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ABSTRACT

The velocity of selectively-introduced edge cislocations in
99. 999 percent pure copper crystals has been measured as a function
of stress at temperatures from 66°K to 373°K by means of a torsion
technique. The range of resolved shear stress was 0 to 15 mega-
dynes/cm2 for seven temperatures (66°K, 74°K, 83°K, 12855, 173OK,
296°K, 373°K).

Dislocation mobility is characterized by two distinct features;
(a) relatively high velocity at low stress (maximum velocities of about
9000 cm/sec were realized at low temperatures), and (b) increasing
velocity with decreasing temperature at constant stress.

The relation between dislocation velocity and resolved shear

stress is:

where v is the dislocation velocity at resolved shear stress T Vg
is a constant velocity chosen equal to 2000 cm/sec, T is the resolved
shear stress required to maintain velocity VB and n is the mobility

coefficient. The experimental results indicate that s decreases from

16.3 x 106 to 3.3 x 106 dynes/cm2 and n increases from about 0.9 to

1. 1 as the temperature is lowered from 296°K to 66°K.



The experimental dislocation behavior is consistent with an
interpretation on the basis of phonon drag. However, the complete
temperature dependence of dislocation mobility could not be closely

approximated by the predictions of one or a combination of mechanisms.



PART

AV

-vi-

TABLE OF CONTENTS

Acknowledgments
Abstract

Table of Contents
List of Tables
List of Figures

Introduction

Experimental Techniques

Test Specimens
The Berg-Barrett X-Ray Diffraction Technique

The Character of the Selectively-Introduced
Dislocations

The Torsional Apparatus and Torsion Test

Experimental Results

Torsional Stresses in the Test Crystal and the
Resolved Shear Stress on Dislocations

Dislocation Displacements and the Measurement of
Dislocation Mobility

The Dislocation Damping Coefficient

Discussion of Results

Effect of the Uncertainty in the Stress State on the
Validity of the Mobility Coefficient

Dislocation Acceleration Time

Breakaway of a Dislocation from a Scratch and Its
Motion on a Primary (111) Glide Plane

Intersection of the Dislocation Forest by Dislocations
on the Primary (111) Glide Planes

Comparison of Results with Earlier Experiments

Summary

Appendix A. Rise and Decay of the Torsional Wave

Appendix B. Torsional Stresses in the Test Crystal

Appendix C. Integration of the Torque Function

PAGE
iii
iv
vi
viii

1

W Ny

o

10

12
18
27

22
23

23

24
74T
25
315
S5
46



-vii-

PART PAGE
Appendix D. The Influence of the Shape of a Gliding 48

Dislocation on Dislocation Mobility

Appendix E. The Concept of Phonon Viscosity 54



Table

II1.

eV

-viii-

LIST OF TABLES

Agents Used to Bond the Test Crystals to the
Torsion Machine.

Experimentally Determined Values of the Mobility
Coefficient, n, and the Resolved Shear Stress, T _,

Required to Maintain a Dislocation Velocity of
2000 cm/sec.

Values of the Dislocation Damping Coefficient B,
and e Found by Assuming a Mobility Coefficient
Equal to 1.

Back Stress on a Mobile Dislocation on a Primary
(111) Slip Plane.

Fraction of Incident Torsional Wave Reflected at the
Surface of a Test Crystal and Magnitude of the Ef-
fective Wave Velocity in the Crystal, for Two Wave
Strengths.

19

19

27

319



Figure

1.0

1181 %
152
sl

14.

-1x -
LIST OF FIGURES

Title

Dimensions and Orientation of Test Crystals.
Schematic Diagram of Berg-Barrett Technique.
Typical Scratch Segment Befcre Testing,

Schematic Diagram of Lower End of Torsion Machinc.
Typical Torque vs. Time Record for Torsion Test.
Typical Scratch Segment.

Dislocation Displacement as a Function of Distance r
from the Cylindrical Axis of the Test Crystal

Dislocation Velocity as a Function of Resolved Shear
Stress.

Dislocation Damping Coefficient for Edge Dislocations
in Copper Single Crystals as a Function of Tempera-
ture (from Linearized Measurements).

Schematic Representation of a Dislocation Gliding

on a Primary Slip Plane under the Influence of
Torsional Stresses.

Approximation for the Torque Pulse.

Schematic Representation of Dislocation AB.

Equilibrium of a Small Segment of Dislocation AB.

Schematic Representation of Dislocations BC and CD.

8
11

13

14-17

20

21

25

46

49

Syl



- -

AN EXPERIMENTAL STUDY OF THE MOBILITY OF
EDGE DISLOCATIONS IN PURE COPPER
SINGLE CRYSTALS



-1-
I. INTRODUCTION

The experimental study of dislocation mobility in single crys-
tals has advanced along two distinct paths, those of the so-called
direct and indirect measurements. Historically, the latter preceded
the former by about a decade, during which time the quality of single
crystals was greatly improved and techniques were developed for ob-
serving individual dislocations.

Indirect experiments (which employ macroscopic measure-
ments only) invariably require a dislocation model for the interpreta-
tion of measurements, and herein lies the disadvantage of the method,
for each model employs presuppositions which can only be affirmed
by microscopic observations. Of course, no such restraints are im-
posed on direct measurements, but the experimental techniques here
are generally much more sophisticated and difficult to realize.

As far as copper is concerned, mobility studies have been
made by both methods [1-57 and there is general agreement only on
the order of magnitude of dislocation damping at room temperature.
In this thesis, the results of further direct mobility measurements in
copper are presented. The work comprised a study of the interaction
of individual dislocations with the crystal lattice.

The basic testing apparatus was a torsion machine developed
by Pope, et al. [6]and used successfully by them for mobility meas-
urements in zinc [7] and later by Gorman, et al. [8] for work in
aluminum. The experimental procedure used here follows essentially

their original work.
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II. EXPERIMENTAL TECHNIQUES
In this section, the techniques used for obtaining the disloca-
tion velocity-shear stress measurements are discussed. Details
which have been adequately described elsewhere are referenced, and
the interested reader is referred to them. The experimental pro-
cedure can be outlined as follows:

1. A copper single crystal is electrolytically machined into
a rightcircular cylinder with the cylindrical axis in the
[111] direction.

2. Ome end surface is scratched with an A{,ZO3 whisker to
produce dislocations on slip planes parallel to the end sur-
face and about 1 micron below it.

3. The positions of these dislocations are determined from
Berg-Barrett x-ray micrographs.

4. The scratched surface of the test crystal is bonded to the
torsion apparatus, whereupon a torsional stress pulse is
applied to the crystal.

5. The positions of displaced dislocations are established

from Berg-Barrett x-ray micrographs.

Test Specimens

Copper single crystals with an orientation near the [111] pole
were grown from 99. 999 percent pure material by a modified Bridg-
man technique, similar to that developed by Young and Savage ICHP
The parent crystals were acid-sliced perpendicular to the growth di-

rection to obtain cylinders 1 cm long and 2.5 cm in diameter. Each
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cylinder was then electrolytically machined to provide a single circu-
lar test specimen 1033 ¢m in diameter, about 0. 9 ¢m long, and with
a cylindrical axis within 0. 25" of the [1117 pole (Figure 1).

