 99.98% and

U0/I0 = 0.

With the full system turned on, we sampled the polarization as the PEM was swept through the

PEM +45◦ and −45◦ positions. The results are shown in Figure 2.7. The values of ΘPEM are the

expected positions of the rotation motor. For the PEM −45◦ position, the peak polarization lies

almost exactly at ΘPEM = −45◦. Given U0/I0 = 0 above, Equation B10 implies

Qobs

Iobs
=
Q0

I0

sin2 2θPEM

1 + Q0
I0

[
cos2 2θPEM + J0 (β0) sin2 2θPEM

] (2.6)
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Figure 2.7: Polarization measured near the ΘPEM = −45◦ (a), 0◦ (b), and +45◦ (c) positions (solid
circles), where the angle is that expected by the rotation motor. Open circles show polarization
measured with the PEM rotated by ∆ΘPEM = ±90◦. Polarimetric uncertainty is size of the data
points or less.

which has a maximum at θPEM = ±45◦. In Figure 2.7a, since peak polarization is attained at

ΘPEM ≈ −45◦, it must follow that the PEM position expected by the motor is close to the true

θPEM = −45◦ position. Indeed, we find the ΘPEM = −45◦ motor position lies at θPEM = −44.98◦.

However, peak polarization is not achieved for ΘPEM = +45◦, but it is achieved at slightly below

this value. This can be seen in Figure 2.7c. Since the peak polarization must occur at the true

θPEM = +45◦ position, the ΘPEM = +45◦ motor position must lie at slightly higher angle than

θPEM = +45◦. We find the ΘPEM = +45◦ motor position lies at the true θPEM = +45.20◦ position

with respect to the Wollaston axis.

Minimum polarization from Equation 2.6 occurs at θPEM = 0◦ with respect to the Wollaston axis.

From Figure 2.7b, it can be seen that the minimum occurs at a slightly higher angle than ΘPEM = 0◦.

Thus, the true position at ΘPEM = 0◦ is θPEM = −0.19◦. Given that the terms involving θPEM in

Equation 2.6 are of second order, the observed peak polarizations at θPEM = ±45◦ should be

identical. Since they are quite clearly different, the effect must be due to the only free parameter

in Equation 2.6, the peak retardance β0. We feel justified in assuming that β0 = 2.4048 radians

for θPEM = −45◦; reasons for this will be provided below. In order for the observed polarization at
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Table 2.4: Correction Parameters for ΘPEM = ±45◦

ΘPEM (◦) θPEM (◦) β0 (rad) GP
−45 −44.98 2.4048 1.8564(22)
+45 +45.20 2.4506 1.8564(22)

θPEM = +45◦ to match the value obtained at θPEM = −45◦, the peak retardance at θPEM = +45◦

must be β0 = 2.4506 radians.

The cause of both the PEM misalignment and change in peak retardance depending on PEM

position is due to torque applied to the PEM when it is rotated to the ΘPEM = +45◦ position. At

this position, the cable connecting the PEM to the drive circuit pushes up against the case enclosing

the optical bench, and the resulting deformation of the cable causes a change in peak retardance.

Sections had been cut out of the case to allow motion of the cable when the PEM is rotated, but

apparently those sections did not keep the cable from contacting the case. The case was replaced

for the next observing run.

The torque applied to the PEM at this position pushes on the gear that holds the PEM. The

distance between the motor and the gear is slightly too short, so slack in the belt connecting the

two causes the gear to move when torque is applied to the PEM. For the next observing run, the

motor was moved slightly away from the gear to tighten the belt. At the ΘPEM = −45◦ position,

no torque is applied to the PEM, which is why the peak polarization occurs where expected. Thus,

we also assume the peak retardance at this PEM position is the nominal β0 = 2.4048 radian value.

The polarized light injected into the system for the lab tests had Stokes parameters of Q0/I0 =

99.98% and U0/I0 = 0, yet Figure 2.7a shows peak polarization at the θPEM = −45◦ position

to be only ≈ 52%. This requires deviation of peak retardance at the θPEM = −45◦ position from

β0 = 2.4048 radians, or it requires application of a polarimetric gain factor to all measurements. The

peak retardance necessary to explain the low peak polarization at θPEM = −45◦ is 0.58 radians. Since

this value is far too low to be reasonably explained, we adopt the use of a polarimetric gain factor

to scale observed polarization to true polarization. By correcting observed polarization according

to Equation B11a, we find the polarimetric gain factor to be GP = 1.8564(22). The correction

parameters determined from lab tests are summarized in Table 2.4.
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2.5.3 Mean Polarization

After the polarization from each measurement is corrected for PEM position and peak retardance ac-

cording to Table 2.4, the polarimetric gain factor GP is applied. Since P0 = PobsGP , the polarimetric

uncertainty of each measurement is

σP0 =
√

(GPσPobs)
2 + (PobsσGP )2

. (2.7)

Telescope polarization is then subtracted, which is discussed in detail in the next section. For each

measurement, the weighted mean polarization from both detectors 1 and 2 is also taken, and the

weight for each detector is the integrated DC level divided by the detector gain. Since the blue

enhanced APD has a higher gain than the red enhanced one by a factor of 1.36, the DC signal from

the blue enhanced APD is expected to be higher than for the red enhanced one. The polarimetric

uncertainty in this combined-detector measurement is taken as the quadrature addition of the po-

larimetric uncertainties from both detectors.

Nightly mean and run-averaged Q0/I0 and U0/I0 for each source are determined by taking the

weighted mean polarization of all corrected data over the requested timescale. The weighting for

each measurement is its sky-subtracted DC level multiplied by integration time. As stated in section

2.5.1, this value is proportional to the total number of detected photons. Weighting by this value

ensures all detected photons, rather than all measurements, are weighted equally. This is important

for data taken in partly cloudy conditions. The polarimetric uncertainty is the square root of the

weighted variance divided by the square root of the number of measurements. It is important to

note that this precision is only applicable to stars with no intrinsic polarimetric variability. Analyses

of the variability of the observed stars, including Cygnus X-1, are made in Chapter 3.

2.6 Standard Stars with APDs

2.6.1 Unpolarized Standard Stars and Systematic Effects

From Table 2.2, the polarizations of both HR 5854 and HR 8974 are close to zero, which makes

them candidates for being truly unpolarized sources. The nightly average polarization of HR 5854
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and HR 8974, before subtraction of telescope polarization, are listed in Table 2.5 and plotted in

Figures 2.8 and 2.9. For each detector, the weighted mean Stokes parameters for both stars are

generally within one sigma of each other. We therefore assume that these stars are indeed unpolar-

ized and that the combination of telescope and instrumental polarization causes the observed net

polarization of order one part in 104. Since the light beam from the telescope secondary mirror im-

pinges immediately on the PEM, we assume that instrumental polarization is negligible. Indeed, the

very similar setup of PlanetPol has an instrumental polarization of a few parts per million (HLB 06).

The equatorial mount of the Hale 5-m inhibits traditional telescope polarization measurement,

which involves allowing the field to rotate and determining the center of the (Q,U) locus. Since

HLB 06 performed this analysis and claim part per million polarization of HR 5854 and HR 8974,

telescope polarization for the Hale 5-m is thus calculated by the weighted mean polarization from

HR 5854 and HR 8974 (Table 2.6). Uncertainty is given as the square root of the weighted variance

of the individual scans divided by the square root of the number of scans. The cause of the large

telescope polarization of the Hale 5-m is unknown, but it may be due to inhomogeneities in the

coating of the primary and/or secondary mirrors.

The PEM is rotated to positions of θPEM = ±45◦ with respect to the Wollaston axis, and the

Cassegrain ring is rotated through ∆φ = 360◦. This gives independent measures of the PEM and

ring rotation systematics. Note that PlanetPol allows the instrument to be rotated to positions of

±45◦ with respect to their PEM, but this 90◦ rotation of the instrument also causes the Stokes

parameter of opposite sign to be observed. That is, PEM and instrument rotation systematics are

coupled for PlanetPol, while they can be independently measured for POLISH. In addition, Planet-

Pol can measure ±Q/I and ±U/I, but it can only rotate through 135◦. The ∆φ = 360◦ rotation of

POLISH enables more thorough measurement of the instrument rotation systematics.

To investigate the PEM systematics, we must subtract the offset due to ring rotation systematics.

We first find the weighted mean polarization of each Stokes parameter for each star separately, and

at each of the θPEM = ±45◦ positions. We average ring angles φ = 0◦ to φ = 270◦ in ∆φ = 90◦

increments for the Q/I parameter and φ = 45◦ to φ = 315◦ in ∆φ = 90◦ increments for the U/I

parameter. Therefore, the mean polarization at each PEM position contains the same offset due

to ring rotation systematics. The sign of the polarization taken at the θPEM = −45◦ position is

reversed, and the unweighted mean is taken across both Stokes parameters and both PEM posi-
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Figure 2.8: Polarization of HR 5854 after PEM and gain correction. These observations are combined
with those of HR8974 (Figure 2.9) to determine telescope polarization. Observations with the blue
enhanced APD (detector 1) are tinted blue, while observations with the red enhanced APD (detector
2) are tinted red. The area of the data points is proportional to the number of detected photons.
Error bars indicate the square root of the weighted variance of the nightly measurements that
compose the nightly bins. These conventions are used throughout this chapter.
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Figure 2.9: Polarization of HR 8974 after PEM and gain correction.
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Table 2.5: Raw Polarization of Unpolarized Standard Stars
UT Date Star Detector Q0/I0

(
×10−6

)
U0/I0

(
×10−6

)
P
(
×10−6

)
Θ (◦)

2007 Aug 3 HR 5854 1 −226.9(2.3) 191.5(3.5) 296.9(2.8) 69.92(29)
2007 Aug 4 · · · · · · −231.7(3.3) 182.4(3.8) 294.9(3.5) 70.90(35)
2007 Aug 5 · · · · · · −226.9(2.7) 181.0(4.3) 290.2(3.4) 70.71(37)
2007 Aug 6 · · · · · · −191.2(4.5) 148.6(4.0) 242.2(4.3) 71.07(50)

Overall · · · · · · −222.9(2.4) 178.0(2.9) 285.2(2.6) 70.70(27)
2007 Aug 3 · · · 2 −244.0(3.9) 193.6(4.1) 311.5(4.0) 70.78(37)
2007 Aug 4 · · · · · · −241.7(2.8) 203.1(4.4) 315.7(3.5) 69.98(35)
2007 Aug 5 · · · · · · −246.1(4.7) 197.4(3.8) 315.5(4.4) 70.63(38)
2007 Aug 6 · · · · · · −261.7(5.9) 218.3(4.1) 340.8(5.2) 70.09(41)

Overall · · · · · · −248.1(2.5) 200.4(2.3) 318.9(2.4) 70.54(22)
2007 Aug 3 · · · 1,2 −231.6(1.8) 192.2(3.0) 301.0(2.4) 70.16(25)
2007 Aug 4 · · · · · · −233.4(2.7) 186.3(3.5) 298.7(3.0) 70.70(31)
2007 Aug 5 · · · · · · −236.0(3.0) 189.2(3.3) 302.5(3.1) 70.65(30)
2007 Aug 6 · · · · · · −219.9(5.8) 169.6(3.8) 277.7(5.1) 71.17(48)

Overall · · · · · · −231.9(1.8) 185.8(2.0) 297.1(1.9) 70.64(19)
2007 Aug 3 HR 8974 1 −239.5(3.8) 195.1(3.0) 308.9(3.5) 70.42(31)
2007 Aug 4 · · · · · · −207(25) 174.5(4.0) 271(20) 70.0(1.8)
2007 Aug 5 · · · · · · −187.5(6.0) 151.4(8.0) 241.0(6.8) 70.54(86)
2007 Aug 6 · · · · · · −221.9(7.2) 205(10) 301.8(8.8) 68.66(85)

Overall · · · · · · −219.6(4.4) 179.9(4.9) 283.8(4.6) 70.34(47)
2007 Aug 3 · · · 2 −246.8(3.4) 191.9(3.6) 312.6(3.5) 71.07(32)
2007 Aug 4 · · · · · · −199(27) 184.6(4.0) 272(20) 68.6(2.0)
2007 Aug 5 · · · · · · −252.5(4.4) 209(10) 327.6(7.3) 70.22(72)
2007 Aug 6 · · · · · · −230.8(5.6) 199.5(5.7) 305.0(5.7) 69.58(53)

Overall · · · · · · −243.0(2.9) 197.3(3.4) 313.0(3.1) 70.46(29)
2007 Aug 3 · · · 1,2 −240.9(3.2) 194.4(2.2) 309.6(2.9) 70.55(25)
2007 Aug 4 · · · · · · −206(37) 177.7(3.4) 272(28) 69.6(2.6)
2007 Aug 5 · · · · · · −201.8(6.9) 166.5(5.9) 261.6(6.5) 70.24(69)
2007 Aug 6 · · · · · · −224.5(5.6) 202.1(5.3) 302.0(5.5) 69.00(52)

Overall · · · · · · −224.8(3.7) 185.5(2.9) 291.5(3.4) 70.24(32)

tions. The unweighted mean is employed so neither Stokes parameter and neither PEM position

dominates. This value is the PEM offset, given by SPEM (Equation 2.8a). The uncertainty in this

offset is given as one half the difference between the results for Stokes Q and U (Equation 2.8b).

This process is duplicated for each detector and star separately. For the PEM systematic, the index

i represents the PEM position, where i = 0 indicates θPEM = +45◦ and i = 1 indicates θPEM = −45◦.

To investigate the systematics when rotating the Cassegrain ring by 90◦, i.e. the differences

between ±Q or ±U , we subtract the offset due to PEM systematics. While this value has been

calculated above, we prefer to combine the data in such a way as to cause it to cancel. We find

the weighted mean value of each Stokes parameter separately using both θPEM = ±45◦ positions.

We average ring angles φ = 0◦ and φ = 180◦ for the +Q0/I0 parameter, φ = 90◦ and φ = 270◦
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Table 2.6: Telescope Polarization with APDs

UT Date Detector Q0/I0
(
×10−6

)
U0/I0

(
×10−6

)
P
(
×10−6

)
Θ (◦)

2007 Aug 3 1 −233.0(2.6) 192.8(2.4) 302.5(2.5) 70.20(23)
2007 Aug 4 · · · −230.9(3.3) 181.2(3.3) 293.5(3.3) 70.93(32)
2007 Aug 5 · · · −214.8(4.3) 171.9(4.9) 275.1(4.5) 70.66(48)
2007 Aug 6 · · · −203.4(5.1) 157.3(6.1) 257.1(5.5) 71.14(64)

Overall · · · −221.8(2.2) 178.5(2.5) 284.7(2.3) 70.59(24)
2007 Aug 3 2 −245.1(2.5) 193.1(2.8) 312.1(2.6) 70.88(25)
2007 Aug 4 · · · −240.0(3.2) 198.1(3.8) 311.2(3.5) 70.23(33)
2007 Aug 5 · · · −246.9(3.5) 198.8(3.7) 317.0(3.5) 70.58(32)
2007 Aug 6 · · · −252.5(4.8) 211.8(3.7) 329.5(4.4) 70.00(37)

Overall · · · −247.0(1.9) 199.7(1.9) 317.6(1.9) 70.52(17)
2007 Aug 3 1,2 −236.0(2.1) 193.0(2.0) 304.9(2.1) 70.37(19)
2007 Aug 4 · · · −232.5(2.8) 184.9(2.8) 297.0(2.8) 70.75(27)
2007 Aug 5 · · · −227.5(4.0) 183.6(3.5) 292.3(3.8) 70.55(36)
2007 Aug 6 · · · −221.6(4.1) 176.9(3.8) 283.6(4.0) 71.70(40)

Overall · · · −229.8(1.8) 185.7(1.6) 295.5(1.7) 70.53(16)

for −Q0/I0, φ = 45◦ and φ = 225◦ for +U0/I0, and φ = 135◦ and φ = 315◦ for −U0/I0. We then

reverse the signs of the negative Stokes parameters. Taking the unweighted mean for Q0/I0 and

U0/I0 separately, we find the offsets for both Stokes parameters (Equation 2.8a). The uncertainty is

one half the difference between the offsets for the positive and negative Stokes parameters (Equation

2.8b). For the Cassegrain ring systematic, the index i represents the sign of the measured Stokes

parameter, where i = 0 indicates +Q,+U and i = 1 indicates −Q,−U .

SPEM,φ =
1
4

1∑
i=0

(
−1i

)
Qi +

(
−1i

)
U i (2.8a)

σPEM,φ =
1
4

∣∣∣∣∣
1∑
i=0

(
−1i

)
Qi −

(
−1i

)
U i

∣∣∣∣∣ (2.8b)

In the same way that we found the PEM offset for each Stokes parameter, we now have the

Q0/I0 and U0/I0 offsets for each PEM position. Offsets due to the PEM and ring rotation for HR

5854 and HR 8974 are given in Table 2.7. The “Detector 1,2” value represents systematics obtained

when taking the weighted mean polarization from the simultaneous pairs of measurements from

detector 1 and 2. The “Detector Mean” value represents the mean systematic across the previous

three detector combinations weighted by the inverse square of the uncertainties. This is in contrast
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Table 2.7: Systematic Effects: Unpolarized Standard Stars with APDs

Star Parameter Detector 1 Detector 2 Detector 1,2 Detector Mean
HR 5854 SPEM

(
×10−6

)
+3.0(1.2) +3.22(19) +2.36(60) +3.14(24)

· · · Sφ
(
×10−6

)
−1.34(13) +0.78(37) −0.2(1.2) −1.11(65)

HR 8974 SPEM

(
×10−6

)
+4.6(3.2) +2.8(3.1) +3.8(1.8) +3.77(58)

· · · Sφ
(
×10−6

)
−4.5(1.6) −4.9(1.9) −5.44(99) −5.12(40)

to our usual use of weighting by DC level in order to benefit those detectors with good measurement

of systematic effects.

2.6.2 Polarized Standard Stars

We subtract telescope polarization in two ways. The first is by subtracting the nightly telescope

polarization from the nightly stellar polarization, and the second is by subtracting the run-averaged

telescope polarization from the nightly stellar polarization. Tables 2.8 and 2.9 list telescope sub-

tracted polarizations for all stars observed with APDs: weakly polarized stars are given in Table

2.8, while strongly polarized stars are listed in Table 2.9. Systematic effects for each star are listed

in Table 2.10. Since HR 5854 and HR 8974 are effectively unpolarized, uncertainty in polarimetric

position angle Θ is so large as to preclude meaningful estimates on Θ.

Due to poor weather, data at only one Cassegrain ring angle and one PEM position were taken

for ζ Peg. The asterisks for this star indicate that, since no measurements for U0/I0 or θPEM = −45◦

exist, the data cannot be calibrated for PEM position and peak retardance. These data have been

subtracted by the telescope polarization, but uncertainty in these measurements is surely large. In-

deed, there is a large difference between subtraction by the telescope polarization obtained during

the single night of ζ Peg observation and by the run-averaged telescope polarization.
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Table 2.8: Weakly Polarized Standard Stars with APDs

UT Date Star Detector Q0/I0
`
×10−6

´
U0/I0

`
×10−6

´
P
`
×10−6

´
Θ (◦)

2007 Aug 3 HR 5854 1 +6.1(3.4) −1.3(4.2) 6.3(3.5) −
2007 Aug 4 · · · · · · −0.6(4.7) +1.9(5.0) 1.9(5.0) −
2007 Aug 5 · · · · · · −12.6(5.0) +8.0(6.5) 14.9(5.5) −
2007 Aug 6 · · · · · · +13.7(6.8) −9.7(7.3) 16.8(7.0) −

Overall (Run) · · · · · · −0.5(3.3) −0.4(3.9) 0.6(3.5) −
Overall (Night) · · · · · · −0.1(4.7) +0.4(3.0) 0.5(3.1) −

2007 Aug 3 · · · 2 +1.1(4.7) +0.5(4.9) 1.2(4.7) −
2007 Aug 4 · · · · · · −1.5(4.3) +5.8(5.8) 6.0(5.8) −
2007 Aug 5 · · · · · · +0.1(5.8) −2.7(5.3) 2.7(5.3) −
2007 Aug 6 · · · · · · −9.3(7.6) +5.6(5.6) 10.8(7.1) −

Overall (Run) · · · · · · −2.2(3.1) +0.7(3.0) 2.3(3.1) −
Overall (Night) · · · · · · −1.6(1.8) +0.3(1.7) 1.7(1.8) −

2007 Aug 3 · · · 1,2 +4.4(2.8) −0.9(3.6) 4.5(2.8) −
2007 Aug 4 · · · · · · −0.8(3.9) +2.3(4.5) 2.4(4.5) −
2007 Aug 5 · · · · · · −9.1(5.0) +5.0(4.8) 10.4(4.9) −
2007 Aug 6 · · · · · · +2.0(7.1) −8.1(5.4) 8.4(5.5) −

Overall (Run) · · · · · · −2.4(2.6) +0.3(2.6) 2.4(2.6) −
Overall (Night) · · · · · · −2.0(2.8) +0.4(2.3) 2.0(2.8)

2007 Aug 3 · · · Mean +4.4(1.7) −0.70(68) 4.5(1.7) −
2007 Aug 4 · · · · · · −0.94(38) +3.0(1.6) 3.2(1.5) −
2007 Aug 5 · · · · · · −7.9(5.0) +3.0(4.3) 8.4(5.0) −
2007 Aug 6 · · · · · · +3.0(9.3) −3.2(6.9) 4.4(8.1) −

Overall (Run) · · · · · · −1.82(80) +0.30(40) 1.84(79) −
Overall (Night) · · · · · · −0.72(62) −0.10(71) 0.72(63) −

2007 Aug 3 HR 8974 1 −5.0(4.6) +2.7(3.8) 5.7(4.4) −
2007 Aug 4 · · · · · · +23.6(3.3) −6.8(5.2) 24.5(3.5) −
2007 Aug 5 · · · · · · +27.2(7.3) −20.5(9.4) 34.1(8.1) −
2007 Aug 6 · · · · · · −19.6(8.9) +47(12) 51(12) −

Overall (Run) · · · · · · +2.9(4.9) +1.9(5.5) 3.4(5.1) −
Overall (Night) · · · · · · +3.2(9.3) +1(11) 3.5(9.5) −

2007 Aug 3 · · · 2 −1.8(4.3) −1.3(4.5) 2.2(4.4) −
2007 Aug 4 · · · · · · +40.5(3.2) −13.5(5.5) 42.7(3.5) −
2007 Aug 5 · · · · · · −5.3(5.6) +12(11) 13(10) −
2007 Aug 6 · · · · · · +22.3(7.4) −12.3(6.8) 25.5(7.2) −

Overall (Run) · · · · · · +4.7(3.5) −1.9(3.8) 5.1(3.5) −
Overall (Night) · · · · · · +6.7(7.4) −2.7(5.1) 7.2(7.1) −

2007 Aug 3 · · · 1,2 −3.8(3.9) +1.6(3.0) 4.1(3.7) −
2007 Aug 4 · · · · · · +26.8(2.8) −7.2(4.5) 27.7(3.0) −
2007 Aug 5 · · · · · · +25.6(7.9) −17.1(6.8) 30.8(7.6) −
2007 Aug 6 · · · · · · −3.0(7.0) +25.6(6.5) 25.8(6.5) −

Overall (Run) · · · · · · +5.6(4.1) −0.1(3.3) 5.6(4.1) −
Overall (Night) · · · · · · +7.4(7.1) −1.4(7.0) 7.6(7.1) −

2007 Aug 3 · · · Mean −3.5(1.3) +1.3(1.4) 3.7(1.3) −
2007 Aug 4 · · · · · · +30.0(7.1) −8.8(2.9) 31.3(6.8) −
2007 Aug 5 · · · · · · +11(16) −12(12) 16(14) −
2007 Aug 6 · · · · · · +2(16) +13(22) 13(22) −

Overall (Run) · · · · · · +4.6(1.0) −0.4(1.3) 4.6(1.0) −
Overall (Night) · · · · · · −2.4(2.9) −0.7(2.1) 2.5(2.9) −

2007 Aug 4 HD 9270 1 −40.2(6.1) −90.2(4.8) 98.7(5.1) 123.0(1.7)
2007 Aug 5 · · · · · · −40(11) −101.5(6.1) 109.1(69) 124.3(2.7)
2007 Aug 6 · · · · · · −65(11) −82.1(8.8) 104.5(9.7) 115.9(2.8)

Overall (Run) · · · · · · −46.2(4.6) −92.2(3.8) 103.2(4.0) 121.7(1.2)
Overall (Night) · · · · · · −45.0(5.7) −90.0(3.2) 100.6(3.8) 121.7(1.5)

2007 Aug 4 · · · 2 − − − −
2007 Aug 5 · · · · · · −61.2(7.8) −81.1(6.7) 101.6(7.1) 116.5(2.1)
2007 Aug 6 · · · · · · −34(13) −114(16) 120(15) 126.6(3.2)

Overall (Run) · · · · · · −53.3(7.0) −91.1(8.1) 105.5(7.9) 119.8(2.0)
Overall (Night) · · · · · · −49.4(9.4) −97(12) 109(11) 121.5(2.6)

2007 Aug 4 · · · 1,2 −40.2(6.1) −90.2(4.8) 98.7(5.1) 123.0(1.7)
2007 Aug 5 · · · · · · −44.7(8.4) −97.6(5.0) 107.3(5.7) 122.7(2.1)
2007 Aug 6 · · · · · · −51(10) −96.9(8.2) 109.3(8.7) 121.2(2.6)

Overall (Run) · · · · · · −41.5(4.1) −97.1(3.2) 105.6(3.3) 123.4(1.1)
Overall (Night) · · · · · · −48.0(2.1) −97.14(25) 108.33(94) 121.86(49)
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Weakly Polarized Standard Stars with APDs (continued)

UT Date Star Detector Q0/I0
`
×10−6

´
U0/I0

`
×10−6

´
P
`
×10−6

´
Θ (◦)

2007 Aug 4 HD 9270 Mean −40.2(6.1) −90.2(4.8) 98.7(5.1) 123.0(1.7)
2007 Aug 5 · · · · · · −50.5(9.2) −94.6(8.0) 107.2(8.3) 121.0(2.4)
2007 Aug 6 · · · · · · −52(12) −93(11) 107(11) 120.5(3.0)

Overall (Run) · · · · · · −45.2(4.2) −94.8(2.6) 105.0(2.9) 122.3(1.1)
Overall (Night) · · · · · · −50.94(41) −94.09(49) 106.99(47) 120.78(12)

2007 Aug 4 γ Oph 1 −106.3(8.0) +161.2(6.5) 193.1(7.0) 61.7(1.1)
2007 Aug 5 · · · · · · −102.8(7.1) +159.0(8.0) 189.3(7.8) 61.4(1.1)
2007 Aug 6 · · · · · · −56(12) +119(12) 132(12) 57.7(2.5)

Overall (Run) · · · · · · −88.5(6.4) +142.5(6.3) 167.7(6.3) 60.9(1.1)
Overall (Night) · · · · · · −92(12) +149(10) 176(11) 60.9(1.9)

2007 Aug 4 · · · 2 −87.6(7.5) +158.9(8.1) 181.5(8.0) 59.4(1.2)
2007 Aug 5 · · · · · · −87.3(6.4) +164.5(8.3) 186.2(7.9) 59.0(1.1)
2007 Aug 6 · · · · · · −116(11) +176.0(9.2) 210.8(9.8) 61.7(1.4)

Overall (Run) · · · · · · −95.3(5.1) +169.4(5.1) 194.4(5.1) 59.68(75)
Overall (Night) · · · · · · −95.1(7.4) +166.8(3.5) 192.0(4.7) 59.85(99)

2007 Aug 4 · · · 1,2 −102.7(6.7) +160.2(5.1) 190.3(5.6) 61.33(94)
2007 Aug 5 · · · · · · −97.3(4.7) +162.5(5.8) 189.4(5.6) 60.45(76)
2007 Aug 6 · · · · · · −78.1(9.1) +140.7(8.4) 160.9(8.6) 59.5(1.6)

Overall (Run) · · · · · · −92.1(4.1) +152.5(4.0) 178.2(4.0) 60.56(65)
Overall (Night) · · · · · · −94.2(5.6) +156.1(5.3) 182.3(5.4) 60.55(86)

2007 Aug 4 · · · Mean −98.9(7.9) +160.26(78) 188.3(4.2) 60.8(1.0)
2007 Aug 5 · · · · · · −95.7(5.7) +162.1(2.0) 188.2(3.4) 60.28(76)
2007 Aug 6 · · · · · · −83(23) +148(22) 170(22) 59.7(3.8)

Overall (Run) · · · · · · −92.4(2.4) +155.6(9.8) 181.0(8.5) 60.34(86)
Overall (Night) · · · · · · −96.3(1.7) +160.49(42) 187.16(96) 60.48(23)

2007 Aug 4 ζ Peg 1 +2(−)* − >2(−)* −
2007 Aug 4 · · · 2 +15(−)* − >15(−)* −
2007 Aug 4 · · · 1,2 +5(−)* − > 5(−)* −
2007 Aug 4 · · · Mean +7(−)* − >7(−)* −
2007 Aug 5 Algenib 1 −565(19) −623(19) 841(19) 113.91(64)
2007 Aug 6 · · · · · · −702(11) −589(11) 917(11) 109.99(34)

Overall (Run) · · · · · · −646(14) −613.9(9.0) 891(12) 111.78(37)
Overall (Night) · · · · · · −658(46) −600(11) 934(13) 111.17(36)

2007 Aug 5 · · · 2 −730.0(6.4) −628.6(7.9) 963.4(7.1) 110.37(22)
2007 Aug 6 · · · · · · −668.3(7.9) −643.6(7.1) 927.8(7.5) 111.96(23)

Overall (Run) · · · · · · −698.2(6.3) −630.2(4.9) 940.6(5.7) 111.03(17)
Overall (Night) · · · · · · −697(22) −636.6(5.3) 934(13) 111.17(36)

2007 Aug 5 · · · 1,2 −625(12) −627(13) 885(13) 112.54(41)
2007 Aug 6 · · · · · · −687.7(8.7) −608.7(8.5) 918.4(8.6) 110.76(27)

Overall (Run) · · · · · · −661.5(8.1) −619.5(6.9) 906.3(7.6) 111.56(24)
Overall (Night) · · · · · · −666(21) −615.0(6.1) 907(16) 111.36(47)

2007 Aug 5 · · · Mean −696(57) −627.6(1.7) 937(42) 111.0(1.2)
2007 Aug 6 · · · · · · −683(13) −621(22) 923(18) 111.15(58)

Overall (Run) · · · · · · −680(20) −624.5(6.6) 923(16) 111.29(46)
Overall (Night) · · · · · · −683.3(2.2) −627.60(36) 927.8(1.6) 111.284(47)

2007 Aug 4 u Her 1 +1547(20) −440(12) 1609(19) 172.06(22)
2007 Aug 4 · · · 2 +1585(19) −497(30) 1661(20) 171.30(50)
2007 Aug 4 · · · 1,2 +1554(15) −451.5(9.6) 1618(15) 171.90(18)
2007 Aug 4 · · · Mean +1561(16) −450(13) 1625(15) 171.97(23)
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Table 2.9: Strongly Polarized Standard Stars with APDs

UT Date Star Detector Q0/I0 (%) U0/I0 (%) P (%) Θ (◦)

2007 Aug 5 HD 157999 1 −1.0258(10) +0.1788(25) 1.0413(11) 85.055(68)
2007 Aug 6 · · · · · · −0.9838(14) +0.1690(28) 0.9982(15) 85.127(79)

Overall (Run) · · · · · · −1.0026(36) +0.1728(21) 1.0174(36) 85.109(61)
Overall (Night) · · · · · · −1.005(15) +0.1742(3.5) 1.020(15) 85.08(12)

2007 Aug 5 · · · 2 −1.0672(18) +0.1867(23) 1.0834(18) 85.038(61)
2007 Aug 6 · · · · · · −1.1216(13) +0.1961(29) 1.1386(14) 85.042(71)

Overall (Run) · · · · · · −1.0923(45) +0.1907(20) 1.1088(45) 85.049(55)
Overall (Night) · · · · · · −1.089(19) +0.1902(32) 1.106(19) 85.05(12)

2007 Aug 5 · · · 1,2 −1.0404(14) +0.1818(24) 1.0561(14) 85.045(65)
2007 Aug 6 · · · · · · −1.0261(11) +0.1771(28) 1.0413(12) 85.103(75)

Overall (Run) · · · · · · −1.0328(15) +0.1792(19) 1.0482(15) 85.079(51)
Overall (Night) · · · · · · −1.0336(50) + 0.1797(16) 1.0491(50) 85.068(50)

2007 Aug 5 · · · Mean −1.037(15) +0.1826(33) 1.053(15) 85.01(11)
2007 Aug 6 · · · · · · −1.044(54) +0.180(11) 1.059(53) 85.10(39)

Overall (Run) · · · · · · −1.034(21) +0.1810(72) 1.049(21) 85.03(22)
Overall (Night) · · · · · · −1.0377(12) +0.18246(41) 1.0536(12) 85.014(12)

2007 Aug 3 HD 187929 1 −1.8717(18) −0.1896(66) 1.8813(19) 92.89(10)
2007 Aug 5 · · · · · · −1.8208(28) −0.2051(48) 1.8323(29) 93.214(75)
2007 Aug 6 · · · · · · −1.7359(45) −0.1942(49) 1.7467(45) 93.192(80)

Overall (Run) · · · · · · −1.8448(68) −0.1930(42) 1.8548(68) 92.986(65)
Overall (Night) · · · · · · −1.835(31) −0.1933(33) 1.845(30) 93.007(71)

2007 Aug 3 · · · 2 −1.9414(22) −0.1947(67) 1.9512(22) 92.864(99)
2007 Aug 5 · · · · · · −1.8908(31) −0.2129(53) 1.9027(32) 93.212(80)
2007 Aug 6 · · · · · · −1.9723(26) −0.2273(49) 1.9854(27) 93.288(71)

Overall (Run) · · · · · · −1.9355(36) −0.2055(45) 1.9464(37) 93.030(67)
Overall (Night) · · · · · · −1.935(16) −0.2062(78) 1.946(16) 93.04(12)

2007 Aug 3 · · · 1,2 −1.8936(12) −0.1912(66) 1.8813(19) 92.89(10)
2007 Aug 5 · · · · · · −1.8464(32) −0.2087(49) 1.8323(29) 93.214(75)
2007 Aug 6 · · · · · · −1.8121(32) −0.2051(48) 1.7467(45) 93.192(80)

Overall (Run) · · · · · · −1.8741(44) −0.1970(42) 1.8548(68) 92.986(65)
Overall (Night) · · · · · · −1.868(19) −0.1976(44) 1.845(30) 93.007(71)

2007 Aug 3 · · · Mean −1.897(23) −0.1918(21) 1.906(23) 92.887(47)
2007 Aug 5 · · · · · · −1.850(29) −0.2086(31) 1.862(29) 93.217(69)
2007 Aug 6 · · · · · · −1.880(96) −0.209(14) 1.891(96) 93.17(26)

Overall (Run) · · · · · · −1.907(36) −0.1981(51) 1.911(36) 92.975(95)
Overall (Night) · · · · · · −1.879(13) −0.1974(46) 1.890(13) 92.997(72)

2007 Aug 4 HD 7927 1 −3.6221(57) −0.296(11) 3.6342(58) 92.336(85)
2007 Aug 4 · · · 2 −3.718(11) −0.308(13) 3.731(11) 92.364(97)
2007 Aug 4 · · · 1,2 −3.6401(47) −0.298(11) 3.6523(48) 92.342(87)
2007 Aug 4 · · · Mean −3.642(28) −0.2999(48) 3.654(28) 92.354(41)
2007 Aug 3 HD 147084 1 − +3.977(15) − −
2007 Aug 4 · · · · · · +1.953(16) +4.0775(37) 4.5210(76) 32.204(90)

Overall (Run) · · · · · · − +3.995(15) − −
Overall (Night) · · · · · · − +4.012(34) − −

2007 Aug 3 · · · 2 − +4.138(20) − −
2007 Aug 4 · · · · · · +2.019(27) +4.1035(65) 4.573(13) 31.90(15)

Overall (Run) · · · · · · − +4.139(16) − −
Overall (Night) · · · · · · − +4.1312(98) − −

2007 Aug 3 · · · 1,2 − +4.0335(56) − −
2007 Aug 4 · · · · · · +1.968(17) +4.0827(30) 4.5321(77) 32.134(95)

Overall (Run) · · · · · · − +4.0428(66) − −
Overall (Night) · · · · · · − +4.050(16) − −

2007 Aug 3 · · · Mean − +4.034(33) − −
2007 Aug 4 · · · · · · +1.969(22) +4.0833(77) 4.533(12) 32.13(13)

Overall (Run) · · · · · · − +4.048(38) − −
Overall (Night) · · · · · · − +4.0807(77) − −

2007 Aug 4 HD 154445 1 −4.5158(42) −0.0540(17) 4.5161(42) 90.342(11)
2007 Aug 4 · · · 2 −4.540(34) −0.024(13) 4.540(34) 90.150(85)
2007 Aug 4 · · · 1,2 −4.5208(80) −0.0481(14) 4.5210(80) 90.3047(86)
2007 Aug 4 · · · Mean −4.5172(32) −0.0502(35) 4.5175(32) 90.318(22)
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Table 2.10: Systematic Effects: Polarized Standard Stars with APDs

Star Parameter Detector 1 Detector 2 Detector 1,2 Detector Mean
HD 9270 SPEM

(
×10−6

)
+0.82(73) −2.9(3.0) +0.52(86) +0.58(66)

· · · Sφ
(
×10−6

)
−6.2(1.8) +28(26) −6.5(1.3) −6.3(1.4)

γ Oph SPEM

(
×10−6

)
+3.4(2.4) −0.7(3.8) +2.03(71) +2.05(62)

· · · Sφ
(
×10−6

)
−7(11) +4.5(4.3) −3.2(8.6) +1.8(4.3)

Algenib SPEM

(
×10−6

)
−0.3(6.7) +0.9(6.5) +0.1(6.6) +0.25(48)

· · · Sφ
(
×10−6

)
−4(14) +4.4(1.3) −1.9(9.4) +4.2(1.2)

u Her SPEM

(
×10−6

)
−23.75(42) +18(26) −15.8(5.1) −23.69(92)

· · · Sφ
(
×10−6

)
− − − −

HD 157999 SPEM

(
×10−6

)
+61(31) +29(65) +47(45) +53(11)

· · · Sφ
(
×10−6

)
−12.3(4.2) +9(10) −1.8(1.1) −2.3(2.7)

HD 187929 SPEM

(
×10−6

)
+20(68) +23(62) +20(65) +20.8(1.3)

· · · Sφ
(
×10−6

)
−102(53) −32(93) −85(60) −85(24)

HD 7927 SPEM

(
×10−6

)
+40(170) +130(140) +60(160) +87(40)

· · · Sφ
(
×10−6

)
−277.6(6.1) +70(340) −215(57) −276.8(9.0)

HD 147084 SPEM

(
×10−6

)
+214(95) +320(200) +220(100) +229(33)

· · · Sφ
(
×10−6

)
− − − −

2.7 Standard Stars with PMTs

Even though the bandpasses differ between the APDs and PMTs, we do not determine telescope

polarization with the PMTs for many reasons. First, it is difficult to identify “unpolarized” stars

with V > 7. Second, differences in telescope polarization derived from APD and PMT observations

will only be detected after long PMT observations. Third, we aim to detect small scale changes

in polarization of target stars, so constant offsets in telescope polarization between APD and PMT

observations is not our goal. Therefore, we choose to quickly measure telescope polarization at the

part per million level using bright stars and APDs to minimize overhead due to calibration. Table

2.11 shows polarization observations of HD 212311, and observations of HD 204827 are in Table

2.12. Systematic effects for these stars are listed in Table 2.13.

The number of polarized photons from a star is proportional to the polarization, P . Since the

photon shot noise on the number of photons scales as P
1
2 , one would expect that the run-averaged

precision attainable on stars of similar brightness would also be proportional to P
1
2 . In addition,

we expect the instrument to have a noise floor that becomes noticeable for unpolarized stars. As

can be seen in Figure 2.10, we find good agreement by fitting the data from the stars observed with

