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Abstract

The purpose of this work is to extend experimental and theoreti-
cal understanding of horizontal Bloch line (HBL) motion in magnetic
bubble materials. The present theory of HBL motion is reviewed, and
then extended to include transient effects in which the internal
domain wall structure changes with time. This is accomplished by
numerically solving the equations of motion for the internal azi-
muthal angle ¢ and the wall position q as functions of z, the co-
ordinate perpendicular to the thin-film material, and time, The
effects of HBL's on domain wall motion are jnvestigated by comparing
results from wall oscillation experiments with those from the theory.
In these experiments, a bias field pulse is used to make a step
change in equilibrium position of either bubble or stripe domain
walls, and the wall response is measured by uéing transient photog-
raphy. During the initigl response, the dynamic wall structure
closely resembles the initial static structure. The wall accelerates
to a relatively high velocity ( =20 m/sec), resuTting in a short
(» 22 nsec) section of initjal rapid motion. An HBL gradually forms
near pne of the film surfaces as a result of local dynamic properties,
and moves along the wall surface toward the film center. The pre-
sence of this structure produces low-frequency, triangular-shaped
oscillations in which the experimental wall velocity is nearly con-

stant, v, = 5-8 m/sec, If the HBL reaches the opposite surface,
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i.e., if the average internal angle reaches an integer multiple of

m, the momentum stored in the HBL is lost, and the wall chiralijty

is reversed. This results in abrupt transitions to overdamped motion
and changes in wall chirality, which are observed as a function of

i punch-

bias pulse amplitude. The pulse amplitude at which the nt
through occurs just as the wall reaches equilibrium is given within
0.2 Qe by Hn = (ZVSH’/Y)% . (mr)!/2 4 Hsv’ where H' is the effective
field gradient from the surrounding domains, and HSV is a small

( <0.03 Oe), effective drag field. Observations of wall oscillation
in the presence of in-plane fields parallel to the wall show that HBL
formation is suppressed by fields greater than about 40 Qe (:EHMS),

resulting in the high-frequency, sinusoidal oscillations associated

with a simple internal wall structure.
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Chapter 1

Introduction

Magnetic bubble devices (1-4) represent a new solid state digita1
storage technology. In these devices, small (< 5 um) cylindrical
domains, called magnetic bubbles, move through a thin-film ferro-
magnetic material. These domains are actually regions where the
magnetization M is perpendicular to the film plane, and opposite to
M in the surrounding material. An external bias field directed anti-
parallel to M in the bubble is required for stability. The bubbles
are manipulated by a rotating external in-plane field through a series
of thin (<5000 E) evaporated permalloy overlay structures. These over-
lays are usually arranged in the form of continuous shift registers.

As bubbles move around the registers in a lock-step manner, bit in-
formation is stored by the presence or absence of a bubble at each

bit location. A typical bubb1e.chip in production today contains
several hundred of these minor loop registers, each containing about
1000 bits of information. The register period is about 14 um, which
gives a typical storage density of 106 bits/cmz. Information is decoded
by replicating the bubble pattern from each minor loop into a common
major loop register, and then transferring the bubble patterns to a

(5’6). There, bubbles are stretched into

magnetoresistive detector
long (102 um) stripe domains oriented perpendicular to the propaga-
tion direction. As the stripe passes under the permalloy conductor

detector, the stray magnetic fields cause a 5% change in electrical
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resistance, which is detected electronically. Other functions neces-

sary for complete device operation, such as selective switching (7),

(8)

replication-transfer , nucleation (9), and annihilation are imple-

mented by a combination of current conductors and overlay structures.

In addition, certain binary logic operations (2), which make use of

bubble-bubble interactions, make possible on-chip data processing (10’]]).

With the in-plane field rotating at 100 KHz, typical average access

5

times of 0.5 msec, and data rates of 10 bits/sec have been achieved.

Present individual chip capacity is typically 300 Kbits (12)

(13).

» but
designs with up to 1 Mbit are available Complete bubble memory
systems, which contain several chips mounted in a common bias field

and rotating field assembly, are now available.

Propagation of bubbles with the classic T-bar overlay structure (14)
is shown in Fig. (1.1). When a uniform in-plane field is applied to
the magnetically soft permalloy overlays, magnetic poles from V-M are
produced at the edges. Bubbles in the underlying material are
attracted to positive poles, and repelled by negative poles. Since
the location of these poles depends on in-plane field orientation, the
bubbles slide along the overlay structures as the in-plane field
rotates. For example, with +Hy (case A), bubbles are located under
the positive pole at the center of the T element. When the field
rotates by 90° to +Hx (case B), the bubble moves to the right side of
the T element. When the field rotates to -Hy (case C), the bubble

moves across the gap to the lower end of the bar element. When the

field rotates to —Hx (case D), the bubble moves across the second gap
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Fig. 1.1. Propagation of Bubbles by T-bar Overlay Structures. As the
in-plane field (indicated by arrows) rotates, the magnetic poles (+

or -) in the permalloy overlay structures change position, and the
bubbles, which are located under the overlays, move along the register
by one bit location for each 360° rotation.



o
to the left side of the next T element. Finally, when the in-plane

field returns to +Hy (case E), the bubble moves again to the center of
the T element. In this way, bubbles advance along the shift register
by one bit position each time the in-plane field rotates by 360°. A
number of similar propagation structures, such as the Y-bar (]5),

(]6), and Y-Y (7) designs, have also been developed. Recently,

(17)

X-bar
gap-tolerant structures , such as the asymmetric half-disc (]8),
have been developed to relax lithographic requirements. Each of these
structures operates on the same principle as the basic T-bar design.
Bubble devices have significant advantages-over existing semi-

(4)

conductor and magnetic disk recording technologies Unlike semi-
conductor memory, bubble memory is non-volatile, i.e., power is not
required to maintain stored information. Bubbles also promise a lower
per-bit cost because of higher storage densities. At present, bubble
and semiconductor densities are about the same, but with new propaga-

(19,20) 4pq E-beam (0.25 um) lithography, bubbles may

7

tion mechanisms
surpass the ultimate semiconductor density (10 bits/cmz) by an order
of magnitude. Bubbles also promise higher yields because of much
easier fabrication techniques. Semiconductor memory requires at
least five masking levels, some of which involve active diffusion into
the Si substrate, while bubbles require two, and perhaps just one (21)
passive overlay level. This advantage has already resulted in larger
bubble chip capacity (1 Mbit) with satisfactory yields. Because

magnetic disk devices distribute the cost of expensive mechanical drive

equipment over many bits (109), the per-bit cost is much Tower than
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for bubbles. Thus, bubbles will probably be cost competitive only for

small (< 107

bit) memory applications. However, the absence of moving
parts makes bubbles more attractive from a reliability and maintenance
standpoint. Furthermore, bubble access times are much shorter than

for either fixed-head (20 msec) or movable-head (100 msec) disk devices.
Finally, the possibility of asynchronous operation, and on-chip logic
functions make bubbles more versatile. Bubble memory, which combines
the simplicity and reliability of solid state operation with the Tow
cost and non-volatility of magnetic storage, fills the technological

gap between existing semiconductor and magnetic disk devices.

Bubble materials (22)

must satisfy certain requirements, which
are imposed by the technology. Bubble stability requires a strong
magnetic easy axis perpendicular to the plane of the material. To
prevent the coherent rotation of M into the plane, the magnetic aniso-

tropy energy density Ku must satisfy
K f2nM% = Q > 1 | (1.1)
u s ! :

where MS = |M| , and Q is the so-called quality factor. Stability also

requires that the bubble radius r_ and film thickness h satisfy

0

¥ =h:"“‘“2" s (].2)
™
S
where the wall energy per unit area Oy describes surface tension.
Bubble walls must move freely under the influence of relatively small

drive fields Hz' It will be shown in Ch. 2 that the theoretical wall

velocity is given in the simplest approximation by



Vo= u(H, - H,) ; (1.3)

where p is the wall mobility, and HCO is the coercive field. Thus,
bubble materials should have high mobilities, and low coercive fields.
Material defects, which can produce large barriers to wall motion, must
be eliminated. In order to ensure device operation over an acceptable
temperature range, material properties must vary slowly with tempera-
ture. Finally, material characteristics must be constant within a
single chip, and reproducible from one chip to the next.
Single-crystal rare-earth-iron garnets are, at present, the only
materials used in bubble devices. These materials have a garnet crystal
structure with nominal chemical composition, {RE3} [Fez] [Fe3] UPY
The iron ions occupy two separate ferromagnetic sublattices, while
coupling between sublattices is antiferromagnetic. The intrinsic or
stress-induced anisotropy found in these crystals is normally too
small for device applications. However, Bobeck g}_gl:(23) found that
garnets with a number of different rare-earth ions can have a large
growth-induced anisotropy of the proper type. The origin of this
anisotropy is not well understood, but it can be controlled by using
empirical formulas. The magnetization is controlled by substituting
various nonmagnetic ions into the three sublattices. Since the
magnetic moment of each sublattice depends on temperature, there is a
unique compensation temperature at which the total moment is zero.
Satisfactory device operation has been achieved over the range,

-50°C to 100°C, by adjusting the compensation point so that the
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temperature dependence matches that of the permanent bias magnet.
Garnets flux-grown on nonmagnetic garnet substrates through LPE yield
satisfactory coercivities (< 0.5 Oe), and defect densities
(< 5 per cmz). Attempts to produce high-velocity samples have met
with Timited success. Low-o materials have been produced, but the
presence of internal wall structures prevents the realization of large
velocities. High-y materials have also been produced, but large
temperature dependences make them unsuitable for use in devices.
Because various ions can be substituted into the three crystal sub-
lattices, magnetic characteristics can be controlled over a wide
range of parameters. This feature makes magnetic garnets attractive
for device applications.

Amorphous alloys of the form Gd-Co-X (X = Mo, Cu, Au, Cr) are also

(22, 24, 25). These materials

being considered as bubble materials
have two advantages over the garnets: lower material cost, and smaller
bubble size. These materials are deposited on glass or Si substrates
by sputtering or evaporation, thus eliminating the need for more
expensive single-crystal substrates. The required perpendicular
anisotropy, also growth-induced, has been found in sputtered alloys (26),
but it is sensitive both to composition and preparation conditions.