The test crystals were annealed for 1 to 7 days at 1040°C in a
purified argon atmosphere of 1 psig, and the end surfaces were then
lightly electropolished to remove traces of evaporation pits.

Etching the (111) end surfaces of annealed crystals with
Livingston's etch [10] revealed between 103 to 105 dislocation inter-
sections per cmz. In addition, the crystals were generally free from
substructure.

One end surface of each crystal was scratched with an ALZO3
whisker parallel to the three (110) directions in that surface (Figurel).
The scratching apparatus is well described by Pope [11]. The charac-
ter of the dislocations produced by the scratching procedure is dis-

cussed later.

The Berg-Barrett X-Ray Diffraction Technique

Dislocations on (111) planes less than 2 microns from an end
surface of a test specimen were observed by the Berg-Barrett tech-
nique, as described by Turner, et al. [12]. Figure 2 is a schematic
view of the x-ray apparatus. Characteristic Co radiation diffracted
from a set of {220} planes provided an image of the near surface of
the test crystal on a high-resolution x-ray plate. A pure iron filter,
0. 0013 cm thick, absorbed fluorescent radiation. Dislocation
Burgers vectors were identified by noting that when the reciprocal

lattice vector of the set of diffracting planes was perpendicular to the
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Burgers vector of a dislocation, the image of that dislocation was
nearly extinct. Hence, by obtaining diffraction micrographs from
any two of the three available sets of {220} planes, all Burgcers vec-

tors in (111) planes could be identified.

The Character of the Selectively-Introduced Dislocations

A typical scratch in a (110) direction produced dislocations on
(111) planes with Burgers vectors in either of the two remaining
{110) directions (Figure 3a). In addition, dislocations werc crecated
on the three {111} cross slip planes (Figure 3b). Etch pits formed
where the ends of dislocations on the primary (111) planes cross-
slipped to the free surface of the crystal. Dislocations on the pri-

mary (111) planes were commonly C. 01 to 0. 02 ¢cm in length.

The Torsional Apparatus and Torsion Test

The torsion machine developed by Pope, et al. [6] was slightly
modified to accommodate copper test specimens. Steel torsion rods,
1. 27 ¢cm in diameter, were used in place of the usual titanium rods.
The taper joint assembly below the exploding aluminum foil was re-
placed by a single steel rod bonded with epoxy to a copper rod. The
copper rod was acoustically matched to the steel for elastic torsional
waves. Semiconductor strain gages were attached to the copper rod
1.9 ¢m from its lower end, as shown schematically in Figure 4.

The test specimen, with a cylindrical diameter identical to
that of the gage bar, was mounted as shown in Figure 4. A copper ex-
tension rod was used in the earlier tests to afford longer stress pulse

times, but it proved superfluous and its use was discontinued.



Figure 3.

(a)

(b)

Typical Scratch Segment Before Testing. (a)
Dislocations on Primary Slip Planes with
Burgers Vectors by and b,, (b) the Same Area
as in (a) but Etched to Reveal Forest Dislo=-
cations. Magnification 100X.



INCIDENT
WAVEFRONT

COPPER

GAGE BA
GE BAR~_|

Mo

X

/STEEL TORSION

ROD
EPOXY JOINT

SEMICONDUCTOR
/STRAlN GAGES

TEST CRYSTAL = WA SN
\

e

Figure 4. Schematic Diagram of Lower End of Torsion

Machine.



.
The test procedure essentially duplicated that employed by
Gorman [13], although the range of his test temperatures wis slightly

narrower., The bonding agents are listed in Table 1.

TABLIL 1. Apgents Usced to Bond the Test Crystals

to the Torsion Machine

Test Volumetric
Temperature Bonding Agent Ratio
6059
373 commercial sugar =
296 quartz-type wax =
173 glycerine-ethanol 3L
{f2e glycerine-ethanol 155
83 isopentane-methylcyclohexane Sl
74 isopentane-methylcvclohexane O
66 isopentane-3-methylpentane 10:1

Two or more tests were made at each temperature. The time
between scratching a crystal and torsion testing never exceeded 48
hours. A delay of more than four days produced a measurable de-

crease in dislocation mobility.
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IOI. EXPERIMENTAL RESULTS

Torsional Stresses in the Test Crystal and the Resolved Shear Stress

on Dislocations

The oscilloscope trace of the strain gage output (torque record)
for a typical torsion test is found in Figure 5a. In this case, the test
crystal is 0. 9 cm long and the thickness of the bonding agent (quartz-
type sticky wax) is 0.003 cm. While the strain gages- provide
only a record of the torque in the copper gage bar, it is possible to
extrapolate the results to the surface of the copper crystal with knowl -
edge of the elastic properties of the bonding agent and the response of
the copper specimen to an incident torsional wave. The former can
be well-defined experimentally, but less can be inferred about the be-
havior of the test crystal. One should refer to Appendices A and B for
discussion of these points. The torque record at the test crystal sur-
face is plotted in Figure 5b.

The shear stress on the (111) surface of the test crystal at time
t at a radius r from the cylindrical axis of the crystal is:

riz,t) = Mtz

(3. 1)

where M(t) is the torque at the surface at time t, and I is the polar
moment of inertia of the crystal.

Torsional stresses exert glide forces on dislocations lying on
the cross-slip {111} planes as well as those of the primary (111) sys-
tem. The resolved shear stress on a dislocation on a primary slip

plane (Figure 3a) is:

0. 866
I

Tr(r, t) = 0.866 v(r,t) = Mt)r (3%%2))

near its originating scratch, while the resolved shear stress on a dis-
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location of a cross-slip system (Figure 3b) is < —%— -rr(r, t), depending

on the orientation of its Burgers vector.

Dislocation Displacements and the Measurement of Dislocation

Mobility

Figures 6a and 6b display the same scratched area of a test
crystal preceding and following the torsion test. The region has been
etched in Figure 6c to delineate the intersection of forest dislocations
with the primary glide system. Etch pits indicate where ends of dis-
locations on the primary glide planes have cross-slipped to the sur-
face. These cross-slipped segments have obviously constrained the
main body of the dislocation to glide in a direction parallel to its
Burgers vector when the torsion stress was applied.

The displacements of the farthest moving dislocations lying in
the edge orientation after testing were measured as a function of the
radius r. These results are cataloged in Figure 7. Displacement
measurements are given only for those tests which provided data
over a wide range of radius. With the aid of Figure 7, it is possible

to write:

n

d(r) = Kr (3. 39
where d(r) is the maximum dislocation displacement at radius r,
and K and n are experimentally determined. If v(r,t) is the dis-

location velocity at radius r at time t, then:

T
gv(r,t)dt = Kr' (3. 4)

where T is the stress pulse time. The relation between dislocation

velocity and shear stress is postulated to be:



(c)

(b)

(a)

(a) Before Torsion Testing, (b) After

Load Application, (c) Same as (b) but Surface Etched to Reveal

Forest Dislocations. Magnification 100X,

Typical Scratch Segment,

Figure 6.
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o
where T and m are functions of temperature and v, is chosen such
that v(r,t) equals 2000 cm/sec when -rr(r,t) equals Tor Then from

cquation (3. 2):

m
WAL Vi (M) gk (3.6)

Substitution of v(r,t) into equation (3. 4) gives:

m = n 1
1 I K n
— = (o-355) T . (ST
° v [ M(t)dt
©*0

Hence, n is a function of temperature only, while K depends on tem-
perature and the magnitude and duration of the stress pulse. With
reference to equation (3. 3) and Figure 7, it is recognized that n is
given by the slope of the '"best-fit" straight line through the experi-
mental points, while K is determined from the straight line inter-
ecpitss T is found from equation (3. 7) upon integration of the torque
function Mn(t) (an approximate method of integration is described in
Appendix C). The values of n and T, are presented in Table II, and the

velocity-stress relation is plotted in Figure 8.