APDs to the model
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Table 2.11: Weakly Polarized Standard Stars with PMTs

UT Date Star Detector Q0/I0
`
×10−6

´
U0/I0

`
×10−6

´
P
`
×10−6

´
Θ (◦)

2007 Aug 3 HD 212311 1 +310(190) +190(160) 360(180) 16(13)
2007 Aug 4 · · · · · · +320(150) −270(170) 420(160) 160(11)
2007 Aug 5 · · · · · · +300(150) −70(170) 310(150) 174(16)
2007 Aug 6 · · · · · · +410(140) −310(220) 510(170) 162(11)

Overall (Run) · · · · · · +358(79) −54(79) 362(79) 175.7(6.3)
Overall (Night) · · · · · · +335(23) −98(98) 349(35) 171.9(7.7)

2007 Aug 3 · · · 2 +620(130) −150(130) 640(130) 173.0(6.0)
2007 Aug 4 · · · · · · +430(140) +250(140) 500(140) 15.2(8.1)
2007 Aug 5 · · · · · · +560(100) −110(130) 570(110) 174.5(6.3)
2007 Aug 6 · · · · · · +140(150) −120(190) 190(170) 160(27)

Overall (Run) · · · · · · +444(70) −54(75) 447(70) 176.5(4.8)
Overall (Night) · · · · · · +451(89) −33(83) 452(89) 177.9(5.3)

2007 Aug 3 · · · 1,2 +485(92) −6(88) 485(92) 179.6(5.2)
2007 Aug 4 · · · · · · +382(71) +22(88) 383(71) 1.6(6.6)
2007 Aug 5 · · · · · · +440(76) −90(100) 449(77) 174.5(6.4)
2007 Aug 6 · · · · · · +262(85) −200(100) 332(96) 161.1(8.9)

Overall (Run) · · · · · · +401(43) −49(50) 404(43) 176.5(3.6)
Overall (Night) · · · · · · +397(42) −58(40) 401(41) 175.9(2.9)

2007 Aug 3 · · · Mean +497(96) −10(110) 497(96) 179.4(6.3)
2007 Aug 4 · · · · · · +380(31) +30(160) 381(33) 2(12)
2007 Aug 5 · · · · · · +454(83) −90(14) 463(81) 174.4(1.3)
2007 Aug 6 · · · · · · +270(86) −202(56) 337(77) 161.6(5.8)

Overall (Run) · · · · · · +403(27) −51.4(2.5) 407(27) 176.37(30)
Overall (Night) · · · · · · +386(26) −94(15) 397(25) 173.1(1.1)

Table 2.12: Strongly Polarized Standard Stars with PMTs

UT Date Star Detector Q0/I0 (%) U0/I0 (%) P (%) Θ (◦)
2007 Aug 3 HD 204827 1 −3.838(14) +6.821(23) 7.826(21) 59.682(62)
2007 Aug 4 · · · · · · − +6.996(30) − −
2007 Aug 5 · · · · · · −3.827(15) +6.869(22) 7.863(20) 59.560(62)
2007 Aug 6 · · · · · · −3.886(12) +6.968(22) 7.978(20) 59.572(53)

Overall (Run) · · · · · · −3.8474(87) +6.885(15) 7.887(14) 59.598(39)
Overall (Night) · · · · · · −3.848(14) +6.904(36) 7.904(32) 59.568(78)

2007 Aug 3 · · · 2 −3.925(19) +7.056(15) 8.074(16) 59.544(65)
2007 Aug 4 · · · · · · − +7.147(14) − −
2007 Aug 5 · · · · · · −3.925(25) +7.049(19) 8.073(20) 59.586(83)
2007 Aug 6 · · · · · · −3.956(23) +7.110(21) 8.136(21) 59.546(78)

Overall (Run) · · · · · · −3.937(13) +7.073(11) 8.095(11) 59.549(44)
Overall (Night) · · · · · · −3.9371(71) +7.085(20) 8.105(18) 59.530(41)

2007 Aug 3 · · · 1,2 −3.878(12) +6.949(13) 7.958(13) 59.582(46)
2007 Aug 4 · · · · · · − +7.076(18) − −
2007 Aug 5 · · · · · · −3.873(16) +6.963(15) 7.968(15) 59.542(56)
2007 Aug 6 · · · · · · −3.911(13) +7.043(14) 8.056(14) 59.521(47)

Overall (Run) · · · · · · −3.8853(82) +6.985(10) 7.9929(97) 59.542(31)
Overall (Night) · · · · · · −3.8857(93) +7.000(27) 8.006(24) 59.517(54)

2007 Aug 3 · · · Mean −3.873(31) +6.970(81) 7.974(72) 59.53(17)
2007 Aug 4 · · · · · · − +7.104(51) − −
2007 Aug 5 · · · · · · −3.863(38) +6.967(64) 7.967(59) 59.50(16)
2007 Aug 6 · · · · · · −3.905(23) +7.043(48) 8.053(43) 59.50(11)

Overall (Run) · · · · · · −3.880(31) +7.001(68) 8.004(61) 59.50(15)
Overall (Night) · · · · · · −3.888(10) +7.037(27) 8.040(24) 59.459(57)
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Table 2.13: Systematic Effects: Standard Stars with PMTs

Star Parameter Detector 1 Detector 2 Detector 1,2 Detector Mean
HD 212311 SPEM

(
×10−6

)
−95(74) −32(61) −58(57) −58(37)

· · · Sφ
(
×10−6

)
−65(59) +24(30) −15(45) 0(32)

HD 204827 SPEM

(
×10−6

)
+540(180) +550(340) +487(36) +490(12)

· · · Sφ
(
×10−6

)
−269(28) +320(210) +30(110) −240(100)

σ̂P =

(P 1
2

a

)2

+ σ2
P0

 1
2

. (2.9)

Here, a is a scaling factor and σP0 is the noise floor of the instrument, which is added in quadrature

to the photon shot noise component. This noise floor appears to be eight parts in ten million. The

fitting was performed using a least-squares approach. However, since the data span five orders of

magnitude in polarization, the residuals to be minimized are given by

SSE =
∑
i

(
σPi − σ̂P
σPi

)2

. (2.10)

The stars observed with APDs are all roughly the same visual magnitude. However, the preci-

sion achieved on the weakly polarized HD 212311, observed with PMTs, is worse than for the stars

observed with APDs. HD 212311 is roughly 5 magnitudes fainter than its bright counterparts (Table

2.2), so the precision is expected to be
(
100.4×5

) 1
2 = 10 times worse, as observed. Thus, the scaling

factor determined for the APD stars, a, will be an order of magnitude different from the scaling

factor for the PMT stars. This is why the PMT stars were excluded from the above fit. However,

precision on the strongly polarized HD 204827 is surprisingly consistent with the slope for the bright

stars. This is most likely due to the larger dataset obtained on HD 204827.

2.8 Comparison to Literature

2.8.1 Unpolarized Standard Stars

Individual measurements and nightly mean polarization for most stars are shown in Figures 2.11

to 2.30. Those that are not displayed generally have only one night of observations. We compare
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Figure 2.10: Run-averaged precision as a function of stellar polarization. Photon shot noise consider-
ations predict precision proportional to the square root of polarization, which is observed. The solid
line is a fit to the data with power law slope 1/2 plus the quadrature addition of an instrumental
noise floor, while the dashed line is the P

1
2 term.

our results to the polarization catalog of Heiles (2000) and to HLB 06 in Figure 2.31. To determine

polarization for each star, Heiles (2000) take the weighted mean polarization from different authors.

The weights are the inverse square of the uncertainties from each author. Uncertainty in stellar po-

larization in Heiles (2000) is the square root of the sum of squares of residuals between each author’s

polarization and the Heiles (2000) mean polarization.

Uncertainty in degree of polarization is listed nightly for strongly polarized stars in Table 3 of

HLB 06 (HD 7927, HD 147084, HD 154445, and HD 187929). To determine run-averaged uncertainty

for these stars, we first convert their degree, position angle, and uncertainties to Q/I, U/I, and asso-

ciated uncertainties. We then perform a weighted mean for each Stokes parameter separately, where

the weights are the inverse square of the nightly uncertainties in those parameters. Since degree of

polarization is defined to be a positive quantity, taking the mean degree of polarization from the

ensemble of nights would be incorrect.

The degree of polarization measured by POLISH is plotted as open stars, and stellar polarization

increases toward the bottom of the plot. Our precision in the degree of polarization is plotted as
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filled black circles, precision values computed from HLB 06 are light grey diamonds, and Heiles

(2000) precision values are dark grey squares. The horizontal line before the second star from the

bottom in Figure 2.31 separates those stars observed with APDs (at the top) from those observed

with PMTs (at the bottom).

The rightmost column of the figure shows the position angle of net polarization, where north is

at the top and east is at the left of the plots. Black lines indicate position angle measured with

POLISH, HLB 06 position angles are light grey lines, and Heiles (2000) position angles are dark grey

lines. Agreement between the data sets for stars with low polarization is of course poor, because

position angle of net polarization is meaningless for these stars. As stellar polarization increases,

agreement in position angle also increases. Since agreement between our measurements and the

literature regarding degree of polarization is not our primary objective, accuracy in our observations

is assessed by agreement in position angle of polarization.

The unpolarized standard stars observed in order to determine telescope polarization, HR 5854

(α Ser, HD 140573) and HR 8974 (γ Cep, HD 222404), have run-averaged polarimetric precision

of one part per million or better. This was our precision goal for bright, unpolarized stars. The

precision achieved by PlanetPol on these stars is comparable to our results. However, we have im-

proved the precision on these stars by three orders of magnitude with respect to the Heiles (2000)

catalog. HR 8974 is known to harbor an extrasolar planet with a minimum mass of 1.60 ± 0.13

Jupiter masses, a period of 902.9± 3.5 days, and a semimajor axis of 2.044± 0.057 AU (Neuhäuser

et al. 2006). We expect the amplitude of the planetary polarimetric signal to be of order 10−8 or

less and consequently undetectable.

2.8.2 Weakly Polarized Standard Stars

We have improved the polarimetric precision achieved on HD 9270 (η Psc) by an order of magnitude

with respect to Heiles (2000). Precision on γ Oph (HD 161868) and Algenib (γ Peg, HD 886),

however, is only slightly better than tabulated in Heiles (2000). It is expected that longer integration

on these stars will improve this precision. Finally, the precision achieved on u Her (SAO 65913)

has been improved by two orders of magnitude from Heiles (2000). There is an order of magnitude

improvement in precision on HD 212311 with respect to Heiles (2000).
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Figure 2.11: Nightly mean polarization of the unpolarized star HR 5854. This star was observed
with APDs, and the data are plotted after calibration of the PEM position, peak retardance, gain,
and telescope polarization. Solid blue lines indicate observations by the blue enhanced APD1, while
dotted red lines are observed with the red enhanced APD2.

Figure 2.12: Intra-night observations of HR 5854 with APD1, UT 2007 Aug 3 and 4. Observed
noise calculated from fluctuations in AC and DC levels is given by error bars on individual data
points (Figure 2.5 and Equation 2.5c). Area of data points is proportional to the number of detected
photons. Theoretical detector noise (Equation C11) is given as vertical lines outside the plot boxes,
while theoretical photon shot noise (Equation 2.5a) is represented by dashed vertical lines outside
the plot boxes. These conventions are used throughout this chapter.
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Figure 2.13: Intra-night observations of HR 5854 with APD1, UT 2007 Aug 5 and 6.
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Figure 2.14: Nightly mean polarization of the unpolarized star HR 8974 after calibration of the PEM
position, peak retardance, gain, and telescope polarization.
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Figure 2.15: Intra-night observations of HR 8974 with APD1, UT 2007 Aug 3, 5, and 6.
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Figure 2.16: Nightly mean polarization of the weakly polarized star HD 9270 after calibration of the
PEM position, peak retardance, gain, and telescope polarization.
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Figure 2.17: Intra-night observations of HD 9270 with APD1, UT 2007 Aug 4, 5, and 6.
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Figure 2.18: Nightly mean polarization of the weakly polarized star γ Oph after calibration of the
PEM position, peak retardance, gain, and telescope polarization.
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Figure 2.19: Intra-night observations of γ Oph with APD1, UT 2007 Aug 4, 5, and 6.
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Figure 2.20: Nightly mean polarization of the weakly polarized star Algenib after calibration of the
PEM position, peak retardance, gain, and telescope polarization.
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Table 2.14: Corrections for Absolute Polarization

Parameter APD 1 APD 2 Mean PMT 1 PMT 2 Mean

PPOLISH − PHeiles (×10−4) 1.8(3.6) 1.8(3.8) 1.8438(21) 8(35) 9(37) 8.84(53)
PPOLISH/PHeiles 0.843(87) 0.842(62) 0.84224(69) 0.690(20) 0.672(22) 0.6811(89)

2.8.3 Strongly Polarized Standard Stars

Precision on HD 157999 (σ Oph) has been improved by an order of magnitude, while precision on

HD 187929 (η Aql) is comparable between our measurements, those from PlanetPol, and those from

Heiles (2000). Our precision on HD 7927 (φ Cas) is comparable to that from PlanetPol, and we

improve the precision with respect to Heiles (2000) by an order of magnitude. We assume that the

discrepancy between the HLB 06 position angle (42.18± 0.01◦) and our measurements for HD 7927

is simply a typographical error in their paper. We expect that their intended value is 92.18◦, which

is close to our value.

While precision on HD 147084 (o Sco) from PlanetPol is a full order of magnitude better than

from our measurements, this is likely a result of our lower integration time. Precision between Heiles

(2000) and our measurements is comparable. Precision on HD 154445 between our measurements,

PlanetPol, and Heiles (2000) lie within an order of magnitude of each other, which may suggest

intrinsic variability of the source. We only have one night of data on this star, so this possibility

will not be investigated in our forthcoming paper. Finally, we improve the precision on HD 204827

by an order of magnitude with respect to Heiles (2000).

2.8.4 Absolute Polarization

To find the difference in absolute polarization between our measurements from each detector and

Heiles (2000), we take the mean weighted difference for each Stokes parameter. The weight used

is the inverse square of the Heiles (2000) uncertainty. The results are shown in Table 2.14. The

individual offset for each detector is consistent with zero, but the mean value for each detector

type is significant. To determine the consistency of our polarimetric gain factor GP with the Heiles

(2000) polarizations for each detector, we take the mean weighted ratio of the Heiles (2000) Stokes

parameters with respect to our measured Stokes parameters. We find a different gain factor for

each detector type is necessary to make absolute polarization consistent. However, multiplying our

measurements by this gain factor would increase uncertainty unnecessarily. Since we are interested

in relative polarization variability over time, we do not apply this gain factor.
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Figure 2.21: Intra-night observations of Algenib with APD1, UT 2007 Aug 5 and 6.
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Figure 2.22: Nightly mean polarization of the strongly polarized star HD 157999 after calibration
of the PEM position, peak retardance, gain, and telescope polarization.
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Figure 2.23: Intra-night observations of HD 157999 with APD1, UT 2007 Aug 5 and 6.
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Figure 2.24: Nightly mean polarization of the strongly polarized star HD 187929 after calibration
of the PEM position, peak retardance, gain, and telescope polarization.



64

Figure 2.25: Intra-night observations of HD 187929 with APD1, UT 2007 Aug 3, 5, and 6.
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Figure 2.26: Nightly mean polarization of the weakly polarized star HD 212311 after calibration of
the PEM position, peak retardance, gain, and telescope polarization.
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Figure 2.27: Intra-night observations of HD 212311 with PMT1, UT 2007 Aug 3 and 4.

Figure 2.28: Intra-night observations of HD 212311 with PMT1, UT 2007 Aug 5 and 6.
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Figure 2.29: Nightly mean polarization of the strongly polarized star HD 204827 after calibration
of the PEM position, peak retardance, gain, and telescope polarization.

Figure 2.30: Intra-night observations of HD 204827 with PMT1, UT 2007 Aug 3, 5, and 6.
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Figure 2.31: Precision achieved on standard stars compared with HLB 06 and Heiles (2000). Stars
above the horizontal line across the figure have been observed with APDs, and the two stars below
this line have been observed with PMTs. For each detector, stars are listed from top to bottom in
order of increasing net polarization according to our measurements.

2.8.5 Interstellar Polarization

Serkowski et al. (1975) determined empirically that stars for which interstellar polarization domi-

nates will have a distinctive spectrum of polarization versus wavelength:

P (λ)
Pmax

= exp
[
−1.15 ln2

(
λmax

λ

)]
. (2.11)

Here, Pmax is the maximum polarization as a function of wavelength and λmax is the wavelength of

maximum polarization. Interstellar polarization is thought to be caused by preferential extinction of

starlight by aligned, non-spherical dust grains. The component of starlight with electric field vector

parallel to the long axis of aligned dust grains will suffer greater extinction than the component of
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the electric field perpendicular to the long axis of the grains (Davis & Greenstein 1951). The exact

cause of grain alignment is debated, but presence of magnetic fields is a significant component.

Of the stars observed in Table 2.2, the following have been investigated by Serkowski et al.

(1975): HD 7927, HD 147084, HD 154445, HD 157999, HD 187929, and HD 204827. All of these

have wavelength dependence of polarization indicative of interstellar polarization, which implies that

intrinsic polarization does not dominate for these stars. Indeed, Schmidt et al. (1992) find good fits

of their data to interstellar polarization curves for HD 7927, HD 154445, and HD 204827.

2.9 Discussion

We have commissioned a high precision, integrated light polarimeter in order to detect variability in

the optical, linear polarization of high mass X-ray binaries. This variability should be indicative of

system inclination, and high precision monitoring is hoped to constrain the black hole mass in these

systems. While results from observations of Cygnus X-1 will be in Chapter 4, we report on the high

precision attained on standard stars.

Noise on individual measurements of most stars is comparable to photon shot noise (Figures 2.11

to 2.30). When combining measurements, we obtained precision on most stars that is comparable

to PlanetPol, a similar instrument mounted on the William Herschel Telescope (HLB 06). Precision

achieved on unpolarized stars is up to three orders of magnitude better than listed in the combined

polarimetric catalogs of Heiles (2000), and precision on strongly polarized stars is improved by up to

an order of magnitude. The large improvement in polarimetric precision arises from the combination

of large telescope aperture, a high-quality polarization modulator, and high frequency modulation.

We find night-to-night precision of three to ten parts per million on bright, weakly polarized

standard stars
(
10−4 < P < 10−3

)
. This precision increases as σP ∝ P

1
2 , where it reaches about

one part in 104 for stars with P between one and ten percent. Thus, night-to-night precision scales

as expected from photon shot noise statistics. Consultation of Tables 2.10 and 2.13 shows that

systematic effects reveal themselves at the level of ≈ 1% of the measured polarization. The night-

to-night noise floor of the instrument appears to be eight parts in ten million even in the presence of

telescope polarization on the order of one part in 104. High precision monitoring of stellar variability

is discussed in the next chapter.
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2.10 Appendix A: Mueller Matrix for Lab Tests

Mueller matrices describe how the polarization state of incident light is modified by optical compo-

nents. For the lab tests in section 2.5.2, the polarizing components employed are a linear polarizer

and Wollaston prism, so the Mueller matrix of the system is

M = MW × T−ψ ×Mpol × Tψ (A1)

Starting from the left hand side of Equation A1, the matrices represent the Wollaston, the rotation

matrix for the linear polarizer at angle ψ with respect to the Wollaston axis, and the Mueller matrix

for the polarizer. Incident light is first affected by the Mueller matrix at the end of the equation,

and the incident polarization state is successively modified by the matrices to the left. That is,



Iobs

Qobs

Uobs

Vobs


= M



I0

Q0

U0

V0


(A2)

where I0, Q0, U0, and V0 are the Stokes parameters of the incident light and Iobs, Qobs, Uobs, and

Vobs are the observed Stokes parameters. For this system,



Iobs

Qobs

Uobs

Vobs


=
T

2



1 ±1 0 0

±1 1 0 0

0 0 0 0

0 0 0 0


×



1 0 0 0

0 cos 2ψ − sin 2ψ 0

0 sin 2ψ cos 2ψ 0

0 0 0 1



×



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0


×



1 0 0 0

0 cos 2ψ sin 2ψ 0

0 − sin 2ψ cos 2ψ 0

0 0 0 1


×



I0

Q0

U0

V0



(A3)

where T = 25±2% is the transmission of the polarizer. A perfect polarizer is assumed, which passes

no light with polarization perpendicular to its axis. The PEM was disabled for this test, and only
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the DC reading from the voltmeters was used. Thus, the average intensity is

Iobs =
T

2
[I0 (1 + cos 2ψ) +Q0 cos 2ψ (1 + cos 2ψ) + U0 sin 2ψ (1 + cos 2ψ)] (A4)

The LED is essentially unpolarized, so Q0 ≈ U0 ≈ 0 and Equation A4 reduces to

I ≈ TI0 (1 + cos 2ψ) (A5)

2.11 Appendix B: Mueller Matrix for POLISH

In general, the Mueller matrix of POLISH is given by

MPOLISH = T−φ ×MD ×ML ×MW ×MB × T−θPEM ×MPEM × TθPEM × Tφ ×MT (B1)

Starting from the left hand side of Equation B1, the matrices are the rotation matrix for Cassegrain

ring angle φ, the Mueller matrices for the detector window, field lenses, Wollaston prism, and beam-

splitter, the rotation matrix for PEM angle θ ≡ θPEM, the Mueller matrix for the PEM, and the

Mueller matrix for the telescope. Subtraction of telescope polarization is necessary to calibrate for

MT.

Since the PEM and Wollaston prism convert the polarization of the incident light into intensity

modulation, the polarization state of light past the Wollaston is not our concern. The reflection

of light off the beamsplitter is at nearly 90◦ and is stable during observations, so any polarization

imparted to the light by the beamsplitter is just a constant offset to the polarization. Therefore,

we only consider the throughput of the detector window, field lenses, and beamsplitter. We denote

the throughput of the instrument as E, and it is given in section 2.3. The POLISH Mueller matrix

becomes
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MPOLISH = E

0BBBBBBB@

1 0 0 0

0 cos 2φ − sin 2φ 0

0 sin 2φ cos 2φ 0

0 0 0 1

1CCCCCCCA
×

0BBBBBBB@

0.5 ±0.5 0 0

±0.5 0.5 0 0

0 0 0 0

0 0 0 0

1CCCCCCCA
×

0BBBBBBB@

1 0 0 0

0 cos 2θ − sin 2θ 0

0 sin 2θ cos 2θ 0

0 0 0 1

1CCCCCCCA

×

0BBBBBBB@

1 0 0 0

0 1 0 0

0 0 cosβ sinβ

0 0 − sinβ cosβ

1CCCCCCCA
×

0BBBBBBB@

1 0 0 0

0 cos 2θ sin 2θ 0

0 − sin 2θ cos 2θ 0

0 0 0 1

1CCCCCCCA
×

0BBBBBBB@

1 0 0 0

0 cos 2φ sin 2φ 0

0 − sin 2φ cos 2φ 0

0 0 0 1

1CCCCCCCA
(B2)

The instantaneous retardance of the PEM is given by β = α + β0 sinωt. The retardance offset of

the PEM, α, is assumed to be negligible from calibration by Hinds Instruments, Inc. Note that

ω = 2π × 50.12 kHz. The top sign in the Wollaston matrix (+) indicates the left beam which

reaches detector 2, and the bottom sign (−) represents the right beam which reaches detector 1.

The instrumental Mueller matrix, listed by columns one through four, now becomes

MPOLISH (:, 1) = E/2

0BBBBBBB@

1

± cos 2φ

± sin 2φ

0

1CCCCCCCA
(B3a)

MPOLISH (:, 2) = E/2

0BBBBBBB@

±
ˆ`

cos2 2θ + sin2 2θ cosβ
´

cos 2φ− 1/2 sin 4θ (1− cosβ) sin 2φ
˜

`
cos2 2θ + sin2 2θ cosβ

´
cos2 2φ− 1/4 sin 4θ (1− cosβ) sin 4φ

1/2
ˆ`

cos2 2θ + sin2 2θ cosβ
´

sin 4φ− sin 4θ (1− cosβ) sin2 2φ
˜

0

1CCCCCCCA
(B3b)

MPOLISH (:, 3) = E/2

0BBBBBBB@

±
ˆ`

cos2 2θ + sin2 2θ cosβ
´

sin 2φ+ 1/2 sin 4θ (1− cosβ) cos 2φ
˜

1/2
ˆ`

cos2 2θ + sin2 2θ cosβ
´

sin 4φ+ sin 4θ (1− cosβ) cos2 2φ
˜

`
cos2 2θ + sin2 2θ cosβ

´
sin2 2φ+ 1/4 sin 4θ (1− cosβ) sin 4φ

0

1CCCCCCCA
(B3c)

MPOLISH (:, 4) = E/2

0BBBBBBB@

∓ sin 2θ sinβ

− sin 2θ sinβ cos 2φ

− sin 2θ sinβ sin 2φ

0

1CCCCCCCA
(B3d)
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The functions of θ multiplying cosβ are zero for integer multiples of 90◦ and one for odd integer

multiples of 45◦. Thus, the full amplitude of the intensity modulation occurs for the PEM oriented

θ = ±45◦ with respect to the PEM compression/extension axis. Given β = β0 sinωt from above, we

expand the retardance in terms of Bessel functions:

sin (β0 sinωt) = 2
∞∑
n=0

J2n+1 (β0) sin [(2n+ 1)ωt] (B4a)

cos (β0 sinωt) = J0 (β0) + 2
∞∑
n=1

J2n (β0) cos 2nωt (B4b)

The sinβ expansion in Equation B4a generates odd harmonics of the PEM reference frequency,

while the cosβ expansion in Equation B4b generates even harmonics. In Equations B3a through

B3d, the second and third columns of MPOLISH have factors of cosβ, while the fourth column has

factors of sinβ. When multiplying these columns with incident light as per Equation A2, the Q0

and U0 Stokes parameters will be modulated at even PEM harmonics, while the V0 parameter will

be modulated at odd harmonics. Thus, we choose to set our lock-in amplifiers to record the second

harmonic of modulated intensity. By setting n = 2 in Equation B4b, we can see that the modulated

signal will have amplitude 2J2 (β0), but it will also have an offset of J0 (β0). Therefore, we see a hint

that choice of peak retardance β0 will affect both AC and DC components of the detected intensity.

This will be proven below.

Plugging Equations B3a through B3d into Equation A2 and rearranging terms, we find the

detected intensity modulation to be

2
E
I = I0 ±

[
cos2 2θ cos 2φ∓ 1

2
sin 4θ sin 2φ+

(
sin2 2θ cos 2φ+

1
2

sin 4θ sin 2φ
)
J0 (β0)

]
Q0

±
[
sin2 2θ cos 2φ+

1
2

sin 4θ sin 2φ
]

[2J2 (β0) cos 2ωt]Q0

±
[
cos2 2θ sin 2φ+

1
2

sin 4θ cos 2φ+
(

sin2 2θ sin 2φ∓ 1
2

sin 4θ cos 2φ
)
J0 (β0)

]
U0

±
[
sin2 2θ sin 2φ∓ 1

2
sin 4θ cos 2φ

]
[2J2 (β0) cos 2ωt]U0

(B5)

The lock-in amplifiers output the RMS value of the AC component of the intensity, given by R. The

amplitude of the AC signal is therefore
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R
√

2 = E/2


±2J2 (β0)

»„
sin2 2θ cos 2φ+

1

2
sin 4θ sin 2φ

«
Q0 +

„
sin2 2θ sin 2φ∓ 1

2
sin 4θ cos 2φ

«
U0

–ff
(B6)

The mean intensity, or DC level, is given by

2
E

DC = I0 ±
[
cos2 2θ cos 2φ∓ 1

2
sin 4θ sin 2φ+ J0 (β0)

(
sin2 2θ cos 2φ+

1
2

sin 4θ sin 2φ
)]

Q0

±
[
cos2 2θ sin 2φ+

1
2

sin 4θ cos 2φ+ J0 (β0)
(

sin2 2θ sin 2φ∓ 1
2

sin 4θ cos 2φ
)]

U0

(B7)

For θ = ±45◦ and β0 = 2.4048 radians, the first zero of J0 (β), Equations B6 and B7 reduce to

R
√

2 = ±E
2

[2J2 (β0) (Q0 cos 2φ+ U0 sin 2φ)] (B8a)

DC =
EI0

2
(B8b)

Two integrations with the Cassegrain ring rotated ∆φ = 45◦ apart are therefore required to deter-

mine both linear Stokes parameters Q0/I0 and U0/I0.

For Cassegrain ring angle φ = 0◦, the normalized polarization in terms of the observables R and

DC is given by

Qobs

Iobs
≡

√
2

2J2 (β0)
R

DC
=
Q0

I0
(B9)

In terms of the PEM position θ and peak retardance β0, Equation B9 can be written as

Qobs

Iobs
=

Q0
I0

sin2 2θ ∓ 1
2
U0
I0

sin 4θ

1± Q0
I0

[
cos2 2θ + J0 (β0) sin2 2θ

]
± 1

2
U0
I0

sin 4θ [1∓ J0 (β0)]
(B10)

The ratio of R and DC in Equation B9 is therefore defined to be the observed polarization. When
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defining the PEM efficiency as EPEM = 2J2 (β0), and noting the definition of R from Equation 2.3a,

Equation B9 reduces to Equation 2.4. The PEM efficiency is the strength of the intensity modu-

lation for a given polarization. Maximum efficiency of EPEM = 97.1% is achieved for retardance

of π radians (halfwave retardance), while our choice of β0 = 2.4048 radians results in EPEM = 86.4%.

For θ 6= ±45◦ and/or β0 6= 2.4048 radians, the observed polarization Qobs/Uobs can still be used

to determine the true polarization Q0/U0. In general,

Q0

I0
=

Qobs
Iobs

{
1± 1

2
U0
I0

sin 4θ [1∓ J0 (β0)]
}
± 1

2
U0
I0

sin 4θ

sin2 2θ ∓ Qobs
Iobs

[
cos2 2θ + J0 (β0) sin2 2θ

] (B11a)

U0

I0
=

Uobs
Iobs

{
1± 1

2
Q0
I0

sin 4θ [∓1 + J0 (β0)]
}
− 1

2
Q0
I0

sin 4θ

sin2 2θ ∓ Uobs
Iobs

[
cos2 2θ + J0 (β0) sin2 2θ

] (B11b)

The decreased efficiency by using β0 = 2.4048 instead of π radians decreases the AC signal from

polarized stars by a factor of J2 (π) /J2 (2.4048) = 1.12, and it will slightly decrease the signal to noise

ratio of polarimetric measurements using POLISH. However, the choice of β0 = π radians coupled

with PEM misalignment (θ 6= ±45◦) magnifies the amount of U0/I0 that leaks into measurements

of Qobs/Iobs, and vice versa, by a factor of

1− J0 (π)
1− J0 (2.4048)

= 1.30 (B12)

We therefore use a peak retardance of β0 = 2.4048 radians in our measurements.

2.12 Appendix C: Detector Noise

Given pre-gain signal current i0 and pre-gain dark current id, the number of pre-gain photoelectrons

during an integration of duration tAC, and the shot noise on this quantity, will be given by

n =
(i0 + id) tAC

e
(C1a)

σn =
[

(i0 + id) tAC

e

] 1
2

(C1b)
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The pre-gain shot noise current is essentially the pre-gain shot noise in electrons times e/tAC, because

current has units of coulombs per second. This value is

σi =
[

2eB (i0 + id)
tAC

] 1
2

(C2)

where B is the system bandwidth in Hz and will be discussed later. The factor of
√

2 comes about

when converting between photocurrent and photoelectrons. The post-gain shot noise current is

σ′i = G

[
2eBF (i0 + id)

tAC

] 1
2

(C3)

where G is detector gain and

F ≈ Gx (C4)

is the gain noise factor (post-gain quantities are primed). This factor arises because the gain process

itself has statistical fluctuations. The excess noise factor, x, is a constant. Thus, we find the

post-gain shot noise current to be

σ′i =
[

2eBG2+x (i0 + id)
tAC

] 1
2

(C5)

Since voltage is measured at the output of the detectors, we convert signal and dark current to

signal and dark voltage. The pre-gain signal and dark current are therefore

i0 =
DC
GTA

(C6a)

id =
i′d
G

(C6b)

where TA is the amplifier transimpedance in V/A and the post-gain dark current is i′d. Output noise

voltage is related to noise current by σ′v = TAσ
′
i, so we plug Equations C6a and C6b into Equation

C5 and multiply by the transimpedance to find
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σ′v =
[

2eBG1+xTA(DC + i′dTA)
tAC

] 1
2

(C7)

This is the expected voltage noise on the output of the detectors. We now relate this quantity to

fluctuations in the observables X, Y , and DC.

In general, error propagation on a function g(x1, x2, · · · , xj) is given by

σg =

∑
j

(
∂g

∂xj
σxj

)2
 1

2

(C8)

By propagating error through Equation 2.4, we find polarimetric uncertainty of a measurement to

be related to uncertainty in X, Y , and DC according to

σP =
√

2
2J2 (β0) DC

(
X2σ2

X + Y 2σ2
Y

X2 + Y 2
+
X2 + Y 2

DC2 σ2
DC

) 1
2

(C9)

Rearranging terms, and absorbing the t−1/2
AC factor from Equation C7, we find

σP =
√

2
EPEMDC

{
1
tAC

[
X2σ2

X + Y 2σ2
Y

X2 + Y 2
+

1
2

(EPEMPσDC)2

]} 1
2

(C10)

For an imperfect detector, expected voltage noise is given by Equation C7. However, we must

determine the bandwidth B with care. Photon shot noise is white noise, which means that it occurs

at all frequencies. However, it clearly cannot continue up to infinite frequency, because integrated

power would also be infinite. The maximum frequency at which photon shot noise can occur will

be the count rate of noise photons. Thus, we determine maximum bandwidth by the square root of

the number of detected photons,

Bmax =
(

DC
eGTA

) 1
2

(C11)

The detectors have bandwidth ranging from about 100 kHz to 200 kHz. However, the lock-in am-
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plifiers only admit noise in a bandwidth of BAC ≈ 2.6 Hz, while the voltmeters have bandwidth of

BDC ≈ 1 MHz. Thus, the bandwidth for shot noise on X and Y will be min(Bmax, Bdetector, BAC) =

BAC for all stars. The bandwidth for shot noise on DC will be min(Bmax, Bdetector, BDC), which will

depend on stellar intensity.

Using Equation C7, we can determine photon shot noise (x = 0 and i′d = 0) and detector noise

(x 6= 0 and i′d 6= 0) on X, Y , and DC. We can also compare these values to the observed fluctuations

during each measurement.


σX

σY

σDC


shot

= γ0


BAC

BAC

min (Bmax, Bdetector)


1
2

(C12a)
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σY

σDC


detector

= γ


BAC

BAC

min (Bmax, Bdetector)


1
2

(C12b)


σX

σY

σDC


obs

=


std(Xsrc)2 + std(Xsky)2

std(Ysrc)2 + std(Ysky)2

std(DCsrc)2 + std(DCsky)2


1
2

(C12c)

Here, γ0 ≡ 2eGTADC, γ ≡ 2eG1+xTA(DC + i′dTA), and “std” indicates the sample standard devia-

tion. Finally, inserting Equations C12a through C12c into Equation C10 yields the uncertainty in

polarization from photon shot noise, detector noise, and observed fluctuations.

For the APDs, the gain noise factor is quoted as F = 2.2 at gain G = 300. From Equation C4,

we find xAPD = 0.138. For the PMTs, the gain noise factor is as follows (Hamamatsu Photonics

1999):

F =
1
ε

(
1 +

K∑
k=1

1
δk

)
(C13)

where ε is the PMT collection efficiency, δk is the secondary electron emission ratio at each dynode

k, and K is the number of dynodes (the multiplicative regions of the PMT). The PMT collection
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efficiency ε is the fraction of photoelectrons emitted by the photocathode that reach the first dynode.

Assuming ε = 1 and δk = δ (all dynodes have the same gain),

F =
δ

δ − 1
(C14)

and gain is simply G = δK . Since the PMT gain over its nine dynodes is 5 × 106 from Table 2.3,

δ = 0.55, F = 1.2, and x = 0.013. That is, gain from the PMTs is an order of magnitude less noisy

than from the APDs, which is why PMTs are preferred over APDs for faint objects.
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Chapter 3

Nightly Variability of Polarimetric
Standard Stars

3.1 Introduction

Nightly, high precision monitoring of polarization standard stars is necessary for calibration of polar-

ized sources. The POLISH instrument on the Hale 5-m telescope is designed to observe polarimetric

variability in Cygnus X-1, the most well-studied high mass X-ray binary. This binary is thought to

consist of a 40±10 M�, O9.7Iab supergiant and a 13.5−29 M� black hole at a distance of 2.2±0.2

kpc (Ziólkowski 2005). It has a polarimetric period of 2.8 days, which is half the orbital period of

5.6 days (Gies et al. 2003). The amplitude of variability is of order 0.1% in both Stokes Q and U

(Kemp et al. 1979, Dolan & Tapia 1989, Wolinski et al. 1996). The spectrum of the strong, linear

polarization of order 5% is consistent with interstellar origin (Gehrels 1972, Wolinski et al. 1996),

and other members of the Cygnus OB association also share polarization at this level. The intrinsic

polarization of the source is due to Thomson scattering by the abundant free electrons from the

supergiant as well as Rayleigh scattering from the circumbinary envelope. However, the geometry

of the scatterers is poorly understood.

The goal of this observing program is to constrain the orbital inclination of the HDE 226868/Cyg-

nus X-1 supergiant/black hole system and provide a mass estimate for the black hole. In order to

constrain the inclination to 5◦, however, polarimetric monitoring of Cygnus X-1 must be performed

with precision of one part in 104 to one part in ten million (Aspin et al. 1981). Systematic effects,

especially those that vary on nightly timescales, must be calibrated to this level. Thus, both polar-

ized and unpolarized standard stars must be observed to high precision.
1The following paper is derived from observations in this chapter: Wiktorowicz, S. J. 2009, ApJ, in press.
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Figure 3.1: Quantum efficiency curves for the red enhanced and blue enhanced APDs (detector 2
and 1, respectively).

3.2 Observations

The POLISH instrument (POLarimeter for Inclination Studies of High mass x-ray binaries/Hot

jupiters) is a visible light polarimeter commissioned at the Cassegrain focus of the Hale 5-m tele-

scope at Palomar Observatory, California. This instrument utilizes a photoelastic modulator (PEM)

and lock-in amplifiers to modulate and detect incident, polarized light at 100 kHz. These compo-

nents contribute to the high signal-to-noise observations by the instrument. A Wollaston prism feeds

a pair of avalanche photodiodes (APDs) or photomultiplier tubes (PMTs), depending on stellar in-

tensity. Stars with V < 7 mag are observed with avalanche photodiodes (see Figure 3.1 for quantum

efficiency versus wavelength), while stars fainter than this are observed with photomultiplier tubes.

