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Abstract 

The purpose of thi s work i s to extend experimenta l and theoreti ~ 

cal unders tanding of hori zontal Bloch line (HBL) motion in magnetic 

bubble materials. The present theory of HBL motion is revi ewed, and 

then extended to include trans i ent effects in which the internal 

domain wall structure changes with time . This is accompl ished by 

numerically solving the equati ons of motion for the internal azi

muthal angle ~ and the wall position q as function s of z, the co

ordinate perpendicular to the thin-fi l m material~ and time. The 

effects of HBL's on domain wall motion are investigat ed by comparing 

results from wall oscillation experiments v/ith those from the theory. 

In th ese experiments~ a bias fi e ld pul se is used t o make a s t ep 

change in equ ilibrium pos ition of either bubbl e or stripe domain 

wa ll s~ and the wal l r esponse i s mea sured by us ing transient photog

raphy. Ouri ng the i niti C\ 1 r esponse , the dynamic \·Ja 11 structure 

closely r esembl es the i ni t i al static structure . The wall accel er ates 

to a rel ati vely hi gh velocity ( ~ 20m/sec ), resulting in a s hort 

(~ 22 nsec ) section of initial r C\pi d motion. An HBL gradua lly forms 

near one of the fi lm surfaces as a r esult of local dynami c properties, 

and moves al ong the wall s urface towa rd the film center. The pre

sence of this structure produces low-f requency, triangul ~r~shaped 

oscill ations in which t he exper imental wall vel ocity i s nearl y con

stant , vs r:: 5-8 mjsec. If the HBL reaches the opposite s urface, 
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i.e.~ if the average internal angle reaches an integer multiple of 

1r , the momentum stored in the HBL i s lost, and the wall chirality 

is reversed. This results in abrupt transitions to overdamped motion 

and changes in wall chirality, which are observed as a function of 
th bias pulse amplitude. The pulse amplitude at which then punch-

through occurs just as the wall reaches equi librium is given within 
k k 

0.2 Oe by Hn ~ (2vsH'/y) 2 
• (nn ) 2 + Hsv' where H1 is the effective 

field gradient from the surrounding domains, and Hsv is a small 

( <0.03 Oe), effective drag field. Observations of wall oscil l ation 

in the presence of in~plane fields parallel to the wa ll show that HBL 

fo~1ation is suppressed by fields greater than about 40 Oe ( ~2nMs)' 

resulting in the high~frequency, sinusoida l oscillations associated 

with a simple internal wall structure. 
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Chapter 1 

Introduction 

Magnetic bubble devices (l-4) represent a new solid state digital 

storage technology. In these devices , small (< 5 ~m) cylindrical 

domains , called magnetic bubbles, move through a thin-film f erro

magnetic material. These domains are actually regi ons where the 

magnetization M is perpendicular to · the film plane, and opposite to 

Min the surrounding material. · An external bias field directed anti

parallel toM in the bubbl e is required for stability. The bubbles 

are manipulated by a rotating externa l in-plane field through a series 
0 

of thin {<5000 A) evaporated permalloy overlay structures . These over-

lays are usually arranged in the form of continuous shift registers. 

As bubbles move around the registers in a lock-step ma nner , bit in-

formation i s stored by the presence or absence of a bubble at each 

bit location. A typical bubbl e chip in producti on today contains 

several hundred of these minor loop registers, each conta ining about 

1000 bits of informat ion. The register period is about 14 ~m, which 

gives a typical storage density of 106 bits/cm2. Information i s decoded 

by r epli cating the bubble pattern from eac h minor loop into a common 

major loop register, and then transferring the bubble patterns to a 

magnetoresistive detector <
5•6). There , bubbles are stretched into 

long (102 ~m ) stripe doma ins oriented perpendicular to the propaga-

tion direction. As the stripe passes under the permalloy conductor 

detector, the stray magnetic fie lds cause a 5% change in el ectri cal 
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resistance, which is detected electronical ly. Other functions neces-

sary for compl ete device operation, such as selective switching (?), 

replication-transfer (B), nucleation (g), and annihilation are i mpl e

mented by a comb i nation of current conductors and overl ay structures . 

In addition, certain binary l ogic operations (2), which make use of 

bubble-bubble interactions , make poss ibl e on-chip data processing (lO,ll). 

With the in-plane field rotating at 100 KHz, typical average access 

times of 0.5 msec, and data rates of 105 bits/sec have been achieved. 

Present individual chip capacity is typically 300 Kbits (l 2), but 

designs with up to 1 Mbit are avai l able (l 3). Complete bubble memory 

systems, which contain several chips mounted i n a common bias field 

and rotating field assembly, are now available. 

Propagation of bubbl es with the classic T-bar overl ay structure (l 4) 

i s shown in Fig. (1 .1). When a uniform in-plane field is applied to 

the magnetically soft permalloy overl ays, magnetic pol es from V·M are 

produced at the edges. Bubbles in the underlying material are 

attracted to positive poles , and repell ed by negative poles. Since 

the location of these poles depends on in-plane field orientation, the 

bubbles slide along the overl ay structures as the in-plane field 

rotates. For example, with +HY (case A), bubbles are located under 

the positive po l e at the center of the T el ement. When the field 

rotates by 90° to +Hx (case B), the bubble moves to the right s ide of 

the T element. When the fie l d rotates to -Hy (case C), the bubble 

moves across the gap to t he lower end of the bar element. When the 

fie ld rotates to -H (case D), t he bubble moves across the second gap 
X 
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Fig. 1.1. Propagation of Bubbl es by T-bar Overlay Structures . As the 
in-pl ane field (indicated by arrows} rotates , the magnetic poles (+ 
or -) in the permalloy overlay structures change position, and the 
bubbles, which are located under the overlays , move along the regi ster 
by one bit l ocation for each 360° rotation. 
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to the l eft side of the next T el ement. Fi nally, when the in-plane 

field returns to +HY (case E), the bubble moves again to the center of 

the T el ement. In this way, bubbles advance along the shift register 

by one bit position each time the in-pl ane field rotates by 360°. A 

number of simi lar propagation structures, such as the Y-bar (l 5) 

X-bar (l 6) , and Y-Y (7) designs, have also been developed. Recently, 

gap-tolerant structures (l 7), such as the asymmetric half-disc (l B), 

have been developed to relax l ithographi c requirements. Each of these 

structures operates on the same principle as the basic T-bar design. 

Bubble devices have significant advantages over existing semi

conductor and magnetic disk recording technologi es (4). Unlike semi-

conductor memory, bubble memory is non-vol atile, i.e . , power i s not 

required to maintain stored information. Bubbles al so promi se a lower 

per-bit cost because of higher storage dens iti es . At present, bubbl e 

and semiconductor densities are about the same, but with new propaga

tion mechanisms (19•20 ) and E-beam (0 .25 ~m ) lithography , bubbles may 

surpass the ulti mate semiconductor density (107 bi ts/cm2) by an order 

of magnitude. Bubbles also promise hi gher yields because of much 

easier fabrication techniques. Semiconductor memory requires at 

l east five masking l evels, some of which involve active diffusion into 

the Si s ubstrate, while bubbles require two, and perhaps just one (2l ) 

passive overlay l evel. This advantage has already resulted in larger 

bubble chip capacity (1 Mbit) with satisfactory yields. Because 

magnetic disk devices distribute the cost of expensive mechanical drive 

equipment over many bits (109), the per-b i t cost i s much lower than 
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for bubbles. Thus, bubbles will probably be cost competitive only for 

small (< 107 bit) memory applications. However, the absence of moving 

parts makes bubbles more attractive from a reliability and maintenance 

standpoint. Furthermore, bubble access times are much shorter than 

for either fixed~head (20 msec) or movable-head {100 msec) disk devices. 

Finally, the possibility of asynchronous operation, and on-chip logic 

functions make bubbles more versatile. Bubble memory, which combines 

the simplicity and reliability of solid state operation with the low 

cost and non-volatility of magnetic storage, fills the technological 

gap between existing semiconductor and magnetic disk devices. 

Bubble materials (22 ) must satisfy certain requirements, which 

are imposed by the technology. Bubble stability requires a strong 

magnetic easy axis perpendicular to the plane of the material. To 

prevent the coherent rotation of H into the plane, the magnetic aniso-

tropy energy density Ku must satisfy 

Ku/2rrM~ = Q > 1 (1.1) 

where Ms = IMI , and Q is the so-called quality factor. Stability also 

requires that the bubble radius r
0 

and film thickness h satisfy 

( 1. 2) 

where the wall energy per unit area aw describes surface tension. 

Bubble walls must move freely under the influence of relatively small 

drive fields Hz. It will be shown in Ch. 2 that the theoretical wall 

velocity is given in the simplest approximation by 
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v =~(Hz- Hc0 ) (1.3) 

where~ is the wall mobility, and Hco is the coercive field. Thus, 

bubble materials should have high mobilities, and low coercive fields. 

Material defects, which can produce large barriers to wall motion, must 

be eliminated. In order to ensure device operation over an acceptable 

temperature range, material properties must vary slowly with tempera

ture. Finally, material characteristics must be constant within a 

single chip, and reproducible from one chip to the next. 

Single-crystal rare-earth-iron garnets are, at present, the only 

materials used in bubble devi ces . These materials have a garnet crystal 

structure with nominal chemical composition, {RE3} [Fe2] [Fe3] o12 . 

The iron ions occupy two separate ferromagnetic sublattices, while 

coupling between sublattices is antiferromagnetic. The intrinsic or 

stress-induced anisotropy found in these crystals is normally too 

small for device applications. However, Bobeck et ~ {23 ) found that 

garnets with a number of different rare-earth ions can have a large 

growth-induced anisotropy of the proper type. The origin of this 

anisotropy is not well understood, but it can be controlled by us ing 

empirical formulas. The magnetization is controlled by substituting 

various nonmagnetic ions into the three sublattices. Since the 

magnetic moment of each sublattice depends on temperature, there i s a 

uniqu e compensation temperature at which the total moment is zero. 

Satisfactory device operation has been achieved over the range, 

-50°C to 100°C , by adjusting the compensation point so that the 
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temperature dependence matches that of the permanent bias magnet . 

Garnets flux-grown on nonmagnetic garnet s ubstrates through LPE y i eld 

satisfactory coercivities (< 0.5 Oe), and defect densities 

(< 5 per cm2) . Attempts to produce hi gh-veloc ity samples have met 

with limi ted s uccess. Low-a material s have been produced, but the 

presence of internal wall structures prevents the realization of l arge 

velocities. Hi gh-y materials have al so been produced, but l arge 

temperature dependences make them unsuitabl e for use i n devices . 

Because various i ons can be substituted into the three crystal sub-

l attices, magnetic characteristics can be controll ed over a wide 

range of parameters . This feature makes magnetic garnets attractive 

for device appli cations. 

Amorphous alloys of the form Gd-Co-X (X = Mo , Cu, Au, Cr) are also 

be ing considered as bubbl e materia l s (22 • 24 • 25 ) These mater i als 

have two advantages over the garnets : l ower mater i al cost, and small er 

bubble size. These material s are deposited on gl ass or Si substrates 

by sputtering or evaporation, t hus eliminating t he need for more 

expens i ve s ingle-crystal subs trates. The required perpendicu l ar 

an i sotropy , also growth-i nduced, has been found in sputtered alloys <26 ) 

but i t is sens itive both to composition and preparation conditions. 

The magnetization i s genera ll y an order of magn i t ude l arger than i n 

garnets, and vari es s ignificantly with composition. In order to obtain 

bubbl es large enough for device appl ications [ see Eq . (l . 2)], it i s 

necessary to use compositions near the compensation point . Un

fortunate ly, the extreme t emperature sensitivity of these compositions 
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poses a major problem in device des ign. Sufficiently high wall 

velociti es have been observed (27 •28), but control of coercivity has 

been another major problem. Amorphous material s also exhibit oxida-

tion, whi ch i s not found in garnets . These materials s how promi se in 

small-bubble appli cations, but a number of problems , especially 

temperature sensitivity, must first be so lved. 

Since thin-film garnets are nearly transparent , domains are most 

easily observed by us ing the Faraday effect (29 ) When plane-

polarized light pa sses through the material al ong the easy axis, the 

plane of polarization rotates by a small amount (<1° ). The sense of 

rotation depends on whether M i s para ll e l or antiparall el to the pro

pagation direction. Contrast i s produced by pass ing the li ght through 

an analyzer with its transmission direction perpendi cu l ar to one of 

the rotated polarizations . In this way , domains with oppos i te 

orientations of M along the easy axi s can be seen with a microscope 

as a seri es of li ght and dark images . 

Two domain co nfigurat ions commonly found in bu bbl e mater i a l s are 

s hown schematicall y in Fig. (1.2). In the demagneti zed state with zero 

bias fi eld , the mater i al i s divided by a series of ser penti ne stri pe 

doma ins in which M alternates between opposite di rect i ons along the 

easy axis [Fi g. (1 . 2a )] . When the bi as f i eld H8 i s appli ed, those 

stripes with M parallel to H8 expand at the expense of the antiparal l el 

domains . The stri pe widths d1 and d2 are funct i ons of H8 , h, and ow. 

When H8 exceeds about 2 .5 Ms, stripe doma ins become unstabl e. The 
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Fig. 1 .2. Schematic Diagram of Stripe (A) and Bubble Domains (B) 
Found in Thin-Fi lm Bubble Materials. The directions of the magnetiza
tion M and bias fie l d HB are indicated. The stripe widths d1 and d2, 

the film thickness h, and the bubbl e radius r 0 are also shown. 
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stripe ends move in from the material boundaries and contract into 

bubble domains [Fig . (l. 2b)] with M inside opposite to H8 . The 

equilibrium bubble radius is also a function of H8, h, and ow. 

Bubbles are only stable over a limited bias field range. If H8 is 

too large, the bubbles coll apse, l eaving the material saturated with 

M parallel to H8 , and if H8 is too small the bubbles stripe out. 

A quantitative analysis of the static properties of bubble and stripe 

domains is given in Appendix A. 

Domain walls in both configurations can conta in internal wall 

structure like those shown schematically in Fig. (1.3). Domain 

walls are narrow regions in which M rotates between opposite orienta

tions along the easy axi s. In the wall center, M lies in the plane of 

the material. It i s shown inCh. 2 that in a static wall this center 

spin must be tangent to the wall surface in order to minimize wall 

energy. The center spin may point in opposite direct ions , so that 

there are two physically distinct static wall types. These two wall s 

are said to have opposite senses of wall chirality. In the simplest 

case, unichiral bubbles orly contai n one sense of chirality. A more 

complicated example, in which the bubble contains both senses of 

chiralty, is shown in Fig . (1 .2a). On the l eft side, the center 

spins point counterclockwise around the circumference, whi l e on the 

right side, the center spi ns po int clockwi se. These regions are 

separated by an internal wall structure, call ed a vertical Bl och line 

(VBL), which is indicated by a da shed line . Naturally, s ince the 

total rotation of the center spin around the circumference must be an 
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R -----
VERT ICAL BLOCH LINE 

...... --
HORIZONTAL BLOCH LINE 

Fi g. 1 .3. Schemat i c Di ag ram of Ver tical and Hori zonta l Bl och Li ne 
Structures in Bubbl e Doma in Wall s. These structures , wh i ch are i nd i 
cated by dashed lines, separate r eg i ons of oppos i te wa l l ch i ral i ty. 
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integer multiple of 21r, at l eas t one additional VBL (not shown) must 

be present. A second exampl e , in whi ch opposite chiralities are 

separated by horizontal Bloch line (HBL), i s shown in Fig. (1 .3b). 

The presence of either structure is thought to strongly affect dynamic 

wall properties. For thi s reason, internal structure has become an 

important factor in device design. 

There i s strong exper imental evidence for the existence of 

vertical Bloch lines. These structures have been seen i n thin metal 

foils by using Lorentz micros copy (30 •31) as abrupt changes in 

chirality. Such direct observations are not possible in thicker 

bubble materials; however, much indirect evidence has been accumulated 

by investigating the effects of VBL' s on stati c and dynamic wall 

properties. Bubbles conta ining a l arge number of VBL's are more 

resistant to bubble coll apse due to mutual Bloch li ne repulsion. 

These "hard" bubbles, which coll apse at anomalously high bias fields, 

are often seen experi mentally (32). Hard wall sections, which exhibit 

greatly r educed velociti es (33•34 ), have been observed in stripe 

domains (3S) The presence of VBL' s can produce transverse forces (36 ) 

and shape distortions (37 ) whi ch are observed during bubble trans l ation . 

There is li ttl e doubt that VBL' s exist in bubble materia l s, and that 

they are responsible for a vari ety of static and dynamic effects. 

The existence of horizontal Bloch lines i s much less certain . 

These structures are only thought to occur in moving walls, so that 

their presence i s only detectable in dynamic effects such as vel ocity 

saturat ion, and dynamic co nversion. I t w~s found experi mental l y (38- 40 ) 
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that wall velocities increase linearly with Hz, but the slope i s 

usually much lower than the theoretical wall mobility. Beyond a cer-

tain point, the velocity becomes saturated, i.e., independent of Hz, 

with a typical value between 5 and 20 m/sec. One explanation of this 

phenomenon (4l) involves the continuous motion of HBL's between the 

film surfaces. The dynamic conversion of VBL structures during 

bubble translation <42 ) has also been explained by HBL motion <43 ) 

Unfortunately, neither of these effects require the existence of HBL's 

as specific micromagnetic structures. It will be shown in Ch. 2 

that reasonable agreement with observed saturation velocities can be 

obtained by assuming different internal structures. Dynamic con

version can also be explained as a result of loca l Walker breakdown <44 ) 

or Bloch ring nucl eation (45 ) Hence, the dynamic effects now at

tributed to HBL's may be equa lly well explained by other mechanisms. 

The wall oscillation phenomenon studied here provides a unique 

opportunity to investigate the effects of HBL's on wall motion. When 

a wall i s subjected to a step change in equilibrium position, it 

oscillates about its new equilibrium position in some low-loss bubble 

materials. The rate at which these wall oscillations are damped 

depends on the energy losses associated with wall motion. Their 

frequency depends both on the effective wall mass, and on the re

storing force provided by the s urrounding domains. Walls with the 

simpl est, unichiral structure have a uniform mass density, which is 

characterist i c of the material. More complex walls exhibit inertial 

properties , which are dominated by internal structure. The wal l 
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oscillation phenomenon is used her e as a sensitive probe into the 

nature of these internal wall structures. 

The Thes is 

The purpose of this work is to extend experimental and theoret-

ical understanding of hori zontal Bloch line motion in magnetic bub

bl e material s. A model of wall motion in bubble material s i s pre

sented in Ch. 2. The existing model is extended in order to analyze 

transient wall r es ponse by numerically solving the equations of motion . 

An experimental investigation of wall osc illations in a low-loss 

material i s presented in Ch. 3. It is shown that the unu sual dynamic 

behavior found during wall osc illation i s due to the presence of 

horizontal Bloch lines . The r elationship between the loss of stor ed 

momentum and changes in wall chira li ty during HBL instabiliti es i s 

demonstrated for the first time. Finally, HBL nucl ea tion i s studi ed 

by investigating wall osc illation in the presence of in -plane fields. 

These r esults const itute the first experimental evidence for the 

existence of horizontal Bloch lines as specific micromagneti c struc

tures. 
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Chapter 2 

Theory of Dorna i.n Wall Moti on in Magnetic Bubbl e Materi al s 

The dynami c behavi or of the magnetic moment per unit volume M i s 

described in terms of gyroscopi c precess ion by a phenomenological 

mode l proposed by Landau and Lifschitz (l). In thi s approach (l, 2), 

the magnetizat ion i s treated as a continuous fun cti on of space and 

time . Its magnitude Ms is cons t ant , and its direction i s specifi ed 

by the angles e and¢ shown in Fig . (2.i . l}. As soc i ated with the 

magnetization i s an underlying angular momentum per unit volume L, 

which i s constant in magnitude and directed oppos ite toM, so that 

L = -M/y. The value of the gyromagnetic ratio y that i s predicted 

by quantum mechanics i s g I e I /2mc. The Lande· g-factor g ( 3) describes 

the r el ative contributions t o the magnetic moment from orbi tal 

motion and from el ectron spin. In ferromagnetic materi al s, the moment 

i s due primarily to el ectron spin, so that g i s about two, andy i s 
7 ~1 -1 approximately 1.7 x 10 Oe sec . In the presence of an eff ective 

magnetic f i e ld He' the angular momentum precesses according t o 
. 
L = M x H . In order t o account for r el axa tion in magnetic materials, e 

it i s necessary to include a small torque t hat tends to a li gn the 

magneti zat ion with the effective fi e ld . 

posed a torque of the form, M x (M x H ). e 

Landau and Li fsch i tz pro

Later, Gil bert (4) pro-

posed an alternative f orm , a /Ms • (M x M), which i s anal ogous to 

vi scous damping. These two forms are equ ival ent in t he limit of small 
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Fig. 2.i.l. The Spheri ca l-Polar Coordinate Sy~tem Used to Describe 
the Orientation of H. A Cartesian coord inate system (x,y,z) is used 
to describe position within the magnetic materia l . 
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damping. By combining these results, the dynamic behavior of the 

magnetization is described by 

(2.i.l) 

This equation~ known as the Landau-Lifschitz-Gilbert equation (LLG), 

is the theoretical basis for the analysis of dynamic ferromagnetism. 

Wall motion will be analyzed by using the Lagrangi an formulation 

of classical mechanics for continuous systems (2 )5 ) In this 

formu l ation, the Lagrangian per unit volume L i s the difference 

between the kinetic energy per unit volume w and the potential energy 

per unit volume pE. In general, L depends on the local orientation of 

M. its qradients, and on position . Di ss ipation is described by a 

Rayleiqh function per unit volume F. By applying Hami lton' s variational 

principle, 

(2.i.2) 

v 

and by us ing well-known techniques from the calcu lus of variations( 4 •6), 

the Euler equations and boundary conditions are obtained: 

d ClL + L d aL 
( ) 

3 ( 
dt aqj i=l dxi Clqj 

= 0 

a ax. 
1 

( 2. i. 3a) 

(2.i. 3b) 
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or dL = 0 ( 2 , i . 3c) 

a (~) ax . 
1 

where (q1,q2) = (e,¢ }, and (x1,x2,x3) = (x,y,z). Given specific forms 

for L and F , the Euler equations may be solved for the time and 

spatia l dependence of e and ¢ . 

The functional forms of L and F are determined from the LLG equa-

tion. One expression for the kinetic energy dens ity that i s consistent 

with gyroscopic precess ion i s 

-Ms . 
w =- ¢ case 

y 
(2.i.4a) 

This is the kinetic energy of a class ical top in whi ch only the princi~ 

pal moment of inertia parall el to the angul ar momentum i s nonzero , 

This express ion ha s an unusual form, in that it assigns a spec i al r ol e 

to the direction of the z-axis, Hence , the function al form of w is not 

unique, but depends on the choi ce of coordinate axes, For example, 

another equivalent form is 

-Ms . 
w = -- 8¢ s inS y 

(2. i. 4b) 

However, a ll of these forms differ by an exact time derivative of some 
M 

function of the coordinates , in thi s case Ys ¢ cos8 
' 

so that a 11 pre-

ference for coordinate systems i s l ost in the equations of motion. 

Lagrangian i s given by w - pE, where pE i s the potential energy as

sociated with rever s ibl e torques . The Rayl e igh function per unit 

volume that i s consistent with the Gilbert damping torque is 

The 

(2.i. 5) 
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Physically, 2F represents the rate at which the magnetic system loses 

energy in the form of heat (per unit volume). 

