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ABSTRACT 

The propagation of the fast magnetosonic wave in a tokamak 

plasma has been investigated at low power, between 10 and 300 watts, 

as a prelude to future heating experiments. 

The attention of the experiments has been focused on the under

standing of the coupling between a loop antenna and a plasma-filled 

cavity. Special emphasis has been given to the measurement of the com

plex loading impedance of the plasma. The importance of thi s measure

ment is that once the complex loading impedance of the plasma is known, 

a matching network can be designed so that the r.f. generator impedance 

can be matched to one of the cavity modes, thus delivering maximum 

power to the plasma. For future heating experiments it will be essen

tial to be able to match the generator impedance to a cavity mode in 

order to couple the r.f. energy efficiently to the plasma. 

As a consequence of the complex impedance measurements, it was 

discovered that the designs of the transmitting antenna and the imped

ance matching network are both crucial. The losses in the antenna and 

the matching network must be kept below the plasma loading i n order to 

be able to detect the complex plasma loading impedance. Thi s is even 

more important in future heating experiments, because the fu ndamental 

basis for efficient heating before any other consideration i s to deliver 

more energy into the plasma than is dissipated in the anten na system. 

The characteristics of the magnetosonic cavity modes are con

firmed by three different methods. First, the cavity modes are observed 

as voltage maxima at the output of a six-turn receiving probe. 
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Second, they also appear as maxima in the input resistance of the trans

mitting antenna. Finally, when the real and imaginary parts of the 

measured complex input impedance of the antenna are plotted in the 

complex impedance plane, the resulting curves are approximately circles, 

indicating a resonance phenomenon. 

The observed plasma loading resistances at the various cavity 

modes are as high as 3 to 4 times the basic antenna resistance (~ .4 ~). 

The estimated cavity Q1 s VJere between 400 and 700. This means that 

efficient energy coupling into the tokamak and low losses in the antenna 

system are possible. 
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I. INTRODUCTION 

1.1 Introduction to Tokamak Fusion and Plasma Heating 

In order to produce net energy from controlled thermonuclear fusion, 

two physical parameters, the product of the plasma density n a~ rl the 

confinement time T , and the ion temperature Ti must simultaneously 

satisfy the Lawson criterion. The Lawson criterion is a statement of 

energy break-even in a thermonuclear reaction, where the energy gained 

in the reaction equals the energy lost due to both radiation and particle 

losses. For example, the Lawson criterion for the deuterium and tritium 

reaction 

D + T ~ 4He (3.5 MeV) + n (14.1 MeV) (l.l) 

is that Ti ~ 10 keV, and nT ~ 1014 . Among the many methods under study 

to reach the Lawson criterion, one device that has made a great deal of 

progress toward achieving these parameters is the tokamak. 

A tokamak is a toroidal magnetic confinement device with a toroidal 

magnetic field and an inductively induced toroidal cu r rent (Figure 1.1; 

and for details see Section 3.1). The toroidal current serves a two-fold 

purpose: 1) to produce a poloidal field which provides the proper rota

tional transform for plasma equilibrium; 2) to heat the plasma by ohmic 

dissipation due to the plasma resis t ance. 

There is a limit to the plasma temperature that can be reached by 

heating the tokamak plasma with the toroidal current, becaus e the plasma 

resistance decreases with increasing plasma temperature. To dissipate the 

same amount of ohmic power, I2R, in the plasma at a higher tempera.ture, p 

the plasma current, Ip' must be higher since the plasma resistance R is 



Plasma 

Peloidal 
Magnetic 
Fi~ld 

Bp 

Plasma 

Figure 1.1 

-2-

Schematic of a Tokamak (From Principles of 
Plasma P~ics, by N. A. Krall and A. W. 
Trivelpiece) 
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lower. The limit on the magnitude of the toroidal plasma current that 

can be used for ohmic heating is the condition for plasma equilibrium 

which specifies the maximum allowable poloidal magnetic field for a 

given toroidal magnetic field (see Section 3.1). 

The inverse temperature dependence of the plasma resistance is the 

result of the Coulomb interaction of the charged particles in a plasma. 

The plasma resistivity, or the Spitzer resistivity, is as follows: 

where A= 12n(E:okBT/e2)3/2 I ;n;' and Te is in keV. 

plasma temperature has reached between l and 3 keV, 

(l. 2) 

Thus, after the 

other plasma heat-

ing methods must be used to supplement ohmic heating and to bring the 

ion temperature to the required value. Currently, the two major pro-

posed methods for auxiliary heating of a tokamak plasma are neutral beam 

injection heating and radio frequency wave heating. 

The reason for using neutral beam injection to heat the plasma 

instead of ion beam injection is that charged particles cannot penetrate 

the magnetic field of the tokamak. The neutral particle injection scheme 

is to inject a beam of energetic neutral particles across the magnetic 

field. The neutral particles can deliver energy to the ions by charge 

exchange with cold ions in the plasma, thus resulting in energetic ions 

and cold neutrals which will escape. 

The neutral beam is produced by passing an intense ion beam through 

a gas neutralizing cell. Energetic neutrals can be formed by electron 

capture by positive ions, electron stripping by negative ions or,disso

ciation of molecular ions [1]. Injection experiments using either 
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hydrogen or deuterium beams with powers up to 700 kW have been performed 

in various tokamaks around the world. A heating efficiency of 57%, for 

example, has been reported by the TFR group in France [2]. 

Although neutral beam heating has enjoyed success in the present 

experimental tokamaks, there are doubts about its efficiency in heating 

the bulk of the ion distribution in a reactor-size tokamak, which would 

be much larger. Because of the increase in size of the reactor tokamaks, 

higher energy neutral particles are needed in order to penetrate to the 

center of the tokamak. At present, difficulties have been encountered 

with efficient neutralization of ion beams with energy greater than 

120 keV. Therefore, alternatives to the neutral beam heating must be 

studied for the auxiliary heating of a reactor-size tokamak. 

The use of radio frequency electromagnetic waves to heat a plasma 

was proposed in the early days of plasma physics. Efficient high power 

wave generators in the radio frequency range are at present readily 

available, and so the technological basis for using electromagnetic wave 

heating is quite sound. Because of technical know-how in radio wave 

generation, the cost of using r.f. heating in a reactor-size tokamak 

could be lower than that for neutral beam heating. 

The heating of a plasma using r.f. waves has been summarized by 

T. H. Stix as follows [3]. First, the r.f. wave must be generated and 

delivered to the plasma. The r.f. energy is then coupled to the plasma 

and an ''efficient way to couple the r.f. energy into the plasma is to 

match the frequency and parallel wavelength of the driving field to those 

of a natural mode in the plasma, thereby exciting a 'coupling resonance'." 

The r.f. wave interacts with the plasma through "either linear or nonlinear 
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processes". There is some absorption process of the v1ave in t he plasma, 

"which competes with eddy current dissipation in the walls". Finally, 

there must be "effective thermalization of the energy added to the plasma". 

One proposed method for r.f. heating is the use of the magneto

sonic wave to heat the ions. The attractive feature of this method is 

that the wave energy should couple directly to the ions, instead of 

heating the electrons first, then relying on electron-ion collisions to 

transfer energy to the ions. The propagation of the magnetosonic wave 

in a magnetized plasma can be approximately described by the cold plasma 

dispersion relation. The cold plasma dispersion relation indicates that 

there are two branches of waves that can propagate when the wave fre

quency is approximately equal to the ion cyclotron frequency. One branch 

is the ion cyclotron wave which is left-circularly polarized (LCP) and 

has a resonance, i.e., a large plasma response to the field, at the ion 

cyclotron frequency (Appendix b). The ot her branch is the magnetosonic 

wave which is right-circularly polarized (RCP) and does not have a 

resonance at the ion cyclotron frequency. 

When the magnetosonic wave is propagating in a plasma-filled 

metallic container such as a tokamak, the appropriate EM problem can be 

thought of as that of wave propagation in a dielectric-filled cavity. 

At first sight one would not expect to be able to couple energy to the 

ions using the magnetosonic wave, because it has the wrong pol arization. 

However, when temperature effects are included in the dispers i on rela

tion, one finds that the magnetosonic wave is no longer purely RCP, but 

contains a small left-handed component. F. Perkins [4] has worked out 

the damping decrements of the magnetosonic wave in a finite temperature 
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plasma at both the ion cyclotron and twice the ion cyclotron frequencies. 

It is found that the damping is not strong, and it is a linear function 

of the ion temperature of the plasma. 

Wave propagation in a plasma-filled cavity can be described by the 

dispersion relation of the wave and the proper boundary conditions. To 

keep the theory simple and yet retain the essential features of the 

physics, some approximations are introduced. The plasma is assumed to be 

cold, uniform, and magnetized. The tokamak is approximated by a cylindri

cal cavity with perfectly conducting walls and a periodic boundary condi

tion in the axial direction. The wave propagation problem is solved in 

cylindrical coordinates with the plasma magnetized along the axial direc

tion. From the cold plasma theory, the dispersion relation, w = w(~). is 

obtained, where k is the wave vector (see Section 2.1). Once the plasma 

is placed in the cylindrical cavity, only discrete values of~ which 

satisfy the boundary conditions can exist, i.e., the conducting wall 

boundary conditions being that the tangential electric field and the nor

mal magnetic field must vanish at the boundary. By exciting the magneto

sonic wave at the eigenmode frequencies, w = w(~), standing waves are set 

up in the cavity; thus, one has a forced oscillation system which will 

enhance the damping of the wave. With the simple assumptions used here, 

there are a few experimental effects that are neglected in the theory, 

for example, the toroidal effects, effects due to both density and mag

netic field gradients, the poloidal field effects, finite temperature 

effects, and the effects of the cavity wall resistance. Nevertheless, 

the simple cold plasma theory describes the propagation of the magneto

sonic wave reasonably well (see Section 2.2 for references to other 
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theories that include these effects). 

The problem of efficient r.f. heating of a tokamak plasma using 

the fast magnetosonic wave can be studied in the following way. First, 

the physics of the cavity modes must be understood experimentally. This 

can be done by studying both the standing wave patterns of the eigen

modes in the tokamak and the plasma loading behavior at the transmitting 

antenna during the passage through a cavity mode. Second, efficient ways 

to feed r.f. energy into a plasma at the cavity modes need to be examined 

carefully. By knowing the complex plasma loading impedance, t he 

antenna and the matching network can be designed so that the generator 

impedance can be properly matched to the antenna at a cavity mode. This 

ensures maximum power input into the plasma. Third, the duration of the 

cavity modes used for heating must be long enough during the discharge 

to get any significant increase in plasma temperature. Usually in the 

present day tokamak discharges, the duration of the eigenmodes is not 

long enough for effective plasma heating. The reason is that a particu

lar cavity mode is excited only during the time when both the plasma den

sity and the input frequency satisfy simultaneously the dispersion rela

tion and the boundary conditions. As soon as the plasma dens ity is 

changed sufficiently, this mode no longer propagates in the t okamak, and 

so no more wave heating is possible. one proposed way to track the modes 

is by changing the input frequency of the transmitter to compensate for 

any changes in the density which will shorten the duration of the modes. 

Finally, high power experiments can be done to study the phys ics of the 

damping mechanism of the wave by the plasma, and the actual temperature 
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increase of the plasma due to the r.f. power input. 

1.2 Summary of Previous Work on Magnetosonic Wave Heating in Tokamaks 

The first series of magnetosonic wave heating experiments in the 

United States was done in the ST tokamak and the ATC tokamak at 

Princeton [5,6]. Initially, a low power experiment was performed on 

the ST tokamak to show the existence of the magnetosonic wave and to 

study the resistive loading of the transmitting antenna by the modes. 

The modes were identified by measuring the standing wave patterns using 

a number of probes placed around the tokamak. Both peloidal and toroidal 

mode numbers, m and N, were obtained. Matching networks were used so 

that the r.f. generator impedance could be matched to one of the cavity 

resonances [7]. The resistive loading of the transmitting antenna by 

various modes was measured, and resistive loading results indicated that 

efficient wave generation in the tokamak was possible. 

One of the ST tokamak experimental results which was predicted by a 

theory worked out by Chance and Perkins [8] was that the m = -1 mode \'/as 

split by the effect of the peloidal magnetic field (where the fields vary 

as ei(kz+me-wt)), which makes the phase velocity of this mode different 

when propagating in the opposite direction along the toroidal axis. In other 

words, the dispersion curves for them= -1 modes with positive and negative 

N, the toroidal mode number, are different from each other. The splitting of 

them= -1 mode appears as "double humps" on the cavity resonance peaks. 

High power experiments were done with powe~ level up to 1 MW in the 

ST tokamak with a hydrogen plasma, and a typical ion temperature increase 

of 100 eV was observed [8]. This corresponded to a heating effictency of 
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20%. High power experiments in a deuterium plasma were also performed 

in the ST and ATC tokamaks. However, the cavity Q of the cavity modes 

measured in the deuterium plasma is much lower than the theoretical 

predictions. At present, it is believed that the observed discrepancy 

is due to the two ion hybrid resonance effect between the deuteron plasma 

and the proton impurities in the tokamaks [6]. In this thesis the exper

iments are done in a hydrogen plasma; thus, there are no two-ion hybrid 

resonance effects. No further discussion will be made on this effect, 

except to refer the interested reader to the latest theoretical and ex

perimental publications on the subject. 

Magnetosonic wave heating experiments were also performed on the 

TM-1-VCH tokamak and the T0-1 tokamak in the Soviet Union [9,10]. The 

TM-1-VCH tokamak is a small device with the major torus radius R = 40 em 

and the plasma radius=8 em. Ion temperature increase of up to 100 eV at 

generator power levels of 40 kW was reported. When a deuterium plasma 

is used, the phenomenon of low cavity Q at the eigenmodes was also ob

served, and the cavity Q was found to be about 10. Magnetosonic wave 

heating experiments in the T0-1 had produced comparable ion temperature 

increases. In the T0-1 experiments, some kind of frequency modulation 

had been used to compensate any density variations and thus to remain on 

one of the modes for a longer duration [10]. 

Another experiment at low power level {approximately l kW) was done 

on the TFR tokamak in France. In this experiment careful studies of the 

density dependence of the eigenmodes, and tracking of the modes using 

frequency modu-lation were performed. One of the interesting discoveries 
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in the experiment was that the amplitude maxima of the eigenmodes 

appeared to be modulated at a frequency around 1 kHz. This modulation 

was due to a periodic density fluctuation in the tokamak of about .5% 

atl kHz as observed using soft x-ray diagnostics. The decrease of the 

cavity Q in a deuterium plasma was examined in these experiments, and 

some agreements between the data and the two-ion hybrid resonance theory 

were found [11]. Mode tracking using frequency compensation was at

tempted. The phase information between a local oscillator and a receiv

ing probe signal was used to frequency modulate the pilot oscillator. 

The density in the TFR varied only a few percent for several tens of msec. 

The direction of the change in the frequency of the pilot oscillator was 

such that it compensated any change in density which would destroy the 

cavity resonance effect. Typically, a resonance condition which lasted 

for .2 msec was extended to a duration of 5 msec [12]. In this experi

ment, the transmitting antenna was carefully designed for low losses and 

good coupling to the plasma. 

Recently, magnetosonic wave experiments were done in two of the 

smaller tokamaks, the Microtor at UCLA and the Erasmus tokamak in 

Brussels, Belgium [13,14]. The results from the Microtor 11 Showed no evi

dence of a correlation between the excitation of Alfven (magnetosonic) 

resonances and the antenna loading. Upper bound estimates on these ex

periments indicate that 70% of the applied power went into the plasma but 

less than 5% appeared as resonances 11 [13]. This result does not agree 

with the data presented in this thesis, where it was found that most of 

the r.f. power went into the plasma via the cavity resonances. However, 
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not enough is known about the experimental procedures used in the UCLA 

experiments to resolve this difference. The preliminary measurements in 

the Erasmus tokamak "does not show a large increase of absorption due to 

magnetosonic resonances. This is in disagreement with the resonance 

loading seen on the TFR, T4, and the Caltech tokamak" [14]. In the 

Erasmus tokamak experiments the modulation of the resonance peaks by a 

periodic density fluctuation which ~1as first reported by the TFR group 

was also observed. 

The magnetosonic wave experiment was done in the larger tokamak at 

UCLA, the Macrotor tokamak (R = 95 em, a = 44 em) [15]. "In this machine 

one is able to observe a definite correlation between antenna loading 

and magnetosonic resonances for well shielded antenna, and during the 

low density portion of the shot." The resonance loading was reported to 

be between .5 and ohm. "However, this wave loading is masked by the 

parasitic loading during the early part of the shot when the density is 

high." 
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1.3 General Thesis Outline 

This thesis has been devoted to the understanding of how to couple 

r.f. energy efficiently into a tokamak pl asma via the magnetosonic 

cavity modes. Special attention was given to the measurement of the 

complex plasma loading impedance of the plasma at the cavity modes. 

The ratio of the real part of the plasma loading impedance and the 

antenna resistance determines the efficiency of the wave generation in 

the tokamak at the cavity modes. The complex plasma loading impedance 

contains the information needed to match the r.f. generator impedance 

to the antenna during the presence of a cavity mode. Careful designs 

of the antenna and the impedance matching network were found to be 

necessary for efficient energy coupling to the tokamak plasma and prop-

erly matching the generator impedance to the antenna at a cavity mode. 

In Chapter I I, the theory of the magnetosoni c v1ave in an axially 

magnetized cold uniform plasma filled cylindrical cavity is presented . 

Although the cylindrical cold plasma theory is only an approximation 

to the experimental conditions in a tokamak plasma, the theory is found 

to agree reasonably with the transmission data of the cavity modes. The 

characteristics of the magnetosonic cavity modes are determined from 

the cold plasma dispersion relation, w = w(k), and the discrete values 

of the wave vector, t, which satisfies the boundary conditions at the 

cavity wall. Each of the discrete cavity modes'is associated with a 

particular wave vector which is represented by a set of mode numbers 

(t,m,N) corresponding to the three components of the wave vector, ·where 

tis the radial modes number, m is the peloidal mode number, and N is 
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the axial mode number. An equivalent circuit representation of the 

transmitting antenna and the tokamak cavity is used to obtain relations 

between various physical parameters of the cavity modes [Section 2.3]. 

The antenna input impedance has been calculated from the equivalent 

circuit with the antenna modelled by a transformer, and each of the 

cavity modes represented by a R-L-C resonant circuit. The various 

circuit parameters used in this calculation are either derived from 

theory, or measured experimentally [Section 2.8]. 

In Chapter III, the operating conrlitions and the plasma parameters 

of the Caltech tokamak are discussed, and the various diagnostic 

tools available on the Caltech tokamak are described. The time depen

dence of the plasma density, vlhich is an important parameter governing 

the behavior of the cavity modes, is given [Section 3.1]. Typically, 

the plasma density increases rapidly dur i ng the first .3 millisecond, 

then decays quickly to 20% of its maximum value in the next 2 milli

seconds, and stays constant at around 1 x 1012 particles per cm3 for 

the remainder of the discharge. 

Chapter IV is devoted to the experimental apparatus and procedures 

of the different r.f. meausrements. The transmission measurements were 

made with a single-turn tungsten transmitting loop antenna an d a small 

six-turn receiving loop probe with low coupling coefficient so as not 

to load the cavity modes in the tokamak [Section 4.1]. The i nput 

antenna resistance vias determined by measuring the incident and reflected 

power into the antenna with a VHF directional coupler, and the r.f. 

current in the antenna with a high frequency current probeiSection 4.3]. 
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The plasma loading resistance was obtained by determining the additional 

resistance present at the transmitting antenna due to the plasma effect. 