The bandpass of the instrument is limited by the detectors; the lack of spectral filters increases

throughput of the instrument and allows for high precision observations. On-source guiding is ac-

complished by use of a beamsplitter, which allows ≈ 5% of the flux to be sent to a Xybion CCD

camera.
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Table 3.1: Observed Stars

Name Alt. Name RA Dec P Θ (◦) V Type

Algeniba γ Peg 00 13 14.23 +15 11 00.9 940.6(5.7)× 10−6 111.03(17) 2.83 B2IV
HD 7927 φ Cas 01 20 04.92 +58 13 53.8 3.6523(48)% 92.342(87) 5.01 F0Ia

HD 9270 η Psc 01 31 29.07 +15 20 44.8 105.0(2.9)× 10−6 122.3(1.1) 3.63 G7IIa

HR 5854 α Ser 15 44 16.07 +06 25 32.3 1.84(79)× 10−6 − 2.64 K2IIIb
HD 147084 o Sco 16 20 38.18 −24 10 09.6 4.4961(94)% 32.025(97) 4.55 A4II/III

HD 149026b SAO 65349 16 30 29.62 +38 20 50.3 568.9(7.3)× 10−6 80.83(51) 8.16 G0IV
HD 154445 SAO 141513 17 05 32.24 −00 53 31.7 4.5175(32)% 90.318(22) 5.64 B1V

u Herc HD 156633 17 17 19.57 +33 06 00.4 0.1618(15)% 171.90(18) 4.80 B1.5Vp+

γ Ophd HD 161868 17 47 53.56 +02 42 26.3 178.2(4.0)× 10−6 60.56(65) 3.75 A0V
HD 157999 σ Oph 17 26 30.98 +04 08 25.1 1.0482(15)% 85.079(51) 4.34 K3Iab

HD 175541b GJ 736 18 55 40.88 +04 15 55.2 1117.8(8.3)× 10−6 76.96(21) 8.03 G8V
HD 187929e η Aql 19 52 28.37 +01 00 20.4 1.9464(37)% 93.030(67) 3.5− 4.3 (F6.5−G2)Ib

Cygnus X-1f SAO 69181 19 58 21.68 +35 12 05.8 6.9733(94)% 138.729(33) 8.95 O9.7Iab

HD 189733b V452 Vul 20 00 43.71 +22 42 39.1 450.7(5.1)× 10−6 73.30(34) 7.68 K1.5V
HD 204827 SAO 33461 21 28 57.70 +58 44 24.0 7.9929(97)% 59.542(31) 8.00 O9.5V

HD 212311 SAO 34361 22 21 58.55 +56 31 52.8 407(27)× 10−6 176.37(30) 8.12 A0V

HR 8974 γ Cep 23 39 20.85 +77 37 56.2 4.6(1.0)× 10−6 − 3.23 K1IV

aβ Cepheid, pulsator
bExtrasolar planet host
cβ Lyrid, eclipsing binary
dDebris disk
eδ Cepheid, pulsator
fHigh mass X-ray binary

Each on-source measurement consists of one ≈ 30 second integration. Data are sky subtracted

by chopping the secondary mirror 25 arcsec due north of the source position. Polarization val-

ues are corrected for PEM systematics and then telescope polarization is subtracted. Polarization

uncertainty in each measurement is generally two to three times the photon shot noise limit, and

night-to-night polarization uncertainty scales according to shot noise statistics. That is, σP ∝ P
1
2 ,

where σP is the polarization uncertainty and P is the stellar polarization. The polarization noise

floor of the instrument is about eight parts in ten million for night-to-night observations.

The stars observed are listed in Table 3.1. V band magnitude and spectral type for HD 187929,

a δ Cepheid variable, are from Bastien et al. (1988) and Oke (1961) respectively. Spectral type for

HD 212311 is from Schmidt et al. (1992). All other non-polarimetric data are from the SIMBAD

database. The polarization and position angle values in parentheses represent the standard error of

the mean. This is not a measure of source variability; rather, these uncertainties are the square root

of the weighted variance of measurements divided by the square root of the number of measurements.

Weighting is proportional to number of detected photons to ensure that each detected photon, as

opposed to each measurement, is treated equally. This is particularly important when cirrus clouds

are present, because observed stellar intensity may vary throughout the night.
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The absolute polarization value for each star is related to instrumental gain factors and is not our

primary concern. Indeed, we find a correction factor of 0.836 ± 0.064 must be multiplied to polar-

ization measurements from POLISH to make absolute polarization consistent with the Heiles (2000)

polarization catalogs. However, this correction factor would increase uncertainty in our measure-

ments unnecessarily. Instead, we aim to discern relative changes in polarization with high precision,

so this correction factor is not applied to our data.

Cygnus X-1 is known to be variable of order ∆P ≈ 0.1%, and it is included in this paper as a

variable control source. This system illustrates the dangers of using the standard error of the mean

to determine polarimetric precision of the measurements. That is, Cygnus X-1 is listed in Table

3.1 with a standard error of σP ≈ 10−4, which is an order of magnitude lower than the known

∆P ≈ 0.1% variability. Normalizing the standard deviation of the measurements by the square root

of the number of measurements is only valid for normally distributed, i.e., non-variable, data.

3.3 Variability

3.3.1 Intra-Night Variability and Systematic Effects

To determine whether the data from a single night are normally distributed, we use the Kolmogorov-

Smirnov (K-S) test. We compare the cumulative distribution function (CDF) of measurements from

that night to the CDF for a normal distribution. This test is useful because it makes no assumptions

about how the data are distributed, and it is also applicable to data sets of differing size. The benefit

of the latter property of the K-S test will become apparent in the next section. The null hypothesis,

which posits that the CDF for a given night is randomly distributed, can be rejected if the confidence

level α is less than a predetermined value. In this section, rejection of the null hypothesis indicates

one, or both, of the following: (1) the star is non-variable on timescales less than one night, and/or

(2) systematic effects with timescales less than one night are significant.

In order to generate the CDF for a normal distribution, we first note the definition of the CDF:

CDF (Q) ≡
∫ Q
−∞ F (Q′) dQ′∫∞
−∞ F (Q′) dQ′

. (3.1)
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The probability density function for normally distributed data is

F (Q′) =
1

σ
√

2π
exp

[
−
(
Q′ −Q′

)2
2σ2

]
. (3.2)

The normalization in Equation 3.2 ensures that the denominator in Equation 3.1 is equal to unity.

In Equation 3.2, σ is the standard deviation of the data set, Q′, and the mean value of the data

set is given by Q′. Inserting F (Q′) from Equation 3.2 into Equation 3.1, we find the cumulative

distribution function for normally distributed data to be

CDF (Q) =
1
2

[
1 + erf

(
Q−Q
σ
√

2

)]
. (3.3)

Here, erf(x) is the error function and is defined as

erf (x) ≡ 2√
π

∫ x

0

e−t
2
dt. (3.4)

To calculate α, we find whether

D >
Kα√
n

(3.5a)

D > Kα

√
n1 + n2

n1n2
. (3.5b)

Here, D is the Kolmogorov-Smirnov statistic, which represents the maximum deviation between the

CDF from a given night and the CDF expected from the normal distribution. When comparing

one data set to a theoretical distribution, Equation 3.5a is used, and Equation 3.5b is used when

comparing two data sets. The number of measurements in each data set is given by n, n1, or n2.

The relationship between Kα and α is

√
2π
Kα

∞∑
i=1

exp

[
− (2i− 1)2

π2

8K2
α

]
= 1− α. (3.6)
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Measurement of D allows one to solve for Kα in Equation 3.5b, and the confidence level α of non-

variability can then be found from Equation 3.6.

Confidence levels of normally distributed, nightly data are listed in Table 3.2. It is convenient

to convert α to units of the standard deviation, σ, which is given by
√

2 erf−1 (α). Here, erf−1 (x)

is the inverse of the error function. Even though only two detectors are used at one time, com-

bining the simultaneous polarization measurement from both detectors is useful. To do this, the

weighted mean polarization is taken for each simultaneous pair of measurements. Again, the weight-

ing is proportional to number of photons detected, which is proportional to the signal divided by

the detector gain. Combination of measurements from both detectors is referred to as “Detector 1,2”.

The range of confidence values across all detectors from Table 3.2, for each star and for each

night, are plotted in Figure 3.2. We require normal distribution confidence level to be < 1σ to claim

variability or significant systematic effects during a single night. However, all nights have roughly

the same range of confidence levels, and the upper levels are > 3σ. Thus, variability and systematic

effects on timescales less than one night do not appear to be significant. Figure 3.3 shows each star’s

confidence levels from Table 3.2 separately. The horizontal, dashed line indicates the 1σ confidence

level of normal distribution for a particular star’s measurements on a particular night. There ap-

pear to be no systematic trends in confidence level seen in all stars during the run, reiterating the

conclusion from Figure 3.2 that intra-night systematic effects are not significant.

No stars appear to be significantly variable during a single night. The low confidence levels in

both Stokes Q and U for HR 8974 on UT August 5 are inconsistent with the high confidence levels

on UT August 3 and 6. Reasons for this are unknown, but it is still likely that polarization from this

source is not variable at a detectable level on timescales less than one night. Stokes Q data for HD

147084 do not exist. As stated in section 1, polarization from Cygnus X-1 is known to be variable on

the order of ∆Q,U ≈ 0.1% with a 2.8 day period. Cygnus X-1 observations lasted about three hours

per night, so variations of ∆Q,U ≈ 10−5 to 10−4 are therefore to be expected during each night.

However, this variability does not appear to be detected with much confidence, as measurements

are distributed randomly to ≈ 2σ in general.
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Table 3.2: Confidence of Random Distribution

UT Date Star Q1 Conf. Q2 Conf. Q1,2 Conf. U1 Conf. U2 Conf. U1,2 Conf.
2007 Aug 3 HR 5854 0.3σ 2.6σ 0.7σ 0.9σ 1.5σ 0.4σ
2007 Aug 4 · · · 2.8σ 1.7σ 2.8σ 2.4σ 2.0σ 3.2σ
2007 Aug 5 · · · 2.6σ 2.2σ 4.0σ 2.0σ 1.8σ 3.6σ
2007 Aug 6 · · · 3.0σ 0.7σ 1.8σ 2.5σ 1.8σ 1.7σ
2007 Aug 3 HR 8974 3.6σ 2.9σ 3.7σ 2.5σ 1.7σ 4.9σ
2007 Aug 4 · · · − − − 3.2σ 4.6σ 2.3σ
2007 Aug 5 · · · 1.7σ 1.5σ 0.6σ 0.5σ 1.7σ 1.8σ
2007 Aug 6 · · · 2.5σ 3.1σ 3.5σ 4.0σ 0.9σ 2.5σ
2007 Aug 4 HD 9270 1.5σ − − 1.7σ − −
2007 Aug 5 · · · 3.7σ 2.4σ 1.8σ 2.8σ 1.2σ 4.4σ
2007 Aug 6 · · · 1.7σ 1.7σ 2.1σ 2.9σ 1.4σ 3.9σ
2007 Aug 4 γ Oph 0.9σ 1.9σ 2.0σ 1.9σ 2.5σ 4.3σ
2007 Aug 5 · · · 0.5σ 2.4σ 2.2σ 2.3σ 3.4σ 2.5σ
2007 Aug 6 · · · 0.8σ 3.4σ 0.7σ 1.6σ 1.8σ 1.7σ
2007 Aug 3 HD 212311 0.6σ 1.7σ 0.9σ 3.2σ 1.5σ 1.6σ
2007 Aug 4 · · · 1.3σ 1.3σ 3.2σ 2.6σ 2.1σ 2.0σ
2007 Aug 5 · · · 0.8σ 1.0σ 1.7σ 0.2σ 1.2σ 1.6σ
2007 Aug 6 · · · 1.2σ 1.8σ 1.2σ 0.8σ 1.5σ 2.6σ
2007 Aug 5 Algenib 0.9σ 2.0σ 1.9σ 0.2σ 2.7σ 0.6σ
2007 Aug 6 · · · 0.4σ 2.9σ 0.4σ 2.8σ 1.5σ 1.5σ
2007 Aug 5 HD 157999 0.8σ 2.4σ 0.7σ 1.2σ 1.6σ 0.9σ
2007 Aug 6 · · · 1.6σ 0.3σ 1.7σ 1.2σ 2.2σ 1.5σ
2007 Aug 3 HD 187929 2.3σ 1.5σ 2.2σ 1.2σ 0.6σ 0.9σ
2007 Aug 5 · · · 1.4σ 2.7σ 2.1σ 2.5σ 2.5σ 1.5σ
2007 Aug 6 · · · 2.6σ 1.6σ 3.9σ 2.7σ 2.2σ 1.8σ
2007 Aug 3 HD 147084 − − − 1.3σ 0.4σ 0.8σ
2007 Aug 4 · · · − − − 1.1σ 3.4σ 1.4σ
2007 Aug 3 HD 204827 2.6σ 2.9σ 3.7σ 1.8σ 2.6σ 2.7σ
2007 Aug 4 · · · − − − 4.2σ 2.4σ 1.4σ
2007 Aug 5 · · · 2.4σ 1.5σ 0.6σ 2.5σ 2.8σ 2.1σ
2007 Aug 6 · · · 1.1σ 1.2σ 1.2σ 2.2σ 3.1σ 1.2σ
2007 Aug 3 Cygnus X-1 2.4σ 1.6σ 1.9σ 1.1σ 2.7σ 2.4σ
2007 Aug 4 · · · 1.0σ 1.2σ 2.4σ 0.3σ 1.8σ 0.8σ
2007 Aug 5 · · · 1.5σ 1.1σ 1.7σ 1.0σ 2.6σ 1.2σ
2007 Aug 6 · · · 0.8σ 0.7σ 0.7σ 0.9σ 1.5σ 2.1σ
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Figure 3.2: Nightly confidence range of normal distribution for all stars. Each vertical line represents
the range in confidence level for each star across all detector combinations. Ranges for each star
have been displaced from their neighbors in the x-direction for clarity. The points on 2007 Aug 4
are for HD 9270, which only has data from one detector (this can also be seen in Figure 3.3).

Figure 3.3: Nightly confidence range of normal distribution for individual stars. UT date ranges
between 2007 Aug 3 and 2007 Aug 6. Lower values of σQ,U indicate non-random distribution of
nightly data.
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A hint of intra-night variability in Cygnus X-1 exists for the UT 2007 Aug 6 Stokes Q data, where

the confidence of normal distribution ranges from 0.7σ to 0.8σ. Both detector 1 and detector 2 (blue

and red enhanced APDs, respectively) agree on this confidence level. However, we do not claim to

have detected variability in Cygnus X-1 during this night because (1) the Stokes U confidence ranges

for this object do not lie entirely below the 1σ threshold, and (2) the Stokes Q confidence ranges for

HD 204827 for that night are also low and tight at 1.1σ to 1.2σ. It appears that some systematic

effect caused non-random distribution of data for both of these objects, during this particular night,

and only for the Stokes Q data. We currently have no explanation for this.

3.3.2 Night-to-Night Variability

To test for stellar variability over timescales of one night or longer, we compare the CDF of mea-

surements between a pair of nights according to the Kolmogorov-Smirnov (K-S) test. We require

α < 0.01 in order to reject the null hypothesis and claim stellar variability. Plotted in Figures 3.4

and 3.5 are CDFs measured with each detector, or with the combination of detectors, for the pair

of nights listed in the captions. The heavy, solid line is the CDF for the earlier night of the pair,

and the thin, solid line is the CDF for the later night. The vertical, dotted line is the D statistic for

each pair of CDFs.

To determine extent of polarimetric variability, we find the difference between each weighted

mean Stokes parameter for the pair of nights tested. The uncertainty in this variability estimate

is the quadrature addition of uncertainties from each night. The uncertainty from each night is

taken to be the square root of the weighted variance divided by the square root of the number

of measurements. We list α values and polarimetric variability in Tables 3.3 to 3.9. Absolute

variability is defined by ∆Q,U ≡ Q,Unight2 − Q,Unight1, while relative variability is defined as

δQ,U ≡ (Q,Unight2 −Q,Unight1) / |Q,Unight1|. Weighted mean polarimetric variability ∆Q,Umean

and δQ,Umean are taken across detector 1, detector 2, and the detector 1,2 combination to deter-

mine the likelihood of variability. Here, the weighting is the inverse square of the uncertainty in each

detector’s estimate of variability. Significant variability is claimed if the following three conditions

are met: (1) α > 0.01 for both detectors and their combination, (2) ∆Qmean or ∆Umean > 3 times

their uncertainty, and (3) δQmean or δUmean > 3 times their uncertainty.
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Figure 3.4: CDFs of HR 5854 for 2007 Aug 3 and 4 (a), Aug 4 and 5 (b), Aug 5 and 6 (c), Aug 3
and 5 (d), Aug 4 and 6 (e), Aug 3 and 6 (f).



91

Figure 3.5: CDFs of HD 187929 for 2007 Aug 5 and 6 (a), Aug 3 and 5 (b), and Aug 3 and 6 (c).
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Table 3.3: HR 5854 Variability

UT Date 2007 Aug 3 2007 Aug 4 2007 Aug 5 2007 Aug 3 2007 Aug 4 2007 Aug 3
∆Nights 1 1 1 2 2 3

αQ1 0.065 0.094 0.003 2× 10−4 0.086 0.100
αQ2 0.759 0.270 0.007 0.759 0.051 0.145
αQ1,2 0.055 0.491 0.169 0.003 0.353 0.065

αU1 0.269 0.579 0.186 0.305 0.269 0.334
αU2 0.290 0.382 0.469 0.699 0.847 0.927
αU1,2 0.065 0.954 0.153 0.080 0.123 0.221

∆Q1 (×10−6) −6.7(5.8) −12.0(6.9) 26.3(8.5) −18.7(6.1) 14.3(8.3) 7.6(7.6)
∆Q2 (×10−6) −2.6(6.3) 1.5(7.2) −9.3(9.6) −1.0(7.5) −7.8(8.7) −10.4(8.9)

∆Q1,2 (×10−6) −5.2(4.8) −8.3(6.3) 11.1(8.6) −13.5(5.7) 2.8(8.1) −2.4(7.6)
∆QMean (×10−6) −5.0(1.5) −6.6(5.5) 11(14) −12.4(6.7) 3.4(8.9) −0.9(7.2)

∆U1 (×10−6) 3.1(6.5) 6.1(8.2) −17.6(9.7) 9.3(7.7) −11.5(8.8) −8.4(8.4)
∆U2 (×10−6) 5.3(7.6) −8.5(7.9) 8.2(7.7) −3.2(7.2) −0.2(8.1) 5.1(7.4)

∆U1,2 (×10−6) 3.2(5.8) 2.7(6.6) −13.1(7.2) 5.9(6.0) −10.4(7.1) −7.2(6.5)
∆UMean (×10−6) 3.69(91) 0.3(5.9) −6(11) 4.1(4.9) −7.5(5.0) −3.5(6)

δQ1 −1.09(77) −20(190) 2.09(70) −3.1(1.4) 30(210) 1.2(1.7)
δQ2 −2.3(6.8) 1.0(4.0) − −0.9(5.3) −5(19) −9(36)
δQ1,2 −1.17(88) −11(61) 1.23(79) −3.0(1.7) 4(17) −0.5(1.6)
δQMean −1.13(11) 0.98(91) 1.71(43) −2.96(42) −0.1(4.7) 0.31(94)

δU1 2.5(6.2) 3(12) −2.2(1.3) 7(21) −6(14) −7(25)
δU2 10(120) −1.5(1.0) 3.1(4.6) −6(56) −0.0(1.4) 10(110)
δU1,2 4(11) 1.2(4.7) −2.6(1.9) 7(23) −4.5(7.3) −8(36)
δUMean 2.73(59) −1.31(66) −2.1(1.2) 6.0(3.4) −0.24(97) −6.5(3.1)

Table 3.4: HR 8974 Variability

UT Date 2007 Aug 3 2007 Aug 4 2007 Aug 5 2007 Aug 3 2007 Aug 4 2007 Aug 3
∆Nights 1 1 1 2 2 3

αQ1 − − 0.003 0.003 − 0.220
αQ2 − − 0.005 0.648 − 0.001
αQ1,2 − − 0.020 0.001 − 0.404

αU1 0.259 0.236 0.031 3× 10−4 0.065 0.009
αU2 0.225 0.134 0.189 0.092 0.788 0.094
αU1,2 0.948 0.270 0.002 0.048 0.032 0.004

∆Q1 (×10−6) − − −47(12) 32.3(8.6) − −15(10)
∆Q2 (×10−6) − − 27.6(9.3) −3.5(7.1) − 24.1(8.5)

∆Q1,2 (×10−6) − − −29(11) 29.4(8.8) − 0.7(8.0)
∆QMean (×10−6) − − −10(33) 16(17) − 5(15)

∆U1 (×10−6) −9.5(6.4) −14(11) 68(15) −23(10) 54(13) 45(13)
∆U2 (×10−6) −12.2(7.2) 26(12) −25(13) 14(12) 1.2(8.8) −11.0(8.2)

∆U1,2 (×10−6) −8.8(5.4) −9.9(8.1) 42.7(9.4) −18.6(7.4) 32.9(7.9) 24.1(7.2)
∆UMean (×10−6) −9.8(1.4) −3(15) 29(35) −13(14) 25(20) 14(21)

δQ1 − − −1.72(38) 6.4(5.1) − −2.9(4.0)
δQ2 − − 5.2(4.6) −1.9(7.5) − 13(29)
δQ1,2 − − −1.12(27) 7.8(7.3) − 0.2(2.0)
δQMean − − −1.31(42) 4.8(3.8) − −0.4(1.5)

δU1 −3.5(4.0) −2.0(2.7) 3.3(1.2) −9(11) 8.0(5.6) 17(25)
δU2 −10(38) 1.91(88) −2.0(1.0) 11(35) 0.09(63) −9(34)
δU1,2 −5.6(9.3) −1.4(1.7) 2.50(71) −12(21) 4.6(2.4) 15(32)
δUMean −3.90(95) 1.0(1.5) 1.5(2.1) −7.8(5.4) 0.5(1.4) 10(11)
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Table 3.5: HD 9270 & γ Oph Variability

Star HD 9270 HD 9270 HD 9270 γ Oph γ Oph γ Oph

UT Date 2007 Aug 4 2007 Aug 5 2007 Aug 4 2007 Aug 4 2007 Aug 5 2007 Aug 4
∆Nights 1 1 2 1 1 2

αQ1 0.685 0.584 0.124 0.172 0.001 0.005
αQ2 − 0.016 − 0.329 0.013 0.172
αQ1,2 − 0.873 − 0.035 0.172 0.172

αU1 0.329 0.032 0.251 0.998 0.015 0.004
αU2 − 0.039 − 0.811 0.249 0.094
αU1,2 − 0.998 − 0.860 0.109 0.094

∆Q1 (×10−6) 0(12) −25(15) −24(13) 4(11) 46(14) 50(14)
∆Q2 (×10−6) − 27(16) − 0.4(9.8) −29(13) −28(13)

∆Q1,2 (×10−6) − −6(13) − 5.4(8.2) 19(10) 25(11)
∆QMean (×10−6) − −2(20) − 3.4(2.2) 12(28) 15(31)

∆U1 (×10−6) −11.4(7.8) 19(11) 8(10) −2(10) −40(14) −42(13)
∆U2 (×10−6) − −33(17) − 6(12) 11(12) 17(12)

∆U1,2 (×10−6) − 0.7(9.6) − 2.2(7.7) −22(10) −19.5(9.8)
∆UMean (×10−6) − 3(17) − 1.8(2.8) −16(20) −15(22)

δQ1 (%) 1(30) −62(51) −61(37) 3.3(9.9) 45(12) 47(12)
δQ2 (%) − 44(23) − 0(11) −33(16) −32(17)
δQ1,2 (%) − −13(32) − 5.3(7.7) 20(10) 24(10)
δQMean (%) − 14(38) − 3.6(1.9) 18(27) 23(27)

δU1 (%) −12.6(9.1) 19.1(10.0) 9(11) −1.4(6.4) −25.2(8.2) −26.2(7.8)
δU2 (%) − −41(22) − 3.5(7.4) 6.9(7.8) 10.7(8.1)
δU1,2 (%) − 0.7(9.9) − 1.4(4.9) −13.4(6.0) −12.2(5.9)
δUMean (%) − 5(17) − 1.1(1.7) −11(12) −10(14)

Table 3.6: HD 212311 Variability

HD 212311 2007 Aug 3 2007 Aug 4 2007 Aug 5 2007 Aug 3 2007 Aug 4 2007 Aug 3
∆Nights 1 1 1 2 2 3

αQ1 0.423 0.936 0.602 0.560 0.975 0.701
αQ2 0.576 0.883 0.037 0.560 0.478 0.034
αQ1,2 0.576 0.739 0.164 0.978 0.070 0.070

αU1 0.112 0.055 0.353 0.665 0.516 0.079
αU2 0.356 0.305 0.959 0.982 0.300 0.966
αU1,2 0.969 0.869 0.875 0.665 0.579 0.485

∆Q1 (%) 0.001(24) −0.002(21) 0.011(21) −0.001(24) 0.009(21) 0.010(24)
∆Q2 (%) −0.019(19) 0.013(18) −0.042(18) −0.006(17) −0.029(21) −0.048(0)

∆Q1,2 (%) −0.010(12) 0.006(10) −0.018(11) −0.005(12) −0.012(11) −0.022(13)
∆QMean (%) −0.0105(61) 0.0062(46) −0.018(17) −0.0043(17) −0.011(11) −0.023(18)

∆U1 (%) −0.046(24) 0.021(24) −0.024(28) −0.026(24) −0.003(28) −0.049(27)
∆U2 (%) 0.040(19) −0.036(19) −0.001(23) 0.005(18) −0.037(24) 0.003(23)

∆U1,2 (%) 0.003(12) −0.010(13) −0.012(15) −0.008(13) −0.023(14) −0.020(14)
∆UMean (%) 0.004(27) −0.012(18) −0.0112(71) −0.007(10) −0.023(10) −0.019(16)

δQ1 0.05(79) −0.06(62) 0.36(81) −0.02(76) 0.28(74) 0.34(94)
δQ2 −0.31(27) 0.31(50) −0.75(27) −0.09(26) −0.67(37) −0.77(25)
δQ1,2 −0.21(21) 0.15(29) −0.41(22) −0.09(23) −0.32(26) −0.46(20)
δQMean −0.236(74) 0.16(11) −0.50(24) −0.090(16) −0.38(25) −0.56(21)

δQ1 −2.4(1.5) 0.75(66) −4(12) −1.36(97) −0.1(1.1) −2.6(1.8)
δQ2 2.6(1.7) −1.43(56) −0.1(2.2) 0.3(1.0) −1.49(80) 0.2(1.4)
δQ1,2 5(52) −5(17) −1.4(3.1) −10(200) −10(38) −30(470)
δUMean −0.1(2.5) −0.5(1.1) −0.61(73) −0.57(83) −0.99(68) −0.9(1.4)
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Table 3.7: Stellar Variability

Star Algenib HD 157999 HD 187929 HD 187929 HD 187929 HD 147084

UT Date 2007 Aug 5 2007 Aug 5 2007 Aug 5 2007 Aug 3 2007 Aug 3 2007 Aug 3
∆Nights 1 1 1 2 3 1

αQ1 2× 10−5 1× 10−8 3× 10−6 5× 10−9 8× 10−8 −
αQ2 1× 10−5 1× 10−8 3× 10−6 5× 10−9 1× 10−6 −
αQ1,2 4× 10−4 3× 10−6 9× 10−5 5× 10−9 8× 10−8 −
αU1 0.013 0.037 0.375 0.320 0.509 0.005
αU2 0.431 0.211 0.509 0.320 0.036 0.441
αU1,2 0.086 0.211 0.660 0.320 0.181 0.005

∆Q1 (×10−6) −138(22) 420(17) 849(53) 509(34) 1358(49) −
∆Q2 (×10−6) 62(10) −544(22) −816(41) 506(38) −309(34) −

∆Q1,2 (×10−6) −62(15) 143(18) 343(46) 472(34) 815(34) −
∆QMean (×10−6) 3(76) 90(370) −20(700) 495(17) 460(670) −

∆U1 (×10−6) 34(21) −99(38) 109(69) −155(82) −46(82) 1000(150)
∆U2 (×10−6) −15(11) 94(37) −144(73) −182(86) −326(83) −350(210)

∆U1,2 (×10−6) 18(16) −46(37) 36(68) −175(82) −139(82) 492(63)
∆UMean (×10−6) 1(20) −16(81) 10(100) −170(11) −170(120) 497(29)

δQ1 (%) −24.4(4.6) 4.09(17) 4.66(29) 2.72(18) 7.25(26) −
δQ2 (%) 8.5(1.3) −5.10(22) −4.31(22) 2.61(19) −1.59(18) −
δQ1,2 (%) −10.0(2.6) 1.37(17) 1.86(25) 2.49(18) 4.30(18) −
δQMean (%) 3(10) 0.9(3.5) −0.0(3.8) 2.608(95) 2.4(3.5) −
δU1 (%) 5.5(3.3) −5.5(2.0) 5.3(3.3) −8.2(4.5) −2.4(4.4) 2.51(40)
δU2 (%) −2.4(1.7) 5.0(2.0) −6.8(3.5) −9.3(4.7) −16.8(4.8) −0.84(50)
δU1,2 (%) 2.9(2.5) −2.5(2.0) 1.7(3.3) −9.1(4.6) −7.3(4.5) 1.22(16)
δUMean (%) 0.3(3.2) −1.0(4.4) 0.4(4.9) −8.88(50) −8.4(5.8) 1.22(74)
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Table 3.8: HD 204827 Variability

HD 204827 2007 Aug 3 2007 Aug 4 2007 Aug 5 2007 Aug 3 2007 Aug 4 2007 Aug 3
∆Nights 1 1 1 2 2 3

αQ1 − − 0.013 0.879 − 0.019
αQ2 − − 0.560 0.602 − 0.483
αQ1,2 − − 0.172 0.725 − 0.212

αU1 0.029 0.071 0.064 0.455 0.864 0.005
αU2 0.106 0.183 0.182 0.759 0.677 0.097
αU1,2 0.011 0.024 0.025 0.635 0.677 0.003

∆Q1 (%) − − −0.059(19) 0.011(21) − −0.048(18)
∆Q2 (%) − − −0.021(33) −0.009(31) − −0.030(30)

∆Q1,2 (%) − − −0.037(20) 0.004(20) − −0.033(18)
∆QMean (%) − − −0.045(14) 0.0046(71) − −0.0387(77)

∆U1 (%) 0.175(38) −0.127(37) 0.099(31) 0.048(32) −0.028(37) 0.147(32)
∆U2 (%) 0.091(21) −0.098(24) 0.061(28) −0.007(24) −0.037(25) 0.054(26)

∆U1,2 (%) 0.127(22) −0.113(23) 0.080(20) 0.015(20) −0.033(23) 0.094(20)
∆UMean (%) 0.117(29) −0.109(10) 0.079(13) 0.014(19) −0.0335(32) 0.092(32)

δQ1 (%) − − −1.54(51) 0.29(54) − −1.25(48)
δQ2 (%) − − −0.54(85) −0.24(80) − −0.78(76)
δQ1,2 (%) − − −0.97(53) 0.11(52) − −0.85(46)
δQMean (%) − − −1.15(37) 0.12(18) − −1.00(21)

δU1 (%) 2.57(56) −1.81(52) 1.44(45) 0.71(47) −0.40(53) 2.16(48)
δU2 (%) 1.28(29) −1.37(33) 0.86(40) −0.10(34) −0.52(36) 0.76(37)
δU1,2 (%) 1.83(32) −1.59(32) 1.14(29) 0.21(29) −0.46(32) 1.36(28)
δUMean (%) 1.67(43) −1.54(16) 1.13(20) 0.19(28) −0.473(41) 1.32(47)

Table 3.9: Cygnus X-1 Variability

Cygnus X-1 2007 Aug 3 2007 Aug 4 2007 Aug 5 2007 Aug 3 2007 Aug 4 2007 Aug 3
∆Nights 1 1 1 2 2 3

αQ1 4× 10−17 1× 10−7 1× 10−16 2× 10−17 2× 10−7 4× 10−6

αQ2 3× 10−16 2× 10−5 6× 10−13 6× 10−17 2× 10−5 6× 10−5

αQ1,2 2× 10−16 7× 10−8 6× 10−17 7× 10−17 4× 10−7 8× 10−8

αU1 3× 10−10 4× 10−11 7× 10−14 0.056 0.007 2× 10−8

αU2 1× 10−17 1× 10−16 1× 10−18 3× 10−4 8× 10−6 4× 10−14

αU1,2 3× 10−17 2× 10−16 3× 10−17 0.016 4× 10−6 1× 10−16

∆Q1 (%) −0.210(15) −0.100(15) 0.222(14) −0.310(13) 0.121(15) −0.089(13)
∆Q2 (%) −0.216(18) −0.115(19) 0.218(19) −0.331(18) 0.103(18) −0.113(18)

∆Q1,2 (%) −0.216(12) −0.107(13) 0.218(13) −0.323(12) 0.111(13) −0.105(12)
∆QMean (%) −0.2139(28) −0.1067(55) 0.2193(18) −0.3199(80) 0.1124(70) −0.1006(97)

∆U1 (%) −0.207(24) 0.233(24) −0.197(18) 0.026(21) 0.036(22) −0.171(19)
∆U2 (%) −0.183(12) 0.240(11) −0.175(10) 0.057(12) 0.065(11) −0.118(12)

∆U1,2 (%) −0.188(11) 0.235(12) −0.1817(98) 0.047(10) 0.053(11) −0.1352(87)
∆UMean (%) −0.1881(68) 0.2370(26) −0.1809(69) 0.0479(92) 0.0563(90) −0.134(15)
δQ1 (%) −20.2(1.3) −12.1(1.7) 30.4(2.3) −29.8(1.1) 14.6(2.0) −8.5(1.2)
δQ2 (%) −19.3(1.4) −12.8(2.0) 27.8(2.8) −29.7(1.4) 11.4(2.2) −10.1(1.5)
δQ1,2 (%) −20.2(1.1) −12.6(1.5) 29.2(2.1) −30.2(1.0) 12.9(1.7) −9.8(1.1)
δQMean (%) −19.97(36) −12.46(28) 29.26(97) −29.95(23) 13.1(1.2) −9.44(69)
δU1 (%) −3.04(36) 3.32(33) −2.90(27) 0.38(30) 0.51(31) −2.51(28)
δU2 (%) −2.64(18) 3.36(15) −2.54(15) 0.81(17) 0.91(15) −1.71(17)
δU1,2 (%) −2.74(16) 3.32(16) −2.66(15) 0.68(14) 0.75(15) −1.96(13)
δUMean (%) −2.73(11) 3.343(21) −2.64(11) 0.70(13) 0.80(12) −1.95(24)
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Most stars are intrinsically unpolarized. For instance, the Sun itself is polarized at the level

of less than one part in ten million (Kemp et al. 1987). Polarization of starlight is thought to

be caused by interstellar dust clouds along the line of sight. Davis & Greenstein (1951) proposed

that elongated dust grains, aligned with their spin axes parallel to the galactic magnetic field, cause

preferential extinction of starlight with electric field parallel to the long axis of the grains. Serkowski

et al. (1975) discovered an empirical relation to determine whether the polarization of starlight is

consistent with origin from interstellar dust. By comparing the wavelength of peak polarization for

364 stars, they find

P (λ)
Pmax

= exp
[
−1.15 ln2

(
λmax

λ

)]
. (3.7)

Here, Pmax is the maximum polarization as a function of wavelength and λmax is the wavelength of

maximum polarization. This wavelength is taken to be the mean grain size along the line of sight to

the star. Stars with wavelength dependence of polarization lying along this curve are thought to be

dominated by interstellar polarization. According to Serkowski et al. (1975), the following stars in

our sample are dominated by interstellar polarization: HD 147084, HD 157999, HD 187929, and HD

204827. Additionally, Schmidt et al. (1992) find good fits of their data to interstellar polarization

curves for HD 204827. Even Cygnus X-1 appears to owe ≈ 98% of its polarization to interstellar

dust grains (Gehrels 1972, Wolinski et al. 1996).

If grain orientation varies along the line of sight, circular polarization will be produced (Serkowski

1962). Additionally, if gain size also varies along the line of sight, position angle of polarization will

be wavelength-dependent (Martin 1974). Therefore, the combination of circular polarization and

wavelength-dependent linear polarization measurements can constrain grain properties along the

line of sight.

Mean polarization versus distance is shown in Figure 3.6. More distant stars tend to have

stronger polarization, which is expected if the origin is interstellar. Indeed, all stars in this figure

with polarization P > 1% are dominated by interstellar polarization (cf. Serkowski et al. 1975).

Stars with polarization less than this have not been investigated by Serkowski et al. (1975), because

they had probably been assumed to be unpolarized. Thus, it is probable that polarization from all

stars contains a contribution from the interstellar medium.
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Figure 3.6: Polarization as a function of stellar distance. Stars with only one night of obsevations
have also been included. The dashed and dotted lines are guides for the eye.

It is interesting that γ Oph has about an order of magnitude stronger polarization than the

dashed trend in Figure 3.6 might indicate. This excess polarization may be due to the debris disk

around γ Oph. However, the three stars lying near the dotted trend (γ Oph, HD 154445, and HD

147084) are all close to each other in the sky toward the Galactic Center. This region of enhanced

extinction should also have strong interstellar polarization, which should be manifested as a vertical

offset to the dashed line.

Similar polarimetric position angle between these three stars would imply that polarization of

γ Oph is not due to its debris disk. However, position angles of net polarization are 60.56± 0.65◦,

90.318 ± 0.022◦, and 32.025 ± 0.097◦ for γ Oph, HD 154445, and HD 147084, respectively. Thus,

there is no common orientation of interstellar dust grains in the lines of sight for these three stars.

Indeed, the polarization maps of Mathewson & Ford (1970) show large differences in polarimetric

position angle between these stellar locations. The star with no variability data with P ≈ 1% is HD

154445, and the possibly variable star of similar polarization is HD 147084.
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However, some stars are intrinsically polarized, evidenced by presence of wavelength-dependent

position angle and absence of circular polarization. Intrinsic polarization may be due to circumstel-

lar material or to tidal distortion from binary companions. Polarimetric variability may therefore

be caused by intrinsic processes in the stellar atmosphere or surroundings, or it may be caused by

changes in the line of sight interstellar medium. A first-order approach to determine the likelihood

of ISM variability is to calculate the time taken for a star to traverse its own disk from proper

motion, tvar. Table 3.10 lists proper motions and parallaxes from the SIMBAD database as well

as stellar radii R from the Catalog of Apparent Diameters and Absolute Radii of Stars (CADARS:

Pasinetti-Fracassini et al. 2001), 3rd Edition. A distance estimate was not found in the literature

for HD 212311, so we approximate this by scaling its V band magnitude (from Table 3.1) to the

magnitude and distance of γ Oph. This star has a similar spectral type to HD 212311. HD 7927,

HD 149026, HD 175541, HD 189733, HD 204827, and HD 212311 are assumed to have radii R ≈ R�.

Parallax for Cygnus X-1 from SIMBAD is 0.56 ± 1.01 mas, while Ziólkowski (2005) presents a

distance of 2.15 ± 0.2 kpc (3σ) for their evolutionary models of this object based on spectroscopy

and photometry from Massey et al. (1995). The two values are consistent, but the Massey et al.

(1995) value is more precise. We therefore convert the Massey et al. (1995) distance into expected

parallax and include in Table 3.10. Stellar radii, R, are from the Catalog of Apparent Diameters and

Absolute Radii of Stars (CADARS: Pasinetti-Fracassini et al. 2001), 3rd Edition, for all but HDE

226868 (Cygnus X-1 companion), HD 204827, and HD 212311. The CADARS catalog is obtained

through the VizieR Service (Ochsenbein et al. 2000). Radius of HDE 226868 is 22.77± 2.3 R� from

Ziólkowski (2005).

Since the bandpasses differ slightly between the red and blue enhanced APDs (Figure 3.1), we

attempt to measure change in polarization and position angle for stars observed with APDs. Dif-

ferences in run-averaged values between detectors are listed in Table 3.11. Difference in P between

APDs 2 and 1 is the quadrature addition of the differences in the Stokes parameters. Again, values

in bold are significant at the level of three or more times the uncertainty. It can be seen that we de-

tect significant differences in polarization between the APDs for three out of the five stars for which

interstellar polarization has been seen. The other two out of five (HD 147084 and HD 154445) show

differences in polarization between detector that are significant at 2.4 and 1.6 times the uncertainty,

respectively.
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We investigate whether differences in polarization from each APD are due to their bandpasses

resolving the shape of the interstellar polarization spectrum. Table 3.12 shows that the gain factor

necessary to convert our measured Stokes parameters to absolute polarization does not vary between

APDs 1 and 2. Therefore, dividing the degree of polarization measured by each APD cancels out any

absolute polarization gain factor and takes advantage of our high precision data. We numerically

integrate the product of the Serkowski et al. (1975) polarization spectrum from Equation 3.7 with

the quantum efficiency of each APD.