Contributions to the potential energy come from four sources: 

anisotropy, exchange, external magnetic fields, and magnetic dipol e 

interact ions. The magnetic moments interact with the underlying 

material~ so that the energy depends on orient~tion, In uniaxial 

m~terials~ the anisotropy energy is given by 

Ku sin 2e ( 2. i . 6a) 

where the easy axis has been taken as the z-axis. In ferromagnets, 

there i s a strong torque~ which tends to align H with its nearest 

neighbors . This torque, which comes from the quantum-mechanical ex

change interacti on, i s represented here by the exchange energy density~ 

A [ 98 • 90 + sin 2e 9¢ • 9¢ ] ( 2. i . 6b) 

The energy due to the external field H i s just 

(2. i.6c) 

The energy due to long range dipole-dipol e interacti ons is given in 

terms of the magnetic charge density, 9 • M, as 

..!. V • M( r) 
2 JIJ 

v 

d3r' 9' • H(r') 
lr-r' l 

Thi s is often written in terms of a demagnetizing field Rd= 

1 -.. 2 M • Hd 

( 2. i . 6d) 

( 2. i. 6e) 

In general, Hd depends on the orientation of M throughout the materia l, 

but in some simpl e situations, it i s only a function of the l ocal 

orientation of M. The sum of these contributions, 
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PE = Kusin2e + A[(ve) 2 
+ s in2e (V¢) 2] - M·R- ~·Hd (2.i.7) 

is the potential energy function used in the Lagrangian. 

The purpose here is to develop a model of domain wall motion in 

magnetic bubble materials. Motion in these thin-film materials is 

compli cated by the presence of demagnetizing fields from V·M at the 

film surfaces. These fields produce static and dynamic wall twist 

structures which vary through the film thickness. However, in high-Q 

materials, where the wall thickness is much smaller than the film 

thickness, the structure changes s lowl y, so that each point in the 

wall may be thought of as having a l oca ll y uniform wall structure . 

Furthermore, since the demagnetizing fie lds are roughly independent 

of the i nternal wall structure in this limit, they may be treated as 

constant in-plane fields. The development begins in Sec. 2.1 by 

considering the dynamic properties of a domain wall with a uniform, 

i.e., one-dimensional structure. In Sec. 2.2, the analysis is extended 

to motion of one-dimensional walls in the presence of in-plane fields . 

These results are used in Sec . 2.3 to develop equations of motion for 

domain walls in magnetic bubble materia l s . An approximate analysis 

shows that internal twist structures, called hori zontal Bloch lines, 

are formed as a result of the surface fie l ds. The dynamic properties 

of these structures are investigated in some detail by us ing the 

horizontal Bloch line model. and it is shown that they have a signi

ficant effect on wall motion. Fi nally, wall motion is treated more 

rigorous ly in Sec. 2.4 by solving the equations of motion numerically. 
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These results are used in Ch. 3 to show that the unusual wall behavior 

found during wall oscillation is due to the presence of horizontal 

Bloch lines. 

Section 2.1 Motion of One-Dimensional Wall Structures 

Consider the case of an isolated domain wall parallel to the xz-

plane in an infinite, uniaxial magnetic material. The properties of 

the wall are independent of both x and z, so that M only depends 

on one coordinate, y. Thi s situation is somewhat artificial (ll) in 

that the boundary conditions on M \'lhich produce the wall structure 

are established by the surrounding domains. It is assumed here that 

domains are present, but that the material boundari es are far away, 

so that interactions with V·M at these -surfaces may be neg l ected . 

Such interactions are considered in Sec. 2.3 . 

In this situation, the Lagrangian has a relatively simple form. 

The gradients of 0 and ~ only have one nonzero component each , ey 

and ~y• so that the exchange energy has two terms. Subscripts on 

the functions~ and e represent spatial deri vatives, e.g., ~Y~ a~/ay. 
aM 

There is only one term in V·M, ~ , so that Hd has only a y-component, 

which is proportional to MY. From Eq. (2.i.6e ), the demagneti zing 

energy i s given by 

(2.1.1) 

In the case considered here, there are no externa l in-plane fields, so 
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that H has onl y one component, Hz. By combi ning these r esul ts wi t h Eqs . 

(2. i . 4a ) and ( 2. i. 7) ~ the Lagrangian i s gi ven by 

Ms · 2 2 2 2 
L = - y- ¢ cose - Ku s in 0 - A( OY + s in e ¢y) 

(2.1.2) 

Far from the wall , M aligns with the easy axi s , so that 8+0 as 

y-.,.- oo , and 0->'Tf as y+kx>. With these conditions , e (y) meets t he f i rst 

boundary condition, Eq. (2. i. 3b) . Since L does not depend on ¢y in 

thi s r egion, ¢ meet s the second boundary condition, Eq. (2. i. 3c ) . 

St ati c Wal l Structure 

The static wal l structure may be det ermined by s ubst ituting the 

expli cit form for L in t o the Eul er equations . In a s-t ati c wall, 8 

and ¢ are zero, so that the firs t and last t erms in Eq . (2 . i .3a ) 

are zer o. The ki neti c energy term in L i s zero, so that Hani lton' s 

principl e i s equival ent t o mini mi zing the pot enti al ener gy . For the 

wall to be st ati onary , Hz mus t be zero. By substitut ing Eq . (2.1. 2) 

i nto Eq . (2 .i . 3a ) , t wo coupl ed, nonlinear differ ent i al equations 

ar e obtained: 

Ku s in2e 2A8YY + 2A s in28¢~ + 2 M2 
7f s . 28 . 2 s1n s1n ¢ = 0 ( 2. 1 . 3a ) 

and 

- 2A s in28 8 ¢ + 2nM2 . 20 s in2¢-2As in2e¢ 0 ( 2. 1 . 3b ) s1n = y y s yy 
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The solutions of these equations~e(y) and ¢(y), describe the spatial 

dependence of H in a static one-dimensional wall. 

The wall structure is determined by assuming a simple form for 

¢(y) and then showing that this ass umption l eads to an exact solution 

of the differential equations. If ¢ (y) = ¢ is a constant, then Eqs. 

(2.1.3a-b) reduce to 

( 2. 1 . 4a) 

and 

( 2 . 1 . 4b) 

The second equation is satisfied at each point in the wall when ¢ is 

an integer multiple of rr/2. Bl och wa ll so lutions (l) are obtai.ned by 

setting¢ equa l to zero or rr. Equat i on (2.1 . 4a) may be integrated to 

give the wall shape. 

e{y) = 2 arctan (exp (f--)) (2.1 . 5) 
LIB 

where 6B = ~characterizes the width of the domai n wall. This 

funct i onal form has the useful property: 

s ine 
6B 

(2.1.6) 

Since pE i s translationally invariant, the l ocat ion of the wall center 

is undetermined and ha s been taken as zero. Neel wall solutions (7) 

are obta·ined by making¢ either+~ or-~. The wall shape i s exactl y 
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the same, bu t the wall width parameter 68 i s replaced by 

6B 6 = _ ___;:;___ 
N 

/1 + Q-1 
(2 .1.7) 

These r esults were obta ined by assuming t hat the material surfaces do 

not affect· the wall structure. With thi s assumption, the Bloch and 

Neel wall structures do not depend on film thi ckness. Static wall 

structures in real, thin-film materia l s are considered in Sec. 2. 3. 

There, it is shown that near the surfaces the wall ha s a Neel struc-

ture, while in the film center it has a Bloch structure. 

The Bloch and Neel wall shapes e (y ) are shown in Fig. (2.1.1). 

In both cases, changes in e are confined within a few 68 of the wall 

center. The Bloch wall sol ut i on represents an energy compromise 

between ani sot ropy, which tends to compress the v1a l l, and exchange, 

which tends to expand it. In t he Neel wall so l ution, there i s an 

additional energy te rm due to V·M within the wall . It can be seen 

from the f unctional form, Eq. (2.1. 5), that V·M takes the approximate 

form of t\-10 charged sheets with opposite s i gn separated by a di stance, 

6 6. These charges attract each other, and tend to compress the wall. 

Therefore, the Neel wa ll wi dth i s always somewhat smal l er than the 

Bl oc h wall width. A relatively sma ll value, Q = 2, has been used in 

th i s figure to emphasize this di fference. The wall width parameter 

in bubble materials is typicall y l ess than 0.1 }Jm , so that the wall 

width i s usually much small er than t he f il m thicknes s . 

Since the energies of the Bl oc h and Neel walls are di fferent, 
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Fig. 2.1 .1. The Polar Angle e as a Function of Position (y/68) Through 
the Wall Thi ckness. Bloch and Ne~l wall structures are shown as solid 
and dashed curves , respectively. In calculating the Ne~l wall structure, 
the value Q = 2 was used. 
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they cannot both represent energy minima. The wall energy is obtained 

by integrating PE through the wall thickness, and by making use of 

Eq. {2.1.6). The Bloch wall energy oB and Neel wall energy oN ob

tained in this way are 

a = 4/.l\IC -B u .. {2.1.8a) 

and 

a = a 11 + q-l N B ( 2. l . 8b ) 

Clearly, the function e(y ) represents a l ocal energy minimum in both 

cases, since perturbations can be found in which all three terms in 

PE are simultaneous ly increased. TI Hence, the orientations, ¢=±~ , 

represent a local energy maximum, and the Neel wall represents a 

saddle point solution. It is the Bloch wall soluti on that represents 

the static, one-dimensional wall structure . Note that there are two 

physically distinct Bloch wall structures, corresponding to the 

orientations, ¢=0, n . These structures are sa id to have opposite 

senses of wall chirality. It will be shown that this dual chirality 

i s preserved even in the more complicated structures found in thin-

film materials. Neel walls a l so have two distinct chiralities, cor-

responding to <t>=±·rr/2. 

Walker ~-1od e 1 

Equations of motion for a one-dimensional wall structure are ob-

tained by assuming that o and <I> only depend on y and t. By substitut-
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ing the Lagrangi an, Eq . (2.1.2) and di ss ipati on fun cti on, Eq. (2.i. 5) 

int o the Eul er equati on, Eq . (2. i. 3a ), the f ollowing equati ons of 

motion ar e obtained: 

2 M
2 . 2 . 2 aMS . 0 

+ n s1n 8 s1n <P - - 8 = s y 

and 

M . 2 
--sys in88 - 2Ae <P s in2e - 2A¢ s in 8 y y yy 

(2.1.9a) 

(2 . l. 9b ) 

The solut i ons of t hese non li near, partial differentia l equation s , 

8(y ,t) and ¢(y , t ), spec i fy the dynami c behavi or of the one-di mens i onal 

wall structure. 

Soluti ons t o these equat ions of mo tion (S- lO ) are obtained by 

assuming t hat a moving wall has the same structu re as a s t at i onary 

wall. Assume that e (y ) mainta ins t he f unctional f orm , 

e (y, t ) = 2arctan (exp (s )) (2.1.1 0 ) 

wher e 

Her e , the wall pos ition q and t he wall wi dth parameter 6 are f unctions 

of time . It i s al so assumed t hat <P i s onl y a f unct i on of time . Th is 
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structure may be substituted into Eqs. (2.1.9a-b) by maki.ng use of 

the fo 11 owing: 

e = sines (2.l.lla) 

= sin28 

262 (2.l.llb) 

and 

(2.l.llc) 

A consistent solution is obtained by separatel y equating to zero the 

coefficients of sin (28 ), and sine in Eq. (2.1 .9a), and sin2e in 

Eq. (2 . 1.9b). The three equat ions which resul t are 

- 2A + 2K + 4rrMs2 sin 2~ = 0 
62 u 'I' 

( 2. 1 . 12a ) 

-M . aMs . 
-2cp+MH + -- cp=O 
y s z y (2.1.1 2b) 

and 

Ms . 2 al~ . 
y- s + 2rrMssin2¢ + ~ ¢ = 0 ( 2. 1 . 12c) 

Assume that changes in wal l width are relatively small and slow, so that 
. 

contributions to s from 6 may be neglected in comparison with contri-

butions from q [see Eq . (2. l.llc)]. This assumption i s most appro-

pri ate in hi gh-Q material s, and in cases where Hz is small. so that cp 

changes slowly. In this l imit, wall width changes are quasistatic, and 
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make no cont r ·ibu tion to the kinetic energy dens ity. l~ith this 

assumption, Eqs . (2. 1.12a- c ) reduce to 

. 
q = y6f(<t>) + al\<f> 

and 

cp = yH - ~ z 6 

wher e 

6 = 
6B 

~1 + s iQ 2<P 

and 

f( cp } = 2nt\ s i n2 cp 

( 2. 1 . 13a) 

(2. 1.1 3b) 

( 2. 1 . 13c) 

(2. 1 . 13d) 

In the limit of small damping, cp i s governed by the externa l field , whil e 

the wall velocity i s determined by the s i ze of Ms and the value of cp . 

Wh en cp i s zero or n , the wall has a Bl och structure, and 6 = 68 , 

7T while for cp = ±2 , 6 = 6N, and the wal l has a Neel structure. In cases 

where 6 i s zero, i.e., when <t> i s zero or in the limit, Q-~ , the 

structure ass umed here l eads to an exact solution of the equations of 

mot i on . Recent numerical solutions of the fu ll equations (l O) indi-

cate that the static wall shape and uniform¢ angl e are preserved even 

in more complicated s ituat i ons . In genera l , so lutions of Eqs . (2.l.l 3a-d) 

only r epresent approximate sol utio ns of the original equations of mot i on. 
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The mot ion described by Eqs . (2. 1. 13a-d) may be di_vided into t\-10 

distinct types: steady-state motion, and osci ll atory motion . In 

steady-state motion, ~ i s zero, and q = v i s a constant. Under 

these conditions, the l eft s ide of Eq . (2. 1.1 3b) is zero, or 

( 2. 1 . 14a) 

where 

( 2. 1 . 14b) 

The steady-state velocity i s proportional to Hz, and the mobility~ 

i s inversely proportional to a . The steady-state ori entation of ~ is 

obtained from Eqs. (2. l.l 4a) and (2. 1.1 3a). Conversely, for each 

orientation of ~ . there i s a corr espondi ng steady-state velocity: 

v = y~ ( ~ ) • 2nMss i n2~ (2. 1 . 15) 

Thi s relationship i s shown in Fi g . (2.1. 2). Because the wall width 

contraction in Eq. (2 .1.1 3c ) i s sma ll in high-Q materials, it ha s 

been neglected in t hi s figure. The velocity increases as ~ increases 

from t he static ori entation ¢
0 

= 0. The maximum steady-state velocity, 

which occurs at~=~ , i s ca ll ed the Wal ker vel oc i ty: 

y~B • 2nMs 

/ 1 + 1 
2Q 

(2.1.1 6) 

For ¢<0, the velocity i s negat ive, and reaches a minimum velocity 
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Fig. 2.1 . 2. Ste~dy-S tate Vel ocity v/vw as a Functi on of <j> . 

2/T 
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-'TT -vw at~ =~ . The same behavior can be seen for the other wall 

chirality, whi ch ha s a static orientation, ~0 = TI. 

Osci ll atory motion occurs if Hz exceeds a certain critical value . 

The bal ance between Hz and the damping term in Eq. (2 . 1. l 3b ) required 

for steady-state motion is only possible if Hz i s l ess than the 

Walker field: 

= VW = 2TIM 
Hw 1-1 s Ct. (2.1.17) 

If Hz is greater than Hw, ~ i s greater than zero , and ~ increases 

with time. In the limit , o. + 0, ~ in creases at a constant rate, and 

q fol l ows the curve shown in Fig . (2. 1 .2) . In the regions O<¢<TI/2 

and TI<~<~'TT' the wal l travels forward, whil e for ¥<~<TI and ~~~<2TI, 

the wall travels backward by an equal amount, so that the wall osc il -

l ates back and forth with no change in average pos i tion. For nonzero 
. . 

dampi ng, the damping term in Eq . (2.1 .l3b) decreases~ when q is 

positive and incr eases ~ when q i s negat ive, so that the wall 

spends s lightl y more t i me moving forward . The wall still alternates 

between forward and r everse motion, but there i s a sma ll average . 

forward velocity. ~~alker has s hown (lO) that th i s average velocity 

decreases with increasing H
2

. The r eason for this i s that when Hz 

is l arge, the asymmetry in ~ caused by the damping terms becomes 

less s igni fica nt, and the forward and reverse motion tend to cancel 

more compl etel y . A more thorough treatment of oscillatory motion may be 

obtained by solving Eqs. (2. 1.1 3a-d ) , numerica l ly, but this i s beyond 

the scope of the present disc uss i on. 
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Section 2.2 . Motion of One-Dimensional Wall Structures in t he 

Presence in In-Pla ne Fi eld s 

The presence of a constant, homogeneous in-pl ane field H. signil p 

ficantly alter s the ana l ysis in two r espect s. First , the in-plane 

fi eld changes the boundary conditions on¢. Far from the wall, t here 

i s no kinetic, exchange, or demagneti zing energy, so that the 

Lagrangi an i s just 

(2. 2. 1) 

The boundary condi t ions are determined by substituti ng this expres-

s ian into the Euler equat ions . The so lution of these equa tions , 

which are the asymptot i c values of e and ¢ , 8° and ¢0 , are given by 

(2.2 .2a) 

and 

(2. 2. 2b) 

for Hip << Hk. Here , Hk i s the effective ani sotropy field, 

2Ku/Ms . It wi ll sometimes be conven i ent to sca l e in-plane fi el ds to 

Hk. Such scaled fi elds are indicated by l ower case l ett ers , e . g . , 

Hx/Hk = hx. The in-pl ane fi eld tilts M sli ghtly away from the easy 



-38-

axis, but, more import ant, the projection of~ in the xy-plane 

aligns with the in-plane field. Second, the Lagrangian is complicated 

by two additional energy t erms . By making use of the alternate form 

for the kinetic energy, Eq. (2 . i . 4b),the Lagrangian may be written 

as 

-M 
sin2e-A[ e2 + s i n

2
e ¢~] L = ~ si nee K 

y u y 

+ M H s z cos o + t~ H 
S X 

sine cos¢ + MsHy sine sin¢ 

+ 2nM2 . 2 . 2 0 
s sw e s1n <1> + PE (2. 2.3) 

0 where pE is the constant background energy dens ity far from the wall, 

- M H sine0 cos¢0 
- M H s ine0 s i n¢0 

S X S y (2.2.4) 

Equations of motion for the wall may be obtained by subst iting thi s 

expression into the Euler equation. Approximate solut ions ar e again 

obtained by constraining the wall to a particul ar dynami c structure. 

Static Wal l Structure 

Differ ent structures have been used in t he past to approximate 

the static wall structure in the presence of in-pl ane f i elds . In all 

cases, the function e{y) i s not strongly influenced by the in -pl ane 

field, because it i s determined mainly by much larger exchange and 

ani sotropy energy terms. However, s ince ¢(y) i s determined by in-
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plane field and demagnetizing energies, which may be comparable in 

size, it can be significantly affected by the in-plane field. For the 

special case in which Hip is parallel to the wall (Hx only), these 

energy terms are simultaneously minimized by taking ¢(y) to be zero. 

For other orientations of Hip' the situation is more complicated, 

and the structure is approximated by making certain assumptions about 

M(y). In Bloch-type walls (l 3 , 14 ), demagnetizing energy is avoided 

by making r~Y constant, so that 11 • M is zero everywhere . The constant 

value of r~y is determined from the boundary conditions, Eqs. (2.2.2a-b). 

This structure is most suitable when Hip is small compared to 4rrMs, 

since it then avoids the more significant energy term; however , when 

Hip and 4rrMs are comparable in size, it gives poor resul ts because M 
is always misaligned with the in-plane field near the wall center. In 

Ne~1 - type walls ( l 4), ¢ = ¢0 is a constant, which is determined from 

Eq. (2.2.2b). Thi s structure is most suitable when H. i s large , 1p 
because it aligns M with H. as much as possible. However, when H. lp lp 

is small this structure overestimates the demagnetizing energy . 

Neither type of structure gives adequate results over the entire 

range of in-plane fields considered here . 

The problem with these assumptions is that the structure near the 

wall center i s determined by conditions far from the wall. Solutions 

mu st meet the proper boundary conditions, so that the parameters which 

characterize the entire structure, either My or ¢0
, are determined by 

the in-plane fi eld. It seems clear that a better solution would be 

one in which the structure near the wall i s determined by both the 
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in-plane field and demagnetizing energies. Hubert (l 5) has proposed 

more general one-dimensional structures in which this is accomplished 

indirectly, but the conceptual complexity of these structures make 

them unsuitable for use in modeling dynamic properties. 

A relatively simple structure~ which takes into account both the 

in-plane field and demagnetizing energies, is shown schematically in 

Figs. (2 .2. 1) . It is assumed that inside the wall, B(y) has the con

ventional Bloch wall form, Eq. (2.1.5), with an adjustable wall width 

parameter 6 . When e reaches the asymptotic value given by Eq. (2. 2. 2a ), 

it remains constant (solid line) rather than continuing with the Bloch 

wall form (dotted line ). The function ~ (y) shown in Fig. (2.2.lb) 

has an adjustable, constant value in the vicinity of the wall ~i · 

At the pJint where e reaches e0
, ~ (y) begins a linear transition to the 

asymptotic value ~0 given in Eq. (2.2.2b). The width of this transi-

tion region b is also adjustable. Note that in the limit, Hip~o, 

this model structure reduces to the Bloch wall structure. 

The static wall structure is determined by calculating the 

Lagrangian based on this model structure . The Lagrangian per unit wall 

area La is obtained by integrating L in Eq. (2 .2.3) through the wall 

thickness. The result to first order in hip is 

2M . 
2A+ 

La = 
___ s ~, q - 2K 6 - 2MSHZ q 

y u 6 

+ nHxMs6 cos~i + nHyMs6 
. i 

s1n~ (2.2.5) 

4 M26 TI S sin2~i 
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Fig. 2.2. l . Schematic Diagram of the Model Wa ll Structure in the 
Presence of In-plane Fields. Fig. (2 .2 .la) s hows B, the assumed struc
ture for e (y). and Fig. (2 .2. lb) s hows the structure for ¢ (y) . 
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Note that the transition region from ¢i to ¢0 makes no contribution 

to La in first order, so that La is only a function of three dynamical 
i variables, q, ¢ , and t::.. In a stationary wall, q and H are zero, z 

so that La only depends on ¢i and t::.. Treating these as dynamical 

variables, the Euler equations for the static structure are, from 

Eq . ( 2. i . 3a). 

Hx 
. i - H COS¢i + 4M . 2 i 0 s1n¢ s1n ¢ = y s (2.2.6a) 

and 

t::. = 
t::.B 

-vl 
1 h . i sin2¢i - nhx cos¢ - 1T ys1n¢ + 

Q 
(2.2.6b) 

The fir;t equations give the static value of ¢i in terms of a compromise 

between the in-plane field and demagnetizing energies, as expected. 

The second equation indicates that the static wall width is decreased 

by demagnetizing effects, as in the Neel wall structure,and is increased 

by the in-plane field. The reason for this is that the in-plane field 

energy is lowered by tilting M away from the easy axis, toward H;p· This 

is accomplished here by widening the domain wall. 

The static wall energy i~ calculated by integrating the energy 

density pE through the wall thickness. Since only the energy due to 

the presence of the wall is of interest, the constant background 

energy p~ is subtracted from pE. The result is 
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(2.2.7) 

where the static orientation of ¢i is determined from Eq. (2.2.6a). 

Note that as H. tends to zero, the wall energy reduces to the Bloch 1p 

wall energy. 

Domain Wall Motion 

Moving walls will be analyzed by assuming that the dynamic wall 

structure has the same form as the static structure. The Lagrangian 

per unit area is given in Eq. (2,2.5), The dissipation function per 

unit area La is obtained by integrating L from Eq. (2.i.5) through 

the \'Jall thickness, and by making use of the assumed wall structure. 

The result, to first order in H. , is 
1p 

F = - . - .9. + ¢ a6r\ [ ( · ) 2 . 2 ] 
a y 6 

(2.2.8) 

From now on, the superscript on ¢i will be omitted, and the value of 

¢ (y) inside the wall will be designated by¢. By substituting the re~ 

sults of Eqs. (2.2.5) and (2.2.8) into Eq. (2.i. 3a),and by treating 

q, ¢ , and 6 as dynamical variables, the following equations of motion 

are obtained (l 6), 

and 

q = y6f(¢ ) + a6¢ 

¢ = yH - 9:.9_ 
z 6 

(2.2.9a) 

(2.2. 9b) 
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where 

1 

(2.2.9c) 

and 

f(~) = ~ H sin~ - ~ H cos~ + 2 M sin2~ ~ 2 X ~ 2 y ~ TI. S ~ (2.2.9d) 

These equations are similar to those obtained in the Walker model, 

except that the in-plane field has a significant influence on dynamic 

behavior through the function f(<P). As before, the precession of <P 

is due mainly to the external field. The changes in wall width de-

scrit:ed by the third equation are the same as in a static \•Jall 

[see Eq . (2 .2 .6b)]. 