The magnetization is generally an order of magnitude larger than in
garnets, and varies significantly with composftion. In order to obtain
bubbles large enough for device applications [see Eq. (1.2)], it is

necessary to use compositions near the compensation point. Un-

fortunately, the extreme temperature sensitivity of these compositions
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poses a major problem in device design. Sufficiently high wall

velocities have been observed (27,28)

, but control of coercivity has
been another major problem. Amorphous materials also exhibit oxida-
tion, which is not found in garnets. These materials show promise in
small-bubble applications, but a number of problems, especially
temperature sensitivity, must first be solved.

Since thin-film garnets are nearly transparent, domains are most
easily observed by using the Faraday effect (29). When plane-
polarized light passes through the material along the easy axis, the
plane of polarization rotates by a small amount (<1°). The sense of
rotation depends on whether M is parallel or antiparallel to the pro-
pagation direction. Contrast is produced by passing the light through
an analyzer with its transmission direction perpendicular to one of
the rotated polarizations. In this way, domains with opposite
orientations of M along the easy axis can be seen with a microscope
as a series of light and dark images.

Two domain configurations commonly found in bubble materials are
shown schematically in Fig. (1.2). In the demagnetized state with zero
bias field, the material is divided by a series of serpentine stripe
domains in which M alternates between opposite directions along the
easy axis [Fig. (1.2a)]. When the bias field ﬁé is applied, those
stripes with M parallel to ﬁB expand at the expense of the antiparallel
domains. The stripe widths d] and d2 are functions of HB’ h, and o .

W

When H, exceeds about 2.5 M., stripe domains become unstable. The

B



S5TRIPE DOMHAINS

BUBBLE DOMAILIN

Fig. 1.2. Schematic Diagram of Stripe (A) and Bubble Domains (B)
Found in Thin-Film Bubble Materials. The directions of the magnetiza-

tion M and bias field HB
the film thickness h, and the bubble radius v are also shown.

are indicated. The stripe widths d] and d2’
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stripe ends move in from the material boundaries and contract into
bubble domains [Fig. (1.2b)] with M inside opposite to ﬁé. The
equilibrium bubble radius is also a function of HB’ h, and Oy
Bubbles are only stable over a limited bias field range. If HB is
too large, the bubbles collapse, leaving the material saturated with
M parallel to ﬁé, and if Hy is too small the bubbles stripe out.
A quantitative analysis of the static properties of bubble and stripe
domains 1is given in Appendix A.

Domain walls in both configurations can contain internal wall
structure like those shown schematically in Fig. (1.3). Domain
walls are narrow regions in which M rotates between opposite orienta-
tions along the easy axis. In the wall center, M Ties in the plane of
the material. It is shown in Ch. 2 that in a static wall this center
spin must be tangent to the wall surface in order to minimize wall
energy. The center spin may point in opposite directions, so that
there are two physically distinct static wall types. These two walls
are said to have opposite senses of wall chirality. In the simplest
case, unichiral bubbles only contain one sense of chirality. A more
complicated example, in which the bubble contains both senses of
chiralty, is shown in Fig. (1.2a). On the left side, the center
spins point counterclockwise around the circumference, while on the
right side, the center spins point clockwise. These regions are
separated by an internal wall structure, called a vertical Bloch line
(VBL), which is indicated by a dashed line. Naturally, since the

total rotation of the center spin around the circumference must be an



==

— — — —

VERT I CAL BLOCH LINE

HOR [ ZONTRL BLOCH L INE

Fig. 1.3. Schematic Diagram of Vertical and Horizontal Bloch Line
Structures in Bubble Domain Walls. These structures, which are indi-
cated by dashed lines, separate regions of opposite wall chirality.
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integer multiple of 2w, at least one additional VBL (not shown) must
be present. A second example, in which opposite chiralities are
separated by horizontal Bloch line (HBL), is shown in Fig. (1.3b).
The presence of either structure is thought to strongly affect dynamic
wall properties. For this reason, internal structure has become an
important factor in device design.

There is strong experimental evidence for the existence of
vertical Bloch lines. These strucfures have been seen in thin metal

foils by using Lorentz microscopy (30,31)

as abrupt changes in
chirality. Such direct observations are not possible in thicker
bubble materials; however, much indirect evidence has been accumulated
by investigating the effects of VBL's on static and dynamic wall
properties. Bubbles containing a large number of VBL's are more

resistant to bubble collapse due to mutual Bloch 1line repulsion.

These "hard" bubbles, which collapse at anomalously high bias fields,

are often seen experimentally (32). Hard wall sections, which exhibit
greatly reduced velocities (33’34), have been observed in stripe
domains (35). The presence of VBL's can produce transverse forces (36)

(37) which are observed during bubble translation.

and shape distortions
There is little doubt that VBL's exist in bubble materials, and that
they are responsible for a variety of static and dynamic effects.

The existence of horizontal Bloch Tines is much less certain.
These structures are only thought to occur in moving walls, so that
their presence is only detectable in dynamic effects such as velocity

saturation, and dynamic conversion. It was found experimentally (38-40)
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that wall velocities increase linearly with Hz’ but the slope is
usually much lower than the theoretical wall mobility. Beyond a cer-
tain point, the velocity becomes saturated, i.e., independent of Hz’
with a typical value between 5 and 20 m/sec. One explanation of this

(41)

phenomenon involves the continuous motion of HBL's between the

film surfaces. The dynamic conversion of VBL structures during
bubble translation (42) has also been explained by HBL motion (43).
Unfortunately, neither of these effects require the existence of HBL's
as specific micromagnetic structures. It will be shown in Ch. 2

that reasonable agreement with observed saturation velocities can be
obtained by assuming different internal structures. Dynamic con-

version can also be explained as a result of local Walker breakdown(44)

or Bloch ring nucleation (45).

Hence, the dynamic effects now at-
tributed to HBL's may be equally well explained by other mechanisms.
The wall oscillation phenomenon studied here provides a unique
opportunity to investigate the effects of HBL's on wall motion. When
a wall is subjected to a step change in equilibrium position, it
oscillates about its new equilibrium position in some low-loss bubble
materials. The rate at which these wall oscillations are damped
depends on the energy losses associated with wall motion. Their
frequency depends both on the effective wall mass, and on the re-
storing force provided by the surrounding domains. Walls with the
simplest, unichiral structure have a uniform mass density, which is
characteristic of the material. More complex walls exhibit inertial

properties, which are dominated by internal structure. The wall
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oscillation phenomenan is used here as a sensitive probe into the

nature of these internal wall structures.

The Thesis

The purpose of this work is to extend experimental and theoret-

ical understanding of horizontal Bloch Tine motion in magnetic bub-
ble materials. A model of wall motion in bubble materials is pre-
sented in Ch. 2. The existing model is extended in order to analyze
transient wall response by numerically solving the equations of motion.
An experimental investigation of wall oscillations in a low-loss
material is presented in Ch. 3. It is shown that the unusual dynamic
behavior found during wall oscillation is due to the presence of
horizontal Bloch Tines. The relationship between the loss of stored
momentum and changes in wall chirality during HBL instabilities is
demonstrated for the first time. Finally, HBL nucleation is studied
by investigating wall oscillation in the presence of in-plane fields.
These results constitute the first experimental evidence for the
existence of horizontal Bloch lines as specific micromagnetic struc-

tures.
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Chapter 2

Theory of Domain Wall Motion in Magnetic Bubble Materials

The dynamic behavior of the magnetic moment per unit volume M is
described in terms of gyroscopic precession by a phenomenological

(]). In this approach (1’2),,

model proposed by Landau and Lifschitz
the magnetization is treated as a continuous function of space and
time. Its magnitude Ms is constant, and its direction is specified
by the angles © and ¢ shown in Fig. (2.i.1). Associated with the
magnetization is an underlying angular momentum per unit volume L,
which is constant in magnitude and directed opposite to M, so that
L = -M/y. The value of the gyromagnetic ratio y that is predicted
(

by quantum mechanics is gl|e|/2mc. The Landé g-factor g 3) describes
the relative contributions to the magnetic moment from orbital

motion and from electron spin. In ferromagnetic materials, the moment
is due primarily to electron spin, so that g is about two, and 7y is

7 1sec_1. In the presence of an effective

approximately 1.7 x 10" Oe”
magnetic field ﬁé, the angular momentum precesses according to

= M x Hé. In order to account for relaxation in magnetic materials,
it is necessary to include a small torque that tends to align the
magnetization with the effective field. Landau and Lifschitz pro-
posed a torque of the form, M x (M x ﬁé). Later, Gilbert (4) pro-
posed an alternative form, o/M, - (M x ﬁ), which is analogous to

viscous damping. These two forms are equivalent in the 1imit of small
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Fig. 2.i.1. The Spherical-Polar Coordinate System Used to Describe
the Orientation of M. A Cartesian coordinate system (x,y,z) is used
to describe position within the magnetic material.
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damping. By combining these results, the dynamic behavior of the

magnetization is described by
Ms -yM x ﬁé + %—(ﬁ'x M. {2.1.1)
s
This equation, known as the Landau-Lifschitz-Gilbert equation (LLG),
is the theoretical basis for the analysis of dynamic ferromagnetism.
Wall motion will be analyzed by using the Lagrangian formulation

of classical mechanics for continuous systems (2’5).

In this
formulation, the Lagrangian per unit volume L is the difference
between the kinetic energy per unit volume w and the potential energy
per unit volume PE- In general, L depends on the local orientation of

M, its gradients, and on position. Dissipation is described by a

Rayleigh function per unit volume F. By applying Hamilton's variational

principle,
afdt J” a3r 1(6,6,V0,94.4,0,7) = 0 (2.i.2)
v
and by using well-known techniques from the calculus of variations(a’ﬁ),
the Euler equations and boundary conditions are obtained:
d [aL 3 4 oL oL . oF .
ro2 el R - - = (2.1.3a)
aqj i=1 ™™ . EEJ, aqj aqj
X
i
aqj‘ =0 , (2.1.3b)
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or 3 (Z'i,SC)

_ 3L =0
[

j
where (q;,a5) = (0,0), and (x;,%,,%3) = (x,y,z). Given specific forms
for L and F , the Euler equations may be solved for the time and
spatial dependence of 6 and ¢.