The complex input i mpedance of the antenna was computed from the data 

of the amplitude and the phase difference of the incident and reflected 

waves from the VHF directional coupler [Section 4.4]. Considerations that 

went into the design of the two-turn copper transmitting antenna anct 

the impedance matching network using vacuum variable capacitors are 

discussed in section 4.2, and the details of the construction of the 

copper antenna are given in Appendix a. 

Chapter V contains the experimental results of the r.f. measure

ments and the computed values of the equivalent circuit parameters 

from measured data. The computed equivalent circuit parameters of the 

cavity modes include the antenna input impedance under different exper

imental conditions, the cavity Q of the various cavity modes, and the 

antenna coupling coefficient at the various cavity modes. The data 

from the transmission meas urements at the cavity modes appear as voltage 

maxima in the output signal of the receiving probe, and agree reasonably 

with the cold plasma theory given in Chapter II when ttle experimental 

data are superimposed on the dispersion curves of the cavity modes in 

a frequency versus density plot [Section 5.1]. Plasma loading resis

tance at the cavity modes has been observed to be as high as 3 to 4 times 

the basic antenna resistance [Section 5.3]. The complex plasma loading 

impedance at the cavity modes fo 11 ows the general behavior of the 

impedance function derived from the equivalent circuit model of the 
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cavity modes [Section 5.5]. t~hen the real and imaginary parts of the 

measured plasma loading impedance are plotted on the complex impedance 

plane as a cavity mode is passed through, the resultant curve is approx-

imately a circle indicating a resonance effect. 

Section 5.6 contains the estimated values of the cavity Q and the 

coupling coefficient for the various cavity modes. The cavity Q can be 

estimated from the time dependence of the plasma evolution by using the 

approximate frequency-density relation for the cavity mode cutoffs 

[Section 2.6]. The estimated Q obtained from the density data is the 

cavity Q loaded by the impedance of the antenna and the r.f. generator. 

The unloaded cavity Q, Q
0

, can be related to the loaded Q by a circuit 

equation. Once Q
0 

is known, the antenna coupling coefficient, K, can 

be obtained from the circuit model of the antenna-cavity coupling. 

After the parameters of the equivalent circuit have been computed, the 

wave generation efficiency, n, of the antenna is estimated. For 

the present antenna design, the efficiency has been found to be as high 

as 80%. 

In Section 5.5, attempts to match the r.f. generator impedance to 

the antenna when one of the cavity modes is resonant are desc 1~ i bed. 

Due to the variation of the plasma density \>Jith time, this matching can 

only be done for a brief interval. The ability to match to a cavity 

mode is the ultimate goal of the entire experiment, because i n order 

to deliver the maximum amount of power to the plasma, the generator 

impedance must be properly matched at a cavity resonance vJhere the 
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loading is stronger than when there is no resonance. 

Finally, the experimental results and conclusions are summarized 

in Chapter VI, and some improvements to the experimental apparatus for 

future high power experiments are suggested. 
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II. COLD PLASMA THEORY AND CIRCUIT MODELING OF THE CAVITY MODES 

2.1 Theory for a Cold Uniform Cylindrical Plasma Cavity 

The mode structure of the electromagnetic wave in a dielectric filled 

cavity with perfect conducting walls can be obtained from Maxwell's equa-

tions, equations for the dynamics of the plasma, and the boundary condi-

tions at the cavity wall. For substitution of the plasma dynamics into 

the Maxwell's equations, it is convenient to derive a relation between 

the plasma current density and the electric field. The plasma current 

density can be thought of as a displacement current in a dielectric medium, 

as shown in equation (b.l) of Appendix b, and the dynamics of the mag

netized plasma is represented by a dielectric tensor [16] 

E: jE: 0 
..L X 

~ = -jE:x E: 0 
j_ 

0 0 E: II 

where the definitions of the components of the dielectric tensor are given 

in equation (b.3) of Appendix b. For the propagation of the magnetosonic 

wave in the tokamak, the following assumptions are made to keep the theory 

simple, yet contain enough physics to reveal the essential features of. the 

cavity modes. The chamber of the tokamak is approximated by a cylindrical 

cavity with perfectly conducting wall and periodic boundary condition in 

the axial direction (Figure 2.1). The plasma is assumed to be uniform, 

cold, collisionless, and axially magnetized with a uniform magnetic field, 

B
0

. Several approximations of the dielectric properties of the plasma 

can be used to simplify the dispersion relation. For instance, in the 

dielectric tensor of the magnetized plasma, terms of the order (me/m;), 



CONDUCTING WALL 

() 

+-- Bo 

~ 2nR --~~ 

Figure 2.1 

Plasma filled cylindrical cavity with conducting wall. R is the major 
radius, and a is the minor radius of the tokamak. Periodic boundary 
condition is imposed in the z direction. 

I __, 
0:> 
I 



-19-

where me and mi are the electron and ion masses, respectively, are 

neglected. The propagation frequency of the wave is taken to be near 

the ion cyclotron frequency, which is much smaller than the electron 

cyclotron frequency and the electron plasma frequency. After including 

all the simplifications mentioned above, the resulting dispersion for the 

magnetosonic wave is as follows [17]: 

2 2 st. (Jj • 
1 C1 

(2.1.1) 

where T and k are the radial and axial components of the wave v~ctor, w . 
C1 

is the angular ion cyclotron frequency, st . is w/w ., VA= 8
0

/ ~~ m.n. is 
1 C1 0 1 1 

the Alfven velocity in the plasma, and ni is the ion number density. (For 

more details, see Appendix b). 

All the transverse components of the electric and magnetic fields 

can be expressed in terms of the axial electric field, E
2

, and axial mag

netic field, Hz. A consequence of the p~opagation frequency being much 

smaller than the electron plasma frequency is that Ez is small (see 

Appendix b). For our calculation Ez is assumed to be zero. The solution 

of the axial magnetic field, Hz, as shown in equation (b.31) is 

Hz = H J (Tr) ej(wt-me-kz) 
o m (2.1.2) 

where Jm is an integer order Bessel function, T and k are the radial and 

axial components of the wave vector, respectively. (Note the fields vary as 

e-jme --different from the ejme dependence used in some of the references.) 

The boundary condition for the cavity is E8 = Hr = 0 at the con

ducting wall, i.e., at r =a. As shown in Appendix b, equation (b.32), 

the boundary condition can be written as: 



where y
1 

El and Ex 
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y2 
TaJ•(Ta) +-- mJ (Ta) = 0 m y

1 
m (2.1.3) 

2 2 • 2 
= k - w ~oEl and y 2 = w ~oEx , m = the poloidal mode number, 

are the components of the dielectric tensor of the magnetized 

The eigenmodes of the cavity are the simultaneous solutions of 

equations (2.1.1) and (2.1.3). Each of these dispersion solutions is 

identified by a set of mode numbers, (1,m,N), where 1 is the radial mode 

number, m is the poloidal mode number, and N is the axial mode number. 

The poloidal mode number, m, is the integer order of the Bessel function 

in the solution (2.1 .2). The axial mode number, N, is related to the 

axial component of the wave vector, k, by the periodic boundary condition 

in the axial direction. k = N/R, where N is an integer, and R is the 

major radius of the tokamak. The definition of the radial mode number, 

1, can be best described in an example. Consider the m = 0 modes, the 

boundary condition (2.1.3) can be written as 

In this case the radial mode number is defined to be the order of the 

zeros of J1 . For instance, the lowest radial mode, 1 = 1, co r responds to 

Ta = 3.83, the first zero of J1 , if J 1(o) = 0 is not included. (In 

waveguide theory it is customary to denote the radial componen t of the 

wave vector by T1m corresponding to the (! ,m) mode. In the above case, 

for instance, TlOa = 3.83). 

Form f 0 modes the solution is more involved because of the trans-

cendental nature of equation (2.1.3). Once the values of the independent 

variables (the density, the poloidal mode number m, and the axial mode 
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number, N) are imposed, Newton's method for solving a system of equa-

tions is used to find the solutions of the input frequency and the 

radial component of wave vector, T, which simultaneously satisfy both 

equations (2.1.1) and (2.1.3). For a given set of values for indepen-

dent variables, there are an infinite number of discrete solutions for 

the frequency and T. Therefore, the radial mode number is picked in 

the solution by the initial guesses for T and the frequency used in the 

Newton method. 

Two sets of cavity mode dispersion curves are shown in Figures 2.2 

and 2.3. Figure 2.2 shows the various poloidal and axial modes of the 

magnetosonic cavity wave for the lowest radial mode. Figure 2.3 shows 

the various radial and axial modes for the m = 0 poloidal mode. From 

Figure 2.3 one can see that for the parameters in our experiment, i.e., 

density less than 7 x 1012 particles per cm3 and w/ w . less than 3, the 
Cl 

higher radial modes for the m = 0 peloidal mode are not excited. The 

spacings between the various modes with different radial mode number in 

the frequency versus density plot are large, so in our experiment only 

modes with the lowest radial mode number are excited. Therefore, only 

modes with the lowest radial mode number are used to compare with the 

experimental data (Figure 5.2). 

Simplifications to the dispersion relation in equation (2.1.1) can 

be made under certain conditions for various modes as an aid to es-

timating some of the measured physical quantities. For instance, the 

cut-off relation, i.e., k = 0, for the various modes is very useful both 

as a guide to the general trends of the dispersion curves in the aensity 
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versus frequency plane, and in the estimation of the cavity Q. The cut-

off relation will be estimated for modes in two frequency ranges. First, 

consider w << w . << w The dispersion relation (2.1.1) with k = 0 c1 ce 
can be written as follows: 

st. w . T2 T2 2 st. w . 2 2 I ( 3 2 )"2 
_1 c 1 - - - - (-) + 1 c 1 v~ ( 1 - n~) 2 J 2 

( 1 - n~) = 0 (2.1.4) 

where VA= B !I~ m.n. is the Alfven velocity. For the approximation 
0 0 1 1 

that sti << l, the result is 

T2 2 2 v2 "' st .w . I A 1 C1 

If the hydrogen plasma is assumed to be fully ionized, then the electron 

number density ne is equal to the ion number density ni. The relation 

between resonant frequency of a given mode and electron density is 

f "' A0 f/n )(,mo e (2.1.5) 

where A0 is a constant, and £,m are the corresponding radial and po)(,mo 

oidal mode numbers. 

Next, consider the region where sti is near one. Then T2/2 << 

3 2 2 2 (st .w . )/[VA(l - st .)] for the lower T modes. Therefore, equation (2.1.1) 1 C1 1 
can be reduced to 

2 2 2 T "' w /VA 
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which is the same as equation (2.1.4). Since the cut-off relation is 

continuous for the frequency range between ~ - = 1 and ~ - = 3, equation 
1 1 

(2.1.4) should be a fairly good approximation for our purpose. 

2.2 Summary of ~1ore Sophisticated Theories of ~1agnetosonic Cavity Modes 

The theory presented here is a great simplification of the experi-

mental conditions. Many physical conditions, such as the toroidal 

geometry, density, and magnetic field gradients, finite plasma tempera-

ture, and finite conductivity of the tokamak wall, have all been 

neglected. Therefore, this theory cannot predict all the effects of the 

cavity modes, but only can give the general features of the cavity reson-

ances. There have been several theories developed by different groups, 

each including some of the neglected effects. Perkin s , Chance, and 

Kindel have included the finite temperature effects and predicted damping 

of the magnetosonic wave by cyclotron damping at both the ion cyclotron 

frequency and twice the ion cyclotron frequency, and by electron transit 

time damping when the thermal velocity of the electrons is close to the 

phase velocity of the wave. They have also calculated the damping due 

to the finite conductivity of the tokamak wall [4]. 

As mentioned in the introduction, the effects of the pol oidal field 

on the cavity modes were first suggested by Chance and Perki ns [8], and 

later worked out in more detail by J. Adam and J. Jacquinot [12]. The 

poloidal field splits the toroidal mode degeneracy of them= -1 peloidal 

modes. In other words, when the peloidal field is included i n the calcu-

lation, the dispersion curves for the m = -1 modes with positive ~nd 

negative toroidal mode number, N, are different from each other. The 
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experimental result is the splitting of the cavity modes. We observed 

some modes in our experiments had double peaks; however, no definite 

conclusion can be drawn because of two difficulties. First, there was 

not an independent mode identification measurement, other than using 

density information to correlate with theory, as to which modes should 

appear at a given time in the plasma discharge. Second, the plasma 

density decays bery quickly during the first two milliseconds in the 

discharge (see Section 3.1 for detailed explanations), and so the cavity 

modes are swept through very fast. Consequently, it is hard to tell the 

difference between a mode splitting and two different modes appearing 

very close to each other in time. 

The effects of radial density profile on the cavity modes were 

studies by Paoloni [18,19]. The first model used in the theory was a 

cylindrical cavity \vith a vacuum layer between a uniform plasma and the 

conducting wall. The m 0, ±l modes were studies (where the fields vary 
. 8 

as eJm ), and the conclusion was that for the magnetosonic wave them= 0 

and m = -1 modes each has a definite cut-off frequency; however, for a 

sufficiently thick layer of vacuum, them= -1 mode has no cutoff. In our 

experiments the cavity modes disappear when the input frequency is below 

7 MHz. This does not necessarily mean that the m = 1 mode does not propa-

gate below 7 MHz. Perhaps the transmitting antenna used here does not 

couple strongly to this mode at low frequencies. It is also possible that 

the vacuum layer in our tokamak has not reached the thickness requirement 

of the theory. 
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The second mode 1 used in the theory Has a cyl i ndri ca 1 cavity with 

a non-uniform radial density profile [19]. It was found that the radial 

variation of the wave fields depended on the assumed radial density pro-

file. For the low radial and poloidal modes, the fields at the outer 

radius of the cylinder are much smaller in the case of the parabolic 

profile than in a uniform plasma, where the parabolic and uniform pro

files have the same line-average density. This means that if a loop 

antenna is placed at the outer radius of the cylindrical cavity, the 

antenna coupling to the cavity modes is weaker for the parabolic density 

profile because of the lower field 1 i nkage compared to a uniform density 

profile. 

The effect of the finite conductivity in the tokamak chamber wall 

is an important factor in the 1/Jave heating. As indicated in the surrmary 

of r.f. heating by Stix [3], the eddy current dissipation in the tokamak 

wall competes with the wave absorption processes in the plasma. In 

Appendix c, the losses in the stainless steel wall of the Caltech tokamak 

have been estimated in terms of the quality factor, Q, of the tokamak 

cavity for the ,Q, == l, m = 0, and k == 0 mode. The quality factor Q is de-

fined as 

Q == 2 n __ e_n_e-:r;-'g""'y-:--s_t_o_r_e_d_,...
energy lost per cycle 

The estimated Q for the particular mode in Appendix c is a l ower limit 

for the Q for the various other cavity modes. Hhen the esti ma ted Q due 

to wall loss is compared with the cavity Q measured in the experiment, 

the estimated Q is two to three times the measured Q, indicat ing the ab-

sorption processes in the plasma are comparable or higher than the 
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dissipation in the wall (Section 5.4). Therefore, a large part of the 

input r.f. energy should be absorbed by the plasma. 

2.3 Circuit t·1odel of the Antenna-Cavity Couplino: 

For a cavity filled with a linear scalar dielectric, the amplitudes 

of the various cavity modes can be described by a set of equations 

derived from the t~axwe ll • s equations and the boundary conditions at the 

cav·ity vJalls. This set of equation is the same as those for an R-L-C elec-

tric circuit; hence the cavity can be modelled by an equivalent resonance 

circuit [20]. The use of the circuit model of a cavity is only for the 

convenience of those who have good intuition about the behavior of elec-

trical circuits. To justify the use of a simple R-L-C resonance circuit 

to represent a cavity filled with a ma9netized plasma would be a very 

involved task. Therefore, v-:e shall summarize the approach used by Slater 

[21] to justify the modelling of a linear scalar dielectric filled micro-

wave cavity by a R-L-C circuit, and assume that a similar derivation can 

be carried out for a linear tensor dielectric in a cavity. The validity 

of the circuit representation of the tokamak can be tested when the exper

imental results are compared with the model. 

The electromagnetic fields in the cavity can be expressed in terms 

of a set of complete orthonormal functions, called the normal modes of 

the cavity: {Ee. + F,e_} and {!:!._e.} where V·~_e_ = O, V·H,e. = 0, Vxf__e_ = 0. 

The orthonorma 1 conditions are expressed as follows: 

vf I-e.· E dV 8tm --m 

vf f,e_. F dV 0-tm -m 

vf !!_e.. H dV = otm -m 
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where Vis the cavity volume. These normal modes are the solutions of 

the wave equation, 

'iE + 
2 

-1 k 1 I 1 = o 

'iH + 
2 

-£ k £_ !:!_£_ = 0 

and k£_£. = 'ill/!£_ 

2 2 v 1/J£_ + k£_ 1);£_ 0 

Associated with each of the eigenmodes is a characteristic angular reson-
2 2 ance frequency, w1 , which can be related to the wave number by k1 = q.1w1 . 

The fields in the cavity can be expanded in terms of the normal modes with 

the following coefficients: Eo= JE·E odV, Ho = JH·HodV, Fo= JE·F 0 dV .{.. v- --:{._ .{.. v- -.{_ .{.. v- ...-.{.. 

I= ~(E£_ I£_+ F£_~ ) 

!:!_= L: H1 H1 £_ 

(2.3.1) 

(2.3.2) 

The solutions of the fields must satify both the Maxwell 1 s equations 

and the boundary conditions. There are tv10 types of boundaries in the 

problem: conducting surfaces, denoted by S, and insulating surfaces, 

denoted by S 1 • The boundary conditions are 

n X E = 0 - -£_ and I!.: !:!_1 = 0 

at a perfectly conducting surface, S, and 

and n·E = 0 -!::,f. 

(2.3.3) 

(2.3.4) 

at a perfectly insulating surface S1
• As shown by Slater, if equations 

(2.3.l)and(2.3.2) are substituted into the r~axwell 1
S eEJuations, the result

ing integra-differential equations for the expansion coefficients are as 

follows: 
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(2.3.5) 

These are the differential equations for simple harmonic motion (terms 

on the left-hand side) with dampinqs and external forces(terms on the 

right-hand side). The convenience of these equations is that the bound

ary conditions at S or s• can be readily substituted into the equations. 

To demonstrate the damping terms, consider a cavity filled with a lossy 

dielectric represented by a finite conductivity, J = crf. Equation (2.3.5) 

becomes 
d

2 
d 

(E:)l(!t2 + CY)ldt 

When the time dependence of 

solution for w is obtained 

) E = 0 .t 
is taken to be ejwt, the following 

w = ±w.t/ l - (l/2Q)2 + jw.e_/2Q , where Q = E:w.e_/a 

This equation is analogous to a R-L-C circuit if the following equi

valent circuit parameters are used [ 22] 
2 L = )lk V .t .t 

c.t = E:/(k1 v) 

2 R.t = CY)lk.e_V/ E: 

The 1 asses due to the finite conductivity of the cavity wa 11 can be in-

eluded by substituting the boundary condition on the conducting surface 

S, ~xi= ~(1 + j)lw).l/2a, into the surface integral overS in equation 

2.3.6. The effects of the wall loss in the tokamak are discussed in 



-31-

Appendix c. 

Next let us find the input impedance of cavity using equations(2.3.5) 

and the proper boundary condition. Consider a cavity coupled to an out-

side system by a waveguide or coaxial line. The input impedance of the 

cavity can be obtained from the fields at an insulating surface, s•, 

parallel to the cross section of the transmission line near the input 

of the cavity. As shown by Slater, once the boundary conditions of equa

tion {2.3.4) are imposed, the fields at s• can be expanded in terms of 

the transverse components of the normal modes of the wave guide, Et and -n. 