The Dislocation Damping Coefficient

If dislocation velocity is directly proportional to the resolved

shear stress, it is possible to write:

Bv = ¢+ b , (3.8)

where B is the damping coefficient and b is the magnitude of the
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TABLE II. Experimentally Determined Values of the Mobility

Coefficient, n, and the Resolved Shear Stress, i Required

to Maintain a Dislocation Velocity of 2000 cm/sec.

Temperature Mobility Coefficient, n i
°K 106 dynce):s crn2

373 1. 00 12320

296 0. 88 16. 3

173 1800 O35

15253 1..03 596

83 1LE8 72 4.0

74 1. 14 3.6

66 10 SO,

dislocation Burgers vector. With a presupposed mobility coefficient
equal to 1, the data of Figure 7 may be interpreted by drawing "'best-
fit" lines of unit slope through the experimental points. Then a com-

Parison of equations (3. 7) and (3. 8) provides:

B =

A
0-866b [ \gieat . (3. 9)
0

KI
The linearized results are shown in Table III and Figure 9.

TABLE III. Values of the Dislocation Damping Coefficient B,

and To>_found by Assuming a Mobility Coefficient Equal to 1.

Temperature Damping Coefficient, B T
°K Tonk dynes sec/cm? 10° dyn(;s/crn‘2
3173 I 6 13.0
296 1. 70 13. 4
173 15820 9.8
123 0. 73 Sl
83 0.60 4.7
74 0.47 3.1
66 0.36 2.8
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IV, DISCUSSION OF RESULTS
Several points must be considered in the interpretation of the
experimental results. In light of the uncertainty in the actual stress
~ state in the crystal (Appendix B), one may question the validity of the
observed temperature dependence of the mobility coefficient. Use of
equation (3. 5) implies that dislocation velocity is in phase with the
resolved shear stress, that is, dislocation acceleration times are
supposedly negligible in the velocity region considered. Secondly, it
is recognized that a dislocation on a primary slip plane glides with its
ends on the appropriate cross-slip planes for which the resolved shear
stress is considerably reduced. Third, with forest dislocation den-
sities as high as 105 etch pits/cmz, and dislocation displacements of
nearly 0.1 cm in some cases, intersection mechanisms cannot be
neglected. Finally, it would be desirable to reconcile the present
results with previously published work.

Effect of the Uncertainty in the Stress State on the Validity of the
Mobility Coefficient

In Appendix B, it was found that the elastic inhomogeneity of
the test crystal causes an increase of the tangential shear stress with
respect to the pure torsional value for the inner region of the crystal
and produces the opposite effect near the outer boundary [equation
(B-29)]. The net effect is to underestimate the value of the mobility
number. However, one must also consider possible radial shear
stresses on the crystal surface required to establish a state of equi-
librium. In the limit these could be as large as the deviation of the

tangential shear stresses from their pure torsion values. Their
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effect on dislocation mobility will be different for different Burgers
vectors (Figure 3), but must be small relative to the changes in the

tangential shear stresses because their resolving factor on the dis-
locations is 0. 5 rather than 0. 866.

In conclusion, one can safely assume that the temperature de-
pendence of the mobility coefficient observed experimentally is in-
deed a real effect and is somewhat underemphasized by the state of

stress in the crystal.

Dislocation Acceleration Time

Gorman [137] has discussed non-relativistic acceleration times
for a straight dislocation using a mobility coefficient equal to 1. He
found an acceleration time constant for aluminum equal to about 10-11
seconds. A similar result holds for copper, and it can safely be as-
sumed that dislocation velocity is in phase with applied stress for the
velocity range and mobility coefficients found experimentally.

Breakaway of a Dislocation from a Scratch and Its Motion on a Pri-
mary (111) Glide Plane

X-ray micrographs revealed that screw components of dislo-
cations on the primary glide system cross-slipped quite readily to the
free surface. With the aid of anisotropic elasticity, the free surface
attractive stress on the cross-slip plane of a screw dislocation 1 mi-
cron below the free surface was estimated to be about 107 dynes/cmz.
Since dislocations in copper are extremely mobile at this stress, it
is recognized quite readily that any dislocation which assumes a screw
orientation will rapidly cross-slip to the free surface. Figure 6 sug-

gests that the primary glide dislocation semi-loops did not expand
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when motion was induced by the torsional stresses, but rather re-
mained of similar length. This is easily understood if it is assumed
that the semi-loops increased in radius until both ends assumed
screw configurations, whereupon cross-slip occurred and the dislo-
cations were free to glide through the lattice, with their ends ex-
tending to the free surface.

FigurelOis a schematic representation of an edge dislocation
BC on a primary slip plane gliding with velocity v through the crystal
lattice. Crystal geometry requires that the applied torsional stress,
resolved on the cross-slip plane, act on the segment CD in the di-
rection of motion, while in the opposite direction on AB.

Each of AB and CD constitutes a dragging force on the edge
dislocation. In Appendix D the magnitude of these forces is discussed,
and it is shown how they can lead to overestimation of the lattice
friction force. The overestimation turns out to be negligible for edge

dislocations greater than 0. 01 cm in length.

Intersection of the Dislocation Forest by Dislocations on the Primary
(111) Glide Planes

Maximum dislocation displacements on the primary slip sys-
tem were about 0.1 cm. The motion of dislocations on other slip
systems was considerably less because of their much smaller re-
solved shear stresses. This implies that the forest dislocations pro-
duced in the scratching process (Figure 3b) remained near the
scratches during the torsion test. This, of course, is verified in
Figure éc. However, if a dislocation forest density of 10% inter-

sections/cm” is considered, then a dislocation 0. 01 ¢m in length
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Figure 10, Schematic Representation of a Dislocation
Gliding on a Primary Slip Plane Under the
Influence of Torsional Stresses. Fpp, Fpc,
and Fgp are the Normal Forces per Unit
Length Acting on the Three Segments of the
Dislocation. b is the Dislocation Burgers
Vector, T,y is the Resolved Shear Stress on
the Segment BC, and h is the Distance [rom
the Primary Slip Plane to the Free Surface.
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traveling 0.1 cm on a primary (111) plane experiences, on the aver-
age, 100 intersections with the grown-in forest. The number of in-
tersections is decreased by one order of magnitude for each tenfold
decrease in forest density. Quite obviously, the strength of the in-
tersection mechanism depends on the length of the mobile dislocation,
the distance it moves, the density of forest dislocations, and the type
of dislocation interactions.