The motion described by these equations may also be divided into 

steady-state and oscillatory motion. The steady-state vel ocity v is 

still given by Eq. (2.1.14a), but the \•Jall \'lidth is changed slightly 

by the in-plane fi eld according to Eq. (2.2.9c). The relationship 

between v and <P analogous to Eq. (2.1.15) is 

v = y6[2rrMs sin2<P + ~x sin<P - ~ Hy cos<P] (2.2.10) 

The static orientation of <P , which satisfies f(<P
0

) = 0, may be changed 

by an in-plane field. For example, when HY i s positive, M tilts away 

from the plane of the wall, toward the in-plane field, and <P
0 

increases. 

However , with Hx only, <P i s zero, and M i s already aligned with the in-
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plane field, so that no change occurs. Oscillatory motion results 

when ~Hz exceeds the maximum steady-state velocity, i.e., the maximum 

value of v in Eq. (2.2.10). When this occurs, ~increases and q follows 

the steady-state velocity curve, as in the Walker model. However, 

since v(<P) may be strongly affected by in-plane fields, oscillatory 

motion is sensitive to these fields. 

A more general energy conservation principle is obtained by cal

culating the Hamiltonian of a moving domain wall. The Hamiltonian per 

unit area is defined by (4 ) 

7? = 
a 

3 
L: P· q. 

i = l 1 1 
(2.2.11) 

where (qi ,q2,q3) = (q, <j> ,6 ). From Eq. (2.2.5), the momentum conjugate 
2f\ 

to q is p1 = ata/aq1 = ~- All other momenta are zero. With this 

result, the Hamiltonian may be written as 

(2.2.1 2) 

Since 6 i s connected to <P through Eq. (2.2.9c ), the Hamiltonian may 

also be written as 

. ~2rt-. 1/2 
"] r [1 h h . +~~] 2MH r~~ = a8 - rr xcos<j> - rr ys1n <j> Q - s zq (2.2.13) 
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This is immediately recognized as the sum of the kinetic energy of the 

domain wall, and the potential energy due to wall position. Since 

La does not depend on time explicitly, the Hamiltoni an i s a constant 

of the motion. 

The steady-state and oscillatory motion found both here and in 

the Walker model may be viewed as a consequence of energy conservation. 

The power dissipated per unit wall area is from Eq. (2.2.8), 

2a6M [( · ) 
2 

. 2] 
2Fa = --y~ ~ + ¢ (2.2.14) 

In steady-state motion, the kinetic energy is constant, because ¢ is 
. 

zero, so that the input power from the external field, 2MsHzq, must 

be dissipated by viscous damping . By equating these two expressions, the 

steady-state velocity is ~Hz , as before . If ~Hz exceeds the max imum 

possible steady-state velocity, then some power is left over and must 

be stored as kinetic energy. However, the kinetic energy has a 

maximum value, which occurs when ¢ reaches fin the Walk~r model. 

When ¢ rotates beyond this value, the kinetic energy decreases, and the 

wall returns energy to the external fi eld by moving backwards . Oscil-

latory motion may be seen as a consequence of energy alternating 

between kinetic and potential forms in suc h a IJJay that the total, fi? , a 

i s constant. Because a i s not actually zero , some energy is dissipated, 

r es ulting in a small, net forward velocity. 
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Harmonic Oscillator Model 

Wall motion may be approximated as simpl e harmonic motion in the 

limit of small deviations from static conditions. It has long been 

recognized (l 8- 20 ) that walls possess inertial properties, which may 

be described in terms of an effective mass per unit wall area. This 

effective mass is determined by expanding the kinetic energy in Eq. 

(2 .2.13) in powers of the velocity. The energy is first expanded in 

powers of ~. and then ~ is related to v through Eq. (2.2.9a). The 

result to second order in v is 

crK.E. =crB + ± [~2:::~] v
2 

+Order (v
3
l (2.2.15) 

where f~ = ~:1~=~0 . 

The term in brackets is just the effective wa ll mass : 

2t1 
m = ~-----'s=--

y2~f~ 
(2 .2. 16) 

In the absence of in-plane fields, this expression reduces to the 

classical Doring mass (l 8 ). 

(2.2.17) 

The restoring force acting on the wall is provided by the surrounding 

domains. Assume that Hz can be approximated by Hz = Ha u(t)+H'q(t). 

The fir s t term represents the uniform time dependence of Hz through the 
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function u(t) , while the second term r epresents the restoring f orce. 

The effective field gradient H' comes from the s urrounding domains, 

and i s ca lcul ated for bubble and -stripe domains in Appendix A. 

In general, H' depends somewhat on the domai n configuration. The 

gradient is typicall y only a few tenths of an oersted per wall width, 

so that it may be negl ected when calculating the wall structure. 

The harmonic oscillator model is obtained by expanding Eqs. 

(2. 2.9a-d ) around ¢
0 

in the limit of sma ll damping . The linear 

equations which result may be written as a s ingle harmonic oscillator 

equation for the wall position: 

(2. 2.1 8 ) 

The coefficient of q , which is proportional to the wall mass density, 

is in agreement with Eq. (2.2. 16). For stability, H' must be l ess 

than zero. The frequency of the wall oscillations described by Eq. 

(2.2 .1 8) i s given in the limit of sma ll damping by 

_l -. /H' 2A f' v = 2TI v y 0 B 0 (2. 2.1 9) 

The factor f
0
' depends on H. , so that the oscil l ation frequency can be 1p 

significantly altered by an external in-plane fie l d. In bubble 

materials, vis typically a few megaHertz. The characteristic decay 

time of these osc ill at i ons i s 
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(2.2.20) 

A typical decay time in bubble materials is about 20 nsec, but in the 

special low-loss sample investigated inCh. 3, it is more than 300 

nsec. In deriving this model, f(¢) was approximated by the first term 

in its Taylor series, f~ • (¢-¢
0

). As can be seen from Fig. (2.1. 2)". 

where v = y6Bf(¢) is shown as a function of¢, this approximation is 

only valid for small deviations from ¢
0

. 

Section 2.3 Twisted Wall Motion in Thin-Film Materials 

Wall motion in thin-film materials is co~plicated by interactions 

with v • Hat the film surfaces. In Sees. 2.1 and 2.2, it was assumed 

that the material boundaries were far away, so that these interact ions 

were neglected; however, in thin-film material s, these interactions 

must be taken into account. In the materials considered here, where 

6B is much less than the film thickness h, the source configuration 

at the surface does not depend on the internal wall structure (2l). 

Therefore, the surface demagneti zing field may be treated as a constant 

magnetic field. This field has a large in-plane component perpen

ducular to the wall Hs(z). As described earlier in Sec. 2.2, such 

in-pl ane fields tend to reorient ¢ toward they-axis, normal to 

the wall. Since the field magnitude vari es through the film thickness, 

the surface demagnetizing field produces a twisted wall structure, i.e., 

a structure in which ¢ varies with z. The purpose here is to develop 
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a model of twisted wall motion based on the model structure proposed 

in Sec. 2.2. 

The surface demagnetizing field may be calculated for various 

domain configurations. It is assumed that H
5 

is constant across the 

wall width and is given by the value at the wall center. The perpen-

dicular component of the surface demagnet izing field is given by an 

integral over the magneto-static charge density: 

(2.3.1) 

This expression may be evaluated analytically in the limit, 68-+0, 

for an isolated wall, and the result i s <22 ) 

(2.3.2) 

For a parallel stripe array with zero bias field, the result is <22) 

= 4t~5 tn (

tanh 

tanh 

<¥-a-<~ + z))) 
< ;d ( -~ - z)) 

For bubble domains, Hs is given by 

(2.3.3) 

(2.3 .4a ) 
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where 

D( r;) 
rr/2 ( 

= J de case 2n sine + ( . 2 s1n e 
(; 

0 

(2.3.4b) 

and r
0 

is the bubble radius. In bubble domains, the surface .field also 

has a z-component, which tends to bulge the wall. Wall bulging is 

discussed later. Note that all of these fields have unrealistic singu

larities at the film surfaces. This results from the assumption, 

68 = 0. A more rigorous approach would be to calculate the orientation 

of M near the film surface in detail. This would result in a redis-

tribution of the surface charges, and a finite demagnetizing field. 

Instead, Hubert (23 ) has suggested that this redistribution can be 

simulated with the transformation, 

z -+ z - (2.3.5) 

which is only effective within a fewwall widths of the surface. Use 

of this transformation does not significantly alter the wall twist 

structure, but it does eliminate the unrealistic singularities at the 

film surfaces. 

The fields in Eqs. (2.3.2-4), as modified by the transformation, 

Eq. (2 . 3.5), are shown in Fig. (2.3.1). Here , Hs is plotted as a 

fun ct ion of position through the film thickness. The values of bubble 

radius, r
0 

= l.lh, and stripe width, d = 2.3 h, represent typical 
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F g. 2.3.1. Perpendicular Component of the Surface Demagnetizing 
F eld, Hs/4M

5
, as a Function of Position, Z/H, in I solated Walls (solid), 

Parallel Zero-bias Stripes (dotted) and Bubble Domains (+). The 
bubble radius, r

0 
= 1.1 h, and the stripe width, d = 2.3 h, used in 

the calculation are typical for these domain structures. 
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domain geometries found in these materials (see Append ix A). From 

symmetry, the fields are antisymmetric about the film center. It can 

be seen that the fields in an isolated wall are almost identical to 

those found in zero-bias stripe domains . However , the fields found in 

bubble domains are always slightly smaller than in the other configura-

tions. Since the most accurate experimental data presented in Ch. 3 

wereobtained in stripe domains, the examples given in the remainder of 

Ch. 2 are for zero-bias stripes. Examples from bubble domains are not 

significantly different . 

Additional exchange t e rms must be incorporated in La• because the 

wall structure varies with z. To simplify the analysis, changes in 

wall width are neglected, so that ~ is always ~8 . \~ith this assumption, 

contributions to exchange from 8
2 

come from two sources: variations 

in wall po~ition, aq/az = q
2

,and variations in boundary conditions, 

e0 Since contributions from this latter source are second order z 

in hip' they may be negelcted. 

to first order in hip' by 
+= 

J dy Ae; 
-co 

Contributions to La from q
2 

are given, 

(2.3.6) 

Contributions to exchange from variations in the boundary condition, 

¢~ , may also be neglected, s ince these terms , being proportional to 

sin2e0 , are also second order. Inside the wall, sin2e is not small, 

and large changes in ~ can occur, so contributions from ¢
2 

must be 

included. To first order, thi s additional exchange energy is given 

by 
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+oo 

J dy Asin
2e ¢; ~ 2A6B ¢; (2 .3. 7) 

-00 

Because Hs' and hence the wall structure, vary over distances much 

larger than the wall width, these additional terms are much smaller 

than the exchange energy of the wall itself, 2A 
6B 

Additional magrieto-static interactions are also introduced by 

variations in wa ll structure. Since ¢varies with z, interact ion 

between V·H within the wall is no longer given exactly by the local 

form, Eq. (2.1.1). However, because the charge distribution takes the 

form of two charged sheets separated by a short distance , 68, the 

characteristic interaction length is only a few 6B( 22 •24 >. Since wa ll 

structure changes are negligible over such di stances, this ma gneto-

static interaction is still given approximately by the local form. 

Additional sources occur whenever the wall is not parallel to the 

easy axis, i.e., whenever q
2 

is not zero (l 6). However , it is assumed 

that q
2 

is much smaller than one, so that these additional sources 

may be neglected . With these approximations, the demagnetizing 

energy density is still only a function of the local orientation of M. 

Static Twisted Wall Structure 

Differential equations for the static wall structure are obtained 

by substituting the Lagrangia n into Eq. (2 . i.3a ) . By combining the 

r esu lts from Eqs. (2.2.5 ) and (2.3 .6,7), the Lagrangi an may be 

written as 
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2M . 2A 2 
L = _s n..q - a + 2'~ H q - - q 
a y '~' B ' s z 6B z 

(2.3.8) 

Note that the in-plane field perpendicular to the wall consists of a 

homogeneous component from external sources H , and an inhomogeneous 
y 

' 
component from the surface fields Hs(z). In a stationary wall, q, 

cp, and Hz are zero, so that the first and l ast terms in Eq. (2.i.3a) 

are zero. By substituting Eq. (2 .3 .8) into Eq. (2.i.3a), the follow-

ing differential equations are obtained: 

(2.3.9a) 

and 

(2.3.9b) 

It is assumed that there is no interaction between the wall and the 

material boundaries, so that the proper boundary c0nditions are, from 

Eq. (2.i.3c), cpz = 0, and qz = 0. The only solution of Eq. (2.3.9b) 

that is consistent with these conditions is qz = 0, i.e., a flat wall 

parallel to the easy axis. The effects of wall bulging, which are only 

thought to be significant in very thick materials (Z5), have been 

neglected here. 
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An approximate form the wall twist structure is obtained by ne-

glecting exchange in Eq. (2.3.9a). In the absence of external in

plane fields, the approximate form is 

¢(z) = arc sin ( H8sM(zs)) (2.3.10) 

This magnetostatic solution is shown as a dotted curve in Fig. (2.3 .2 ) . 

In regions where Hs> 8Ms, ¢ is taken as ~' and in regions where Hs<-8Ms, 

¢ is -~ . The points where IHsl is equal to 8~1s are called the 

critical points, zcl and zc2. The surface field is strong enough 

near the top surface to rotate M out along the +y-axis, perpendicular 

to the plane of the wall. Similarly, M is along the -y-axis near the 

bottom surface. Between the critical points, ~rotates gradually 

between these two ori entations, with IT in the film center along the 

+x-axis. There is an equally valid solution with an oppos ite sense 

of wall chirality, in which Min the film center is along the -x-axis. 

More accurate twist structures are obtained by taking into account 

exchange effects . This is usually done in one of two ways. In the 

Ritz method (21 •22 •24 •26 ), the wall structure is approximated by a 

trial function,which contains several adjustable parameters. The 

total energy of the system is calculated, and then minimized with 

respect to these parameters . Thi s method has the advantage that non

local dipole interactions are treated rigorously. One di sadvantage 

i s that solutions are restricted by the choice of trial functions. 

In some situations (21 ), where the trial function i s not sufficiently 
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Fig. 2.3.2. Azimuthal An9le ¢ as a Function of Position Through the 
Film Thickness, z/h, in a Static Twisted Wall. The magnetostatic 
structure (dotted ) was obtained by neg l ecting exchange effects. The 
solid curve, which includes the effects of exchange, was calculated 
numerically. Both structures were obtained by using Hs(z) from zero-
bias stripes. The arrovJsi.ndicate the upper and lower crit i cal 
points, zcl and zc2. 
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general, the Ritz method can lead to erroneous results. In the 

numerical technique used here, the solution is calculated at a set of 

100 grid points, spaced equally through the film thickness. At each 

point (indexed by i) the derivative in Eq. (2.3.9a) is replaced by 

the finite difference expression, 

~zz = 
¢i+l - 2¢i + ¢i+l 

(~z)2 (2.3.11) 

where ~z is the grid point spacing. This results in a system of non

linear equations for the solutions ¢i' which is solved by using the 

Newton-Raphson iterative method (l 2). The boundary conditions are 

imposed by setting ¢i at the first two and last two grid points equal 

to each other. This method has the advantage that the solutions are 

completely general, but one disadvantage is that the nonlocal inter-

actions must be approximated by a local expression, as discussed 

earlier. The twist functions obtained here are similar to those 

obtained earlier (lS) by using a similar numerical method. 

An example of the twist structures obtai . ed with this method is 

shown in Fig. (2.3.2) as a solid curve. The surface fields used in this 

calculation were the same as those used to calculate the maQneto

static solution (dotted curve). The material parameters were taken 

from the sample investigated in Ch. 3. The only significant differ-

ence between these two solutions occurs near the critical points. 

Since exchange energy was neglected in calculating the magnetostatic 

solution, this solution greatly overestimates this energy component. 
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In the numerical solution, $moves away from the magnetostatic 

solution in such a way that the corresponding rise in energy due to 

-MyHs is more that offset by the reduction in exchange energy. In 

the film center, exchange effects are negligible, and the two solutions 

are nearly the same. The average energy of this twist structure is 

lower than a8 due to the presence of the surface fields; however, 

since these fields are much smaller than Hk' the reduction is only 

about 2%. As with the magnetostatic solution, there is a second, 

equivalent numerical solution \'Jith the opposite sense of wall chirality. 

Motion of Twisted Wall Structures 

Equations of motion for twisted wall structures are obtained by 

substituting the Lagragian, Eq. (2.3.8), into the Eu l er equations, 

Eq. (2.i.3a). By treating q and$ as dynamical variables, two 

equations are obtained (2?). 

(2.3.1 2a) 

and 

$ = (2. 3.l2b) 

where 

+ 2nMs sin2$ {2.3.12c) 
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These equations are similar to those derived earlier for the motion of 

one-dimensional structures, except for two additional exchange terms. 

The first equation indicates that the local velocity is governed 

primarily by the orientation of ¢ , as in Sees. 2.1 and 2.2. The 

dynamic effects of curvature on the velocity are characterized by the 

parameter, 2A2 Since this parameter is typically less than 1 Oe 
Msh 

in most materials, while f( ¢ ) is usually at least 50 Oe, curvature 

in ¢{z) does not significantly affect the local wall velocity. The 

second equation indicates that the rotation of ¢ is governed by a com

bination of the external field and curvature in the wall surface. The 

effects of exchange in thi s case can be significant. The boundary con-

ditioris are the same as those in the static case, ¢
2 

= 0, and ~z = 0. 

These equations of motion form the basis for the analysis of twisted 

wall motion presented here . 

The time dependence of the average value of¢ is determined 

primarily by the external field. The average value may be calculated 

from Eq. (2.3.12b) by integrating through the film thickness. In the 

limit, a-*0, the 

~ 
2 

~ J dz 
h 

- 2 

result i s (27) 

' 
¢(z ) = <¢> = yH

2 
(2.3.13) 

Quant ities averaged through the film thi ckness will be indicated by 

brackets, e.g., <¢> The boundary condition, q = 0, has been used to z 

eliminate the term proportional to q
2 2

. Since <¢> i s proportional to 
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the average wall momentum, th1s states that the time rate of change of 

momentum is proportional to the external field, regardless of the in

ternal wall structure. Because the sum of the internal torques due 

to wall curvature is zero, one-dimensional and twisted wall structures 

obey the same momentum principle. 

Steady-State Motion 

The equations of motion may be solved by assuming steady-state 

conditions. The wall is assumed to be flat (qz=O) and mov ing with a 

constant velocity v. The twist structure does not change v1ith time, so 

that cp is zero everywhere. Hith these assumptions, Eqs. (2.3.12a-b) 

reduce to 

and 

v = l-!H z 

( 2. 3. 14a) 

(2 . 3.14b) 

The first equation specifies the twist structure as a function of v, 

and also the inverse relationship, v( <¢> ) . It is identical to the 

static condition, Eq. (2.3.9a), except for an additional constant term 

v/vw. Since the internal structure i s constant by assumption, no 

additiona l energy can be stored internally, and all input energy from 

the ex t e rnal fi eld must be dissipated by viscous damping . Hence , 

twi sted wa ll s in steady-state motion obey the same linear mobility 
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relation as one-dimensional structures. 

Twisted wall motion may be modeled as simple harmonic motion in 

the limit of small steady-state velocities. Assume that for small 
. 

deviations from static conditions, the average velocity <q> follows 

the steady-state relation v( <~> ) given by Eq. (2.3.14a). Also assume 

that the wall is subject to a restoring force as discussed previously. 

Eqs. · (2.3.12a-b) are then linearized by approximating v(<~>) around 

<~> ~ 0 by v'<~> where v' - av 1 The result is a linear 
~ a ~ • o - a<~> · 

~ · a 
harmonic oscillator equation for the average wall position similar 

to Eq. (2.2.18). The effective wall mass is given by 

m = 2m (vw) D v' 
0 

(2.3.15) 

For the 3imple twisted wall shown in Fig. (2.3.2) as a solid line, the 

(23) effective mass is l .7 m0 , in agreement with calculations by Hubert 

and Schl5man (20) Hence, for small steady-state velocities, a 

twisted wall can be treated as a harmonic oscillator, but its effective 

mass is nearly twice the Doring mass. 

The wall surface may be treated as a flexible membrane for small 

deviations from steady-state structures. Assume that the wall is 

moving with some steady-state configuration, specified by Eq. (2.3.14a). 

The twist function is expanded around its steady-state configuration. 

Similarly, the wall velocity is expanded around vas q = v + E(z). 

Expand f( ~ ) at each point by the first term in its Taylor series. By 

negl ecting damping, Eqs. (2.3.12a-b) may be reduced to 
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(2 ,3. 16) 

d
4

E For small deviations, the term proportional to-- may be neglected, 
az4 

so that Eq. (2 . 3.16) reduces to the wave equation. Here, the surface 

2A · tension S is just the exchange energy density, z- , and the local mass 
B 

density misgiven by Eq. (2.2.16). Deviations from a flat wall pro-

pagate along the surface as traveling waves with local phase velocities, 

-{[. Hence, the wa·ll surface may be treated as a fl exi b 1 e membrane 

with a nonuniform mass density. 

The steady-state approach used here is only valid over a limited 

range in <¢> . Recent numerical. calculations by Hubert (23 ) indicated 

that solutions to Eq. (2.3.14a) only exist for lvl < 0.21 v and 
w 

l<<t>> l < 0.27. For drive fields larger than 0.21 Hw, the wall cannot 

move with a flat surface and constant internal twist structure. This 

situation is analogous to the oscillatory motion in one-dimensional 

wall structures described earlier. Hence, while the steady-state 

approximation is useful in analyzing small deviations from static 

conditions, it cannot describe motion at higher drive fields. 

Twisted Wall Motion in the Presence of Horizontal Bloch Lines 

Twisted wall motion under higher drive field conditions i s dominated 

by internal wall structure. If <¢> rotates beyond the limit of steady-

state motion, dynamic forces within the wall produce an in ternJl 
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twist structure, called a horizontal Bloch line (HBL). This structure 

is a variation of ¢ along the z-direction, and constitutes a 

bridge between opposite senses of wall chiral ity. The region of rapid 

· rotation [ see Fig. (1.3)] extends horizontally along the wall surface 

As the HBL moves vertically, the dynamic properties of the wall are 

strongly affected. In the first part of this analysis, the dynamic 

forces which result in HBL nucleation and propagation are described. 

In the second part, the effects of the HBL on wa ll motion are estimated 

by using the HBL model. Finally, more accurate solutions of the equa

tions of motion are obtained, and the t'esults are compared with the 

qualitative analysi s. 

Horizontal Bloch Line Nucl eation and Propagation 

A qualitative understanding of the HBL nucleation process i s ob-

tained by considering loca l dynamic properties within the wall. 

Recall that the local properties are governed primarily by the steady

state velocity function, v( ¢)=y68f( ¢) [see Eq .( 2.3. 12a )] . This func tion 

has been calculated at five different points through the film thi ckness , 
-

and the results are shown in Fig.(2.3.3). The static value of ¢a t each 

point is indicated by a l arge dot. The open circles indicate the values 

of¢ in a wall with the opposite sense of chirality. The vertical scale, 

2vw, is al so indicated. It can be seen that the local dynamic proper

ties are strongly influenced by the surface fields. Curve A was 

calculated for a point just above the upper critical point, at z/ h=0.45. 
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Fig. 2. 3.3 . Steady-State Vel oc ity, y = yh8f ( ~ ). as a Functton of~ 
at Five Different Points Throug h the Fil m Thi ckness. Curves A through 
E were calculated fo r z/h = 0.45, -:35, 0, -0.35, and -0 . 45, respective
ly. The surface fi eld s from zero- bias stripes were used. The static 
value of~ at each location is indicated by a l arge dot for one 
of chirali t y and by an open circl e for the other. The verti ca l scale 
is indicated by the velocity, 2v . w 
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The large surface field at this point (9.9 Ms) reorient~ the center 

spin perpendicular to the wall, so that the static value of~ is 

+ ¥ Since point A is above the upper critical point, this value 

also applies to a wall with the opposite sense of chirality. The 

velocity curve reflects the 2n-periodicity associated with in-plane 

fields, rather than the n-periodicity associated with the demagnetizing 

energy in the Walker model. Note that the maximum steady-state 

velocity is increased by the surface field from v to 3.1 v . Curve w w 
B was calculated for a point just below the upper critical point, at 

z/h = 0.35. Here the surface field is somewhat smaller (6.0 Ms), so 

that the center spin is only partially aligned with the surface field. 