Ht, i.e. 
- 11 

E E v E 
11 .tn. -tn. 

where v.e.
11

's are the time independent expansion coefficients of the elec

tric field, i
11 

are the coefficients of the magnetic field, and z
111 

is 

the characteristic impedance of the wave guide for the nth mode. After 

some manipulations the surface integral of equation (2.3.5) can be 

related to the expansion coefficients 

When the above integral is substituted into equation (2.3.5), the follow-

ing solution of the expansion coefficients of the electric fie l d, E.t, 

is obtained 

(the transverse electric field at S' ) 

where 
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The quantities ~ and V can be interpreted as the 'current' and the n n 

'voltage' of the nth mode of the wave guide. Z are the impedance n.m 

coefficients of the various modes in the wave guide. If only one mode, 

say the ;th mode, in the vtave guide is dominating, and loss terms, such 

as dielectric and wall losses, are introduced into equations (2~3.5) and 

(2.3.6) the resultant cavity input impedance is as follows: 

_ !vz;fEw.el 
zii - ~ j[l - (w~ fw2)]+ l/Ql 

where 1/Q = 1/Q + 1/Q This is J·ust the ea.uation satis-l wall dielectric" 
fied by the input impedance of a R-L-C resonance circuit if the follow-

ing analogies are made: 
2 w = 
l and 

where Ll , Cl , and Rl are the equivalent circuit parameters of the 

lth cavity mode. vii represents the coupling between the wave guide 

and the cavity. In our experiment, the cavity is coupled to the out

side system by a loop antenna which is modelled by a transformer 111ith 

a certain mutual inductance, ni , to the lth cavity mode; thus, v1e can 

make the following analoqy between the coupling coefficient vi; and ~1~ 

for high Q cavities, i.e., w ~ w1 , [23] 

2 2 2 
t1l/ L l = v l; I EW l 

The equivalent circuit of the antenna-cavity system is shown in 

Figure 2.4. Each of the eigenmodes is denoted by a subscript, for 

example, R , L , and C are the equivalent circuit elements of the p. p. p. 
th 1 1 1 

i mode. The subscript 'p' denotes that the cavity is filled with a 

magnetized plasma. Unlike the simple microwave cavity where the circuit 

elements can be calculated theoretically, the equivalent circuit elements 
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of the tokamak are more difficult to calculate and have not actually 

been computed. Since the physical quantities measured in the experi-

ments are not the circuit elements themselves, but rather functions of 

these circuit elements, such as the Q of the cavity and the resonance 

frequency, only the measurable quantities need to be calculated. In 

particular, one would like to know whether the complex input impedance 

of the antenna-tokamak system satisfies the form of the complex input 

impedance function derived from the equivalent circuit model. 

By using this model, one can get an expression for the input im~ed-

ance of the antenna, Z , when the various eigenmodes impedances are 
L 

reflected into the primary of the transformer. The contribution to ZL 

from the each of the R-L-C circuits is a simulation of the plasma load

ing. For the circuit shown in Figure 2.4, ZL can be written as follows: 

ZL =Rant+ jwlant + ~ (wtl;)hRp.+j(wLp.- w~ )] (2.3.7) 
1 . 1 1 p. 

1 

where Rant and Lant are the resistance and inductance of the antenna. 

For the convenience of comparison with experimental results, it is de

sirable to rewrite equation (2.3.7) in terms of the following quantities 

which are measured in the experiments. 

Qp. = w. L /R 
l 1 pi pi 

2 
wi 1/Lp.cp. 

1 1 

Two dimensionless quantities are used for convenience, the co upling 

coefficient, K., and the normalized frequency, stp.' 
1 1 
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The real and imaginary parts of ZL can be expressed in terms of these 

parameters: 
2 Q K·Qp.Slp· 

[ a 1 1 1 ] Ran t 1 + l: ---"'2'--'---::2:-'-.;........:_--=-2 --=2 
SlPi+Qp;(l - Slp;) 

( 1 - Sl~ i )K t Q~ . 
XL == X ant [ l - l: ----'------=-2

1
-'--=2 J 

i rt2 +Q2 (l - Slp1.) Pi Pi 

(2.3.8) 

(2.3.9) 

Near the resonance of the jth cavity mode, equations (2.3.8) and (2.3.9) 

can be approximated as 

(2.3.8a) 

(2.3.9a) 

At a particular frequency, only the term with a resonance frequency 

closest to the applied frequency vJill dominate the resistive loadinq, 

whereas the reactance depends on the couplin~ coefficient and Q of all 

the other modes. Depending on magnitudes of the contribution to the 

input reactance from the modes above and below the resonance frequency, 

i.e. Q > 1 or Q < 1, the total reactance from all the cavity ~o des, 

XL - Xant, can be greater or less than zero. If the reactance contri

buti on from modes Hi th resonant frequency, w. < w., is qreate :- than 
J 1 -

the contribution from the other modes, for instance, the inp ut reac-

tance, XL' ¥Jill show an increase to the basic antenna inductive r~ac

tance from the effects of the cavity modes. 
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2.4 Transient Measurements of Steady State Quantities 

The impedance measurements made in our experiment are transient 

measurements. The tokamak operates in a pulse mode with the duration 

of the plasma current about 12 milliseconds. Furthermore, as mentioned 

in the introduction, the cavity eigenmodes are swept through very 

rapidly due to the changing plasma density. (This point will be detailed 

in Section 4.2). Therefore, the input impedance of the cavity modes is 

changing in a very short time. However, the concept of impedance is 

defined for a steady state situation, and so it is appropriate at this 

point to examine the conditions under which the impedance concept is 

valid. To get an estimate of how long one must \-iait to achieve steady 

state condition in a transient measurement, consider the following 

idealized problem. A R-L-C resonance circuit for one of the eigenmodes 

is subjected to a step of r.f. voltage input at the resonance frequency , 

of the circuit. The voltage-current relationship can be written in 

the follovJing integra-differential equation: 

t 

L _<!!_ + IR + l j I dt V
0
e 

jw
0

t 
U(t) = dt c (2.4.1) 

0 

where 

G 
t < 0 

U(t) 
t > 0 

The equation can also be expressed in the following form: 

(2.4.2) 
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First, the homogeneous solution to the differential equation is found 

using Laplace's transform 

s2 + (R/L)s + 1/LC 0 

and so the solution of the form I
0
e5 t can be written as 

s = -(w /2Q) ± j w J1- (l/2Q) 2 
0 0 ' 

(2.4.3) 

2 \'lhere w
0 

= 1/LC, and Q = w
0

L/ R. In our case the Q is very hi gh and so 

the imaginary term is approximately equal to ±w
0

. 

In the high Q approximation, the general solution to equation 

(2.2.5) can be written as follows: 

-w t/2Q 
I = (V/R)(l - e 0 

) 

j w t 
e o (2.4.4) 

From this equation one can see that the time required for the circuit to 

reach steady state is 2 to 3 times 2Q/w
0

. Thus the time, T, to S\-Jeep 

through the half power points of the resonance must be longer than 2Q/w . 
0 

The longer T is compared to 2Q/w
0

, the more accurately the steady state 

impedance can be measured. The condition for accurate impedance measure-

ment is 

T » 2Q/w
0 

(2.4.5) 

Fortunately, the density decay is s l 01'>' enough for this condition to be 

satisfied in our experiments. In Section 5.6, equation (2.4 .5) will be 

applied to the experimenta l data and the validity of the impejance mea-

surements will be discussed. 
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2.5 Impedance Matching 

The impedance matching net1t1ork, consisting of the tltw tuning capac

itors, c1 and c2 in Figure 2.4, is used to tune out the imaginary part of 

the impedance in the antenna circuit, and to transform the real part of 

the impedance to 50 ohms. For a particular setting of c
1 

and c2, only 

one value of L t and R t can be matched to 50 ohms. Therefore, one an an 
must be specific as to the condition under which the antenna is matched. 

The most simple vvay to match the antenna is in vacuum \'/hen no plasma is 

present. However, it is found that once the plasma is formed around the 

antenna, the antenna then becomes mismatched. Even when there are no 

cavity resonances present during the discharge, the plasma causes a suf-

ficient change in impedance to the antenna that retunina c
1 

and c2 is 

needed. This kind of tuning \vill be denoted as "off-resonance" matching. 

A precise definition of the "off-resonance" matching is to match the gen-

erator impedance at a specific time in the plasma discharge, when no 

cavity mode is resonant. The reason for specifying the time in the dis

charge is that the plasma condition is changing as a function of time, 

and so the impedance contributed from the plasma when no cavity resonance 

is present is also changing as a function of time. From now on the sum of 

the "off-resonance" plasma impedance plus the antenna impedance will be 

denoted by Zoff = Roff + jXoff" It is found from the experiments that the 

changes in Zoff resulting from the changes in the plasma conditions are 

slow enough that "off-resonance" matching for fairly long periods in the 

discharge (typically 3 milliseconds) is possible. In this way, one set-

ting of c
1 

and c2 can ensure that the generator is properly "off-resonance" 
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matched for the first hJO milliseconds in the plasma dischargE: where 

most of the cavity modes appear. 

There is one more type of matching, namely to match the generator 

impedance to the impedance of the antenna plus the added contribution from 

the plasma at one of the resonance peaks. Because the impedance contribu

tion from each of the eigenmodes is different from the others, only one 

mode can be properly matched for a particular setting of c
1 

and c
2

. The 

details of this type of tuning arediscus sed in Section 4.5. Fo r future 

reference, the term "on-resonance" matching is coined to denote this type 

of matching. 

In the experiment, the directional coupler used has a characteris-

tic impedance of 50 ohms, and it measures the impedance of the antenna 

and the plasma loading after being transformed through the matching net-

work. This measured impedance is the term Z. shown in Figure 2.4. The 
1n 

quantity of interest is the impedance looking directly into the antenna, 

i.e., ZL (see Figure 2. 4). The transformation relating these two imped

ances is readily shown to be 

RL 
2 (2.5.1) R. XC /D 

1 n 1 
Xc (Xc + Xc + Xin) 

XL X [l - l l 2 J (2.5.2) = 
cl D 

( )2 R2. where D = XC+ XC+ X. + and XC 
1 2 

1n 1n 1 

The ideal matching procedure for "on-resonance" matchin g is first 

to match the impedance of the generator at the "off-resonance " condition, 

\'lhi ch is an easier process than "on-resonance" matching. From the · measured 
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complex reflection coefficient p, ZL can be calculated. From the values 

of ZL at the resonance peaks, the XC and XC can be calculated for "on-
1 2 

resonance" matching, i.e., R. =50 ohms, X. = 0. This procedure was not fol-, n 1 n 

lowed in this thesis because of the lack of an on-line computer system to 

calculate ZL and the nevi c1 and c2. The actual "on-resonance" matching 

reported in this thesis was done by minimizing the reflected voltage from 

the directional coupler at one of the modes through trial and error. r·1ore 

discussions on "resonance" matching and data of impedance at "on-resonance" 

matching are presented in Section 5.7. 

2.6 Relations between Circuit Parameters 

The actual physical quantities that are measured in the experiment 

are the amplitude and the phase of the incident and reflected voltages 

into the matching network from the generator, the antenna current, and 

the plasma density. From these measured quantities, the following cir-

cuit parameters, shown in Figure 2.4, can be calculated: the input 

impedance Zin' the resonance plasma loading resistance r~2w~/Rpi' the 

cavity Q,Qp., the coupling coefficient K, and the antenna efficiency 
1 

n· 
To obtain the resistance information from the measured incident 

and reflected voltage into the antenna and the antenna curren~ requires 

some basic equations used in transmission line theory. The i ncident and 

reflected waves into the capacitor matching network are measu r ed by a r.f. 

directional coupler, which has a characteristic impedance of 50 ohms. 

Since the generator and the directional coupler is also 50 oh ms, the 

incident and reflected power into the antenna circuit can be written as 
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P. = v~ ;so 1nc 1nc (2.6.1) 

(2.6.2) 

where Pine and Pref are the incident and reflected pm'lers, respectively. 

If we call the antenna current Ia' then the resistance can be obtained 

as 

R = (P P )/I 2 
inc- ref a (2.6.3) 

To find the complex input impedance, first define the complex re-

flection coefficient. The complex reflection coefficient, p, can be 

related to the amplitude and the phase of the incident and reflected val-

tages as 

p = (V /V ) ej¢ 
ref inc (2.6.4) 

where ¢ is the phase between the incident and the reflected voltages 

[24]. The complex input impedance can be obtained from the complex re-

flection coefficient by the follo\'ling transformation: 

(2.6.5) 

where z. = R. +jX. , and Z is the characteristic impedance of the trans-1n 1n 1n o 
mission line, i.e., Z

0 
= 50 ohms for our experiment. Using this formula 

to solve for R. and X. for our case, the follo\'ling equations are ob-
1 n 1 n 

tained: 

Rin = Zo[(l-IPI2)/(l 
. 2 

21 P 1 cos ¢ + I P I ) J 

x. 1n z
0 

[21 PIs i n <PI ( 1 - 2 I PI cos ¢ + 1 P 1
2

) J 

(2.6.6) 

(2.6.7) 

where IPI is the magnitude of the reflection coefficient. These two 
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equations are used in Sections 4. 4 and 5.5 to calculate the complex im-

pedance from the experimental data. 

The cavity Q can be estimated from the plasma density at the 

cavity resonance, the rate of density change as a function of time, and 

the 3 dB time vJidth of the resonance peak. The reason density informa-

tion can be used to get the cavity Q is because of the nature of the 

dispersion relation of the magnetosonic wave (Figure 2.2). As shown in 

Figure 2.2, a change in the density can be interpreted as a kind of 

frequency sweep in the cavity. During the plasma discharge, the density 

is changing as a function of time (Figure 3.2). In the experiments where 

the input frequency of the antenna is fixed, the cavity modes are swept 

through as a series of resonance peaks by the density decay. Thus, the 

cavity Q can be derived as a function of the plasma density. To demon-

strate this point, examine the approximate cut-off relation, k = 0, 

for the modes. As shown in Section 2. l, equation (2.1.5) is a good ap

proximation of the cut-off relation for the frequency range for our 

experiment, w . < w < 3w . . Restating equation (2.1.5): 
Cl Cl 

The Q of the cavity can be written as 

where f
0 

= the cavity resonance frequency. Using the cut-off relation' 

the Q can be related to the density as 

Such a measurement gives the loaded Q of the cavity QL, rather than the 
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unloaded Q, Q
0

, but the two are related as foll01vs. Consider the rela

tion between QL and Q
0 

of an "off-resonance" matched antenna. ~~hen the 

system is "off-resonance" matched, c1 and c2 are chosen so that Zin 

looks like 50 ohms during the plasma discharge when no cavity resonance 

is present, i.e., when ZL = Zoff" Zoff is the "off-resonance" impedance 

defined in Section 2.5. Because the tuning is off resonance, ZL looks 

like 50 ohms when transformed through c1 and c2. By the same token, the 

generator impedance, which is 50 ohms, looks like the complex conjugate of 

Zoff (i.e., Roff-jXoff), when transformed back through c1 and c2. Finally, 

when the generator impedance is transferred through the antenna into the 

resonance circuit of the ith eigenmode, an additional resistance of M2w2/Roff 

is in the R-L-C circuit. This additional resistance, as shown in Figure 2.5c, 

will add in series with the R , thus lowering the Q of the cavity. From the p 

resonance circuit shown in Figure 2.5c, one can vtrite the loaded cavity 

Q as fo 11 ows: 

2 2 L w/R (1 + w M /2R ffR p p 0 p (2.6. 10) 

(2.6.ll) 

All the terms in this equation are known. Roff is the antenn a resistance 

plus the contribution from the plasma during the "off-resonan ce" condi-

tion. w2ti /R is the p 1 oadi ng of the an ten n a due to the plasma at the 

peak of a resonance. Both of these can be determined by expe ri ment . 

Now the antenna coupling coefficient can be calculated for one of 

the cavity modes: 



(a) (b) 

c2 
Rant Roff 

zo- 50.Q c1 ~ 

Mcf2Roff 
(c) 

Figure 2.5 
Circuit model relating the loaded Q and the unloaded Q. (a) is the equivalent circuit of the 
antenna, the matching network, and the generator impedance. (b) is the equivalent circuit 
looking back at the generator impedance through the matching network. (c) is the circuit in 
(b) transformed through the mutual inductance M into one of the cavity resonance circuits. 

I 
~ 
~ 
I 
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(2.6.12) 

2.7 Antenna Efficiency 

Another physical quantity of considerable interest is the effici-

ency of the transmitting antenna. The efficiency n is defined as the 

amount of power coupled into the cavity, divided by the total power 

delivered to the antenna by the r.f. generator. n can be obtained 

straightforwardly by considering the circuit in Figure 2.6. Here the 

plasma impedance has been transformed into the antenna circuit, and the 

current i flows in the loaded antenna. The settings on the matching 

capacitors determine the magnitude of the power delivered to the antenna, 

with the maximum power transfer when the impedances of both sides are 

matched. At a cavity resonance, the plasma loading impedance is real, 

and the value is M2w2/RP. The only dissipative elements in the circuit 

are Rant and t112w
2 /Rp. Thus n can be written as 

ll = 
.2,12 2 
1 I' W 

It is more enlightening to write n in terms of K, Qa' and Qp 

2 
K QaQp 

ll 

(2.7.1) 

(2.7.2) 

This equation is very useful in designing an efficient antenn a system. 

After deciding on a particular antenna shape, this equation gives the 

directions for improving the efficiency. In Section 6.2 the designing 

problem will be discussed further. 
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1 

(b) 
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1 

Figure 2. 6 
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R +-(wL --1 ) 
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(a) Impedance of the RLC resonance circuit transforms th rough 

the mutual inductance M into the antenna circuit. i is the 

antenna current. Z is the qenerator impedance. 
0 -

ance, the transformed impedance is real and equal 

The antenna efficiency, n, is tiw2 

R R + M2w2 p ant 

(b) At reson

to t,12w2/R . 
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2.8 Simulation of Cavity Resonances 

It is useful to see what general effects the impedance function 

[equation (2.3.1)] will predict before actually discussing the experimen-

tal results. The essence of the discussion in Section 2.3 is that the 

form of the impedance function observed in the experiment should be rea

sonably close to the form of equation (2.3.1 ). The unknowns are the 

various circuit parameters, such as the antenna Q, the Q of the cavity 

modes, the antenna coupling coefficient K, etc., and they can be measured 

experimentally. The values of the circuit parameters used in the simula

tion are either estimated from theoretical considerations, or measured in 

experiment. 

The simulation starts with the equivalent R-L-C circuits for the 

resonance cavity. Since the cutoff relation of the eigenmodes is ap

proximately f ex: 1/lrl and w
0
p ex: 1/vrc-;;-, vvhere w

0
p is the resonance angular 

frequency of the R-L-C circuit, the change of the capacitor as a func

tion of time is assumed to be proportional to the density. A typical set 

of density evolution data is fitted by a polynomial, n = n(t), and the 

time dependence of the normalized frequency ~ , is taken to be propor
pi 

tional to this density function, n(t). The proportionality betvJeen the 

frequency, ~ , and the density, n(t), for the ith mode is such that when 
pi 

the resonance condition for the ith mode is satisfied at a ce r tain den-

sity value,~ = l. 
pi 

The density dependence of the cavity modes is com-

puted from the simple cold plasma theory. Each of the cavity resonances 

is simulated by one of the R-L-C circuits with its o~tm reson ance frequency. 