The experimental techniques presently available can be em-
Ployed to estimate rather closely the number of forest intersections
suffered by each mobile dislocation (Figure 6c), but generally they
were not used for this purpose. No correlation is available, from
the results of this experiment, between the number of dislocation in-
tersections and dislocation mobility. Instead, Saada's calculation of
the stresses required to overcome attractive and repulsive interac-
tions [14] is used. For a randomly distributed forest, Saada esti-

mated that this stress, T, is given by:
M b

r= 2, (4. 1)

where o is 2.5 for attractive interactions and 10 for repulsive inter-
actions, Mo is the appropriate isotropic shear modulus, b is the mag-
nitude of the dislocation Burgers vector, and 4 is the distance be-
tween forest trees. In Table 4 are found the largest possible back
stress (attractive interactions) in copper for forest densities of 103,
104, 107, and 106 intersections/cmz. All of the dislocation displace-

ment measurements in Figure 7 were from dislocations with resolved

shear stresses between the limits of 106 and about 1. 7X 107dynes/cm2.

Hence, according to Saada's calculation, back stresses may be sig-
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TABLE IV. Back stress on a Mobile Dislocation on a

Primary (111) Slip Plane [from equation (4. 1)].

Back Stress, Forest Dislocation Density,
dynes/cmZ intersections/‘::rnn2

2.3 x 10° 10>

7.0 % 10° 16+

2.3 x 10° 10°

7.0 X 106 -106

nificant in those regions of the test crystals where forest densities
exceed about 104 intersections/crn2 . These results, then, predict
scatter in the mobility behavior between regions with different forest
densities. In the test crystals used, there were an adequate number
of areas where dislocation motion on a primary (111) plane was unaf-
fected by the dislocation forest. This, of course, provides justifica-

tion for choosing 'best-fit' curves through the points of greatest ve-

locity in Figure 7.

Comparison of Results with Earlier Experiments

Early estimates of the lattice friction force in pure copper
single cyrstals were deduced from internal friction measurements.
These measurements were interpreted on the basis of the string
model of a vibrating dislocation, the so-called Granato-Liicke the-
ory [15]. (Reference 16, pp. 498-502 gives a clear mathematical
description of the model. ) In the simple model, the crystal is as-
sumed to contain a network of dislocations, pinned by impurities at

various points and by dislocations at network lengths. The model
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permits the consideration of different distributions of impurities.

Each vibrating dislocation segment obeys the differential equation:

02 ay 52

T et - B =Gl = Bk (4. 2)
) Bt 7)
ot ox

where y is the dislocation displacement at a point x along the dislo-
cation line, F(t) is the forcing function at time t, m is the disloca-
tion effective mass, B is the damping coefficient, and C is the dis-
location line tension.

A harmonic stress, r(t) = F(t)/b, with frequency w, is im-
pressed upon the crystal. The solution of equation (4. 2) then pro-
vides the energy loss per cycle of stress, or, in normalized form,
the logarithmic decrement A. If breakaway from pinning points is

excluded, then:

A= qub|—E | | (4. 3)
*o [1+(wT)2:|

where q is an orientation factor resolving the harmonic stress onto
the various slip systems, and Mo is the static isotropic shear modu-

lus. & and T are given by:
5 = bZL ({2>
- T T

(4. 4)

b is the magnitude of the dislocation Burgers vector, 4 is the aver-

age loop length, and L is the total length of mobile dislocation line.
Several weaknesses of the model are recognized immediately.

Equation (4. 2) considers only a mobility coefficient of 1, and no ac-

count is taken of the difference in line tension or damping coefficient
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between dislocations of unlike character. In addition, the magnitude
of the impressed stress in the megacycle frequency range limits dis-
location velocities to less than 10 cm/sec.

The dislocation elastic strain also gives rise to a decrease in
the effective shear modulus, but measurements of the decrement are
generally more reliable than those of the modulus decrease. Using
decrement measurements alone, the problem of obtaining the magni-
tude and temperature dependence of the damping coefficient may be
approached in three ways.

The first two methods require the measurement of the decre-
ment as a function of frequency at every temperature in the range

under consideration. The maximum decrement, '/_\‘max’ is found

when:
wT = 1 (4. 5)
or
o p.06
A TR e S Y (4. 6)
max 2

Combining equations (4. 5) and (4. 6) with equation (4. 4) gives:
2
ad b™2m
B _._o (4. 7)

L wA
max

With a suitable assumption for the total length of mobile dislocations,
B is determined as a function of temperature.

Alternatively, one may appeal to the asymptotic value of the
decrement in the frequency region where wT >> 1. Then the asymp-

totic form of equation (4. 3) is used, and

2
auob

L

and B may be found as before.
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The third approach, on the other hand, necessitates the meas-
urement of the decrement at only one frequency, but as a function of
termmperature on the same crystal. However, the method requires that
6 be temperaturc-independent, and this is a postulate for which there
is little justification. Proceeding in the analysis, one finds that:

2. Am = auoﬁ 2 (4. 9)

ax
where Amax is determined from the tempe rature dependence of A.
The variation of T with temperature is found from equation (4.3 ).
Again, LZ/C may be eliminated and B estimated as a function of
temperature.

Validation of any of the above simple methods can come only
through experimental verification of equations (4. 3) or (4. 8). Quite
obviously, agreement will be best if the majority of mobile disloca-
tions are of the same character and the distance between pinning
points is uniform. The weakness of all three approaches is the un-
certainty in L.

Alers and Thompson [1] reported the first indirect measure-
ments of the damping coefficient in copper. They used both the first
and last of the aforementioned methods to find B. Their experi-
mental measurements were in fair agreement with the predictions of
equation (4. 3). Interestingly, they found that B decreased by about a
factor of 4 between room temperature and 6DOK, a result similar to
the deductions of our work. They estimated the room temperature
value of B to be about 1074 dynes sec/cmz using the first method

and 8 X 10'-4 dynes sec/crn2 using the second, less accurate technique.



el

Stern and Granato [ 2] refined the simple theory by considering
the vibrating dislocations to be of two distinct types, edge and screw,
with significantly different linc tensions. They postulated that each
dislocation type obeyed the Granato-Lucke theory and was pinned with
an exponential distribution of loop lengths. The damping coefficient
was assumed to be the same for both edge and screw dislocations. On
this basis, Stern and Granato successfully predicted the effects of
temperature and neutron irradiation on the energy decrement. They
concluded that B < 6.5X 10-4 dynes sec/crn2 at room temperature.