The functional forms of L and F are determined from the LLG equa- -
tion. One expression for the kinetic energy density that is consistent
with gyroscopic precession is
-M

W= _§§.é cos® . (2.9.4a)

This is the kinetic energy of a classical top in which only the princi-
pal moment of inertia parallel to the angular momentum is nonzero,

This expression has an unusual form, in that it assigns a special role
to the direction of the z—axis; Hence, the functional form of w is not
unique, but depends on the choice of coordinate axes, For example,

another equivalent form is
"Ms )
w = —§—-8¢ sind (2.1.4b)

However, all of these forms differ by an exact time derivative of some
function of the coordinates, in this case 25 ¢ cos® , so that all pre-
ference for coordinate systems is lost in the equations of motion. The
Lagrangian is given by w - Pp s where PE is the potential energy as-
sociated with reversible torques. The Rayleigh function per unit

volume that is consistent with the Gilbert damping torque is

oM

. s g L e B *3 :
Fegs (674 sti70 47} . (2.i.5)
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Physically, 2F represents the rate at which the magnetic system loses

energy in the form of heat (per unit volume).

Contributions to the potential energy come from four sources:
anisotropy, exchange, external magnetic fields, and magnetic dipole
interactions. The magnetic moments interact with the underlying
material, so that the energy depends on orientqtion, In uniaxia]l
materials, the anisotropy energy is given by

K, sin‘e (2.i.6a)
where the easy axis has been taken as the z-axis. In ferromagnets,
there is a strong torque, which tends to align M with its nearest |
neighbors, This torque, which comes from the guantum-mechanical ex-
change interaction, is represented here by the exchange energy density,

ALVe » VO + sinf0 Vo » Vo 1 . (2.i.6b)
The eneragy due to the external field H is just

-MeH . (2.i.6¢c)
The energy due to long range dipole-dipole interactions is given in
terms of the magnetic charge density, V M, as

Ly« i(r) J” B v M) (2.i.6d)

ol
v

This is often written in terms of a demagnetizing field ﬁa:

M. Ha : (2.i.6e)

N —

In general, ﬁd depends on the orientation of M throughout the material,
but in some simple situations, it is only a function of the local

orientation of M. The sum of these contributions,
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o + AL(v9)? + sin®0 (v$)%] - WH - %Meﬂa :

pp = K,sin’ (2.7.7)

is the potential energy function used in the Lagrangian.

The purpose here is to develop a model of domain wall motion in
magnetic bubble materials. Motion in these thin-film materials is
complicated by the presence of demagnetizing fields from VM at the
film surfaces. These fields produce static and dynamic wall twist
structures which vary through the film thickness. However, in high-Q
materials, where the wall thickness is much smaller than the film
thickness, the structure changes slowly, so that each point in the
wall may be thought of as having a locally uniform wall structure.

" Furthermore, since the demagnetizing fields are roughly independent
of the internal wall structure in this limit, they may be treated as
constant in-plane fields. The development begins in Sec. 2.1 by
considering the dynamic properties of a domain wall with a uniform,
i.e., one-dimensional structure. In Sec. 2.2, the analysis is extended
to motion of one-dimensional walls in the presence of in-plane fields.
These results are used in Sec. 2.3 to develop equations of motion for
domain walls in magnetic bubble materials. An approximate analysis
shows that internal twist structures, called horizontal Bloch lines,
are formed as a result of the surface fields. The dynamic properties
of these structures are investigated in some detail by using the
horizontal Bloch line model, and it is shown that they have a signi-
ficant effect on wall motion. Finally, wall motion is treated more

rigorously in Sec. 2.4 by solving the equations of motion numerically.
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These results are used in Ch. 3 to show that the unusual wall behavior
found during wall oscillation is due to the presence of horizontal

Bloch lines.

Section 2.1 Motion of One-Dimensional Wall Structures

Consider the case of an isolated domain wall parallel to the xz-
plane in an infinite, uniaxial magnetic material. The properties of
the wall are independent of both x and z, so that M only depends
on one coordinate, y. This situation is somewhat artificial (1) in
that the boundary conditions on M which produce the wall structure
are established by the surrounding domains. It is assumed here that
domains are present, but that the material boundaries are far away,
so that interactions with VM at these surfaces may be neglected.
Such interactions are considered in Sec. 2.3.

In this situation, the Lagrangian has a relatively simple form.
The gradients of 6 and ¢ only have one nonzero component each, ey
and ¢y’ so that the exchange energy has two terms. Subscripts on

the functions ¢ and © represent spatial derivatives, e.g., ¢y=a¢/ay.

oM
There is only one term in V.M, 551-, so that H& has only a y-component,
which is proportional to My. From Eq. (2.i.6e), the demagnetizing

energy is given by
2nM2 sin’e sin’y . (2.1.1)

In the case considered here, there are no external in-plane fields, so
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that H has only one component, Hz. By combining these results with Egs.

(2.i.4a) and (2.i.7), the Lagrangian is given by

M.
S il 2 i @ 2
B 5 o et . . +
5 ¢ cosd - K, sine A(G.y sin“e ¢y)
+ M_H, coso -.ZWME sin%o sin%y . (2.7.2)

Far from the wall, M aligns with the easy axis, so that 6+0 as
y»-e, and 0>m as y>+eo. With these conditions, 6(y) meets the first
boundary condition, Eq. (2.71.3b). Since L does not depend on ¢y in

this region, ¢ meets the second boundary condition, Eq. (2.7.3c).

Static Wall Strqcture

The static wall structure may be determined by substituting the
explicit form for L into the Euler equations. In a static wall, é
and & are zero, so that the first and last terms in Eq. (2.7.3a)
are zero. The kinetic energy term in L is zero, so that Hamilton's
principle is equivalent to minimizing the potential energy. For the
wall to be stationary, HZ must be zero. By substituting Eq. (2.1.2)
into Eq. (2.i.3a), two coupled, nonlinear differential equations

are obtained:

. . 2 2 . A
Ky sin26 - 2A8yy + 2A s1n28¢y + ZTrMS sin2esin“¢ = 0 , (2.1.3a)

and

. B e 5 v P
= ? + 2¢- = . 2.1.3b
2A sin 6(§¢y 2mM_ sin“0 sin2¢-2Asin L 0 ( )
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The solutions of these equations,®(y) and ¢(y), describe the spatial
dependence of M in a static one-dimensional wall.

The wall structure is determined by assuming a simple form for
¢#(y) and then showing that this assumption leads to an exact solution
of the differential equations. If ¢(y) = ¢ is a constant, then Egs.

(2.1.3a-b) reduce to

(K, + 21:M§ sinZ¢) sin2e - 2o, =0 (2.1.4a)

and
2 2 .
2nM_ sin"o sin2g = 0 . (2.1.4b)

The second equation is satisfied at each point in the wall when ¢ is
an integer multiple of w/2. Bloch wall solutions (1) are obtained by

setting ¢ equal to zero or w. Equation (2.1.4a) may be integrated to

give the wall shape.

8(y) = 2 arctan (exp (%——)) R (2.1.5)
B

where AB = /ﬁ?Ku characterizes the width of the domain wall. This

functional form has the useful property:

o = Sin6 (2.1.6)

Since PE is translationally invariant, the location of the wall center

(7)

is undetermined and has been taken as zero. Neél wall solutions

are obtained by making ¢ either +%—or —%—. The wall shape is exactly
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the same, but the wall width parameter Ap is replaced by

Ag

Dy =~ ' 2.1.7
N m ( )

These results were obtained by assuming that the material surfaces do
not affect the wall structure. With this assumption, the Bloch and
Neél wall structures do not depend on film thickness. Static wall
structures in real, thin-film materials are considered in Sec. 2.3.
There, it is shown that near the surfaces the wall has a Neél struc-
tdre, while in the film center it has a Bloch structure.

The Bloch and Neél wall shapes 0(y) are shown in Fig. (2.1.1).
In both cases, changes in © are confined within a few AB of the wall
center. The Bloch wall solution represents an energy compromise
between anisotropy, which tends to compress the wall, and exchange,
which tends to expand it. 1In the Neél wall solution, there is an
additional energy term due to V+M within the wall. It can be seen
from the functional form, Eq. (2.1.5), that v-M takes the approximate
form of two charged sheets with opposite sign separated by a distance,
AB' These charges attract each other, and tend to compress the wall.
Therefore, the Neél wall width is always somewhat smaller than the
Bloch wall width. A relatively small value, Q = 2, has been used in
this figure to emphasize this difference. The wall width parameter
in bubble materials is typically less than 0.1 pm, so that the wall
width is usually much smaller than the film thickness.

Since the energies of the Bloch and Neél walls are different,
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Fig. 2.1.1. The Polar Angle 6 as a Function of Position (y/A,) Through
the Wall Thickness. Bloch and Neél wall structures are shown as solid

and dashed curves, respectively. In calculating the Neél wall structure,
the value Q = 2 was used.
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they cannot both represent energy minima. The wall energy is obtained

by integrating pp through the wall thickness, and by making use of

Eq. (2.1.6). The Bloch wall energy og and Neél wall energy oy ob-
tained in this way are

og = 4JﬂKu- , (2.1.8a)
and

oy=og T+Qq ' . (2.1.8b)

Clearly, the function 6(y) represents a local energy minimum in both
cases, since perturbations can be found in which all three terms in
Pp are simultaneously increased. Hence, the orientations, ¢=i%—,
represent a local energy maximum, and the Neél wall represents a
saddle point solution. It is the Bloch wall solution that represents
the static, one-dimensional wall structure. Note that there are two
physicalily distinct Bloch wall structures, corresponding to the
orientations, ¢=0,w. These structures are said to have opposite
senses of wall chirality. It will be shown that this dual chirality
is preserved even in the more complicated structures found in thin-
film materials. Neél walls also have two distinct chiralities, cor-

responding to ¢=tu/2.

Walker Mode]

Equations of motion for a one-dimensional wall structure are ob-

tained by assuming that ¢ and ¢ only depend on y and t. By substitut-
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ing the Lagrangian, Eq. (2.1.2) and dissipation function, Eq. (2.1.5)
into the Euler equation, Eq. (2.i.3a), the following equations of
motion are obtained:

M
g : ; 2z
—ZAeyy ~ singgp + Kus1n28 A MSHZSIHB + A¢ys1n28

oM . )
¥ 2nM§s1n2@ siny -—;5 6=0 . (2.1.9a)

and

M

G a 5 i 2
i -2 -
5 5indo Aey¢ys1n28 2A¢yys1n 6

oM 5
+ 2utZsin®o sin2g - §~§sin28¢ =0 . (2.1.9b)
The solutions of these nonlinear, partial differential equations,

0(y,t) and ¢(y,t), specify the dynamic behavior of the one-dimensional
wall structure.