The resonance effects of all the R-L-C circuits are substituted and 

summed in equations (2.3.8) and (2.3.9). 
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2 The coupling coefficient Ki and the cavity Q can be estimated 
pi 

from theory [25]. The values of K ~ and Q used in this simulation are 
pi 

the same for all modes for the sake of simplicity, even though they are 

actually different for the various modes in the experiment. Equations 

(2.3.8) and (2.3.9) are solved on a computer, and the results of the 

simulation for ZL are shown in Figure 2.7 for the typical density evolu

tion and "off-resonant" tuning. The resistance and the reactance. R and X, 

shown in the 6th and 7th traces in Figure 2.7 are related to ZL by the 

following relations: 

Z = R + jX 

(2.8.1) 

The values of the various parameters used in the computation are 
2 -5 as follows: Qa = 100, Qp = 400, and K = 8 x 10 . Note that the cavity QP 

used in this calculation is the estimated unloaded cavity Q (see 
0 

Section 2.6 for the definition of loaded and unloaded cavity Q). 

The experimental Q which will be compared directly with this calculation 

is not the unloaded Q, but rather the cavity Q loaded by the generator 

impedance. Therefore, the estimated loaded QL is computed fo r proper 

comparison with the experimental data. The loaded QL can be re lated 

to the unloaded Q by equation (2.6.11) 
0 

The loaded cavity QL for this calculation is 15U. 

To simulate the "off-resonance" tuning effect, the reactance of 

the matching capacitor, Xci and Xc
2

, are calculated for Rin = 50 ohms 



-49-

7X10 DENSITY 

Or---~---------------------------------------------

. 6 REF. COFF • 

7T 
PHASE 

-7T 

200SJ 

R. 
m 

50!J 
0 

60 Q 
X. 

m 
0 

-95 Q 
1 Q 

R 
0 r---------L---~----~~--------~~--~------------

.5 Q 

X 

-.5 SJ 

0 .5 1 1.5 2 

TIME (msec) 

Figure 2.7 
Computer simulation of various equivalent circuit parameters. 

2 -5 In the computation, Qa = 100, QP = 400, and K = 8 x 10 . . 
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and Xin = 0 when the cavity modes are not present, i.e., RL 

XL= Xant" The equations for the capacitive reactances are 

XC = RL (1 + Q2)/[Q - J(l + Q2)RL/R. - 1 J 
1 a a a 1n 

j(l + Q2) 
XC = [ R. a RL - 1] Rin 

2 1n 

R t' and an 

(2.8.1) 

(2.8.2) 

where Rin = 50 ohms, RL = .3 ohm= Rant' and Qa = 100. For this calcula

tion XC = 32.5 ohms and XC = 384 ohms. By substituting the resultant 
1 2 

values of XC and XC and the simulated values of RL and XL including the 
1 2 

cavity resonances into the following equations, R. and X. fat' this model 1n 1n 

can be obtai ned: 

R. 1n 
2 2 

RL/[(RL/XC
1

) {(XC
1

/RL- Qa) + 1)] (2.8.3) 

X. 1n = [XL(l-XL/Xcl)- RC/XclJ/[(RL/Xcl)2((xc /RL-Qa)2+l)]-xc2 

(2.8.4) 

By inverting the conformal transform of equation (2.6.5), the complex 

reflection coefficient can be calculated from z. in the following manner: 1n 

\'I here Z
0 

= 50 ohms . 

The time dependence of the density evolution used in the calcula-

tions is shown in the top curve in Figure 2. 7. Some of the general 

features of the computed solutions which will be compared with the exper

imental data later in Section 5.5 are noted as follows. First, for a 

simple pole resonance, there is a relation between the real and the 

imaginary parts of the impedance. Corresponding to every peak in the 
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real part of the impedance, the imaginary part should go through a steep 

change. Since the reflection coefficient is related to the i mpedance by 

a complex transform, this same behavior should also exist between the 

amplitude and the phase of the complex reflection coefficient. As shovm 

in traces 2 and 3, whenever the amplitude of the reflection coefficient 

reaches a maximum, the slope of the phase as a function of time also is 

a maximum. Curves 4 and 5 show the similar behavior in the real and 

imaginary parts of the impedance. Second, the direction of the change of 

the reactance is a function of the sign of the slope of the density evo

lution. To clarify this point, consider curves one and five in Figure 

2.7. The first curve which is the density evolution has a pos itive 

slope during the first millisecond \'lhen the density is increasing, and 

has a negative slope after the first millisecond when the density decays. 

This change in the sign of the slope is reflected in the reactance 

curves, traces 5 and 7. During the density buildup, the reactance goes 

negative first, then jumps to a positive value when a resonance is passed 

through. During the density decay, the reactance is positive before pass

ing through a resonance. 

?_:2__Q Ci r:_cl es 

Another way to see the simple pole resonance effect of o cavity mode 

is by plotting the input resistance of the cavity against the input reac

tance in the complex impedance plane. As a cavity resonance is passed 

through, the resultant curve is a circle, known as a Q circl e [20]. 

Depending on how the resonance is passed through, there is a definite 

direction in tracing out the Q circle, i.e., whether it is clockwise or 

counterclockwise. The dependence of the direction of the change of the 
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reactance on the sign of the slope of the density evolution mentioned 

in Section 2.8 can be clearly demonstrated by the direction in which the 

Q circles are traced out. The Q circles for the resonances appearing 

during the density buildup are formed opposite to the direction of rota

tion of those occurring at the density decay. The Q circles of the 

experimental data are plotted in Figures 5.7 to 5.9, and this reversal 

of direction in which the Q circles are traced out has been observed ex

perimentally (see Section 5.5). 
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III. GENERAL EXPERIMENTAL SETUP 

3. l Tokamak Characteri~tics 

A tokamak is a toroidal plasma confinement device ~vhich can be 

described as having the shape of a doughnut (Figure l.l). The vacuum 

chamber of the Caltech tokamak is made of stainless steel with the major 

radius about 46 em and the minor radius approximately 15 em. A toroidal 

magnetic field is created by a current carrying coil wound on the sur-

face of the torus. The current in the toroidal field winding is produced 

by a capacitor bank containing up to 50 kJ of energy. 

A second winding, known as the ohmic heating winding, is ¥/ound in 

the toroidal direction. The windings are placed on a single surface 

above the toroidal field windings. The purpose of the ohmic heating coil 

is to produce a changing magnetic flux linking the plasma, but to have no 

field inside the vacuum to disturb the plasma confinement. By Faraday•s 

induction law, the changing magnetic field linking the plasma will induce 

a toroidal electric field in the plasma; thus, a toroidal plasma current 

will be produced. This plasma current serves two purposes: First, it will 

provide a peloidal magnetic field which, when added to the to ro idal 

field, will give a rotational transform to the field as illustrated in 

Figure 3. 1. The rotational angle 1(a) at the edge of the plasma 

so that 

8T _ 2nR 
Bp - ai.(a) 

where R = major radius, and a 

(3.1.1) 

_(3.1.2) 

minor radius. The safety factor q = 2n/i. 
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Rotation transform in a tokamak. The pitch 

angle 1 = 2nRB /aBT. The safety factor q is 
p ' 

2n/1. 8 = the peloidal angle, and ¢ = the 

toroidal angle. (From Principles of Plasma 

Physics, by N.A. Krall and A.W. Trivelpiece) 
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must be greater than 2 or 3 for stable operation. For the Caltech 

tokamak, q is typically between 5 and 7, depending on the plasma current. 

Second, the current will also heat the plasma through dissipation of the 

plasma resistance; thus the name, ohmic heating current. The ohmic heat-

ing winding is energized by a second capacitor bank containing up to 8 kJ 

of energy. 

Due to the toroi da 1 geometry of the tokamak, the induced toroi da 1 

plasma current produces a peloidal field v.Jhich is stronger in the "hole of 

the doughnut" than on the outside of the torus. This results i n a mag-

netic pressure which pushes the plasma out\•Jard. Therefore, a third set of 

coils is used to produce an approximately vertical magnetic field in the 

plasma. This field and the plasma current produce a J x B force which -v 
compensates the outward magnetic pressure. The vertical field \'linding is 

energized by a third capacitor energy supply. The time dependence of the 

vertical field must be designed so as to insure equilibrium throughout the 

discharge period, even when the discharge parameters change. With the 

proper vertical field, the plasma current lasts for about 12 milliseconds. 

The Caltech tokamak operates in a pulsed mode with a repetition 

rate of once a minute, being dictated essentially by the time to charge 

the capacitor banks. As mentioned previously, the energy for th e differ-

ent windings is stored in capacitor banks. A digital timing u ~ it is used 

to control the discharge sequence of the various banks. First, the 

toroidal field is created. Then, a 16 kHz, one millisecond bu rst, called 

the preionization puls~ is applied to the ohmic heating winding to parti-

ally ionize the gas. This is follo\IJed by discharging the ohmic hea.ting 

capacitor bank into the ohmic heating winding, producing a p7asma current 
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up to 15 kA. Simultaneously, the vertical field is applied to provide 

the proper plasma equilibrium. 

The vacuum chamber of the Caltech tokamak is cleaned by a process 

called "discharge cleaning". The method employed, first proposed by 

Robert Taylor of UCLA, is to bombard the vacuum chamber wa 11 by a rapidly 

pulsed (2-3 times a second) low temperature hydrogen plasma [26]. The 

object of the process is to reduce the loosely bonded high mass impuri

ties (carbon and oxygen) on the chamber wall so that during the actual 

tokamak dischargefewerimpurities \<Jill be present in the plasma. Such 

impurities can be detrimental in a plasma confinement device because 

they greatly increase the radiation losses in the plasma. The rate of 

energyloss in the plasma due to Bremsstrahlung radiation is 

(3.1.3) 

where Te is the electron temperature in keV, ne is the electron density, 

Zeff is defined as 

(3.1.4) 

nk is the density of the kth species ion, Zk is the degree of ionization 

of the kth species, and n = ne/Zeff [27]. 

One can see that to minimize the Bremsstrahlung radiation power 

loss in a plasma, the Zeff must be minimized. This is the reason for 

using discharge cleaning. The Zeff of the Caltech tokamak plasma is 

believed to be quite low as the result of lm'l power discharge cleaning. 

A side effect of the discharge cleaning is that the plasma density 

drops very quickly after the initial plasma density buildup. The exact 

cause of this behavior in the plasma density is not completely understood 
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and is currently under investigation. As shm·m in Figure 3.2, the 

electron density peaks at 7 x 1012 particles per cm3 in the first .3 

millisecond, then drops to 1 x 1012 particles per cm3 in the next two 

milliseconds. This behavior in the plasma density has important con-

sequences in the wave excitation experiments. From the dispersion 

curves in Figures 2.2 and 2.3, one can see that for an input frequency 

between one and three times the ion cyclotron frequency, no cavity mode 

can propagate in the Caltech tokamak beyond the first two milliseconds 

in the plasma discharge when the plasma density falls below 1.5 x 1012 

-3 particles per em This means that all the impedance measurements of 

the cavity resonances must be made within the first t\vo milliseconds in 

the plasma discharge. 

3.2 Plasma Diagnostics 

a. Plasma Current and Toroidal Field Measurements 

The plasma current is measured with a Rogowski coil placed on the 

vacuum chamber surface. The Rogowski coil is made by winding a coil on 

a long plastic tube, which then encircles the plasma. By Faraday's in-

duction law, the voltage measured from the coil is 

_ 2 N ~ v - Trp ( [ dt ) (3.2.1) 

where p is the radius of the tube, L is the length of the tube, N is the 

number of turns of the v.Jire, Ip is the plasma current. To get the 

plasma current, the signal is electronically integrated. 

The toroidal magnetic field can be accurately calculated from the 

toroidal \vinding current which is measured with a Rogowsk-i coil. · The 
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toroidal field variation as a function of the major radius, R, is an 

inverse relation, i.e., BT a: l/R. From the dimension of the Caltech 

tokamak, R = 45 em and a (the minor radius) = 15 em, the toroidal mag-

netic field varies by a factor of two from the inner vo~all to the outer 

VIa 11 . 

b. One-Turn Voltage 

The voltage induced by the ohmic heating coil to drive the plasma 

current is another important quantity. To measure this voltcge, a 

single turn wire is placed around the outside of the vacuum chamber in 

the direction of the plasma current. It encircles the hole in the 

"doughnut", thus enclosing all the flux produced by the ohmic heating 

air core transformer. The voltage from this one-turn loop is just the 

EMF produced by the changing ohmic heating flux. 

One of the purposes of the so-called one-turn voltage is to 

infer the average electron temperature of the plasma through a measure-

ment of the plasma resistance. The plasma temperature is related to 

the resistivity of the plasma as follows: 

(3.2.2) 

l2rr (t:
0

k8T;e2)3i 2 

where n is the resistivity of the plasma, fl. is 
112 

, and 
ne 

Zeff is the effective charge of the plasma due to high mass impurities 

in the plasma [28]. The Zeff defined in equation (3.1.4) fo r a hydrogen 

plasma is greater than one. Although we do not have a direct measure-

ment of the Zeff' the Zeff in the Caltech tokamak is believe d to be 

quite lov1 because of the discharge cleaning. 
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c. Plasma "Magnetic" Pas it ion Measurement 

One would also like to know the position of the plasma column with 

respect to the vacuum chamber wall in order to keep the plasma well cen

tered. This position is measured by placing two coils, the in-out coil 

and the up-down coil, on the torus. The in-out coil is a cosine coil, so 

named because it is a Rogowski coil with the number of windings per unit 

length following a cosine function of the poloidal angle 8 (see Figure 3.1). 

The up-down coil is a sine coil. The cosine coil is wound on a plastic tube 

such that there are more turns near 8 0 and 180°; moreover, the direction 

of the winding is changed at 8 = 90 and 270°. Therefore, the signal from 

the left half of the windings is of opposite sign to the right half. If 

the plasma moves toward the one side of the chamber, the signal picked up 

by the coil on that side will increase. Thus the total output voltage is a 

function of position [29] 
dl 

V = f(r,8) ~ (3.2.3) 

By electronically integrating the signal with respect to time, the 

output is a position signal. The sine coil works the same way except it 

is rotated 90" in the poloidal direction from the cosine coil. 

Because of the toroidal geometry the magnetic flux produced by the 

plasma current is greater at 8 = 180° than 8 = 0°, i.e., it is stronger on 

the inside of the torus than on the outside; therefore, the winding density 

is no longer symmetric with 8 for the proper calibration of the output 

voltage. The cosine coil has less windings on the inside of the torus, 

i.e., e = 180~ than the outside, e = 0~ 
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d. Line Average Electron Density t~1eas uremen t 

The line average electron density in the Caltech tokamak is meas

sured by a microwave interferometer (Figure 3.3). The phase shift 

between the reference signal and the signal through the plasma contains 

the density information. The plasma density is a function of the posi-

tion, and so the average phase difference between the two legs of the 

i nterfero!Teter is 

L 

L'lw = Lk - z I 
0 

n dX 
p 

(3.3.4) 

where L is the width of the plasma, np is the index of refraction of the 

plasma, and k is the free space wave number. For an ordinary '1·/ave, i.e., 

the electric field of the wave is parallel to the d.c. magnetic field, 

the index of refraction can be written as follows: 

t}(x) 
l - p2 

w 
so that 

L ~2(x) 
Lk - ~ I l - P dx 

c " 2 0 w 
{3.2.5) 

Since w2 ;w2 
a: m./m , the contribution is mostly from the electrons~ 

pe pi 1 e 

When the applied wave frequency is much greater than the elec t ron plasma 

2 2 frequency, i.e., w!w (x) » l, the above equation can be ap J roximated pe 

by the fo ll mvi ng: 

L 

\"'here 
2 

J 
2 dx wpe wpe(x) 

0 
phase shift can be seen 

is 

as a 

2 
~ wpe 
2c 2 

w 
(3.2.6) 

the average electron plasma freq uency. This 

series of interference fringes at the 
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detector output. One fringe corresponds to a phase shift of 6~ 2n. The 

corresponding average electron density ne 1 JL = L n e ( x) dx, is 
0 

(3.2. 7) 

2 2 when w f wp2 (x) >> is imposed. Thus the electron density is a linear 

function of the phase shift or the number of output fringes when the 

micro1t1ave frequency satisfies the above condition, (r};w~e(x)) » 1. The 

frequency of the mi crmvave interferometer used on the Cal tech tokamak is 

60 GHz. and the maximum average electron density is about 7 x 1012 particles 

per cm3 , which corresponds to an electron plasma frequency of 24 GHz. 

If it is assumed that the density profile is a parabolic function of dis-

tance, the relation between the peak density and the average density is 

npeak = (3/2)navg· So the peak density corresponding to our case is ap

proximately l x 10 13 particles/cm3, 1t1hich gives an approximate electron 

plasma frequency of 36 GHz. 2 2 Therefore, the assumption of (w / wpe(x)) >> l 

is a good one even for the peak density. 

The fringe counting for the microwave system on the Caltech tokamak 

has an uncertainty factor of ±l/4 fringe. The source of the uncertainty 

comes from the noise superimposed on the interference signal from the de-

tector. The origin of the noise is not completely understood. Some of it 

may be due to actual fluctuation in the plasma density. By carefully 

matching the fringes for the initial density buildup with the decay fringes, 

the time dependence of the plasma density can be determined fairly well. 

e. Langmuir Probe Measurement 

The conditions at the edge of the plasma are mild enough that 

Langmuir probes can be used to measure the local electron density and 
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temperature. Data have been taken for the first 5 em into t he plasma 

by R. Kubena [30] without any major probe damage. The results when 

extrapo 1 a ted agree fairly we 11 \'lith the density me as uremen ts from the 

microwave interferometer mentioned in Section 3.2c, and the electron 

temperature data from the plasma resistance measurement depicted in 

Section 3.2b. 

3. 3 Summary of Plasma Paramete rs 

From the diagnostics just described, the Caltech tokamak plas ma 

has the follovJing characteristics: 

Toroidal field: 

Plasma current: 

Line average elec
tron density: 

Average electron 
temperature: 

3 to 6 kG (4 kG on center) at R = 30 em 

and R = 60 em, respectively 

15 kA (peak) 

12 msec (duration) 

7x 10 12 to 1.5 x 10 12 cm- 3 (decays during 

the first two msec) 

50 to 100 eV (assuming Zeff = 1 .5) 

where R is the major radius of the torus. 

3.4 Digital Data Acquisition System 

All experimental data from the Caltech tokamak experi ments, such 

as the signals from various diagnostics, the crystal detecte 1:! r.f. 

signals, etc., are recorded on a multi channel digital transi ent recorder 

which converts the various analog signals into digital data t hat are 

stored in its semiconductor memories. Each of the 16 channels of the 
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transient recorder has a 1024 word memory with 8 bits amplitude resolu

tion per word. Four of the channels have a one-microsecond per word 

clock rate, so the maxi mum frequency response with four-word reso 1 uti on 

is about 200 kHz. The rest of the channels have a clock rate of 5 

microseconds per word, so the frequency response \'Jith four-word resol u

ti on is about 40 kHz. 

The di gi ta 1 output signa 1 s from the transient recorder memories 

can then be used in several ways. Analog signals can be reconstructed 

with 0-A converters for continuous display on scope monitors after 

each plasma shot. The transient recorder can also drive an analog 

pen plotter, so that hard copies of the signal can be produced. If 

calculations need to be done with the data, the digital data can be 

written on magnetic tape for later processing at the Caltech central 

computer facility (IBM 370, model 158). 
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IV. EXPERIMENTAL SETUP FOR THE R.F. MEASUREMENTS 

4.1 Experimental Arrangement for Transmission Measurement 

The first step in the study of the magnetosonic cavity modes vias 

to observe them \vi th a receiving probe located 180° toroi dally from a 

transmitting antenna (Figure 4. 1). 

A simple single-turn transmitting loop antenna made of tungsten 

vias first used (Figure 4.2). The race track shape antenna had the 

dimension of 3.75" x 1". The design of the antenna Has governed by 

three factors. First, it must fit into a 4"x l"x 6" port. Second, to 

get good coupling with the plasma, the loop area should be maximized. 