Suzuki, et al. [37] used the asymptotic formula for the decre-
ment [equation (4. 8)] to interpret their measurements on two crys-

5

tals. They found B equal to 2. 7X 10"~ dynes sec/cmz for one crys-

5

tal and 1.2X 10 ~ dynes se(:/c:m2 for the second, both at room
temperature. It appears that the discrepancy between the two meas-
urements is the result of misapplication of equation (4. 8). Apparent-
ly the experimental data were all taken near the rather broad maxi-
mums of the decrements (Figures 3 and 4 of Reference 3), and thus
the asymptotic forms of A for both crystals required rather gross
extrapolation. Indeed, if one examines from their experimental data
the magnitude of the factor (a p.obz)/rr , which should not vary from
crystal to crystal (provided the crystals have the same orientation
with respect to the exciting stresses), values of 0.37 and 0. 85 are
found for the two crystals. This result would suggest that the simple
model is not sufficient to describe their results. The broad A vs. w
curves suggest an interpretation on the basis of the more refined

model put forward in [2].
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Marukawa [4] measured directly dislocation mobility in pure
copper at room temperature by applying stress pulses to single crys-
tals in a 4-point bending jig. A similar etching technique was used by
Greenman, et al. [57] for measurements in single crystals subjected
to torsional stress pulses. While Marukawa's measurements were
taken from grown-in dislocations, Greenman, et al. introduced dis-
locations into the test crystals with a scratching apparatus.

Marukawa found a mobility coefficient of 2. It is difficult to
make a realistic appraisal of the lattice damping from his results be-
cause the extent of the segregation of impurities and lattice defects to
his dislocations and their corresponding effects on dislocation motion
are unknown, as is the extent of interaction with other dislocations.
Also, Marukawa conducted his tests over a limited range of resolved
shear stress (0. 5X 106 to 3 X 106 dynes/cmz), which makes his deter-
mination of the mobility coefficient relatively inaccurate.

Greenman, et al. were burdened by the problem of grown-in
dislocations only with reference to their influence on the motion of

freshly introduced dislocations. For resolved shear stresses from

6

about 2X 10" to 2X 10'7 dynes/cmz, Greenman, et al. reported a mo-

bility coefficient of 0. 7 at room temperature. They then linearized
their measurements by choosing n = 1 and determined a damping coef-
ficient equal to 7 X 104 dynes sec/cmz. It is recalled that Greenman,
et al. used average dislocation displacements rather than maximum
displacements to obtain their results, and one then realizes that this

factor significantly affects the magnitude of B. It must also be re-

membered that there is uncertainty as to the character of their mobile
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dislocations, although they were probably near the 30° mixed type.

The results of Greenman, et al. and thosce presented in this
thesis indicate that the mobility cocefficient at room temperature is
slightly smaller than 1, most probably between the limits of 0.7 and
0. 9 for both edge and mixed dislocations. The indirect mecasurements
provide the correct order of magnitude of damping in copper, but of
course cannot give a measure of the mobility number. The results of
Alers and Thompson are encouraging in view of their prediction of the
temperature dependence of B. The results of Stern and Granato and
Suzuki, et al. suggest that, in the general case, the complexity of
dislocation configurations in the test crystals precludes an interpreta-

tion by the simple model.

Summary

The velocity of edge dislocations in pure copper single crystals
was measured as a function of resolved shear stress for 7 tempera-
tures from 66°K to 373°K. The range of shear stress was 0 to
1.5x% 107 dynes/cmz. The maximum dislocation velocity was about
9000 cm/sec at low temperatures.

Experimentally, the mobility coefficient decreased from 1 to
about 0. 88 when the test temperature was decreased from 373°K to
296°K. Below 296°K the mobility coefficient increased with decreas-
ing temperature to about 1. 1 at 66°K.

Several weaknesses in the experimental approach and sugges-
tions for refinement are apparent. The first test crystals were not
annealed for sufficient periods. One week's anncal decreased tenfold

the cteh-pit density on the crystal surface with respect to one day's
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anncal. In the process, dislocation densitiecs commonly were re-
duced from between 104 and 1()5 to about 1(}45 to l()‘{1 ("ln_‘a ) fE
course, the longer anncaling periods played a significant role in re-
ducing interactions with the dislocation forest. Unfortunately, the
softer crystals created more severe problems with respect to plastic
flow. In an interesting paper, Johnson and Ashby [177] demonstrated
that the minimum stress for dislocation multiplication in copper
crystals (about 106 dynes/cmz) occurs for densities between 103 and
Lo Crn-2 » so that the better crystals were subject to the worst con-
ditions for significant plastic flow. However, their analysis also
shows that the multiplication stress increases quite rapidly for lower
dislocation densities. For example, this stress increases to about
108 clynes/c:rn2 for a density of 102 cm—Z . This stress is above the
present capability of our equipment, while the low dislocation density
should be easily attainable with our present equipment for crystal
growth and preparation. A significant decrease in plastic flow would
certainly provide more certainty as to the stress state in the crystal.

Forest dislocations were undoubtedly the main source of scat-
ter in the experimental measurements. The effect of the dislocation
configuration on measurement errors was discussed, and was found
to be negligible.

The characteristics of dislocation motion were consistent with
an interpretation on the basis of damping by thermal phonons. The
relevance of the various phonon drag theories to the experimental

results presented here is indicated in Appendix E.
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APPENDIX A
RISE AND DECAY OF THE TORSIONAL WAVE

In the discussion to follow, and in Appendix B, it is assumed
that the steady-state elastic stresses and strains in the isotropic
loading rod (gage bar and bonding agent) may deviate from that of pure
torsion because of the particular elastic behavior of the (111) axis test
crystal. However, in accordance with St. Venant's Principle, one
considers that the elastic state decays to the pure torsional case at
the height of the strain gages (Figure 4).

With reference to Figure 5a, a description of the torsional
wave can be given. At time t,, the wavefront arrives at the strain
gages. Less than 2 microseconds are required to attain the maximum
torque. The round-trip travel time of the wave between the strain
gages and the bond is (tz-tl). The sharp drop at this time represents
wave reflection from the soft bonding agent. At time t;, the wave
has built up across the bond to its maximum value. The decreasing
height between ty and ty» the so-called steady state region, repre-
sents a small dissipation of torque from plastic deformation in the
test crystal. The round-trip travel time of the wave in the test crys-
tal is approximately equal to (t4-t2), while (t5—t4) is the time required
for the wave reflected from the free end of the test crystal to decay
through the bond. Note that the rise time of the wave has inc reased
from 2 to more than 4 microseconds after two passes through the soft
bonding agent.

The torque record of Figure 5a can be constructed mathemati-

cally with knowledge of the elastic properties of the bonding agent, the
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bond thickness, and the acoustic mismatch between the gage bar and
test crystal. Conversely, the elastic properties of the bonding agent
can be determined from the torque record for a polycrystalline cop-
per cylinder acoustically matching the gage bar, allied with the proper
mathematical equations. With knowledge of the elastic properties of
the bonding agent and the bond width, the torque at the surface of a
test crystal can be found as a function of time for any test. The
reader is referred to Appendix B of Reference 13 for a mathematical
discussion of the transfer of energy across the bond. The precise
calculation of the torque record for the test crystal requires numeri-
cal solution by machine techniques. In Figure 5b, such a solution for

the torque record of Figure 5a is provided.
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APPENDIX B
TORSIONAL STRESSES IN THE TEST CRYSTAL

Because of elastic anisotropy, a pure torsional wave cannot be
propagated without dispersion in a (111) direction in copper. Hence,
the torsional stresses and displacements of the incident wave cannot
be simultaneously realized at the surface of a test crystal, and some
type of wave dispersion must follow.