The ratio of the integrals from both APDs gives the expected effect of the interstellar polar-

ization spectrum, (P2/P1)exp. Values of λmax represent the mean value from the compilation of

Serkowski et al. (1975) weighted by the inverse square of the uncertainty. The observed ratios of

polarization from both APDs, (P2/P1)obs, are also listed. Bold values indicate significant departures

from a ratio of unity. We plot the expected and observed ratios of P2/P1 in Figure 3.7. The large

difference between expected and observed ratios of polarization between the APDs suggests that

the differing bandpasses between the APDs may not be significant. The observed ratios seem to be

correlated with the expected ratios from the interstellar polarization spectrum, but we currently do

not understand the cause of this. Stability of APD1 is known to be far superior to that of APD2,

so the anomalously high polarizations detected by APD2 may be a systematic effect.

3.4 Discussion

3.4.1 Standard Stars

HR 5854 (α Ser, HD 140573). No variability estimates were found in the literature for this

unpolarized star. While some α, ∆Q,U , and δQ,U values in Table 3.3 indicate variability, the large

majority indicate this star is non-variable on timescales of one to three nights. This is consistent

with the essentially unpolarized nature of this star as well as the minimum ≈ 1 month timescale for

significant change in the line of sight ISM column. We find no significant difference in polarization

between detectors.

HD 9270 (η Psc, HR 437). The interstellar polarization maps of Mathewson & Ford (1970)

show weak polarization in this region of the sky. No variability estimates were found in the literature
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Table 3.10: Variability of Interstellar Polarization

Name P Θ (◦) PMRA PMDec π R tvar
(mas/yr) (mas/yr) (mas) (mas) (days)

HR 5854 1.84(79)× 10−6 − +134.66 +44.14 44.54(71) 4.8 25
HR 8974 4.6(1.0)× 10−6 − −48.85 +127.19 72.50(52) 3.9 21
HD 9270 105.0(2.9)× 10−6 +122.3(1.1) +25.73 −3.29 11.09(82) 3.8 107
γ Oph 178.2(4.0)× 10−6 60.56(65) −23.15 −75.12 34.42(99) 0.61 5.7

HD 212311 407(27)× 10−6 176.37(30) +21.00 +1.40 ≈ 5 ≈ 0.02 ≈ 0.4
HD 189733 450.7(5.1)× 10−6 73.30(34) −2.49 −250.81 51.94(87) ≈ 0.2 ≈ 0.4
HD 149026 568.9(7.3)× 10−6 80.83(51) −77.12 +53.34 12.68(79) ≈ 0.06 ≈ 0.2

Algenib 940.6(5.7)× 10−6 111.03(17) +4.7 −8.24 9.79(81) 0.43 33
HD 175541 1117.8(8.3)× 10−6 76.96(21) −7.84 −89.86 7.8(1.1) 0.027 ≈ 0.1

u Her 0.1618(15)% 171.90(18) −3.68 −5.74 3.77(56) 0.2 21
HD 157999 1.0482(15)% 85.079(51) +1.25 +7.09 2.78(92) 5.2 530
HD 187929 1.9464(37)% 93.030(67) +6.94 −7.30 2.78(91) 1.8 130
HD 7927 3.6523(48)% 92.342(87) −1.31 −2.19 1.40(68) ≈ 0.007 ≈ 0.9

HD 147084 4.4961(94)% 32.025(97) −4.23 −14.71 2.77(76) 1.3 62
HD 154445 4.5175(32)% 90.318(22) +4.34 −1.91 4.26(96) 0.16 25
Cygnus X-1 6.9733(94)% 138.729(33) −3.82 −7.62 0.465(43) 0.049 4.2
HD 204827 7.9929(97)% 59.542(31) −1.21 −2.92 0.97(79) ≈ 0.005 ≈ 0.5

Table 3.11: Wavelength-Dependent Polarization

Name Q2 −Q1 U2 − U1 P2 − P1 Θ2 − Θ1 λmax (P2/P1)exp (P2/P1)obs

(×10−6) (×10−6) (×10−6) (◦) (nm)

HR 5854 −1.7(4.5) 1.1(4.9) 2.0(4.6) − − − 4(21)
HR 8974 1.8(6.0) −3.8(6.7) 4.2(6.6) − − − 1.5(2.4)
HD 9270 −7.1(8.4) 1.1(8.9) 7.2(8.4) 1.9(2.3) − − 1.023(86)
γ Oph −6.8(8.2) 26.9(8.1) 27.7(8.1) 1.2(1.3) − − 1.159(53)

Algeniba −52(15) −16(10) 55(15) 0.75(41) − − 1.055(15)
u Her 38(28) −57(32) 69(31) 0.76(55) − − 1.033(18)

HD 157999b −897(58) 179(29) 915(57) 0.060(82) 580(30) 1.0094(62) 1.0899(58)
HD 187929b,c −907(77) −125(62) 916(77) 0.044(93) 546(15) 1.0021(33) 1.0493(43)
HD 7927b,c −960(120) −120(170) 970(120) 0.03(13) 511.9(3.9) 0.99445(91) 1.0266(34)

HD 147084a,b 660(310) 260(75) 710(290) 0.30(17) 664.0(8.0) 1.0256(14) 1.0115(34)
HD 154445b −240(340) 300(130) 390(240) 0.192(86) 573(49) 1.008(10) 1.0053(76)

aCircular polarization detected
bInterstellar P versus λ
cRotation of θ versus λ

Table 3.12: Corrections for Absolute Polarization

Parameter APD1 APD2 Mean PMT1 PMT2 Mean

PPOLISH − PHeiles (×10−4) 1.8(3.6) 1.8(3.8) 1.8438(21) 8(35) 9(37) 8.84(53)
PPOLISH/PHeiles 0.843(87) 0.842(62) 0.84224(69) 0.690(20) 0.672(22) 0.6811(89)
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Figure 3.7: Expected and observed ratios of polarization between APDs.

for this weakly polarized star. HD 9270 is not significantly variable on one to two night timescales

according to Table 3.5, and lack of detected variability is expected due to its weak polarization.

The minimum ≈ 3.5 month timescale for significant ISM change in the line of sight to HD 9270 is

expected to inhibit variability for the duration of our observations. We find no significant difference

in polarization or position angle between detectors.

HD 212311. This weakly polarized star is classified as an unpolarized standard according

to Schmidt et al. (1992), who report B and V band polarizations of (2.8± 2.5) × 10−4 and

(3.4± 2.1) × 10−4, respectively. We also detect linear polarization of order one part in 104, but

it is detected at the 15σ confidence level. We therefore caution against the use of HD 212311 as

an unpolarized standard. Because of its weak polarization, we do not expect significant changes in

polarization to be detected. Indeed, Schmidt et al. (1992) claim it is non-variable, and we confirm

non-variability up to our detection limit on one to three night timescales, as seen in Table 3.6.

u Her (HD 156633). Rudy & Kemp (1977) find phase-locked polarization modulation of am-

plitude 0.03% in this partially eclipsing binary with two day period (Kukarkin et al. 1958). Orbital
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inclination is 76◦ (Batten 1967) to 77◦ (Merril 1963), and the secondary appears to fill its Roche

lobe (Merril 1963, Kovachev & Reinhardt 1975). By assuming intrinsic polarization to be zero at

conjunctions, Rudy & Kemp (1977) assert the interstellar polarization to be 0.02% to 0.03%. The

minimum timescale for significant ISM variability is ≈ 1 month, which proves that variability in u

Her is intrinsic. Unfortunately, our observations only span one night, so we are unable to comment

on variability.

HD 157999 (σ Oph, HR 6498). Serkowski et al. (1975) find wavelength dependence of

polarization consistent with interstellar origin. No variability estimates were found in the literature

for this polarized star. HD 157999 appears to be significantly variable in Stokes Q on a one night

timescale (Table 3.7), but the signs of variability ∆Q and δQ vary between detector. This star may

be variable from night to night, but we do not have enough data to state this with much confidence.

The minimum timescale for ISM column variability of ≈ 1.5 years requires that polarimetric vari-

ability, if subsequently confirmed, must be intrinsic to the star.

Variability estimates for HD 157999 are preferentially stronger in Stokes Q than in Stokes U .

Since the highest signal to noise ratio is achieved on the Stokes parameter with highest polariza-

tion, variability in this Stokes parameter will be most easily detected. HD 157999 has polarimetric

position angle Θ ≈ 90◦, so Stokes Q is an order of magnitude stronger than Stokes U . This is most

likely the reason for strong Stokes Q variability and weaker Stokes U variability.

HD 7927 (φ Cas, HR 382). Serkowski et al. (1975) find significant interstellar polarization

in the line of sight to this star based on the wavelength dependence of polarization. Many authors

(Gehrels & Silvester 1965, Coyne & Gehrels 1966, Hsu & Breger 1982, Dolan & Tapia 1986, Bastien

et al. 1988, Wolff et al. 1996) find significant wavelength dependence of position angle. Dolan

& Tapia (1986) and Bastien et al. (1988) claim nightly variability of this star and interpret it to

be intrinsic in origin. However, Clarke & Naghizadeh-Khouei (1994) reject the variability claim of

Bastien et al. (1988) on the grounds that their statistical analyses lacked rigor. They perform a K-S

test on the cumulative distribution function of position angle to claim non-variability of this star.

Bastien et al. (2007) re-analyze the Bastien et al. (1988) data and assert that variability exists.

Unfortunately, our observations only span one night; therefore, we cannot comment on variability

of HD 7927.
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HD 147084 (o Sco, HR 6081). Both Martin (1974) and Serkowski et al. (1975) find

wavelength-dependent linear polarization consistent with interstellar origin. Dolan & Tapia (1986)

observe low significance changes in polarimetric position angle Θ with wavelength: their probability

of constant Θ versus wavelength is 0.35 according to the χ2 test. While their uncertainty in position

angle for this star is substantially larger than other stars in their program, the lack of wavelength

dependence on position angle is supported by many authors (Serkowski 1968, Serkowski et al. 1975,

Hsu & Breger 1982, Bailey & Hough 1982, Clarke 1986).

However, Kemp (1972) and Kemp & Wolstencroft (1972) detect significant wavelength-dependent

circular polarization in the line of sight to this star. Martin (1974) further finds the wavelength de-

pendence of circular polarization to be consistent with significant change in grain orientation along

the line of sight. Reconciliation of the lack of wavelength dependence on position angle as well as

the presence of significant circular polarization can occur by two effects. Either grain orientation

but not size varies along the line of sight, the star possesses intrinsic polarization, or both.

Dolan & Tapia (1986) posit that the star is intrinsically polarized, and they hypothesize that

this intrinsic polarization has wavelength dependence on position angle opposite that due to the

line of sight dust grains. This hypothesis may be supported by the timescale of variability seen by

Bastien et al. (1988) as well as by the reanalysis by Bastien et al. (2007). In Figure 2 of Bastien

et al. (1988), variability in degree of polarization as well as position angle seems to occur over the

first nine-night interval. Consultation of Table 3.10 shows that ISM variability requires at least

two months to be detected, implying that the source of variability may be intrinsic. On the other

hand, the remaining ≈ 31 nights in Figure 2 of Bastien et al. (1988) do not show much variability.

Additionally, Clarke & Naghizadeh-Khouei (1994) criticize the Bastien et al. (1988) assertion of

variability. A simpler explanation of the lack of wavelength-dependent position angle is that grain

size may not change in the line of sight. Unfortunately, we have no Stokes Q measurements, and

the variability in Stokes U changes sign between our detectors (Table 3.7). Therefore, our data are

not sufficient to confirm variability of Bastien et al. (1988) or to otherwise shed light on this subject.

HD 204827. Serkowski et al. (1975) find polarization of this star to be caused by the ISM. Hsu

& Breger (1982) see significant change in position angle with wavelength. Dolan & Tapia (1986)

also observe changes in polarimetric position angle Θ with wavelength: their probability of constant

Θ versus wavelength according to the χ2 test varies from α = 0.09 to α < 10−5 over a two month
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interval. However, Schulz & Lenzen (1983) claim that no significant rotation of position angle occurs

with wavelength. A χ2 analysis of their UBV RI band data gives the probability of constant position

angle to be α = 0.07. Clayton et al. (1995) also claim that no substantial change in position angle

occurs with wavelength, but their Figure 1 clearly shows the trend of increasing position angle with

increasing wavelength seen by Hsu & Breger (1982) and Dolan & Tapia (1986). Indeed, they perform

no statistical tests to verify their claim. No circular polarization measurements were found in the

literature.

Three authors classify this strongly polarized star as variable on a ≈ 4 night timescale (Dolan &

Tapia 1986, Bastien et al. 1988, reanalysis by Bastien et al. 2007), but Schmidt et al. (1992) claim

it is not. Additionally, Clarke & Naghizadeh-Khouei (1994) criticize the variability claim of Bastien

et al. (1988). We observe significant changes in Stokes U (∆Umean and δUmean in Table 3.8) on

timescales of one to three nights. However, the cumulative distribution functions do not significantly

vary on one and two night timescales (αU > 0.01), but they do significantly vary on a three night

timescale. The few nights for which Stokes Q data exist show significant variability in ∆Qmean and

δQmean as well, but again the CDFs do not significantly vary. Therefore, we confirm variability of

this star on a three night timescale and suspect it to be present on shorter timescales, but further

data are required for confirmation. The minimum timescale for ISM variability is of order one day

from Table 3.10, which raises the possibility of polarimetric variability due to the ISM.

3.4.2 Extrasolar Planets

HR 8974 (γ Cep, HD 222404). No variability estimates were found in the literature for this un-

polarized star. The primary component of the binary system with period 67.5±1.4 years (Neuhäuser

et al. 2007) harbors an extrasolar planet. Hatzes et al. (2003) discovered a planetary companion to

the primary star, and the minimum 1.60 ± 0.13 Jupiter mass planet has a period of T ≈ 903 days

and semimajor axis a ≈ 2.04 AU (Neuhäuser et al. 2007). Therefore, we expect the amplitude of

the planetary polarimetric signal to be of order 10−8 or less and consequently undetectable. This

star does not appear to be significantly variable on one to three night timescales, as seen in Table

3.4. This is consistent with the essentially unpolarized nature of this star as well as the minimum

≈ 1 month timescale for significant change in the line of sight ISM column. We find no significant

difference in polarization between detectors.
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Table 3.13: Variability of Exoplanet Host Stars

System Properties
Name M T a i Stokes χ2/n α 1

2 ∆(Q,U)

(MJ ) (days) (AU) (◦) (10−5)

HD 189733a 1.150(46) 2.2185733(20) 0.0312(4) 85.76(29) Q/I 6.7/6 0.353 4.7(3.2)
· · · · · · · · · · · · · · · U/I 6.9/6 0.329 4.8(2.7)

HD 149026a 0.36(3) 2.8758887(35) 0.0432(6) 85.4+0.9
−0.8 Q/I 2.3/7 0.942 3.2(2.3)

· · · · · · · · · · · · · · · U/I 5.8/7 0.560 7.6(4.1)
HD 175541 0.61 sin i 297.3(6.0) 1.03 ? Q/I 5.4/6 0.492 5.4(2.7)
· · · · · · · · · · · · · · · U/I 9.1/6 0.168 6.2(2.4)

HR 8974 (1.60± 0.13) sin i 902.9(3.5) 2.044(57) ? Q/I 2.9/3 0.401 1.47(86)
· · · · · · · · · · · · · · · U/I 0.6/4 0.965 0.26(41)

aTransiting planet

HD 175541. No variability estimates were found in the literature for this weakly polarized

star. It harbors a planet with minimum mass 0.61 Jupiter masses, a period of T ≈ 297 days, and

semimajor axis 1.03 AU (Johnson et al. 2007). Since the fraction of starlight intercepted by the

planet is less than one part in 107, any observed polarimetric variability from the system cannot

be due to the planet. Constant polarization of this system over six nights can only be rejected at

the α = 17% level of significance according to the χ2 test (Table 3.13 and Figure 3.8). We require

α < 1% in order to confirm variability of the star. Therefore, we cannot claim variability of HD

175541 with confidence; however, Figure 3.8 shows qualitative evidence of a long-period trend in the

polarization of this star. This may be due to variability in the ISM, because the minimum timescale

for this process is less than one day.

HD 149026. No variability estimates were found in the literature for this weakly polarized star.

A short-period, transiting planet exists around this star with M = 0.36±0.03 MJ (Winn et al. 2008),

T ≈ 2.9 day period, semimajor axis a ≈ 0.04 AU, and i = 85.4+0.9◦

−0.8◦ (Nutzman et al. 2008). Constant

polarization of this system can only be rejected at the α = 56% level of significance; therefore, we

do not observe significant variability (Table 3.13 and Figure 3.9). It is interesting to note that the

Stokes U observations near phase 0.8, where phase 0 is set to be mid-transit, are somewhat different

from each other. Therefore, there does not appear to be strong phase-locking of the polarization of

the system to the orbital period of the planet. This is expected from a system where the planet only

intercepts of order one part in 105 of the stellar flux; consequently, the polarimetric amplitude of

the system from the transiting planet is expected to be one part per million to one part in ten million.
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Figure 3.8: Observed polarization of the HD 175541 exoplanet system. Mean polarization of order
one part in 104 has been subtracted.
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Figure 3.9: Observed polarization of the HD 149026 transiting hot Jupiter system. Mean polarization
of order one part in 104 has been subtracted. Phase 0 represents mid-transit (0.5 phase difference
between transit and radial velocity ephemerides).
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HD 189733 (V452 Vul). Berdyugina et al. (2008, hereafter B08) observe marginal variability

of this system, which harbors a transiting hot Jupiter with M = 1.150 ± 0.046 MJ , T ≈ 2.2 days,

a ≈ 0.03 AU, and i = 85.76 ± 0.29◦ (Winn et al. 2007). They attribute this modulation to stellar

flux scattered by the hot Jupiter. However, planetary polarization is expected to be only of order

one part per million or less, especially when multiple scattering in the planetary atmosphere is taken

into account (cf. Seager et al. 2000). The polarimetric modulation of HD 189733 appears to be two

orders of magnitude larger than expected from a planetary origin, where B08 observe ∆P ≈ 2×10−4.

Indeed, in order to explain this large of a modulation from scattering by a planetary atmosphere,

B08 invoke a Lambertian sphere, with geometric albedo of 2/3. Even with this unrealistically large

albedo, B08 require a planetary radius 30% larger than the radius measured by transits. The ratio

of planetary to stellar radii is accurately obtained from transit observations, and near-IR interfer-

ometry has accurately determined the stellar radius (Baines et al. 2007). Planetary radius estimates

from transit and interferometric observations are more reliable than the polarimetric estimate by

B08. Therefore, the polarimetric modulation observed by B08 cannot be due to the planet.

A potential cause of polarimetric variability in hot Jupiter host stars is starspot activity. Pho-

tometric observations by the MOST satellite suggest the existence of starspots on the short period

τ Boö that follow the rotation period of the star (Walker et al. 2008). There is also some evidence

that Ca II H and K emission from the short period HD 179949 may follow the stellar rotation period

(Shkolnik et al. 2005, 2008). HD 187933 is known to be active, with up to 1% of its surface covered

in spots at any time (Hébrard & Lecavelier des Etangs 2006, Croll et al. 2007, Pont et al. 2007,

Winn et al. 2007, Moutou et al. 2008). These spots appear to rotate with the roughly 11.8 day

stellar rotation period (Henry & Winn 2008, Croll et al. 2008). Unfortunately, B08 do not discuss

the probability of starspots causing their observed modulation.

Plotted in Figure 3.10 are the phase-binned observations of B08. They observe polarization

peaks at quadrature phases and vanishing polarization at conjunctions. B08 take these observations

to be evidence of a planetary origin of the polarimetric signature of the system. That is, a planet

at quadrature ensures a 90◦ scattering angle, which maximizes the degree of polarization from the

planet. At conjunctions, however, a planet is at near-full or near-new phase, which generates zero

net polarization. However, the Lambertian planetary model of B08 fails to accurately describe the

Stokes U variability near phase 0.2 (Figure 3.10). This may be evidence of the more complex po-

larization modulation due to a corotating, polarized starspot. While the ISM may be variable on
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a timescale less than the orbital period of the planet, the consistent but weak variability observed

by B08 and POLISH at these phases suggests that ISM variability is not the cause of observed

modulation in HD 189733.

In Figure 3.11, we show nightly mean polarization of HD 189733 observed with POLISH. There

appears to be qualitative variability in our polarimetric observations, which is similar to that ob-

served by B08. However, since constant polarization can only be rejected at a χ2 significance of

α = 33%, variability cannot be confirmed. Like B08, we observe increases in both Stokes Q and

U during this phase. When plotting ∆P =
√

(∆Q/I)2 + (∆U/I)2, which is the degree of “excess”

polarization after mean polarization in each Stokes parameter is removed, we find weak evidence for

an increase in degree of polarization near quadrature. We also find weak evidence for a low degree

of polarization near phase 0.5, which is defined to be inferior conjunction of the star. At this phase,

a corotating starspot will lie behind the stellar limb, so a decrease in polarization near phase 0.5

does not prove a planetary origin for the polarimetric modulation. Longer phase coverage of the

polarimetric modulation of the system is required to determine the existence of a polarized starspot.

Because of the high degree of polarization of flux scattered through 90◦, a stellar limb is ex-

pected to be polarized. The position angle of limb polarization is expected to be tangent to the

limb, because the scattering plane is in the radial direction. Outside of a transit, the symmetry

of main sequence stellar disks ensures low net intrinsic stellar polarization. However, as a planet

contacts the limb of a star to mark the beginning of a transit, the partial occultation of the star’s

limb generates net polarization. The partial loss of polarization tangent to the stellar limb causes

net polarization of the starlight parallel to the line connecting the centers of the planet and star

(Figure 3.12). During mid-transit, the polarization vector is perpendicular to the orbital plane, but

the degree of polarization is low. This is because stellar polarization is concentrated in the limb.

For 83◦ < i < 90◦, the planet will transit at mid-latitudes on the star, so the North/South Polar

limb will not be occulted. Thus, the maximum change in polarization during the transit will take

place at ingress and egress, as opposed to mid-transit.

The strength of the polarimetric modulation during the transit has been modeled by Carciofi &

Magalhães (2005), which is presented as our Figure 3.13. The amplitude varies over two orders of

magnitude, from one part per million to one part in 104, depending on the strength of the stellar

limb polarization, its radial dependence, and the wavelength observed. The strongest signal appears
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Fig. 1.—Polarimetric data (Stokes q and u with "1 j error bars on the
scale of 10 ) for HD 189733 and a Monte Carlo simulated sample. The original!4

data are shown with filled circles: for HD 189733 in the year 2006 (top) and
for 2007 (middle), and for the Monte Carlo simulated data combined for both
years (bottom). The data rebinned for equal phase intervals are shown with
open circles in separate panels. For HD 189733, the constant shifts in Stokes
parameters and were subtracted from the data according to Table 1.Dq Du
The best-fit solutions deduced from the unbinned data are shown with solid
curves. [See the electronic edition of the Journal for a color version of this
figure.]

TABLE 1
Parameters of the HD 189733 System

Parameter Known Value Best-Fit Value

P (days) . . . . . . . . . . . . . . . . . . 2.218581a …
T0 (JD 2,400,000") . . . . . . 53931.12048a …
R*/R, . . . . . . . . . . . . . . . . . . . . 0.76 …
a (AU) . . . . . . . . . . . . . . . . . . . . 0.0312 …
e . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0 0.0b

i (deg) . . . . . . . . . . . . . . . . . . . . 85.68a 98 " 8
Q (deg) . . . . . . . . . . . . . . . . . . . … 16(196) " 8
Dq/10!4 . . . . . . . . . . . . . . . . . . . … !2.0 " 0.3
Du/10!4 . . . . . . . . . . . . . . . . . . . … !0.7 " 0.3
RL/RJ . . . . . . . . . . . . . . . . . . . . . . 1.15a 1.5 " 0.2
M/MJ . . . . . . . . . . . . . . . . . . . . . . 1.15 …
RRL/RJ . . . . . . . . . . . . . . . . . . . . . 3.3 …
pRL . . . . . . . . . . . . . . . . . . . . . . . . … 0.14

a Pont et al. (2007). Other fixed parameters are from Butler et al. (2006).
b The uncertainty of e is 0.05.

ried out in cycles of 16 exposures, corresponding to a full
rotation of the retarder. In the 2006 season we made 10–15 s
exposures at positions, yielding eight single observa-2 # 16
tions of q and u per night. These were then averaged to calculate
the nightly mean value and its standard error (1 j). Typical
errors of the 2006 measurements were 0.02%–0.03%. In 2007,
in order to reduce the measurement errors, we increased the
integration time for individual exposures up to 20–30 s and
made measurements at positions, thus increasing the4 # 16
total integration time by a factor of 4. This reduced the errors
by a factor of 2, down to 0.01%–0.015%, which indicates that
the accuracy was limited by the photon noise and did not suffer
from systematic effects. Overall we obtained 93 nightly mea-
surements for each Stokes parameter. This allowed us to reduce
the statistical error down to 0.006% on average in the binned
data (see Fig. 1) and clearly reveal polarization peaks of
∼0.02% near elongations.

For calibration of the polarization angle zero point we ob-
served the highly polarized standard stars HD 204827 and HD
161056. To estimate the value of the instrumental polarization,
a number of zero polarized nearby (!25 pc) stars from the list
by Piirola (1977) were also observed. In fact, the instrumental
polarization at the KVA telescope has been monitored since
2004 within other projects as well (e.g., Piirola et al. 2005).
These measurements demonstrated that in the B passband it
was well below 0.02% and invariable.

3. MODELING

To analyze the observed polarimetric signal, we employ a
simple model based on the Lambert sphere approximation, i.e.,
a perfectly reflecting surface with the geometrical albedo p p
2/3, and Rayleigh scattering (Fluri & Berdyugina 2008). Mod-
eling the observed variations in Stokes q and u allows us to
reconstruct the orientation of the planetary orbit in space and
estimate the effective size of the scattering atmosphere (Lam-
bert sphere). In the model, fixed parameters are the orbital
period P, transit or periastron epoch , semimajor axis a, andT0

the radius of the star , which is considered to be a limb-R∗
darkened sphere. The values used are provided in Table 1. The
limb-darkening was assumed according to Claret (2000) but
its details were found to be insignificant within the measure-
ment errors. Free parameters are the eccentricity e, orbit in-
clination i, longitude of the ascending node Q, radius of the
Lambert sphere , and constant shifts in Stokes parametersRL

and , which can be present in the data due to interstellarDq Du
or circumstellar polarization. In the case of transiting planets,
the orbit inclination can also be determined from photometric
data, which is a valuable test for our model. Otherwise, po-
larimetry provides a unique opportunity to evaluate both i and
Q. Moreover, it is possible to distinguish between inclinations
smaller and larger than 90#, which is not possible from transit
data.

In general, it is that scales the amplitude of polarizationRL

variations. The inclination scales the relative amplitudes in
Stokes q and u. For example, at # q and u have the samei p 0
amplitude. If #, the relative amplitude is also influencedi ( 0
by Q, e.g., at # variations appear only in Stokes q ifi p 90

#, 90#, 180#, or 270#, and only in Stokes u if #,Q p 0 Q p 45
135#, 225#, or 315#. More examples can be found in Fluri &
Berdyugina (2008). Observed polarization can be both positive
and negative, since its direction is always perpendicular to the
line joining the planet and the star as projected on the sky
plane. Our definition is in accordance with the common as-
sumption that positive q is in the north-south direction, while
the negative one in the east-west direction. Positive and neg-
ative u are at an angle of 45# counterclockwise from the positive
and negative q, respectively (see Fig. 3). The inclination is
defined in such a way that the planet revolves counterclockwise
as projected on the sky for and clockwise for0# ≤ i ! 90#

. Further, Q varies from 0# to 360# starting from90# ! i ≤ 180#
north and increases via east, south, and west.

In many cases, two maxima per period near the elongations

Figure 3.10: Polarimetric modulation of the HD 189733 transiting hot Jupiter system from Figure
1 of Berdyugina et al. (2008). Mean polarization of order one part in 104 has been subtracted.

0 0.2 0.4 0.6 0.8 1
−1

0

1
x 10−4

Δ
Q

/I

0 0.2 0.4 0.6 0.8 1
−1

0

1
x 10−4

Δ
U/

I

0 0.2 0.4 0.6 0.8 1
0

1
x 10−4

Δ
P

Phase

Student Version of MATLAB

Figure 3.11: Observed polarization of the HD 189733 transiting hot Jupiter system. Mean polar-
ization of order one part in 104 has been subtracted. Phase 0 represents mid-transit (0.5 phase
difference between transit and radial velocity ephemerides).
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Figure 3.12: HD 189733 transit geometry, planet and star are to scale. Dashed lines indicate
position angle of net polarization at transit ingress, mid-transit, and egress. A degeneracy exists in
photometry between a Northern and Southern Hemisphere transit, where the dotted line indicates
the equatorial plane of the star. Polarimetry appears to have resolved this degeneracy: a Southern
Hemisphere transit (pictured) is consistent with the observations.

In Figure 8 we show how the maximum polarization effi-
ciency varies with the planet radius. The figure illustrates well
the two opposite effects that control the OP, as discussed in
xx 2.3 and 3.3. Increasing the planet radius enlarges the flux
absorbed by the planet and makes the polarization go up. This
increase, however, is hampered by the fact that the limb polar-
ization at the impact parameter of the planet center at the inner
contact decreases with increasing planet radius. This is the
reason why the curves in Figure 8 level off somewhat as Rp in-
creases. In any case, all the polarization values implied by the
efficiencies shown in Figure 8 should be detectable.

The dotted lines in Figure 8 represent the analytical approx-
imation for the maximum OP, equation (11), with the appro-
priate values for w̄, k, and the limb-darkening coefficients. The
differences between the analytical and numerical results are small,
which indicates that equation (11) is very useful for providing
an estimate of the maximum OP for a given configuration.

In Figures 9 and 10 we show the results for a K5 dwarf, for
which we adopted a stellar radius of 0.72 R). The results for a
T dwarf with radius 0.2 R) are shown in Figures 11 and 12. We
note that theoretical atmosphere models for brown dwarfs (e.g.,
Tsuji 2002) indicate the formation of dust grains in such cool

atmospheres. Those grains would provide an additional scat-
tering opacity to the Rayleigh opacity, suggesting large values
for the limb polarization for those objects. Such limb polari-
zation needs further detailed modeling.

Our results clearly demonstrate that the OP is within the
reach of current polarimeters. In the worst scenario, correspond-
ing to the lower lines of Figures 7–12 (k ¼ 50), the efficiency
ranges between about 10"5 (Rp ¼ 0:09RJup) and 0.003 (Rp ¼
2RJup), which corresponds to polarization levels of 10"7 to
3 ;10"5 if the Pl ¼ 1%, and 10 times those values if Pl ¼ 10%.
The best scenarios correspond to k ¼ 0 (Figs. 7–12, lower lines).
In these cases the efficiency is between 3 ;10"4 and about 0.1.
For a limb polarization of 10%, this corresponds to polariza-
tion levels of 3 ; 10"5 up to 1%. The maximum OP values for
the limiting cases studied here are summarized in Table 3,
where we adopted Pl ¼ 10%.

Table 3 demonstrates that high-precision polarimetry can be a
means not only to study planetary systems with large (Jupiter-size)

Fig. 6.—Limb polarization for different values of k (right: k ¼ 0; second
from right: k ¼ 1; second from left: k ¼ 5; and left: k ¼ 50). The dotted line
represents the curve for the solar limb polarization at 4600 8, and the dashed
line represents the limb polarization for an M giant (Harrington 1969). [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 7.—Occultation polarization efficiency for the central transit of a 1RJup

planet across an M2 dwarf (top: k ¼ 0; second from top: k ¼ 1; second from
bottom: k ¼ 5; and bottom: k ¼ 50). For Pl ! 1%, the OP should be measurable
if &k0:001. [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 5.—Same as Fig. 4, but for the resonant line Ca i k4227. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Maximum polarization efficiency vs. planet radius for an M2 dwarf
(top: k ¼ 0; second from top: k ¼ 1; second from bottom: k ¼ 5; and bottom:
k ¼ 50). The dotted lines represent the analytical approximation of eq. (11),
with the appropriate values of w̄, k, and ai. [See the electronic edition of the
Journal for a color version of this figure.]

ESP TRANSITING COOL DWARFS 575No. 1, 2005

Figure 3.13: Modeled degree of polarization during a transit. Vertical scale is highly model-
dependent. This figure is taken from Figure 5 of Carcofi & Magalhães (2005).
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to exist at the Ca I λ4227 resonant line, and the P (λ) ∝ λ−4 dependence of Rayleigh scattering

in the stellar photosphere is also present. Thus, our ≈ B band instrument is well suited for the

detection of a polarized transit. We observed HD 189733 for ≈ 3 hours at Cassegrain ring angle

φ = 60◦, with ≈ 30 minutes both before and after the transit as well as ≈ 2 hours during the transit.

This ring angle was chosen to maximize the polarimetric signal, based on the estimation by B08 of

a Ω = 16◦ longitude of ascending node. Since the equatorial plane is therefore estimated to have a

position angle of Θ = 16◦ on the sky, the net polarization of the system (due to the planet outside

of transit) is expected to lie at Θ = 90◦ + 16◦ = 106◦.

During transit ingress and egress, however, position angle of net polarization of the system lies at

45◦ or 135◦ with respect to the orbital plane (Figure 3.12). To maximize the sensitivity of POLISH

to the transit, we chose to set the Cassegrain ring to φ = 45◦ + 16◦ ≈ 60◦. Note that the use of

the Wollaston prism provides equal sensitivity to Stokes components 90◦ apart. Thus, only the sign

of the observed polarization changes whether the transit induces Θ = 45◦ or Θ = 135◦ polarization

with respect to the orbital plane. Subtracting the polarization from each detector enhances the

signature of the transit, because the slope of the modulation is opposite for each detector. That

is, for system polarization at 45◦ with respect to the orbital plane, detector 1 will record positive

polarization while detector 2 will measure negative polarization. For system polarization at 135◦

with respect to the orbital plane, the magnitude of the polarization will be the same as for 45◦, but

the signs will be reversed.

Raw data are shown in Figure 3.14, while Figure 3.15 represents the results after applying a

weighted, moving average with a bin size of 79 points. The subscript on the polarization indicates

the detector. The dotted boxes in Figure 3.15 represent the uncertainty in polarization as well as the

size of the moving average bin. The bin size is chosen to maximize sensitivity to variability at the

transit timescale. Since detector 1 observes positive polarization at ingress and negative at egress,

while detector 2 observes the opposite, it appears that the planet transits the Southern Hemisphere

of the star. This transit appears to have an amplitude of ∆P ≈ 3 × 10−5, which is 1,000 times

weaker than the amplitude in photometry.
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Figure 3.14: Sky-subtracted, polarimetric observations of a transit of the HD 189733 hot Jupiter.
The duration of the time series is ≈ 3 hours. Vertical black lines mark transit ingress, mid-transit,
and egress.
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Figure 3.15: Possible transit of an extrasolar planet seen in polarized light. Phase 0 corresponds to
mid-transit, and the transit duration is 1.827 hours (Winn et al. 2007).
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3.4.3 Debris Disk

γ Oph (HD 161868, HR 6629). No variability estimates were found in the literature for this

weakly polarized star. It is not significantly variable on one to two night timescales according to

Table 3.5. Lack of detected variability is expected due to weak polarization. The minimum ≈ 1 week

timescale for ISM variability in the line of sight to γ Oph is approaching the timescale of our ob-

servations. Interestingly, marginally significant variability on both a one and two night timescale is

observed with detector 1. However, since this is not seen in detector 2, we cannot confirm variability.

γ Oph harbors a debris disk imaged by the Spitzer Space Telescope with inner and outer radii

of ≈ 13 and ≈ 520 AU, respectively. This disk, containing 0.010 ML of dust, is inclined at 50± 5◦

with its major axis at a position angle of 55± 2◦ (Su et al. 2008). Multiplying the degree of polar-

ization from Table 3.1 by the 0.836± 0.064 correction factor described in section 2, we find absolute

polarization of this source to be P = (1.49± 0.12)× 10−4.

To model the expected polarization of the disk, we assume single scattering of the parent star’s

flux by an optically thin disk composed of small (comparable to the wavelengths of visible light)

dust grains. We set γ Oph at the origin O of a right-handed coordinate system. The disk lies on

the xy plane, and the observer is along the direction θ = i (Figure 3.16). Following the derivation

in the Appendix (Equations D11a and D11b), the Stokes parameters of the light scattered off the

disk are

(
Q

I

)
disk

=
sin2 i

2 + sin2 i
(3.8a)

(
U

I

)
disk

= 0 (3.8b)

which are identical to the expressions of Shakhovskoi (1965). The +Q direction is perpendicular

to the disk’s major axis for nonzero inclination, and the −Q direction is parallel to the major axis.

These Stokes parameters are rotated with respect to celestial north by the position angle of the

disk’s major axis.

As expected, (Q/I)disk = (U/I)disk = 0 for i = 0. That is, polarization from a face-on disk

is zero because of symmetry. For an edge-on disk with i = π
2 , (Q/I)disk = 1

3 and (U/I)disk = 0.
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Figure 3.16: Debris disk geometry. The disk is in the xy plane, the blue plane OAB is the scattering
plane, and the green plane OBC is the observer plane.

These results indicate polarization perpendicular to the disk’s major axis for all inclination angles,

which is predicted by Sunyaev & Titarchuk (1985). Given i = 50◦ for the γ Oph disk from Su et

al. (2008), we find (Q/I)disk = 0.23 and (U/I)disk = 0 before adding in the star’s unpolarized light.

Since (Q/I)disk is positive, polarization is expected to be perpendicular to the disk’s major axis from

single scattering by small particles. However, Table 3.1 shows the position angle of polarization to

be Θ = 60.56 ± 0.65◦, while the position angle of the disk’s major axis is Θdisk = 55 ± 2◦ (Figure

3.17). Thus, the alignment of the disk polarization with the major axis indicates that either multiple

scattering dominates or grain size is large enough for forward-scattering to be dominant.

The latter hypothesis is corroborated by Su et al. (2008), who assume grain sizes ranging from

5 µm to 63 µm based on the spectral energy distribution of the disk. They adopt a constant surface

density model for the disk, and the size distribution of the grains is in collisional equilibrium. That

is, size distribution is modeled as n(a) ∝ a− 7
2 for grain diameter a. Therefore, the number density of

grains as a function of radius in the disk is n(r) = n0

∫ amax

amin
a−

7
2 da, where n0 is a constant. Assuming

grain volume V (a) = 4
3πa

3, their grain density of ρ = 2.5 g/cm3, and disk mass 0.010 ML, we find

n0 = 2.6 × 10−7 from Equation D12. Assuming grain cross-section σ(a) = πa2, we use Equation

D13 to find the fraction of the stellar flux scattered off the disk to be
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Figure 3.17: Position angle of net polarization, Θ = 60.56 ± 0.65◦ (red line) overlain on a Spitzer
image of the γ Oph debris disk (Figure 1d from Su et al. 2008). Position angle of the disk major
axis when projected on the sky, Θdisk = 55± 2◦, is shown as the blue line.

Idisk = 2π2n0

(
1

√
amin

− 1
√
amax

)
ln
(
rmax

rmin

)(
2 + sin2 i

)
. (3.9)

Here, the inner disk radius is rin, and the outer radius is rout. Given grain sizes from 5 µm to

63 µm, disk extent 13 to 520 AU, and i = 50◦ from Su et al. (2008), we find Idisk = 1.6 × 10−3.

Multiplying this by the expected disk polarization Pdisk =
√

(Q/I)2
disk + (U/I)2

disk = 0.23 found

above, the polarization of the γ Oph system is expected to be Pexp = 4 × 10−4. This is the same

order of magnitude as the observed polarization Pobs = (1.49± 0.12)× 10−4.