Finally, the antenna should be kept a~vay from the center region of the 

plasma where most of the damage to the antenna will occur. This made 

the shape long and narrovJ. R.F. signals are carried to the tungsten 

antenna by parallel copper wires enclosed in a glass-to-stainless steel 

transition tube. The stainless steel tube provides the mechanical feed-

through from the outside into the vacuum chamber. The glass is to give 

electrical insulation for the antenna from the tokamak. The measured 

resistance of the entire antenna structure is about 2 ohms at 10 MHz. 

The antenna can be moved radially in and out of the plasma 

through a vacuum 0-ring seal. All transmission measurements are done 

with the antenna located no more than 1.25 inches into the vacuum cham-

ber in order to prevent any plasma damage to the antenna. This is the 

lm"l density region in the tokamak, according to Langmuir probe data, 

(n < 5x lOll particles/cm2). e 
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A matching network consists of a variable series capacitor used 

to tune out the antenna inductance, and a R.F. transformer to match the 

antenna impedance to 50 ohms. An ENI 300-watt wide-band amplifier 

driven by a Hewlett-Packard 8601A sweeper oscillator is used to excite 

the \'lave. The input r.f. frequency to the transmitting antenna is fixed 

for each plasma discharge. This 1t1ay only one variab l e, the plasma den

sity, is changing during the experiment. To study the frequency depend

ence of the cavity modes, the input frequency is changed between plasma 

shots. 

To detect the cavity resonances, a small six-turn loop probe is 

placed in the tokamak. The receiving probe is kept small so that it 

couples weakly to the cavity. This way the probe does not influence the 

cavity VJhile it is measuring the r.f. signal. As sho•.lfn in Figure 4.1, 

the receiving probe is located 180° toroidally from the transmitting 

antenna. The output of the probe is passed through a tunable bandpass 

filter, with a band\'lidth of 300kHz; thus any broadband noise from the 

plasma can be reduced. The r.f. signal is then split into tvJO branches. 

One branch goes into a square law crystal detector which has c:n output 

operational amplifier with a slew rate of 4V in 2 ~sec , for a~plitude 

detection. The other line is fed into a phase detector which can 

respond to a 2n phase shift in 4 ~sec so the phase between the trans

mitted and the received signals can be examined. As mentioned in 

Section 3.4, the output of the phase and amplitude detectors i s digi

tized and recorded in the multichannel transient recorder. The 

experimental data of the transmission measurements are presented in 

Section 5.1. 
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4.2 Antenna and Matching Network Design 

The initial measurement of the plasma loading resistance was made 

with the single-turn tungsten antenna, which has a resistance of 2 ohms 

at 10 MHz . The impedance matching circuit consists of a series of air 

variable capacitors used to tune out the antenna inductance, and a 

broad-band ferrite core r. f. transformer made to match the antenna re-

sistance to the amplifier impedance. With this setup, only a minute 

amount of plasma loading at the cavity resonances v~as detecte d. However, 

the large increase in the transmitted signa l measured by the six-turn 

probe at the cavity resonances led us to think that there must be better 

pm'ier coupling betvteen the antenna and the tokamak at the cavity reson-

ances than when there were no cavity modes. This effect should show up 

as antenna loading by the plasma at the cavity resonances. It was be-

lieved that the sum of the resistance from the antenna, the matching 

network, and the r.f. transformer \'~as so high that the plasma loading 

was overshadowed. 

To understand the effect of the antenna resistance on the plasma 

loading resistance measurement, consider equation(2.3.8a) at one of the 

cavity mode frequencies: 

where it is assumed that the various cavity modes are separated far 

enough in their eigenfrequencies that only one mode dominates in the 

resistivity loading. From this expression, one can see that in order 
2 

to measure the plasma loading effect, QaKiQp. > 1. Let us estimate 
1 

the magnitude of this factor for the tungsten antenna. For the 
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2 -6 tungsten antenna, Qa is around 10, K is estimated to be 5 x 10 , and 

-2 Qp is assumed to be 500, so their product is 2. 5 x 10 , which is much 

smaller than one. Furthermore, consider the efficiency of the antenna 

n in equation (2. 7.2) 

for one of the modes. In order to have efficient wave generation in the 

tokamak, the sarre inequality, i.e., K
2QaQp > l, must be satisfied in 

order to generate more energy in the tokamak than is dissipated by the 

antenna. Therefore, the antenna and the matching network v1as redesigned 

to improve the factor K
2Qa. 

The coupling coefficient K
2 can be increased by increasing the 

antenna size. However, as mentioned in Section 4.1, the loop area of 

the antenna is determined by the port size on the tokamak, and the maxi-

mum distance the antenna can protrude into the plasma without suffering 

damage to the antenna. Therefore, the coupling coefficient of the an-

tenna cannot be increased very much. There are two ways to increase the 

antenna Q, Qa: either increase the inductance or decrease the resistance. 

The antenna inductance is increased by going from a single-turn loop to 

a two-turn loop. The maximum number of turns on the loop antenna is de-

termined by the size of the conductor used and the width of the port, 

which is one inch on the tokamak. The antenna resistance is decreased 

by using material v·lith better conductivity, and by increasing the size of 

the conductor. The conductor used in the antenna is changed from 16 

gauge tungsten wire to l/8-inch diameter copper tubing. To preven~ plasma 
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damage to the copper antenna and to insulate the antenna electrically 

from the plasma, the copper antenna is enclosed in pyrex glass. The 

measured Q of the bare copper antenna is about 130 at 10 MHz, and the 

inductance of the antenna is about .46 microhenry. 

Ho~tJever, once the copper antenna is placed in a glass-to-stainless 

steel transition tube which provides the mechanical feedthrough from 

the outside to the vacuum chamber, the antenna Q drops by a factor of 

two. The additional losses come from the eddy current losses in the 

stainless steel tube which has a 50 times higher resistivity than copper. 

To reduce the eddy current losses, a copper lining of .025 inch thick 

is placed on the inner wall of the stainless steel tube, thus reducing 

the eddy current losses. vJith the copper lining, the Q of the antenna 

is about 100 at 10 MHz, and the inductance of the antenna is .46 micro

henry. 

It is just as important to reduce the losses in the impedance 

matching netvwrk. There ~'Jere b'lo problems \'lith the original matching 

netvJOrk. First, the equivalent series resistance of the air variable 

capacitor and the added resistance from the transformer are quite high. 

Second, the winding ratio on the transformer is fixed, thus the impedance 

of the generator can be matched only at one frequency, since the antenna 

resistance is a function of frequency. Therefore, the improved matching 

network must have two essential features. It must have low resistance 

and it must be able to match the antenna and the generator for the entire 

range of frequencies of interest. It was finally decided to use vacuum 

variable capacitors which have low series resistance and multiturn 



-73-

adjustment capability that assures precise tuning. The ne!.N matching network 

is shown in Figure 4. 3. This particular circuit was chosen because of 

its simplicity and the minimum number of circuit elements needed. 

Details on the dimensions of the antenna and the values of the capacitors 

in the matching network are covered in Appendix a. 

4.3 Plasma Loading Resistance Measurements 

As shown in Section 2.7, the plasma loading resistance at one of 

the cavity resistances, RL = r,·12i;Rp' is a crucial quantity i n determin

ing the efficiency of the antenna in delivering the r.f. pov1er into the 

tokamak. The efficiency, n, depends on the plasma loading resistance and 

the antenna resistance, Rant' in the fo1lowing v1ay [equation (2. 7.1)] 

n = 

Therefore, in order to have good efficiency in wave generation in the 

tokamak, it is essential for the resonance plasma loading resistance to 

be greater than the antenna resistance M
2w2/R > R t• And so the plasma p an 

loading resistance must be measured in the experiment and compared with 

the antenna resistance. 

One way to obtain the p"lasma loading resistance is to r.e asure the 

incident power, the reflected power into the antenna, and the antenna 

current. As indicated in equations (2.6.1) and (2.6.2), the i ncident 

and reflected pm·Jer into the antenna can be derived from the i ncident 

and reflected voltages measured with a VHF directional coupl e r placed 

between the generator and the antenna matching network. 

P. 
1nc 

v? ;so 
1 nc 

2 
P ref = Vref/50 
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The antenna current is measured \vith a high frequency Tektron ix current 

probe. Once the antenna current is knovm, the plasma loadinq resistance 

can be calculated as follows: 

2 R= (P. -P )/I -R 
1 nc ref ant (4. 3.1) 

where I is the antenna current, and Rant is the antenna resistance. 

The experimental setup for the plasma loading resistance measure-

ments is shown in Figure 4.3. As mentioned previously, the incident and 

reflected voltages are measured by a VHF directional coupler with a char-

acteristic impedance of 50 ohms. The directional coupler is placed 

between the r.f. amplifier and the antenna impedance matching network, 

and so any change in the antenna resistance due to the plasma would shm<J 

up as a change in the reflected voltage. The output of the directional 

coupler is fed into a r.f. crystal detector and a phase detector . The 

crystal detector measures the amplitude modulation on the r.f. signal 

coming from the directional coupler. The output of the crystal detector 

is fed into the multichannel transient recorder to be digitized and re-

corded. The phase measurement of the incident and reflected voltages is 

for obtaining the complex plasma loading impedance, and the de t ails of 

this measurement are covered in the next section (Section 4.4) . 

When the low resistance copper antenna is used, the r.f . current 

in the antenna can get as high as 30 amperes. The r.f. current probe used 

is only linear up to 2 amperes, so a 15 to 1 current divider i s placed in 

parallel vJith the antenna. The current divider is simply a piece of small 

diameter \'lire with resistivity 15 times higher than the l/8 inch copper 

used in the antenna. Since the current probe is mounted on th e divider, 
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which is in parallel with the antenna, any added resistive losses due 

to the current probe has little effect on the antenna resistanc~. The 

results of the plasma loading resistance measurements are presented in 

Section 5.3. 

4.4 Phase Measurement 

To obtain the complex loading impedance of the plasma at a cavity 

resonance, the phase difference beb1een the incident and the reflected 

voltage into the antenna must be measured. As shown in Section 2.6, 

the ratio of the amplitudes of the incident and reflected voltages into 

the antenna gives the magnitude of the reflection coefficient, and the 

phase difference between the incident and the reflected voltage into the 

antenna gives the phase of the reflection coefficient. 

p = (V /V. ) ej¢ = IPI ej ¢ 
ref 1 nc (4.4.1) 

where ~ = ~ - ~ The complex input impedance can be obtained from 
'+' '~'ref '~'inc· 

the complex reflection coefficient by a complex transform. The resistance, 

Rin' and the reactance, \n• measured at the antenna matching network 

(see Figure 2.4) are related to the complex reflection coefficient by 

equations (2.6.6) and (2.6. 7). 

As shown in Figure 4.4, the signals from the directional coupler 

which measures V f and V. are split with one branch goin g to the re 1 nc 

crystal detectors, and the other going to a phase detector. The phase 

detector is built to measure phase in a pulsed system. The phase detec

tor is capable of following a 2n phase shift in 4 microseconds. As shown 

in the block diagram of the detector (Figure 4.5), the input r.f. signals 
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are mixed down to 1 i"lHz \'ii th a 1 oca 1 osci 11 a tor, so that the output 

voltage of the detector is not frequency dependent. A s ens itive zero 

crossing comparator is used to ensure that the phase output is not 

amplitude dependent. The input frequency range of the detector is be-

tvJeen 5 and 50 i~Hz, VJhich covers the frequency range of interest, 7 to 

20 MHz. The output voltage of the detector is a linear function of the 

phase, and the detector is capable of measuring phase shifts up to 2n. 

When the complex reflection coefficient is calculated from the measured 

amplitude and phase of the incident and reflected voltages, t he complex 

plasma 1 oadi ng impedance can be obtai ned from the con forma 1 tY'ans forms 

in equations (2.6.6) and (2.6. 7). 

The quantity of interest in th e experiment, as indica ted in 

Section 2.6, is the plasma loading impedance, ZL (see Figure 2.4). ZL 

can be obtained from z. by substituting the measured values of c1 and 
1n 

c2 of the impedance matching net\!lork into equations (2.5.1) and (2.5.2). 

The plasma loading impedance, Z, can be derived from ZL by subtracting 

out the antenna impedance, Zant: 

Z = ZL - Zan t ( 4. 4. 2) 

The experimental results of these measurements are presented in Section 

5. 5. 
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V. EXPERIMENTAL RESULTS 

5.1 Transmission Measurements 

The toroidal eigenmodes were first observed in transmission. As 

described in Section 4.1, the transmitted signals were detected by a 

six-turn loop probe located 180° around the toroidal axis from the 

transmitter (Figure 4.1). The input frequency into the transmitting 

antenna was held constant. The cavity modes were swept through by the 

change in density as a function of time. The modes appear as a series 

of peaks on the r.f. output of the receiving probe. The received r.f. 

signals were passed through band-pass filter with 300 kHz bandwidth 

and then fed into a crystal detector for amplitude detection. The 

output of the crystal detector is just the amplitude modulation on 

the r.f. signal, i.e. a series of peaks. 

A few of the typical transmission measurements for various input 

frequencies are shown in Figure 5.1. The top curve in Figure 5.1 is a 

trace of the electron density evolution as a function of time for a 

typical plasma discharge. The density evolution for different plasma 

shots is not completely reproducible, so the purpose of this trace is 

only to give the general features of a plasma discharge. 

The density values at which the cavity resonances are swept through 

are found to be a function of the applied frequency. At the lower ap

plied frequencies, the transmission peaks cluster near the high density 

region, whereas they become more spread out and appear in the low density 

region at the higher applied frequencies. The reason for this behavior 

can be understood by studying the dispersion relations of the magnetosonic 

wave. From the dispersion curves in Figure 2.2, one can see that in 
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order to excite a particular mode at a given frequency, a certain plasma 

density is required. To excite the same mode at a lower frequency means 

the plasma density must be higher. This is just the observed experimen

tal result. When the input frequency is low, the resonance peaks gather 

around the high density region, and as the input frequency increases, the 

peaks move into the low density region. 

This inverse relation between frequency and plasma density can be 

simply summarized by the cut-off relation of the modes, i.e., k = 0. 

The approximate cut-off relation is expressed in equation (2.1 .5), 

where 1 is the radial mode number, m is the peloidal mode number, N = 0 

is the axial mode number, and ne ·is the electron density. The equation 

shows that for higher density, the cut-off frequency is lower; by the 

same token, the low frequency modes propagate only near the density maxi

mum. One of the observations in the experiment is that no cavity mode 

was observed at frequencies below 7 MHz. 

To compare with the theory for a cold uniform cylindrical plasma

filled cavity model, the cut-off curves for various peloidal modes are 

superimposed on the experimental data in a density versus frequency plot 

(Figure 5.2). The data points in the figure are obtained by the follow

ing procedure. The transmission peaks and the plasma density are re

corded as in Figure 5.1 for a series of plasma discharges, typically 

between 4 and 6 shots, with the same input r.f. frequency. The time at 

which a cavity resonance appears during the discharge is recorded ~ The 
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values of the density at which the cavity resonances appear can be ob

tained from the measured line average density values at these recorded 

moments in time. Once both the frequency and the density for the modes 

are known, a point can be plotted on the density-frequency gra~h (Figure 

5.2). The input frequency has been normalized to the ion cyclotron at 

the center of the tokamak, i.e., 6 MHz. Only the consistent peaks--that 

is, peaks that appear in the same general density region for all the 

shots, are used. To get the frequency dependence of the modes, the input 

frequency is changed between series of fixed frequency shots. 

The agreement between the experimental data and the theory as shown 

in Figure 5.2 is fairly good, though not perfect. There are data points 

below the general region of the cut-off curves. The reason for the small 

number of discrepancies between theory and experiment is the 

simplicity of the theory used. The toroidal effects, radial density pro

file, poloidal magnetic field effects, and many others have not been 

properly accounted for in the theory. There is also a small amount of 

uncertainty in the experimental data as indicated in Figure 5.2. This 

comes from the experimental errors in the electron density measurement 

where the density uncertainty is about ±% fringe at the output of the 

microwave interferometer (see Section 3.2d). 

Since the plasma-filled cavity can be modeled by the equivalent 

R-L-C circuit which has a simple pole at resonance, there must be some 

relation between the amplitude and phase of the transmitted signal at 

the cavity resonances. Passing through a resonance, the phase should 

undergo rapid change whenever the amplitude shows a peak. This effect 
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can be detected by measuring the phase difference between the received 

wave and the input oscillator signal at the transmitter (see Figure 4. 1). 

The result of a typical phase measurem2nt and amplitude signal versus 

time is shown in Figure 5.3. 

Several properties of the amplitude and phase detectors, and the 

experimental conditions can aid in the understanding of some of the 

features of the data shown in Figure 5.3. The amplitude signal is 

inverted because the crystal detector used in the experiment i s inverting. 

As shown in Figure 4.5, the phase detector has a threshold detector 

where if the input signal is below a preset d.c. value, the output of 

the phase detector sits at the highest output level (corresponding to 

the zero value shown in Figure 5.3). This is the reason that the phase 

signal always returns to zero when the amplitude drops below a certain 

level. The phase measurements were done with approximately 20 watts 

r.f. power into the transmitting antenna, so the received amplitude 

signals were rather low. As the signal level approaches the d.c. threshold 

level of the phase detector, there is a transition region of 10 mV around 

the threshold voltage \'/here the phase detector output is an asci 11 ating 

signal. This is the result of the TTL transition region for :he nand 

gate ( 74LSOO) when it switches between zero and one states. This can 

explain some of the noise-like oscillation when the phase de tector is 

turning on and off. Furthermore, the phase detector has a "dead" region 
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of 20 degrees when the phase goes beyond 360 degrees and returns at 

zero degree. Finally, there were cases of the data where the peaks 

in the amplitude do not occur exactly at the same time as the steepest 

rate of change of phase. There is no good explanation for such cases. 

One proposed way to identify the various poloidal modes, which 

are separated fairly far from each other, is to reduce the step size 

of the change in input frequency between shots. This waY a resonance 

peak seen at a particular density for a given input frequency can be 

identified with a peak at a slightly different density, when the 

input frequency is changed by a small amount. In other v.JOrds, to 

decrease the size of the frequency step taken between plasma shots 

so that the data points in Figure 5.2 would be more closely spaced 

along the frequency axis. In priciple, as the frequency steps are 

reduced to small values, the peaks that belong to the same mode can 

be picked out. (In our experiment some correlations between peaks 

can be made). By overlaying the theoretical dispersion curves on the 

data one can guess that a particular set of data corresponds to a 

certain mode. However, this method is not used here because t he 

various theories are not adequate for such a detailed compari son. 

For example, the dispersion curves depend on the assumed radi al density 

profile used in the theory. 

The theory used in this thesis is for a uniform plasma density. 

However, if a vacuum region is introduced between the plasma and the 

cavity wall, the locations of the dispersion curves would shi f t . . If the 
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vacuum is large enough, as was shown by Paoloni [18], them= 1 mode has 

no low frequency cut-off (see Section 2.2). 

The unambiguous method for mode identification is to use probes to 

measure the spatial dependence of the fields in the tokamak. This mea

surement was not made in our experiment because of lack of time, so there 

is no definite mode identification. 