A second, and as will be apparent, more critical problem is
the elastic shear modulus defect due to the presence of grown-in
dislocations in the test crystal. Koehler and deWit [187] have treated
this effect in detail for fcc crystals. They showed that the shear
modulus of copper can be reduced by several percent for small dislo-
cation strains. The effect is much more pronounced for this experi-
ment, as dislocations strains are no longer small. Indeed, using the
analysis of [197, a stress less than 1. 2 X 106 dynes/cm2 is required
to bow out into the Frank-Read configuration an edge dislocation initi-
ally 0.01 cm long.

The shear modulus relating applied stress to dislocation strain
decreases by a factor greater than 5 from the low stress to high stress

range, One can write:
o
Meff

GSe + GSd = (B-1)

where GSe is a change in elastic strain, 65(1 is a change in dislocation
strain, Meff is the effective shear modulus, and &t is the correspond-
ing change in applied stress. If uois the perfect crystal shear modu-

lus and p' is the modulus relating stress to dislocation strain, then:
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R Heff

and the modulus defect Gu/uo is given by:
Ho~ Hegr M

= = 2 R (B-3)
o o
In the low stress range, say,
Su/u = 0.04, (B=4)
then
u'o= 24p . (B-5)
In the high stress range,
M= Sugs (B-6)
and
Su/p,~ 0.17 . (B-7)

Quite obviously, the modulus defect will increase with distance from
the cylindrical axis of a crystal.

The torque record (Figure 5a) indicates significant reflection
of the incident torsion wave at the crystal surface (time t, ). The
acoustic mismatch can be attributed to a combination of the effects
discussed above. The modulus defect from dislocation strain, for
any test crystal, increases with increasing applied torque. Due to
this, the fraction of incident torque reflected must increase for inci-
dent waves larger in magnitude. However, one would expect the
fraction of the incident torsional wave reflected because of elastic
anisotropy to remain independent of the strength of the incident wave
if the two effects do not interact strongly. The relative importance of
the two effects was determined through two torsion tests with differ-

ent applied torques on the same crystal. The results are summarized
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in Table 5.

TABLE 5. Fraction of Incident Torsional Wave Reflected at the

Surface of a Test Crystal and Magnitude of the Effective

Wave Velocity in the Crystal, for Two Wave Strengths.

Test Maximum Torcue Fraction of Incident Effective Wave
No. 6 Wave Reflected Velocity
(107" dyne-cm) 4 -1
10° cm sec
1 127583 0.18 NG5
2 S ] 0. 08 1592

Table 5 implies that the modulus defect is the main source of
acoustic mismatch. The effective wave velocity in the test crystal is
defined as the velocity with which the main body of the torsional wave
traverses the crystal. It is given by the length of the crystal divided
by the round-trip travel time (t4 -tZ) in Figure 5a. In accord with the
modulus defect, this velocity decreases as torque increases.

It remains to determine the state of stress at the surface of
the test crystal, in light of the results above.

The elastic anisotropy of the crystal, when considered alone,
does not produce significant reflection of the incident torsional wave
at the boundary between the gage bar and crystal. This implies that
the moment, about the cylindrical axis, of the shear stresses acting
on the crystal surface is equal to the applied torque. However, as
mentioned previously, the anisotropy does not permit the realization
of both torsional stresses and displacements in the crystal.

There are two limiting cases for the boundary condition on the
end surface of the crystal in the steady state:

(2) The isotropic loading rod (gage bar and bonding agent) is
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assumed to be extremely compliant. Then the stresses on
the end surface of the crystal are purely torsional.

(b) The isotropic loading rod is considered to be extremely
rigid. Then the displacements on the end surface of the
crystal are purely torsional.

Boundary condition (a) is attractive because it provides for stress-free
lateral boundaries, while (b) does not. Case (a) is considered in the
following.

An orthogonal coordinate system is defined by:

S S T B R e =[] 0157 ] (B-8)

1 2 *3

Then the state of torsional stress in the crystal is:
LT
T5 = ax, (B-9)
all other 'I‘i = 0
which satisfies the stress equations of equilibrium and provides stress-
free lateral boundaries. @ is a number that depends on the total torque.

The matrix of elastic compliances for the coordinate system of

equation (B-8)is [20]:

°11 il S13 0 515 v
N L s G %15 .
i 513 $33 g . g

0 0 0 S44 0 -2515
S1s “%15 0 9 S44 g

0 0 0 -2s ¢ 0 St



.

]
11° 912

with coordinate axes in the directions of the cubic axes, one finds:

S'

In terms of the three independent compliances (s 44)

|
- ] I
Sy, = Bip=35b
_ 1 Z
833 = 83, -3 D
L
e T L
= s +4iD
13 T %1273 (B-10)
4
— 1 - e
844 T 844 -3 D
_ 1 2
S¢6 - BS44 %3 D
s15 = ~+2/3D
where
B v v 1 ~
D = s))-51,-3544 - (B-11)

The elastic strains follow immediately, and these are expressed in

terms of the displacement derivatives, Ui j.
»

1,1 - ©&5;15%;
Uy 2 = -asgx,

U = 0

(B-12)

Uy 3t Uz 5 = -asyx

Uy, 3t Uz ) = asyx,

2,1 = %as;5%)
The displacements are found by integrating equations (B-12), and,

neglecting rigid body motion, they are:
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Up = las;gxyx,} +as % x,
as (x2 x2
B 151 "2 }
us - { 3 T 0S4 4%X)%g (Bt
U, = 0

The non-torsion displacements are emphasized by the curly brackets.
Of course, this is not the exact solution to the problem posed in the
present experiment because the loading rod is not infinitely compliant.
One can, however, obtain a measure of the maximum d‘eviation of the
stresses from the pure torsion state by considering that the non-
torsional displacements are accommodated entirely in the bonding
agent. These can be considered to increase from zero, at the gage
bar, to the values given in the curly brackets, at the crystal surface.
If L. is the bond thickness, then the average strains in the bonding

agent due to the anisotropic effect are:

(2% 2)
S as)giX) =%,
4 - 2L
(B-14)
. as)g¥1%2
5 7 L
with accompanying stresses:
s (xz—xz)
SO Ul e
= = (B-15)
T o i

5 L
where 1 is the shear modulus of the bonding agent.

In the worst possible case, the torsional stress state will be
deformed by the values of T! and T.L. When compared to the torsion-

4 b

al stresses, they are found to be insignificant. Consider:
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qp S, X
5 15771
T ‘ = |/ ‘ ol

Hearmon [217 lists the values of the three independent stiffnesses,

and for copper:

1= : e . = =
511—14.5 PS8y, = 6. 05 ; S44 14. 6 (B-17)
: : -13 2 2 : .
in units of 10 cm”/dyne. Then, using equation (B-10):
S15 = -6.2 X 10.13 CmZ/dyne . (B-18)

Customarily, the bonding agent had characteristics close to the fol-
lowing:
8 2
L = 4X 10 dynes/cm
-3 (B-19)
L = 5xXx 10 cm
Then the maximum value of |T'5/T5| is found from equations (B-16),

(B-18), and (B-19) when Xy = 0.67cm .