The static value of ~ is 0.27n for one sense of chirality, and 

0.73n for the other. The maximum velocity, 2.1 vw, is lower, and the 

curve shows the influence of the demagnetizing energy, especially 

in the region near ~ = ~ . Curve C was calculated for a point at the 

film center, where the surface field is zero. Because no surface 

fields are present, the static value of ~ is either zero, or n , 

depending on wall chirality. The maximum velocity here i s just vw. 

This same curve was discussed earlier in connection with the Walker 

model [see Fig. (2.1.2)]. Curves D and E were calculated for points 

just above and below the lower critical point, at z/h = -0.35 and -0.45, 

respectively. Since the surface fields are antisymmetric about the 

film center, these curves are just reflections of curves B and A 

about the line ~= 0. 

Hori zontal Bloch line nucl eation results from loca l dynamic 
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properties near the critical points. For example, consider the 

case in which a positive drive field is applied to a stationary wall. 

Initially, the wall has a flat surface (qz = 0), and a static twist 

structure like thos e described earlier. Since both q and q are zz 

initially zero, the initial rotation rate, ¢ = yH , is the same z 

everywhere [see Eq. (2.3. l2b)]. It can be seen from Fig. (2.3.3) 

that points just below the upper critica l point (e.g., point B) soon 

encounter a region in ¢where v(¢) is essentially zero. Elsewhere, 

wall velocities are still increasing (e.g., at points A, C, D, and E), 

so that the wall section near point B eventually lags behind the rest 

of the wall. This produces a large, backward wall bulge in which q zz 

is positive. This positive curvature significantly increases ¢ in 

the wall section near point B, so that¢ rotates rapidly toward higher 

angles. Once ¢ passes the magnetostatic orientation corresponding to 

the opposite sense of wall chirality (open circle), v(¢) becomes 

large and positive. The wall section at point B catches up the rest 

of the wall~ and the bulge disappears, so that the local value of¢ is 

again the same as in the rest of the wall. The values of¢ at points 

A and B correspond to the other sense of chirality, while the values 

at points C, D, and E still correspond to the original sense of 

chirality. Somewhere between points B and C, a bridge beh.,reen opposite 

wall chiralities, an HBL, i s formed . A s imilar ana lysis applies for 

negative drive fields, but in thi s case the HBL nucleates at the lower 

critical point. In this way, the wall bulge formed as a result of 

loca l dynamic properties provides the additional rotaUon necessary 
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to nucleate a horizontal Bloch line . 

The additional rotation necessary to propagate the HBL toward 

the opposite fi.lm surface is also provided by the wall bulge. Again, 

assume that the drive field is positive. As rotation continues, new 

points closer to the lower surface rotate into regions where the 

average value of v(¢ ) is essentially zero. For example, when the local 

value of ¢. at point C reaches i• v(¢) decreases and becomes negative. 

At the same time, velocities at other points in the wall are relatively 

large and positive, so that eventually the wall section at point C 

lags behind the rest of the wall. This produces positive wall curvature, 

which increases the local values of ¢, so that the center spin quickly 

rotates toward the opposite sense of chi ra 1 ity. l~hen ¢ rotates beyond 

the magnetostatic value (open circle), v(¢ ) becomes large and positive 

again. The wall section at point C catches up to the rest of the wall, 

and the bulge moves on toward the lower surface. Now, only points 

D and E correspond to the original wall chirality, while points A, 

B, and C correspond to the opposite chirrality. The HBL is now some

where between points C and D. In this way, the wall bulge propagates 

the HBL toward the lower surface . 

This analysis indicates that HBL nucleation may not occur at 

higher drive fields. Nucleation depends on the formation of a wall 

bulge, which increases the local value of ¢ through the effects of 

wall curvature. The size of the bulge, and hence, the size of the 

increase in ¢, depends on how l ong ¢ remains within the region of low 

average velocity. For example, consider point B in Fig. (2.3.3). If 
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the drive field is small, ¢ = yHz is small, and ¢ spends a relatively 

long time in the region where v(¢) i s small, i .e., in the region between 

the dot and the open circle. During this time, the wall section at 

point B is almost stationary, while the rest of the wall is moving 

forward, so that a relatively large bulge is formed . The additional 

rotation from wall curvature is sufficient to nucl eate the HBL. How-

ever, if the drive field i s larger , ¢ spends a short time in the low 

velocity r egi on, and a smaller bulge is formed. For sufficiently 

large drive fields, the additional rotation from the bulge may not be 

sufficient to nucl ea te an HBL. Therefore, it seems li kely that the 

wall twist structure at high drive field s does not conta in HBL ' s, 

but instead more closely resembles the ini t i al static twist structure. 

The Horizontal Bloch Line Model 

An approximate model of twisted \'/all motion has been proposed by 

Argyle ~_l ~!_, ( 3D) ,and by Slonczev1sk i (27) in which wall mot ion i s 

dominated by hori zonta l Bloch lines . Because wall motion i s strongly 

affected by these structures, the steady-state approximation can no 

longer be used. Instead, the principles of energy and momentum con

servat ion given in Eqs. (2.2. 13) and (2.3. 13) are used to est imate 

dynamic behavior. The HBL model was originally proposed in order to 

account for the average wall behavior associated with velocity satura-

tion. Here , it is shown that the HBL str ongly ~ffects the in stantaneous 

wa ll behavior as well. 
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The internal structure assumed in the HBL model is shown schemati-

cally in Fig. (2.3.4). It is assumed that cp(z) always lies near one of 

the magnetostatic solutions (dotted curves). Soon after Hz is applied, 

an HBL nucleates near the upper critical point zcl, and travels toward 

zc2. An example of such a twist structure is shown in curve (ABCDE). 

The total rotation within the HBL, 2~0 , depends on the HBL position zl 

according to 

fHs(zL)) 
~0 = arccos \ BMs 

The average value of cf> is related to zl by 

zcl 

<cf>> t J dz ~0 (z) 
zl 

(2.3.17) 

(2.3.18) 

By combining the results of Eqs . (2.3.17-18), it can be seen that as 

<cf>> increases, the HBL ~aves toward the bottom surface. The motion 

of the HBL is determined from Hz by relating <cf>> from Eq. (2.3.13) to 

zl through Eq . (2.3.18). 

The wall velocity is determined by considering the distribution 

of energy within the magnetic system. The input power per unit wall 

length from the external field, 2MsHzh<q> , must either be dissipated 

by viscous damping, or be stored by internal structure. For a typical 

saturation velocity of 10m/sec, it is clear from Eq. (2.2.8) that 

unless that wall structure is drastically different from a Bloch 

wall structure, the wal l can, at most, dissipate only a few percent 

of the input power. Therefore, the remaining energy mus t be stored 
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Fig. 2.3.4. Schematic Diagram of the Wall Twist Functions ~(z ) assumed 
in the HBL Model. The dotted curves represent the static twist struc
ture, while the solid curves represent various dynamic structures. The 
upper and lower critical points, and the HBL position zl are indicated 
by arrows. The HBL twist angle ~0 i s also shown. 
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tnternally. Assuming that all of the energy goes into the HBL, the 

input power may be equated to EL' the time rate of change of the HBL 

energy. By making use of momentum conservation, Eq. (2.3.13), the 

average wall velocity is given by 

<q> = y dEL 
2r-1 h a<¢> s 

(2.3.19) 

dEL . 
Here, EL = -- <<f>> has been used. Just as with the one-dimensional d<<f>> 

structures, the velocity is not directly related to the external drive 

field. Instead, it is governed by changes in HBL energy as it moves 

through the film thickness. 

The HBL energy is estimated by minimizing the local kinetic 

energy density. The kinetic energy in twisted walls is given approxi-

mately by 

(2.3.20) 

where the effects of external in-plane fields and wall bulging have 

been neglected. It is assumed that Hs does not vary significantly 

across the HBL width, so that Hs(z) may be approximated by the constant, 

Hs(zL). By making use of the substituting, ~ (z) = n- <t> (z), and the 

definition of the magnetostatic solution, Eq. (2 . 3.10), the kinetic 

energy may be written as 

(2.3.21) 

The HBL structure minimizes this energy subject to the boundary con-
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ditions, r,->±r,0 as z+-..too , where r,0 is gi.ven by Eq. (2.3.17). Thi.s 

problem is simi l ar to the one-dimensional wall structure calculation 

considered in Sec. 2.1. In a domain wall, which represents a contin-

uous rotation between opposite orientations along the easy axis, the 

width is determined by a compromise between exchange and anisotropy 

energies. Similarly, an HBL represents a continuous rotation between 

opposite wall chiral ities. The HBL width is mainl y determined by a 

compromise between exchange and demagnetizing energies, but since the 

demagnetizing energy is small er than Ku by a factor of Q-1 , the HBL 

width is expected to be wider than 68 by a factor /q. 

The HBL shape and energy are obtained by minimizing the energy 

in Eq. (2.3.21). The HBL shape satisfies the usual Euler equation that 

is obtained by using standard techniques from the calculus of 

variations. The first integral, 

(2.3.22) 

indicates that the exchange energy is everywhere equa l to the sum of the 

demagnetizing and surface field energies . With this result, the HBL 

energy is given by (2l) 

00 

t:L == 2 J dz(2A68z;:;) == BAt\~ . (sin z;:0 - z;:Oco sr;;0 ) . (2 . 3.23) 
- 00 

This represents the additional kinetic energy per unit wall l ength due 

to the presence of the HBL. From the fir st integral, the wall shape i s 

given by 
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z ( r;) - zl lq 6B J 
dr; I (cosr; ' - cosr;0 )-l (2.3.24) 

0 

The characteristic width of the HBL i s just /Q 6B, as expected. The 

actual s i ze of the HBL is est i mated by approximating r;(z ) by a 

straight line with s l ope, sz lz~z . The HBL width WL i s just the dis
L 

tance between points where r; reaches ±r;0 , or 

2r;o ;q 6B 
\·JL ~ (2.3.25) 

l-cosr;0 

Note that WL is infinite when r;0 
= 0, i.e.~ at nucl eation . This indi

cates that the HBL model cannot adequately describe the nucleation 

process. 

The radius of wall curvature required to propagate the HBL along 

the wa ll may be estimated. When the HBL passes a fixed point ,¢ 

must rotate by 2r;0
. The time availabl e for thi s i s WL/zl ' so that 

the average rotation rate is 2r;0 ~L/WL . Assume that all of this 

rotat ion is suppli ed by the exchange term in Eq . (2.3.12b) . By com-

bining this result with Eqs. (2.3.25), (2.3.1 3), and (2.3.18), the 

required radius i s given by 

-1 r;o 
qzz = o 

1-cos r; (2 .3.26 ) 

In most bubble materials, thi s corresponds to a radius of curvature that 

i s roughly the same size as the fi lm thickness. 
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The wall velocity may now be determined from EL. By combining 

the results from Eqs. (2.3. 17-19) and Eq. (2.3.23), q i s related 

to the surface demagnetizing field by 

• A {f ( aH [ ) - 'IT . s 
<q> :: - fr\ Ku az-

zl 

( 2. 3. 27) 

This average velocity has been calculated as a function of zl for 

the demagnetizing fields from zero-bias stripes, and the results are 

shown in Fig. (2. 3.5) . The magnetic parameters used in this calcula

tion were taken from the sampl e investigated in Ch. 3. When the HBL 

is nucl eated , the velocity is at its peak value, vp = 19m/sec. As 

it moves toward the bottom surface, the velocity decreases, reaching 

its minimum value when the HBL is at the film center. As the HBL 

continues, the velocity ri ses again, and reaches vp at zcz· The 

peak velocity can be calculated ana lytica ll y for the surface fields in 

an isolated wall, and the result is (27 ) 

v :: 23.8yA 
p hiK 

u 

(2.3.28) 

aHs 
Since vp depends on az- , the peak veloci ty is sensitive to the domain 

configuration. 

Equations of motion are obtained by assuming that an HBL is always 

present somewhere betv.;een zc l and zc2. By combining Eqs. (2.3.13,17,1 8) 

and ( 2.3.27 ), these equations may be written as 

yhHz r Hs ( zl ) J -1 
zl - 2--- Larc cos( 8Ms ) (2.3.29a) 
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Fig. 2. 3.5. Average Wall Velocity ~ q> (m/sec) as a Function of HBL 
Pos ition. zl/h, in Zero-Bias Stripes. the material parameters used 

in the calculation were taken from the material investiga t ed in Ch. 3 . 
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and 

<q>= (2.3.29b) 

Similar results, which tnclude the effects of damping, have been ob

tained by Hagedorn (29 ) However, in low-loss materials the effects 

of HBL damping are small. The first equation states that the HBL moves 

in response to Hz' as required by momentum conservation. The second 

equation, which comes from conservation of energy, relates the motion 

of the wall to the HBL position. 

The twist in the HBL cannot increase indefinitely . When it 

reaches the lower critical point, i.e . , when ~0 reaches rr, one of the 

two things can happen; either the HBL moves below zc 2 and remains pinned 

near the surface, or it becomes unstable and disappears in a process 

called punch-through . It can be seen in Fig. (2.3.4) that if the HBL 

is pinned in region (HGDE), a second HBL can nucleate at zc2 and 

travel back toward the top surface. Such a structure can be seen in 

curve (ABFIGDE) . This second HBL can also be pinned at the top sur-

face, in which case a third HBL nucleates, and so on. This mechanism, 

known as HBL stacking (29 ), allows <¢> to increase well beyond n 

by generating a number of HBL's . Note that the momentum stored in the 

stacked HBL ' s can be recovered by reversing this process, and returning 

the wall to its original chirality. According to the punch-through 

mechanism, the twist structure becomes unstabl e just before <¢> r eaches 

n. The exchange torque near the bottom surface i s large enough to 
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rotate the spins in the region (ED) by 2n . After this rotation is 

completed, the twist structure, curve (ABFGH), is essentially the same 

as a static twist structure, but with the opposite sense of wall 

chirality . A second HBL, shown in curve (ABFIGH), nucleates at zc 2, 

and moves toward the top surface. Unlike the HBL stacking mechanism, 

punch-through causes irreversible changes in the wall structure; 

the momentum and energy associated with the HBL are lost, and the 

wall chirality is reversed. Hhich, if either, of these mechanism 

actually occurs must be determined experimentally. 

Velocity Saturation 

Wall velocities independent of drive field result when the HBL 

punches through each time it reaches the film surfaces. When punch

through occurs, it is assumed the stored kinetic energy is dissipated. 

\~hen the HBL reaches either critical point, its energy is 8nAr\12n/Ku, 

from Eq. (2.3.23). The time required to build up this energy is just 

the time required to rotate <~> by n,Y~ from Eq. (2.3.13). Hence, 

the average power absorbed by the. HBL i ~ s,n)\ yHJ¥.. . By equating this 
u 

to the average input power from the external field, 2 MsHzhv
0

, the fol-

lowing expression for the time-averaged wall velocity v
0 

is obtained: 

412TI yA 

h~ 
(2.3.30) 

This average velocity is saturated, i.e., i ndependent of the external 
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drtve field. Incidentally, stnce y
0 

only depends on the HBL energy at 

the critic~l points, and since Hs(z) is 8 Ms at these points by defi

nitton, the value of v
0 

does not depend on the domain configuration. 

The saturation velocity only depends on the energy dissipated during 

punch-through. 

It can be seen from this analysis that velocity saturation does 

not require the existence of HBL's as a specific, micromagnetic 

structure. Velocity saturation comes from the assumption that a 

fixed amount of energy is dissipated during each n- rotation of <¢>. 

Other internal structures would serve equally well. For example, 

suppose the kinetic energy of a one-dimensional structure is lost 

each ti me it reaches its maximum value, when ¢ 
oByHz 

Eq. (2.2.13), the average input pov1er is 2TIQ 

velocity is 

v = 
0 TI 

TI reaches ~- Then from 

so that the saturation 

(2.3.31) 

In most bubble materials, this is only about twice the saturation 

velocity expected from the HBL model. In a recent review, de Leeuw (3l) 

reports that the average ratio of the experimental saturation velocity 

to v
0 

in Eq. (2.3.30) is 3.312.6, with extremes of 12.3 and 0.5. 

Cl early, the HBL model cannot account for the experimental data to 

within an order of magnitude. It seems clear that the factor-of-two 

difference between Eqs. (2. 3.30,31), whi ~h results from assuming dif-

ferent internal wall structures, is not significant. Hence, the 

existence of veloc ity saturation does not, in ~ny sense, imply the 
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existence of horizontal Bloch lines as specific structures. Instead 

it is only a rough indication of average power dissipation. 

Section 2.4 Numerical Simulation of Twisted Wall Motion 

More rigorous, numerical solutions of the equations of motion, 

Eqs. (2.3.12a-b), have been obtained by using the Dufort-Frankel 

method (l 2) In this finite difference technique, the solutions 

¢(z,t) and q{z,t) are calculated at regular time intervals for a set 

of points spaced equally through the film thickness. For a particular 

grid point (i) and time step (n), the spatial derivatives are re-

placed by 

gi-l,n- gi,n+l- gi,n-1 + gi+l,n 

(6z) 2 (2.4.1) 

where g can be either ¢ or q . Here, 6z is the grid point spacing. 

The time derivatives are replaced by a similar expression, 

g 
gi,n+l - gi,n-1 

26t (2.4.2) 

where 6t is the time step interval. The force-free boundary conditions, 

¢ = 0 and q = 0, are imposed at the surfaces. In the discussion of z z 
twisted wall motion presented in Sec. 2.3, approximations were made 

in describing solutions to the equations of motion. The solutions 

presented here represent more accurate descriptions of twisted wall 

motion, because their accuracy is only limited by the error associated 

with the numerical technique. 
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The equations of motion were solved for the particul ar case in 

which a constant drive field, Hz = 2 Oe, is suddenly applied to a 

stationary wall. For initial conditions, it was assumed that the 

wall slope qz was zero everywhere, and that ¢(z,t=O) was given by the 

static twist structure shown in Fig . (2.3.2) as a solid curve. The 

effective field gradient was zero, so that there was no restoring force 

acting on the wall. The material parameters used in the calculation 

were taken from the sample investigated inCh. 3 (see Table 3.1). 

The grid spacing, h/51, was chosen so that internal wall ·structures 

were represented by several points, and the time step, ~t=O.l nsec, 

was chosen so that changes in internal structure take place slowly in 

comparison with this time. The accuracy of the solution was verified 

by comparing results with those obtained by solving the equations with 

a completely different numerical algorithm, called the Crank-Nicolson 

method (l 2). The values of <¢> from these two solutions agree within 

0.3%, and the values of <q> agree within 4%. 

Results from this calculation are shown in Figs. (2 . 4.1-4). In 

Fig. (2.4.1), the average wall position, <q>/~B (solid), and the 

average angle, <¢> (dotted), are shown as functions of time . The 

average angle is zero at t =O, and increases linearly with time. The 

behavior of <q>/68 is more complicated due to the presence of 

internal wall structure. Examples of the internal wall structure at 

various times during the motion are shown in Figs. (2. 4.2-4). In 

each case, the angle ¢ i s shown in the upper fi gure as a function of 

pos ition through the film thickness, z/h. The dotted curve repres ents 
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Fig. 2.4.1. Average Wall Position, ~q>/6 (solid), and Average 
Azimuthal Angle, <¢> (dotted), as Fun~tio~s of Time (nsec) from a 
Numerical Solution of the Equations of Motion, Eqs . (2.3. 12a-c). The 
drive field was constant, H = 2 Oe. Material parameters were taken 
from the sample inv estigate~ in Ch . 3. The times for which internal 
structures are shown in Figs. (2.4.2-4) are indicated by short line 
segments . 
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Fig. 2.4.2. Azimuthal Angle ¢(A) and Wall Surface (q- <q>) (B) as 
Functions of Position Through the Film Thickness, z/ha fort = 5, 10, 
15, 20 and 30 nsec. The dotted curve i s the m~gnetostatic solution, 
Eq. (2.3. 10). The dashed curve represents the average wall position 
at each time. The l arge dots indicate the position of the HBL . 
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Fig. 2.4.3. Azimuthal Angle ~(A) and Wall Surface {q-<q>) (B) as 
Functions of Position Through the Film Thickness, z/h, for t = 45, 
50, 55, 60, and 65 nsec. The dotted curve is the magnetostatic solution, 
Eq. (2.3 .1 0). The dashed curve represents the average wa ll poslt i on 
at each time. The large dots indicate the position of the HBL. 
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Fig. 2.4 . 4. Azimuthal Angle ¢(A) and Wal l Surface q(B) as Functions of 
Position Through the Film Thickness, zfh, for t = 70, 80, 85, 90, and 
100 nsec. The dotted curve represents the magnetos tatic solution; 
Eq. (2.3.10). The wall surfaces are shown relative to the initial 
starting position, q = 0. 
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the magnetostatic solution, Eq. (2.3.10), for both senses of wall 

chirality. In Figs. (2.4.2-3), the lower figures show the wall 

position q as a function of z/h relative to the average wall position 

<q>, which is indicated by a dashed line. The large dots indicate 

the positions of the HBL's (i.e., where¢=;) shown in the upper 

figures. The vertical scale is indicated by the distance 568. To aid 

the discussion, the wall surfaces in Fig . (2.4 .4) are shown relative to 

their initial position, q(z)=O, and the large dots have been omitted. 

In order to emphasize changes in the wall surface, the wall slopes 

~-az - qz, have been exaggerated by a factor of 2.3. The times for 

which internal structures are shown in these figures are indicated 

in Fig. (2.4.1) by short vertical lines next to the solid curve . . 

During the initial wall response, a horizontal Bloch line is 

formed at the upper film surface. This nucleation process is shown 

in Fig. (2.4.2). Initially, the wall has a flat surface, and a 

relatively simple, static twist structure. When the drive field is 

applied, at t=O, the wall responds by increasing¢ at a uniform rate, 

while maintaining a flat surface. After 5 nsec, the wall twist struc-

ture has moved up by a small amount, about 0.05n, with no significant 

change in shape. By t = 10 nsec, the wall surface has a small back-

ward bend at the upper surface. The curvature in this region increases 

¢ locally, and causes the twist structure to rotate toward the opposite 

sense of chirality, as can be seen in the upper figure. As time con-

tinues, a bridge between opposite chiralities, an HBL, is gradually 
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formed. By t = 15 nsec, a small HBL can be seen at z = +0.26 h. Since 

~> increases with time, the amount of twist in the HBL must also in

crease, and it moves toward the film center. By t = 20 nsec,. the HBL 

is at z = +0.17 h. Note that as the twist in the HBL increases, the 

size of the bulge also increases in order to provide the required 

rotation necessary to propagate the HBL. By t = 30 nsec, the HBL has 

moved just beyond the film center, to z = -0.03 h. It must be em

phasized that, while the structures shown here closely resemble 

those assumed in the HBL model, no a priori assumptions were made about 

the nature of these structures; the HBL structures shown here come 

directly from the equations of mot ion. 

The presence of the HBL has a significant effect on the average 

wall behavior at the beginning of the motion, as can be seen in Fig. 

(2.4.1). This behavior results from two competing effects. Initially, 

the wall has a r elatively simple structure, so that it tends to ac

celerate to a high velocity. As the HBL is formed, the wall absorbs 

less energy per unit increase in <~>, so that the wall tends to de

celerate. As a result, the wall accelerates to a maximum velocity of 

21 m/sec at t = 16 nsec and then decelerates, reaching a minimum 

velocity of 6 m/sec at t = 39 nsec. Hence, the behavior of the average 

wall position i s characterized by an initial fast response in which the 

wall is relatively structure-free, followed by HBL-dominated motion. 
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Intern~l vibrations of the w~ll surf~ce? which c~n be seen in 

Fig. (2 ,4.3), produce the two sma ll bumps in <q> shown in Fig. (2.4 .1~. 

Eqs. (2.3.29a) and (2.3.17) show that the HBL velocity is inversely 

proportional to the total twist contained in the HBL, 2 ~0 . As a 

result, the HBL slows significantly as it moves toward the lower film 

surface. The curvature required to propagate the HBL decreases so that 

the bulge separates from the HBL, and moves on toward the lower surface. 