5.2 Plasma Loading Impedance in the Absence of the Cavity t1odes 

In this section the experimental results of the "off resonance" 

antenna impedance for different input frequencies are presented. The 

"off resonance" antenna impedance, Zoff = Roff + jXoff' is defined in 

Section 2.5 as the sum of the antenna impedance and the plasma loading 

impedance during the absence of any cavity resonances. Roff and Xoff 

are determined by substituting the capacitance values, c1 and c2 , of 

the impedance matching circuit used to match the generator impedance 

"off resonantly" into equations (2.5.1) and (2.5.2). (The condition 

for impedance matching in these equations is when Rin = generator 

impedance= 500.) To obtain the "off resonance" loading impedance due 

to the plasma alone, 6Z = 6R + j 6X, the antenna impedance must be sub

tracted from zoff' 

6X 

(5.2.1) 

(5.2.2) 

An interesting experimental finding is that the "off resonance" plasma 

loading reactance, 6X, is greater than zero, i.e. the antenna induc

tance is increased by the plasma effect. A possible exp.lanation for the 
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increase in the antenna input inductance with the onset of the plas ma is 

given in Section 2.3. As indicated in equation (2.3.9a), if the reac

tance contribution from the cavity modes with resonant frequencies higher 

than the applied frequency is greater than the contribution for the other 

modes, the basic antenna inductive reactance will shm-1 an increase from 

the effects of the cavity modes. The values of ~R and ~X for 

different input frequencies are given in Tables 5.1 and 5.2. 

The experimental procedure for measuring the "off resonance" 

impedance, Zoff' was as follows. First the antenna was matched to the 

generator impedance in the absence of the plasma. The matchi ng process 

was to adjust the capacitors c1 and c2 so that a minimum in the re

flected voltage from directional coupler was observed (see Figure 4.3). 

Once the plasma was formed around the antenna, the generator impedance 

was no longer matched, and the reflected voltage from the directional 

coupler increased . At this point c1 and c2 were readjusted to mini mize 

the reflected voltage in the presence of the plasma. The values of c1 
and c2 were recorded and then substituted into equations (2.5.1) and 

(2.5.2) so that the "off resonance" impedance could be obtained. 

The effects of "off resonance" plasma loading impedance for various 

input frequencies are summarized in the 7th and 8th columns of Tables 

5.1 and 5.2. The data in these tables were taken under simil ar condi-

tions but on different days, and so they serve as a compariso~ for 

each other. The first column indicates the input frequencie s. Corre

sponding to each frequency, the input impedance of the anten na was 

measured with and without a plasma, as indicated in column 2. First the 

antenna impedance was obtained in the vacuum chamber by measu r ing the 

values of the tuning capacitors c1 and c2 (see columns 3 and 4). The 
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antenna resistance, R t' and inductance, L t' can be derived by sub-an an 

stituting c1 and c2 into equations (2.5.1) and (2.5.2). As shown in 

the tables, when the plasma is present the capacitors must be retuned, 

and the "off resonance" impedance Zoff = Roff + jXoff is computed from 

the retuned values of c
1 

and c2 . 

Freq. Condition c1 (pf) c2 ( pf) 
(Mliz) 

"10 Vacuum 531 45.7 

Plasraa 502 47 

12 Vacuum 360 36 

Plasma 347 38 

14 Vacuum 270 28.7 

Plasma 255 30.7 

16 Vacuum 207 23.5 

Plasma 190 25 

18 Vacuum 165.6 20.5 

P1asna 148.8 22 

Z t is shown on the top line of an 

LYJI) R(Q) ~R(Q) ~~( Q) R (Q) 
cur 

.44 .31 

.462 .36 .05 1.38 .5 - .9 

.445 .4 

. 46 . 485 .085 1.13 .6 - l. 

.433 .456 

.453 .57 .114 l. 76 .8- 1.5 

.43 .514 

.46 .668 .154 3. .9 - 1.2 

.42 .6 

.459 . 82 .22 4.41 I .9 - 1.2 
I 

Table 5.1 Summary of the plasma loading impedance for 'off res onant' 
matching condition. R and L are the input resistance and inductance of 

the antenna measured under various conditions. The top line of each double 
rows is the data taken in vacuum and the second line correspon ds to data 

taken in the plasma. 6R = Roff-Rant and 6XL = Xoff-Xant are th e 'off reson
ant' plasma loading impedance. Rcur is th2 range of the ~eak l oading 

resistance obtained by using equation 4.3. l. The antenna is l. l inches into 
the tokamak ch amber. 



-91-

Freq. Cond.i tion c1(pf) c2 (pf) L( )JH) R( ~) fiR(~) fix(~) R (r2) 
(MHz) 

cur 

10 Vacuum 525 44. 5 .445 .3 

Plasma 490 45.2 .474 .350 .05 1.823 . 4 - . 8 

12 Vacuum 364 35.1 .441 .38 

Plasma 352 37.5 .453 .456 .076 . 86 . 8 - 1.2 

14 Vacuum 264 27.8 .444 . 448 

Plasma 244 28 . 2 .476 . 53 .082 2.77 .6 - l. 

16 Vacuum 200 23 .9 . 443 . 563 
Plasma 192 26 .455 . 7 .137 1.2 .6 - l. 3 

18 Vacuum 161 20 .432 . 604 

Plasma 150 24 .9 .448 l. .4 1.81 .7- 1.2 

Table 5.2 Summary of another data set taken under similar conditions 

as the data presented in Table 5.1. This data set was taken on a diff

erent day than those given in Table 5.1. 
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columns 3 and 4 for each set of data with a given frequency, and Zoff is 

on the bottom line. The contributions from the plasma alone to the "off 

resonance" impedance are shown in columns 7 and 8, where 6R = Roff- Rant 

and 6X = Xoff- Xant. 

Two points must be emphasized about the condition under which these 

data were taken. First, as shown in Figure a.l of Appendix a, the anten-

na impedance is a function of its distance into the tokamak vacuum 

chamber. This is because when the antenna is out of the vacuum chamber 

it sits in a 6 x 4 x 111 stainless steel port. This port can influence the 

antenna impedance by lowering its inductance and increasing its r esis-

tive losses through eedy current losses in the port wall. Also, the 

plasma loading depends on how far the antenna is into the chamber, since 

it is a function of the coupling coefficient of the antenna . When the 

antenna is completely out of the tokamak chamber and into the port, for 

example, the plasma loading is zero. The data presented in Tables 5.1 

and 5.2 were taken with the antenna approximately 1.1 inches into the 

vacuum chamber. 

5.3 Plasma Loading Resistance at the Cavity Resonances 

The experimental results of the plasma loading resistance , R, at 

the various cavity modes are presented in this section . The plasma re-

sistance is obtained from the power-current measurements dis cu ssed in 

Section 4.3. The equation used to compute the plasma loadi ng resistance 

is reiterated here for the convenience of the readers (equat ion (4.3.1)): 

R ( p - P )/I - R inc ref a ant 
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where P. and P fare the incident and reflected power, re spectively, 
1nc re 

Ia is the antenna current, and Rant is the basic antenna resistance. 

The presentation of the experimental data for the plasma loading 

resistance at the cavity resonances is divided into two parts. First, 

one set of experimental data taken at a given input frequency is pre-

sented as an example of the measured data and the computed results of 

the loading resistance. The general features of the data for other fre

quencies are described. Second, the magnitudes of the plasma loading 

resistance for the various cavity modes at different input frequencies 

are summarized in Tables 5.1 and 5.2. For each input frequency there 

are many cavity modes excited, each with a different loading resistance. 

Therefore, only the range of peak loading resistance for various cavity 

resonances at each input frequency is given in these tables. This 

range of the "resonant" loading resistance is denoted by R , where · cur 
the subscript 'cur' is to identify the power-current method used to 

determine the resistance, and to differentiate this result from the 

range of "resonant" loading resistance R obtained from the measured res 

complex reflection coefficient. The computed values of Rcur and Rres 

from experimental data are compared in Table 5.3. 

Figure 5.4 shows a typical plasma discharge, where the input 

r.f. frequency is ll MHz and the antenna is "off resonantly" t uned with 

the tuning capacitors c1= 424 pf and c2= 44 pf (see Figure 2.4 ). The 

"off resonance" tuning condition is indicated in the reflec ted voltage 

data, the 4th trace, where the reflected voltage is a minimum between 

the cavity resonances. Under the "off resonance" tuning condition, when 
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a cavity resonance appears, the generator impedance is no longer ma tched, 

and so the cavity resonances show up as increases in the reflected vol-

tage from the directional coupler and decreases in the antenna current. 

These are the observed behaviors of the measured reflected voltage and 

antenna current as shown in traces 3 and 4. 

The relation between the reflected voltage and the antenna current, 

i.e., an increase in the reflected voltage corresponds to a decrease 

in antenna current, can be understood as follows. Since the incident 

voltage is relatively constant throughout the plasma discharge, the 

amplitude of the reflection coefficients, !PI = (Vref/Vinc) should be 

proportional to the amplitude of the reflected voltage. The antenna 

current can be expressed in terms of the reflection coefficient as: 

I V/Z 

(5.3.1) 

where equation (2.6.5)is used to related Z and p, and Z
0 

is the charac

teristic impedance. For a mismatch condition, the reflected voltage 

increases so the magnitude of the reflection coefficient will increase 

accordingly. The term 1/(1 + p) of equation (5.3. 1) can be appr9xi-

mated by (1-p) if the mismatch is small. Thus equation (5.3.1) can be written 

in the following approximate form: 

v I "' 50 ( 1 - 2p) 

where Z
0 

is taken to be 50 ohms. From this relation one can see that if 
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there is an increase in the reflected voltage, there must be a corres-

ponding decrease in the antenna current. As a confirmation of this 

relation, the antenna current in trace 3 of Figure 5.4 has a minimum 

whenever the reflected voltage shows a maximum. 

The general features of the time dependence of the peaks of the 

resonant loading resistance correlate well with the time dependence 

of the peaks in the transmitted signal. ~~henever a peak in the trans-

mitted signal occurs, a corresponding peak in the loading resistance 

appears at the same time. Moreover, the density dependence of the 

resistive loading peaks is the same as the transmission peaks . ~Jhen 

the input frequency is low, most of the resistive peaks occur near the 

density maximum, whereas at the higher frequencies, the peaks become 

more spread out. 

An observation in the experiment is that the modes with the largest 

transmission amplitude are not necessarily the ones that show the largest 

input loading resistance. This is because the input loading resistance 

measures the power delivered into the cavity, whereas the receiving probe 

only detects one component of the field. Depending on the cavity mode 

that is excited, strong input loading does not necessarily correspond to a 

strong field component measured by the probe. 

In Tables 5.1 and 5.2, the ranges of the peaks of the resonant 

loading resistance, R , for the different modes at various input frecur 
quencies are summarized. The resistance values are calculated using 

equation 4.3.1 in the same fashion as the data shown in Figure 5.4 .. Only 
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loading peaks that are substantially above the noise level are kept. 

In the same tables, the 11 0ff resonance 11 plasma loading resistances, 

i.e., 6R = Roff- Rant' for the same plasma shots are presented as a 

comparison to the peak 11 resonant 11 plasma loading resistance, Rcur· 

5.4 Reproducibility of the Plasma Loading Resistance Measurement 

Even vJith the same input frequency, the magnitude of the resistive 

loading at the various cavity modes has been observed to be different 

for different plasma shots. For two consecutive plasma discharges, the 

resistive loading may be strong at certain cavity modes on one shot, 

yet appears weaker for the same modes on the next shot. One possible 

explanation for this behavior in the plasma loading is that the radial 

density profile of the plasma is not completely reproducible for dif

ferent plasma discharges. As shown by Paoloni in a recent paper, the 

coupling coefficient of the transmitting antenna depends on the radial 

density profile [18]. For the low radial and poloidal modes, which 

are believed to be the observed modes here, the radial dependence of 

the r.f. magnetic field for a uniform density profile is quite different 

than that of a parabolic density profile. The strength of the magnetic 

field components at the outer radius of a cylindrical cavity is weaker 

for a parabolic density profile than a uniform density profile. (The 

uniform density profile used here has the same line-average density as 

the parabolic profile.) Since the antenna is located at the outer edge 

of the tokamak, the coupling coefficient of the antenna should be higher 

for a uniform density profile than a parabolic profile. (For more de

tails of the theory see the paper by PaoToni). The position of the plasma 
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column in the tokamak in some sense can be thought of as a r adial density 

profile. The coupling coefficient will depend on whether during the 

first tvw msec of the discharge the plasma column is near the outer wall 

of the tokamak where the transmitting antenna is located, or it is 

formed initially near the inner wall. Since there is no radial profile 

measurement in our experiment, this is only a possible explanation of 

the fluctuation in the magnitude of the resonance loading resistance. It 

must be pointed out here that there were some judgmental factors in the 

data taking. Only shots with strong cavity mode loading were kept and 

those with weak loading were discarded. Therefore, the ran9e of the cavity 

mode loading presented in Tables 5.1 and 5.2 are examples of the strong 

loading cases. 

5.5 Complex Plasma Loading Impedance Measurement 

As indicated in the introduction, the main emphasis of this thesis 

is on the measurement of the complex plasma loading impedance of the 

cavity modes. The real part of the impedance, as mentioned previously, 

is important in the determination of the efficiency of wave generation 

in the tokamak. The complex loading impedance is important i n determin

ing how to match the generator impedance to one of the cavity resonances. 

Only by matching the generator impedance to a cavity resonance can the 

maximum power be delivered to the cavity when the plasma loadi ng is 

highest. 

The experimental data in this section are presented in t he same way 

as in Section 5.2. Experimental results for two input frequ encies, 

11 MHz and 16 MHz,are shown in Figures 5.5 and 5.6, and the general be

havior of the complex input impedance for the various input frequencie s 

are discussed. Then the complex impedance data for the various input 
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Computed complex plasma loadinq impedance from the complex . 

reflection coefficient. The three identified peaks correspond 

to the three Q circles shown in Fiqures 5.7 to 5.9. 
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frequencies are summarized in Table 5.3. 

The physical quantities actually measured in the complex plasma 

loading impedance experiment are the incident voltage, the reflected 

voltage, the phase difference between the incident and reflected waves, 

the antenna current, the transmitted signal, and the plasma density. The 

incident voltage, as mentioned earlier, is fairly constant during the 

plasma discharge. The antenna current is measured so that the resistive 

loading can be calculated using the power-current equation as a check for 

the real part of the complex loading impedance. Figure 5.5 shows a set 

of experimental data for an input frequency of 11 MHz. When the third 

and fourth traces of Figure 5.5 are compared with the second and third 

traces in Figure 2.7, one can see that there is general agreement between 

theory and experiment as to how the reflected voltage and the phase be-

tween the incident and reflected \'laves pass through a cavity resonance. 

Here it is assumed that the incident voltage is constant enough so that 

the reflection coefficient follows the trends of the reflected voltage. 

As expected, corresponding to every peak in the reflected voltage, there 

is a steep change in the measured phase. 

Figure 5.6 contains a typical set of circuit parameter results com

puted from the measured data for an input frequency of 16 MHz. This set 

of data was taken with the antenna "off resonantly" matched. The first 

trace in the figure is the amplitude of the reflection coefficient, and 

it is calculated from the incident and reflected voltage data using equa-

(4.4.1). The phase data in trace 2 are the direct output of the phase 

detector. From the complex reflection coefficient, the complex input 

impedance, Z. , can be calculated from equations (2.6.6) and (2.6.7). 
1n 
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The results of this calculation are shown in traces 3 and 4. When 

these data are compared with the calculated values shown in the fourth 

and fifth traces in Figure 2.7, the general features of the data seem 

to agree well with the computed results from the circuit model. For 

the experimental data in Figure 5.6, the plasma density reaches a maxi

mum at time = 1 msec. At this time the slope of the density evolution 

reverses in sign, so as stated before, both the phase and the reactance 

should reverse in direction. From the second trace of Figure 5.6 one 

can see that the direction of the change in phase is reversed at around 

time = 1 msec. Furthermore, the direction of change in the reactance 

shown in the fourth trace of Figure 5.6 is very similar to the fifth 

trace in Figure 2.7. The measured reactance goes negative before pass

ing through a resonance during the density buildup and goes positive 

before passing through a resonance during the density decay. This is 

the same behavior as the computed results using a similar density evolu

tion. 

The next step in the calculation is to compute the plasma loading 

impedance Z = R + jX by transforming Zin across the matching network 

using equations (2.5.1) and (2.5.2) and subtracting the imped ~ nce of the 

antenna, Zant· Before making this calculation, the capacitances of the 

elements in the matching network must be measured. For this set of data 

c1 = 190 pf and c2 = 34 pf. The results of the computation are shown in 

traces 5 and 6 of Figure 5.6. The maximum resistive loading is about 

1.8 ohms here in comparison with 1.2 ohms, the value of the maximum 

plasma resistive loading obtained from the power-current method. · From 
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Appendix a, the antenna resistance at 16 MHz is about .56 ohms, there-

fore the plasma loading is between two and three times the antenna 

resistance. This corresponds to a wave generation efficiency n between 

70% to 80%. 

The ranges of the complex plasma loading impedance of the various 

input frequencies are summarized in Table 5.3 in a manner similar to that 

of Tables 5.1 and 5.2. The format of Table 5.3 is the same as Tables 5.1 

and 5.2, except the plasma contribution to the "off resonant" loading 

impedance, ~R and ~X, is not shown. They can be obtained by taking the 

difference of the values in the two lines under columns 5 and 6. The 

input frequencies of the experiments are given in column l. The condition 

under which the data were taken is shown in column 2. The capacitances 

of c1 and c2 needed to match the generator impedance to the antenna and 

the antenna plus "off resonant" plasma are shown in two lines , columns 

3 and 4, respectively. Column 7 shows the range of the peaks of the load

ing resistance Rcur for the particular data set. It is obtained from the 

input power and the antenna current in the same fashion as the data pre

sented in the 9th column of Tables 5.1 and 5.2 (see equation (4.3.1) for 

this calculation). This range of loading resistance R is presented cur 

here as a comparison to the real part of the complex loading impedance 

calculated from the complex reflection coefficient measured in the exper-

iment. The complex plasma loading impedance Z . is calculated from 

equation (2.8.1), where the antenna impedance has been subtracted. The 

real and imaginary parts of the impedance are given as 

R = R - R L ant 



Freq . Condition c1(pf) c2(pf) L( )lH) R(IG) Rcur( IG) Rres(IG) Xr es(IG ) 
(MHz) 

10 Vacuum 532 44 . 5 . 44 . 293 

Plasma 509 46 . 1 . 457 . 34 . 5 to l. . 6 to 1.1 -.52 t o . 6 

12 Vacuum 364 34 . 8 . 442 . 375 

Plasma 352 37 . 453 . 445 .4 t o . 7 . 75 to 1. 1 -. 6 to . 8 

14 Vacuum 262 28 . 4 . 446 . 472 

Plasma 256 32 . 45 . 61 .7 t o 1 . 3 . 9 t o l. 46 -.7 t o l. 

16 Vacuum 199 23 . 446 . 53 

Plasma 189 27 . 459 .77 l. t o l. 5 1. 2 to 1.8 -. 8 t o 1. 2 

18 Vacuum 161 20 . 8 . 43 . 65 

Plasma 146 24 . 461 . 98 . 82 to l. 7 .95 t o 2 . -. 9 to. 8 

Table 5. 3 The ranges of the complex plasma 18ading impedance , R and X , at the 
various cavity modes are given in columns 8 and 9 . The resistiv§eloadingr~~ the same 
cavity modes measured with the power- current method is shown in column 7. c1 and c2 
ar e t he values of the tuning capacitors . R and L are the antenna resistance and 
induct an ce with or without plasma . The data were taken under ' off resonant ' tuning 
condition and the antenna is at 1.1 inches into the tokamak chamber . 

I ___, 
0 
..j:> 
I 
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where RL and XL are given in equations (2.5.1) and (2.5.2). The range 

of the complex loading impedance maxima at the various cavity resonances 

are given in columns 8 and 9. The 8th column shows the range of the 

plasma loading resistance maxima, Rres' for the various cavity modes. 