Multiple scattering is expected to rotate the polarization position angle by 90◦ with respect to

the single scattering case. This will cause polarization to be parallel to the major axis of the disk

(Angel 1969, Sunyaev & Titarchuk 1985, Phillips & Mészáros 1986, Kartje & Königl 1991), as ob-

served. However, multiple scattering tends to decrease the degree of polarization. Since the expected

polarization from single scattering is of the same order of magnitude as the observed polarization,

multiple scattering cannot be dominant. Thus, the most likely explanation for the alignment of po-

larimetric position angle and disk major axis is that the grains are predominantly forward-scattering.
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Assuming the expected polarization from the single scattering model in Figure 3.16 correctly

predicts the system polarization, the slight discrepancies between observed and expected polariza-

tion as well as position angle may be due to interstellar polarization. Solving for the interstel-

lar polarization vector necessary to decrease degree of polarization as well as rotate it by 5◦, we

find QIP = (4.6 ± 2.5) × 10−5, UIP = (−2.11 ± 0.13) × 10−4, PIP = (2.16 ± 0.14) × 10−4, and

ΘIP = 141.2± 3.2◦. Uncertainties in interstellar polarization are the minimum possible assuming no

uncertainty in expected degree of disk polarization. The probability of random interstellar polariza-

tion lying within 86◦ of the disk’s random major axis orientation is 23%, which is not significantly

low. Therefore, we posit that the line of sight to γ Oph contains interstellar polarization of degree

PIP ≈ 2.2 × 10−4 and lying at position angle ΘIP ≈ 141◦. This degree of interstellar polarization

appears to be high when compared with stars at similar distances (Figure 3.6), but γ Oph lies toward

the Galactic Center, along with HD 147084 and HD 154445. These stars appear to have enhanced

polarization with respect to stars at comparable distances, which is explainable by enhanced dust

cloud density along this galactic longitude.

3.4.4 Cepheid Variables

Algenib (γ Peg, HD 886, HR 39). Rudy & Kemp (1978) find circular polarization present

and assert a nonzero magnetic field with a null result probability of α = 0.004 under the χ2 test.

While no mention is made as to whether this circular polarization could be interstellar in origin, the

proximity of this star strongly implies that interstellar polarization, both linear and circular, should

be negligible. Thus, the observed circular polarization must be intrinsic to Algenib. No variability

estimates were found in the literature for this polarized β Cepheid star.

As with HD 157999, this star appears to be significantly variable in Stokes Q on a one night

timescale (Table 3.7), but the signs of variability ∆Q and δQ vary between detectors. Indeed,

weighted mean variabilities between detectors, ∆Qmean and δQmean, are not significant. While both

APDs have slightly different bandpasses (Figure 3.1), we find no significant difference in position

angle between these detectors over the entire run on this star. Thus, it appears that this star may

be variable from night to night, but we do not have enough data to state this with much confidence.

The minimum ≈ 1 month timescale for ISM column variability requires that polarimetric vari-
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ability, if subsequently confirmed, must be intrinsic to the star. The intrinsic circular polarization of

the star points to an intrinsic origin for the linear polarization. Indeed, Figure 3.6 implies that the

linear polarization in the line of sight to Algenib is an order of magnitude larger than for HD 9270,

which is at a similar distance. The polarization maps of Mathewson & Ford (1970) show that HD

9270 and Algenib are both located in the same region of weak polarization in the sky. Therefore,

we assert that the linear polarization seen in Algenib is intrinsic to the star.

The position angle of net polarization for Algenib is Θ = 111◦ from Table 3.1, so its P ≈ 1%

polarization is split fairly evenly between Stokes Q and U . This is because Stokes +Q is projected

north/south on the sky (Θ = 0◦/180◦), Stokes −Q is east/west (Θ = 90◦/270◦), Stokes +U is

northeast/southwest (Θ = 45◦/225◦), and Stokes −U is northwest/southeast (Θ = 315◦/135◦). One

might therefore expect that variability in Algenib would occur with equal amplitude in both Stokes

Q and U . Reasons for stronger variability in Stokes Q as opposed to U are unknown.

HD 187929 (η Aql, HR 7570). Serkowski et al. (1975) find polarization as a function of

wavelength of this δ Cepheid variable to be consistent with interstellar origin. Dolan & Tapia (1986)

and Clarke (1986) independently discovered changes in polarimetric position angle with wavelength,

and this result has been confirmed by Wolff et al. (1996). The probability of constant position angle

versus wavelength is α < 10−5 according to the χ2 test (Dolan & Tapia 1986). However, Stokes

et al. (1974) and Wade et al. (2002) do not detect significant circular polarization of this star.

Therefore, some linear polarization must be intrinsic to the star, because rotation of position angle

with respect to wavelength cannot be due to dust grain rotation along the line of sight. Polarimetric

variability is inconclusive according to Dolan & Tapia (1986), “suspected” by Bastien et al. (1988),

and rejected by both Clarke & Naghizadeh-Khouei (1994) and the Bastien et al. (2007) reanalysis

of Bastien et al. (1988) data.

However, we detect strong variability in both Stokes parameters on a two night timescale, as

∆Q,Umean and δQ,Umean are much larger than three times their respective uncertainties. The sign

of variability on a one night timescale varies between detector, so it is difficult to claim variability

on this timescale with confidence. While the variability in Stokes Q on a three night timescale has

different sign between detector 1 and detector 2, variability in Stokes U on this timescale has the

same sign. As with variability of this star on a one night timescale, variability on a three night

timescale is difficult to claim without more data.
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It is possible that changes in variability occur with wavelength, since changes in position angle

are known to occur with wavelength. While both APDs have slightly different bandpasses (Figure

3.1), we find no significant difference in position angle between these detectors over the entire run

on this star. According to Table 3.10, the minimum timescale for ISM variability along the line of

sight to this star is ≈ 4 months. In addition, the observed variability in Stokes Q is only ≈ 3 times

larger than that in Stokes U , even though run-averaged Stokes Q is ≈ 10 times larger than Stokes

U . One would expect that a random orientation of the system in the plane of the sky would cause

intrinsic polarization variability to occur with roughly equal amplitude in each Stokes parameter.

However, variability in interstellar polarization would be expected to be stronger in the dominant

Stokes parameter. Thus, the variability of this star must be caused by changes in its intrinsic po-

larization.

The period of this Cepheid variable is T ≈ 7.2 days (Gray & Stevenson 2007). Even though

Cepheids are radial pulsators, there must be some asymmetry in the distribution of scatterers in

the star’s envelope to introduce time-variable, intrinsic polarization. Indeed, polarimetric monitor-

ing of post-AGB stars has shown pulsation phase-locked variability that is generally explained by

non-radial pulsations (Henson et al. 1985, Magalhães et al. 1986, Raveendran & Rao 1989, Yudin

& Evans 2002). Trammell et al. (1994), on the other hand, suggest polarimetric varaibility to be

caused by clumpy mass loss. From ephemerides in Table 2 of Gray & Stevenson (2007), our ob-

servations on UT 2007 Aug 3, 5, and 6 were taken at phases 0.013 to 0.018, 0.296 to 0.298, and

0.436 to 0.438, respectively. Maximum negative radial velocity is achieved at phase ≈ 0.05, zero

radial velocity at phase 0.5, and maximum positive radial velocity occurs at phase ≈ 0.8. Thus,

our observations almost completely bracket the ranges of increasing radial velocity from maximum

negative radial velocity to its first zero crossing.

Variations in polarization are plotted against pulsation phase in Figure 3.18. While the data

for UT 2007 Aug 6 (phase 0.44) are inconsistent from detector to detector, the positive increase

in polarization between UT 2007 Aug 3 and 5 (phases 0.02 and 0.30) is clear. Net polarization,

P =
√
Q/I2 + U/I2, decreases between these two nights when the star’s change in size is at a max-

imum.

From Sudzius (1969) and Depenchuk (1980), the star dims by ∆V ≈ 0.34 mag, or 27%, be-

tween these phases. From Table 3.14, we see a strong, relative decrease in polarization of δP =
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Figure 3.18: Polarization variations in HD 187929 versus Cepheid pulsation phase. Open circles
are data from detector 1, open diamonds are from detector 2, and filled circles are weighted mean
measurements from both detectors (“detector 1,2”). Dotted lines are guides for the eye.

Table 3.14: HD 187929 Variability

Detector ∆P (×10−6) δP (%) ∆Θ (◦)
1 −490(35) −2.60(18) 0.32(13)
2 −485(39) −2.49(20) 0.35(13)

Mean −487.8(2.5) −2.550(59) 0.336(12)

2.550 ± 0.059% and a weak, absolute increase in position angle ∆Θ = 0.336 ± 0.012◦ in this time

interval. Thus, it appears that the radial increase in size of the star dampens the intrinsic polariza-

tion, because a change in stellar intensity should have no effect on polarization. This is because the

Stokes parameters Q and U are normalized by the Stokes I intensity parameter.

3.5 Conclusion

We have observed no conclusive polarimetric variability with timescales less than four nights on stars

with polarization P < 2%. No star, even the famously variable Cygnus X-1, exhibits detectable po-
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larimetric variability during a single night. We have observed no significant variability of the long

period extrasolar planet host star HR 8974, which has a period T ≈ 2.5 years. However, there is

weak, qualitative evidence for long period variability in HD 175541, which harbors a long period

extrasolar planet with T ≈ 10 months. The polarization expected from the planets in these systems

is less than one part in 107, so observed variability must be due to stochastic variability in the host

star itself. No phase-locked behavior is observed for the transiting extrasolar planet system HD

149026, and we do not detect significant variability of the HD 189733 transiting system. Marginal

variability in this system is claimed by Berdyugina et al. (2008).

We present tentative evidence for a transit of HD 189733 in polarized light, which is the first

reported observation of this effect. The characteristic double-peaked profile predicted by Carciofi

& Magalhães (2005), due to occultation of stellar limb polarized, is observed. The transit depth

appears to be ∆P ≈ 3 × 10−5, which is three orders of magnitude weaker than seen in photome-

try (Winn et al. 2007). Polarimetry provides additional geometric information that is difficult to

determine from photometric transits. For instance, our observations imply a Southern Hemisphere

transit by the planet due to the observed sign of rotation of the polarization vector.

The polarized light scattered by the γ Oph debris disk has been detected, and its position angle

is closely aligned to the disk’s major axis when projected on the sky. This is evidence for an optically

thin disk composed of predominantly forward-scattering dust grains, which must therefore be larger

than the wavelengths of visible light. In addition, we find evidence that the line of sight to this

nearby star contains interstellar polarization of an order of magnitude larger than do stars at similar

distances and along other sightlines. This is consistent with galactic longitude of this star near the

Galactic Center.

Polarimetric variability of the β Cepheid pulsator Algenib is observed at low significance. There

exists significant circular polarization intrinsic to this star (Rudy & Kemp 1978), which suggests

that linear polarimetric variability should also be present. A longer temporal baseline of polarimetric

observations is therefore desired. We have confirmed the suspected polarimetric variability of the δ

Cepheid star HD 187929 on a two night timescale, which represents ≈ 30% of the pulsation phase.

Indeed, this star is known to harbor significant intrinsic linear polarization (Dolan & Tapia 1986,

Clarke 1986). While Cepheid variables are radial pulsators, temporal variability of intrinsic linear

polarization indicates time-variable asymmetry in the system. Degree of polarization of this star
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decreases as stellar radius increases, which is likely due to an increase in symmetry of the system.

We confirm polarimetric variability of HD 204827, for which the community position is inconclusive.

Nightly variability in the control system, Cygnus X-1, is confirmed to high significance. The next

chapter will describe in detail observations of Cygnus X-1.
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Carciofi, A. C. & Magalhães, A. M. 2005, ApJ 635, 570.

Clarke, D. 1986, A&A 156, 213.

Clarke, D. & Naghizadeh-Khouei, J. 1994, AJ 108, 687.

Clayton, G. C., Wolff, M. J., Allen, R. G. & Lupie, O. L. 1995, ApJ 445, 947.

Coyne, G. V. & Gehrels, T. 1966, AJ 71, 355.

Croll, B., Matthews, J. M., Rowe, J. F., Gladman, B., Miller-Ricci, E., Sasselov, D., Walker, G. A.

H., Kuschnig, R., Lin, D. N. C., Guenther, D. B., Moffat, A. F. J., Rucinski, S. M., & Weiss,

W. W. 2007, ApJ 671, 2129.

Croll, B., Matthews, J. M., Walker, G. A. H., Rowe, J. F., Miller-Ricci, E., Kuschnig, R., Sasselov,

D., Rucinski, S., Walker, A., Guenther, D. B., Moffat, A. F. J., & Weiss, W. W. 2008, ApJ,

submitted.



122

Davis, L., Jr. & Greenstein, J. L. 1951, ApJ 114, 206.

Depenchuk, E. A. 1980, IAU 1819, 1.

Dolan, J. F. & Tapia, S. 1986, PASP 98, 792.

Dolan, J. F. & Tapia, S. 1989, ApJ 344, 830.

Gehrels, T. 1972. ApJ 173, L23.

Gehrels, T. & Silvester, A. B. 1965. AJ 70, 579.

Gies, D. R., Bolton, C. T., Thomson, J. R., Huang, W., McSwain, M. V., Riddle, R. L., Wang, Z.,

Wiita, P. J., Wingert, D. W., Csák, B., & Kiss, L. L. 2003, ApJ 583, 424.

Gray, D. F. & Stevenson, K. B. 2007, PASP 119, 398.

Hatzes, A. P., Cochran, W. D., Endl, M., McArthur, B., Paulson, D. B., Walker, G. A. H., Campbell,

B., & Yang, S. 2003, ApJ 599, 1383.
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3.6 Appendix D: Single Scattering Geometry

Consider a right handed coordinate system (x, y, z) with the observer along the x′ axis, which is

inclined at an angle i with respect to the x axis (Figure 3.16). An infinitesimally thin debris disk lies

along the xy plane, and the central star illuminates the disk from the origin. For a dust grain located

at point A, photons will be scattered through an angle χ (the angle between the radius vector and

the x′ axis). The scattering plane contains the star, dust grain, and the observer. The electric field

of scattered light will be perpendicular to this plane for particles smaller than the wavelengths of

incident light. The x′y plane and the scattering plane intersect along the x′ axis, and the angle

between them is ψ. The Stokes parameters of photons scattered off the grain are given by


Igrain

Qgrain

Ugrain

 = σ


1 + cos2 χ

sin2 χ cos 2ψ

sin2 χ sin 2ψ

 (D1)

where σ is the scattering cross section of the grain.

To find angle χ in terms of φ and i, we note

AB
2

= z2 +AD
2

= z2 +A′2x + r2 − 2rA′x cosφ (D2a)

AB
2

= r2 +OB
2 − 2rOB cosχ. (D2b)

Equating Equations D2a and D2b and noting z2 +A′2x = OB
2
,

A′x cosφ = OB cosχ. (D3)

Since

tan i =
A′x
z

(D4a)

sec i =
OB

z
(D4b)

we arrive at

cosχ = cosφ sin i. (D5)
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To find angle ψ we first find the vectors normal to both the scattering and x′y planes. The

scattering plane contains vectors
−−→
OB = (A′x, 0, z) and

−→
OA = (Ax, Ay, 0), while the x′y plane contains

vectors
−−→
OB and

−−→
OC = (0, Ay, 0). Therefore, vectors normal to the scattering plane, −→ns, and to the

x′y axis, −→nx, are

−→ns =
−−→
OB ×

−→
OA = (−Ayz,Axz,A′xAy) (D6a)

−→nx =
−−→
OB ×

−−→
OC = (−Ayz, 0, A′xAy) . (D6b)

Finally, the angle between these vectors is given by

cosψ =
−→ns · −→nx
|−→ns| |−→ns|

=


z2 +A′2x

z2

[
1 +

(
Ax
Ay

)2
]

+A′2x


1
2

(D7a)

cosψ =
(
cot2 φ cos2 i+ 1

)− 1
2 . (D7b)

For an ensemble of grains located at θ = π
2 , Equation D1 becomes


Idisk

Qdisk

Udisk

 = σ

∫ 2π

0

∫ rout

rin

n(r)
r2


1 + cos2 χ

sin2 χ cos 2ψ

sin2 χ sin 2ψ

 rdrdφ. (D8)

We are interested in the normalized Stokes parameters (Q/I)disk and (U/I)disk. Since neither χ nor

ψ depends on the radius r, we have

Idisk = R0

∫ 2π

0

1 + cos2 χ dφ (D9a)

Qdisk = R0

∫ 2π

0

sin2 χ cos 2ψ dφ (D9b)

Udisk = R0

∫ 2π

0

sin2 χ sin 2ψ dφ (D9c)

R0 = σ

∫ rout

rin

n (r)
r

dr. (D9d)
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Given χ and ψ from Equations D5 and D7b,

Idisk = R0

∫ 2π

0

1 + cos2 φ sin2 i dφ = πR0

(
2 + sin2 i

)
(D10a)

Qdisk = R0

∫ 2π

0

sin2 φ− cos2 φ cos2 i dφ = πR0 sin2 i (D10b)

Udisk = R0

∫ 2π

0

sin 2φ cos i dφ = 0. (D10c)

Thus, we derive the relations of Shakhovskoi (1965) describing the single-scattering polarization of

a disk illuminated centrally:

(
Q

I

)
disk

=
sin2 i

2 + sin2 i
(D11a)

(
U

I

)
disk

= 0. (D11b)

Because the inclination terms in Equation D11a are squared, polarimetry is unable to distinguish

between inclinations ±i.

To estimate the single-scattering polarization when unpolarized light from the central star is

added to the polarized light from the disk, we need the number density of dust grains n(r, a). The

disk mass is

M =
∫ rout

rin

∫ amax

amin

2πr n(r, a) V (a) ρ dadr (D12)

for grain volume and density V (a) and ρ. We assume n(r, a) = n0n(r)n(a), where a is grain diameter

and n0 is a constant. From Equations D10a and D9d, the fraction of the stellar flux reflected by the

disk is

I = n0

∫ 2π

0

∫ rout

rin

∫ amax

amin

σ(a) n(r) n(a)
r

(
1 + cos2 φ sin2 i

)
dadrdφ. (D13)
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Chapter 4

Cygnus X-1 Inclination from
Polarimetry

4.1 Introduction

Masses are difficult to measure accurately, because most methods are only generally applicable to

binary systems. Astrometric motion of binaries can be fit to Kepler’s laws to determine component

masses. However, many systems orbit too closely, or are too distant from Earth, for their astromet-

ric motion to be resolved. The radial velocity technique is used to determine line of sight motion

of luminous sources, and orbital parameters such as period and eccentricity can be determined to

exquisite precision. However, since this technique is blind to motion in the plane of the sky, and

hence to orbital inclination, masses determined from this technique are only lower limits. Statistical

analyses can be applied to large samples of objects, such as extrasolar planets, to estimate the true

distribution of masses. But masses of individual objects obtained by the radial velocity technique

can be very imprecise.

Since polarization is a geometry-dependent effect, one might expect that it can be used to con-

strain orbital inclination of binary systems. In particular, polarimetry holds promise for determining

masses in high mass X-ray binaries. These systems consist of an OB supergiant and black hole, the

prototype of which is Cygnus X-1. The 40 ± 10 M� (Ziólkowski 2005), O9.7Iab supergiant in this

system (Walborn 1973) nearly fills its Roche lobe, and the 13.5 − 29 M� black hole (Ziólkowski

2005) accretes matter partly from a focused stellar wind (Gies & Bolton 1986b) as well as occasional

Roche lobe overflow. Tighter constraints on the mass of the Cygnus X-1 black hole are necessary to

test stellar evolution models and study general relativity on finer scales.
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4.2 Overview of Cygnus X-1

4.2.1 Accretion

Cygnus X-1 harbors an accretion disk, which is evident by its X-ray luminosity of (2 − 5.5) × 1037

erg/s (Syunyaev & Trümper 1979, Dolan et al. 1979, Balucinska-Church et al. 2000) and significant

emission of gamma rays (Albert et al. 2007). Its X-ray spectrum is composed of blackbody and power

law components. The blackbody component of the spectrum comes from the accretion disk, where

kT ≈ 0.1 keV and the disk luminosity is 4.7×1036 erg/s (Balucinska-Church et al. 1995). The power

law component, with flux F (E) ∝ E−Γ, is generated by Compton scattering of disk emission by

either a hot corona of electrons (Shapiro et al. 1976) or at the base of a jet (Brocksopp et al. 1999a).

Stirling et al. (2001) observed a highly collimated (opening angle of < 2 degree), relativistic

(v/c ≥ 0.6) jet of ≈ 30 AU in length with the VLBA. Such a jet has been confirmed by Gallo et al.

(2005) and Fender et al. (2006), and it points toward a nebula that Gallo et al. (2005) discovered

in both the radio and the optical. Since the proper motion of Cygnus X-1 is perpendicular to the

jet, the binary has never been at the center of the nebula. Therefore, the nebula is not a supernova

remnant from the formation of the black hole; rather, it is interpreted as a bow shock between the

remnants of the jet and the ISM. The kinetic energy of the jet and assumed counterjet represents

30% to 100% of the bolometric X-ray luminosity of Cygnus X-1 (Gallo et al. 2005, Russell et al.

2007). Thus, it appears that the energy of accretion is partitioned roughly equally between the jet

and radiation.

The X-ray luminosity occasionally transitions from the fiducial, “low/hard” state to the “high/soft

state”. The low/hard state dominates the duty cycle: Cygnus X-1 is in this state about 90% of the

time (Gallo et al. 2005). In the low/hard state, the relatively low accretion rate generates relatively

low X-ray luminosity. The accretion rate is of order

ṁ ≈ 0.1ṀEdd (4.1a)

ṀEdd =
LEdd

0.1c2
(4.1b)

LEdd ≡
4πGMmpc

σT
(4.1c)
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where ṀEdd is the Eddington accretion rate for 10% efficiency and LEdd is the Eddington luminos-

ity. The black hole mass is M , mp is the mass of a proton, and σT is the Thomson scattering cross

section for the electron. The low accretion rate in the low/hard state allows the optically thick,

but geometrically thin, disk to be evaporated more efficiently. This causes the disk inner radius to

retreat to rin > 100Rs, where Rs ≡ 2GM/c2 is the Schwarzschild radius. An optically thin, hot

corona of electrons flows from the disk inner radius to the event horizon. This corona generates the

Comptonized power law, of photon index Γ ≈ 1.5, that dominates the low/hard spectrum (Esin et

al. 1998).

Occasionally, the mass accretion rate slightly increases, by only ≈ 15% (Esin et al. 1998), which

causes an increase in X-ray luminosity of about 10% to 20% (Brocksopp et al. 1999a). Evaporation

of the disk proceeds less efficiently in the high/soft state, and the disk inner radius advances to the

last stable orbit of the black hole, rin = 3Rs. This causes the disk blackbody emission to dominate

over the power law from the corona (Esin et al. 1998). Exactly how disk accretion rate is tied to

supergiant mass loss is debated, however.

The characteristic P Cygni profile observed in Hα from the supergiant indicates mass loss in the

form of a stellar wind (Ninkov et al. 1987b). Since stellar wind from an OB supergiant issues roughly

isotropically, atoms flowing towards the observer will have blueshifted absorption. Conversely, atoms

flowing away from the observer will emit redshifted radiation. In the presence of the black hole,

however, the distorted equipotential surface of the system will focus the stellar wind through the

L1 point (Friend & Castor 1982, Gies & Bolton 1986b). Indeed, Miller et al. (2005) see evidence

for such a wind from Chandra X-ray spectroscopy. The wind forms an accretion disk around the

black hole. Intuitively, one would expect that increased mass loss from the supergiant would lead

to increased accretion onto the black hole. However, the interaction of the radiatively-driven stellar

wind and the X-ray luminosity of the accretion disk complicates matters.

Line radiation from the supergiant imparts momentum to absorbing atoms in the photosphere,

which can accelerate the atoms past the supergiant’s escape velocity to form a radiatively-driven

wind (Castor et al. 1975). X-ray photoionization of atoms in this wind by the accretion disk will dra-

matically slow the wind, because the loss of electrons decreases the total force that stellar radiation

can impart to the wind atoms. Increased stellar mass loss will form a denser wind, which will not

be photoionized as completely. Thus, the mean wind speed will be increased. Since accretion rate
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is given by ṁ ∝ Ṁv−4, where Ṁ is mass loss and v is flow velocity (Bondi & Hoyle 1944), a faster

wind causes a lower accretion rate, even in the presence of increased stellar mass loss (Ho & Arons

1987, Stevens 1991). In contrast, wind density will be lower for decreased supergiant mass loss.

X-ray ionization of the wind will be more complete, so there will exist fewer available lines for wind

atoms to absorb. The slower wind will be accreted more readily than the faster wind. Therefore,

decreased mass loss by the supergiant actually translates to a higher accretion rate by the black hole.

Gies et al. (2003, hereafter G03) observe a decrease in Hα equivalent width, and therefore

strength of mass loss, during an X-ray flare. The time lag between these two events is small com-

pared to the ten hour timescale for the wind to traverse the region between binary components,

which indicates any lag is related to light travel time. They argue that the ionization of the super-

giant’s photosphere inhibits generation of a stellar wind, because wind velocity is lower than the

escape velocity. This results in weak mass loss. However, they observe departures from such a simple

model where mass loss is anticorrelated with X-ray flux.

Large changes in Hα emission have been observed by G03 while X-ray flux is constant. They

also observe large variations in redshifted Hα emission even during inferior conjunction of the black

hole (phase 0.5). At this phase, the Hα observed flows away from the black hole and is shadowed

from X-rays by the primary. This gas does indeed lie in the X-ray shadow because similar Hα

strength is observed during both low/hard and high/soft states, where X-ray luminosity changes.

G03 calculate supergiant mass loss to be (2.57 ± 0.05) × 10−6 M�/yr during the low/hard state,

where X-ray flux is decreased. Mass loss in the presence of increased X-ray emission during the

high/soft state appears to be only (2.00± 0.03)× 10−6 M�/yr, which supports the hypothesis that

increased accretion onto the black hole is actually produced by decreased mass loss by the supergiant.

4.2.2 Periodicities

The 5.6 day orbital period of Cygnus X-1 (Webster & Murdin 1972, Bolton 1972) is mirrored by

ellipsoidal light modulation, where the tidally distorted, V ≈ 9 supergiant fluctuates with amplitude

∆V ≈ 0.04 mag at twice the orbital frequency due to its time-variable cross-sectional area (Walker

1972; Lyutyj et al. 1973; Lester et al. 1973; Bochkarev et al. 1975; Bruevich et al. 1978; Balog et

al. 1981; Gies & Bolton 1982; Khaliullina & Khaliullin 1981; Kemp et al. 1987; Ninkov et al. 1987a,
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b; Voloshina et al. 1997; Brocksopp et al. 1999b). In addition to photometric observations in the

optical, such second harmonic modulation has been observed in X-rays (Holt et al. 1976, Holt et al.

1979, Priedhorsky et al. 1995, Zhang et al. 1996, Paciesas et al. 1997, Pooley et al. 1999, Brocksopp

et al. 1999a, Wen et al. 1999, Kitamoto et al. 2000, Manchanda 2001, Özdemir & Demircan 2001,

Lachowicz et al. 2006, Poutanen et al. 2008), ultraviolet (Wolinski et al. 1996, Brocksopp et al.

1999a), near-IR (Leahy & Ananth 1992, Nadzhip et al. 1996, Brocksopp et al. 1999a), and radio

(Pooley et al. 1999, Brocksopp et al. 1999a, Lachowicz et al. 2006).

There is also weak evidence for 39- and 78-day periods of unknown origin in ultraviolet and X-ray

photometry (Kemp et al. 1978b), optical photometry (Karitskaya 1979, Lyutyi 1985, Kemp et al.

1987), and optical polarimetry (Kemp et al. 1978b). Kemp et al. (1978b) do not observe optical

variability with these periods, and Dolan et al. (1979) do not observe X-ray variability. Therefore,

it is unclear whether these periods are actually present.

Finally, there appears to be a longer period in the system, which is thought to originate from

an oblique accretion disk that precesses due to gravitational torques from the supergiant. Previous

observations imply a 294 day period from X-ray data (Metzger & Dolan 1968, Priedhorsky & Terrell

1982, Manchanda 1983, Priedhorsky et al. 1983), optical measurements (Karitskaya 1979, Kemp

1983, Kemp et al. 1983, Kemp et al. 1987), and ultraviolet/optical polarimetry (Kemp et al. 1983).

However, more recent research suggests a 150 day period from X-ray (Pooley et al. 1999, Brocksopp

et al. 1999a, Kitamoto et al. 2000, Özdemir & Demircan 2001, Lachowicz et al. 2006, Ibragimov

et al. 2007, Poutanen et al. 2008), ultraviolet (Brocksopp et al. 1999a), optical (Brocksopp et al.

1999a, G03) and radio observations (Pooley et al. 1999, Brocksopp et al. 1999a, Lachowicz et al.

2006, Ibragimov et al. 2007, Poutanen et al. 2008). It has been suggested that the 294 day period

is just aliasing of the “true” 150 day period, and that it is therefore not a real effect (Özdemir &

Demircan 2001).

However, Kemp et al. (1983) saw a weaker 147 day period in addition to their 294 day period,

and the 294 day period was observed through ≈ 15 cycles. Lachowicz et al. (2006, hereafter L06)

see weak evidence for a current 293 day period in radio data, and they find a weak 150 day period

to be present in the old data of Priedhorsky et al. (1983). L06 have studied archival data from the

X-ray satellite Ariel 5 between 1976 and 2003, and they see a consistent, 150 day period throughout

this time span. They further observe that the phase of precession has stayed roughly constant over
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those ≈ 65 precessional periods. Additionally, using archival data from the Vela 5B satellite from

1969 to 1979, L06 see the existence of the 294 day period but not the 150 day period. Therefore,

L06 suggest that the dominant period of disk precession physically evolved from the 294 day period

to its second harmonic around 1980.

4.2.3 Polarization

The Cygnus X-1 system exhibits strong linear polarization in the optical with mean polarization

Plin ≈ 5%. The optical (Gehrels 1972, Wolinski et al. 1996) and near-IR spectrum of polarization

(Wilking et al. 1980) is consistent with the empirical interstellar polarization relation of Serkowski et

al. (1975) as modified by Wilking et al. (1980). Since Cynus X-1 is 2.2±0.2 kpc distant (Ziólkowski

2005) and in the plane of the galaxy, such strong interstellar polarization is almost unavoidable

(Mathewson & Ford 1970, Barrett 1996, Fosalba et al. 2002). The position angle of net polarization

changes by ∆Θ(λ) = 0.8◦ between U and V bands, which is significant at the 3σ level (Kemp et al.

1976).

Dolan & Tapia (1989) reject the hypothesis of constant position angle with wavelength at the

1% level of significance, and Wolinski et al. (1996) also observe the change in position angle. In

addition, they observe wavelength-dependent Rayleigh scattering in the system as well as polariza-

tion in the ultraviolet larger than expected from interstellar polarization (section 4.5.5). Finally,

the linear polarization of Cygnus X-1 is partly phase-locked to the first and second harmonic of the

orbital frequency with amplitude ∆Plin ≈ 0.2% (Nolt et al. 1975; Kemp et al. 1978a, 1979; Kemp

1980a, Dolan & Tapia 1989; Wolinski et al. 1996; Nagae et al. 2008). These results imply that the

linear polarization of Cygnus X-1 consists of interstellar and intrinsic components.

In addition to possessing strong linear polarization, Cygnus X-1 also harbors nonzero circular

polarization of Pcirc ≈ 0.05% (Michalsky et al. 1975a, b; Severny & Kuvshinov 1975; Michalsky

& Swedlund 1977). The sense of circular polarization changes sign near the wavelength of peak

linear polarization, which is consistent with interstellar origin (Martin 1974). Indeed, comparable

circular polarization is observed in HD 204827, which is near Cygnus X-1 in the plane of the sky

(Serkowski et al. 1975). Additionally, rotation of interstellar grain alignment along the line of sight

to the system converts linear polarization to circular polarization with ≈ 1% efficiency (Martin 1974,
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Avery et al. 1975), which can account for the mean circular polarization of Cygnus X-1. Indeed, a

change in grain size in addition to orientation along the line of sight produces a change in position

angle with wavelength, which has been observed above.

However, in addition to variable linear polarization, circular polarization from Cygnus X-1 has

also been observed to be variable (Michalsky et al. 1975b, Michalsky & Swedlund 1977). The B

band amplitude of ∆Pcirc ≈ 0.05%, were it caused by interstellar conversion of the variable linear

polarization, would require the linear polarization to be variable at the ∆Plin ≈ 5% level. Since

this is an order of magnitude larger than the observed ∆Plin ≈ 0.2%, the circular polarization of

Cygnus X-1 must consist of interstellar and intrinsic components. The dominant period of circular

polarization has been observed to change from 2.8 days to 5.6 days over the course of eleven months

(Michalsky & Swedlund 1977).

Gnedin et al. (2003, hereafter Gn03) suggest that a magnetic field origin for the intrinsic circular

polarization of Cygnus X-1 implies a magnetic field at the last stable orbit of the black hole (r0 ≡

3Rs) of B(r0) = 107−108 G. Long et al. (1980) observe linear polarization of X-rays to be 2.4±1.1%

at 2.6 keV and 5.3±2.5% at 5.2 keV. Gn03 admit that the statistical significance of these detections

is low, but they suggest that the decrease in X-ray polarization at lower energies may be due to

Faraday depolarization. Faraday depolarization is the decrease in net polarization due to volume-

integrated Faraday rotation (rotation of the plane of polarization due to a magnetic field). From

Gnedin & Silant’ev (1980), the angle of Faraday rotation, χF , is

χF ≈ 0.6τT

(
B

106 G

)(
1 keV
E

)2

cos θ. (4.2)

Here, θ is the angle between the local magnetic field and radiation propagation, and τT is the optical

depth to Thomson scattering of the region. Assuming the difference in polarization between 2.6 keV

and 5.3 keV is real, Gn03 calculate a magnetic field of B(r0) ≥ 3×107 G. Furthermore, Gn03 suggest

that Faraday depolarization of optical polarization implies B(r0) ≈ 107 G for a dipolar magnetic

field. Thus, estimates of the strength of the magnetic field in the vicinity of the black hole, due to

optical circular polarization as well as Faraday depolarization in the optical and in X-rays, imply a

magnetic field of order B(r0) = 107 − 108 G.
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4.3 Inclination from Polarimetry

4.3.1 BME Scattering Model

The standard technique for inclination inversion from polarimetric observations comes from the the-

ory of Brown et al. (1978, hereafter BME). An optically thin envelope of arbitrary distribution

around one, or both, components in a binary with zero eccentricity is assumed. As long as the enve-

lope is corotating and phase locked to the binary, polarimetric modulation of Thomson or Rayleigh

scattered flux will be dependent on orbital inclination. For an envelope symmetric with respect to

the orbital plane, BME note that polarimetric modulation will occur at the second harmonic of the

orbital frequency. Asymmetry in the envelope will generate a first harmonic component.

From Aspin et al. (1981),

Q(λ) = τ0
[
γ1 sin 2i cosλ− γ2 sin 2i sinλ−

(
1 + cos2 i

)
γ3 cos 2λ+

(
1 + cos2 i

)
γ4 sin 2λ

]
(4.3a)

U(λ) = 2τ0 [γ1 sin i sinλ+ γ2 sin i cosλ− γ3 cos i sin 2λ− γ4 cos i cos 2λ] (4.3b)

τ0 ≡
σ0

2

2∑
j=1

∫∫∫
n(r, θ, φ) sin θjdrjdθjdφj (4.3c)

τ0γ1 ≡
σ0

2

2∑
j=1

fj

∫∫∫
n(r, θ, φ) sin 2θj cosφjdrjdθjdφj (4.3d)

τ0γ2 ≡
σ0

2

2∑
j=1

fj

∫∫∫
n(r, θ, φ) sin 2θj sinφjdrjdθjdφj (4.3e)

τ0γ3 ≡
σ0

2

2∑
j=1

fj

∫∫∫
n(r, θ, φ) sin2 θj cos 2φjdrjdθjdφj (4.3f)

τ0γ4 ≡
σ0

2

2∑
j=1

fj

∫∫∫
n(r, θ, φ) sin2 θj sin 2φjdrjdθjdφj . (4.3g)

Here, λ = 2πφ is the orbital longitude for zero eccentricity, φ is orbital phase, and σ0 ≡ 3σT /(16π).

Spherical coordinates are in the reference frame of the binary, where θ = 0 is perpendicular to

the orbital plane. Summation progresses over stars j = 1, 2 in the binary, and fj is the fractional

luminosity of star j with respect to the system’s flux. Regardless of the distribution of scatterers

n(r, θ, φ) and the intensity of each star, polarimetric modulation will occur at the fundamental and

second harmonics of the orbital frequency.
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Observed modulations in normalized Stokes parameters Q and U are decomposed into Fourier

components according to

Q(λ) = q0 + q1 cosλ+ q2 sinλ+ q3 cos 2λ+ q4 sin 2λ (4.4a)

U(λ) = u0 + u1 cosλ+ u2 sinλ+ u3 cos 2λ+ u4 sin 2λ. (4.4b)

Note that observed Stokes parameters Q and U are normalized by stellar intensity. Terms of third

order in orbital frequency are expected for non-zero eccentricity. It is generally accepted that the

eccentricity of Cygnus X-1 is zero (Gies & Bolton 1982; Ninkov et al. 1987a, b; Brocksopp et al.

1999b), though there is some evidence to the contrary (Hutchings 1974, Bolton 1975, Hutchings 1978,

Guinan et al. 1979). Therefore, Fourier components higher than second order in orbital frequency

are generally ignored.

Orbital inclination i is related to the Fourier amplitudes in Equations 4.4a and 4.4b by

(
1− cos i
1 + cos i

)2

=
(q2 + u1)2 + (q1 − u2)2

(q1 + u2)2 + (q2 − u1)2 (4.5a)

(
1− cos i
1 + cos i

)4

=
(q4 + u3)2 + (q3 − u4)2

(q3 + u4)2 + (q4 − u3)2 (4.5b)

and the position angle of the line of quadratures (Dolan & Tapia 1989) is given by

Θquad =
Ω
2

+ 90◦ (4.6a)

tan Ωa =
D − T
B − C

(4.6b)

tan Ωb =
B + C

D + T
(4.6c)

B =
u4 − q3

(1− cos i)2
(4.6d)

C =
u4 + q3

(1 + cos i)2
(4.6e)

D =
q4 − u3

(1 + cos i)2
(4.6f)

T =
u3 + q4

(1− cos i)2
(4.6g)
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according to Drissen et al. (1986a). Inclinations from Equations 4.5a and 4.5b, and values of Ω from

Equations 4.6b and 4.6c, should be equal and provide a consistency check of the model. Because

terms in i are raised to the even powers (Equations 4.5b and 4.5a), degeneracies exist between i and

i± 180◦ as well as between Ω and Ω± 180◦.

4.3.2 Inclination Bias

Inclination estimates from polarimetry are known to be biased toward high (edge-on) inclination,

where the strength of the bias is inversely related to the signal to noise ratio of the data. For an

edge-on geometry and a phase-locked, optically thin distribution of scatterers, symmetry dictates

that the observed polarization will be either parallel or perpendicular to the orbital plane throughout

the orbit. Therefore, the polarization components parallel and perpendicular to the orbital plane

will be modulated sinusoidally, while the polarization components at ±45◦ with respect to the or-

bital plane will be zero during the orbit. Observed U versus Q will trace a line over the course of

the orbit, where the position angle of that line in (Q,U) space will be related to the position angle

of the line of quadratures in the plane of the sky.

Conversely, polarization observed from a face-on system will trace a circle in (Q,U) space due

to symmetry. This is because a face-on system will have constant degree of polarization, P (λ) =√
Q(λ)2 + U(λ)2, throughout the orbit. Since P (λ) will be constant, U(λ) = ±

√
P (λ)2 −Q(λ)2 is

the equation of a circle in (Q,U) space. Given noisy data obtained on a system with arbitrary incli-

nation, a linear fit to observed U(λ) versus Q(λ) will begin to have higher confidence. Consequently,

low quality data will bias inverted inclination towards high values. For arbitrary inclination, truly

phase-locked systems will trace out an ellipse in (Q,U) space, where BME and Rudy & Kemp (1978)

independently discovered the eccentricity of the ellipse to be

e =
sin2 i

1 + cos2 i
. (4.7)

Because of the polarimetric bias inherent to the BME technique, many authors (Milgrom 1978,

Simmons et al. 1980, Aspin et al. 1981, Simmons et al. 1982, Wolinski & Dolan 1994) have criticized

the use of formal error propagation when determining uncertainty in inclination. Uncertainty de-

rived from error propagation, where inclination uncertainty is related to uncertainties in the Fourier
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components of Equations 4.5a and 4.5b, dramatically overestimates the confidence in an inclination

estimate. The standard mechanism for estimating the confidence interval on polarimetrically-derived

inclination was developed by Aspin et al. (1981) and Simmons et al. (1982), and it was extended

by Wolinski & Dolan (1994).