At t = 45 nsec, the wall bulge has just reached the lower surface. 

Between t = 45 nsec and t = 50 nsec, the bulge reflects off of the 

lower film surface without change in sign, because of the force-free 

boundary condition. Because the wall surface has a nonuniform mass 

density, the bulge changes shape as it travels along the surface, so 

that, by t = 65 nsec, the bulge has broken up into a number of sma ll 

undulations. Because ~and q are coupled dynamically, HBL motion i s 

somewhat irregular due to vari ations in wall curvature associated 

with the internal vibrations. Recall that the presence of a wall 

twist increases the effective wall mass. With an HBL present, almost 

all of the wall mass is concentrated in the region of the HBL, so 

that the center of mass coincides with the HBL position. The effects 

of vibrations on the average wall position can be seen most clearly 

by considering the first bump. For t = 45 nsec , it can be seen in 

Fig. (2.4.3) that the center of mass is sli ghtly behind the average 

wall position (dashed line ) . Between t = 45 nsec and t = 50 nsec, 
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the average wa 11 posit ion moves w_e 11 ahea.d of the center of mass, so 

that the average velocity in this interval is relatively htgh, as can 

be seen in Fig. (2 . 4.1). Between t ~ 50 nsec a.nd t =55 nsec, the 

average position moves back toward the center of mass, whi ch res ults 

in the relatively low velocity seen during this interval. The same 

analysis also applies to the second bump, but by this time, the 

vibrations are breaking up, so that the second bump is smal ler than 

the first. For larger times, the vibrations have broken up, and the 

average position is no longer effected. 

Punch-through occurs when the HBL r eaches the lower film sur

face. Examples of the internal wall structures during thi s process 

are shown in Fig. (2.4.4). The twist functions are shown in the top 

figure just as in Figs. (2 .4.2-3), but the wall surfaces q(z) are 

plotted relative to the initial starting pos ition, q = 0, rather than 

relative to the average wall position. At t = 70 n~ec , before punch

through begins , the HBL is at z = -0.31 h, and the wall surface is 

relatively flat, though small undulations from internal vibrations can 

still be seen . Between t = 70 nsec and t = 80 nsec, the wall moves 

forwa rd , but the lower half moves more slowly than the upper half. 

This produces the 'decel er at ion of the average wall position shown 

in Fig. (2.4.1). During punch-through, between t"" 85 nsec and 

t = 95 nsec, the upper half of the wall moves forward s lightly, 

while the lower half moves backward by a relatively large amount. 
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As a result, the average wall posttton shown tn Fig. (2.4,1) moves 

backward during this interval. Note that punch-through begins when 

<¢> is 0.97n. Between t = 80 nsec and t = 85 nsec, the upper wall 

section still moves forward, wh1le the section below z = -0,28 h 

moves backward slightly. During punch-through, the center spins near 

the lower surface rotate rapidly from about -0.13n toward +3n/2, as 

can be seen in the upper figure. The reason this produces the back

ward motion found near the lower film surface can be seen by con

sidering Fig. (2.3.3e). Recall that this curve represents the local 

wall velocity, y6Bf(¢), as a function of¢ for a point just below the 

lower critical point, at z = -0.45 h. Between t = 85 nsec and t = 

95 nsec, when ¢ rotates between +n/2 and 3n/2, Fig. (2.3.3e) shows 

that the local velocity is large and negative. This produces the 

large backward motion near the lower film surface. During punch

through, the HBL disappears due to rapid rotation of the center spins 

near the lower film surface. At the same time, local dynamic proper

ties cause the wall section in this same region to move backwards. 

As a result, the average wall position remains constant during punch

through. 

Kinetic energy from the HBL is transferred to the wall surface 

during punch-through, and stored as elastic and potential energy. 

The wall section near the lower surface moves backward, thereby in

creasing the wall's surface area, and returning energy to the external 

field. When the wall rebounds, energy is coupled into internal vibra-
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tion modes. This produces very large fluctuations in both the wall 

s~rface and the wall twist function, whith can be sean. in Fig. (2,4 .4 ) 

fort= 100 nsec. Presumably (27 >, the energy stored in the modes is 

eventually dissipated by viscous damping; and the wall is left with 

the opposite s·ense of chirality. If the drive field is maintained, 

a second HBL is formed at the lower critical point, and the process 

is repeated. However, the presence of vibrations makes the wall 

structure different from the initial static structure, so that a 

fast response like that found at the beginning of the calculations 

is not observed. In the example considered here, where the damping 

is very small, the vibrations persist, and the calculation diverges 

for t = 100 nsec. In other examples with higher damping, the 

periodic formation and punch-through of HBL's is observed. 

In one sense, HBL propagation is analogous to domain wall motion . 

In the absense of surface demagnetizing fields, the magnetostatic 

curves shown in Fig. (2.4 .2 ) would be horizontal lines, ~ = 0 and 

~ = n. In order to change wall chirality, the center spins would 

have to rotate uniformly by n throughout the film thickness. The 

main effect of the surface fields is to move the magnetostatic curves 

closer together in the upper half of the wall, and farther apart in 

the lower half. Instead of changing chirality uniformly, it becomes 

much easier for the wall to change sequentially through HBL motion. 

In the same sense that wall motion represents sequential rotation 

between opposite orientations along the easy anisotropy axis, HBL 
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Fig. 2.4.5. Calculated Wall Position. q/6 • from the Horizontal 
Bloch Line (dashed) and Simple Harmonic Os~illator (dotted) Models. 
The drive field conditions and material parameters are the same as 
those used in Fig. (2.4.1-4). For reference, the average wall posi
tion from Fig. (2.4.1) is shown as a solid curve. 
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motion represents sequential rotation between opposite wall chirali-

ties. Hence, the analogy drawn earlier between static HBL's and static 

domain walls also applies when these structures are moving. 

Results from this numerical solution of the full equations of 

motion may be compared with the more approximate analysis presented 

in Sec . 2.3. Fig. (2.4.5) compares the motion expected from the 

harmonic oscillatory model (dotted) and the HBL model (dashed) with 

the average wall motion obtained in the numerical solution (solid). 

It was shown earlier that the wall has a relatively simple wall struc-

ture during t~~ first few nanoseconds of motion, so that the initial 

response should resemble a wall moving with a constant effective mass. 

In the presence of a constant restoring force, the initial response 

should resemble simple harmonic motion [see Eq . (2.2.18)]. However, 

in the example shown in Fig . [2.4.5], the restoring force is zero, and 

q/~ is never significant, so that the initial response is parabolic, 

q(t) = H M t 2;m, rather than sinusoidal. The mass used in this expres-a s . 

sian, m = 1.75 m0, is just the effecttve mass of the static twist 

structure that was used as initial conditi~ns in the numerical solu-

tion. It can be seen that these two curves are in good agreement 

for the first few nanoseconds . As expected, deviations occur after 

about t = 16 nsec, when the HBL begins to ~ffect the wall motion. 
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The equations of motion from the HBL model, Eqs . (2.3.29a,b), 

have been solved numerically for the same conditions, and the results 

are shown in Fig. (2.4.5) as a dashed curve. Since the model assumes 

that the HBL is always present, the calculation begins at t = 16 nsec, 

with an HBL located at the upper critical point, and ends at t = 79 

nsec, when the HBL reaches the lower critical point . The position 

of the dashed curve has been adjusted to match the solid curve at 

t = 16 nsec. It can be seen that the two solutions are in good agree

ment up to about t = 45 nsec. In the time interval, 45 < t < 65 nsec , 

the solid curve shows two bumps which are not seen in the HBL model. 

However, agreement is not expected in this region, since the bumps 

are due to vibrations of the wall surface that are not treated by 

the HBL model. As the HBL approaches the lower surface, for t ~ 60 

nsec , the HBL model underestimates the actual wall velocity. This 

is due to the assumption made in the HBL model, that the field 

gradient aH ;az is uniform across the HBL width. As can be seen in s . 

Fig. (2.3.1), the surface fields from zero-bias stripes are fairly 

uniform near the film center . Hence, the approximation is most yalid 

when the HBL i s in this region. The surface fields are quite non-

uniform near the film surfaces, so the model does not accurately 

describe wall motion when the HBL is in this region. The average 

field gradient on the HBL is somewhat higher than the valu e assumed 

by the model, aH ; azJ , so that the actual wall velocity is hig her . s 
z=zl 

[see Eq. (2.3 .29b )] . Since the HBL reaches the lower critical point 
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at about the same time in both solutions, this comparison shows that 

the HBL model accurately describes the motion of the HBL. 

The numerical solution of the full equations of motion may also 

be compared with other aspects of the discussion in Sec. 2.3. 

Momentum conservation requires that <~> be proportional to H regard-z 
less of the internal wall structure [see Eq. (2.3.13)]. Since H

2 

is constant in the numerical solution, <~> increases linearly with 

time [see Fig. (2 . 4. 1)], and the slope, 3.59xl07sec-l, is in good 
7 -1 agreement with the expected value, yH

2 
= 3.70xl0 sec . The 2% 

difference between these values i s attributed to the effects of 

damping. The HBL widths given in Eq. (2.3. 25) have been compared with 

the structures shown in Figs. (2.4.2-3). Since internal vibrations 

produce significant changes in ~ (z), an accurate comparison can only 

be made with structures for t < 50 nsec. While the HBL width shown 

in these structures varies by nearly 40%, the average difference 

between the HBL width shown here and WL is only 4%, so that the HBL 

width is given accurately by Eq. (2.3 .25 ). -1 The wall curvature q
22 

has been calculated numerically from the structure shown in Fig. 

(2.4.2) for t = 30 nsec, and the results have been compared with 

q -l from Eq. (2.3.26). The average radius of curvature in the 
zz 

numerical solution, 3.8 ~m, is in good agreement with the value given 

by the HBL model, 4.0 ~m. The peak velocity from Eq. (2.3.28), 

v = 19.6 m/sec, is in good agreement with the maximum velocity at-
p . 

tained during the initial response shown in Fig. (2.4.1), <q> = 21 m/sec 
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at t = 16 nsec. According to the HBL model, the wall should also 

reach this velocity when the HBL reaches the lower critical point, but 

the maximum velocity attained in the numerical solution, <q> = 25.5 

m/sec at t = 76 nsec, is about 30% higher than vp. Thi s discrepancy 

is due to the approximation used in the HBL model to estimate 

aHs/ az. The saturation velocity given in Eq. (2.3.30), v
0 

= 8 .2 m/sec, 

is much smaller than the aver age velocity shown in Fig. (2.4.1), 11.5 

m/sec. This difference is due in part to the fast initial response 

found in the numerical solution. Since the HBL model assumes that an 

HBL i s always present, it is more appropr·iate to compare v \>lith the 
0 

average velocity during the interval when an HBL is actually present, 

16 < t < 76 nsec. The average velocity during this interval, 9.4 

m/sec, is only 15% higher than v
0

. 

Section 2.5. Conclusions 

In treating domain wall motion in magnetic bubble materials, 

both the wall center q and azimuthal angle¢ must be all owed to vary 

with position al~ng the wall surface, In the more approximate HBL 

model, only the azimuthal angle varies with position, while the wall 

surface remains flat, and perpendicul ar to the film surfaces, This 

model is able, with in li mits , to account for some properties of wall 
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motion. However> numerical solutions of the full equations of motion 

show that changes in the wall surface can also be important. For 

example, HBL nucleation, which cannot be treated in the HBL model, 

results from the formation of a bulge in the wall surface. The bulge 

accompanies the HBL as it moves along the wall, and supplies the added 

rotation necessal~y to propagate the HBL. Interna 1 vibrations are 

excited, when the bulge i s reflected from the film surface, Because 

of the nonuniform wall mass density, these vibrations produce small 

fluctuations tn the average wal l position, When the HBL disappears 

at one of the film surfaces, the wall section in the same r eg ion 

travels backwards. As a result, the average wall position remains 

stationary during punch-through. Hence, while the HBL model is use

ful in describing some aspects of twisted wall motion> a complete 

analysis of horizontal Bloch line dynamics requires that variations 

in wall surface also be taken into account, This is accomplished 

here by solving the equations of motion numerically. 
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Chapter 3 

HBL Motion in a Low-loss Magnetic Bubble Material 

The bias pulse technique (1•2•3) has been used to investigate 

domain wall motion in magnetic bubble materials. Because the equili

brium sizes of bubble and stripe domains depend on the magnitude of 

the external bias field, a bias field pulse can be used to produce a 

step change in equilibrium wall position. As the wall moves to its 

new equilibrium position, its response is measured by using either 

the optical sampling (l), photometric (2) or stroboscopic method (4) 

The response can also be measured indirectly by using the bubble 

collapse method (S), but in situations where the response is relatively 

complex this method can give erroneous results. Other techniques 

have also been used to investigate wall motion. In wall resonance (6) 

the equilibrium position varies sinusoidally with time, and the 

amplitude and phase of the wall response are measured as a function of 

the excitation frequency. However, the resonance curves are usually 

quite complicated and difficult to interpret in terms of the underlying 

mechanical properties of the domain wall. Gradient propagation (?)of 

bubble domains has also been used because it more closely reproduces 

the conditions found in bubble devices. In this technique, bubbles 

translate along a bias field gradient that is produced by a pair of 

current conductors. Unfortunately, results from this method are com-



-101-

plicated by nonuniform drive field conditions and by the presence of 

vertical Bloch line structures. Of the experimental techniques cur-

rently in use, the bias pulse technique provides the simplest means 

of studying wall motion in bubble materials. 

Wall oscillation is observed during bias pulse experiments in 

some low-loss materials. In most materials, the wall stops when it 

reaches its new equilibrium position, and no inertial effects are 

observed (l). However, in some low-damping materials (S-ll) the 

wall moves well past equilibrium, and oscillates around this position 

with decreasing amplitude until the oscillations damp out. Oscil

lations have been found in bubbles (g), stripe domains (ll-l 3) and 

in isolated domain walls (lO,l 4). The shape and frequency of these 

oscillations depend on the internal wall structure, while the damping 

rate depends on the energy dissipated by the wall as it moves through 

the material. Wall oscillation is used here as a sensitive means of 

observing the effects of internal wall structure on domain wall motion. 

Wall motion will be analyzed by using the model presented in Ch. 

2. In comparing experimental results with those from the model, it 

is necessary to make several simplifying assumptions. Bubble and 

stripe walls are treated as isolated, straight domain walls. It is 

assumed that internal structures are uniform along the length of 

the wall, and that nonuniform twist structures, such as vertical Bloch 

lines, are not present. The restoring forces produced by the sur-

rounding domains are taken into account with a constant effective 
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field gradient H' [see Eq. (2.2.1 8)]. In principle, this gradient 

may be calculated from the static properties of bubble and stripe 

domains, but it is usually more accurate to calculate it from the 

measured change in equilibrium wall position, and from the bias · 

pulse amplitude. Surface demagnetizing fields, which produce the 

horizontal twist structures, are taken into account, but the slight 

variations in these fields with domain size are neglected. Hence, 

the fields for a 4.7 ~m bubble and zero-bias stripe domains will be 

used. 

A sampling optical microscope system, which i s described in 

detail in Appendix B, was used to investigate wall oscillation. 

In this system, a pulsed dye l aser and polarizing microscope are 

used to obtain transi ent pictures of isolated bubble domains as they 

respond to a bias field pulse. The laser , which illuminates the 

sample with a 10 ns ec light pulse, is always triggered at a fixed 

time relative to the bi as field pulse. The relative time can be 

adjusted manually, or automatically incremented after each pulse. 

For convenience, the origin, t = 0, is defined as the time when the 

pulse reaches half of its maximum amplitude. The Faraday effect is 

used to produce real images of the domains on the target of a TV 

camera. These images are then r ecorded on video tape. Later, the 

transient bubble radius i s measured frame by frame with a computer 

controlled digitizer. The resolution in wall position i s limited 

by diffraction effects to about 0.2 ~m. If the motion i s repro

ducible from one pulse to the next , the wall motion is obtained by 
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plotting the sampled bubble radius as a function of the relative 

time . 

A photometric technique was sometimes used in parallel stripe 

domains to obtain greater spatial resolution. Instead of measuring 

wall position from transient pictures, the wall pos ition is determined 

by measuring image intensity. An electrical signal proportional to 

the average intensity over the field of view is obtained from a photo

diode. The signal is amplified and averaged over many pulse repeti

tions by a lock-in amplifier. Since the changes in image intensity 

are proportional to changes in stripe width, the output from the 

detector is directly proportional to wall displacement. The wall 

motion is displayed by plotting the output signal as a function of 

the relative time between the bias pulse and laser fla sh on an x-y 

chart r ecorder. Thi s method was calibrated by comparing results 

with those obtained by .optical sampling under identical circumstances. 

The effective spatial resolution obtained here, 0.03 ~m, is nearly an 

order of magnitude better than with the optical sampling method. 

Since the image intensity is sensitive to domain configuration, it 

i s necessary to keep the configuration constant during the experiment. 

For this reason, the method is usually used on stripe domains( 2 •11 •12 •15 ) 

and isolated straight walls (lO), though the method can also be used 

with i solated bubbl e domains by t ak ing advantage of laser heating 

effects (g) Thi s method is described in more detail in Appendix 

B. 
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The results reported here are for a single, very low-loss 

magnetic bubble material. The material parameters are shown in 

Table 3.I. By concentrating on a single material under a variety of 

experimental conditions, a more thorough understanding of wa 11 motion 

can be achieved. However, many of these results have also been con

firmed in more conventional materials. These results will be in

dicated by reference to the literature. The first three material 

parameters , y, Hk-4nMs , and a , were obtained from resonance ~easure

ments, while the rest come from measurements of static domains. The 

uncertainty in H' for bubbles represents the variation over the range 

of stable bias fi elds . The uncertainty at a single static bias field 

is typically 0.1 Oe/~m. There is much less vari ation in H' in 

stripe domains. Derived parameters, along with their definitions, 

are listed in the second part of the table. Note that the uncertainty 

in some parameters, particularly those involving a, can be quite 

large, because the uncertainty in a is nearly 30%. 

The investigation of hori zontal Bloch line motion in magnetic 

bubble material s is divided into three parts. In Sec. 3.1, it is 

shown that the presence of horizontal Bloch lines produces the un

usual dynamic behavior found during wall osci llation. In Sec. 3.2, 

it is shown that HBL punch-through produces a series of transitions 

to overdamped motion, which are accompanied by changes in v-1all 

chirality. Finally, wall oscillation in the presence of the ex~ 

ternal in-plane fields i s inves tigated in Sec. 3.3. For sufficiently 



-105-

TABLE 3.1 

t~a teri a 1 Parameters 

y = 1.85 ± 0. 02 X 107 Oe-l sec-1 

Hk-47TMs = 1005 ± 10 Oe 
(). = 0.0032 ± 0.0009 

47TMS = 95 ± 3 Oe 

h = 4.1 ± 0. 2 lJffi 

>.. = 0.30 ± 0.02 

t = 1. 23 ± 0.14 lJffi 

Hk = 1100 ± 13 Oe 
H' = 2.2 ± 0.3 Oe/]lm (bubbles) 
H' = 6.4 ± 0.4 Oe/]lm (stripes ) 

Derived Parameters 

Q = Hk/47TMs = 11.6 ± 0.5 

Ku = HkM/ 2 = 4158 ± 170 erg/cm3 

t.B = t/2Q = . 053 ± 0.008 lJffi 

A = t.2K = 1.17 ± 0.40 erg/em B u 

crB = 47TM~t = 0.088 ± 0.015 erg/cm2 

lJ = yt.B/a. = 306 ± 140 m/sec-Oe 

vw 
1 44.6 ± 8 m/sec = 27ft\ yt-8/ ( 1 +tcr) = 

vP = 24yt.81A/h = 19.6 ± 7 m/sec 

vo = 4/21Tyl\8/l\/h 8.2 ± 3 m/S P.C 

Hw 27TMsa. = 0. 15 ± 0. 05 Oe 

Hp = 24a.llf./ h = 0.064 ± 0.03 Oe 

mD = ( 2 )-1 27Ty 68 = -11 2 8.8 ± 1.5 x 10 gm/cm 
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large in~plane fields, the dynamic wall structure is essentially 

one-dimensional, resulting in the sinusoidal oscillations expected 

from the harmonic oscillator model. The onset of unusual dynamic 

behavior at reduced in-plane fields is then identified with HBL 

nucleation. 

Section 3.1. Wall Oscillation and HBL Motion 

Past studies indicate that the dynamic properties associated 

with wall oscillation are quite unusual. In the simplest approxi-

mation, the harmonic oscillator model, a wall with a one-dimensional 

structure oscillates with a constant frequency, v, which is charac-

teristic of the material. However, attempts to model wall oscil

lation as simple harmonic motion (lO,l 6) have failed for two reasons. 

First, the experimental frequency is usually many times lower than 

the value expected from Eq. (2.2.19), and second, the frequency 

changes rapidly with the bias pulse amplitude. Instead, there is 

some evidence (9•11 •14•17), which suggests that the wall velocity is 

saturated, i.e., independent of the instantaneous drive field. It 

has been suggested that this behavior is due to the presence of hard 

wall sections, containing many v-ertical Bloch lines (lO), or multiple 

horizontal Bloch lines (ll), but no quantitative analysis has been 

reported. The purpose here is to investigate wall oscillation in 

bubble domains, and to show that the unusual behavior i s due to the 
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presence of a s ingl e HBL . 

. An example of wall oscillation during radial expansion i s shown 

in Fig. (3 . 1. 1) . Here, the sampled bubble r adius i s plotted as a 

function of time in response to a 2.13 Oe step change in bias fi eld. 

When the pulse i s applied at t = 0, the bubble expands from its 

initia l equilibrium radius, 4.7 1-1m, toward its new equilibrium 

radius , 5.7 1-1m. The wall moves well beyond equilibrium and osci ll ates 

with decreas ing amplitude unt il the oscillations damp out . Simi l a r 

behavior i s also seen at the end of the bias pul se (not shown) 

when the bubble returns to its original s ize. Several features i ndi-

cate that thi s is not simple harmon i c motion. The wall velocity i s 

nearly constant during t he initi al expans ion at 5.0 m/sec. The 

velociti es during the subsequent return and second expans i on are 

also constant, with values of 4.1 m/sec and 5.0 msec respectively. 

The frequency assoc i ated with the first half-period, 1. 6 MHz, is 

much smal l er than the value predicted by the harmonic oscill ator 

model, 9.8 MHz . It can also be seen that the frequency increases 

as the size of t he osci ll at ions decr ease; the frequenci es as sociated 

with the second and third hal f- periods, 2.0 MH z and 3 .2 MHz , are 

much hi gher. Immedi ately after the pul se i s applied, the bubble ex-

pands rapid ly for the firs t 20 nsec , and then assumes a lower, con

stant veloci.ty. The wall moves backw.a.rds s li_ght ly 1 just before it 

reaches the first extremum. This eff ect, whi ch i s called ini t ial rapid 

mot i on,has been seen previous l y under a vari ety of circumstA~6~~4 • 15 • 18 ). 
This behavior i s investigated in more detail in Sec . 3.3. All of 

t hese features indicate t hat the osc ill at ions cannot be modell ed as 
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Fig . 3, 1.1. Bubble Rndius (JJm) CIS a Function of Time (nsec) i n 
Response to n 2 .13 Oe Bj n,s Fi e l d Pulse . The stat ic bias fie l d was 
24.1 Oc. The hal f -period , T/2 , i s i ndicated , 
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s impl e harmonic motion. 

The first half-period, T/2, has been measured as a function of 

pul se amplitude, and the r esults are s hown in Fig. (3.1.2). Measure

ments were made by using both expanding (+) and collaps ing ([]) bias 

field pul ses . To e liminate poss ibl e bubble s ize effects, the static 

bias fi eld H8 was adjus ted so that the average bias field, H8+Ha/2, 

was constant at 23 . 5 Oe . The half-period was determined by manually 

adjusting the laser position until the first extremum was l ocated. 