These ranges seem to agree generally with the data, R , measured using cur 

the antenna current. The discrepancies between the data obtained from 

these two methods as shown in columns 7 and 8 can be attributed to errors 

in the calibrations of the instruments used in the measurements. Column 

9 shows the range of the reactance, Xres' for the largest resonance peak 

measured in the particular plasma discharge. As shown in the sixth 

trace in Figure 5.6, this reactance changes sign rapidly as a cavity 

resonance is passed through. 

As indicated previously, the cavity resonance effect can be seen 

more readily when the complex cavity input impedance is plotted in the 

complex impedance plane. When the real and imaginary parts of the imped

ance are plotted against each other as they pass through a resonance, 

the resultant curve is a circle, known as the Q circle. Figures 5.7, 

5.8 and 5.9 are the experimental Q circles of the three major peaks which 

occur at time= .5 msec, time= .9 msec, and time= 1.1 msec in Figure 

5.6. The time between the points in the Q circle plots is 2 micro-

seconds. They are approximately circles, although there are some dis-

tortions. The distortions in the Q circles can be divided into two 

classes, depending on how fast the density is changing as a function of 

time. The first class is when the density is changing slowly enough with 

time that the condition for meaningful impedance measurement, the . 

inequality (2.4.5), is satisfied: 
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Figure 5.7 
Q circle for the first peak shown in Figure 5.6. The circle 
is traced out counterclockwise, and the time between consecutive 

points is 2 ~sec. 
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Q circle for the third ~eak shown in Fioure 5.6. The circle 
is traced out clockwise, and the time between consecutive 
points is 2~sec. 
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T >> 2Q / w 
L o 

where T is the time between the half-power points of the resonance 

peaks, w
0 

is the resonance angular frequency, and Q is the loaded Q 

of the cavity. (This inequality is examined in detail for various 

cases in Section 5.6, where the Q of the cavity is calculated.) In 

this case the cavity modes are swept through much slower than the re-

sponse time of the output operational amplifier of the crystal detectors, 

4V oer 2 usee, and the response time of the phase detector, 2n per 4usec. 

The Q circles sho~n in Figures 5.7, 5.8, 5.9, are observed under this kind of 

condition where the distortions from a circle are not large. The distortions 

of the Q circles shown in Figures 5.7 through 5.9 can be partly attributed 

to errors in the calibration of the square law crystal detector, the 

linear phase detector, and partly to density fluctuations. The effects 

of the density fluctuations are most obviously observed in Figure 5.9 

where small oscillating points are superimposed on the main circular 

curve. 

The second class of distortion in the Q circles is when the den-

sity changes so fast that the condition T ~ 2Q/w
0 

is approached. In 

this case the limits of the response times of the phase and crystal 

detectors are also approached. The resultant Q circles are greatly 

distorted, usually becoming a very flat ellipse. Data of these kind 

are discarded, since the impedance information from them is not mean-

ingful. 

As mentioned before, the direction in which the Q circles are 

traced out as the cavity resonance is passed through is a function of 
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the sign of the slope of the density evolution. The first two peaks shown 

in Figures 5.7 and 5.8 are traced out counterclockwise as the cavity 

resonance is passed through. When the time is around one millisecond in 

Figure 5.6, the density reaches a maximum, so the slope of the density 

evolution is reversed in sign after this point. Therefore, the resonance 

shown in Figure 5.9 is traced out in the clock1t1ise direction, opposite to 

the previous two peaks. This behavior is what the circuit model has 

demonstrated. 

5.6 Cavity Q, Antenna Coupling Coefficient, and Antenna Efficiency 

a. Cavity Q 

By using the approximate density-frequency relation for the cavity 

mode cutoffs, the Q of the plasma-filled cavity can be simply estimated. 

The method used to estimate the cavity Q is described in Section 2.6, and 

the Q is related to the density by the following equation: 

As mentioned in Section 2.4, the Q obtained from the density measurements 

is the loaded Q of the cavity, and the unloaded Q of the cavity can be 

related to the loaded Q by equation (2.6. ll) at a cavity resonance by 

All the quantities in this equation have been measured experiment

ally or can be calculated from experimental data. QL is derived from the 

density measurements. Roff is the antenna resistance plus the res.istive 

contribution from the plasma 1t1hen the cavity J~esonances are not present. 
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It can be calculated from the values of the capacitors that are used in 

the matching network to tune the antenna "off resonantly". Roff is de

rived from the following equation: 

R 2 [( X )2 + R2. J 
ff = R. XC I XC + C o 1n 1 1 2 1n 

where Rin is 50 ohms, and XC and XC 
1 2 

to tune the antenna "off resonantly". 

are the capacitive reactance used 

The quantity w2M2/R is merely the p 

loading resistance measured at the resonance of one of the cavity modes. 

From equation (2.2.2a) this factor can be related to the difference between 

RL and Rant at the resonance frequency of one of the modes, i.e., at rlp= 1: 

(R - R ) L ant max 

The 3 dB drop-off points in the reflected voltages can be obtained from the 

experimental data. As an example, the QL and Q
0 

for the three major reson

ance peaks are given in the second and third column or Table 5.4, respec-

tively. 

Cavity Loaded Unloaded Coupling Antenna 
Resonance Cavity Q Cavity Q Coefficient Efficiency 
Peaks [QL] [Qo] [K2] [n] 

1 240 470 5.6 X 10-5 70 % 

2 240 560 6.5 X 10-5 77 % 

3 170 400 8.3 -5 
X 10 . 75 % 

Table 5.4 The estimated loaded Q, unloaded Q, antenna coupliDg 
coefficient, and the antenna efficiency for the three resonance 
peaks shown in Figure 5.6. The antenna Qa used in the computation 

is 90. 



-112-

It must be emphasized that this way to obtain the Q of the cavity 

is only an estimate. Furthermore, there is an experimental error in the 

measured density, as stated in Section 3.ld. That is, there is an uncer

tainty factor of ±1/4 fringe in the fringe counting method of the density 

measurement with the micrmvave interferometer. The estimated Q for the 

cavity resonances with different input frequencies does not differ 

greatly. For the frequency range used in the experiment, between 10 and 

16 t·1Hz, the range of the 1 oaded Q is between 120 and 250, and the range of 

the unloaded Q is between 400 and 700. 

The contribution to the measured cavity Q can be divided into two 

parts: the damping of the wave by the plasma, and the energy losses due to 

the finite conductivity of the tokamak wall which is made of stainless 

steel. As noted in the introduction, there have been several theories on 

the damping mechanism of the magnetosonic wave by the plasma [4,8,25]. 

Th e theories are quite involved, so it is left to the interested reader to 

look up the references. It is important here to estimate the losses in 

the tokamak wall to see whether the wall loss is a dominating factor. The 

calculated cavity Q for a cold plasma-filled cylindrical cavity with 

stainless steel \t.Jall is presented in Appendix c. The estimati on is for 

them= 0 poloidal mode, the low radial and the axial modes. This is a 

lower limit on the estimated cavity Q. The calculated cavity Q 'tlith wall 

loss is about 1300, which is two to three times higher than t he measured 

cavity. Therefore, although the wall loss is not small, it is not the 

dominating term in the measured cavity Q, and so a large part of the wave 

energy should be absorbed by the plasma. 
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Since the Q in the experiment has been obtained, it is appropri

ate at this point to go back to the inequality (2.4.5) and see \1/hether 

the impedance measurements in our transient system are valid. Restating 

(2.4.5), 

T » 2Q/w
0 

where T is time between the half voltage points in the resonance peaks, 

and w
0 

is the resonance frequency. Every resonance datum taken in the 

experiments has been substituted into this inequality to check for the 

validity of the impedance measurement. Those data that do not satisfy 

the inequality because the resonances are swept through too quickly by 

the density are discarded. As an example, let us check the three peaks 

in Figure 5.6. Since the experiment was performed with the input antenna 

coupling strongly to the tokamak, the Q used in the calculation is the 

loaded QL of the cavity. 

For the first peak, T = 24 ~sec, QL = 240, and the angular frequency 

w
0 

= 2n x 16 x 106rad/sec. Therefore, 2QL/w
0 

= 5 ~sec, which is smaller 

than T, and so the impedance measurement of this resonance is valid. 

For the second peak, T = 30 ~sec, QL = 240, and the angular fre

quency is the same as above. Therefore, 2QL/w
0 

= 5 ~sec, rthich is again 

smaller than T. 

For the third peak, T = 50 ~sec, QL = 170, and w
0 

is the same as 

above, therefore 2QL/w
0 

= 4 ~sec, vo~hi ch is smaller than T. 

As one can see, all three of the peaks in this data set satisfy the 

inequality, and so the impedance measurement is valid. ~~hen this test is 

given to other data at various input frequencies, there are cases where 

the density changes so fast that this inequality is no longer satisfied. 
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These data can usually be picked out during the experiment and discarded 

right av1ay. In future experiments this constraint will not occur, because 

a gas puffing system is presently being installed on the tokamak to keep 

the density higher and more constant as a function of time (see Section 6.2 

for details). 

b. Antenna Coupling Coefficient 

With the complex impedance and the Q measurements, the coupling coef

ficient of the antenna can be calculated using equation (2.6. 12) 

2 
K = 

where again this is for an "off-resonantly" tuned system. Since the Q of 

the cavity is an estimate, the coupling coefficient should be called an 

estimate as well. As mentioned in Appendix a, the coupling coefficient is 

a function of the distance that the antenna protruded into the vacuum 

chamber. For the different cavity modes at various input frequencies, the 

coupling coefficient of the antenna when it is l.l inches into the tokamak 

chamber has a range between 3 x 10-5 and l x 10-4. As an example, consider 

again the data in Figure 5.6 which were taken with the antenna at l.l 

inches into the tokamak. The coupling coefficient, K
2 , for th e three peaks 

shown in Figure 5.6 are given in the third column of Table 5.4 . 

c. Antenna Efficiency 

Once both the cavity Q and the antenna coupling coefficient are es-

timated, the wave generation efficiency, n , of the present tv-m-turn 

copper loop antenna can be estimated from equation (2.7.2), 
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The antenna efficiency for the three resonance peaks in Figure 5.6 are 

given in column 5 of Table 5.4. The efficiency for the present antenna 

system has been observed as high as 80%. Possible ways to increase the 

antenna efficiency are elaborated in Section 6.2. 

5. 7 ~·latching Impedances at the Cavity Resonances 

For future high power experiments, it is essential to be able to 

match the generator impedance at one of the cavity resonances where the 

resistive loading of the cavity is high. This process is much more dif

ficult than matching "off resonantly", because during the pass age through 

of a resonance both the real and imaginary parts of the impedance are 

changing very fast. Very precise tuning is required to trans form the re

sistance to 50 ohms and tune out the reactance at one of the cavity 

resonances. In our experiment the difficulty is compounded by the fast 

density decay as a function of time. This makes tuning "on resonance" 

harder because sometimes it is difficult to tell whether the tuning is 

exactly on resonance or just slightly mistuned, because the resonance 

peaks are so sharp. Before presenting the data in our experiment, some 

improvements to the measurement system so that "on resonant" t uning will 

be easier are discussed. 

First, if the change in the density is slo\tJer, the tuni n;J process 

would be easier. Recently, a gas puffing system has been ins ta lled on our 

tokamak to puff neutral gas, which can diffuse across the con f inement 

magnetic field, into the tokamak plasma. The neutral gas is i onized in 

the plasma, thus increasing the plasma density. By puffing t he gas at 

the appropriate time in the plasma discharge, the fast decay in the den

sity after the initial buildup as shown in Figure 3.3 can be compensated, 
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and the density evolution can be kept constant to about 10% for a sub

stantial portion of the discharge. This way the cavity modes are swept 

through much slov1er by the density evolution, and so the resonant peaks 

appear broader. Second, the better procedure for "on resonant" tuning, as 

mentioned in Section 2.5, is first to match the impedance of the generator 

at the "off resonant" condition, which is an easier process than "on 

resonance" tuning. If an on-line computer system is available, the plasma 

loading impedance ZL at a cavity resonance can be calculated from the mea-

sured complex reflection coefficient, p = V f/V. re we 
i ¢ 

e ' where ¢ is the 

phase difference between the incident and the reflected waves. By using 

equations (2.5. 1) and (2.5.2), the input impedance at the antenna, ZL, can 

be calculated from the input impedance at the impedance matching circuit, 

Zin' and the values of the capacitors, c1 and c2 , used to "off resonantly" 

tune the antenna. Once the values of ZL at the various cavity resonances 

are known, the capacitances c1 and c2 can be recalculated for matching to 

one of the cavity modes. Recently, a minicomputer was acquired for on-line 

operation with our tokamak. vJith the aid of the computer, "on resonant" 

matching will be easier for future experiments. 

The actual "on resonant" tuning reported in this thesis VJas done by 

minimizing the reflected voltage from the directional coupler at one of 

the cavity modes through trial and error. The experimental data of the 

reflected voltage and r.f. current for the "on resonant" matching experi-

ment appear just opposite to the data from the "off resonant" tuning ex-

peri ment. Under the "off res on ant" matching condition, the reflected 

voltage is minimized and the antenna current is maximized between the 

cavity modes; v1hereas for the "on resonant" matching condition, the 
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reflected voltage is minimized and the antenna current is maximized at 

one of the cavity modes. For the "on resonant" matching condition, the 

reflected voltage is high and the antenna current is lov1 betv1een the 

cavity modes, because the antenna is mismatched to the generator without 

the cavity modes. Since the matching conditions for the various cavity 

modes are different, only one mode can be exactly matched for a given 

setting of c1 and c2. 

Two of the "on resonantly" tuned cases are given in Figures 5.10 

and 5.11. As indicated before, only one mode is properly matched for 

each case. For the data in Figure 5.10, the tuning capacitances needed 

to tune "on resonantly" are c
1 

= 210 pf and c
2 

= 38 pf, and for the 

traces in Figure 5.11, c1 = 336 pf and c2 = 49.5 pf. 



1.2 
c;) 

15 MHZ 

MATCHED AT RESONANCE 

~ 
P1- Pr 

R=~ 
RESISTANCE 

:E 
J: 
oo.o~ .. r~ ~-~v~ 

ANT. CURRENT 

0. ,5 1.5 2. 

TIME (msec) 

Figure 5. 10 

Antenna is matched to 50 ohms at one of the cavity resonances. 

I 
--' 
--' 
co 
I 



en 
::;: 
I 
0 

1.0 

0.0 

0, 

Figure 5. ll 

12 MHZ 

MATCHED AT RESONANCE 

+ 

.5 
TIME (msec) 

1.5 

Antenna is matched to one of the cavity resonances. 

2, 

I ..... ..... 
\.0 
I 



-120-

VI. CONCLUSIONS 

6.1 Summary 

This thesis has presented the results of some low power experiments 

in the propagation of the fast magnetosoni c cavity modes in a research 

tokamak. A great deal of attention has been given to the study of the 

complex input impedance of the antenna, the antenna design, and the de

sign of the impedance matching net'IJOrk. These measurements are of great 

importance to future high power experiments where efficient coupling of 

pal'ler to the plasma is essential. Through the high power heating experi

ments the feasibility of using magnetosonic v1aves as a method to heat the 

plasma to fusion ignition can be evaluated. 

The toroidal cavity modes could be readily observed in transmission 

measurements, where they appeared as a series of maxima in the transmis

sion amplitude. The measured eigenmode dispersion relation seemed to 

agree qualitatively with the results from the simple theory for a cold 

cylindrical uniform plasma cavity. Although mode numbers were not deter

mined, the manner in which the phase between the transmitting and the 

receiving signal changed indicated that when passing through a cavity 

resonance the received amplitude peaks were due to cavity rescnances. 

After carefully designing a low-loss transmitting antenr a and a 

low-loss matching network, the cavity resonances were seen in t he input 

impedance of the cavity. When the antenna was "off resonantl y" matched, 

the cavity modes appeared as maxima in the reflected voltage detected by 

the input directional coupler, and as minima in the antenna current. Ry 

dividing the input power by the antenna current squared, the loading 
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resistance of the plasma was calculated. The loading resistance at the 

various resonances was observed to be as high as three to four times the 

basic antenna resistance. 

The phase difference betvJeen the incident and the reflected input 

voltages has been investigated. The phase information, along ~tJith the 

amplitude of the incident and reflected waves, gives the complex reflec

tion coefficient. The complex input impedance was derived from the complex 

reflection coefficient. The real part of the complex impedance determined 

this way agrees well with the results from the loading resistance from 

pm'ler-current measurements. The complex impedance follm11ed the predicted 

characteristics of a circuit model often used in microv1ave cavity theory. 

The model, along with a set of reasonable assumptions, gave the general 

features of the measured impedance function. The measurement of the com

plex plasma loading impedance is crucial to the understanding of hovJ to 

match the generator impedance to one of the cavity modes. 

In order to deliver the maximum amount of power at resonance, it is 

necessary to match the antenna impedance plus the plasma loading imped

ance to the generator impedance at one of the resonance peaks. This way 

the maximum amount of power can be fed into the tokamak when the plasma 

loading is high. Although this was a difficult experimental task, due to 

the fast changing nature of the impedance near resonance because of rapid 

decay of the plasma density, we were able to match impedances at a few of 

the resonances. In future experiments the "on resonant" matching of the 

generator could be aided by improvements recently acquired. First, an 

on-line computer has been acquired so that once the complex plasma . loading 

impedance of the cavity modes is measured under the "off resonant" matched 



-122-

condition, the required values of the circuit elements in the matching 

net~-Jork can be readily computed. By resetting the matching circuit ele-

ments to the new values, the generator impedance can be matched to the 

antenna impedance at one of the cavity modes. Second, the density of 

the plasma can be held more constant by gas puffing, so that resonances 

would be swept through much more slowly. 

From the approximate cut-off relation of the cavity modes in cold 

plasma theory, the loaded QL of the cavity could he estimated. The un-

1 oaded Q
0 

of the cavity caul d be derived from the QL by a circuit trans

formation. The measured unloaded Q
0 

of the various cavity modes ranges 

from 400 to 700. Finally, the antenna coupling coefficient K
2 \-Jas ob-

tained from the plasma loading impedance and the estimated cavity Q. The 

range coupling coefficients for the various cavity modes are between 

3 x 10-5 and l x 10- 4 for the 2-turn antenna. 

The general conclusions for these experiments are that the possibil-

ity for efficient pmver coupling into the plasma-filled cavity looks very 

encouraging because of the reasonable plasma loading resistance found at 

the cavity resonances. The matching of the generator impedance to the 

antenna impedance at resonance does not seem to be a serious problem. The 

loading resistance at the cavity modes has been observed to be as high as 

three to four times the antenna resistance, and the generator impedance 

has been matched to a fevJ of the cavity modes, if only briefly due to 

the changing density. This means that with the present antenna design, 

as mu ch as 80% of the power can be delivered into the tokamak via the 

cavity resonances, and only 20 ~1o of the input pmver vJill be lost in the 

antenna. 
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6.2 Future High Power Heating Experiments 

From the results of the low power experiments, one can see t hat a 

few improvements of the experimental setup must be made before an effi-

ci ent high pm'ler heating experiment can be performed. 

First, in order to improve the efficiency of the wave generation in 

the tokamak, the antenna design can be improved in the following ways. 

Looking back at the equation of the antenna efficiency, n 

Since the cavity Q is not a controllable quantity, to increase n the 
p 

product K
2Qa must be maximized. The coupling coefficient, K , can be in-

creased by increasing the length of the antenna. The ultimate size is 

limited by the size of the tokamak chamber and the locations of the ports. 