[tk T (B-20)

The elastic inhomogeneity due to the presence of dislocations
in the crystal poses a more serious problem than elastic anisotropy.
The cylindrical crystal now can be considered as elastically isotropic,
but with radially-dependent elastic moduli. Again, one finds the same
two limiting conditions on the end boundary as before, but now both
satisfy the requirement of a stress-free lateral boundary. In the fol-
lowing, boundary condition (b) is considered. This provides the case
for the most severe possible distortion of the stress state.

The coordinate system of equation (B-8) is used, but an iso-
tropic, inhomogeneous shear modulus, u(r), is assumed, where r is

the distance from the cylindrical axis of the crystal. Then:
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Sy = b
U2 = ﬁxlx?) (B-21)
U3 = 0

where B is the angle of twist per unit length. The corresponding

strains are:

S, = Bx
4 1 [B=20)
S5 = —sz
and, using Hooke's law, the elastic stresses are:
TY = u(r)px
&= . (B-23)
T; = —g(r)ﬁxz

To a first approximation, p(r) is assumed to decrease linearly with

radius. Using equation (B-7), it has the form
— r -
u(r) = p,o<1 % 4, 17r—0) (B-24)

where r 1is the outer radius of the crystal. The angle of twist, B,
is found by considering the total torque, M, about the cylindrical

axis. In terms of cylindrical coordinates (r, ) in the (xl, xz) plane:

T

o 2w 3
M = [ [ u(r)pridrde , (B-25)
r=0 =0
or
B = M . (B-26)

(0. ZZ)Zwuoro

This stress state can be compared to the homogeneous case
for the same total torque M. In the latter situation, the stress state

is torsional and:
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T, = uB'x
4 o 1 (B-27)
o
where

p‘ = M I . (B-ZS)
(0. 25)erp,oro

The ratio, TZ/T4, is found with the aid of equations (B-26) and (B-28)

TII
-T-‘i = L.14(1-0.17X%) (B-29)
4 o

T"i/T4 decreases linearly from 1. 14 at r = 0 to 0.945 at r = r . In

the present experiment, one would expect the stress distortion to be

less than that indicated by equation (B-29), because the loading rod is

certainly non-rigid.
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APPENDIX C
INTEGRATION OF THE TORQUE FUNCTION
The torque history at the specimen surface (Figure 5b) can be
closely approximated by three separate regions: (1) build-up of torque
through the bonding agent to the maximum value, (2) ecnergy loss due

to plastic flow, and (3) decay of reflected torque wave through the

bond. These three regions are defined by times ty ty and ty in
Figure 11.
M (t)
I
M1 I
Mz- /
I !
: |
|
: I
] |
| |
) |
=it
tl tZ t3

Figure 11. Approximation for the Torque Pulse.

The torque-time relations in the three regions are:

M1
M) = —=t OF=BtE=t
tl 1
(M.t -M_t. )-(M,-M_)t
1 21 1
M(t) = Z(t ) Z tl =it tZ (C-1)
2 1
) Mz(t3-t )
M(t) = t.<t=t
Zt3—t25 2 3

Then:
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n+1 n+1
1 -M, )(tz'tl) + M t3'tz)
ml-MZ)(n+l) 2 ntl

ts t M
gMn(t)dt = M1n(n+l1 ) + ¢

(C-2)
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APPENDIX D
THE INFLUENCE OF THE SHAPE OF A GLIDING DISLOCATION
ON DISLOCATION MOBILITY

With reference to Figure 9, and using the requirements of
crystal geometry, one can readily show that the torsional stress, re-
solved on the cross-slip system of dislocation AB, will act in a direc-
tion opposed to the dislocation motion. The reverse holds for disloca-
tion segment CD. The magnitude of the resolved shear stress on
these segments is 1/3 of that on BC. Hence, AB and CD will inhibit
the motion of BC under the influence of the torsional stress. If the
edge dislocation BC is much longer than the cross-slipped components
(in the experiments BC was of the order of 10_2 cm while the height h
lay between 0 and 2 X 10'-4 cm), then the retarding effect must be small.
In any case, the experimentally determined lattice friction force at any
dislocation velocity will be an overestimate of the true value. In the
following, the magnitude of error as a function of dislocation length,
dislocation velocity, and height h is determined.

The dislocation configuration is assumed to move with some
equilibrium velocity v in the direction of the Burgers vector b through
the crystal lattice. Also, it is specified that the lattice friction can
be expressed through a damping coefficient B. Then the force per unit
length, acting normal to the dislocation line at any point, and. in its

slip plane, is:

ol
FAB = § Trb + BVn
FBC - Trb - an (D-1)

_ 1
FCD = E-Trb"‘BVn
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FAB’ FBC’ and FCD are the normal forces per unit length on the

three dislocation segments, and they act in the directions shown in
Figure 10. T, is the resolved shear stress on BC, and v is the ve-
locity, normal to the dislocation line at any point along its length.

Determination of the dynamic equilibrium configuration of the

dislocation is simply a matter of solving the differential equations of
equilibrium for the three dislocation segments subject to appropriate
boundary conditions. These boundary conditions are defincd by the
following:

(a) The net force in the direction of the Burzers vector on
nodes B and C must be zero.

(b) At points A and D, dislocations AB and CD must be per-
pendicular to the traces of their glide planes on the frec
surface.

The schematic representation of dislocation segment AB in Figure

~

12 is considered.

A y
~———_ trace of free
surface

F
x n

B .

> « trace of glide plane

g

Figure 12. Schematic Representation of Dislocation AB

The coordinate system (x, y) defines the {111} cross-slip
plane, and moves with velocity v in the positive y-axis
direction. Hence, it is stationary with respect to the dis-
location. FBis the glide force at node B due to dislocation
BC.
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The shape of the dislocation can be defined by the parameters S and
8, where S refers to the distance along the dislocation from point A
and @ is the angle between the dislocation line at any point and the
xX-axils.
The differential equation of dynamic equilibrium for a small

segment dS is (Figure 13):

FndS = T(6)d8 (D-2)
or

1 dg

-§Trb+Bvcose = T(B)d—s (D-3)

where the effect of the free surface has been omitted.

T(8)

\ Fn ds
N

T(6+d6)

Figure 13. Egquilibrium of a Small Segment of Dislocation AB.

Fn is the normal force. T(8) is the line tension.

For copper, the line tension, T(§), is given by [207:

2 T
(5.93 - 1.60 sin 20 )4n oa (D-4)
o

b

where r and r, are appropriate inner and outer cut-off radii for the
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calculation of line energy. For the present purpose:
T, 2. 5b and 5 = 10_3 cm (D-5)

arc employed.

Differential equations for BC and CD follow immediately.

They are, for BC:

e d6 N
Trb - Bvcosf = T(G)E's" (D-6)
and;, for GID:
-%'rrb%-BvcosB = T(B)g—% (D-7)

where coordinate systems are defined as before (see Figure 14 ).

F

E—— B y

D y

x
x

Fn L Fn
C
I*C
e
Fe Cc

Figure 14. Schematic Representation of Dislocations BC and CD.