The relative time between the beginning of the bi as pul se and the 

laser flas h i s then T/2 . It can be seen that T/2 increases rapidly 

with incr eas ing Ha. Beginning at Ha = 1.0 Oe , the smallest amplitude 

for whi ch osc illations can be seen, T/ 2 incr eases from 130 nsec to 

280 nsec at Ha = 2.0 Oe. The osci ll ation frequency i s not constant, 

as would be expect ed from the harmoni c osci ll ator model, but in-

creases with bi as pul se amplitude . 

These r esu lts can be analyzed by assuming that the wall velocity 

( 19) i s constant, <q> = vs With this assumption, the average value 

of¢ may be written from Eq. (2.3 . 12b) as 

wher e H = v /~ i s an eff ective damping field. Since vs i s l ess than 
S V S 

8 m/sec, Hs v i s l ess than 0.03 Oe. Equation (3.1 .1) may be integrated 

to obtain <¢> as a function of time : 

t 

<¢ (t)> = y I dt I [H ( t I ) - H ] 
Z SV 

(3.1. 2) 

0 
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Since the bias pulse ri se time i s short compared with T/2 , the pul se 

s hape rnay be approximated by a step function, so that II (t 1
) is given z 

by Hz(t 1
) = Ha- H'vst 1 Under thi s assumption, <<t> (t)>i s a para-

bolic function of time. When the pul se i s appli ed,<<!>> increases 

from zero, and reaches a maximum value of 

<~> = y (H - H ) 2 
~ max 2v H1 a sv s 

(3.1. 3) 

It then decreases , and reaches zero again at a ti me , 

2(H -H ) 
T _ a SV 
2 - v

5
H (3.1 .4 ) 

With a constant wall vel ~city, the half-period increases li nearly with 

Ha. It must be emphasized that this simplifi ed model does not indi

cate why the vel ocity i s constant. It i s onl y a s impl e way of cal

culating the internal rotation based on the experi mental fact 

that the wall vel ocity i s approximately constant. 

Average velociti es obtained from measurements off have been com

pared with more direct measurements, and the r esults are shown i n 

Fig. ( 3. 1. 3). Here , the velociti es are plotted as a f unction of Ha. 

Note the suppressed zero in the pu l se ampli tude scal e. Poin ts ob-

t ained from radius vs time data simi l ar to those shown in Fig . 

(3 .1.1 ) are indi cated by 0, v1hil e points cal cula ted from~ vs 

Ha data by us ing Eq . (3.1.4) are indi cated by+. The point 

was cal cul ated by us ing t he model from Ch. 2 and wi ll be discussed 

l ater. The theoretical value of v from Eq. (2. 3. 30) and the mini mum 
0 

vel ocity v . , whi ch occurs when t he HBL r eaches the film center, are m1 n 
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i ndicated. The uncertainty in the data i s about 1 m/sec . It can 

be seen that t he vel oci t i es measured by using these two different 

techniques agree wi thin experimental error. It can also be seen that 

the average vel ocity i s not strictly constant, but varies slightly 

wi th pul se ampl itude. The velocity is about 7.0 m/sec at Ha=l Oe, 

and decreases to about 5.5 m/sec at Ha=l .5 Oe . It then i ncreases, 

reaching 7.5 m/sec at H =2 . 2 Oe. Measurements cannot be performed a 
at higher pul se ampl itudes due to HBL punch-through. 

The unusual dynamic behavior found dur i ng wal l oscillation results 

from t he presence of an HBL during wall osc ill ation. Before the bi as 

pulse, the stationary wal l has a simple twist structure like the one 

shown in Fig. (2.3.2) as a sol id curve. When the pulse is applied, the 

wa ll accel erates rapidly whi l e maintaining this structure. Thi s results 

in the initia l rapi d motion shown in Fig. (3. 1.1) . Soon, however, an 

HBL i s formed and moves towat'd the film center. The ve·locity drops 

and remains roughly constant. When the bubble reaches its new 

equi l ibrium radius at 5.7 ~m. the effective drive field changes sign, 

so that <$> becomes negative, and the HBL moves back toward the 

origina l critical point. When the HBL reaches thi s point, it di s

appears, l eaving the wal l with a static twist structure. The ef

fective drive fi eld is negative, so that the wal l moves back toward 

equilibr-ium and a second HBL i s formed at the opposite critical point. 

Each time the wall revers es direction, an HBL of the opposite sense 

is formed, and the process is repeated. 

Oscillation r esults from a r edi stribution of energy within the 

magnetic system. In the l imit a.->-0, the tota l energy, vJhich i s a con-
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stant of the motion , i s divided between kinetic energy , which is 

stored in the HBL, and potentia l energy due to the externa l field, 

-2M H h<q> . Just after the bias pu l se i s appli ed, the energy is all s z 

in the form of potential energy. Since Hz i s positive , <<j>> must 

increase [see Eq. (2. 3.1 3)]. As <<j>> increases , an HBL forms , and 

absorbs potential energy from the external fi eld. Thi s causes the 

wall to move forward until, when the wall reaches its new equi librium 

position (llz=O), the energy i s all stored as kinetic energy. If the 

wall were to move backward sli ghtly, Hz would be positive again , and <<j>> 

would increase. Thi s woul d increase the HBL energy at the expense of po

tential energy , and the wall would r eturn to equili brium. However, if the 

wall moves forward sl i ghtly, Hz is negative , and <<j>> decreases. The HBL 

energy dec rea ses,and the wa ll moves forward,whi ch further decreases Hz . 

Hence, a wall containing an HBL at equilibrium i s unstable, and must 

move fon<~ard even though Hz becomes negative . As <<j>> decreases , the 

HBL energy decreases until, v1h en the wall r eaches its first extremum, 

the energy i s all stored as potential energy, and the wall is left 

with its original stati c twist structure . Since Hz is sti ll negative, 

<<j>> decreases and becomes negative. A second HBL is formed at the 

opposite criti ca l poi nt, and the process is repeated. In the presence 

of damping, ener gy i s s l owly dissipated, and the osci ll ations damp out. 

Oscil l at i on occurs only if the HBL i s stabl e during the process . If, 

as in the case of HBL punch-through, it becomes unstabl e , the HBL 

energy i s immediately dissipated , and the wall does not overshoot 

equi li brium. Thi s process i s described further in Sec . 3.2. 
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The equations of motion have been solved numerically for the 

conditions associated with Fig. (3. 1.1) , and the results are shown 

in Fig. (3.1.4). Here , the average wall position <q> i s plotted as 

a function of time. The rise time of the 2 .13 Oe bias field pulse 

was approximated by a 20 nsec ramp with its center at t = 0. The 

averaging effects of the laser flash were s imulated by passing the 

res ults through a 10 nsec averaging window. The conditions considered 

here are somewhat different than those cons idered in Sec. 2.4 . There, 

a constant drive fi eld of 2 Oe was used, while here, the drive field 

decreases as the wall moves toward equi li brium. In general, the motion 

of the HBL here i s much s lower due to the sma ll er drive fields. The 

calculated motion cl osely resembles the experimental data shown in Fig. 

(3.1.1). The ca l culation s hows that the initi al r api d motion, which can 

be seen in both figures, r epresents wall motion before an HBL is formed . 

After the initi al r esponse, an HBL structure, li ke those shown in 

Fig. (2.4. 2), i s formed. The presence of the II BL produces a rela

tively low, constant wall velocity of about 7.5 m/sec. Their-

regular motion shown in the calculation i s produced by internal wall 

vibrat ions li ke those described in Sec. 2.4. It is tempting to associ-

ate the rever se motion in the interval, 153 < t < 174 nsec, with a 

s imilar feature in the data; however, it i s an artifact of the numerical 

technique since it does not appear in the Crank-Nicolson solutions of 

the same probl em. Though the average vel ocity is 35% higher than 

the value shown in Fi g. ( 3 . 1 . 1), it i s in good agreement vJith other mea

surements shown in Fig. (3.1.3), where the ca l culated velocity is indi-
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Fig. 3.1 .4 The Calculated Average Wal l Position, <q> (um), as a 
Function of Time (sec} for the same experimental cond i tions shown in 
Fig. (3. 1.1). 
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cated by D . When the wall passes equilibrium, at <q> = 0.96 ~m . the 

drive field becomes negative, and the HBL moves back toward the film 

surface where it originally formed. As the wall reaches its first 

extremum, at t = 207 nsec 1 the HBL disappears, and the wall structure 

resembles the origina l static structure. The drive field at this point 

is - 1.5 Oe, so the wall moves back toward equi libri um. A second HBL 

i s formed at the oppos ite film surface, and the process is repeated . 

Since the wall vibrations are stil l present, initial rapid motion is 

not observed. 

The small changes in average vel ocity shown in Fig . (3.1.3) can 

be explained by considering HBL motion. The instantaneous wall velocity 

depends on the HBL position [ see Fig. (2.3.5)], so that the average wall 

velocity depends on how far the HBL penetrates into the film. For 

sma ll pulse amplitudes, on ly a smal l HBL i s formed near the film 

surface, and the average wall velocity is r e l atively large . As the 

pul se amplitude i s increased, the HBL approaches the film center, 

where the instantaneous wall velocity is smaller. This causes a 

slight drop in average velocity, which can be seen ·in Fig. (3.1. 3) 

in the region 1. 0 < H < 1,7 Oe. 
a 

The value of <~> corresponding to 
max 

this velocity i s 0.68n [see Eq. (3.1.3)]. This shows that the minimum 

average velocity occurs when the HBL penetrates jus t beyond the 

film center. For higher amplitudes, the HBL approaches the opposite 

film surface, and the instantaneous velocity increases. Thi s pro-

duces an increase in the average veloc ity, which can be seen in the 

r eg ion 1.7 Oe < H < 2.5 Oe. For l arger amplitudes than those used 
a 
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here, the HBL reaches the Qppos ite surfqce and punche~ through. 

Section 3. 2. Hori zontal Bloch Line Punch-Through 

Hori zontal Bloch line punch-through takes place for sufficiently 

large pulse amplitudes, If the pulse amplitude i s somewhat larger 

than those used in Sec. 3. 1, the HBL reaches the opposite critical 

point before the wall reaches its new equilibrium pos ition. When the 

HBL punches through, the momentum and energy stored in the HBL are 

dissipated, and the wall is l eft with a simpl e, static twi st s truc-

ture, but with the opposite sense of chirality . Some evidence for 

momentum dissipation has been reported by de Leeuw and Robertson 
(10, 14) They found l arge wall oscillations at some pul se amplitudes, 

whil e for l arger amplitudes, oscill at ions wer e completely absent ; 

however, thi s transition to overdamped motion was not investigated 

furth er. Independent evidence for chirality changes has been ob

tained by us ing an indirect, automation technique (20 •21). This 

technique was used to investigate changes in bubbl e chirality as a 

function of bias pu l se rise t ime with the pul se amplitude held 

constant. Changes in chirality were analyzed in t erms of HBL punch-

through, but poor quantitative agreement was found for ri se times 

l ess than 100 nsec . Hence , whi l e there i s some experimental ev i dence 

for momentum di ssipat ion and for changes in wall chira l ity, the 

r elationship between th ese two phenomena has not been established . 

The purpose her e i s to investigate transitions to overdamped motion 

and chir~ lity changes in the same mate ri al, and to s how that these 

two related effects ar e, in f ac t, due to HBL punch-through. 
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Transitions to Overdamped Motion 

Wall oscillations have been measured during radial expansion, 

using larger pulse amplitudes, and the results are shown in Fig. 

(3.2.1). Here, the sampl ed bubble radius is plotted as a function 

of time with pulse amplitude as a parameter. Each point represents 

an average of from 3 to 5 independent measurements. In each case, 

the static bias field was 23.0 Oe. Two distinct types of behavior 

can be seen. For the case, Ha = 2.1 Oe, the bubble expands from 

its initial equilibrium radius, 5.0 ~m, when the pulse is applied 

at t ~ 0. The wall moves past equilibrium, and large oscillations 

can be seen. The oscillations damp out, and the wall remains 

stationary at the new equilibrium radius, 6.1 ~m, until the pulse 

ends at t = 2 ~sec. Large oscillations can al so be seen when the 

bubble returns to its original radius. These oscillations are 

similar to those shown in Fig. (3.1.1). Overdamped motion can be 

seen in the case, Ha = 4.0 Oe. When the pulse is applied, the wall 

moves smoothly toward equi li brium and no oscillation is observed. 

Similar behavior can be seen at the end of the pulse , when the wall 

returns to its original position. 

Transitions between wall oscillation and overdamped motion can 

be seen for intermediate pulse amplitudes. Consider the motion at 

the end of the pulse. When Ha is 2. 1 Oe, oscillations are present, 

but when Ha is increased to 2.6 Oe, overdamped motion is observed. 

When H is increased to 2.8 Oe, oscillations return. Wall oscil-
a 
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lation is also seen when Ha i s 3.4 Oe , but when Ha is increased to 

4.0 Oe, overdamped motion returns. Hence , two distinct transitions 

from oscillatory motion to overdamped motion can be seen. Two such 

transitions can al so be seen in the motion at the beginning of the 

pulse; however, the pu l se ampli tudes at which these transitions 

occur are somewhat higher. Simi l ar results have been obtained in 

other materials (8). 

The pulse amplitude at which overdamped motion first occurs can 

be measured by monitoring the transient bubble size at a fixed time. 

With the laser flash positioned at the first extremum, which is 

indicated by an arrow in Fig. (3.2.1), the bubbl e s ize indicates the 

type of motion. If oscil l ation occurs, the bubble is relatively 

l arge, but if overdamped motion occurs, the bubble diameter is 

about 0 .8 ~m smaller. Measurements are performed by repeating the 

bias pul se experiment at a 15 Hz repeti tion rate. The pulse ampli-

tude i s slowly increased until size f luctuations are observed. These 

fluctuations represent a mixture of oscillatory and overdamped motion 

during different pulses . The pul se ampli tude where fluctuations 

first occur is the transition fie l d H1. Above thi s r egion , all bubbles 

are sma ll , and the motion i s always overdamped. As Ha increases, 

the size increases , and oscillatory motion gradually r eturns , until 

a second transition i s observed at H11 . 

The first and second transition fields are shown in Fig. (3. 2.2) 

as a function of stati c bias field. Points indi cated by + are for 

expanding motion, whil e those indicated by[] are for collaps ing 
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motion. Note the suppressed zeroes in bot h scales. The arrow indi

cates the bubble collapse fi eld. Though the s ize fluctuation regions 

extend 0. 5 Oe above H1 and H11 , the beg inning of these trans i t ions 

regions may be determined within 0 .04 Oe . It can be seen that the 

transition field s vary s lightly with bias field . The values of HI 

for expanding motion are r elatively small at H8 ~ 21 Oe, reach a 

maximum around H8 = 25 Oe, and then decr ease s harply near the bubbl e 

collapse field. These variations are due to changes in H' with bias 

fi eld. 

motion. 

Similar variations in HI can also be seen for collapsing 

Note that during collaps ing moti on, the bias field pul se 

add s to the s t atic bi as field, so that bubbles collapse at a static 

bias fi eld that i s about 3 Oe sma ll er than for expanding motion. The 

values of HII also vary somewhat with bias fi eld. In comparing these 

results with changes in bubble chirality , variati ons in H1 and H11 

with bias field will be ignored. Hence , t he average transition 

fields for expanding mot ion are H1 ~ 2.47 ± 0.14 Oe , and 

H11 = 3.87 ± 0.15 Oe , whil e for coll apsing motion, H1 = 2,30 ± 0.06 Oe, 

and H11 = 3,53 ± 0.06 Oe . Note that the transition fi elds for ex

panding motion are generally higher than for collapsing motion . Thi s 

accounts for the differences bebJeen expanding and co 11 aps i ng motion 

s hown in Fig. (3 . 2. 1). 

Changes in Bubbl e Chirality 

Changes in bubble chirali ty have been observed, us ing a technique 
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recently developed by Gal l agher, Ju, and Humphrey (22 ) In this 

technique, bubbles are expanded with a small bias pulse in the presence 

of a small in-plane field. Thi s situat ion i s s hown schematically in 

Fig. (3.2.3) for two bubbles with opposite wall chiralities, designated 
+ X and x-. The direction of Min t he center of the wall, and in the 

center of the film, is indicated by arrow heads. They found that the 

wall section with the center moment antiparallel to the in-pl ane field 

moves much more s lowly than other wall sections. Thi s behavior can be 

seen most easi ly by comparing the static bubble shape, which is 

indi cated by the small er circles, with the transient shape taken some 

time after the pulse is appl ·ied, which i s indi cated by the larger 
· + circles. For the X bubble, the s l ow section is on the right, so the 

bubble expands asymmetrically to the l eft, while for the X bubble, the 

asymmetry i s reversed. Since the pul se amplitude i s small, thi s 

method does not change the bubble chirality. For this reason, i t is 

preferred over the destructive automat ion technique used previous ly 

( 20 '21) 

An exampl e of the l arge differences in dynamic behavior i s 

shown in Fig. (3 ,2 . 3). The sampled di s placements of the parallel and 

antiparall el sections, which are shown as A and B in the inset, are 

plotted her e as a function of time in response to a 1.78 Oe bias field 

pul se . The in-plane field was 4.1 Oe, and the static bias fie ld was 

22.9 Oe. For case A, the wall moves rapidly when the pulse is appli ed 

at t = 0, with an average velocity of 9. 4 m/s ec, The wall moves past 

equilibrium, and returns with an average velocity of 10.4 m/sec. The 
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oscillations shown here are similar to those described in Sec. 3.1, 

but the average velocities are significantly higher. This i s due to 

the in-plane field, and is investigated further in Sec. 3.3. The 

behavior of the antiparallel sections, shown in case B, is quite 

different. When the bias pul se is applied, the wall hardly moves. 

The reason for this (23 ) is that the in-plane field nucleates a 

static HBL structure. Calculations indicate that the effective mass 

of this structure, which is obtained from Eq. (2.3.15), is more than 

100 times larger than m0. Hence, the antiparall el wall section is 

effectively pinned. Bubble chirality is determined by placing the 

laser fla sh at the first extremum, indicated by the arrow, and then 

observing the asymmetry in radial expansion shape. 

This t echnique has been used to investigate changes in bubble 

chirality during collapsing motion.· Since transitions to overdamped 

motion occur both at the begi nning and the end of the pulse, changes 

in chirality may also occur in both places. To eliminate this pos-

s ibility, the bias field i s first lowered quasistatically by an 

amount H over a 10 ~sec period, and then abruptly r eturned to its 
a 

original value with a 12 nsec ri se time. Any changes in chirality 

may be attributed to a s ingle step change in bias fi eld with ampli-

tude Ha. If the experiment i s repeated N times with M changes, the 

probability of changing chirality is M/N, with an uncerta inty of 

0 = [_tjJN-M )l ~ 
p N3 J (3 .2. 1) 

Though the r esults r eported her e are for coll apsi ng motion, simi l ar 
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results have also been obtained with expanding motion (24 ) 

The probability of changing chirality has been measured as a 

function of Ha, and the results are shown in Fig. (3.2.4). The 

error bars, ±op, are typically less than 6%. Note the suppressed 

zero in the Ha scale. For Ha less than 2.0 Oe, P is zero. In the 

region, 2.0 Oe < H < 3.0 Oe, P changes from 0% to nearly 100%. In a 

the region, 3.0 Oe < Ha < 3.5 Oe, the bubble changes chirality almost 

every time the pulse is applied. Between Ha = 3.5 Oe, and Ha=4 .0 Oe, 

P changes to 0%. This cyclic behavior in P is repeated three times 

for p·ulse amplitudes up to 7 Oe. Note that as H increases, the 
a 

changes in P become smaller, and P approaches the random result, 

P = 50%, The behavior shown here may be characterized by the values 

of H where P crosses 50% for the nth time H . The first seven a n 
values of H are 2.5, 3.8, 4.7, 5.3, 5.7, 6.6 and 6.6 Oe, each with 

n 

an uncertainty of about 0.2 Oe . 

By comparing these results with those shown in Fig. (3.2 .2) , 

it can be seen that the transitions to overdamped motion described 

earlier coincide with changes in bubble chirality. Recall that HI 

and HII represent the beginning of the transition r egion, and that 

transitions occur in a 0.5 Oe region above these values . For example, 

the first transition region for col lapsing motion takes place between 

Ha = 2.30 and Ha = 2.80 Oe. It can be seen in Fig. (3.2.4) that this 

coincides with a region in which P changes abruptly from 0% to 100%. 

Similarly, the second trans ition region, between 3.53 and 4.03 Oe, 

coincides with an abrupt cha nge in P from 100% to 0%. Clearly, since 
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behavior at the second overdamped trans ition i s similar to the first, 

the second abrupt change in P li!ust correspond to a second chirality 

change during the same step change in bias field. Therefore, the 

fields Hn correspond to the minimum pul se amplitude required to pro

duce n chirality changes during a s ingle step change in bias field. 

Transitions to overdamped motion, whi ch are accompanied by 

changes in bubble chirality, r esult from HBL punch-through. Recall 

from Sec. 2.3 that when the HBL r eaches the opposite critical point, 

it punches -through, l eav ing the wall with its original, static twi s t 

structure. If punch-through occurs just before the wall reaches 

equilibrium, the wall r emai ns there,and no oscillation is observed. 

Thi s produces the transitions to overdamped motion described earli er . 

For larger values of H
2

, punch-through occurs earli er , well before 

the wa 11 r eaches equi 1 i bri urn . Thi s gives the wa 11 the opportunity to 

nucleate a second HBL during the same bias pulse, so that the oscil

lations r eturn. If the second HBL punches through before the wall 

r eaches equili briun1, a second transition is observed, and so on. 

The wall changes chirality each time punch-through occurs, so that, 

as was shown in Fig . (3 .2.4), several changes can occur during a 

s ingl e bias field pulse. 

The effects of ·punch-through on wall motion can be seen in Fig. 

( 3. 2.5 ). The sampl ed bubble r adius is plotted as a function of t ime 

in response to a collapsing bias fi eld pulse, In case A, Ha was 

2.0 Oe, so that HBL punch-through never occurs, while in Case B, 
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Ha was 3.0 Oe, and punch-through always occurs. In case A, the 

bubble collapses with a nearly constant velocity of 5.6 m/sec after 

the pulse is applied at t = 0. The wall moves well beyond equilibrium 

(at 4.6 ~m), and reaches maximum excursion at t = 253 nsec. It then 

returns to equilibrium with a s lightly sma ller constant velocity, 

4.6 m/sec. The oscillation shown here i s similar to those discussed 

in Sec. 3.1. The motion shown in case B i s quite different. The 

wall moves toward equilibrium, and reaches a maximum velocity of 

14 m/sec at about t = 85 nsec. There is a 30 nsec pause in the motion, 

and then the wall moves toward equi librium with a 4.0 m/sec average 

velocity. In this case, no oscillation i s observed. Note that the 

pause occurs well before the wall reaches equi librium. Similar 

behavicr was found in the numerical solutions of the equations of 

motion presented in Fig. (2.4. 1). There, it was shown that <q> 

increases as the HBL approaches the opposite critical point. When 

punch-through occurs, the cal cul ation shows that the wall stops due 

to the rapid rotation of ~ near the film surface . Hence, it seems 

clear that increased wall velocity and 30 nsec pause shown in case B 

are due to HBL punch-through. At hi gher pulse ampl\tudes, there is some 

evidence for a second plateau corresponding to a second HBL punch

through, but this feature is at the limit of experimenta l resolution. 

The internal rotation <~> required to produce HBL punch-through 

can be calculated from these results. The instantaneous drive fi eld 

may be calculated from H = H u{ t)- H'(r -r{t)), where u{t) takes z a o 

into account the pulse ri se time; r
0 

i s the ini tia l equilibrium radius , 
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and r(t) i s the experimental bubbl e radius as a function of time. This 

result has been used in Eq. (3 . 1.2) to estimate <~~tj> from the 

experimental data s hown in Fig. (3.2.5). In case A, the maximum rota-

tion, <~> = 0.7lu , is attained when the wall r eaches equilibrium max 

at t = 154 nsec. This time is indicated by an arrow. From the HBL 

model, thi s amount of rotation is not sufficient to cause punch-through, 

so that wall oscillation should be seen without changes in wall chir

ality. This is, in fact, the case, as can be seen in Figs. (3.2.2) 

and {3.2.4). In case B, <~> reaches u at t = 92 nsec, just at the 

beginning of the 30 nsec pause (see arrow). This shows that the 

beginning of the pause corresponds to the amount of rotation required 

for punch-through, as expected. Incidentally, these r esults are in-

consistent with the Walker breakdown mechanism associated with one-

dimensional structures. As was s hown in Sec. 2. 1, the wall reverses 
TI direction when ~ reaches l· If this occurs before the wall reaches 

equ ilibrium, rotation continues , and the wall changes chirality. 