The antenna Q, Qa = wlant/Rant can be -increased in two 'days, i.e., de

crease the antenna resistance or increase the antenna inductance. To 

decrease th e antenna resistance, a bigger conductor for the antenna should 

be used. The limit on the size of the conductor is the size of the ports 

on the tokamak. The inductance of the antenna can be increased by in-

creasing the number of turns on the loop antenna. Since the i nductance 

increases approximately as the number of turns squared and the antenna 

resistance increases linearly as the number of turns, the antenna Q 

should increase linearly with the number of turns. 

For the heating experiment it is essential to be able t o couple 

to one of the cavity modes for a substantial amount of time. The present 

plasma condition in the Caltech tokamak makes the heating experiment dif

ficult because of the fast density decay causing th e cavity modes to be 
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swept through very quickly. To improve the situation, the plasma density 

must be kept as constant as possible. This can be done by gas puffing, 

where during the discharge a small amount of neutral gas is introduced 

into the tokamak. The gas is ionized, thus increasing the plas ma density. 

By programming hov1 the gas is puffed into the system, the plasma density 

can be tailored to specification. 

Moreover, from the approximate cut-off relation of the magneto

sonic wave, f£mn ~ 1/~, one can see that the input frequency can be 

swept to compensate for the change in the density. There are several 

ways to track the modes by frequency modulation. One 1t1ay is to use a 

phase locked loop, i.e., by using the phase information from the trans

mission measurement as the control signal for a voltage controll ed 

oscillator. As the density moves away from the required value for a 

cavity resonance, the phase of the transmitted signal would shift. This 

shift in phase can be used to change the input frequency so as to return 

to the resonance condition. Another method is to use positive feedback, 

i.e., to use the transmitted signal picked up by a receiving probe as 

the input for a broad-band amplifier driving the antenna, thus making 

the cavity resonance the frequency determining element of the oscilla

tion system. If the gain of the amplifier is higher than the loss 

through the cavity, positive oscillation is excited. This oscillation 

\vill adjust its own frequency in order to stay on the cavity resonance. 

At first sight the high Q nature of the input antenna might appear 

as a limitation for mode tracking because of the narrow bandwidth of the 

antenna with its tuning nehvork. However, at the cavity resonances the 

plasma loading resistance increases substantially, and so the loading 
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resistance on the antenna will decrease the input Q. In the low power 

experiments, plasma resistive loading was observed as high as four ti mes 

the antenna resistance. Thus for an antenna with Q = 100 , th e loaded Q 

at the cavity resonance is only 20. To compensate a change in the plasma 

density of 10%, a 5% change in the input frequency is required, or an 

antenna Q (Q ~ 2n /6n ) of 20 is needed at the cavity resonance. e e 
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Appendix a 

TRANSMITTING ANTENNA AND HATCHING NETWORK CONSTRUCTION 

The transmitting antenna is a two turn loop made of l/8 inch 

copper tubing. The copper tubing is enclosed in a 1/32 inch thick 

layer of pyrex insulator. The functions of the glass are to protect 

the copper from plasma damage and to insulate the antenna from the 

plasma electrically. The approximate loop area of the antenna 

is 3.5 inches by 1 inch. Because of the glass coating, the antenna 

never intrudes more than 1.25 inches into the tokamak vacuum chamber. 

(Figure a.l) 

The glass coating surrounding the copper is joined to a l/2-inch 

OD Cajon (G304-8-GM-3) stainless steel-to-glass transition tube. The 

transition tube provides the mechanical feed-through for the 

antenna to go from vacuum to the outside. The glass portion is needed 

to give the antenna electrical insulation from the stainless steel 

wall of the tokamak. The transition tube goes through a vacuum o-ring 

and attaches to a 5/8" OD copper tubing. Finally, an Amphonel twin axial 

connector is screwed on the copper tubing to make the connection to the 

matching network. 

A copper inner lining of 0.25 inch thick is pressed inside the 3 

inches of Cajon stainless tubing to minimize the eddy current losses 

due to image currents produced inside the feed-through. The length 

of the entire antenna is kept to a minimum so that the antenna re~is

tance can be reduced below the plasma loading resistance. The entire an

.tenna measures 12 inches. The extra length is duetoa mechanical carriage 
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made for the antenna to move it smoothly in and out of the plasma. 

The ultimate limitation on the antenna size and the feed-through 

length is determined by the tokamak port size which is 4 x 6 x linch. 

The antenna resistance and inductance are a function of the dis

tance that the antenna protrudes into the vacuum chamber of the tokamak. 

The reason for this dependence on the distance into the vacuum chamber 

is because of the 6 x 4 x l inch stainless steel port where the antenna 

sits when it is completely outside the tokamak vacuum chamber. The 

effect of the stainless steel port is to lower the antenna inductance 

and increase the antenna resistance through eddy current losses in the 

port wall. Therefore, as the antenna moves out of the port and into 

the vacuum chamber, the antenna inductance should show an increase 

with distance, and the antenna resistance should show a decrease of 

the distance. Data for the antenna impedance as function of the dis

tance into the tokamak chamber are shown in Figure a.2. In Figure 

a.2, r = 0 corresponds to the case where the antenna sits just out

side the tokamak chamber and completely inside the port; thus, r is 

the distance that the front surface of the antenna is inside the 

tokamak. 

The antenna inductance measured in the experiment is approxi

mately independent of the input frequency, and the antenna resistance 

increases with an increase in the input frequency. The frequency 

dependence of the antenna resistance is shown in Figure a.3. The 

data weretaken with the antenna at 1.5 inches into the tokamak ch.amber 
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thus minimizing the effects of the stainless steel port. Superimposed 

on the experimental data is an Rant a:f112 dependence fit, which is the 

expected frequency dependence from skin effect calculations. 

The matching network is a two capacitor arrangement shown in Figure 

2.4. Because of the lo~tJ resistance and accurate tuning capability 

required, fifteen-turn Jennings vacuum variable capacitors are used. 

For tuning the antenna in the frequency range between 6 and 20 MHz, 

the capacitor in parallel with the antenna, c1, ranges between 30 to 

2000 picofarads, and the capacitor in series with the generator 

impedance ranges between 15 to 300 picofarads. The values of c1 and 

c2 for various tuning conditions are shown in Tables 5.1. 5.2, and 5.3. 
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Appendix b 

COLD PLASMA THEORY OF THE MAGNETOSONIC CAVITY MODES 

(based on unpublished memorandum by R. ~J. Gould, 1960) 

Consider a uniform cold collisionless plasma, axially magnetized 

in a cylindrical geometry (Figure b.l). The axial magnetic field 

makes the plasma anistropic; thus, the dielectric property of the 

plasma must be expressed as a tensor quantity. 

Define a general displacement, D, with ejwt time dependence for 

the plasma [16]. 

jwQ 

where ~ = r q z v n n n-n 

j wE+ L.J =jws ·E - -n = 
n 

is the current density of 

zn is the ionic charge, q . n is the sign of the 

dielectric tensor. Subtituting into equation 

where~ has ejwt time dependence, 

(b.l) 

the nth species of particles, 

charge, and s is the 

b. l the momentum equation 

(b.2) 

into the current desnity J , the dielectric tensor becomes the following -n 

E: j s x 0 
.1. 

E: = - j E: :X E.i 0 (b.3) 

0 0 s I I 

where 
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€0 
E:..L = 2 (R + L) 

2 
w 

R = 1 - L T (w + ~ w ) 
n w n en 

, L 

In the tensor, two frequencies, wpn and wen' have been defined as 

follows 

w = en 

w = 
Pn 

where wen and wpn are the cyclotron and plasma frequencies respectively. 

With the dielectric tensor, Maxwell's equations are cast in the 

following form 

a VxH=-(cE) at =-

V x E = a {,, H) at ~""o-

(b.4) 

(b.5) 

When ej{wt - me - kz) dependence of the fields is assumed in the 

cylindrical geometry, the following set of equations are obtained: 
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(b.6) 

(b. 7) 

(b.8) 

(b.9) 

(b.lO) 

(b.ll) 

After some manipulation, the above equations can be reduced to two 

second order differential equations involving only the- longitudinal 

components of the fields, Hz and Ez. Following the notations used 

by R. W. Gould [17]. 

(b.l2) 

(b.l3) 

where Ez = ¢1 + ¢2, and Hz = a1¢1 + a 2¢2. Here a1 and a2 are constants. 
2 2 2 2 Also d = - w~0y 1 /g, c = ky2/g, g = y1 - y2 and y1= k - w ~0E~, 

Y2 = w2~0 Ex. If a radial component of the wave vector, T, is defined as 

r 2 = w~ /(d-jac), then equations (b.l2) and (b.l3) are just the s·essel's 
0 

equation, and the solution of¢ , where n can be 1 or 2, is as follows 
n 
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where ¢
0 

is a constant. The dispersion relation can be expressed as 

follows 

(b.l4) 

As indicated in this equation, for every value of T2 there exist four 

possible solutions of k. 

Since only frequencies near the ion cyclotron frequency are of 

interest the dispersion relation can be simplified by the following 

approximations. For w rv O(uJ . ) , B = 4 kG(fc
1
. = 6 MHz), density = 

Cl 0 

5 x 1012 cm- 3, Z = 1 for hydrogen, then 

wpe rv 1.5 x 1011 rad/sec 

wpi rv 3 X 1 o9 rad/sec 

wee rv 7 X 1010 rad/sec 

w.rv 
Cl 

4 X 107 rad/sec 

where wpe and wpi are the electron and ion plasma frequencies, wee and 

wei are the electron and ion cyclotron frequencies. Therefore, wee>> wei' 

w >> w .. Let n. = w/w .. The components of the dielectric tensor pe Cl 1 Cl 

can be simplified as follows 



2 w . 
pl 
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[

w2 w w . 
£ = £ ~ pe ce c1 

X 2 0 w . 2 
Cl w w2 (1-~) 

ce 2 
wee 

2 2) (wee - w 

_ pl Cl . 
.. ii. ,}. J 

2 2 2 w (w .-w ) 
Cl 

(b.l5) 

(b.l6) 

For Ell very large compared to the other terms in the dispersi on relation 

(equation b.l4), one can make the followin g approximation 

-+ 00 

By substituting this approximation into equation b.l4, the si mplifi ed 
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dispersion relation is as follows: 

0 (b. 17) 

Substituting the values of y1 and y2 the solution of k2 in terms of T2 

is 

k2 2 2 
= w E.Lf.lo - ~ +./ (T2 /2)2 + (w2f.loE)2 (b.l 8) 

2 
k2 2 - I_ -I (T2 I 2 ) 2 + ( w 2ll E ) 2 w EJYo 2 . 0 X 

(b. 19) 

A consequence of Ell being 1 arge compared to the various other 

quantities in the differential equation, is that E is small (see equaz 
tion (b. 11)). In our approximation we will take E

2 
= 0. 

As mentioned before, the magnetosonic wave is right circularly 

polarized; thus, it has no resonance at the ion cyclotron frequency. 

Since there are two branches of the dispersion relation (b.l7), one can 

check the polarization of the waves propagating along the longitudinal 

d.c. magnetic field by letting T + 0. It is easier to find the polari-

zation of the wave in rectangular coordinates. As T + 0, the cylindri-

cal solution should reduce to the same solution. 

The polarization of an electromagnetic wave can be expressed 

as follows: 
"E 
J X -

Ey - ±l 

where +l corresponds to a right circularly polarized vvave, and -1 cor-

responds to a left circularly polarized wave. The polarization of an 

oblique wave propagating in a cold magnetized plasma is 



-139-

"E 
J X -

Ey -

2 n -s 
0 

(b.20) 

where the d.c. magnetic field is in the z direction, n = kc/w is the 

index of refraction, S = E~/E0 , 0 = -Ex/E
0

. For propaQation along the 

d.c. magnetic field, there are two solutions: 

2 n = R (b.21) 

2 n = L (b.22) 

When these solutions are substituted into equation (b.20) and the defi

nition of the dielectric tensor (b.3) is used, the following polariza-

tions are found for the two branches. 

. E 
J X - R-S 
Ey- -0- +l 

·E 
J X - L-S = -1 
~- -0-

n2 = R is a right circularly polarized wave and n2 = Lis a left circu

larly polarized wave. 

For frequencies near the ion cyclotron frequency, the fo ll ovJi ng 

simplification to the dispersion relation can be made. For w ru w . the 
C1 

frequency is small compared to the electron cyclotron frequency and to 

the electron plasma frequency. Therefore, R can be approximated as 

follows: 

R ru 

where VA= B ;/~ n.m. is the Alfven velocity, and B
0 

is the d.c. mag-
o 0 1 1 

netic field. Thus for the right circularly polarized wave 

2 w
2 l 

k "' v2 ( 1 + r~. ) 
A 1 

(b .2 3) 
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and so there is no resonance at the ion cyclotron frequency, i.e., 

rti = l. For the 1 eft circularly polarized ~<~ave 

and 

c2 l 
L "' 2(1- rt .) 

VA 1 

2 
k2 ~~ _1 __ 

- v2 ( 1 - rt. ) 
A 1 

(b.24) 

so for this 'vJave there is a resonance at the ion cyclotron frequency. 

As T ~ 0 in equations (b.l8) and (b.l9), we have 

k2 2 2 
= W lJ [ E_l + E ] = ~L (b. 18a) 

0 X 2 c 

k2 = 2 2 
W ll [ E - E ] = ~R (b. 19a) 

0 ...!.. X 2 c 

And so equation (b. 19) is the magnetosonic branch that is of interes t. 

Since the tokamak has a conducting wall, consider the solution of 

the magnetosonic wave in a cylindrical cavity. To simulate the closing 

of the tokamak on itself, periodic boundary condition in the axial 

direction is imposed (i.e., k = N/R where R =major radius of the 

tokamak, see Fig. b. 1). At r =a, a perfectly conducting wal l is as

sumed; thus the tangential electric field Et and the normal magnetic 

field Hn must vanish. Since the approximation of E11 ~ oo impli es that 

E = 0 all the remaining fields can be written in terms of H . z ' z 

.k aH Y2 
H =-~ [-z + - !!! H ] 

r T2 ar y 1 r z (b.25) 

(b.26) 
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(b.27) 

(b.28) 

Note that 

w 
E 8 = - k J.l o H r ( b • 30 ) 

The solution of (b. 12) is the integer Bessel's function. Thus, H
2 

is 

H = H J (Tr)ej(wt-me-kz) (b.3l) 
z o m 

The boundary condition is E8 = Hr = 0 at r = a, or from (b. 25) we have 

y2 
Ta J' (Ta) + - m J (Ta) = 0 m y 1 m (b.32) 

[For more details on the fast magnetosonic cavity modes see references 

31 to 35]. 
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Appendix c 

RESISTIVITY LOADING OF THE R.F. WAVE BY TOKAMAK WALL 

The r.f. energy generated in the tokamak by the transmitting 

antenna can be assumed to be either dissipated in the plasma, or lost 

in the tokamak wall which has a finite conductivity. It is important 

to estimate the resistive loading of the wave due to the finite conduc

tivity of the tokamak \vall, and to compare the calculated value with the 

measured resistivity loading in the low power experiment. If the esti

mated loss in the tokamak \vall can account for most of the resistive 

loading effects measured in the low power experiments, then the validity 

of the high power experiment becomes questionable, because the r.f. wave 

will tend to heat the tokamak wall more than the plasma. 

The most convenient method to study the effect of the tokamak wall 

loading is to compare the estimated Q of the cavity, due to ~1all losses 

alone, with the measured Q of the cavity. If the estimated Q due to the 

wall, denoted by Q , is comparable to the measured Q, then the wall load
w 

ing is the dominating dissipation factor in the tokamak. 

One approach to estimate Qw is to calculate the damping decrement, 

y, of the cavity modes due to the finite resistivity of the cavity wall. 

The damping decrement is defined as the attenuation per unit time of the 

electromagnetic ~"ave in the cavity. If the time dependence of the ith 
jw. t 

ei genmode is assumed to be e 1 
, vJh ere wi = w0i + jw2, then the damping 

decrement yi is just w2. The cavity Qw can be related to the damping 

decrement as 

Q = wo./2y. w 1 1 
( c.l) 
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h . h . th . d f f th . t v1 ere w0i 1 s t e 1 e1 genmo e requency o e cav1 y. The damping 

decrement due to the cavity wall can be calculated for the various modes 

by using a finite conducting wall boundary condition at the cavity wall. 

The new boundary condition is 

A ~ 
f.= n x !:i_(l+j) J2a 

A 

where a is the conductivity of the wall and n is the outer normal to the 

wall [36]. If the tokamak is again approximated by a cylinder with 

periodic boundary in the axial direction, then the boundary can be writ-

ten in terms of E8 and Hz' 

E8/H = ( 1 + j) jw1,1 /2a z 0 
(c. 2) 

The real part of the term on the right is the wall resistance, and the 

imaginary part is the additional reactance from the 111all. From Appendix 

b, the solution of Hz for a plasma-filled cylindrical cavity is as follows: 

Hz= H J (Tr) ej(wt-m8-kz) 
o m 

E8 is related to Hz in the follm•Jing manner (b.28) 

2 Y2 m 
E8 = (j w1,1 /T )[ aH (Tr)/ar + --- H (Tr)] o z y 1 r z 

(c.3) 

(c.4) 

where Tis the radial wave number, k is the axial wave number, and m is 

the azimuthal mode number. For the perfectly conducting wall E8 = 0 at 

r = a. Now the boundary condition at r = a is 

. (c. 5) 
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where Ta is replaced by ~. and H' = aH ;a~. z z Rearranging the above 

equation, obtain a dimensionless equation, 

HI y 
l [ ~ + _1_ !!!] = (1 - j) r=r=_ 
~ Hz y 1 ~ a ·J2awf.l0 

(c.6) 

For a highly conducting wall, the term on the right side, lj2 
1 << 1. 

a awf.l
0 

Thus, the wall resistance contributes a small imaginary term to ~ and 

the wall reactance adds a small real term to ~- If ~ is written as 

~ = ~0+ jo, where o << ~0 • then the wall resistance adds a damping term 

to the radial wave number T, and the wall reactance will shift the reson-

ance frequency w. by a small amount. To find the damping decrement, 
1 

solve the complex T = ~/a and substitute into the dispersion relation 

(b.ll): 
2 2 s-2. w . 
1 C1 j 3 2 

T2 2 s-2. w . 
(-) + 1 C1 

2 V~(l - s-2~) 

For the purpose of this section where only an estimated damping decrement 

is needed, the approximate dispersion relation can be used. For the 

lm•Jest few axial mode numbers N, \<Jhere k = N/R and R is the major radius 

of the torus, the dispersion relation can be approximated in the following 

way: 

W· 
1 

w + jy. = VA JT2 + k2 
0 1 

(c. 7) 

where VA is the Alfven velocity. The simplest mode to estimate is the 

k = 0, m = 0, and the lowest T mode. From equation (b.32), one can see 

that the lowest radial mode form= 0 corresponds to the first zero of 

the first integer order Bessel's function, J1. Equation (c.7) can· be 

reduced to the following: 
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( c .8) 

where T
0 

= ~0 /a. The following parameters for the Caltech tokamak are 

subs t ituted into equations (c.6) and (c.8): 

a X 106 mho m-l conductivity of stainless steel = l 

a = minor radius = • 15 m 

R major radius = .45 m 

f = input frequency = 12 MHz 

~0 = first zero of J 1 = 3.83 

The following value of Qw is obtained 

Qw = 1300 

which is two to three times the various measured cavity Q in the exp-

eriment. 

For the higher radial and axial modes, both T
0 

and k will be larger, 

which means that Qw should be higher. Therefore, this estimated Q for 
w 

m = 0, k = 0 , and lowest radial mode is a lower limit for the higher 

modes. Although the wall loading is not negligible, it does not 

account for all the measured loading in the tokamak; thus, r.f. energy 

should be dissipated in the plasma. 



/ 
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