Consider a time series of N = NQ+NU observations in Stokes Q and U wrapped to the binary’s

orbital phase. Let uncertainty in each observation be σ. The maximum and minimum values of

the fits to Q(λ) and U(λ), as opposed to the maximum observed Q(λ) and U(λ), are denoted qmax,

umax, qmin, and umin. The relevant quantity in determining data quality is the so-called “figure of

merit” γ, which is effectively the square of the signal to noise ratio of each Q(λ) and U(λ) fit. The

amplitude of polarimetric variability A and the figure of merit γ are given by

A =
|qmax − qmin|+ |umax − umin|

4
(4.8a)

γ =
(
A

σ

)2
N

2
(4.8b)

from Aspin et al. (1981) and Simmons et al. (1982), respectively.

Using the regularized Monte Carlo approach of Dolan (1984), Wolinski & Dolan (1994, hereafter

WD94) generate Q(λ, i) and U(λ, i) curves expected from single scattering in a close binary. They

calculate these curves for inclinations ranging from 0◦ to 90◦ in 5◦ increments. The primary is

constructed from 5,000 elements that illuminate the scattering region. These authors take into

account limb and gravity darkening of the primary as well as the change in projected area of the

illuminating element as seen by the scatterer. WD94 add noise with zero mean and variance σ2

to Q(λ, i) and U(λ, i), where 1,000 curves are generated for each inclination step. Based on the

figures of merit of the synthesized data sets, they find confidence intervals on inclination derived

from Equation 4.5b. WD94 recommend calculating i and γ from Equations 4.5b and 4.8b and

determining the confidence interval on derived inclination from their Figure 4.
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4.4 Results

For each night, the weighted mean polarization is taken for each Cassegrain ring angle, where the

weight is proportional to number of detected photons. Uncertainty in each of these bins is the square

root of the weighted variance of the measurements in the bin. These data are listed in Table 4.1,

where nphot is the number of detected photons, and nmsmts is the number of 30 second measure-

ments, in each bin. Fitting Equations 4.4a and 4.4b to the binned data in Table 4.1, we obtain the

Fourier coefficients listed in Table 4.2. Data from this work are listed as W07 and W08 for August

2007 and June 2008 obsevations, respectively. Kemp (1980b) data are denoted K80, and Dolan &

Tapia (1989) data are DT89. These will be explained later.

The standard fit involves the zeroth, first, and second harmonics of the orbital frequency (listed

in bold in Table 4.2). However, we have included additional fits, using only the zeroth and second

harmonics as well as using the zeroth through third harmonics. The strength of the first harmonic

is sensitive to the distribution of scatterers about the orbital plane, and the strength of the third

harmonic is sensitive to orbital eccentricity. Binned data from August 2007 and June 2008 are

plotted in Figures 4.1 and 4.2, respectively. The area of each open circle is proportional to the total

number of detected photons in each bin.

The “max − min” values in Table 4.2 are the peak to peak differences in the fits for Q(λ) and

U(λ). Fit χ2, number of observations, and the significance level for fit rejection, α, are listed. The

amplitudes of the first, second, and third harmonic components are given by


qI

qII

qIII

 =


q2
1 + q2

2

q2
3 + q2

4

q2
5 + q2

6


1
2

(4.9a)


uI

uII

uIII

 =


u2

1 + u2
2

u2
3 + u2

4

u2
5 + u2

6


1
2

(4.9b)


pI

pII

pIII

 =


q2
I + u2

I

q2
II + u2

II

q2
III + u2

III


1
2

. (4.9c)
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Table 4.1: Journal of Observations

Data Set MJD Phase Q U nphot θCass nmsmts

UT Date (%) (%) (×107) (◦)

W07 54314.477 0.5369 − −4.355(42) 2.4 45 3
2007 Aug 2 54314.480 0.5375 0.632(49) − 5.0 270 11

54314.486 0.5385 − −4.397(43) 5.2 225 12
54314.487 0.5387 0.662(68) − 5.0 180 12
54314.501 0.5411 − −4.474(61) 4.3 315 10
54314.504 0.5418 − −4.531(60) 4.1 135 11
54314.511 0.5431 0.622(43) − 3.8 0 9

2007 Aug 3 54315.332 0.6896 0.726(41) − 4.5 90 4
54315.344 0.6918 − −4.658(45) 7.4 135 10
54315.348 0.6924 − −4.681(37) 16.1 45 52
54315.349 0.6927 0.710(51) − 16.8 0 56
54315.351 0.6930 0.724(42) − 8.0 180 12
54315.357 0.6940 − −4.684(22) 6.4 225 8
54315.357 0.6941 0.698(31) − 6.3 270 8
54315.357 0.6941 − −4.657(26) 6.3 315 8

2007 Aug 4 54316.325 0.8670 − −4.821(22) 20.5 45 29
54316.326 0.8672 0.589(61) − 5.1 90 6
54316.330 0.8678 − −4.743(20) 4.5 135 4
54316.336 0.8689 0.565(43) − 23.0 0 36
54316.341 0.8699 − −4.776(31) 4.1 315 4
54316.345 0.8705 0.578(50) − 8.4 180 14
54316.352 0.8717 − −4.804(60) 6.6 225 10
54316.352 0.8718 0.533(65) − 6.0 270 8

2007 Aug 5 54317.300 0.0411 − −4.597(23) 8.6 135 4
54317.305 0.0419 0.482(67) − 8.5 90 4
54317.348 0.0497 0.504(43) − 13.8 180 12
54317.368 0.0532 − −4.660(35) 23.6 45 36
54317.368 0.0533 0.489(50) − 23.7 0 36
54317.375 0.0544 − −4.649(31) 11.1 225 8
54317.375 0.0544 − −4.632(45) 11.0 315 8
54317.375 0.0544 0.498(47) − 10.8 270 8

2007 Aug 6 54318.351 0.2288 0.649(39) − 17.7 180 12
54318.352 0.2290 − −4.773(23) 17.5 225 12
54318.354 0.2293 0.640(38) − 17.3 270 12
54318.356 0.2296 − −4.736(21) 17.3 315 12
54318.373 0.2328 0.639(54) − 28.2 0 32
54318.377 0.2334 − −4.782(23) 25.9 45 28

W08 54625.951 0.0698 − −4.805(30) 7.8 135 6
2007 Jun 8 54625.958 0.0709 0.571(20) − 7.7 90 6

54625.976 0.0742 0.575(24) − 11.5 0 14
54625.977 0.0743 − −4.819(14) 11.9 45 14

2007 Jun 9 54626.873 0.2344 0.759(20) − 13.5 0 20
54626.885 0.2366 − −5.006(29) 13.7 45 20
54626.897 0.2387 0.741(20) − 14.3 90 20
54626.909 0.2409 − −4.982(20) 13.8 135 20

2007 Jun 10 54627.903 0.4182 0.522(25) − 13.8 0 20
54627.915 0.4204 − −4.969(17) 13.7 45 20
54627.927 0.4226 0.519(25) − 14.5 90 20
54627.939 0.4247 − −4.958(18) 14.2 135 20

2007 Jun 11 54628.905 0.5973 0.617(24) − 14.3 0 20
54628.917 0.5994 − −4.961(23) 14.3 45 20
54628.929 0.6016 0.591(20) − 14.8 90 20
54628.941 0.6037 − −4.947(29) 14.6 135 20

2007 Jun 12 54629.865 0.7687 0.643(20) − 12.0 0 16
54629.875 0.7705 − −5.000(16) 12.2 45 16
54629.885 0.7722 0.623(21) − 12.4 90 16
54629.895 0.7740 − −4.985(18) 12.3 135 16

2007 Jun 13 54630.876 0.9491 0.541(28) − 12.8 0 20
54630.888 0.9513 − −4.94(23) 12.9 45 20
54630.900 0.9534 0.515(19) − 13.0 90 20
54630.912 0.9556 − −4.902(21) 12.7 135 20

2007 Jun 14 54631.862 0.1252 − −4.908(21) 13.4 135 20
54631.874 0.1274 0.655(17) − 13.5 90 20
54631.886 0.1295 − −4.913(24) 13.6 45 20
54631.898 0.1317 0.675(27) − 13.7 0 20
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Table 4.2: BME Fit Parameters

Data Set W08 W07 Wmean K80 DT89 All
Fit Orders 0,1,2 0,2 0,1,2 0,1,2,3 0,1,2 0,1,2 0,1,2 0,1,2

Period (days) 5.599829 5.599829 5.599829 5.599829 5.599829 5.600 5.59974 5.599829
Epoch (MJD) 51729.949 51729.949 51729.949 51729.949 51729.949 41000.6 41868.610 51729.949

q0 (%) +0.6044 +0.5807 +0.6102 +0.6143 +0.6073 +0.6539 +1.1010 +0.7864
q1 (%) +0.0051 − −0.0734 −0.0794 −0.0342 −0.0066 −0.0965 −0.0327
q2 (%) +0.0312 − −0.0225 −0.0182 +0.0044 −0.0155 −0.0182 −0.0008
q3 (%) −0.0894 −0.0835 −0.0612 −0.0705 −0.0753 +0.0002 −0.0624 −0.0505
q4 (%) +0.0378 +0.0284 +0.0152 +0.0147 +0.0265 +0.0778 +0.1121 +0.0759
q5 (%) − − − −0.0246 − − − −
q6 (%) − − − +0.0271 − − − −
qI (%) 0.0316 − 0.0767 0.0815 0.0344 0.0168 0.0982 0.0327
qII (%) 0.0971 0.0882 0.0631 0.0720 0.0798 0.0778 0.1283 0.0912
qIII (%) − − − 0.0366 − − − −

1
2 (qmax − qmin) (%) 0.1140 0.0882 0.1187 0.1491 0.0986 0.0890 0.2016 0.1119

χ2
Q 11.9 25.4 1.3 1.3 − − − −
nQ 14 18 18 18 − − − −
αQ 0.615 0.115 1.000 1.000 − − − −

u0 (%) −4.9510 −4.7052 −4.6653 −4.5972 −4.8082 −4.8603 −4.6000 −4.8038
u1 (%) +0.0347 − −0.1023 −0.2095 −0.0338 +0.0075 −0.0572 −0.0050
u2 (%) +0.0081 − +0.0015 +0.0837 +0.0048 +0.0165 +0.0789 +0.0345
u3 (%) +0.0489 +0.0728 +0.1071 +0.1292 +0.0780 +0.0594 +0.0722 +0.0602
u4 (%) +0.0285 +0.0908 +0.0572 −0.1047 +0.0429 +0.0335 +0.0792 +0.0471
u5 (%) − − − +0.0795 − − − −
u6 (%) − − − +0.0526 − − − −
uI (%) 0.0356 − 0.1023 0.2256 0.0341 0.0181 0.0975 0.0349
uII (%) 0.0566 0.1163 0.1214 0.1664 0.0890 0.0682 0.1072 0.0764
uIII (%) − − − 0.0953 − − − −

1
2 (umax − umin) (%) 0.0764 0.1163 0.1890 0.3510 0.1120 0.0812 0.1702 0.1154

χ2
U 22.9 86.6 25.8 23.6 − − − −
nU 14 19 19 19 − − − −
αU 0.061 1 × 10−10 0.135 0.211 − − −

pI (%) 0.0476 − 0.1279 0.2399 0.0485 0.0247 0.1383 0.0478
pII (%) 0.1124 0.1460 0.1368 0.1813 0.1196 0.1035 0.1672 0.1190
pIII (%) − − − 0.1021 − − − −
pI/pII 0.42 − 0.93 1.32 0.41 0.24 0.83 0.40
εI 0.298 − 0.483 0.458 0.289 0.193 0.453 0.287
εII 0.702 1 0.517 0.346 0.711 0.807 0.547 0.713
εIII − − − 0.195 − − − −
A (%) 0.0952 0.1022 0.1539 0.2500 0.1053 0.0851 0.1859 0.1136
γ 297 163 369 974 666 − 287 −

iI, 1σ (◦) 49
+6
−49

− 81 ± 1 85 ± 1 89 ± 1 89 51+5
−51 29

iI, 90% (◦) 49
+8
−49

− 81 ± 2 85 ± 2 89 ± 2 89 51+7
−51 29

iI, 2σ (◦) 49
+10
−49

− 81 ± 3 85 ± 2 89 ± 2 89 51+9
−51 29

iII, 1σ (◦) 78 ± 1 68+4
−6 81 ± 1 79 ± 1 76 ± 2 72 67+2

−4 58

iII, 90% (◦) 78
+2
−3

68+5
−26 81 ± 2 79 ± 2 76 ± 3 72 67+3

−13 58

iII, 2σ (◦) 78
+2
−4

68+6
−45 81 ± 3 79 ± 2 76 ± 3 72 67+4

−22 58

Ωa, 1σ (◦) 148 ± 3 147 ± 8 125 ± 3 112 ± 3 136 ± 2 100 128 ± 8 126
Ωa, 2σ (◦) 148 ± 7 147 ± 16 125 ± 6 112 ± 7 136 ± 4 100 128 ± 14 126
Ωb, 1σ (◦) 48 ± 3 63 ± 8 58 ± 3 112 ± 3 51 ± 2 17 37 ± 8 35
Ωb, 2σ (◦) 48 ± 7 63 ± 16 58 ± 6 112 ± 7 51 ± 4 17 37 ± 14 35

Θquad,a, 1σ (◦) 164 ± 2 164 ± 8 153 ± 2 146 ± 3 158 ± 2 140 154 ± 4 153
Θquad,a, 2σ (◦) 164 ± 4 164 ± 16 153 ± 3 146 ± 7 158 ± 4 140 154 ± 7 153
Θquad,b, 1σ (◦) 114 ± 2 121 ± 8 119 ± 2 146 ± 3 116 ± 2 98 109 ± 4 108
Θquad,b, 2σ (◦) 114 ± 4 121 ± 16 119 ± 3 146 ± 7 116 ± 4 98 109 ± 7 108
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Figure 4.1: Binned observations of Cygnus X-1, August 2007 data. Area of each open circle is
proportional to number of detected photons.
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Figure 4.2: Binned observations of Cygnus X-1, June 2008 data. Observations at phase 0.13 corre-
spond to the next orbit.



144

The fractional power in the first, second, and third harmonics for each fit are given as εI, εII, and

εIII, respectively, where εI + εII + εIII = 1. We require that α > 0.01 in order to assume the fit is

valid. It should be noted that values higher than α = 0.01 do not imply that the model is a correct

physical description of the scattering process. Indeed, it is expected that the fits to the Aug 2007

data involving zeroth through second and zeroth through third order in orbital frequency will have

favorable values of α, regardless of whether the model is actually correct. This is because these fits

have five and seven parameters, respectively, while the data essentially consist of five points (one

per night). The zeroth through third order fit to the Jun 2008 data is also expected to fit the data

well, because seven nights of data were taken.

Values lower than α = 0.01, however, imply that either (1) the model does not accurately

describe high-frequency modulation in the data, or (2) the model does not correctly describe the

scattering process. Since the scatter in observations during each night is low, we can assert that

high-frequency fluctuations in the polarization from Cygnus X-1 are not observed. For the Aug 2007

run, the 0th/2nd harmonic model is the only one tested for which data overconstrain the fit, so α

for this fit is the probability that the model accurately describes the physical processes involved.

Thus, the discrepancy between the 0th/2nd harmonic model and both Stokes parameters observed

at phase 0.55 is significant: the first harmonic is essential in describing the polarimetric modulation

in Cygnus X-1 to a confidence level 1 − αQαU ≈ 1 − 10−11. The data from the Jun 2008 run

overconstrain the zeroth through second order fit, which is the standard fit for the BME technique.

The BME model can be rejected for this run at the 1 − αQ = 0.38 and 1 − αU = 0.94 confidence

levels for the Stokes Q and U data, respectively. The inadequacy of the BME model is evidenced

by the poor Stokes U fit seen in Figure 4.2.

The large contribution of the third harmonic is seen most strongly in the Stokes U data, and it is

most likely spurious. Indeed, the fit using the zeroth through third harmonics is radically different

between the Aug 2007 and Jun 2008 runs, which can be seen in Figures 4.1 and 4.2. A rapid increase

in U occurs between observations near phase 0.4 during the Aug 2007 run, which is a strong indicator

that it is an artifact of the fit. To test this, we generated random data sets consisting of five points

each, where the phase of the data points correspond to the phases in Figure 4.1. While the Q and

U value for each point was chosen randomly, mean Q and U as well as the amplitudes were set to

the observed values. Each synthetic data set was fit to Equations 4.4a and 4.4b. An example of a

random data set is given as Figure 4.3. The amplitudes Afit and Adata are shown as dashed and

dotted lines, respectively.
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Both a histogram of the ratio of amplitudes Afit/Adata and their cumulative distribution function

(CDF) are plotted in Figure 4.4 for the randomly generated data sets. Ratios must be larger than

unity, because the five-parameter fit will always pass through each five-point data set. Large ratios

of amplitudes indicate that the fits have large fluctuations for phases between data points. For the

0th/1st/2nd order fit to the observations in Figure 4.1, the measured values of Afit/Adata are 1.08

and 1.10 for Q and U , respectively. The probabilities of random data having higher amplitude ratios

are 1 − CDFQ = 88% and 1 − CDFU = 87%, indicating the high probability that the 0th/1st/2nd

order fit accurately represents the polarization during phases in which the system was not observed.

However, Afit/Adata increases to 1.36 and 2.03 for the fit including the third harmonic. These ratios

are lower than 43% and 5% of random data. Thus, the fits including the third harmonic have low

probability of accurately describing the system, especially for the U fit. Since the third harmonic is

generated by orbital eccentricity, the fact that the third harmonic is not necessary to fit the observed

data agrees with the observation that orbital eccentricity is consistent with zero. Thus, we agree

with the community’s use of the 0th/1st/2nd order fit as being the most appropriate for Cygnus X-1.

For the Aug 2007 data, inclination determined from the first-order coefficients in Equation 4.5a is

iI = 81.2◦, while the second-order coefficients give iII = 81.3◦ from Equation 4.5b. Thus, inclinations

derived from the first and second order coefficients are mutually consistent. However, inclinations

derived from the Jun 2008 data are iI = 48.9◦ and iII = 77.8◦, which are mutually inconsistent.

To estimate the confidence interval on these inclinations, we first determine the figure of merit γ

(Equation 4.8b). Since each bin has a different uncertainty, we choose to rewrite Equation 4.8b as

a summation over bins j:

γ =
1
2

N∑
j=1

(
A

σj

)2

. (4.10)

To estimate the confidence interval on our derived inclination estimate, we consult Figure 4 of WD94

for γ = 300, which is plotted in Figure 4.5. Interpolating between the confidence intervals for γ = 300

and γ = 1.2×105 in the same figure shows that the difference between γ = 300 and γ = 369 reduces

the confidence interval by less than one degree. Therefore, we estimate the confidence intervals on

derived inclination to be 80◦ ≤ i ≤ 82◦ (1σ) and 78◦ ≤ i ≤ 84◦ (2σ) for the Aug 2007 data. The

90% confidence interval is therefore 79◦ < i < 83◦. For the Jun 2008 run, the confidence intervals

on derived inclination are 77◦ ≤ i ≤ 79◦ (1σ), 75◦ ≤ i ≤ 80◦ (90% confidence), and 74◦ ≤ i ≤ 80◦
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Figure 4.3: Examples of synthesized Q and U data sets. Extrema lying at phases between data
points suggest that the fits do not accurately describe the system at all phases.
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Figure 4.4: Histogram (left axis) and cumulative distribution function (right axis) of the ratios of
amplitudes between BME fits and synthesized data. Large ratios indicate that the fit surpasses the
range of the data.
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(2σ). We find the values of Θquad from Equations 4.6b and 4.6c to be inconsistent for both the Aug

2007 and Jun 2008 runs.

4.5 Literature Estimates

Other groups have estimated the inclination of Cygnus X-1 as well as other binary systems (Table

4.3 and Figure 4.6). Uncertainties in parenthesis represent 1σ error, while ranges indicate 90%

confidence intervals. An inclination of “?” indicates that the inclination inversion method failed

to provide a fit at acceptable significance under the χ2 test. Methods used generally fall into four

categories: presence/lack of eclipses, radial velocity (mass function or tomography), ellipsoidal light

modulation, and polarimetry.

4.5.1 Eclipses

Strong X-ray eclipses are not observed in Cygnus X-1, so the maximum allowable inclination is given

by cos imax = R/a, where R is the radius of the supergiant and a is the semimajor axis of the orbit

(Figure 4.7). These values are estimated at a = 40.2 R�, 42±9 R� (Herrero et al. 1995, Iorio 2007),

R = 18 R�, 17.0 to 22.9 R�, 22.77± 2.3 R� (Bochkarev et al. 1975, Herrero et al. 1995, Ziólkowski

2005), and R/a = 0.4 to 0.45 (Karitskaya & Bochkarev 1989). Thus, the maximum inclination is

imax ≈ 62±4◦. This is inconsistent with the inclinations derived from individual runs at the 4σ−5σ

level. Thus, we can state with high confidence that the BME technique fails when determining the

inclination of Cygnus X-1 from single-orbit observing runs. The maximum inclination is inconsistent

at the 3σ level with the polarimetric modulation when co-adding both runs.

4.5.2 Radial Velocity Mass Function

Estimation of inclination from the radial velocity mass function proceeds from a priori knowledge

of the masses of both binary components, which is usually estimated by stellar evolution modeling

from observed spectral type (cf. Moffat et al. 1990a). Inclination is then derived from the definition

of the mass function:

f(MBH) =
MBH sin3 i

(1 +Mstar/MBH)2 . (4.11)
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Figure 4.5: Confidence intervals for inclination estimates from the BME model, taken from Figure 4
of Wolinski & Dolan (1994). Derived inclination is i′ and true inclination is i. The solid lines indicate
the 1σ confidence interval, while the 2σ confidence interval is given by dashed lines. Therefore,
derived inclination i′ ≤ 56◦ will have a 1σ confidence interval that extends down to i = 0◦.

Figure 4.6: Cygnus X-1 inclination estimates from various methods. Note that many inclination
estimates derived polarimetrically significantly exceed the maximum possible inclination, which is
determined from the lack of observed X-ray eclipses.
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Table 4.3: Comparison of Inclination Estimates

Binary Reference Method or Data Band i (◦)

Cygnus X-11 Bochkarev et al. (1979) Minor eclipses − 58(7)
Sowers et al. (1998) Wind non-eclipses Hα < 55
Wen et al. (1999) Minor eclipses X-rays 25(15)

This work Non-eclipses X-rays < 62± 4
Karitskaya & Bochkarev (1989) Disk precession V 60(5)

Brocksopp et al. (1999a) · · · X-rays 20
Miller et al. (2002) Disk spectrum X-rays 40(10)

Shaposhnikov & Titarchuk (2007) QPO scaling − 8.7(8) M�
Iorio (2007) S&T (2007) − 48.0(6.8)

Ninkov et al. (1987a) Mass function − 36(4)
Davis & Hartmann (1983) RV tomography U 52(15)

Gies et al. (2003) · · · Hα > 30(7)
Hutchings et al. (1973) Ellipsoidality B 27(7)
Bochkarev et al. (1975) · · · − 50(14)

Hutchings (1978) · · · − 45(15)
Guinan et al. (1979) · · · − 48(5)

Brocksopp et al. (1999b) · · · UBV 50
Gies & Bolton (1986a) Ellip. + RV − 33.5(5.5)

Abubekerov et al. (2004) · · · − 37.5(6.5)
Daniel (1981) Ellip. + polarimetry − 30(10)

Kemp et al. (1978a) Polarimetry V 77.8(6.7)
· · · · · · UV 75.8(6.0)

Kemp et al. (1979) · · · − 65(5)
Kemp (1980b) · · · − 82

Simmons et al. (1980) Kemp et al. (1979) − 30− 85
· · · Kemp (1980b) − 48− 80

Long et al. (1980) Polarimetry X-rays 25− 70
Drissen et al. (1986a) Kemp et al. (1978a) − 77(5)
Dolan & Tapia (1989) Polarimetry B 67

· · · · · · V 55
· · · · · · R 60
· · · · · · BV R 25− 67

Wolinski et al. (1996) · · · U 85
This work (W07) · · · ≈ B 79− 83
· · · (W08) · · · ≈ B 75− 80
· · · (Wmean) · · · ≈ B 73− 79

Vela X-11,2 Hutchings (1974) Eclipses − 80
(GP Vel) Hutchings (1978) · · · − 73

(HD 77581) Dolan & Tapia (1988) Polarimetry − 67− 81
(4U 0900− 40) Wolinski et al. (1996) · · · U ?
HD 1539191,2 Hutchings (1974) Eclipses − 90

(V884 Sco) Hutchings (1978) · · · − 87(3)
(4U 1700-37) Dolan & Tapia (1984) Polarimetry − 85(3)

Dolan & Tapia (1988) · · · U 53
· · · · · · B 80
· · · · · · R 84
· · · · · · I 85
· · · · · · UBRI 71− 86

Wolinski et al. (1996) · · · U 85
HD 152667 Dolan & Tapia (1988) Polarimetry U 83
(V861 Sco) · · · · · · B 80

· · · · · · G 85
· · · · · · R 84
· · · · · · I 86
· · · · · · UBGRI 75− 90

CX Dra Horn et al. (1992) Polarimetry U 71
Berdyugin & Piirola (2002) Polarimetry U 71

· · · · · · U 75
· · · · · · B 72
· · · · · · B 70
· · · · · · V 72
· · · · · · V 66
· · · · · · R 76
· · · · · · R 81
· · · · · · I 74
· · · · · · I 86
· · · · · · UBV RI 65− 76 (2σ)
· · · · · · UBV RI 58− 80 (2σ)

Algol2 Batten (1967) Eclipses − 82
(β Per) Rudy & Kemp (1978) Polarimetry − 81(4)

(HD 19356) Aspin & Simmons (1982) R&K (1978) − ?

1High mass X-ray binary
2Eclipsing binary
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Comparison of Inclination Estimates (continued)

Binary Reference Method or Data Band i (◦)

W Ser2 Piirola et al. (2005) Polarimetry U 69.6
· · · · · · U 64.3
· · · · · · B 70.3
· · · · · · B 56.3
· · · · · · B 73.7
· · · · · · V 78.3
· · · · · · V 67.5
· · · · · · R 74.1
· · · · · · R 50.0
· · · · · · I 79.0
· · · · · · I 51.0
· · · Kruszewski (1972) B 88.2
· · · · · · G 82.7

AO Cas2 Batten (1967) Eclipses − 57
(HD 1337) Rudy & Kemp (1978) Polarimetry − 63(9)
(HR 65) Aspin & Simmons (1982) R&K (1978) − 0− 88
σ Ori E2 Kemp & Herman (1977) Polarimetry B 76(8)

(HD 37479) Aspin & Simmons (1982) K&H (1977) B ?
u Her2 Merril (1963) Eclipses − 77

(HD 156633) Batten (1967) · · · − 76
(68 Her) Rudy & Kemp (1978) Polarimetry − 77(5)

(HR 6431) Aspin & Simmons (1982) R&K (1978) − 0− 90
U Sge2 Batten (1967) Eclipses − 90

(HD 181182) Rudy & Kemp (1978) Polarimetry − 87(3)
(HR 7326) Aspin & Simmons (1982) R&K (1978) − 0− 90

MWC 10802 Manset & Bastien (2001) Polarimetry − 43− 81
HD 47129 Rudy & Herman (1978) Polarimetry B 71(9)

(Plaskett’s Star) Aspin & Simmons (1982) R&H (1978) − 0− 90
NTTS 162814− 2427 Jensen & Mathieu (1997) Mass function − 71

Manset & Bastien (2003) Polarimetry − 86.2(2.6)
WR 6 (EZ CMa)3 McLean (1980) Polarimetry − 71.4(6.8)

WR 92,3 Lamontagne et al. (1996) Eclipses − 56.8(2.0)
(V443 Pup) Niemela et al. (1984) Mass function − 64
(HD 63099) · · · Polarimetry − 67.9(3.0)
WR 212,3 Balona et al. (1989) Eclipses − 49.6(3.7)

(HD 90657) Massey (1981) Mass function − 45
Niemela (1982) · · · − 48

Lamontagne et al. (1996) Polarimetry − 62.4(2.2)
WR 312,3 Lamontagne & Moffat (1987) Eclipses − 61.6(1.7)

(V428 Car) Niemela et al. (1985) Mass function − 40
(HD 94546) Lamontagne et al. (1996) Polarimetry − 62.0(2.7)
WR 422,3 Balona et al. (1989) Eclipses − 40.3(2.9)

(V431 Car) Massey (1981) Mass function − 35
(HD 97152) Davis et al. (1981) · · · − 38

St.-Louis et al. (1987) Polarimetry − 39− 49
CD Cru2,3 Moffat et al. (1990b) Eclipses − 63(7)
(WR 47) Massey (1981) Mass function − 70

(HD 311884) Moffat et al. (1990b) · · · − 90
Moffat & Seggewiss (1987) Polarimetry − 77

St.-Louis et al. (1988) · · · − 76.9(1.7)
Moffat et al. (1990b) · · · − 73(5)

WR 792,3 St.-Louis et al. (1987) Eclipses − 33.6(2.3)
(HD 152270) Massey (1981) Mass function − 25
(HR 6265) Seggewiss (1974) · · · − 34

Luna (1982) Polarimetry − 42(10)
St.-Louis et al. (1987) · · · − 40− 50

WR 972,3 Lamontagne et al. (1996) Eclipses − ?
(HD 320102) Niemela (1995) Mass function − 31

Lamontagne et al. (1996) Polarimetry − 85.4(2.0)
CV Ser2,3 Massey (1981) Mass function − 70
(WR 113) Massey & Niemela (1981) · · · − 90

(HD 168206) Lipunova (1982) Eclipses − 70.4(2.3)
Lamontagne et al. (1996) Polarimetry − 79.7(2.3)

QY Vul2,3 Moffat & Shara (1986) Eclipses − 55.3(4.7)
(WR 127) Massey (1981) Mass function − 70

(HD 186943) Massey et al. (1981) · · · − 90
St.-Louis et al. (1988) Polarimetry − 0− 90

V444 Cyg2,3 Kron & Gordon (1950) Eclipses − 78.4
(WR 139) Batten (1967) · · · − 80

(HD 193576) Cherepashchuk (1975) · · · − 78(1)
Hiltner & Mook (1966) Polarimetry − 76(6)
Rudy & Kemp (1978) · · · − 72(6)

Aspin & Simmons (1982) R&K (1978) − 0− 90
Piirola & Linnaluoto (1988) Polarimetry − 82.8(0.9)

Robert et al. (1990) H&M (1966) − 83.2(4.3)
· · · R&K (1978) − 76.0(2.3)
· · · Polarimetry − 77− 79

WR 1483 Drissen et al. (1986a) Polarimetry − 66.6(4.0)
CX Cep2,3 Massey & Conti (1981a) Eclipses − ≥ 50
(WR 151) Lipunova & Cherepashchuk (1982) · · · − 50

3Wolf-Rayet binary
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Comparison of Inclination Estimates (continued)

Binary Reference Method or Data Band i (◦)

De Greve et al. (1988) · · · − 51
Schulte-Ladbeck & van der Hucht (1989) Polarimetry − 74(5)

Villar-Sbaffi et al. (2006) S-L&vdH (1989) − 68(18)
· · · Kartasheva (2002b) − 79(12)
· · · Polarimetry − 70(2)
· · · · · · U 89+1

−7
· · · · · · B 76(14)
· · · · · · V 86+4

−9
· · · · · · R 81(8)
· · · · · · I 87+3

−8
GP Cep2,3 Moffat & Shara (1986) Eclipses − 74.0(0.7)
(WR 153) St.-Louis et al. (1988) Polarimetry − 78(5)
CQ Cep2,3 Leung et al. (1983) Eclipses − 68.0(0.4)
(WR 155) Stickland et al. (1984) · · · − 70(4)

(HD 214419) Drissen et al. (1986b) Polarimetry − 78.0(1.0)
Piirola & Linnaluoto (1988) · · · − 78.1(1.7)

Here, MBH is the mass of the black hole and Mstar is the mass of the visible binary component.

Modeling of the mass of the optical component is highly error-prone because of uncertainties both in

the distance to the system and in evolutionary modeling. Therefore, inclination determined from the

radial velocity mass function should only serve as a rough guide when no other inclination estimates

exist.

4.5.3 Radial Velocity Tomography

Radial velocity tomography is used on stars exhibiting P Cygni profiles, and therefore on stars

exhibiting mass loss. It is generally assumed that outflow velocity from all stellar latitudes is

isotropic, so the radial velocity of the blueshifted absorption should be equal in magnitude, but

opposite in sign, to the radial velocity of the redshifted emission for a nearly edge-on orientation at

phase 0.5 (a truly edge-on geometry would exhibit no redshifted emission due to occultation by the

supergiant). At this phase, the black hole is in superior conjunction, so the radial velocity of the

supergiant is zero in a frame comoving with the system center of mass.

For stars nearly filling their Roche lobes, the density enhancement in the focused stellar wind will

cause most of the redshifted P Cygni emission to be from material in the plane of the orbit. Thus,

emission radial velocity will be related to absorption radial velocity by vem = vabs sin i (Figure 4.7).

G03 acknowledge that the assumption of isotropic wind velocity is most likely not correct. Friend

& Castor (1982) suggest that the enhanced density in the plane of the orbit, due to the focused

stellar wind, will slow the equatorial wind with respect to the wind flowing toward the observer.

Since decreased wind velocity in the plane of the orbit will bias the derived inclination towards lower

values, inclinations determined by radial velocity tomography represent lower limits.
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Figure 4.7: Geometry for eclipses and for radial velocity tomography. Arrows indicate P Cygni
emission towards the observer. The magnitude of the absorption radial velocity vabs has been scaled
to the semimajor axis a; however, the semimajor axis and supergiant radius R are not to scale.

4.5.4 Ellipsoidal Modulation

The cross-sectional area of the tidally distorted supergiant varies at twice the orbital frequency,

generating a so-called “ellipsoidal” lightcurve. In analogy to the modulation of polarization degree

throughout the orbit, the lightcurve is indicative of orbital inclination. However, this technique as-

sumes that the only photometric variability in the system is due to the ellipsoidality of the star. The

focused stellar wind contributes to the flux from the system, which complicates ellipsoidal fitting.

Cygnus X-1 is known to have an inclined, precessing accretion disk (section 4.2.2), so flux reflected

off the disk generates a periodic phase shift with ≈ 150 and/or 294 day period added to the total

system flux. Therefore, inclination of Cygnus X-1 derived from ellipsoidal modulation may not be

equal to the physical inclination of the system.

When flux from the visible binary component dominates the system lightcurve, however, inclina-

tions inverted from the ellipsoidal modulation technique can be very precise. For example, the X-ray

luminosity of the black hole binary GRO J1655 − 40 is low during quiescence; therefore, accretion

is low during this state. The visible, F5IV component dominates the optical and near-IR flux from

the system, so ellipsoidal lightcurve fitting can yield accurate inclination. Greene et al. (2001) find

iJ1655 = 70.2±1.9 (2σ) from BV IJK band photometry and a black hole mass of MJ1655 = 6.3±0.5

M�.
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4.5.5 Polarimetry

The first Cygnus X-1 inclination estimate via polarimetry came from Kemp et al. (1978a, hereafter

K78). From 180 nights of data taken over two years on a 61 cm telescope, they find strong second

harmonic modulation in V band and weak modulation in U band. K78 phase-wrap the data onto

an ephemeris generated by their own photometric data, and they bin the data at certain phase

intervals to account for random fluctuations from orbit to orbit. K78 observe an ellipse in the (Q,U)

plane, and they determine an inclination of i = 77.8 ± 6.7◦ by fitting for the eccentricity of this

ellipse (Equation 4.7). Uncertainty in inclination was calculated by formal error propagation from

uncertainties in the amplitudes of the first and second Fourier harmonics (Equations 4.4a and 4.4b).

Kemp et al. (1979, hereafter K79) phase-wrap and bin 348 nights of data, including the data

from K78. After smoothing third and higher harmonics, they show a (Q,U) locus that has significant

departures from ellipticity. They state that this cannot be reconciled with the symmetric, canonical

model of BME, which assumes symmetry in scatterers above and below the orbital plane. To explain

their observed polarization, K79 suggest a model involving eclipses of a hot spot generated at the

intersection of the supergiant’s gas stream and the accretion disk. The model requires the hot spot

to be eclipsed by a geometrically thick accretion disk when the black hole is at inferior conjunction

(phase 0.5), which implies an inclination of i = 65± 5◦. Milgrom (1978) and Kemp (1980a) propose

that the accretion disk is flared due to irradiation by the X-ray source, and Kemp (1980a) model

the inclination to be i = 67.5± 2.5◦.

Simmons et al. (1980, hereafter S80) object to the dismissal by K79 of the applicability of the

BME canonical model to Cygnus X-1, and they use both the symmetric and asymmetric canonical

models to fit the data of K79. The asymmetric model allows the distribution of scatterers to be

asymmetric about the orbital plane, which generates first harmonic periodicity in the polarization

curves. S80 also criticize the small inclination uncertainties of K78 and K79 on the grounds that

fits with a larger range of inclinations could acceptably represent the data in a χ2 analysis. They

argue that the 90% confidence interval on inclination from K79 should in fact be i = 78+7◦

−48◦ . The

asymmetry in error bounds comes from the fact that a given increase in inclination causes a stronger

change in the polarimetric signal than does a decrease in inclination by the same amount. In ad-

dition, S80 criticize the massive phase-binning of the K78 data to form mean polarization curves,

because orbit-to-orbit changes of unknown cause are observed. S80 recommend observations with
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larger telescopes to minimize uncertainty on each data point. This allows inclination inversion across

data obtained over fewer orbits.

In the same volume as S80, Kemp (1980b, hereafter K80) reject the asymmetric canonical model

of BME as an accurate representation of their phase-binned data, which now consist of 528 nights.

While the asymmetric BME model predicts only first, second, and third harmonic modulation of

polarization in a binary, K80 observe weak first harmonic and strong second through fifth harmonic

modulations. They claim a probabillity of only 60% that the first harmonic is even present in their

data, while the probability of the third through fifth being present is 85% as a group. Further, they

observe the fifth harmonic at a significance of 99%.

K80 suggest that the physical reasoning for first harmonic modulation in the BME model, asym-

metry in scatterers about the orbital plane, should also generate harmonics higher than the second.

They state that any model that incorporates the first harmonic should be accepting of third and

higher harmonics as well. Thus, they assume the only model of BME with any validity is the sym-

metric canonical model, which only assumes second harmonic modulation. K80 fit their data to the

symmetric model to find an inclination of i = 82◦. Unfortunately, no uncertainty is provided on this

inclination estimate, and K80 do not address the issue of underestimation of inclination uncertainty

raised by S80.

K80 assume that orbit-to-orbit variations in polarization are random, because uncertainty in

phase bins is observed to decrease as the inverse square root of the number of observations. K80

claim that their large, phase-binned data set is therefore a true representation of the mean state

of Cygnus X-1. Since a true inclination of i = 82◦ would cause X-ray eclipses, K80 reconcile their

inclination estimate with the lack of observed X-ray eclipses by claiming that shadowing or variable

absorption are driving the polarimetrically-derived inclination toward higher values. Thus, K80

claim that the inclination of Cygnus X-1 is large but less than i = 82◦. Finally, K80 disagree that

larger telescopes and shorter observing epochs are the best way to minimize observational uncer-

tainty, because they claim the “intrinsic noise” of Cygnus X-1 can have timescales longer than one

month.

In proof, S80 caution that the addition of higher harmonics in data fitting will always generate

a better fit; however, a better fit does not necessarily imply a more accurate representation of the
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physical processes involved. S80 find the asymmetric canonical model acceptably fits the data of K80

at 10% significance, and the 90% confidence interval on derived inclination is i = 71+9◦

−23◦ . They find

the symmetric canonical model implies i = 70±8◦ with a fit acceptable at only 5% significance. S80

admit that the unknown cause of the orbit-to-orbit polarimetric variations in Cygnus X-1, and there-

fore the unknown statistical distribution of those variations, makes an optimum observing campaign

difficult to plan. Thus, S80 suggest that a short observing run on a large telescope be performed to

test the validity of massive phase-binning of data.