However, Fig. (3.2.5a ) shows an example in which the maximum rotation 

is much larger than I• but in which chirality never changes. Note 

also that the wall motion predicted by the Walker model is incon-

sistent with the motion shown in this figure. 

Cases where more than one punch-through occurs may be analyzed 

by, again, assuming that the wall velocity i s constant, <q> = v . s 
Assume that punch-through occurs each time <~> reaches an integer 

multiple of u. Then, from Eq. (3.1.3), the pulse amplitude required 

just to produce a maximum rotation of nu i s 
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H ::; ~ • ...;n;-+ H 
n y SV (3.2.2) 

Note that since Hz decreases as the wall approaches equilibrium, 

thi s simpl e model predicts that Hn is proportional to. /n-IT. 

The experimental values of Hn from Fig. (3.Z.4) have been plotted 

in Fig. (3.2.6) as a function of lri7T. The uncertainty in Hn is about 

the size of the symbols. The straight li ne is a least squares fit 

to the data. It can be seen that the points all lie on a straight 

line, within experimental error, which indicates that H is propor
n 

tional to rnrr, as expected. The fitted s lope, 1.38 0~ good 

agreement with the value calcul ated from Eq. (3.2.2), ::; 1. 38 
y 

The value of vs used here was extrapolated from Fig. (3.1.3) for 

Oe. 

Ha ::; 2. 30 Oe, vs ::; 7.9 m/sec . The fitted intercept , +0.23 Oe, i s much 

larger than the expected value, Hsv ::; 0.03 Oe. However, since Hsv is 

much less than the uncertainty in H , agreement is not expected . These 
n 

results indicate that punch-through occurs each time <¢> reaches an 

integer mu l tiple of n and are clearly incons i stent with the HBL stacking 

mechanism. 

Section 3.3. Wall Osc ill at ion in the Presence of In-Pl ane Fields 

Past studies of wall oscillation indi cate that the dynamic wall 

structure i s influenced by the presence of external in-plane fields. 

There i s some indi cati on that with large in-pl ane fields present, the 

dynamic \vall structure is essenti ally one-dimens ional. With thi s 

structure , wall motion i s described by the harmonic oscillator model. 
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Fig. 3. 2.6 E~erimental Values of H (Oe) from Fig. (3.2.4) as a 
Function of InTI . Uncertainty, 0.2 Be , is about the size of the 
symbol s. The straight line i s a l east-squares fit to the data. 



-135-

In this model, the oscillation frequency v, which is given in Eq. 

(2.2.19), is strongly influenced by in-plane fields. The first 

measurements of v as a function of Hx gave ambiguous results, which 

did not agree with the model. In one case (l 2),v was independent of 

Hx, while in another (ll),v was proportional to Hx. More recent 

measurements (lO) made with l arge in-plane fields perpendicu l ar to the 

wall indicate that v2 i s proportional to Hy, in agreement with the 

model. However, in all cases, strong deviations from simpl e harmonic 

motion were observed at reduced in-plane fields. Low-frequency 

oscillations were observed in low-loss materials (g-l l) , while in 

higher- loss materials the oscil lations disappear completely (12 •13 ). 

The purpose here is to show that large in-pl ane fields do, in fact, 

produce one-dimensional dynamic wall structures during wall osc il -

lation . Having established this structure, it is then shown that the 

onset of nonlinear behavior at reduced in- plane field s is due to HBL 

nucleation. Finally, by observing initi al rapid mot ion in this r egion 

of in- plane fields, it i s shown that prior to HBL nucleation, the wall 

has a simple dynamic twist structure . 

Parallel stripe domains are used here instead of bubbles because 

of the in-plane field. Past studies (2S) indicate that dynamic 

behavior can depend on both the magnitude and direction of the in

plane field. In this situation, the behavior of bubble domains would 

r epresent a complicated mixture of all possible orientations. Thi s 

makes bubbles l ess suitable for in-plane field studies. Instead, 

parallel stripe domains are used here since the wall s make a constant 
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angle wi.th respect to the i_n-pla,ne fi.eld. In thi,s do.main confi.guration, 

direction and magnitude effects can be studied independently , As can be 

seen in Fig. (2.3.1), the surface demagnetizing fields in bubble and 

zero-bias stri pe domains are simi l ar, so that the twist structu res 

produced by these two configurations are not significantly different. 

However, the effective field gradient in zero-bias stripes, 6.4 Oe/ 

~m. is nearly three times higher than in bubble domains. This pro

duces much higher oscillating frequencies. 

Wall Osc illation with Large In-plane Fields 

Wall oscil l ation has been observed with large in-plane fields 

parallel to the domain wall (Hx), and the results are shown in Fig. 

(3.3.1). Half of the sampled stripe width, which corresponds to wall 

position, is shown here as a function of time with H as a parameter . 
X 

The pulse amplitude was ~he same in each case, Ha = 4.33 Oe, and the 

static bias field was zero. Note that the time sca l es are different 

in eac h case in order to show the osci ll ations more clearl y. The smooth 

curves are fits to the harmoni c oscillator model, and will be dis-

cussed l ater. The oscillations in case A,. for H 
X 

= 41 Oe, are sinu-

soidal rather than triangular, and four complete oscillations can be 

seen. The frequency, v = 18.1 ± 1.4 MHz, i s approximately constant 

from one cycle to the next. In fact, .more detailed measurements 

indicate that v is independent of Ha over the range , 2.0 Oe < Ha< 6.5 

Oe (25) Sinusoidal oscillations can also be seen in case B, where 

Hx is 80 Oe. Again, four complete osci ll ations can be seen, but the 

frequency, v = 25. 1 ± 2.6 MHz, i s 40% higher than in case A. When 
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Fig. 3.3.1. Sampled Stripe Half-Width (~m) as a Function of Time 
(nsec) with In-plane Field, H (Oe), as a Parameter. The magnitudes 
(angles between in-pl ane fi el~ and wall) for cases A, B, and Care 41 
Oe (0° ), 80 Oe (20°), and 160 Oe (15° ), respectively. In each case 
the pulse amplitude was 4.33 Oe, and the static bias field was zero. 
The smooth curves are solutions of the harmonic oscillator model 
and are discussed in the text. 
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H i s raise~ to 160 Oe in case C, the frequency increases to 36 MHz. 
X 

Note that only one oscillation can be seen in this case even though 

the pul se amplitude i s the same. It will be shown that this i s du e 

to the nonzero ri se time of the bias pul se. Over the range of H 
X 

s hown here, the in-plane field produces sinusoidal oscillations 

in which the frequency increases with increas ing in-plane f ield. 

The wall twist structure i s strongly affected by l arge external 

in-plane field s. For example, with the in-plane fi eld parall el to the 

wall (Hx), the twist i s reduced as each center spin reori ents toward 

the +x-axis. For l arge in-plane fields, the surface demagneti z ing 

field s become in s ignificant, and the static twist function assumes 

the one-dimensional form , ~( z ) = 0 . The dynamic effects of the in

plane fi eld have been est imated by ca l culating the effective wall mass 

given in Eq. {2. 3 .1 5) as a function of Hx, and the results are shown 

in Fi g . (3. 3.2 ) . For compari son, the dotted curve shows t he wall 

mass for one-dimens i ona l s tructures , m/m0 = (l + Hx/8Ms )- l, from 

Eq. (2 .2. 16). When Hx i s zero, the twisted wall mass i s 75% larger 

than m0. As Hx increases, the twisted wall mass decreases, and 

asymptotically approaches the curve for one-dimensional wall struc

tures. In fact, f or Hx = 41 Oe, (see arrow) the sma ll est fi el d 

used in Fig. (3.3. 1), the twi sted wall mass i s only 6% l arger than 

the one-dimensional value . For other ori entat i ons, the twi st i s 

reduced as the sp ins r eorient toward the direction of the in-plane 

fi eld, and the effect ive mass, again, approaches the one-d imensional 

value . 
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Fig. 3.3.2. Calculated Effective Wall Mass (m/m0) as a Function of 
In-plane Field Parall el to the Wall (Hx/4Ms ) for Twi s t ed (solid) and 
One-dimensional (dotted) Wal l Structures. The arrow indicates the 
fi eld 41 Oe/4Ms = 1. 36 . 
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The results shown in Fig. (3.3. 1) have been fitted to the harmonic 

oscillator model, and the results are shown as smooth curves. Analytic 

solutions of Eq. (2.2. 18) have been fitted by using f~, whi ch is 

related to the wall mass [ see Eq. (2.2.16)], as an adjustable para

meter. Theoretical values of f~ were calculated from Eqs. (2.2 .6a ) 

and (2.2.9d). The fitted (cal culated) values off~ for cases A, B, 

and Care 115 Oe (156 Oe), 206 Oe (210 Oe), and 342 Oe (337 Oe), 

respectively. In all three cases, the shape of the oscillations i s 

in good agreement with the s hapes calculated from the model. In cases 

B and C, the fitted values off~ are in good agreement with the 

theoretical values , which indicate that the wall mass i s correctly 

given by Eq. (2. 2. 16). In case A, the fitted mass is 35% l arger 

than the theoretical value . Thi s difference i s due to the close 

proximity of HBL-dominated motion at slightly lower in-plane fields. 

Note that the reduced amplitudes shown in case C i s also found in the 

calculated motion. The reason for this reduction is that as Hx in

creases, the mass decreases, and the initial wall response becomes 

faster. In the limit of l arge H , the 12-nsec-rise-time bias field 
X 

pulse represents a quasistatic change in bia s field, and no oscil

lati on is observed. Case C represents an intermediate case in 

which some oscillation can still be seen, but with a somewhat reduced 

amplitude. Note also that the damping shown in Fig. (3.3. 1) is con

sistent with the resonance value of a , 0.003, used in the calculation. 

A comparison of the motion shown in Fig. (3. 3. 1) with the harmonic 

oscillator model shows that the dynamic wall structure is essentially 
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one-dimensional for in-plane fields Hx larger than 41 Oe. 

The oscillation frequency has been measured as a function of both 

the magnitude and direction of the in-plane field, and the results 

are shown in Fig. (3.3.3). It can be seen from Eq. (2.2 . 19) that 

v depends on a singl e independent vartable, f~, which may be calculated 

from experimental values of H. and 4M . Hence, the combined depen-
lP s 

dence of v on both the magnitude and direction of Hip is s hown here 

in a single plot of v as a function of If' . The mi nimum in-plane 
0 

fi eld magnitude used was 30 Oe, due to the HBL-dominated motion at 

lower values, whil e the highest magnitude was limited to 180 Oe by 

reductions in oscillation amplitude. The largest acute angl e between 

the wall and the in-plane fi eld was 80°, because at higher angles, 

the parallel stripe array tends to buckle severely. The typical un-

certainty in v, which is indicated by a few error bars. is 15%. 

The relationship predicted by the harmonic oscillator model. Eq. 

(2.2. 19), is indicated by a stra ight line. It can be se~n that about 

80% of the points lie along this line, within experimental error. Thi s 

indicates that v i s correctly given by the harmoni c oscillator model 

over a wide range of in-pl ane field conditions. Thi s r esul t has also 

been verifi ed for specific exampl es (24 ) The inset shows a histogram 

of the ratios of the experimental wall mass , mE= H'f~/(2n) 3v2 , to 

m0. The strong peak at mE;m0 = 1 indicates that the wall mass is 

correctly given by the harmonic oscillator model for most of the 

data. The remaining points, which correspond to points well below 
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Fig. 3.3.3. Osc ill ation Frequency v (MHz ) as a Function of the Derived 
I ndependent Variabl e, ~ l[lae). The sign i ficance off~ is explained 

in the text. The straight l ine is the t heoretical relationship based 
on the harmon i c osci ll ator model . The i nset i s a histogram of the 
experimenta l mass di vided by its theoretica l value. 



-143-

the line in the main figure , represent higher masses. The reason for 

these anomalously heavy walls i s unknown at the present ttme. 

These results show that, r egardl ess of the in-plane fi eld direction~ 

the dynamic wall structure i s essentially one-dimensional for suffi -

ciently large in-plane field magnitudes. 

HBL Nucleation and Initial Rapid Motion at Reduced In-pl ane Fields 

A gradual trans ition to HBL-dominated wall motion wi th decreasing 

in-plane field i s shown in Fig. {3.3.4). Wall di splacement in zero-

bias stripes i s shown here as a function of time with Hx as a param

eter. In each case , Ha was 3.00 Oe. Greater spa ti al resolution is 

obtained by us ing the photometric technique described earlier. The 

new equilibrium wall positions are indi cat ed by arrows. The curves 

are analytic so lutions of Eq. {2.2.18), and are di scussed later. The 

initial rapid motion described earlier ca n be seen qu i te clearly in 

a 11 three cases. Hhen the pulse i.s app 1 i ed a.t t =O i.n case A (Hx =0) ~ the 

stripe domains expand raptdly for about 22 nsec ~ and re~ch a maxtmum ve

locity of about 18 m(sec. The total displacement during thi.s time i s 0.29 

J..lm. After this inttial rapid motion, ther e i s a short pause 1 and then 

the wall moves with a much lower average velocity, 6.4 m/sec. After 

reaching its maximum di splacement at t =ll4 nsec, the wall moves back 

toward equilibrium. The behavior s hown her e i s s imilar to that 

found earli er in bubbl e domains [see Fig. {3. 1. 1) ] . The behav ior shown 

in case B {H = 4 Oe) i s somewhat different. Again, ini tial rapid 
X 



-144-

/\ 

2: 
:J IZJ.S: 
v 

z 
0 

IZI 

l-

IJ1 IZI 

D 
(]_ 

IZI 

TIME <N5EC> 

Fig. 3.3.4. Wall Displ acement (~m) in Zero-bias Stripes, Obtained by 
Us ing the Photometric Technique, as a Function of Time (nsec) with In
plane Field H as a Parameter. The va lues of H for cases A, 8, and 

X · X C are 0 Oe, 4 Oe, and 10 Oe, respectively. In each case, the pulse 
ampl itude was 3.00 Oe. The dotted curves are so lut i ons of the har
monic oscillator model and are discussed in the text. The new equili
brium wall positions are indicated by arrows. 
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motion is seen for the first 22 nsec, but the maximum velocity, 23 

m/sec, and total displacement, 0.39 ~m , are both significantly greater 

than in case A. After a short pause, the wall moves with a lower 

velocity, 8.2 m/sec, ·and reaches maximum displacement after 87 nsec. 

In case C (Hx = 10 Oe), the wall reaches a maximum velocity of 26 

m/sec during initial rapid motion. After a displacement of 0.44 ~m. 

initial rapid motion ends just before the wall reaches equilibrium, 

at 0.48 ~m. After a short s low section, the wall moves past equili-

brium with a relatively high velocity, 19m/sec , and reaches maximum 

displacement after 54 nsec. For higher values of Hx, the s low sec

tion di sappears, and the motion is sinusoidal, as described earli er. 

The extent of the low velocity sections shown in Fig. (3. 3 .4) 

depends on where the wall i~ when the HBL is formed. Case A (lowest 

curve) represents a situqt ion in which the HBL is formed well before the 

wall reaches equilibrium. When nucleation occurs, H i s sti ll relatively z 
large, so that the HBL moves well into the film center, producing a 

long slow section with a relatively low average velocity. In case B, 

the HBL is formed somewhat closer to equilibrium, so that Hz i s 

smaller. The HBL only moves part way into the film, so that the slow 

wa·ll velocity is higher than in case A, and the slow section is shorter. 

Case C represents a s ituation in which the HBL forms just as the wall 

reaches equilibrium. The HBL remains near the film surface and pro

duces only a s li ght drop in wall velocity. When the wall passes 

equi librium, Hz reverses s i gn, and the HBL disappears, leaving the 

wall with a s impl e twist structure. Because of the sma ll mass 
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associated with this structur e , the subsequent motion resembl es initial 

rapid motion. For l arger in-plane f i elds , the wall r eaches equi li brium 

before the HBL i s formed , resulting in s inusoidal motion. 

Changes in ini t i al rapid mot ion with in-plane field shown in Fi g. 

(3.3 .4 ) are due to reduced effective wall masses. The dotted curves 

shown here are analytic solutions of the ha rmoni c oscillator equation, 

Eq. (2. 2 .1 8). The effective masses used in these calcul ations were 

taken from the r esults shown in Fig. (3.3.2) for s i mpl e twi sted walls 

in the presence of an in-plane fi eld Hx. The values for cases A, B, 

and Care 1.75 m0, 1.38 m0, and 1. 12 m0, respectively. It can be seen 

t hat in each case , the ca l cu l ated mot i on i s in good agreement with 

the experimental results up to the point where the HBL is formed. 

Of course, beyond this point, the twist structure i s no longer of the 

simpl e type, and agreement i s not expected. As can be seen, the time 

at which the HBL forms i s about the same in eac h case , 22 nsec, so that 

as the eff ect ive mass decreases with incr eas ing Hx, the dt splacement 

during initi al rapid mot ion increases, and the HBL nucl eates cl oser to 

equilibrium. Hence, the transition to s inuso idal mot i on with incr eas i ng 

H shown her e i s due to a reduction in effective wall mass, and the 
X 

corresponding increase in displ acement during ini tial r apid mot i on. 

The equations of motion , Eqs. (2.3 .1 2a-c ) , have been so lved 

numeri ca ll y for the spec ific exampl es shown in Fig. (3.3.4), and the 

results are shown in Fi g. (3.3.5). The motion shown in case A closely 

resembl es the data. The calcu l at i on s hows that the twist structure 

duri ng initial rapid motion i s s imilar to the orig i nal, static twist 
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structure, as expec t ed, and that the onset of s lower wall velocit i es 

does, in fact, corr espond to the formation of an HBL. The irregul ar 

motion, whi ch in the ca l culation i s due to internal vibrat ions i s 

also found in the experimental data. Thi s indi cates that the wall 

may actually deviate from a fl at surface as it moves . The calculated 

velociti es s hown here are about 20% higher than the experimenta l 

val ues. Recall that a similar discrepancy was al so f ound in t he 

numerical s imul ation of wall mot ion in bubble doma ins [see Figs. 

(3.1.1) and (3.1.4)]. Thi s may be due to s light differences between 

the form of Hs (z) used in the calculation, and the actual surface 

demagnetiz ing fi el ds. Because of the long calculat i on times involved, 

no attempt has been made to adjust Hs in order to fit the data more 

closely. In case B, the HBL forms when the wall i s closer to 

equilibrium, and the HBL stays closer to the film surface. Since 

velocities are somewhat higher in the ca l cul ation , the motion cor

responds more closely to an experi mental s ituation with a somewhat 

higher in-plane fi eld, Hx : 8 Oe. In case C, the initial rapid motion 

is so fast that the HBL never forms,and the resulting motion is 

nearly si nuso idal. Again, the ca l cul ated result corresponds to an 

experimental situation with a s li ght ly higher in-pl ane field, Hx 

- 14 Oe. 

Secti on 3.4. Conclus ions 

The presence of horizontal Bl och lines during domain wa ll motion 

has been establi shed by comparing results from wall oscillation 
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experiments with the model of domain wall motion presented in Ch. 2. 

During the initial response to a bias field pulse, the dynamic wall 

structure is similar to the original static structure. Since the 

effective mass is relatively small, the wall accelerates quickly, 

resulting in the initial rapid motion shown in Figs. (3.1 .1) and 

(3.3.4). An HBL gradually forms near one of the film surfaces as a 

result of local dynamic properties. As the HBL moves toward the op

posite surface, it significantly decreases the wall velocity, and, in 

wall oscillation experiments, produces the low frequency, triangul ar

shaped oscillations shown in Fig. (3.1.1). If the HBL reaches the 

opposite film surface, it becomes unstable, and di sappears in a pro

cess called punch-through. During punch-through, the energy and 

momentum stored in the HBL are dissipated, and the wall changes 

chirality. If punch-through occurs just before the wall reaches its 

new equilibrium position, an abrupt transition to overdamped motion 

is observed [see Fig . (3.2.1)]. Chirality changes, which occur each 

time the average azimuthal angle reaches an integer multiple of n , 

have al so been observed [see Fig. (3.2.5)]. These results show for the 

first time that changes in wall chirality coincide with a los s of 

stored momentum. An external in-plane field reduces the effective wall 

mass of the initial s tatic twi st structure so that the wall travels 

further before the HBL i s formed. If the wall reaches equilibrium 

before an HBL i s formed , sinusoidal osc illations, which are as

soc iated with structure-free domain walls, are observed [ see Fig. 

(3.3.1)]. At reduced in-plane fi elds , the onset of r educed wall 



- 150-

velocities shown in Fig. (3.3.4) is associated with HBL formation. 

These results clearly establish the existence of horizontal Bloch 

lines as specific internal wal l structures. 
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Appendix A. Static Properties of Stripe and Bubble Domains 

Statically stable domain configurations are determined by 

minimizing the total energy with r espect to the domain dimensions . 

First, the total domain energy ET is calculated as a function of 

adjustable parameters, which describ~the domain geometry. Equilibrium 

conditions are obtained by setting the first derivatives of ET' which 

represent generalized forces, equal to zero. Finally, it i s necessary 

to demonstrate stability, since, as wi ll be shown later, not all 

force-free geometries represent stable configuratio~s. Contributions 

to ET come from three sources: domain walls, external magnetic fields, 

and demagnetizing sources. It i s assumed here that the wall energy 

(per unit area} a i s constant, i.e., independent of the domain 
\-J 

geometry. Though internal \'/all structures are important in wall 

dynamics, it was s hown in Ch. 2 that such structures do not signifi -

cantly alter ow in high-Q materials. The \1/all energy Ew produces 

a constant surface tension, which al ways tends to minimize wall area. 

The externa l bias field energy E8 , which is just the integral of 

-M • H8 over the sampl e volume, always tends to expand those domains 

with M parallel to H8 at the expense of the antiparallel domains. The 

effects of in-plane fields are not considered here. Energy contribu

tions from interactions between the sources V • Mat the film sur-

faces are calculated by using Eq. (2.i .6d). Thi s demagnetizing energy 

Ed tends to return the sample to its demagnetized state, with up and 

down domains occupying equal surface area. It i s assumed here that M 



- 154-

in the dom~in interiors is always parallel to the easy axis and that 

energy contributions from exchange and anisotropy occur only in the 

vicinity of the dom~in walls. The purpose of this appendix i s to 

present a brief summary of the static properties of stripe and bubbl e 

domains as a function of the bias field, and to present examples 

calculated for the sample studied in Ch. 3. 

Parall el Stripe Array 

A schematic diagram of the s implifi ed model of stripe domains 

used here (l) i s shown. in Fig. ( 1. 2a ). The origin of a coordinate 

system {x,y ,z) i s located in the center of a domain that has M parallel 

to H8 , with the s tripes all parallel to the x-axis. For the sake of 

consistency, H8 points along the +z-axis. The widths of domai ns with 

M parallel and anti para ll el to H8 are indi ca t ed by d
1 

and d2 r espec .. 

tively. It is ass umed that the walls are always parallel to t he z-axi s 

and that any wall bulging, which may occur when H8 i s not zero, may be 

neglected, It will be convenient to specify the domai n confi guration 

by two dimensionless parameters s and q, which are defined by 

(A.la) 

and 

(A.lb) 

This model presents a s implif i ed picture of the actual domain configura-
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tion, but the results of this analysis are in good agreement with the 

exper imenta l properties of stripe domains. 

The total stripe energy (per unit area of the material) ET may 

be calculated as a function of s and q. The wall energy is just ow 

times the total wall area contained per un it area of the material. 

The wall area per unit stripe length in a pair of stripes is 2h, so 

that E is just w 

(A .2 ) 

The bias field energy per unit stripe l ength of a domain with M along 

H8 is -MsH8d1h, and the energy for a domain with the opposite orienta

tion is +MsH8d2h, so that the bias field energy is 

E = -M H hs B s B 

The demagnetizing energy is obtained from Eq. (2.i.6d) as 

Ed = ~ JJ dxdy v(r) p(r) 
unit 
area 

(A.3) 

(A .4) 

where the magnetostatic charge density p(r) originates from v • I~ at 

the film surfaces and the potentia l V is obtained by solving Poisson's 

equation with standard techniques. The integral in Eq. (A.4) is 

evaluated~ and the result i s (l) 
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{A.5) 

By combining the results of Eq. (A.3-5), the total energy per unit 

area of the ma~rial may be expressed in terms of sand q. 