Equations (D-3), (D-6), and (D-7) are solved by nume rical
integration. The procedure follows:
1. A height h, which defines the distance from the primary (111)

plane to the free surface, is chosen. Then the maximum

distance x along the cross-slip planes is h/cos(70. 5).
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2. A resolved shear stress o is adopted and the corresponding
value of v is taken from the experimental data. We are
careful to realize that this does not provide the true value
of B.

3. A value of B is chosen where the product Bv is less than
TP

4. Equation (D-3) is numerically integrated from point A
where the boundary conditionis =0, S=0. The inte-
gration is stopped when v = h/cos(70. 5°), and 8 = GmaxAB.

5. At this point, boundary condition (a) requires that the

value of § at point B in the primary (111) plane equal
(90° - 8 )
max , p

6. Equation (D-7) is numerically integrated from point A as in
4, above. In a manner as before, the value of § at point C
: . o
in the primary (111) plane equals (90 —GmaxCD ).

7. Equation (D-6) is integrated from both ends B and C using
the appropriate boundary conditions. Each integration is
terminated when d@/dS = 0. The sum of the two lengths x

at this point defines the distance between the cross-slip

planes, which we call L.

The calculation for h = 2X 10"% ¢cm was carried out for ‘
6
stresses from 1 X 107 to 2 X 107 dynes/cmz. Overestimation of B

was less than 4 percent for values of L greater than 0.01.
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The dissipation effect will be less for primary (111) planes
closer to the free surface. The maximum error in the experimental

results from this cause is then less than 4 percent.
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APPENDIX E

THIE CONCEPT OF PHONON VISCOSITY

Dislocation mobility in purc copper single crystals as well as in
zinc [22,23] and aluminum 124,257 is characterized by two impor-
tant features: (a) the attainment of relatively high velocities for small
applied stresses, and (b) decreasing interaction with the crystal lat-
tice with decreasing temperature in the temperature range from
about 70°K to 300°K. This dislocation behavior was first proposed
theoretically by Leibfried [26], nearly twenty years before direct ex-
Perimental evidence was available. His model postulated that, in the
absence of a large Peierls' barrier, dislocation motion was damped
by the interaction of lattice thermal waves with the elastic properties
of dislocations. Leibfried specifically considered how dislocation
mobility is affected by the stress field of a thermal phonon. This,
however, is not the only mechanism to be considered. Since 1950,
theories have been put forward to explain thermal phonon-dislocation
core and thermal phonon-dislocation strain field interactions., The
inherent complexity of the problem has required that many simplifying
assumptions be made to obtain estimates of the dislocation drag coef-
ficient as a closed form function of lattice and dislocation properties.
While the various theories predict the proper order of magnitude of
damping in copper, the experimentally observed temperature de -
pendence of the damping coefficient of edge dislocations in the tem-
perature range from 66°K to 373°K could not be closely approximated
by the predictions of one or a combination of mechanisms.

The phonon viscosity theory developed by Mason and others is

attractive because it alone predicts the high-temperature behavior
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(temperatures near the Debye temperature) of the damping coefficient
that is experimentally observed. However, the theory has not been
worked out in great detail, and there exists some confusion as to the
validity of several of its arguments.

The theory itself stems from the original work of Akhieser,
who, in a fundamental paper [27], clearly demonstrated the lattice ab-
sorption of energy from acoustic (or strain) waves with long wave -
lengths relative to the thermal phonon mean free path. He reasoned
as follows: the thermal phonons are highly localized with respect to
the varying strain field; hence, they can be considered as traveling
through a uniform medium with a slowly modulating strain field. The
lattice thermal frequencies are changed as the result of the impression
of the strain, creating temperature differences between phonon modes
at any spatial point. The phonons relax to a new thermal equilibrium
at some common temperature (adiabatic temperature) through phonon-
phonon collisions. Akhieser considered 3-phonon N-process due to
anharmonic lattice terms and showed, using the Debye approximation
for phonon wave velocities, that the relaxation process was accompa-
nied by an increase of entropy of the system and a corresponding en-
ergy absorption from the strain wave.

The temperature change in each phonon mode caused by the
Akhieser effect can be calculated as follows. Consider a small in-
stantaneous change in elastic strain impressed upon a crystal ini-
tially in thermal equilibrium. The process is adiabatic in the sense
of no spatial heat flow. In addition, since the change is instantaneous,

it occurs in the absence of phonon - phonon interactions. In equation



S

form:
3{n ,p(T)> B(ng'p(TD
dbm PR o e iy o pmmatteeea gt D, (K. 1)
Qe dw oT

where (n

’

(T)) is the phonon occupancy number of mode (g, p) at tem-

perature T, and w is its frequency. In thermal equilibrium:

G = -
1P exp(’hwq

(22
p/kBT) -1

Hd

where $ is Planck's constant, and kB is Boltzmann's constant.

and substitution of this value into equation (E.I) gives:

dw
&: P - dT X
w - iz
4P

(E. 3)

The Gruneisen relations [28,29] require that the phonon fre-

quencies change according to:

S | J -

w =) 1+ &Y S ’ 3

g, p g.p( E g,pJ) =9
1)

where o°

is the frequency of mode (q, p) for the state of no strain,
and the YJ are the appropriate Gruneisen numbers. The temperature

change for the mode (ﬂ’ p) is then:

cw .
Zﬁqs"jldsj Zyj,pdsj

dT = T 3

= J T (E.5)
; 1+ .,¥ _s.
- S8
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where the r}Sj are the small perturbations in strain. The Gruneisen
numbers have different magnitudes, and thus it is obvious that each
phonon mode has its unique temperature change. The crystal returns
to thermal equilibrium through phonon - phonon interactions governed
by the anharmonic terms of the crystal Hamiltonian.

If the strain perturbation is spatially - dependent, then ac-
cording to equation (E.5), the temperature change of each phonon
mode is a function of position in the crystal. Hence, ia the general
case, the common equilibrium temperature of the relaxed phonons
depends on position in the crystal. This is the so - called adiabatic
state [30, 31]. Return to the isothermal condition is now determined
by the macroscopic parameters involved in heat flow between spatial
points. The energy absorbed from a dislocation strain field in the
adiabatic - isothermal transition has been determined exactly [ 32, 33 ]
and is negligibly small for metals.

In a series of papers, Mason [34, 357, Mason and Bateman [36],
and Mason and Rosenberg [37] considered the initial phonon transition
and showed that the Akhieser effect was applicable to the absorption
of energy from the strain field of a dislocation traveling through an
otherwise defect - free crystal lattice. Rather than calculate the en -
tropy produced during the relaxation process described above, they
postulated that the elastic stiffnesses of the crystal were altered by
the perturbation from equilibrium. They noted that a change in an

elastic stiffness multiplied by the time required for the material
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relaxation was equal to a viscosity, which in turn could be related

to energy absorption. The complexity of the situation was therefore
reduced to calculation of changes in the elastic stiffnesses at all
points in the lattice caused by the strain field of a moving dislocation,
and concurrently to find for each an appropriate relaxation time. This
has not yet been done on a formal basis, and a critical comparison

with experimental results awaits this derivation.
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