Long et al. (1980) observe significant polarization of Cygnus X-1 in X-rays which they attribute

to scattering of the X-ray source off the accretion disk. For an optically thick disk, polarization is

expected to be parallel to the major axis of the disk when projected onto the plane of the sky (Angel

1969, Sunyaev & Titarchuk 1985, Phillips & Mészáros 1986, Kartje & Königl 1991), which implies a

disk inclination of idisk = 59.5± 10.5◦ (1σ). However, an optically thin disk is expected to be polar-

ized perpendicular to the major axis (Shakhovskoi 1965, Pringle & Rees 1972, Shakura & Syunyaev

1973), which suggests idisk = 35± 10◦ (1σ). The disk is thought to be optically thick with τ ≈ 1− 2

(Syunyaev & Trümper 1979; Zdziarski et al. 1996, 1997; Gierliński et al. 1997; Poutanen 1998; Di

Salvo et al. 2001; Frontera et al. 2001; Miller et al. 2002; Zdziarski & Gierliński 2004; Ibragimov et

al. 2005; Ibragimov et al. 2007), so the inclination estimate of idisk = 59.5± 10.5◦ (1σ) seems more

likely. Since the disk is thought to be inclined, i−δ ≤ idisk ≤ i+δ depending on disk precession phase.

Here, δ is disk obliquity, which is estimated to be δ = 15± 7◦ (Karitskaya & Bochkarev 1989, Ibrag-

imov et al. 2007). Therefore, orbital inclination is idisk−δ ≤ i ≤ idisk +δ, which implies i = 60±13◦.

Daniel (1981, hereafter D81) criticize the interpretation of K79 of eclipsing of a scattering re-

gion at the rim of the accretion disk on its ad hoc nature. Since tidal distortion of the supergiant

causes the ellipsoidal lightcurve, and that Daniel (1980) suggest prolate ellipsoids can be up to

5% polarized, D81 assume the variability in polarization of the system is dominated by the tidal

distortion of the supergiant, which is modeled to be ellipsoidal in shape. By simultaneously fit-

ting the lightcurve and the modulation of polarization degree from the data of K79, D81 arrive at

an inclination of i = 30 ± 10◦. However, D81 acknowledge that modeling the polarization degree,

instead of Stokes Q and U separately, introduces additional uncertainty to their inclination estimate.

While Bochkarev et al. (1979) caution against the approximation of the shape of the photosphere

by an ellipsoid, they support the hypothesis that the tidally distorted supergiant causes the polari-
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metric variability of the system. These authors model the amplitude of polarimetric variability of

Cygnus X-1 to be ∆Pstar = 0.3% from pure Thomson scattering by the Roche lobe-filling super-

giant. However, Bochkarëv et al. (1986) model the distribution of the single-scattering albedo as

well as scatterers in the Roche lobe-filling photosphere and find the variability amplitude to be only

∆Pstar = 0.023%, which is a full order of magnitude weaker than the observed variability (Table 4.2).

Dolan & Tapia (1984, 1988) observe changes in polarization curves on a ≈ 10 day timescale in

HD 152667, HD 153919, and Vela X-1, which are also close binaries with OB supergiant primaries.

Dolan & Tapia (1992, hereafter DT92) note that polarization curves of Cygnus X-1 taken 10 months

apart on a 1.5m telescope are inconsistent at the < 10−5 level of significance. Dolan & Tapia (1989,

hereafter DT89) and DT92 therefore object to phase-binning, obtained over many orbital cycles,

by K78, K79, and K80. DT89 and DT92 subscribe to the view of S80 that inclinations derived

from single-orbit observations are more accurate in estimating the true orbital inclination of these

binaries. Using the asymmetric canonical model of BME, as well as the method of S80, Aspin et

al. (1981), and Simmons et al. (1982) for estimation of inclination uncertainty, DT89 determine the

inclination of Cygnus X-1 to be i = 62+5◦

−37◦ (90% confidence interval). This range is so large that

it not only offers no additional constraint on the inclination of the system, but it also provides no

confirmation of previous constraints.

DT89 and DT92 note that tidal distortion polarization (TDP) biases inclinations derived from the

BME model toward higher values. In addition, it is not possible to subtract this component from the

observed polarization curves before fitting to the BME model, because TDP is inclination-dependent.

However, since TDP is expected to represent the equilibrium state of the supergiant, polarization

modulation due to TDP should not change from orbit to orbit. Since mean polarization changed by

only < 0.05% over their 10 month time interval, DT92 claim that the changes in polarization curves

over this interval are due neither to changes in TDP nor interstellar polarization. They attribute

this change to stochastic processes in the system and assert that TDP must therefore not be the

dominant source of polarization. This agrees with the calculations of Bochkarëv et al. (1986), above.

Wolinski et al. (1996, hereafter W96) observe Cygnus X-1 over one orbit in U band with the

High Speed Photometer on the Hubble Space Telescope. They note that the polarization spectrum

in the ultraviolet departs significantly from the interstellar relation of Serkowski et al. (1975), which

indicates that polarization in this wavelength regime is intrinsic to the binary. Indeed, the amplitude
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of polarimetric variability versus wavelength is well-approximated by the addition of wavelength-

dependent Rayleigh scattering and wavelength-independent Thomson scattering. While Thomson

scattering is explained by free electrons in the circumbinary envelope, Rayleigh scattering results

from neutral material in the accretion stream. Such neutral material has been observed in Cygnus

X-1 (Mason et al. 1974, Kitamoto et al. 1984), HD 153919 (White et al. 1983), and Vela X-1

(Kallman & White 1982).

Of their thirteen observations of Cygnus X-1, the last one was taken one full phase later than

initial observations. This point differs insignificantly from the first observations in Stokes Q, but

Stokes U decreases from U ≈ 5% to U ≈ 3.75% over the 5.6 day period. This stochastic variation

is comparable to the amplitude of orbital modulation. In order to obtain a fit to the BME model

acceptable at > 5% significance, W96 must reject the observation at the end of the run. This fit

implies an inclination of i = 85◦ for Cygnus X-1 (no uncertainty is provided), which is unphysical.

However, the amplitudes of variation in the Stokes Q and U data are ∆Q = 0.5% and ∆U ≈ 1%,

while the amplitudes of the fits are ∆Qfit ≈ 1% and ∆Ufit ≈ 1.5%, respectively. Indeed, Cygnus

X-1 is certainly not phase locked over even two orbits, which is one of the assumptions of the BME

model. Thus, the observations of W96 cast doubt that the BME model is an accurate representation

of the U band variability of the system.

W96 also observe the polarimetric variability of HD 153919 (eclipsing, O6f + neutron star bi-

nary) and Vela X-1 (eclipsing, B0.5Ib + neutron star X-ray binary) in U band. Data taken one full

phase apart on Vela X-1, a nine-day time interval, differ by ∆Q,U ≈ 4% in both Stokes Q and U .

However, the amplitude of variability is only ∆Q,U ≈ 2%. Furthermore, both HD 153919 and Vela

X-1 exhibit strong changes in polarization near phase 0.25 (first quadrature). This effect is twice

the amplitude for HD 153919 in both Stokes Q and U (∆Q = 2.5% and ∆U = 1%), while it is equal

to the Stokes Q amplitude and twice the Stokes U amplitude for Vela X-1 (∆Q,U = 4%). The fact

that this effect occurs at the same phase for both binaries with neutron star companions leads W96

to suggest an additional source of scattering in these systems.

Even after rejecting inconsistent observations on Vela X-1, W96 are unable to acceptably fit

data in the F327M filter at > 5% significance. Therefore, the BME method fails for ultraviolet

observations of Vela X-1. Rejecting inconsistent observations, W96 find an inclination of i = 85◦

for HD 153919, which is consistent with prior estimates (Table 4.3). However, we caution that both
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biases inherent to the BME inclination inversion method, resulting from noise as well as from tidal

distortion polarization of the visible companion, act to increase inclination estimates. We measure

a similar, high inclination for the non-eclipsing Cygnus X-1 that other polarimetrists measure for

eclipsing systems. Indeed, all polarimetrically derived inclinations in Table 4.3 are higher than those

derived using other methods. Thus, we claim that high inclinations derived polarimetrically are not

independent checks of orbital inclination for high-inclination systems.

4.5.6 Disk Precession

Karitskaya & Bochkarev (1989) fit the lightcurve of Kemp et al. (1987), collected on 1,912 nights

over a 4,500 night span, in the context of an inclined, precessing accretion disk to obtain an orbital

inclination of i = 60 ± 5◦ and disk obliquity idisk = 17.5 ± 2.5◦. This value is consistent with the

Ibragimov et al. (2007) determination of idisk = 15 ± 7◦ from the precessional modulation of radio

and X-ray emission, although they assume i = 37.5 ± 7.5◦. However, Brocksopp et al. (1999a)

derive a value of idisk = 37◦ from precessional modulation of X-rays, but they provide no estimate

of uncertainty on this value.

Bruevich et al. (1978) suggest that the blackbody radiation from the disk in addition to repro-

cessing of X-rays brings the disk emission to Bdisk = 0.03 and Vdisk = 0.04 mag. Indeed, a sudden

fading event of the system by ∆V = 0.04 mag from the expected ellipsoidal lightcurve over one

week has been interpreted as the disappearance and reappearance of the accretion disk (Karitskaya

& Goranskij 1996). Delays in optical and X-ray flares have also been observed to span one to two

weeks (Karitskaya et al. 2000, 2001). These results indicate the timescale between the deposition

of material onto the disk (by the focused stellar wind) and accretion of that material by the black

hole may be one to two weeks.

Disk loss is not uncommon in X-ray binaries, as the ∆V ≈ 0.6 mag decrease in flux from X

Per from 1989 to 1990 is interpreted to be caused by disk loss (Norton et al. 1991, Fabregat et

al. 1992). The correlation between decrease in flux and decrease in net polarization of the system

during this period (∆P ≈ −0.5%) shows that the polarization from an accretion disk can be large

indeed (Roche et al. 1997).
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4.5.7 Quasi-Periodic Oscillation Scaling

Titarchuk & Fiorito (2004, hereafter TF04) show that an accretion disk revolving about the black

hole at the Keplerian frequency will transition to sub-Keplerian rotation at a particular radius. This

radius will be proportional to the Schwarzschild radius, which is proportional to the mass of the

black hole. The normal mode oscillation of this bounded, sub-Keplerian region will be at a frequency

inversely proportional to the radius of the sub-Keplerian region. Thus, TF04 suggest that the power

spectrum of quasi-periodic oscillations of black holes will be related to black hole mass. They further

suggest that the scaling of this power spectrum between two black holes is equal to the mass ratio

of those objects.

Shaposhnikov & Titarchuk (2007, hereafter ST07) utilize this technique to verify the mass of the

GRS 1915+105 black hole from the known mass of GRO J1655 − 40. Using the mass estimate of

GRO J1655− 40 of MJ1655 = 6.3± 0.5 M� from ellipsoidal modulation (Greene et al. 2001), ST07

determine the mass of GRS 1915+105 to be M1915 = 15.6 ± 1.5 M�. This value is consistent with

the estimate of Greiner et al. (2001, hereafter G01), where M1915 = 14±4 M�. G01 deduce an incli-

nation of i1915 = 70± 2◦ from the Doppler shifts of the jet and counterjet. Since this inclination has

been observed to be stable for years, the precession period of the GRS 1915+105 accretion disk must

be long. Therefore, the accretion disk must have obliquity δ1915,disk ≈ 0◦, indicating i1915 ≈ i1915,disk.

Buoyed by the successful prediction of the mass of the GRS 1915+105 black hole, ST07 apply the

QPO scaling technique to Cygnus X-1. They determine a mass of MCygX-1 = 8.7 ± 0.8 M�, which

confirms its suspected black hole status. From the mass estimate of ST07, the radial velocity-derived

mass ratio (G03), and a self-consistent analysis of the orbital dynamics of the binary, Iorio (2007,

hereafter I07) derive an inclination of i = 48.0 ± 6.8◦ for Cygnus X-1. They also determine the

semimajor axis to be a = 42± 9 R�, the supergiant radius to be approximately equal to the Roche

lobe radius Rstar = 21± 6 R�, and the supergiant mass to be Mstar = 24± 5 M�.

This mass is inconsistent with the estimate of Mstar = 17.8 M� from Herrero et al. (1995), who

assumed an inclination of i = 35◦ and a radius of Rstar = 17 R�. The supergiant mass estimate

from I07 is also inconsistent with Mstar = 40±5 M� from Ziólkowski (2005), whose result depended

on the effective temperature of and distance to the supergiant. Since the QPO scaling technique is

independent of such assumptions, and since it accurately reproduced the mass of GRS 1915+105,
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I07 claim that the MCygX-1 = 8.7 ± 0.8 M� estimate from ST07 and their own i = 48.0 ± 6.8◦

estimate are correct.

4.6 Discussion

Our high signal to noise data remove any possibility that single-orbit inclination estimates derived

using BME model fitting to polarimetric data of Cygnus X-1 can be reconciled with those from

eclipse studies, ellipsoidal modulation, and radial velocity tomography. Furthermore, such single-

orbit inclination estimates cannot represent the true inclination of the system, because the lack of

strong X-ray eclipses provides an upper limit of i < 65◦. Our derived inclinations, from two orbits

spaced ten months apart, are inconsistent with this upper limit at the 4σ − 5σ level.

To determine the efficacy of the BME model when data are phase-binned over many orbits, we

construct mean polarization curves from K80, DT89, and our observations. The Stokes Q and U

axes in DT89 are the same as in our observations; namely, Q points north-south on the sky, and U

is oriented northeast-southwest. However, K80 define their Stokes Q axis at a position angle of 95◦.

Therefore, we rotate their Stokes curves (Q′K and U ′K) by −95◦:

QK = Q′K cos 190◦ − U ′K sin 190◦ (4.12a)

UK = Q′K sin 190◦ + U ′K cos 190◦. (4.12b)

Next, we re-wrap the curves of K80 and DT89 to the ephemeris used in our fits, which is from Gies

et al. (2003: G03). From the ephemerides listed in Table 4.2, we derive the following conversions

between the phases of K80 (φK), DT89 (φDT), and G03 (φ):

φ = (1 + 3.05× 10−5)φK − 0.137 (4.13a)

φ = (1− 1.59× 10−5)φDT − 7.17× 10−3. (4.13b)

We construct the mean polarization curves from both of our observing runs. This is equivalent

to taking the mean for each qi and ui amplitude parameter in Table 4.2. Figure 4.8 shows the
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Figure 4.8: Polarimetric modulation observed in Aug 2007 and Jun 2008. The mean modulation
from the two runs is also shown.

polarization curves from both runs as well as the curves obtained when taking their mean. We now

take the mean Q,U versus phase across the data sets. Individual Q,U versus phase curves and their

mean are shown in Figure 4.9. Plotting U versus Q throughout the orbit is used in the literature

to get a sense of the distribution of scatterers as well as the presence of eclipses. While we do not

use these curves to suggest the nature of the scattering, we nevertheless plot them in Figure 4.10.

Our data show the strongest departure from ellipticity in the (Q,U) plane, which is explained by

the fact that our data possess the largest ratio of the first to the second harmonic amplitudes of all

three datasets (pI/pII in Table 4.2). The K80 curves are re-wrapped to our ephemeris and rotated

to our coordinate system, while the DT89 curves are re-wrapped to our ephemeris.

We then fit the mean curves according to Equations 4.4a and 4.4b, derive inclination from Equa-

tions 4.5a and 4.5b, and determine the position angle of the line of quadratures from Equations

4.6a through 4.6g. In addition, we re-derive these results from K80 and DT89 data (Table 4.2).

With the addition of the K80 and DT89 data sets to our data (the “All” column in Table 4.2), we

find that the inclination estimates decrease to the maximum allowable inclination set by the lack of

observed X-ray eclipses. It is therefore tempting to speculate that the inclusion of all three data sets
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Figure 4.9: Cygnus X-1 polarimetric modulation from Kemp (1980: K80), Dolan & Tapia (1989:
DT89), mean modulation from this work (Wmean), and mean modulation between all three data
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polarization.

Figure 4.10: U versus Q for the data sets in Figure 4.9.
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Table 4.4: Photometric, Precessional Modulation

Reference MJD Range ∆Borb (mmag) ∆Bprec (mmag) ∆Borb/∆Bprec

Kemp et al. (1987) 42655− 45318 48(3) 9.5(2.0) 5.1(1.1)
Brocksopp et al. (1999a) 50240− 51100 28.60(78) 16.409(29) 1.733(47)

has averaged out stochastic changes in the polarization of Cygnus X-1 and produced the “mean”

state of the system, which evidently lies near the maximum allowable inclination. However, it is

unlikely that the addition of only three orbits to the ≈ 100 from K80 should unveil such a pristine

mean state, regardless of the quality of those extra orbits. Since the overwhelming data set of K80

produces an unacceptably high inclination, due to lack of eclipses, we must conclude that the mean

polarization curves from an arbitrary number of orbits cannot uncover a physically meaningful in-

clination estimate.

We are therefore left with the conclusion that the BME method fails in determining the incli-

nation of Cygnus X-1, regardless of the combination of telescope aperture and observing duration.

This is perhaps not surprising when the high degree of complexity of the system, with each part

contributing to the total polarization signature, is considered:

(1) The supergiant is tidally distorted

(2) The circumbinary envelope is ionized

(3) The focused stellar wind consists of ionized, Thomson scatterers and neutral, Rayleigh scat-

terers

(4) The size of the accretion disk changes during the low/hard and high/soft states, and it may

disappear altogether over an entire orbit

(5) The strength of the focused stellar wind, the degree of ionization of all parts of the system,

and the frequency of flaring change during the low/hard and high/soft states

(6) The optical ellipsoidal modulation disappears (Brocksopp et al. 1999a) or becomes single-

peaked (Voloshina et al. 1997) in the high/soft state

(7) The accretion disk is inclined and precessing, and the dominant precession period is not

stable on decadal timescales

(8) The accretion disk rim likely contains a hot spot that is subject to flaring

Table 4.4 lists orbital and precessional modulation of the system photometry roughly 15 years
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apart. There appears to be a significant increase in the amplitude of the precessional modulation

compared to the orbital, ellipsoidal modulation between 1982 and 1996. This implies that either

the accretion disk became brighter, the supergiant became fainter, or both occurred in this time

interval. Karitskaya et al. (2006, hereafter K06) observe dimming of the system by ∆U = 65 ± 3,

∆B = 31±3, and ∆V = 29±3 mmag from 1997 to 2004. They also report cooling of the photosphere

by ∆Teff ≈ 1,400 K (from the HeI λ4713Å line), from Teff = 31,800 ± 500 K to Teff = 30,400 ± 500

K, during this interval. Additionally, K06 show an increase in X-ray emission during the stellar

dimming.

K06 interpret these observations in terms of a ∆R/R ≈ 1− 2% increase in radius and resultant

photospheric cooling. The increased radius increases accretion onto the black hole due to increased

Roche lobe overflow. In addition, the lower photospheric temperature decreases the velocity of the

radiatively-driven, focused stellar wind, which allows for more efficient accretion. A higher accre-

tion rate is expected to increase the optical luminosity of the black hole due to increased X-ray

reprocessing and inward migration of the inner radius of the accretion disk. Thus, the observations

of Brocksopp et al. (1999a) were taken during a time when the supergiant was dimming and the

accretion disk was brightening.

The accretion disk rotates by ≈ 360◦ over one orbit about the angular momentum axis of the

binary, since the precession period is much longer than the orbital period. Scattering of optical flux

from the supergiant by the accretion disk therefore produces photometric and polarimetric modula-

tion at the orbital frequency. Bochkarev & Karitskaya (1988a, hereafter BK88) model the amplitude

of the polarimetric variability of the disk to be ∆Pdisk ≈ 0.25%, which is comparable to the ob-

served variability of the system. However, Kemp et al. (1983, hereafter K83) observe the 294 day

precessional period of the accretion disk in polarized light to only have amplitude ∆Pdisk ≈ 0.05%

from 1975 to 1983. This amplitude is 1/5 of that predicted by BK88.

BK88 further model that the second harmonic amplitude due to the disk should be pII,disk =

0.11%, and that the ratio of amplitudes of the first and second harmonics should be (pI/pII)disk = 0.8

for disk obliquity idisk < 20− 30◦. The observations of K80 exhibit pI/pII = 0.24 (Table 4.2), which

is 1/3 of that calculated by BK88 for significant disk polarization. BK88 calculate the polarimetric

variability of scattering by the accretion disk to therefore contribute < 25 − 50% of the observed

variability. However, the observations of DT89 as well as our own (W07 and W08) show the strength
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of the first harmonic to be pI/pII > 0.8 since June 1988, which is consistent with scattering by the

accretion disk.

It should be noted that our W08 data set shows a first harmonic amplitude half of this value (Ta-

ble 4.2), but the BME fit does not accurately model the large first harmonic modulation observed.

That is, the zeroth through second order BME fit in Figure 4.2 underestimates the strength of the

modulation near phase 0.05. Indeed, adding the ∆U ≈ 0.05% difference between model and data to

uI gives a ratio of pI/pII = 0.81. This suggests that the fractional polarization of the accretion disk

increased during the 1980s and that it is currently significant. This is corroborated by the above

result that the relative flux of the accretion disk has increased during that interval: the amplitude

of photometric, precessional modulation is more than half the amplitude of photometric, orbital

modulation. Since the dominant precessional period of the accretion disk also changed during this

time (section 4.2.2), it appears the 1980s saw drastic changes in the accretion disk.

Cygnus X-1 is not the only high mass X-ray binary for which accretion disk polarization has been

observed. Efimov et al. (1984) observe polarimetric modulation of the A7Ib supergiant/neutron

star system SS 433 at both the 13 day orbital period as well as the 164 day precessional period of

the inclined accretion disk. They observe the ratio of first to second harmonic amplitudes to be

pI/pII ≈ 2.5. This indicates that the contribution of the accretion disk polarization is significant.

We also observe an increase in mean polarization from p0 ≡
√
q2
0 + u2

0 = 4.71% to p0 = 4.99%

(Table 4.2) in the ten months between the Aug 2007 and Jun 2008 runs. This ∆p0 ≈ 0.3% increase

is comparable to the amplitude of polarimetric orbital modulation. This is in contrast to the obser-

vations of K79, who observe a linear increase in mean system polarization of 1.8× 10−6 per day, or

an increase of only ≈ 0.06% in ten months. Indeed, Dolan & Tapia (1992) also observe a change in

mean polarization of only ≈ 0.05% in the ten months between their observations (Sep 1987 to Jul

1988). However, they report that the amplitude of Stokes Q variability tripled in those ten months,

while the amplitude in Stokes U was halved. Indeed, a χ2 analysis of the two data sets shows them

to be consistent at the α < 10−5 level of significance. Our Jun 2008 data are inconsistent with

the polarization curves from the Aug 2007 observations: αQ = 0 (χ2/n = 197/14) and αU = 0

(χ2/n = 2, 721/14). Thus, we confirm that the Cygnus X-1 system changes dramatically over a

ten month time interval (≈ 50 orbits). It should be noted that the observations at phase 0.13 in

Figure 4.2 correspond to the next orbit of the system, yet they appear to be consistent with the
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observations from the first orbit. Therefore, we have weak evidence that the phase-locking of the

system occurs over one to two orbits.

If the secular increase in system polarization seen by K79 is from variability in the ISM, one

must conclude that the order of magnitude larger secular variability in our data is due to stochastic

changes in the intrinsic polarization of the system. It is therefore likely that the degree of polarization

of either the accretion stream, accretion disk, or both have increased in ten months. It is expected

that ≈ 2.1 precessional periods, with 147 day period, have progressed in this time interval. The

precessional phase of the accretion disk, and therefore the inclination of the disk to the line of sight,

is expected to be similar between the two runs. Therefore, if the secular variability observed is due

to the accretion disk, it must represent a change in the accretion disk as opposed to precession.

Given that the accretion disk represents a significant fraction of the polarimetric variability

of Cygnus X-1, fluctuations in the disk are likely the cause of the stochastic noise seen by other

polarimetrists. Bochkarev et al. (1998, hereafter B98) observe two large flares of ∆Vflare = 0.04 mag

of order one day duration coincident with dips in X-ray emission by 20%. Another flare exhibited a

brightening in the UBV bands of ∆Uflare = 0.12, ∆Bflare = 0.12, and ∆Vflare = 0.02. They assume

this to be from optically thin hydrogen gas at T = 20,000± 10,000 K, which indicates a hot spot in

the accretion disk. The X-ray dips are thought to arise when the hot spot eclipses the X-ray source

near the center of the disk (Karitskaya et al. 2000).

Poutanen et al. (2008, hereafter P08) observe the distribution of X-ray dips, of order one minute

duration, versus disk precessional phase. Precessional phase Φ ≡ 0 when the disk flux is at a

minimum, and the precession period is now 151.43 days (Lachowicz et al. 2006). At precessional

phase Φ = 0, the disk is therefore closest to edge-on, and it is closest to face-on at Φ = 0.5. P08

observe the X-ray dip distribution to peak at Φ ≈ 0.05− 0.1, which is consistent with X-ray source

occultation by a bulge located between the supergiant and black hole. The formation of the bulge at

the disk rim results from the accretion stream impacting the disk, and P08 model the bulge location

to lag behind the supergiant (as seen by the black hole), by φbulge ≈ 25◦. As the disk precesses, the

bulge moves up and down, perpendicular to the orbital plane. This explains why dips are strong at

precessional phase Φ ≈ 0 and weak at Φ ≈ 0.5. Occultation in the disk correlated with precessional

phase is also suggested by optical polarimetric observations. Indeed, Kemp et al. (1983: K83)

suggest that the non-sinusoidal modulation is caused by partial eclipsing of the polarized light from

the disk at certain precessional phases.
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Therefore, the perhaps ad hoc suggestion by Kemp et al. (1979: K79) of an occulted, scattering

spot located at the intersection of disk and accretion stream (section 4.5.5) now seems to have some

merit. However, it should be noted that this model was suggested on the basis of the non-elliptical

locus in (Q,U) space from K79, which appears similar to our own data (Figure 4.10c). As noted

before, Simmons et al. (1980: S80) successfully fit the data of K79 by the BME model without

requiring the scattering spot of K79. However, the BME model does not accurately represent the

physical state of Cygnus X-1, and the scattering spot model may still have some merit in light of

the observations of DT89 as well as our own.

In addition to disk occultation on the precessional period, there is a wealth of evidence that

X-ray dips also occur near orbital phase φ ≈ 0, when the black hole is in superior conjunction (Li

& Clark 1974; Mason et al. 1974; Parsignault et al. 1976a, b; Pravdo et al. 1980; Remillard &

Canizares 1984; Kitamoto et al. 1989; Balucinska-Church et al. 2000; Feng & Cui 2002; P08). The

occulting material in this case is thought to be neutral material in the accretion stream. Kitamoto

& Miyamoto (1984, hereafter KM84) observe the X-ray spectrum of the source during an X-ray dip

in the low/hard state, and they see the K-absorption edge of iron at E = 7.18 ± 0.18 keV (90%

confidence interval). This is interpreted to arise from weakly ionized Fe VI or less, implying a tem-

perature of T < 30,000 K. This suggests most elements present in the stream are effectively neutral.

The decrease in orbital, polarimetric modulation with increasing wavelength observed by Wolinski

et al. (1996: W96, see section 4.5.5) suggests that such neutral material in the accretion stream

comprises a significant component to the polarimetric variability of the system.

Absence of the iron emission line implies a small occulting blob size, and KM84 estimate it to

be of order dblob = 109 cm in length. The presence of short X-ray dips, of t ≈ 2s duration, suggests

an upper limit to the size of the X-ray source of dX-ray < 4 × 108 cm. Ibragimov et al. (2005) fit

the X-ray spectrum for column density and find that it increases near orbital phase φ = 0. This

result adds weight to the theory that X-ray dips at superior conjunction of the black hole are due

to occultation of the X-ray source by the focused stellar wind. Therefore, Brocksopp et al. (1999a,

hereafter B99) suggest that the observed orbital modulation of radio and X-ray emission is due to

absorption by the focused stellar wind, while the ultraviolet, optical, and near-IR modulation is due

to the ellipsoidal modulation of the supergiant (section 4.2.2).

The complexity in the Cygnus X-1 system is very high, even during the fiducial low/hard state.



168

During the high/soft state, additional events are introduced. Natali et al. (1978) observe photo-

metric flickering of ∆V = 0.06− 0.10 mag over ≈ 30 min timescales during this state, which is one

to two times the strength of the orbital, ellipsoidal modulation. One might therefore expect the

polarimetric flickering during the high/soft state to be dramatic.

The disappearance of observed orbital modulation in the radio and X-rays during this state

(B99), as well as the single-peaked (Voloshina et al. 1997) or nonexistent (B99) optical lightcurve,

suggest that dramatic changes in Cygnus X-1 occur in the high/soft state. On the grounds that the

photometric contribution of the accretion disk is only ≈ 3% during the low/hard state (Bruevich et

al. 1978, see section 4.5.6) B99 claim that the increased optical output in the high/soft state is not

completely due to a brighter accretion disk. They suggest that the hemisphere of the supergiant

facing the black hole as well as the accretion stream become brighter due to increased irradiation by

the X-ray source. The absence of orbital modulation in the radio is attributed to the disappearance

of jets, while increased X-ray flaring overwhelms the orbital modulation in X-rays.

4.7 Conclusion

The enhanced sensitivity to asymmetry in a system from polarimetry over photometry provides ge-

ometric information that is difficult to determine with any other method. However, the exorbitant

number of free parameters, and the large number of significant and variable polarization sources

in Cygnus X-1, causes difficulty in polarimetric modeling of the system. Others have claimed that

the scattering model of Brown et al. (1978: BME) can accurately determine the inclination of bi-

nary systems from polarimetry. These claims generally result from the agreement of BME-derived

inclinations with inclinations derived from eclipses. However, we note that inclinations derived by

this model are systematically higher (towards edge-on geometries) than those determined by other

methods. Therefore, the true inclination of eclipsing binaries will be derived from the BME model

simply from biases in the model.

Cygnus X-1 inclinations determined both by monitoring of order 100 orbits with a small telescope

and large telescope monitoring of individual orbits are consistently higher than allowed by the lack of

X-ray eclipses. Therefore, the scattering model of BME is not applicable to the Cygnus X-1 system,

and it may not be applicable to most binary systems as well. Previous authors have attributed the



169

failure of the BME model to produce physically plausible inclinations to low signal-to-noise data.

However, our high precision observations (night-to-night polarimetric precision of one part in 104)

refute this hypothesis: the BME model cannot produce the true inclination of the system, regardless

of the number of nights and telescope aperture.

The critical assumptions of the BME model are single scattering in a phase-locked system. Our

observations spaced ten months apart confirm the finding by Wolinski et al. (1996) that the po-

larization of the Cygnus X-1 system varies on orbital timescales. Indeed, phase-locking of similar

systems is also known to occur over one to ten orbits (Dolan & Tapia 1984, 1988). The cause of

this stochastic variability is unknown, but variable accretion rate and flaring in the Cygnus X-1 disk

contribute significantly. Scattering of the flux from the supergiant by the optically thick accretion

disk, which is inclined and precessing with a 147 day period, must also contribute to the long-term

variability of the system. Indeed, the precession period and brightness of the accretion disk also

seem to be variable on decadal timescales.

It is unlikely that polarimetry will meaningfully constrain the mass of the black hole in Cygnus

X-1. A more promising method is the scaling of quasi-period oscillation (QPO) frequency between

this black hole and others of known mass (Titarchuk & Fiorito 2004). Indeed, Shaposhnikov &

Titarchuk (2007) have successfully predicted the mass of the GRS 1915+105 black hole with this

technique, and they estimate the black hole in Cygnus X-1 to be MBH = 8.7±0.8 M�. However, the

failure of polarimetry in determining the mass of black holes in high mass X-ray binaries results from

the fact that they are too sensitive to asymmetry in the system. When applied to extrasolar plan-

ets, polarimetric monitoring provides geometric information that cannot be determined from other

methods. The future of polarimetry in this field looks bright indeed. In an attempt to describe the

atmospheres of extrasolar planets, the next chapter investigates the stability of liquid water oceans

in so-called “hot Neptunes”.
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Chapter 5

Liquid Water Oceans in Ice Giants

5.1 Introduction

Water is spectroscopically undetectable in both Uranus and Neptune; its saturated mixing ratio in

their cold photospheres is less than 10−25. However, the compressed, deep interior density of these

planets is strikingly close to that of pure water (Hubbard 1999). Additionally, successful density

models require an ice to rock mass ratio greater than unity (Hubbard et al. 1995) and gas comprising

less than 18% of the planet’s mass (Podolak et al. 2000). When addressing planetary mass, we take

“gas” to mean hydrogen and helium, and we assume “ice” consists of water ice as well as methane,

ammonia, and hydrogen sulfide. There is evidence based on CO observations that the enhancement

of oxygen in Neptune’s atmosphere with respect to the solar value is larger than that for carbon,

nitrogen, and sulfur (Lodders & Fegley 1994). Since oxygen is the most abundant element in the

solar system next to hydrogen and helium, water is thought to be the dominant component of ice

in the outer solar system. Thus, there must be a significant water reservoir in Uranus and Neptune.

Indeed, there has been speculation about oceans” in their deep interiors (Atreya 1986, p. 64; Hub-

bard et al. 1995), but these oceans” describe ionic phase transitions at thousands of degrees Kelvin.

We explore the necessary conditions for bona fide liquid water-hydrogen oceans to exist in the

upper interior of Neptune, where pressure is less than about 20 kbar and temperature is less than

about 800 K. We define the word “ocean” to mean a body with an interface between a hydrogen-rich,

saturated vapor and a water-rich, liquid ocean. We set up favorable conditions for an extant Nep-

tunian water ocean to show that its existence is unlikely: water, hydrogen, and helium are assumed

to be well mixed in the interior of the planet, and we assume a saturated (moist) water adiabat

1This chapter has been published as Wiktorowicz, S. J. & Ingersoll, A. P. 2007, Icarus 186, 436.
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Figure 5.1: Temperature-entropy curve for pure water. Note that an adiabat is a vertical line in this
diagram and that temperature is shown increasing downward.

descends from the photosphere. The photospheric adiabat and the interior adiabat join at a phase

boundary that is either a cloud base or an ocean surface. The temperature-entropy diagram for

pure water (Figure 5.1) provides a qualitative illustration of how this works. We show temperature

decreasing upward in this figure, so an adiabat from the deep interior is a vertical line from below.

If it approaches the phase boundary on the right (the high-entropy side of the critical point), then

liquid droplets will form in the vapor. If the interior adiabat approaches the phase boundary on

the left (the low-entropy side of the critical point), then vapor bubbles will form in the liquid. The

former is analogous to a cloud base and the latter is analogous to an ocean surface. The critical

adiabat is the one that intersects the phase boundary at the critical point, which is also the warmest

point (647 K) on the phase boundary.

Since hydrogen is present in ice giants in addition to water vapor, the critical point at each

pressure level will depend on its composition. To describe these mixtures, Figure 5.1 should be

three-dimensional with composition as the third axis. The critical point from Figure 5.1 then be-

comes a critical curve. The locations of phase boundaries will be strongly affected by mixture

composition. Seward & Franck (1981), hereafter referred to as SF, experimentally identify the criti-
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cal curve. They also investigate the phase boundaries of water-hydrogen mixtures for temperatures,

pressures, and compositions below 654 K, 2.5 kbar, and 60 mol-% hydrogen to (water + hydrogen).

In an ice giant with a moist adiabat connecting the photosphere to a phase transition, the exis-

tence of a cloud base or an ocean surface depends on two input parameters: the water to total gas

mixing ratio of the deep interior and the photospheric temperature. The moist adiabat extending

down from the photosphere contains two phases, a gas phase and a condensed phase. A cloud base

will result if the gas phase reaches the deep interior mixing ratio before the condensed phase does.

Conversely, an ocean surface will result if the condensed phase reaches the deep interior mixing ratio

before the gas phase does.

To understand liquid water oceans on Neptune, it is helpful to consider an idealized model of the

Earth’s ocean/atmosphere system. In equilibrium, the concentration of dry air (mostly nitrogen,

oxygen, and argon) in the ocean is set by its solubility and is denoted by Xdry. Under present

conditions, Xdry is ≈ 2 × 10−5 by mass. We define the photospheric temperature Tphot as the at-

mospheric temperature at the 0.4 bar level. The atmospheric temperature and pressure follow a

pseudo-adiabat − a moist adiabatic expansion in which the condensed water is removed from the

system as soon as it forms (e.g., Emanuel 1994, Salby 1996). Although the condensate is removed,

the atmosphere is saturated at every pressure level, which means that a liquid water droplet sus-

pended in the atmosphere just above the surface has the same Xdry as the ocean itself. With these

assumptions, the values of Xdry and Tphot determine everything about the system, including the

ocean temperature Tocean and the partial pressures of water and dry air at the ocean interface. If

Tphot were to increase, the mixing ratio of water on the moist adiabat would increase. Then, for

Xdry fixed, Tocean would have to increase in order to match the increased mixing ratio of water in the

atmosphere (the Henry’s Law constant for air is a weaker function of temperature than the vapor

pressure of water is). Increasing Tocean is like moving toward the critical point from the left (low

temperature) side of Figure 5.1. Alternately, for Tocean fixed, Xdry would have to decrease. This

lowers the equilibrium partial pressure of dry air relative to water and again matches the increased

mixing ratio of water in the atmosphere.

In temperature-composition space, the boundary between the region of cloud base solutions and

the region of ocean surface solutions will be a line. We refer to this boundary as the critical ocean,

and it lies at the critical temperature for its composition. At the critical ocean, both the water
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mixing ratios and densities will be equal between the gas and condensed phases. As in Figure 5.1,

no phase transitions are possible for temperatures higher than the critical temperature.

For a suite of ice giants with different photospheric temperatures, different deep interior water

mixing ratios, and different atmospheric gas masses, the qualitative effects on the existence of oceans

are as follows. A cooler photosphere results in a photospheric adiabat with decreased water mixing

ratio in the gas phase (and therefore increased water mixing ratio in the condensed phase) at each

pressure level. Since the condensed phase mixing ratio will reach the deep interior value before the

gas phase ratio does, the photospheric adiabat will terminate in an ocean surface. For an ice giant

with a large water mixing ratio in the interior, the condensed phase ratio will again reach the interior

value before the gas phase ratio does. This ice giant will also contain an ocean surface. As in Figure

5.1, higher-entropy photospheric adiabats terminate in cloud bases. Entropy can be increased either

by increasing the photospheric temperature or by decreasing the pressure at a given temperature.

The latter is similar to decreasing the atmospheric gas mass.

Even though we complicate the Neptune calculations by assuming van der Waals gases as well

as condensation of methane, ammonia, and hydrogen sulfide, the qualitative aspects derived above

still apply. We pin the moist adiabat at 59 K and 0.4 bar (Figure 8 in Burgdorf et al. 2003), and

we extend it downward until a phase transition is reached. We determine which of these transitions

is likely by following the photospheric adiabat until it intersects the phase transition curves of SF.

Published models of Neptune’s density structure are then compared to our density estimates.

5.2 Photospheric Adiabat

5.2.1 Construction

Because gas at the temperature and pressure of a phase transition is non-ideal, the van der Waals

relation is the basis of our model:

P =
RT

V − bH2
− aH2

V 2
, (5.1)

where aH2 and bH2 are the molar van der Waals coefficients for hydrogen (2.45×1011 erg cm3 mol−2
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and 26.61 cm3 mol−1, respectively; see Fishbane et al. (2005)), T is the temperature, and V is the

molar volume of the water-hydrogen mixture. Quantities without subscripts, other than P , R, T ,

or V , denote water vapor.

We assume that internal heat is convected up from the deep interior of ice giants to the pho-

tosphere, at about 0.4 bar, and then radiated to space. Thus, it is reasonable to assume their

pressure-temperature profiles follow adiabats. Hydrogen and helium affect molecular mass and heat

capacity along the photospheric adiabat. Carbon, nitrogen, and sulfur are assumed to exist as

methane, ammonia, and hydrogen sulfide. We include their effect on molecular mass and heat

capacity in addition to allowing their condensation. Thus, we assume that these species are also

saturated along the photospheric adiabat. Since we do not take into account the heat capacity or

volume of the condensed phases, the photospheric, moist adiabat is similar to a pseudoadiabat.