Solutions to these equations of motion (8-10)

are obtained by
assuming that a moving wall has the same structure as a stationary

wall. Assume that 8(y) maintains the functional form,

6(y,t) = 2arctan (exp(s)) 5 (2.1.10)

where s = Xi%%%l

Here, the wall position q and the wall width parameter A are functions

of time. It is also assumed that ¢ is only a function of time. This
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structure may be substituted into Eqs. (2.1.9a-b) by making use of

the following:

6 = sines (2.1.11a)
_ sin26
By vk (2.1.11b)
and
. -(v-9) (&) _a
s = ALz -4 (2.1.11¢)

A consistent solution is obtained by separately equating to zero the
coefficients of sin (28), and sin® in Eq. (2.1.9a), and sin28 in

Eq. (2.1.9b). The three equations which result are

f%‘é‘- + 2K+ At sin%e = 0, ' (2.1.12a)
-—MS : aMS .

SOt HH, + =20 =0 (2.1.12b)
and

M. ' aM

S 2. s
¥ S + ZﬁMSS1n2¢ * —§f-¢ =0 . (2.1.12¢)

Assume that changes in wall width are relatively small and slow, so that
contributions to é from A may be neglected in comparison with contri-
butions from é [see Eq. (2.1.11c)]. This assumption is most appro-
priate in high-Q materials, and in cases where HZ is small, so that ¢

changes slowly. In this lTimit, wall width changes are quasistatic, and
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make no contribution to the kinetic energy density. With this

assumption, Egs. (2.1.12a-c) reduce to

q = YAF(0) + abd (2.1.13a)
and

b = YH, - %él s (2.1.13b)
where

A= AB-—; : (2.1.13¢c)

I + sin
R

and

f(¢) = 2nM_sin2¢ . (2.1.13d)

In the limit of small damping, & is governed by the external field, while
the wall velocity is determined by the size of MS and the value of ¢.

" When ¢ is zero or w , the wall has a Bloch structure, and A = AB’

while for ¢ = ig~, A= AN’ and the wall has a Neél structure. In cases
where A is zero, i.e., when $ is zero or in the limit, Qve, the

structure assumed here leads to an exact solution of the equations of
motion. Recent numerical solutions of the full equations (10) indi-
cate that the static wall shape and uniform ¢ angle are preserved even

in more complicated situations. In general, solutions of Egs. (2.1.13a-d)

only represent approximate solutions of the original equations of motion.
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The motion described by Eqs. (2.1.13a-d) may be divided into two

distinct types: steady-state motion, and oscillatory motion. In

steady-state motion, $ is zero, and é = v is a constant. Under

these conditions, the left side of Eq. (2.1.13b) is zero, or

Ve, (2.1.14a)
where
weXto | - (2.1.14b)

The steady-state velocity is proportional to Hz’ and the mobility n
is inversely proportional to a. The steady-state orientation of ¢ is
obtained from Eqs. (2.1.14a) and (2.1.13a). Conversely, for each

orientation of ¢, there is a corresponding steady-state velocity:
v = yA(o) - ZHMSSin2¢ . (2.1.15)

This relationship is shown in Fig. (2.1.2). Because the wall width
contraction in Eq. (2.1.13c) is small in high-Q materials, it has
been neglected in this figure. The velocity increases as ¢ increases

from the static orientation ¢0 = 0. The maximum steady-state velocity,

which occurs at ¢ = %-, is called the Walker velocity:
YA, + 21M
v = S (2.1.16)
YoomE T
2Q

For ¢<0, the velocity is negative, and reaches a minimum velocity
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V/ Vi,

Fig. 2.1.2. Steady-State Velocity v/v  as a Function of ¢.

27T
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Vg at ¢ = iﬂ-. The same behavior can be seen for the other wall

chirality, which has a static orientation, Pp = T

Oscillatory motion occurs if HZ exceeds a certain critical value.
The balance between HZ and the damping term in Eq. (2.1.13b) required
for steady-state motion is only possible if H, is less than the

Walker field:

<

a
Hw — 21rMS o 4 (2.1.17)

If HZ is greater than Hw’ $ is greater than zero, and ¢ increases
with time. In the limit, o » 0, ¢ increases at a constant rate, and
é follows the curve shown in Fig. (2.1.2). In the regions O<¢<m/2
and ﬂ<¢<%ﬂy the wall travels forward, while for %<¢<ﬂ and gj<¢<2ﬂ,
the wall travels backward by an equal amount, so that the wall oscil-
lates back and forth with no change in average position. For nonzero
damping, the damping term in Eq. (2.1.13b) decreases @ when é is
positive and increases $ when é is negative, so that the wall

spends slightly more time moving forward. The wall still alternates
between forward and reverse motion, but there is a small average

forward velocity. Walker has shown (10)

that this average velocity
decreases with increasing Hz' The reason for this is that when Hz

is large, the asymmetry in & caused by the damping terms becomes

less significant, and the forward and reverse motion tend to cancel

more completely. A more thorough treatment of oscillatory motion may be

obtained by solving Eqs. (2.1.13a-d), numerically, but this is beyond

the scope of the present discussion.
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Section 2.2. Motion of One-Dimensional Wall Structures in the

Presence in In-Plane Fields

The presence of a constant, homogeneous in-plane field ﬁ}p signi-
ficantly alters the analysis in two respects. First, the in-plane
field changes the boundary conditions on ¢. Far from the wall, there
is no kinetic, exchange, or demagnetizing energy, so that the

Lagrangian is just

_ - .
L = ~Ku sin 0 + MSHZ cosf + Mst sing cos¢

+ MSH sin® sing . {2.2.1)

¥

The boundary conditions are determined by substituting this expres-
sion into the Euler equations. The solution of these equations,

which are the asymptotic values of 6 and ¢ , 8° and ¢°,are given by

H.
ge = p , (2.2.23.)
Hk+H
z
and
tang® = Hy/Hx s , (2.2.2b)
for Hip << Hk' Here ; Hk is the effective anisotropy field,

ZKU/MS. It will sometimes be convenient to scale in-plane fields to
Hk' Such scaled fields are indicated by lower case letters, e.g.,

H/H, = h . The in-plane field tilts M slightly away from the easy
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axis, but, more important, the projection of M in the xy-plane
aligns with the in-plane field. Second, the Lagrangian is complicated
by two additional energy terms. By making use of the alternate form
for the kinetic energy, Eq. (2.1.4b),the Lagrangian may be written

as

-M
_ S S s 2 T 2
L = §—¢ singe - Ku sin“o-A[ Qy + sin"p ¢y]

+ Mst cosf + Mst sin@ cos¢ + MSH sing sing

J

+

2nM§ sin®e sinlp + 2 (2.2.3)

where pg is the constant background energy density far from the wall,

0 _ e 2 o} 2 a B0 a2 O
PE = Ku51n 0" + MSHZcose ;4 ZﬁMS sin" 0 sin ¢
.0 0 SE o T o
- MH, sine” cos¢” - MsHy sing” sing , (2.2.4)

Equations of motion for the wall may be obtained by substiting this
expression into the Euler equation. Approximate solutions are again

obtained by constraining the wall to a particular dynamic structure.

Static Wall Structure

Different structures have been used in the past to approximate
the static wall structure in the presence of in-plane fields. In all
cases, the function ©(y) is not strongly influenced by the in-plane
field, because it is determined mainly by much larger exchange and

anisotropy energy terms. However, since ¢(y) is determined by in-
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plane field and demagnetizing energies, which may be comparable in
size, it can be significantly affected by the in-plane field. For the

special case in which ﬁ} is parallel to the wall (HX only), these

p
energy terms are simultaneously minimized by taking ¢(y) to be zero.

For other orientations of H}p, the situation is more complicated,

and the structure is approximated by making certain assumptions about
M(y). In Bloch-type walls (13’]4), demagnetizing energy is avoided

by making My constant, so that V+ M is zero everywhere. The constant
value of My is determined from the boundary conditions, Eqs. (2.2.2a-b).

This structure is most suitable when H_i is small compared to 4ﬁMS,

p
since it then avoids the more significant energy term; however, when

H1.p and 4ﬂMS are comparable in size, it gives poor results because M

is always misaligned with the in-plane field near the wall center. In

(14)

Neél-type walls , & = ¢° is a constant, which is determined from

Eq. (2.2.2b). This structure is most suitable when Hip 1s large,

p
because it aligns M with ﬁ}p as much as possible. However, when Hi

p
is small this structure overestimates the demagnetizing energy.
Neither type of‘structure gives adequate results over the entire
range of in-plane fields considered here.

The problem with these assumptions is that the structure near the
wall center is determined by conditions far from the wall. Solutions
must meet the proper boundary conditions, so that the parameters which
characterize the entire structure, either My or ¢°, are determined by

the in-plane field. It seems clear that a better solution would be

one in which the structure near the wall is determined by both the
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in-plane field and demagnetizing energies. Hubert (15) has praoposed
more general one-dimensional structures in which this is accomplished
indirectly, but the conceptual complexity of these structures make
them unsuitable for use in modeling dynamic properties.

A relatively simple structure, which takes into account both the
in-plane field and demagnetizing energies, is shown schematically in
Figs. (2.2.1). It is assumed that inside the wall, 0(y) has the con-
ventional Bloch wall form, Eq. (2.1.5), with an adjustable wall width
parameter A. When 0 reaches the asymptotic value given by Eq. (2.2.2a),
it remains constant (solid line) rather than continuing with the Bloch
wall form (dotted 1ine). The function ¢(y) shown in Fig. (2.2.1b)
has an adjustable, constant value in the vicinity of the wall ¢i.

At the point where 0 reaches 0%, ¢(y) begins a linear transition to the
asymptotic value ¢0 given in Eq. (2.2.2b). The width of this transi-
tion region b is also adjustable. Note that in the limit, Hip+0,
this model structure reduces to the Bloch wall structure.