The equilibrium conditions for the stripe array are obtained by 

setting the first derivatives of ET equal to zero. The firs t condi-
aET 2 

tion, which is obtained by equating as-14nMsh to zero i s 

(A.6) 

where 8 = HB/4nMs . The first term represents a force due to the exter

nal bias field and the second and third terms r epresent s urface t en-

sion and demagneti zing forces r espectively . By us ing a similar pro-

cedure with aET/ aq , the second equilibrium condition may be written as 

1 ( 
00 

A- 32 E 
n q n=l n 

[1 - e - 2nnq ( 1+2nnq)] ) = 0 { A. 7) 

a 
where A. = i/h, w The first term r epresents surface ten-and i = --2 4nMs 

force. The s ion, while the second t erm represents the demagneti zing 

equilibrium values of d1 and d2 are determined by solving Eqs. (A. 6-7 ) 
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s imultaneously for the equilibrium values of s and q. 

The s tability conditions for a s tripe array are obtained by ex-

panding ET around equilibrium and by making the quadratic terms pos i

tive definite functions of 6s and 6q. The domain configuration i s 

stable if ET satisfies 

a2E __ T > 0 
as2 (A.8a) 

and 

(:}) (:>l a2E T > 0 - asaq (A. 8b) 

Numerical calculations indicate (l) that these conditions are sat i s-

fied for all meaningful values of s and q. 

The equilibrium conditions have been solved numerically by us ing 

material parameter s from the sampl e investigated in Ch. 3 (see Tabl e 

(3.1)), and the r esults are shown in Fig. (A.l). The equilibrium 

values of s and q were used to calculate the equilibrium values of 
dl+d2 

d1/h, d2/h, and h as functions of H8/4nMs. It can be seen that 

when H8 i s zero, the net magnetiza tion i s zero, s ince d1=d2. By 

setting s to zero in Eq. (A .7 ), A i s given in t erms of q by 

1 
A = 32 l: 

n q n=l 

00 

(A.9) 

Thi s r el ationship is often used t o det ermine A exper imenta lly from 
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H so 

0~------------~~----~------~~------~ 
0 . I .2 

61R5 FIELD 

Fig. (A . l): Equilibrium Stripe Width and Period, d1/h, d2/h, and 

d1+d2/h, as Functions of Bias Field, H
8
/4nMs , Ca lculated for the 

Case A = 0.3. The bubble stripe-out field H is indicated. so 



-159-

measurements of the zero-bias s tripe width and h . As H8 increases , 

those domains with M parall el to H8 expand, so that d1 increases and 

d2 decreases whil e d
1
+d2 remains roughly cons tant . The effective 

fi eld gradient H' for zero-bias stripes i s jus t the s lope of ei ther 

curve at th e origin . In thi s example, the value 6.69 Oe/ ~m i s in 

good agreement with the experimental value, 6.4 ± 0,4 Oe/~m. As H8 

increases further, the force bal ance r equired by Eq. (A.7) can only 

be achieved for larger values of d1+d2 . Eventually, when H
8 

approaches 

the bubble stripe-out field Hso ' the remai ning stripes contract and 

form bubbl e domains. 

Bubble Domains 

The static properties of an i sol ated bubbl e domain were first 

calculated by Bobeck (2) for a s tri ctly circul ar cross secti on, In 

the more genera l approach used her e , due to Thi el e (3 •4 ), the bubbl e 

i s allowed to deviate s li ght ly from a circular cross secti on. A 

cy lindri cal coordinate system (r, w. z) is located in the center of 

the bubble with the z-axis perpendicular to the plane. The magnetiza

tion points al ong the - z-ax i s inside , and a al ong +z outside (see 

Fig. (1. 2b)) . The radius r i s given as a function of w by the Fourier 

series 

r(w) = r + 
0 

00 

E 
n=l 

r cos(n(w-w )) n n 
(A, l O) 

Here, the expans ion coefficients {rn} are sma ll compared to r
0

, and 
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wall bulging, i.e,~ r(~,z), has been neglected. Though these as-

sumptions are fairly restrictive, the results obtained here are in 

good agreement with experimental properties. 

The equilibrium and stability conditions are obtained by expand

ing ET in powers of r and~ around the cylindri cal reference state n n . 

r = a, a constant. Thi s expansion may be written as 

(A.ll) 

For the domain to be in equi librium, the first order terms must be 

zero . The domain i s stab le if the quadratic terms are a positive-

definite function of the increments 6rn and 6~n · Many of the terms 

in Eq . (A.ll) can be eliminated without calcul ati ng the necessary 

derivatives by making use of the symmetry properties of ET for a 

cylindri ca l bubble . The term r 1 cos(~-~n) corresponds to a transla

tion of the bubble without changing shape. Since ET does not depend 

on bubbl e locat ion, all terms in Eq. (A.ll) proport ional to 6r1 are 

zero. Furthermore, s ince ET does not change when the domai n i s rotated, 

all terms proportional to~ are also zero. Thi s can also be shown n 
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by direct calculation (3). The only nonzero terms ar e proportional 

to either 6rn or 6r 6r , and will be evaluated separately for the n m 
three components of ET. 

The first and second derivatives of Ew are obtained from 

Ew =ow x (wall area). Si nce the wall area i s h times the domain 

perimeter, Ew i s given by 
21T 

EH = owh J dtjJ [r2
(1)J ) 

0 

d 2] ~ + (---'=-) 
dtjJ 

The only nonzero first derivative i s 

( 
aErw ) 
a o a 

= 2Tiowh 

(A. 12) 

(A.l3 ) 

This represents a uniform surface tension which tends to collapse the 

bubble. The only nonzero second derivatives are the diagonal terms , 

( a
2

~w) = 

arn a 

1TO h 2 __ w __ n for n > 2 
a (A. 14) 

The wall energy always increases when the shape of a circular bubble i s 

perturbed, so that surface tension enhances bu bb l e stabi lity with 

respect to shape di stortion. 

The first and second derivatives of E8 are obtained from the 

expression, 
21T 

EB = MsHBh J dtjJ r
2

(1)J) 
0 

The only nonzero first derivative is 

(A.l 5) 
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( :~:). = 4naM5 H8h (A.l6) 

Since H8 opposes M inside the bubble, the bubble experiences a uniform 

pressure which tends to collapse the bubble. The only nonzero second 

derivatives are 

and 

( 
a2E \ B1 
--~ = 2nM H h .., 2 s B 
or ' n . 

(A.l7a) 

(n ~ 2) (A.l7b) 

Like surface tension, the external bia s fi eld also enhances bubble 

stability against shape di stortion. 

The derivatives of Ed are obtained by evaluating the integ ral 

in Eq. (2.i.6d) for the surface charge di str ibuti on spec i f i ed by 

r(~). This energy has only one nonzero first derivative, 

(
aEd) 2 2 2a 
- = - (2nh )(4nM ) G(-) ar

0 
a s h 

(A.l 8) 

wher e 

Here, E i s a complete elliptic integral of the first kind. Si nce G(x) 

i s greater than zero for all x, the demagnetizing energy t ends to 

expa nd the bubbl e , and return the sampl e to its demagnetized state , 
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as expected. The nonzero second derivatives are 

where d = 2a/h is the dimens ionless bubble diameter, and 

2 ) a Ed 2 

(
----2 = -(2nh)(4nM ) 
ar s 

n a 
G I (d) 

+ dh ( 4nN~) [Ln ( d-
2

) - L
0 

(o )] 

where L (x) i s given by 
n 

1 - cosna 
1 k [x + 2 ( 1-cosa) ] 2 

(A.l9a) 

(A.l 9b) 

(A.l9c) 

These terms always decr ease bubble stability against shape distortion. 

Equilibrium conditions are obtained by setting the sum of the 

generalized forces for each independent perturbation equa l to zero . 

Fortunately, all are assoc iated with a uniform radius change, so that 

there is only one equilibrium condition. By combining the results 

from Eqs. (A.l3), (A.l6), and (A.l 8), and after dividing by (2nh2) 

2 • (4nMs), this condition may be written as 

>. + Bd G(d) 0 (A.20) 

Thi s equation requires a force balance between surface tension and H8, 

which tends to collapse the bubble, and the demagnetizing force, which 
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tends to expand it. 

Since all nondiagonal second derivatives are zero~ the stability 

of the domain may be determined by separately considering each Fourier 

component. By comb ining the results of Eqs. (A.l7a), and (A.l 9a), 

the s tability condition for uniform changes in bubble radius may be 

written as 

where 

s > f. 
0 

s (d) = G(d) - dG' (d) 
0 

(A.2la) . 

(A.2lb) 

By combining the r esults of Eqs. (A . l4), (A .l7b), and (A.l9b), the 

stabi lity conditi on for n-fold shape distortion i s 

(A.22a) 

where 

1 [ d
2 

2 ] s {d) = - - 2- s
0

(d) + - (L (d- ) + L (o ) 
n n _1 n n n 

(A.22b) 

The overall stabi lity of a bubbl e i s achi eved i f the radial stability 

condition and each of the shape distortion condit i ons are sati sfied 

by the force-free bubble geometry. 

The equi li bri um and s tability condi t i ons may be solved by using 

a relatively simple graphica l t echnique . The functions G, s
0 

and 

s 2 are shown i n Fig. (A. 2) as a functio n of d. These functions are 

quite genera l, and do not depend on material parameters. The other 
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Fig. (A. 2): Bubble Force Functi on G and Stabi lity Functions s
0 

and 
s

2 
as Functions of Bubbl e Di ameter 2a/h. These functions ar e used 

in a graphical determinat ion of bubble s i ze and s t ability di scussed 

in the t ext . The s tripe-out radius r and col l apse r adius rc are in-
+ - so 

dicated. The radii r and r r epr esent force-fr ee domain geometr i es, 

The lines AB and AC are constructed for >. = 0.3 and H8/ 4nMs = 0. 25 . 
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stability functions for n > 2 li e below s 2 and are not shown. Given 

h, 4nM
5

, 1, and H8 the equilibrium bubble radius may be determined by 

constructing a line AB with slope B, andy-intercept A· The points 

where AB crosses G(d) correspond to solutions of the equilibrium 

condition. In general~ there can be two equilibrium radii, r+ and 

r The stability of these sol utions i s determined by constructing 

a horizontal line AC withy-intercept A, The point where AC crosses 

s
0 

determines the minimum bubble radius, called the coll apse radius 

rc' that can sati sfy the radial stabil ity condition. Since the 

equilibrium solution r- is smal ler than r , it always represents an c 

unstabl e solution, and is usually not seen experimentally. Since r+ 

is greater than rc, it represents a stable solution, at least with 

respect to uniform radius changes. When H8 increases, the slope of 

-- + -AB increases, and r and r move cl oser together. When H8 reaches 
-- + -the coll apse field He• AB is tangent to G with r =r =rc. For larger 

values of H
8

• there are no equi librium soluti ons. It i s found experi

mentally that the bubble co ll apses, l eaving the material saturated with 

M along H8. The point where AC crosses s2 determines the maximum 

radius that can satisfy Eq. (A.22a) for n=2. Thi s i s cal l ed the 

stripe-out radius rso As H8 decreases, t he slope of AB decreases, 

d 
+ . an r 1ncreases. + When r reaches r , the bubbl e becomes unstable with so 

r espect to el liptical di stortion. It is found experimentally that the 

bubble stripes-out, and forms a stripe domain. 

The eq uilibrium radius i s determined implicitly from Eq. (A. 20) , 

and the r esults for the sampl e investigated in Ch . 3 are shown in Fig. 
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(A.3). The radius rt decreas es rapidly with increasing H8 over its 

stable range. For larger values of A, the r+ curve is below and to 

the left of the curve shown here, while for higher values, the curve 
+ is higher, and to the right . In this case, r varies by a factor of 

three while H8 only varies by a factor of 1.4, Since r+(H8) is al

most linear, it is convenient in analyzing bias pulse experiments to 

approximate it by a straight line with s lope (H')-l. The value of H' 

at 8 = 0.252 (H8=24 Oe) is 2,0 Oe/~m, in good agreement with the 

experimental value, 2.2 ± 0.3 Oe/~m. Note that this value is more 

than three times smaller than H' in parallel stripe domains, so that 

the domain configuration has a significant effect on the effective 

field gradient. 
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rso 

3 

H H so c 

. I .2 

E31R5 FIELD 

Fig. (A. 3) : Equilibrium Bubble Diameter 2a/h as a Function of Bias 

Field H8/4nMs for the case A = 0. 3. The collapse radius, stripe-out 

radius , collapse field He and stripe-out field Hso are indicated. 
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Appendi x B, Experimental Apparatus 

The sampling optical microscope system used in this work uses 

the Faraday effect to obtain transient pictures of magnetic domains 

during pul sed field experiments. In contrast with stroboscopic 

systems, in which the necessary image intensity is obtained by repeated 

illumination at a high repetition rate (typically 3 kHz), this system 

uses a single laser flash to provide visible images . The flash is 

short enough so that domain walls never move a s ignificant distance 

(<0 .1 ~m) during the exposure time. Domains are manipulated by a 

combination of static and dynamic magnetic fields directed both 

parallel and perpendicular to the sampl e plane. The relative timing 

between the field pulses and laser flash is controlled by a custom

built sampling unit. In this way, the system provides pictures of 

transient domain wall behavior during single experimenta l events. The 

system can also be easi ly modified to conduct photometric measurements~ 

which provide greatly enhanced spatia l resolution. This versatil e 

system has proven to be a useful tool in studying domain wall dynamics. 

The static and dynamic field environment i s provided by current 

conductors, The uniform static bias field necessary for bubble 

stability is provided by placing the sampl e in the center of a bias 

fi e ld coil (4 em i.d, x 8 em o.d. x 2.5 em) . Thi s field i s calibrated 

by measuring the bubble collapse field of a standard sampl e, Static 

in-plane fields come from a pair of large coils (10 em i.d, x 35 em 

o.d. x 6 em) mounted on either side of the sample. Calculations show 
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that thi s field, which i s calibrated with a mqgnetometer~ i s uniform 

over the sample volume to within 2% . Bias fi e ld pul ses are provided 

by a lmm-diameter S-turn pancake coil mounted jus t below the sampl e. 

When driven by an HP214A pul se generator, thi s coil has a 12 nsec 

ri se time with no visible ringing present, Calcul9tions show that 

the bias component of th e pul sed field is uniform over the 200 pm

di ameter fi eld of view to within 2% , while the in-plane component i s 

limited to 6% of the bias component. The pancake coil is calibrated 

by observing changes in bubble collapse fi eld produced by d.c. 

currents. These coils provide static and dynami c control over fields 

perpendicular to the sample pl ane , and static control over in-plane 

fi elds. 

A block diagram of the sampling microscope system i s shown in 

Fig , (B . l). The sequence beg ins when the TV camera sends a trigger 

pulse to the sampling unit. This unit then trigger s an Avco Everett 

flowing nitrogen laser at a controlled time relative to the fi eld 
0 

pul ses . The l aser produces a 10 nsec pul se of UV l ight (3371 A) with 

100 kW peak power. The nitrogen l aser pumps a rhodamine 6G dye l aser , 
0 

whi ch provides a 10 nsec pulse of yellow (5800 A) light with about 1 

kW peak power . Thi s light i s polarized by a pri sm pol ari zer and then 

undergoes Faraday rota t i on as it passes through the sampl e . Contrast 

i s produced with a sheet analyzer. The pol arizer and analyzer ar e 

part of a Leitz Ortholux polarizing mi croscope in which most of the 

opti ca l el ements have been removed, l eaving only the condenser l ens , 

a 32X objective l ens, and a 5X eyepiece. A real image of the domains 
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Fig. (B.l) : Bloch Diagram of the Sampling Optical Microscope Used 

in this Work. System operation i s described in the text. 
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is produced on the target of a Cohu 4400 SIT TV camera~ which 

retains the image for about three vertical scans. This image is then 

sent to the sampling unit for processing and recording. The spatial 

resolution obtained by optical sampling is limited by diffraction 

effects to about 0.2 ~m 2 while temporal resolution is limited by 

the laser pulse width to about 10 sec. 

A block diagram of the sampling unit is shown in Fig, {B,2). 

The core of this unit is a programmable sequencer, which controls 

eight independent trigger lines during up to 64 program steps. In 

the simple example shown here , the first line i s used to trigger an 

IIP214 A pulse generator, which provides the bi as fi eld pulses, and 

the eighth line triggers a Tektronix 3T77 sampling sweep generator, 

which later triggers the nitrogen laser after a controlled del ay. 

The image from the TV camera i s encoded with digital information from 

the sequencer and from the sampling unit and then recorded on video 

tape with a Sanyo VTR 1200 recorder. Encoded information may inc lude 

the delay time, the particular trigger combination being executed, 

the program step number, the frame number, the static bias and in

plane fields, etc, The time of the laser flash is monitored by placing 

a beam splitter and PIN diode in the optical path just before the 

light enters the microscope , The time of the current pulse i s 

monitored by a 0.5 nsec-rise time Tektroni x CT-2 current probe. The 

relative timing between these two signa l s i s monitored on an oscil- · 

loscope and may be controll ed t o within 1 nsec. The ability to program 

different trigger patterns has proven to be very useful, especial ly 
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Fig. (8.2): Glock Diagram of the Sampling Unit Used to Control the 

Experiments. Operation is described in the text. 
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in more complex experimental s ituations . 

A block diagram of the photometric experiment i s s hown in 

Fig. (8.3). Light from the dye laser i s spli t into two beams. The 

first (A) goes through the sample and polarizing mi croscope, and its 

intensity is measured with a UDT PIN 10 photodiode. The laser power 

is monitored by measuring the intensity of the second beam with a 

similar diode. Electrical signals from the diodes are amplified by 

low-noi se dual FET amplifiers . The gain of these amplifiers i s ad

justed so that the output s i gnal s are approximately equal. Diode 

capacitance, together with the limited frequency r esponse , combine to 

widen the 10 nsec la ser pulse into a 0.5 msec electri cal pulse. 

Since this s ignal sti ll only occupies 2% of the duty cycle (30 Hz 

r epetition rate), latch and hold circuits are used to r eta in the peak 

s ignal voltages throughout the entire cycle. The latches are auto

matically reset by a self-tri gger c ircuit at the beginning of eac h 

cycl e . Electrical s ignal s from the latch and hold circuits are sub

tracted in order to compensate for fluctuations in l aser power (<10%) . 

Thi s difference s i gna l i s detected by a PAR HR-8 lock- in amplifi er, 

us ing either 1 or 5 sec time constants. The bias pul se i s on ly 

applied on alternate laser flashes, and the s ignal i s detected at hal f 

of th~ l aser frequency (i. e ., 15 •l z ) in order to compensa te for sma ll 

changes in the domain confi gurat ion . The averaged s ignal i s plotted 

on an HP 70058 X-Y recorder as a function of delay time. The noise 

l evel in the output signa l i s equ ival ent to an effecti ve spatia l r eso

lution of 0.03 ~m . wh il e tempora l r esolution i s stil l limited by the 
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Fig. (B.3 ): Block Diagram of the Photometri c Experiment. Operation is 

described in the text. 
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laser pulse width to about 10 nsec. By giving up the ability to 

monitor individual experimental events, the photometric experiment 

provides an order of magnitude improvement in resolution over optical 

sampling. 
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Appendix C. Notation 

Magnetic Units 

The cgs system is used throughout. Magneti c fi elds Hare measured 

in oers teds (Oe) and magnetic induction B i s measured in gauss. The 

relationship between these units and their MKS counterparts is given 

by 

1 Oe = 79.58 amps/m (C.la) 

and 

1 gauss = 10-4 webers;m2 (C.lb) 

Conventions 

1. Vector quantities are indicated by a bar over the symbol, e.g. , 

H. Vector components are indi cated by a subscript, e.g., Hx i s the x

component of H. 

2. Partial derivatives with respect to time are indicated by a dot 

over the symbol, e.g ., 

ae _ e at - (C.2a) 

and 

a2e _ 
e 

at2 -
(C.2b) 

3. Partial derivatives with respect to spatia l coordinates are indi-

cated by subscripts, e.g., 
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(C..3a) 

and 

(C.3b) 

However, subscripts on vector quantities indicate vector components, 

and not spatial derivatives. 

4. Magnetic fields are sometimes scaled to Hk, the anisotropy field. 

Such fields are indicated by lower case letters, e.g., H/Hk = h, 

and H/Hk = hx . 

5. Averaged values through the film thickness are indicated by 

brackets, e.g., 

h 

h-l J dz $ (z) = <$> 

0 

Use of Symbols 

(C. S) 

A table of symbols together with a bri ef description and units 

is given below. The first part of the table li sts Latin symbols used 

in this work in alphabetical order, and the second part li s t s Greek 

symbol s also in alphabetical order. 

Latin Symbol s 

A 

d 

Description (units ) 

exchange constant (erg/em) 

dimens ionless bubble diameter 

stripe domain widths (em) 



h 

H' 

L 

[ 
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bias fi eld energy (erg or erg/cm2) 

demagnetizing energy (erg or erg/cm2) 

total doma in energy (erg or erg/cm2) 

wall energy (erg or erg/cm2) 

di ss ipation per unit volume (erg/cm3- sec) 

di ssipat ion per unit wal l area (erg/cm2-
sec) 

magnetic field (Oe) 

film thickness (em) 

effective field gradient (Oe/cm) 

magn itude of the externa ll y applied 
bias field pul se (Oe) 

Hamiltonian per unit wal l area (erg/cm2) 

external bias field (Oe) 

bubbl e co llapse field (Oe) ; 
coercive fie ld (Oe ) 

demag neti zing field (Oe) 

in -pl ane field (Oe ) 

ani sotropy field (Oe) 

perpendic ul ar component of surface 
demagneti zing f i eld (Oe ) 

bubble stripe- out fie l d (Oe) 

effective drag field resulting from 
saturated wall velocity (Oe) 

Walker field (Oe ) 

uniaxial anisotropy energy density 
(ergs/cm3) 

Lagrangian per un it volume (erg/cm3) 

ang~l ar momentum per unit volume 
(Oe sec/em) 



m 

Q 

q 

r 

v 

w 

Greek Symbols 

a 

B 

y 

t, 
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characteristic length (em) 

Lagrangian per unit wall area (erg/cm2) 

magnetic moment per unit volume 
or magnetization (Oe) 

effective wall mass per unit area 
{gm/cm2) 

Doring mass (gm/cm2) 

saturation magnetization, IMI (Oe) 

qua 1 ity factor 

wall position (em) 

bubble radius (em) 

steady-state wall velocity (em/sec) 

average wall velocity (em/sec) 

peak steady-state velocity attainable 
with an HBL present (em/sec) 

saturated wall velocity (em/sec ) 

Walker velocity (em/ sec ) 

kinetic energy per unit volume (erg/ cm3) 

HBL width (em) 

locations of the critical points (em) 

HBL position (em) 

Description (units) 

Gil bert damping parameter 

dimens ionless bias fi eld 

gyromagnet i c ratio (Oe- 1sec- 1) 

wall width (em) 
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Bloch wall widt h (em) 

Ne~l wall width (em) 

HBL energy per unit wall length 
(erg/em) 

polar angl e between M and +z-axis 

asymptotic value of e far from the wall 

di mensionl ess characteristic l ength 

wall mobility (cm/sec-Oe ) 

wall osc illation frequency (Hz) 

potent i al energy per unit volume 
(erg/cm3) 

asymptotic value of pE (erg/ cm3) 

Bloch wall energy per unit area 
(erg/cm2 ) 

kinetic2wall energy per unit area 
(erg/em ) 

Neel wa~l energy per unit area 
(erg/em ) 

wal l energy per uni t area (erg/cm2) 

half-peri od of wall oscillations (sec ) 

azimuthal angle between projection 
of M in the x-y plane and t he +x
axis 

asymptotic value of ~ far from the wall 

static orientation of ~ 

value of ~ inside the doma in wall 