The temperature versus molar volume profile is calculated from the following equation, which is

derived in Appendix E:

dV

dT
= −


Cv +

∑
i

(
Li

1 + qi

)(
∂qi
∂T

)
V

RT

V − bH2
+
∑
i

(
Li

1 + qi

)(
∂qi
∂V

)
T

 . (5.2)

The summations occur over each species i (hydrogen, helium, water vapor, methane, ammonia, and

hydrogen sulfide). Since hydrogen and helium are not condensing, their latent heats are set to zero.

R is the molar gas constant and qi is the molar mixing ratio of the condensing species to the other

five species, given by the following:

qi =
fi

1− fi
, (5.3)

where fi is the molar mixing ratio of species i to total gas and Li is the species’ latent heat (by mole)

of sublimation or condensation. The mixture’s molar heat capacity at constant volume is given by

Cv, which is derived in Appendix E:

Cv =
∑
i

Cpi − R

1− 2aH2 (V − bH2)2

RTV 3

 fi (5.4)
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for a van der Waals gas. Here, Cp is the mixture’s molar heat capacity at constant pressure (the

weighted mean, by mole, of the heat capacities of all six species).

For each species, the Cp values and latent heats of sublimation are taken from Atreya (1986).

The latent heats of vaporization for methane and ammonia are 8.519× 1010 erg mol−1 for T ≥ 90.6

K (National Institute of Standards and Technology) and 2.5 × 1011 erg mol−1 for T ≥ 194.95 K

(Osborne & van Dusen 1918), respectively. The temperature dependences of L and the saturation

vapor pressure e for pure water, are taken from Wagner & Pruss (1993). Saturation vapor pressures

versus temperature for methane (Ziegler 1959), hydrogen sulfide (Giauque & Blue 1936, Vorholz et

al. 2002), and ammonia (Karwat 1924, International Critical Tables 1928) are compiled in Atreya

(1986). Latent heat and saturation vapor pressure of pure water are used because we do not have

an adequate description of how these quantities vary, as a function of water vapor mixing ratio, in

a water-hydrogen mixture. Limited data on saturation vapor pressure are indeed given in SF, so an

interpolation is required to integrate the photospheric adiabat. The accuracy of this interpolation

will be addressed later (Figure 5.2). As will be seen in section 5.4.1, the fact that latent heat goes to

zero at 647 K (the critical point for pure water) causes unphysical behavior at higher temperatures.

We attempt to remedy this by extrapolating data from T < 600 K to predict high temperature

behavior.

Temperature and volume along the photospheric adiabat translate to pressure according to the

van der Waals relation (Equation 5.1). In order to determine f , the mixing ratio of water to total

gas, we modify Equation 5.1 to describe water vapor in the gas phase: P becomes e, aH2 and bH2

become the coefficients for water (a and b), and V becomes V/f . This is because the volume per

mole of water is the volume per mole of the mixture (V ) times the moles of mixture per mole of

water (1/f). Therefore,

e =
RTf

V − bf
− af2

V 2
. (5.5)

Here, a = 5.507 × 1012 erg cm3 mol−2 and b = 30.4 cm3 mol−1 (Fishbane et al. 2005). Using

Equation 5.5, we find
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Figure 5.2: Photospheric adiabat uncertainty. We sample nine (T, P, f) points along two experi-
mentally determined phase boundaries (f = 10 mol-% and 40 mol-%) of SF. Using T and f for each
point, we calculate the volume from the photospheric adiabat using Equation 5.5. We then calculate
the volume from experiment using Equation 5.1. The ratio of these volumes gives a correction factor
which is then applied to the photospheric adiabats slope. We assume that ideal gas conditions at
273 K imply the uncertainty here to be zero.

(
∂f

∂T

)
V

=
V 2 (V − bf)2 de

dT
−RV 2f (V − bf)

RTV 3 − 2af (V − bf)2 (5.6a)

(
∂f

∂V

)
T

=
RTV 3f − 2af2 (V − bf)2

RTV 4 − 2V af (V − bf)2 . (5.6b)

From the definition of q in Equation 5.3, we can determine the quantities
(
∂q

∂T

)
V

and
(
∂q

∂V

)
T

,

which are necessary for Equation 5.2.

In ice giants, the other condensable species form cloud bases above the level of significant water

condensation, and their main effect is to lower the temperature of the photospheric adiabat within

the water cloud. To make the calculations simpler, we use the ideal gas approximation for the other

condensable gases. The van der Waals constants in Equation 5.5 can be set to zero, and

ej =
RTfj
V

. (5.7)
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Here, the summation index j is taken to mean methane, ammonia, and hydrogen sulfide. For

numerical integration, it is useful to formulate
(
∂fj
∂T

)
V

and
(
∂fj
∂V

)
T

in terms of fj :

(
∂fj
∂T

)
V

=
(

1
ej

dej
dT
− 1
T

)
fj , (5.8a)

(
∂fj
∂V

)
T

=
fj
V
. (5.8b)

5.2.2 Application to Neptune

Neptune itself might not be fully mixed from photosphere to rocky core. It is possible that there

exists stable stratification in the deep interior. However, the maximum water mixing ratio along

the photospheric adiabat cannot exceed the deep interior value, because density must increase with

depth. Thus, the true water mixing ratio at the phase transition must be less than or equal to the

deep interior value. To provide our Neptune model with the most optimistic parameters for the

existence of oceans, we assume the phase transition occurs when the water mixing ratio equals the

deep interior ratio.

We tie the van der Waals, photospheric adiabat to a pressure-temperature estimate (59 K at

0.4 bar) obtained by a combination of Voyager radio occultation experiments (Lindal 1992) and

Infrared Space Observatory observations (Burgdorf et al. 2003). We hold Neptune’s helium to

hydrogen gas mole fraction at 19/81 along the photospheric adiabat and also in the deep inte-

rior (Lindal 1992). Baines et al. (1995) find a constant methane mixing ratio below the methane

cloud base of fCH4 = 2.2+0.5
−0.6 mol-%. We estimate the mixing ratio of the other condensables at

their cloud bases by assuming solar values of [C]:[N]:[S] along the photospheric adiabat. Given
[C]
[H2] = 7.96× 10−4, [N]

[H2] = 2.24× 10−4, and [S]
[H2] = 3.7× 10−5 in the Sun (Gautier et al. 1995), the

ammonia and hydrogen sulfide cloud bases occur when fNH3 = 0.6+0.1
−0.2 mol-% and fH2S = 0.10+0.02

−0.03

mol-%.

We overlay the photospheric adiabat on the phase transition curves from Figure 2 of SF, and we

present them as Figure 5.3. The thick line is the photospheric adiabat, and the thin lines are the

curves from SF. Each pressure-temperature point between 450 K and 650 K has two phase transition

curves passing through it. Each curve is labeled with its corresponding percentage hydrogen to (wa-



189

Figure 5.3: Photospheric adiabat overlying SF phase boundaries. Phase boundaries are thin lines,
and numbers on each boundary denote hydrogen to (water + hydrogen) mixing ratio. The pho-
tospheric adiabat is given as the thick line and follows, for the most part, the 90 mol-% phase
boundary. However, it can be seen that the water mixing ratio in the gas phase increases along the
photospheric adiabat as temperature is increased (hydrogen mixing ratio decreases).

ter + hydrogen) molar mixing ratio, XH2. The curves with high values of XH2 give the composition

of the vapor, and the curves with low values of XH2 give the composition of the liquid when the

two phases are in equilibrium. A critical point occurs when the liquid and vapor have the same

composition, i.e., where the curve for a given composition has infinite dP/dT . It is important to

note that liquid water infused with more than about 1 mol-% hydrogen is in equilibrium with vapor

only at a higher pressure than the critical pressure for that mixture. For a given composition, then,

an ocean surface must lie at supercritical pressure.

To estimate the uncertainty in the photospheric adiabat, dV/dT from Equation 5.2, we com-

pare experimentally determined (P, T, f) data to those predicted along the photospheric adiabat.

We follow two saturated vapor to dry vapor phase boundaries of SF which correspond to f = 10

mol-% and 40 mol-% (XH2 = 90 mol-% and 60 mol-%, respectively). Note that f = X = 100

mol-% −XH2 for SF data because their system only contains water and hydrogen. Also note that

their phase boundaries are only printed for T > 450 K. Since we know T and f from SF (f is either

10 mol-% or 40 mol-%), we predict the volume along the photospheric adiabat by solving for V in
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Equation 5.5 (saturation vapor pressure, e, is only a function of T ). Using P and T from SF, we

calculate the volume along their phase boundaries, VSF, by solving for V in Equation 5.1. The quan-

tity VSF/V is a measure of the discrepancy between the photospheric adiabat and experimental data.

Figure 5.2 shows VSF/V for nine pressure-temperature points in the temperature range 450 K

< T < 630 K. The conditions for T ≤ 273 K along the photospheric adiabat are ideal:
∣∣∣∣PVRT − 1

∣∣∣∣ =

7.1% at 273 K. Since the van der Waals equation of state tends towards the ideal gas formulation

at low temperatures and pressures, we assume that VSF/V = 1 for T ≤ 273 along the photospheric

adiabat. By multiplying VSF/V by the calculated dV/dT from Equation 5.2, we can correct the

photospheric adiabat to agree with SF.

dV

dT true
=
VSF

V

dV

dT
(5.9)

Therefore, we fit a fourth-order polynomial to VSF/V versus temperature from the nine pressure-

temperature points to provide a correction factor at each temperature. We force the value and slope

of this factor at T = 273 K to be one and zero, respectively. The dotted lines in Figure 5.2 represent

the 1σ error bounds on the fourth-order fit. The corrected, photospheric adiabat, extending from 59

K to the critical temperature of pure water (647 K), is shown as the middle, thick curve in Figure

5.4. The 1σ upper and lower bounds to the fourth-order fit are multiplied by dV/dT from Equation

5.2 to determine the 1σ upper and lower bounds to the photospheric adiabat. These error bounds

are given as the thin curves in Figure 5.4.

5.3 Phase Transition

5.3.1 Cloud Base

By assuming values for both Neptune’s photospheric temperature and its deep interior water mixing

ratio, we determine which phase transition exists. Therefore, as we integrate downward from the

59 K photosphere, the target is the deep interior mixing ratio. We estimate this value by assuming

Neptune has a deep interior ice to rock mass ratio of 3.0+0.5
−2.0:1 (Podolak & Reynolds 1984, Podolak

et al. 1991) and a gas mass of 2.0+1.2
−0.5 M⊕ (Gudkova et al. 1988, Hubbard et al. 1995, Podolak et
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Figure 5.4: Pressure-temperature profile along the photospheric adiabat. The van der Waals, pho-
tospheric adiabat containing H2, He, water vapor, CH4, NH3, and H2S is pinned at 59 K, 0.4 bar
and extends to the critical temperature for pure water (647 K). The photospheric adiabat reaches
this temperature at 8.8+1.8

−3.1 kbar.

al. 2000). The above authors obtained these values by fitting density models to Neptune’s gravita-

tional harmonics which were measured during the Voyager flyby. We assume that the deep interior

[H2]:[He] value is the same as the value in the atmosphere (19/81). This will comprise the deep

interior gas mass given above. The mass and mole fraction makeup of Neptune’s deep interior gas

is shown in Table 5.1.

Since the total planetary mass is 17.14 M⊕ (Hubbard et al. 1995), the corresponding deep in-

terior ice mass is 11.4+0.6
−2.1 M⊕. Since the makeup of this ice is unknown, we assume that the ratios

[C]:[N]:[O]:[S] are solar in the deep interior. The corresponding mass and mole fraction components

of Neptune’s deep interior ice are given in Table 5.1.

As can be seen from the bold value in Table 5.1, the deep interior water vapor to total gas mixing

ratio (hydrogen, helium, water, methane, ammonia, hydrogen sulfide) is finterior = 26.9+5.2
−9.5 mol-%.

This means that a water vapor cloud base will be reached if the water vapor mixing ratio f reaches

finterior along the photospheric adiabat before the critical temperature is reached (see section 5.1).
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Table 5.1: Deep Interior Mixing Ratios

Ice and gas separate Ice and gas combined
Species By mole By mass By mole By mass

H2 81.0% 68.1% 45.8% 10.2%
He 19.0% 31.9% 10.8% 4.8%

H2O 61.7% 63.3% 26.9% 53.8%
CH4 28.8% 26.3% 12.5% 22.3%
NH3 8.1% 7.9% 3.5% 6.7%
H2S 1.3% 2.6% 0.6% 2.2%

We have a nominal, deep interior water mixing ratio and its associated upper and lower bounds,

and we also have a nominal, photospheric adiabat with upper and lower bounds (Figure 5.4). The

combination that favors a cloud base is the low-pressure, photospheric adiabat bound paired with

the lower mixing ratio bound (finterior = 17.4 mol-%), and it reaches cloud base at 623 K and 5.0

kbar. The combination that favors a liquid ocean is the high-pressure, photospheric adiabat bound

paired with the upper mixing ratio bound (finterior = 32.1 mol-%), and a cloud base is reached at

705 K and 19.5 kbar. The nominal, photospheric adiabat paired with the nominal interior mixing

ratio (finterior = 26.9 mol-%) is our best estimate, and it reaches cloud base at 663 K and 10.7 kbar.

Therefore, the water vapor cloud base is reached at T = 663+42
−41 K and P = 10.7+8.8

−5.7 kbar. These

temperatures are above 647 K, which is the critical temperature for pure water, because the mixture

consists of water and hydrogen. This will be discussed in section 5.4.1.

5.3.2 Supercritical Fluid

Below the cloud base, the atmosphere conforms to a dry (non-condensing), adiabatic gas with about

27 mol-% water vapor to total gas. The pressure-temperature profile of this dry adiabat can be found

by setting L = 0 in Equation 5.2, keeping df/dT = 0, and solving for pressure in Equation 5.1. Even-

tually, as one descends further, the gas will slowly transition into a supercritical fluid whose density

equals that of a liquid of the same composition. This supercritical fluid is not a true ocean with a

saturated vapor to liquid interface. Hot, ionic “oceans” have been predicted in Neptune’s deep inte-

rior (Atreya 1986, p. 64; Hubbard et al. 1995), and they would lie at ≈ 2,000 K (Atreya et al. 2005).
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5.4 Ocean Requirements

5.4.1 Deep Interior Mixing Ratio

By assuming a value for Neptune’s photospheric temperature and by leaving the deep interior water

mixing ratio as a free parameter, we find the minimum deep interior water mixing ratio that will

allow an ocean to exist. This particular ocean will be a critical ocean. A critical ocean will occur if

the photospheric adiabat (in temperature-composition space) intersects the critical curve, and if the

pressure at that intersection is higher than the critical pressure for that composition (Figure 5.3 and

the text in section 5.2.2 describing it). The composition at this intersection is the minimum deep

interior mixing ratio that allows an ocean to exist. Since we only aim to examine the requirements

for a critical ocean, it is unnecessary to calculate the water mixing ratio in the condensed phase. To

determine the location of a cool ocean, however, the water mixing ratio in the condensed phase must

be calculated. This will require the mixing ratios of the other condensables to be determined in

the water-hydrogen condensate. Currently, experimental data are not sufficient for this to be done

accurately.

We extrapolate the data in Table 1 of SF (and the additional data point on page 3, column 2

of their paper) to construct the critical curve over a large temperature range, and thus to allow the

photospheric adiabat to intersect at high temperature oceans. This table lists critical temperature

and pressure for a variety of compositions. Because the photospheric adiabat utilizes f (mixing

ratio of water to total gas), we employ composition as the water to (water + hydrogen) mixing

ratio, defined as X, Thus, X + XH2 = 100 mol-%. We fit the data with piecewise cubic Hermite

polynomials because a spline fit appears unphysical. The critical curve in temperature-X space is

given as Figure 5.5, and the critical curve in pressure-X space is given as Figure 5.6.

We extrapolate the photospheric adiabat, with a spline in temperature-X space, to temperatures

higher than 647 K. This is because water-hydrogen phase transitions can occur at higher temper-

atures. Unfortunately, using all T < 647 K in this fit gives a multivalued profile. This unphysical

behavior occurs because we are forced to approximate the mixture’s latent heat and saturation vapor

pressure with the expressions given for pure water: this is invalid near 647 K. However, including

only T < 600 K in the extrapolation eliminates this problem. It is a reasonable approximation

because latent heat is fairly constant with temperature until it very quickly goes to zero near the

critical temperature. In Figure 5.7, the photospheric adiabat is given as the thick, solid curve, and
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Figure 5.5: Critical curve: temperature vs. X. Data from SF are fit by a piecewise cubic interpo-
lating Hermite polynomial.
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Figure 5.6: Critical curve: pressure vs. X. Data from SF are fit by a piecewise cubic interpolating
Hermite polynomial.
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Figure 5.7: Minimum water mixing ratio for an ocean. The photospheric adiabat, extrapolated for
T > 647 K, and the critical curve are shown. Dashed curves indicate 1σ errors on each profile. The
two curves intersect at X = 38.8 ± 1.4 mol-%. This represents the minimum water to (water +
hydrogen) mixing ratio necessary to support an ocean under the current, 59 K Neptunian photo-
sphere. Since the deep interior f corresponds to X = 32+6

−11 mol-% at an ocean, Neptune is too dry
to harbor oceans.

its extension to T > 647 K is given as the solid curve. The critical curve is shown as the thin, solid

curve. Dashed curves indicate the associated 1σ errors on each curve. Finally, the vertical, dotted

lines show the range of deep interior mixing ratios assumed for Neptune.

We attempt to place upper and lower limits on the shape of the extended, photospheric adiabat,

and we acknowledge that it is a crude extrapolation. The extended, photospheric adiabat intersects

the critical curve, and therefore terminates in a critical ocean, at T = 702.1+6.1
−7.3 K and X = 38.8±1.4

mol-%. When factoring in the mixing ratios of the other species, we find f = 33.0 ± 1.3 mol-%.

By extending the photospheric adiabat in pressure-temperature space, we determine the pressure of

this critical ocean to be P = 18.7+6.6
−5.3 kbar. Since the critical pressure for this composition is lower

than the pressure of the critical ocean (P = 11.65+0.21
−0.42 kbar, Figure 5.6), we verify that the critical

ocean is indeed liquid. An extant ocean in Neptune thus requires a deep interior water mixing ratio

of at least f = 33.0± 1.3 mol-%, but we estimate its current value to be finterior = 26.9+5.2
−9.5 mol-%.

Neptune is therefore slightly too dry to harbor oceans.
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Figure 5.8: Density along the photospheric adiabat overlying density models. The thick, linear
feature in the lower left (from 10−4 to 10−2 Mbar) represents pressure versus density along the
photospheric adiabat. 1σ error bounds are roughly the thickness of the line. The cross at about
10−2 Mbar and about 1 g/cm3 shows the location of the critical ocean, under a 59 K photosphere,
in pressure-density space. This figure is modified from Figure 5 of Hubbard et al. (1995), and thin
curves (solid, dashed, and dot-dashed) are different density models in that paper. Numbered, dotted
curves represent adiabats from that paper labeled with varying ice mass fractions. These adiabats
lie in ice giants composed only of hydrogen, helium, and ice. Note that the photospheric adiabat lies
within the range of density models while the ocean surface is far outside them. Thus, we conclude
not only that Neptune has no extant liquid water-hydrogen ocean, but also that the photospheric
adiabat is consistent with Voyager data.

5.4.2 Gravitational Signature

We investigate whether the photospheric adiabat is consistent with density models of Neptune’s

interior. At each pressure level, we calculate the density by dividing molar mass by molar volume,

V . We treat molar mass as simply a mean, weighted by mixing ratio, of the molar masses of the con-

stituent species. We plot pressure against density along the photospheric adiabat as Figure 5.8, and

we overlay these results on Figure 5.5 from Hubbard et al. (1995). As can be seen, the photospheric

adiabat is consistent with density models from photosphere to cloud base. We find the 5 to 20 kbar

cloud base from section 5.3.1 has a density of 0.221+0.048
−0.076 g/cm3, while density models predict 0.09

to 0.30 g/cm3. The location of the cloud base is above the density discontinuity at ≈ 100 kbar, as

expected.

We now determine whether the critical ocean is consistent with density models. To estimate the

density of the critical ocean, we ignore the contribution of all species except water and hydrogen.



197

This is because water and hydrogen dominate the vapor, and the dissolved mole fraction of the other

species should be even lower in the liquid. We use the following law of additive volumes (Hubbard

1972):

1
ρmix

=
n∑
i=1

Mi

ρi
, (5.10)

where Mi and ρi are the mass mixing ratio and density, respectively, of species i. To calculate the

densities of hydrogen and water at the surface of the 19 kbar critical ocean, we use equation of state

fits complied by Hubbard et al. (1995) from various sources. Plugging in the densities for these two

species, we find the critical ocean has a density of 0.772+0.061
−0.059 g/cm3. Based on planetary density

models calculated from Voyager gravitational constraints, the density between 13 and 25 kbar (range

of pressures at the critical ocean) lies between 0.14 g/cm3 and 0.34 g/cm3 (Figure 5.8), which is

inconsistent with an ocean; the required water mixing ratio is too high. Again, Neptune is too dry

to harbor oceans.

5.4.3 Photospheric Temperature

By assuming a value for Neptune’s deep interior water mixing ratio and by leaving the photospheric

temperature as a free parameter, we aim to find the maximum photospheric temperature that will

allow an ocean to exist. Neptune is not in thermal equilibrium with the Sun’s radiation; since its

thermal emission is 2.6 times as strong as its solar heating (Hubbard et al. 1995), Neptune is slowly

cooling. As an adiabatic atmosphere cools, its entropy decreases, which moves the phase boundary

to the left in Figure 5.1. As an ice giant with a high-entropy, low-temperature cloud base cools, its

cloud base will migrate to high temperature. After further cooling of the ice giant, the cloud base will

pass through the critical point to become a liquid ocean at high temperature. Finally, the cloud base

will transition to a liquid ocean at low temperature. Thus, it is worthwhile to ask whether Neptune

will eventually cool enough to permit the existence of liquid water oceans. Since the critical point for

hydrogen gas is 33.2 K, 13.0 bar (National Institute of Standards and Technology), hydrogen gas will

begin to condense at cooler temperatures. Since we do not take hydrogen condensation into account,

we do not attempt to model ice giants cooler than 30 K at 0.4 bar. We investigate the probability

of an ocean’s existence by considering a suite of ice giants with photospheric temperatures higher

than 30 K.



198

We assume f in the ocean will equal the deep interior mole fraction, finterior = 26.9+5.2
−9.5 mol-%

(see section 5.3.1). Given the atmospheric mixing ratios of the other species (see section 5.2.2),

X = 32+6
−11 mol-% in the ocean. Since the cloud base mixing ratios of the other condensables are

much lower than their assumed mixing ratios in the deep interior, X in the ocean will not equal

Xinterior. From Figures 6 and 7, we find the critical point to be at 726+69
−28 K and 16+12

−5 kbar for

X = 32+6
−11 mol-%. We set the 0.4 bar temperature to 30 K and integrate the photospheric adiabat,

as well as its upper and lower bounds, down to 647 K. We then fit a spline to the temperature-X

profile for T < 600 K and extrapolate to higher temperatures. We find the lower, photospheric

adiabat bound reaches the lower value of X = 21 mol-% at 636 K. Since this pressure level is much

cooler than its 796 K critical temperature, the lower, photospheric adiabat bound terminates in a

cloud base. The nominal, photospheric adiabat reaches the nominal X = 32 mol-% at 707 K, which

is cooler than that pressure level’s 726 K critical temperature. Thus, the nominal, photospheric

adiabat also intersects a cloud base.

However, the upper, photospheric adiabat bound does not reach the upper value of X = 38

mol-% before its 698 K critical temperature. In fact, the upper bound to the photospheric adiabat

intersects the critical curve at 720.9+6.3
−5.9 K and X = 33.26+0.54

−0.53 mol-%, which implies that it reaches

a critical ocean. The uncertainties in temperature and composition of this critical ocean are solely

due to the uncertainties of SF in measuring the critical curve. Extending the upper, photospheric

adiabat bound with a spline fit in pressure-temperature space, we find this critical ocean to lie

at 155+14
−12 kbar. These calculations are probably unqualified to accurately predict a pressure this

high. However, this critical ocean certainly lies at a higher-than-critical pressure of 15.1+2.0
−1.9 kbar.

Therefore, we verify that the upper, photospheric adiabat bound (pinned to a 30 K photosphere)

intersects a critical ocean.

The existence of a critical ocean under a 30 K photosphere can only occur if the actual profile

intersects the critical curve before reaching the deep interior water mixing ratio. Thus the proba-

bility of an ocean’s existence is related to the probability that Neptune’s deep interior water mixing

ratio is higher than the nominal value. The minimum value of X necessary for an ocean is the

composition at the intersection between the nominal, photospheric adiabat and the critical curve.

Assuming Gaussian statistics, this occurs at X = 33.37+0.65
−0.64 mol-%, which is 0.22±0.11σ away from

the ocean’s X = 32+6
−11 mol-%. Therefore, the probability of such a high water mixing ratio, and

thus the probability of a 30 K photosphere terminating in an ocean surface, is 41.5±4.2%. It should
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Figure 5.9: Ocean probability. With a 30 K photosphere, Neptune would have a 41.5 ± 4.2%
probability of having an ocean, while its current 59 K photosphere only has a probability of 13.1+5.4

−4.3%
of overlying an ocean. This is because liquid water preferentially exists at low entropy and thus low
atmospheric temperature.

be emphasized that the probabilistic nature of an ocean’s existence is due to uncertainty both in

the thermodynamics of the photospheric adiabat and in the value of Neptune’s deep interior water

mixing ratio.

This approach can also be applied to a suite of photospheres with higher temperatures, but the

probability of an ocean will decrease with increasing photospheric temperature (Figure 5.9). Note

that Neptune’s current 59 K photosphere has only a 13.1+5.4
−4.3% probability of terminating in an

ocean. While a 13% probability is not insignificant, Voyager gravitational data verify that Neptune

has no oceans (see section 5.4.2). Thus, Neptune is too warm to harbor oceans.

Will Neptune ever cool down to 30 K? Simply finding the temperature at which Neptune’s

thermal emission is in equilibrium with solar buffering provides a very rough estimate of the extent

to which it can cool:

4πR2σT 4
e = (1− Λ)πR2 (πF�) . (5.11)
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Here R is planetary radius, σ is the Stefan-Boltzmann constant, Te (effective temperature) is as-

sumed to be the temperature at 0.4 bars, Λ is Bond albedo, and πF� is solar insolation. Keeping

solar luminosity and Neptune’s albedo fixed, Neptune’s 0.4 bar level cannot cool below 47 K. More-

over, the Sun will brighten continuously for about 6 billion years (reaching 1.1 L� in 1.1 Gyr and

1.4 L� in 3.5 Gyr; Sackmann et al. 1993). Thus, the maximum probability of forming oceans in

Neptune, while the Sun is on the main sequence, is the present probability (only 13.1+5.4
−4.3%).

As the Sun slowly (compared to Neptune’s orbital period) loses about half its mass through the

red giant and AGB phases, Neptune’s orbit will gradually expand. Neptune will either collide with

Uranus, be ejected from the Solar System, or assume a stable orbit with roughly twice its current

semimajor axis (Debes & Sigurdsson 2002). This comes from angular momentum conservation:

LNeptune = MNeptune

√
GM�aNeptune

(
1− e2

Neptune

)
, (5.12)

where L is angular momentum, M is mass of each body, a is semimajor axis and e is eccentricity.

As a very young white dwarf, the Sun’s luminosity will be large. However, as it rapidly cools, the

Sun’s luminosity will decrease dramatically.

A collision would certainly mix Neptune’s interior water ice into its atmosphere, and the essen-

tially absent solar irradiance would allow the surviving planet to cool quickly. Significant cooling

will also occur if Neptune is ejected from the Solar System. Thus, regardless of Neptune’s eventual

state, it may be free to cool down below 30 K, where its water clouds have a 41.5± 4.2% probability

of condensing and forming oceans. Billions of years from now, after the Sun has gone, Neptune may

therefore become the only object in the Solar System with liquid water oceans.

5.5 The Water-Hydrogen-Helium System

We integrate the photospheric adiabat without methane, ammonia, and hydrogen sulfide to show

that the conclusions above are unchanged. We set the heat capacity and latent heat due to these

species to zero; therefore, this model atmosphere only contains hydrogen gas, helium, and water

vapor. In Figure 5.10, the bold, solid curve indicates the photospheric adiabat pinned at 59 K and
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Figure 5.10: Pressure-temperature profiles along photospheric adiabats with different condensable
species. The solid curves represent the photospheric adiabat (and error bounds) with all species
condensing (water, CH4, H2S, and NH3), whereas the dashed curve is a photospheric adiabat with
only water condensing. For clarity, error bounds are only shown for the adiabat with all species
condensing. All photospheric adiabats are pinned at 59 K. Note that more condensation causes a
photospheric adiabat to run colder at depth, thus increasing the probability of an oceans existence.

Table 5.2: Cloud Bases

Species One condensable Four condensables
CH4 — 83.6+2.2

−3.1 K, 1.78+0.31
−0.34 bar

H2S — 157.3+3.2
−4.4 K, 14.2+2.2

−2.4 bar
NH3 — 215.8+6.2

−8.4 K, 43.0+8.9
−9.5 bar

H2O 645+43
−28 K, 6.3+5.2

−2.6 kbar 663+42
−41 K, 10.7+8.8

−5.7 kbar

containing all six species. The error bounds are given as the thin, solid curves. The 59 K photo-

spheric adiabat containing only three species is shown as the bold, dashed curve. The error bounds

are left off of the three-species adiabat for clarity. Table 5.2 presents the locations of all cloud bases.

The calculation with water as the only condensable still predicts a water cloud base, as opposed

to an ocean surface, though the cloud base is now at lower temperature and pressure (from 663+42
−41

K, 10.7+8.8
−5.7 kbar to 645+43

−28 K, 6.3+5.2
−2.6 kbar). This effect is primarily due to the lack of a methane

cloud near the photosphere, as can be seen in Figure 5.10. Clouds act to steepen dP/dT , so elimi-

nating clouds of methane and the other condensables should indeed cause the pressure at the phase
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transition to be lower. Since a critical ocean requires the temperature to be critical and the pressure

to be supercritical, clouds of other species therefore make conditions slightly more favorable for the

existence of liquid water. Indeed, a critical ocean requires less water when clouds of many species

are present (X = 38.8 ± 1.4 mol-% and f = 33.0 ± 1.3 mol-%, see section 5.4.1) than when only

water clouds are present (X = 40.4± 1.3 mol-% and f = 35.4+1.3
−1.2 mol-%).

5.6 Extrasolar Hot Neptunes

Most extrasolar planets discovered are of order one Jupiter mass and reside less than about 1 AU

from their parent stars (http://exoplanets.org); they presumably migrated many AU inward from

their sites of formation (Lin et al. 1996, Boss 1996). Neptune-mass planets that have also migrated

inward (“hot Neptunes”) are beginning to be found around other stars (Santos et al. 2004, Bonfils

et al. 2005, Udry et al. 2006, Lovis et al. 2006). It is reasonable to expect that many more will

soon be found as technological accuracy increases. We show above that while the temperature in

Neptune rapidly approaches the critical temperature with depth, the water mixing ratio reaches

the deep interior value before the critical curve is reached. This is why a cloud base is reached in

Neptune as opposed to an ocean surface. Thus, if Neptune at 30 AU is too hot to allow liquid water

oceans to exist in its interior, then hot Neptunes at less than 1 AU must be far too hot.

We present a simplified assessment of how migration affects the possibility of liquid water oceans.

We consider a family of extrasolar ice giants that have Neptune’s deep interior composition and Bond

albedo of 0.29, have saturated upper atmospheres, orbit stars of solar luminosity, have semimajor

axes between 1 AU to 50 AU, and have photospheres that are in thermal equilibrium with their

parent stars. We also assume that the atmospheres are convecting all the way down to the critical

temperature and that they equilibrate to moist adiabatic states throughout the inward migration.

We ignore any effects due to radiative zones in the ice giants. These assumptions may not stand up

to rigorous numerical calculation; however, our goal is to present an idealized description of the effect

of planetary migration on the existence of oceans. We calculate the effective planetary temperature

by balancing solar heating with thermal emission (Equation 5.11). The inner semimajor axis limit,

1 AU, is chosen because the cloud base occurs at 0.4 bars: for closer semimajor axes, no cloud base

would exist below a 0.4 bar photosphere. The outer choice of 50 AU is arbitrary.
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Figure 5.11: Minimum deep interior water mixing ratio necessary for ocean existence. As Neptune-
like planets migrate inward, and planetary effective temperature increases, oceans that once existed
may boil away. The solid curve represents the minimum planetary f necessary for an ocean to exist
in an ice giant at a given semimajor axis a. The effective temperature Te assumes a Neptune-like
Bond albedo of 0.29. The large, required f at effective temperatures higher than 200 K casts serious
doubt on the idea that hot Neptunes (a < 1 AU) can harbor liquid water oceans. Neptune itself
lies at the filled circle in the lower right of the diagram, and it is too dry (finterior ≈ 27 mol-%) to
permit the existence of oceans.

As can be seen in Figure 5.11, closer-in, hotter ice giants require a larger deep interior water

fraction in order to have liquid water in their interiors. Thus, as Neptune-mass planets migrate

inward, any ocean surface they have may evaporate into a cloud base, assuming stellar insolation is

able to propagate down to this level. A Neptune-like planet with a 273 K photosphere, and therefore

with liquid water droplets present in its photosphere, would need a deep interior water mixing ratio

of almost 50% in order to harbor an ocean. Therefore, Neptune-like planets are very unlikely to have

liquid water oceans in their interiors if water vapor is detected in their atmospheres. Conversely,

the non-detection of water vapor in Neptune-like planets is actually favorable towards the existence

of interior oceans. Even though photospheric water vapor should cause albedo to be different from

that of Neptune, effective temperature only varies as the fourth root of albedo.

By inverting the process in section 5.3.1, we calculate deep interior gas mass as a function of

deep interior water mixing ratio. From section 5.4.1, Neptune’s minimum deep interior water mixing

ratio for an ocean is f = 33.0± 1.3 mol-%. This corresponds to a maximum deep interior gas mass

of 1.40+0.11
−0.10 M⊕. We assume Neptune’s gas mass to be 2.0+1.2

−0.5 M⊕ (see section 5.3.1), which is just

slightly higher than the maximum value for an ocean.
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If the “ocean planets” of Leger et al. (2004) have deep enough atmospheres, liquid water oceans

can exist inside them provided the deep interior has very little gas. For example, a 6 M⊕ planet

with 3 M⊕ of interior ice and a 300 K photosphere can only have an ocean if the deep interior has

less than 0.117+0.036
−0.030 M⊕ of gas (f ≥ 47.9+2.9

−3.1 mol-%).

5.7 Future Work

We have used the van der Waals equation of state in this work, and we have shown it to be accurate

to only 30% in describing temperature, pressure, and composition simultaneously for T ≈ 450 K

(Figure 5.2). The next step is to continue this work using, for example, the modified Redlich-Kwong

equation of state (Redlich & Kwong 1949), which is more consistent with the phase transition curves

of SF. We would also like to see whether an ocean of density 0.8 g/cm3 descending from 19 kbar

can successfully be incorporated into models of Neptune’s density structure. To determine the con-

ditions appropriate for cool oceans, the mixing ratio along the photospheric adiabat of water in the

condensed phase must be obtained. This avenue would be useful when describing water-rich planets

with less massive atmospheres. Finally, it would be beneficial to have an accurate treatment of

Neptune’s true photosphere with age, which will of course depend on composition. This will better

address (1) whether it is possible for Neptune to cool down enough to permit liquid oceans to rain

out, and (2) the length of time before this may happen.

5.8 Conclusion

Neptune’s significant water content raises the interesting possibility that liquid water-hydrogen

oceans, with a saturated vapor to liquid interface, exist in its interior. This liquid would be in-

fused with over 60% hydrogen to (hydrogen + water) by mole. To be a true liquid, this ocean

would have to lie at a temperature lower than the critical temperature, and a pressure higher than

the critical pressure, for this composition (about 700 K and 12 kbar). There is a minimum deep

interior water mixing ratio in Neptune that allows an ocean to exist. Neptune’s deep interior ice

mass based on density models in the literature, finterior = 26.9+5.2
−9.5 mol-%, is less than the minimum

required value of f = 33.0± 1.3 mol-% for a critical ocean. Indeed, we find that Neptune currently

has less than a 15% probability of harboring an ocean. The gravitational constraints confirm this
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low probability, because an extant liquid water-hydrogen ocean would be denser than measured (0.8

g/cm3 instead of 0.1 to 0.3 g/cm3 at the ≈ 15 kbar level). Thus, Neptune is both too warm and too

dry for an ocean to exist at present. If the photosphere were to cool from its current 59 K to 30 K,

as hydrogen gas itself begins to condense out of the atmosphere, the probability of the water clouds

raining out would increase to 40%.

As the Sun ages and becomes a cool white dwarf, its buffering of Neptune’s atmosphere will

decrease significantly. Neptune may be allowed to cool sufficiently in the ensuing billions of years

for its existing water clouds to rain out. Thus, it is possible that Neptune may form liquid water

oceans many billions of years from now. While terrestrial extrasolar planets with semimajor axes

near 1 AU may have liquid water oceans on their surfaces, those oceans would freeze out for more

distant semimajor axes. However, the inner reaches of extrasolar systems are apparently too hot

for the existence of liquid water oceans in the interiors of Neptune-mass ice giants. Only the frigid

conditions at many tens of AU are suitable, if the planet is watery enough, for hydrogen-rich oceans

to lie at thousands of atmospheres of pressure.
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5.9 Appendix E: Moist Adiabat

To derive the equation for dV/dT , we note the following thermodynamic equations:

TdS = CvdT + T

(
∂P

∂T

)
V

dV (Zemansky 1957, p. 245), and (E1)

TdS = CpdT − T
(
∂V

∂T

)
P

dP (Zemansky 1957, p. 246). (E2)

Therefore,

Cp − Cv = −T
(
∂V

∂T

)2

P

(
∂P

∂V

)
T

(Zemansky 1957, p. 251). (E3)

Evaluate Equation E3 for the van der Waals equation of state (with a and b coefficients for hydrogen

gas) by taking the partial derivative of Equation 5.1 with respect to V at constant P:

(
∂V

∂T

)−1

P

R

V − bH2
− RT

(V − bH2)2 +
2aH2

V 3
= 0 (E4)

(
∂V

∂T

)
P

=

R

V − bH2

RT

(V − bH2)2 −
2aH2

V 3

(E5)

(
∂P

∂V

)
T

= − RT

(V − bH2)2 +
2aH2

V 3
, so (E6)

Cp − Cv =
R2T 2

T (V − bH2)2

 1
RT

(V − bH2)2 −
2aH2

V 3

 . Thus, (E7)

Cp − Cv =
R

1− 2aH2 (V − bH2)2

RTV 3

, (E8)

which is the same as Equation 5.4 for one species. Adding latent heat to Equation E1, we find
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TdS = CvdT + T

(
∂P

∂T

)
V

dV +
∑
i

(1− fi)Lidqi = 0, (E9)

where the factor (1− fi) converts to “per moles of mixture”. From the definition of qi in Equation

5.3, we see that

1− fi =
1

1 + qi
. (E10)

Rearranging terms,

[
Cv +

∑
i

(
Li

1 + qi

)(
∂qi
∂T

)
V

]
dT +

[
T

(
∂P

∂T

)
V

+
∑
i

(
Li

1 + qi

)(
∂qi
∂V

)
T

]
dV = 0, but (E11)

T

(
∂P

∂T

)
V

=
RT

V − bH2
(E12)

for a van der Waals equation of state. Thus,

(
dV

dT

)
S

= −


Cv +

∑
i

(
Li

1 + qi

)(
∂qi
∂T

)
V

RT

V − bH2
+
∑
i

(
Li

1 + qi

)(
∂qi
∂V

)
T

 . (E13)