The static wall structure is determined by calculating the
Lagrangian based on this model structure. The Lagrangian per unit wall
area La is obtained by integrating L in Eq. (2.2.3) through the wall

thickness. The result to first order in hip is

M ..
_ S .1 2A
La—TQJ q—ZKuA—E*'i'ZMSHZq
+ wH M A cos¢' + i Mg sing' ' (2.2.5)

4ﬂM§A sin2¢1
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Fig. 2.2.1. Schematic Diagram of the Model Wall Structure in the
Presence of In-plane Fields. Fig. (2.2.1a) shows B, the assumed struc-
ture for o(y), and Fig. (2.2.1b) shows the structure for ¢(y).
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Note that the transition region from ¢1 to ¢° makes no contribution

to La in first order, so that La is only a function of three dynamical
variables, q, ¢i, and A. In a stationary wall, é and HZ are zero,

so that La only depends on ¢i and A. Treating these as dynamical
variables, the Euler equations for the static structure are, from

Eq. {Z.1.3a),

o i . i
Hy sing’ - Hy cosg + 4M, sinzg’ =0 , (2.2.6a)
and
A
A = E :
1 oo o T
/1 - wh, cos¢ - wh _sing + sin"¢ " (2.2.6b)
\ X y —aq

The first equations give the static value of ¢i in terms of a compromise
between the in-plane field and demagnetizing energies, as expected.
The second equation indicates that the static wall width is decreased
by demagnetizing effects, as in the Neél wall structure,and is increased
by the in-plane field. The reason for this is that the in-plane field
energy is lowered by tilting M away from the easy axis, toWard H}p' This
is accomplished here by widening the domain wall.

The static wall energy is calculated by integrating the energy
density PE through the wall thickness. Since only the energy due to
the presence of the wall is of interest, the constant background

enerqgy pg is subtracted from PE - The result is
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; . o 2 G
9% = % \/1 - ﬂhx cosd' - Trhysinq)1 3 §1ﬂﬁi_ . (2.2.7)

where the static orientation of ¢' is determined from Eq. (2.2.6a).

Note that as Hi tends to zero, the wall energy reduces to the Bloch

p
wall energy.

Domain Wall Motion

Moving walls will be analyzed by assuming that the dynamic wall
structure has the same form as the static structure. The Lagrangian
per unit area is given in Eq., (2,2.5). The dissipation function per
unit area La is obtained by integrating L from Eq. (2.7.5) through
the wall thickness, and by making use of the assumed wall structure.

The result, to first order in Hip’ is

é 2 . 2
(A) + ¢ . {2.2.8)

From now on, the superscript on ¢! will be omitted, and the value of

Fy o=

uAMS
Y

¢(y) inside the wall will be designated by ¢. By substituting the re-
sults of Eqs. (2.2.5) and (2.2.8) into Eq. (2.i.3a),and by treating
g, ¢, and A as dynamical variables, the following equations of motion

are obtained (]6),

vyaf(¢) + ocA&a 3 (2.2.9a)

el
I

and

S aq
b= YH, - 2 , | (2.2.9b)
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where
1
A = : >
; sin"¢
ﬂva - nhxcos¢ - ﬂhy51n¢ + i g (2.2.9¢c)
and
f(¢) = 5 H, sin¢ - Izlny cosg + 2mM . sin2p . (2.2.9d)

These equations are similar to those obtained in the Walker model,
except that the in-plane field has a significant influence on dynamic
behavior through the function f(¢). As before, the precession of ¢
is due mainly to the external field. The changes in wall width de-
scrited by the third equation are the same as in a static wall

[see Eq. (2.2.6b)].

The motion described by these equations may also be divided into
steady-state and oscillatory motion. The steady-state velocity v is
still given by Eq. (2.1.14a), but the wall width is changed slightly
by the in-plane field according to Eq. (2.2.9c). The relationship

between v and ¢ analogous to Eq. (2.1.15) is

v = YA[ZWMS sin2¢ + gHX sing - g-Hy cosd ] . (2.2.10)

The static orientation of ¢, which satisfies f(¢0) = 0, may be changed
by an in-plane field. For example, when Hy is positive, M tilts away
from the plane of the wall, toward the in-plane field, and %o increases.

However, with Hx only, ¢ is zero, and M is already aligned with the in-
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plane field, so that no change occurs. Oscillatory motion results
when qu exceeds the maximum steady-state velocity, i.e., the maximum
value of v in Eq. (2.2.10). When this occurs, ¢ increases and d follows
the steady-state velocity curve, as in the Walker model. However,
since v(¢) may be strongly affected by in-plane fields, oscillatory
motion is sensitive to these fields.

A more general energy conservation principle is obtained by cal-
culating the Hamiltonian of a moving domain wall. The Hamiltonian per

(4)

unit area is defined by

s

A p;9; - Ly(a5.a5.r) (2.2.11)

™ w

i=]

where (qi,qz,q3) = (q,¢éa). From Eq. (2.2.5), the momentum conjugate
to q is Py = aLa/ad] = —§§¢. A1l other momenta are zero. With this

result, the Hamiltonian may be written as

. 2A i
;fa = QKUA f e wHXMSA cos¢ - ﬂHyMSA sing

5 o3
+ 4rMA sin“g - 2MHq . (2.2.12)

Since A is connected to ¢ through Eq. (2.2.9c), the Hamiltonian may

also be written as

5 P
A = s e ; sin‘¢
;“a op [1 nhxcos¢ ﬂhy51n¢ : 3 q

1/2
1 -2mHq . (2.2.13)
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This is immediately recognized as the sum of the kinetic energy of the
domain wall, and the potential energy due to wall position. Since
La does not depend on time explicitly, the Hamiltonian is a constant
of the motion.

The steady-state and oscillatory motion found both here and in
the Walker model may be viewed as a consequence of energy conservation.

The power dissipated per unit wall area is from Eq. (2.2.8),

200M_ [6)2 .2]
ZFa = — (B_ + ¢ . (2.2.14)

In steady-state motion, the kinetic energy is constant, because é is
zero, so that the input power from the external field, ZMSHZé, must

be dissipated by viscous damping. By equating these two expressions, the
steady-state velocity is uHZ, as before. If uHZ exceeds the maximum
possible steady-state velocity, then some power is left over and must

be stored as kinetic energy. However, the kinetic energy has a

maximum value, which accurs when ¢ reaches %—in the Walker model.

when ¢ rotates beyond this value, the kinetic energy decreases, and the
wall returns energy to the external field by moving backwards. Oscil-
latory motion may be seen as a consequence of energy alternating

between kinetic and potential forms in such a way that the total, Fg,

is constant. Because o is not actually zero, some energy is dissipated,

~resulting in a small, net forward velocity.
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Harmonic Oscillator Model

Wall motion may be approximated as simple harmonic motion in the
limit of small deviations from static conditions. It has long been

recognized (18-20)

that walls possess inertial properties, which may
be described in terms of an effective mass per unit wall area. This
effective mass is determined by expanding the kinetic energy in Eq.
(2.2.13) in powefs of the velocity. The energy is first expanded in
powers of ¢, and then ¢ is related to v through Eq. (2.2.9a). The

result to second order in v is

1 2Ms 2 i
o =g, + = |———| v° + Order (v°) , (2.2:15)
K.E. "B 2 2A £
Y 8glg
v - of
where fo = 3% ¢=¢0 )

The term in brackets is just the effective wall mass:

Z2M

M= ——— ; ~ (2.2.16)
Y ABfé
In the absence of in-plane fields, this expression reduces to the
classical DOring mass (]8):
_ 1
My = —5—— ¢ (2.2.17)
D 2
2my AB

The restoring force acting on the wall is provided by the surrounding
domains. Assume that HZ can be approximated by H, = H_ ul(t)+H'qlt)-

The first term represents the uniform time dependence of HZ through the
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function u(t), while the second term represents the restoring force.
The effective field gradient H' comes from the surrounding domains,
and is calculated for bubble and stripe domains in Appendix A.
In general, H' depends somewhat on the domain configquration. The
gradient is typically only a few tenths of an oersted per wall width,
so that it may be neglected when calculating the wall structure.

The harmonic oscillator model is obtained by exnanding Egs.
(2.2.9a-d) around ¢0 in the 1imit of small damping. The linear
equations which result may be written as a single harmonic oscillator

equation for the wall position:

q q - | =

YZA - + YAB H'q Ha u(t) ) (2.2.18)
B'o '

The coefficient of h-, which is proportional to the wall mass density,
is in agreement with Eq. (2.2.16). For stability, H' must be less
than zero. The frequency of the wall oscillations described by Eq.
(2.2.18) is given in the 1imit of small damping by
2

= ]_ 1 ]
v= o \[HY AT (2.2.19)

The factor fé depends on ﬁ&p, so that the oscillation frequency can be
significantly altered by an external in-plane field. In bubble
materials, vis typically a few megaHertz. The characteristic decay

time of these oscillations is
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_2_

ayfé . (2.2.20)
A typical decay time in bubble materials is about 20 nsec, but in the
special low-loss sample investigated in Ch. 3, it is more than 300
nsec. In deriving this model, f(¢) was approximated by the first term
in its Taylor series,'fé . (¢~¢0). As can be seen from Fig. (2.1.2),
where v = yABf(¢) is shown as a function of ¢, this approximation is

only valid for small deviations fyrom ¢0.

Section 2.3 Twisted Wall Motion in Thin-Film Materials

Wall motion in thin-film materials is complicated by interactions
with v « M at the film surfaces. In Secs. 2.1 and 2.2, it was assumed
that the material boundaries were far away, so that these interactions
were neglected; however, in thin-film materials, these interactions
must be taken into account. In the materials considered here, where
AB is much less than the film thickness h, the source configuration
at the surface dces not depend on the internal wall structure (2]).
Therefore, the surface demagnetizing field may be treated as a constant
magnetic field. This field has a large in-plane component perpen-
ducular to the wall Hs(z). As described earlier in Sec. 2.2, such
in-plane fields tend to reorient ¢ toward the y-axis, normal to
the wall. Since the field magnitude varies through the film thickness,
the surface demagnetizing field produces a twisted wall structure, i.e.,

a structure in which ¢ varies with z. The purpose here is to develop



<51

a model of twisted wall motion based on the model structure proposed
in Sec. 2.2.

The surface demagnetizing field may be calculated for various
domain configurations. It is assumed that Hs is constant across the
wall width and is given by the value at the wall center. The perpen-
dicular component of the surface demagnetizing field is given by an

integral over the magneto-static charge density:

8 ([ 43 VR '
H(F) = - & “Jdr" Ry (2.3.1)
: . L |77 |
This expression may be evaluated analytically in the limit, AB+0,
for an isolated wall, and the result is (22)
:g,+ 5
H ()| = amgen (h (2.3.2)
5~ Z
y=0 ’
(22)

For a parallel stripe array with zero bias field, the result is

h

tanh (Z-(> + z))

HS(Z)[ = 4M_gn ( 2d (2.3.3)
tanh (EH{?" z))

y=0
For bubble domains, HS is given by

boe b

HS(Z)‘ = A, ( 21,,0") - D *?ro—) " (2.3.4a)



w=H=

where
/2
D(C) = J de cos6 &n Sine + (S-inze ¥ 52)1/2 ) s_‘ine
A (sine+c2)1/2 7
e}
(2.3.4b)

and Py is the bubble radius. In bubble domains, the surface field also
has a z-component, which tends to bulge the wall. Wall bulging is
discussed later. Note that all of these fields have unrealistic singu-
larities at the film surfaces. This results from the assumption,
Ag = 0. A more rigorous approach would be to calculate the orientation
of M near the film surface in detail. This would result in a redis- |
tribution of the surface charges, and a finite demagnetizing field.
Instead, Hubert (23) has suggested that this redistribution can be
simulated with the transformation,
zaBsinh(?%g)
zZ+z - s (2.3.5)

h

cosh ()
4A

B

which is only effective within a fewwall widths of the surface. Use
of this transformation does not significantly alter the wall twist
structure, but it does eliminate the unrealistic singularities at the
film surfaces.

The fields in Eqs. (2.3.2-4), as modified by the transformation,
Eq. (2.3.5), are shown in Fig. (2.3.1). Here, H, is plotted as a
function of position through the film thickness. The values of bubble

radius, P = 1.1h, and stripe width, d = 2.3 h, represent typical
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SURFHCE F IELD

Fig. 2.3.1. Perpendicular Component of the Surface Demagnetizing
Field, HS/4MS, as a Function of Position, Z/H, in Isolated Walls (solid),

Parallel Zero-bias Stripes (dotted) and Bubble Domains (+). The
bubble radius, r_ = 1.1 h, and the stripe width, d = 2.3 h, used in
the calculation are typical for these domain structures.
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domain geometries found in these materials (see Appendix A). From
symmetry, the fields are antisymmetric about the film center. It can
be seen that the fields in an isolated wall are almost identical to
those found in zero-bias stripe domains. However, the fields found in
bubble domains are always slightly smaller than in the other configura-
tions. Since the most accurate experimental data presented in Ch. 3
were obtained in stripe domains, the examples given in the remainder of
Ch. 2 are for zero-bias stripes. Examples from bubble domains are not
significantly different.

Additional exchange terms must be incorporated in Lys because the
wall structure varies with z. To simplify the analysis, changes in
wall width are neglected, so that A is always Ag- With this assumption,
contributions to exchange from 62 come from two sources: variations
in wall position, 3q/23z = qZ,and variations in boundary conditions,

92 . Since contributions from this latter source are second order
in hip’ they may be negelcted. Contributions to La from q, are given,

to first order in hip’ by

+oo
2 _ 2 2
[ dy hof = 2 o . (2.3.6)

Contributions to exchange from variations in the boundary condition,

¢g , may also be neglected, since these terms, being proportional to
sinzeo, are also second order. Inside the wall, sin20 is not small,

and large changes in ¢ can occur, so contributions from ¢Z must be

included. To first order, this additional exchange energy is given

by
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fico
J dy Asin’e ¢ = 2A8g ¢ . (2.3.7)

Because Hs’ and hence the wall structure, vary over distances much
larger than the wall width, these additional terms are much smaller
than the exchange energy of the wall itself, %S

Additional magneto-static interactions are also introduced by
variations in wall structure. Since ¢ varies with z, interaction
between V-M within the wall is no longer given exactly by the local
form, Eq. (2.1.1). However, because the charge distribution takes the
form of two charged sheets separated by a short distance, AB, the
characteristic interaction length is only a few AB(22’24). Since wall
structure changes are negligible over such distances, this magneto-
static interaction is still given approximately by the local form.
Additional sources occur whenever the wall is not parallel to the

(16)

easy axis, i.e., whenever q, is not zero However, it is assumed
that q, is much smaller than one, so that these additional sources
may be neglected. HWith these approximations, the demagnetizing

energy density is still only a function of the local orientation of M.

Static Twisted Wall Structure

Differential equations for the static wall structure are obtained
by substituting the Lagrangian into Eq. (2.i.3a). By combining the
results from Eqs. (2.2.5) and (2.3.6,7), the Lagrangian may be

written as
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2M ;
s ) A 2 2
RS T Rl P

—
1]

+ "MstAB cosp + nMS(Hy + Hs(z)) sing

2 o 2
4nM g sin"g . (2.3.8)

Note that the in-plane field perpendicular to the wall consists of a
homogeneous component from ekterna] sources Hy, and an inhomogeneous
component from the surfaée fields H5(2)~ In a stationary\wall, é,_
¢, and HZ are zero, so that the first and last terms in Eq. (2.7.3a)
are zero. By substituting Eq. (2.3.8) into Eq. (2.i.3a), the follow-
ing differential equations are obtained:

i
yy = Eﬂé' [Hxsin¢ - (Hy + Hs(z)) cos¢ + 4Mssin2¢] , (2.3.9a)

©
1

and

oy =0 & (2.3.9b)

It is assumed that there is no interaction between the wall and the
material boundaries, so that the proper boundary cenditions are, from
Eq. (2.1i.3c), ¢, =0, aﬁd g, = 0. The only solution of Eq. (2.3.9b)
that is consistent with these conditions is q, = 0, i.e., a flat wall
parallel to the easy axis. The effects of wall bulging, which are only

(25)

thought to be significant in very thick materials , have been

neglected here.
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An approximate form the wall twist structure is obtained by ne-
glecting exchange in Eq. (2.3.9a). In the absence of external in-

plane fields, the approximate form is

H.(z)
5 ° ) (2.3.10)

¢(z) = arc sin (—§ﬁ-

This magnetostatic solution is shown as a dotted curve in Fig. (2.3.2).
In regions where Hs> 8Ms’ ¢ is taken as g3 and in regions where HS<—8MS,
¢ is 3%-. The points where |Hsl is equal to SHS are called the
critical points, Z and Zeo- The surface field is strong enough
near the top surface to rotate M out along the +y-axis, perpendicular
to the plane of the wall. Similarly, M is along the -y-axis near the
bottom surface. Between the critical points, M rotates gradually
between these two orientations, with M in the film center along the
+x-axis. There is an equally valid solution with an opposite sense
of wall chirality, in which M in the film center is along the -x-axis.

More accurate twist structures are obtained by taking into account
exchange effects. This is usually done in one of two ways. In the

d (2]’22’24’26), the wall structure is approximated by a

Ritz metho
trial function,which contains several adjustable parameters. The
total energy of the system is calculated, and then minimized with
respect to these parameters. This method has the advantage that non-
local dipole interactions are treated rigorously. One disadvantage

is that solutions are restricted by the choice of trial functions.

In some situations (2]), where the trial function is not sufficiently
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Fig. 2.3.2. Azimuthal Angle ¢ as a Function of Position Through the
Film Thickness, z/h, in a Static Twisted Wall. The magnetostatic
structure (dotted) was obtained by neglecting exchange effects. The
solid curve, which includes the effects of exchange, was calculated
numerically. Both structures were obtained by using Hs(z) from zero-

bias stripes. The arrowsindicate the upper and Tower critical
points, Z and Z.o-
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general, the Ritz method can lead to erroneous results. In the
numerical technique used here, the solution is calculated at a set of
100 grid boints, spaced equally through the film thickness. At each
point (indexed by i) the derivative in Eq. (2.3.9a) is replaced by
the finite difference expression,

R Ras ATy

$27 (22)2 > ' (2.3.11)

where Az is the grid point spacing. This results in a system of non-
linear equations for the solutions s which is solved by using the

Newton-Raphson iterative method (]2).

The boundary conditions are
imposed by setting oF at the first two and last two grid points equal
to each other. This method has the advantage that the solutions are
completely general, but one disadvantage is that the hon]oca] inter-
actions must be approximated by a local expression, as discussed
earlier. The twist functions obtained here are similar to those
obtained earlier (15) by using a similar numerical method.

An example of the twist structures obtai.=2d with this method is
shown in Fig. (2.3.2) as a solid curve. The surface fields used in this
calculation were the same as those used to calculate the magneto-
static solution (dotted curve). The material parameters were taken
from the sample investigated in Ch. 3. The only significant differ-
ence between these two solutions occurs near the critical points.
Since exchange energy was neglected in calculating the magnetostatic

solution, this solution greatly overestimates this energy component.



-59-
In the numerical solution, ¢ moves away from the magnetostatic
solution in such a way that the corresponding rise in energy due to
-MyHS is more that offset by the reduction in exchange energy. In
the film center, exchange effects are negligible, and the two solutions
are nearly the same. The average energy of this twist structure is
lower than og due to the presence of the surface fields; however,
since these fields are much smaller than Hk’ the reduction is only
about 2%. As with the magnetostatic solution, there is a second,

equivalent numerical solution with the opposite sense of wall chirality.

Motion of Twisted Wall Structures

Equations of motion for twisted wall structures are obtained by
substituting the Lagragian, Eq. (2.3.8), into the Euler equations,
Eq. (2.i.3a). By treating q and ¢ as dynamical variables, two

equations are obtained (27):

q = vbg [F(9) - ;255 4,,] + abgd s (2.3.12a)
S
and
6= yIH, + %&ZZ—Z e ag— ; (2.3.12b)
s B B
where

f(o) = % [Hsing - (Hy + H (z)) cos¢]

+ ZWMS sin2¢ . (2.3.12¢)
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These equations are similar to those derived earlier for the motion of
one-dimensional structures, except for two additional exchange terms.
The first equation indicates that the local velocity is governed
primarily by the orientation of ¢, as in Secs. 2.1 and 2.2. The

dynamic effects of curvature on the velocity are characterized by the

parameter, 2A2 . Since this parameter is typically less than 1 Qe

M_h
in most mate%ia]s, while f(¢) is usually at least 50 Oe, curvature
in ¢(z) does not significantly affect the local wall velocity. The
second equation indicates that the rotation of ¢ is governed by a com-

bination of the external field and curvature in the wall surface. The

effects of exchange in this case can be significant. The boundary con-
ditions are the same as those in the static case, ¢Z =0, and'qZ = 0.
These equations of motion form the basis for the analysis of twisted
wall motion presented here.

The time dependence of the average value of ¢ is determined
primarily by the external field. The average value may be calculated

from Eq. (2.3.12b) by integrating through the film thickness. 1In the

1imit, >0, the result is (27)
h
b
%J dz ¢(z) = <¢> = YH, (2.3.13)
s O
2

Quantities averaged through the film thickness will be indicated by
brackets, e.g., <¢> . The boundary condition, B ™ 0, has been used to

eliminate the term proportional to q . Since <¢> is proportional to
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the average wall momentum, this states that the time rate of change of
momentum is proportional to the external field, regardless of the in-
ternal wall structure. Because the sum of the internal torques due

to wall curvature is zero, one-dimensional and twisted wall structures

obey the same momentum principle.

Steady-State Motion

The equations of motion may be solved by assuming steady-state
conditions. The wall is assumed to be flat (qZ=O) and moving with a
constant velocity v. The twist structure does not change with time, so

that é is zero everywhere. With these assumptions, Eqs. (2.3.12a-b)

reduce to
i
™
_ s [f(e) v
¢ZZ - A (Z’Iﬂ B v > (2.3.]4&)
w
and
vV = uHZ (2.3.14b)

The first equation specifies the twist structure as a function of v,
and also the inverse relationship, v(<¢>) . It is identical to the
static condition, Eq. (2.3.9a), except for an additional constant term

v/v . Since the internal structure is constant by assumption, no

W
additional energy can be stored internally, and all input energy from
the externalt field must be dissipated by viscous damping. Hence,

twisted walls in steady-state motion obey the same linear mobility
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relation as one-dimensional structures.

Twisted wall motion may be modeled as simple harmonic motion in
the Timit of small steady-state velocities. Assume that for small
deviations from static conditions, the average velocity <é> follows
the steady-state relation v(<¢>) given by Eq. (2.3.14a). Also assume
that the wall ié subject to a restoring force as discﬁssed previously.
Egs. (2.3.12a-b) are then linearized by approximating v(<¢>) around
<¢p> = 0 by vé<¢> » Where vé = %;5;—. . The result is a linear
harmonic oscillator equation for the agerage wall position similar
to Eq. (2.2.18). The effective wall mass is given by

A%

vV
m = 2mD (ﬁf) . (2.3.15)

For the simple twisted wall shown in Fig. (2.3.2) as a solid line, the

effective mass is 1.7 mps in agreement with calculations by Hubert (23),

(28). Hence, for small steady-state velocities, a

and Schloman
twisted wall can be treated as a harmonic oscillator, but its effective
mass is nearly twice the DSring mass.

The wall surface may be treated as a flexible membrane for small
deviations from steady-state structures. Assume that the wall is
moving with some steady-state configuration, specified by Eq. (2.3.14a).
The twist function is expanded around its steady-state configuration.
Similarly, the wall velocity is expanded around v as é = v + é(z).

Expand f(¢) at each point by the first term in its Taylor series. By

neglecting damping, Eqs. (2.3.12a-b) may be reduced to
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- 2 .4
S 2Yl—\) 3 €
£ =g _ - | SF (2.3.16)
m o zz Ms 824
a4
For small deviations, the term proportional to ——%—may be neglected,
9z
so that Eq. (2.3.16) reduces to the wave equation. Here, the surface
2A

tension S is just the exchange energy density, E-; and the local mass

' B
density m is given by Eq. (2.2.16). Deviations from a flat wall pro-
pagate along the surface as traveling waves with local phase velocities,

§-. Hence, the wall surface may be treated as a flexible mémbrane

m
with a nonuniform mass density.

The steady-state approach used here is only valid over a limited
range in <¢> . Recent numerical calculations by Hubert (23) indicated
that solutions to Eq. (2.3.14a) only exist for |v| < 0.21 Vi, and
|<¢>{ < 0.27. For drive fields larger than 0.21 Hw’ the wall cannot
move with a flat surface and constant internal twist structure. This
situation is analogous to the oscillatory motion in one-dimensional
wall structures described earlier. Hence, while the steady-state

approximation is useful in analyzing small deviations from static

conditions, it cannot describe motion at higher drive fields.

Twisted Wall Motion in the Presence of Horizontal Bloch Lines

Twisted wall motion under higher drive field conditions is dominated
by internal wall structure. If <¢> rotates beyond the Timit of steady-

state motion, dynamic forces within the wall produce an internal
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twist structure, called a horizontal Bloch 1ine (HBL). This structure

is a variation of ¢ along the z-direction, and constitutes a

bridge between opposite senses of wall chirality. The region of rapid
"rotation [see Fig. (1.3)] extends horizontally along the wall surface
As the HBL moves vertically, the dynamic properties of the wall are
strongly affected. 1In the first part of this analysis, the dynamic
forces which result in HBL nucleation and propagation are described.

In the second part, the effects of the HBL on wall motion are estimated
by using the HBL model. Finally, more accurate solutions of the equa-
tions of motion are obtained, and the results are compared with the

qualitative analysis.

Horizontal Bloch Line Nucleation and Propagation

A qualitative understanding of the HBL nucleation process is ob-
tained by considering local dynamic properfies within the wall.
Recall that the local properties are governed primarily by the steady-
state velocity function, v(¢)=yAgf(4) [see Eq.(2.3.12a)]. This function
has been calculated at five different points through the film thickness,
and the results are shown in Fig.(2.3.3). The static value of ¢ at each
point is indicated by a large dot. The open circles indicate the values
of ¢ in a wall with the opposite sense of chirality. The vertical scale,
2vw, is also indicated. It can be seen that the local dynamic proper-
ties are strongly influenced by the surface fields. Curve A was

calculated for a point just above the upper critical point, at z/h=0.45.
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Fig. 2.3.3. Steady-State Velocity, v = YABf(¢), as a Function of ¢

at Five Different Points Through the Film Thickness. Curves A through

E were calculated for z/h = 0.45, -.35, 0, -0.35, and -0.45, respective-
ly. The surface fields from zero-bias stripes were used. The static
value of ¢ at each location is indicated by a large dot for one

of chirality and by an open circle for the other. The vertical scale

is indicated by the velocity, 2Vw'
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The large surface field at this point (9.9 HS) reorients the center
spin perpendicular to the wall, so that the static value of ¢ is

+ %». Since point A is above the upper critical point, this value
also applies to a wall with the opposite sense of chirality. The
velocity curve reflects the 2m-periodicity associated with in-plane
fields, rather than the w-periodicity associated with the demagnetizing
energy in the Walker model. Note that the maximum steady-state
velocity is increased by the surface field from ¥ to 3.1 L Curve
B was calculated for a point just below the upper critical point, at
z/h = 0.35. Here the surface field is somewhat smaller (6.0 Ms)’ so
that the center spin is only partially aligned with the surface field.
The static value of ¢ is 0.27n for one sense of chirality, and

0.73n for the other. The maximum velocity, 2.1 Vi is lower, and the
curve shows the influence of the demagnetizing energy, especially

in the regioﬁ near ¢ = %—. Curve C was calculated for a point at the
film center, where the surface field is zero. Because no surface
fields are present, the static value of ¢ is either zero, or m,
depending on wall chirality. The maximum velocity here is just ¥
This same curve was discussed earlier in connection with the Walker
model [see Fig. (2.1.2)]. Curves D and E were calculated for points
just above and below the lower critical point, at z/h = -0.35 and -0.45,
respectively. Since the surface fields are antisymmetric about the
film center, these curves are just reflections of curves B and A
about the line ¢ = 0.

Horizontal Bloch line nucleation results from local dynamic
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properties near the critical points. For example, consider the

case in which a positive drive field is applied to a stationary wall.
Initially, the wall has a flat surface (qZ = 0), and a static twist
structure like those described earlier. Since both Y and é are
initially zero, the initial rotation rate, é = YHZ, is the same
everywhere [see Eq. (2.3.12b)]. It can be seen from Fig. (2.3.3)

that points just below the upper critical point (e.g., point B) soon
encounter a region in ¢ where v(¢) is essentially zero. Elsewhere,
wall ve1o§ities are still increasing (e.g., at points A, C, D, and E),
so that the wall section near point B eventually Tags behind the rest
of the wall. This produces a large, backward wall bulge in which q,,
is positive. This positive curvature significantly increases $ in

the wall section near point B, so that ¢ rotates rapidly toward higher
angles. Once ¢ passes the magnetostatic orientation corresponding to
the opposite sense of wall chirality (open circle), v(¢) becomes

Targe and positive. The wall section at point B catches up the rest
of the wall, and the bulge disappears, so that fhe local value of @ is
again the same as in the rest of the wall. The values of ¢ at points
A and B correspond to the other sense of chirality, while the values
at points C, D, and E still correspond to the original sense of
chirality. Somewhere between points B and C, a bridge between opposite
wall chiralities, an HBL, is formed. A similar analysis applies for
negative drive fields, but in this case the HBL nucleates at the lower
critical point. In this way, the wall bulge formed as a result of

Tocal dynamic properties provides the additional rotation necessary
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to nucleate a horizontal Bloch Tline.

The additional rotation necessary to propagate the HBL toward
the opposite film surface is also provided by the wall bulge. Again,
assume that the drive field is positive. As rotation continues, new
points closer to the lower surface rotate into regions where the
avérage value of v(¢) is essentially zerc. For example, when the local
value of ¢ at point C reaches %3 v(¢) decreases and becomes negative.
At the same time, velocities at other points in the wall are relatively
large and positive, so that eventually the wall section at point C
lags behind the rest of the wall. This produces positive wall curvaiure,
which increases the local values of &, so that the center spin quickly
rotates toward the opposite sense of chirality. When¢ rotates beyond
the magnetostatic value (open circle), v(¢) becomes large and positive
again. The wall section at point C catches up to the rest of the wall,
and the bulge moves on toward the lTower surface. Now, only points
D and E correspond to the original wall chirality, while points A,

B, and C correspond to the opposite chirrality. The HBL is now some-
where between points C and D. In this way, the wall bulge propagates
the HBL toward the lower surface.

This analysis indicates that HBL nucleation may not occur at
higher drive fields. Nuc]eation depends on the formation of a wall
bulge, which increases the local value of é through the effects of
wall curvature. The siie of the bulge, and hence, the size of the
increase in é, depends on how long ¢ remains within the region of low

average velocity. For example, consider point B in Fig. (2.3.3). If
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the driye field is small, é = yHZ is small, and ¢ spends a relatively
Tong time in the region where v(¢) is small, i.e., in the region between
the dot and the open circle. During this time, the wall section at
point B is almost stationary, while the rest of the wall is moving
forward, so that a relatively Targe bulge is formed. The additional
rotation from wall curvature is sufficient to nucleate the HBL. How-
ever, if the drive field is larger, ¢ spends a short time in the low
velocity region, and a smaller bulge is formed. For sufficiently
large drive fields, the additional rotation from the bulge may not be
sufficient to nucleate an HBL. Therefore, it seems likely that the
wall twist structure at high drive fields does not contain HBL's,

but instead more closely resembles the initial static twist structure.

The Horizontal Bloch Line Model

An approximate model of twisted wall motion has been proposed by

(27) in which wall motion is

Argyle 93'51;(30),and by Slonczewski
dominated by horizontal Bloch lines. Because wall motion is strongly
affected by these structures, the steady-state approximation can no
longer be used. Instead, the principles of energy and momentum con-
servation given in Egs. (2.2.13) and (2.3.13) are used to estimate
dynamic behavior. The HBL model was originally proposed in order to
account for the average wall behavior associated with velocity satura-

tion. Here, it is shown that the HBL strongly affects the instantaneous

wall behavior as well.
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The internal structure assumed in the HBL model is shown schemati-
cally in Fig. (2.3.4). It is assumed that ¢(z) always lies near one of
the magnetostatic solutions (dotted curves). Soon after HZ is applied,
an HBL nucleates near the upper critical point Z.1o and travels toward
Z.p- An example of such a twist structure is shown in curve (ABCDE).

The total rotation within the HBL, 2g°, depends on the HBL position z

L

according to

0 /HS(ZL)

g~ = arccos \ aF (2.3.17)

s
The average value of ¢ is related to z by
el
<p> = %-j dz %(z2) . (2.3.18)
&

By combining the results of Eqs. (2.3.17-18), it can be seen that as
<¢> increases, the HBL moves toward the bottom surface. The motion
of the HBL is determined from HZ by relating <$> from Eq. (2.3.13) to
z, through Eq. (2.3.18). '

The wall velocity is determined by considering the distribution
of energy within the magnetic system. The input power per unit wall
length from the external field, 2M5H2h<é> , must either be dissipated
by viscous damping, or be stored by internal structure. For a typical
saturation velocity of 10 m/sec, it is clear from Eq. (2.2.8) that
unless that wall structure is drastically different from a Bloch
wall structure, the wall can, at most, dissipate only a few percent

of the input power. Therefore, the remaining energy must be stored
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Fig. 2.3.4. Schematic Diagram of the Wall Twist Functions ¢(z) assumed
in the HBL Model. The dotted curves represent the static twist struc-

ture, while the solid curves represent various dynamic structures. The
upper and lower critical points, and the HBL position z are indicated

by arrows. The HBL twist angle ¢~ is also shown.
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internally. Assuming that all of the energy goes into the HBL, the
input power may be equated to éL’ the time rate of change of the HBL
energy. By making use of momentum conservation, Eq. (2.3.13), the
average wall velocity is given by

o€

“ o L
<g> = 'Z—M;'ﬁ-*é-‘z&; . (23.19)
. BEL "
Here, g = 5265<¢> has been used. Just as with the one-dimensional

structures, the velocity is not directly related to the external drive
field. 1Instead, it is governed by changes in HBL energy as it moves
through the film thickness.

The HBL energy is estimated by minimizing the local kinetic
energy density. The kinetic energy in twisted walls is given approxi-

mately by

_ 2 ; i
= —2AA8¢Z - nHS(z)MSABsmcp + 41TMSAB

oye sin%y (2.3.20)

where the effects of external in-plane fields and wall bulging have
been neglected. It is assumed that HS does not vary significantly
across the HBL width, so that HS(Z) may be approximated by the constant,
HS(ZL)' By making use of the substituting, z(z) = m-¢(z), and the
definition of the magnetostatic solution, Eq. (2.3.10), the kinetic

energy may be written as

2

o z

= 2AAgT + 4WM§Aé(cosc - cosco)2 ) (2.3.21)

KE

The HBL structure minimizes this energy subject to the boundary con-
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ditions, t>+z% as z>+e, where ;o is given by Eq. (2.3.17). This
problem is similar to the one-dimensional wall structure calculation
considered in Sec. 2.1. In a domain wall, which represents a contin-
uous rotation between opposite orientations along the easy axis, the
width is determined by a compromise between exchange and anisotropy
energies. Similarly, an HBL represents a continuous rotation between
opposite wall chiralities. The HBL width is mainly determined by a
compromise between exchange and demagnetizing energies, but since the
demagnetizing energy is smaller than K, by a factor of Q'l, the HBL
width is expected to be wider than Ay by a factor /Q.

The HBL shape and energy are obtained by minimizing the energy
in Eq. (2.3.21). The HBL shape satisfies the usual Euler equation that
is obtained by using standard techniques from the calculus of

variations. The first integral,
2 0,2 _ 2 o
4nMSAB(cosg - cosg )" = 2RAgT, s (2.3.22)

indicates that the exchange energy is everywhere equal to the sum of the

demagnetizing and surface field energies. With this result, the HBL

energy is given by (27)

co

- 2y _ anw 2m — 0
€L T 2 J dz(ZAABcZ) = 8AMS Ku « (sint =ccosc Yy » (2.3.23)

-0

This represents the additional kinetic energy per unit wall length due
to the presence of the HBL. From the first integral, the wall shape is

given by
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z(z) - z = JQ'AB J dz' (cosc' - cosco)_] . (2.3.24)
0

The characteristic width of the HBL is just /Q s as expected. The
actual size of the HBL is estimated by approximating z(z) by a

"~ straight line with slope, ¢ The HBL width wL is just the dis-

z|z=zL‘

tance between points where ¢ reaches ico, or

2c°/0 g
W = ——— . (2.3.25)
1-coszc
Note that wL is infinite when 2% = 0, i.e., at nucleation. This indi-
cates that the HBL model cannot adequately describe fhe nucleation
process.

The radius of wall curvature required to propagate the HBL along
the wall may be estimated. When the HBL passes a fixed point, ¢ |
must rotate by 2¢°.  The time available for this is NL/éL’ so that
the average rotation rate is 20 éL/NL. Assume that all of this
rotation is supplied by the exchange term in Eq. (2.3.12b). By com-
bining this result with Egs. (2.3.25), (2.3.13), and (2.3.18), the

required radius is given by

= - _ 4AQ
77 o MILh ) (2.3.26)

1-coscg
In most bubble materials, this corresponds to a radius of curvature that

is roughly the same size as the film thickness.



PG
The wall velocity may now be determined from €L~ By combining
the results from Eqs. (2.3.17-19) and Eq. (2.3.23), é is related

to the surface demagnetizing field by

. oH
= - P2 - ) . (2.3.27)
S u
£l

This average velocity has been calculated as a function of zp for

the demagnetizing fields from zero-bias stripes, and the results are
shown in Fig. (2.3.5). The magnetic parameters used in this calcula-
tion were taken from the sample investigated in Ch. 3. When the HBL
is nucleated, the velocity is at its peak value, vp = 19 m/sec. As
it moves toward the bottom surface, the velocity decreases, reaching
its minimum value when the HBL is at the film center. As the HBL

continues, the velocity rises again, and reaches v_ at Z.p- The

p

peak velocity can be calculated analytically for the surface fields in
an isolated wall, and the result is (27)

g = S0l (2.3.28)

P K,
BHS

Since vp depends on =l the peak velocity is sensitive to the domain
configuration.

Equations of motion are obtained by assuming that an HBL is always

present somewhere between z

and z_,. By combining Eqs. (2.3.13,17,18)
cl ez ‘

and (2.3.27), these equations may be written as

YhH,, Ho(z ) | -1
zy = =y arc cos(~§ﬁ;——0 , | (2.3.29a)




76

2= B o

VELOCITY <{M/ZADELCS

Fig. 2.3.5. Average Wall Velocity <ﬁ> (m/sec) as a Function of HBL
Position, zL/h, in Zero-Bias Stripes. The material parameters used

in the calculation were taken from the material investigated in Ch. 3.
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<q> 4Ms E;‘ (52*' ) : (2.3.29b)
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Similar results, which include the effects of damping, have been ob-
(29)

and

tained by Hagedorn However, in low-loss materials the effects
of HBL damping are small. The first equation states that the HBL moves
in response to Hz’ as required by momentum conservation. The secand
equation, which comes from conservation of energy, relates the motion
of the wall to the HBL position.

The twist in the HBL cannot increase indefinitely. When it
reaches the lower critical point, i.e., when co reaches w, one of the
two things can happen; either the HBL moves below Z.o and remains pinned
near the surface, or it becomes unstable and disappears in a process
called punch-through. It can be seen in Fig. (2.3.4) that if the HBL

is pinned in region (HGDE), a second HBL can nucleate at z., and

2
travel back toward the top surface. Such a structure can be seen in
curve (ABFIGDE). This second HBL can also be pinned at the top sur-
face, in which case a third HBL nucleates, and so on. This mechanism,

(29), allows <¢> to increase well beyond T

known as HBL stacking
by generating a number of HBL's. Note that the momentum stored in the
stacked HBL's can be recovered by reversing this process, and returning
the wall to its original chirality. According to the punch-through

mechanism, the twist structure becomes unstable just before <¢> reaches

m. The exchange torque near the bottom surface is large enough to
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rotate the spins in the region (ED) by 2nw. After this rotation is
completed, the twist structure, curve (ABFGH), is essentially the same
as a static twist structure, but with the opposite sense of wall
chirality. A second HBL, shown in curve (ABFIGH), nucleates at Z.os
and moves toward the top surface. Unlike the HBL stacking mechanism,
punch-through causes irreversible changes in the wall structure;

the momentum and energy associated with the HBL are lost, and the

wall chirality is reversed. Which, if either, of these mechanism

actually occurs must be determined experimentally.

Velocity Saturation

Wall velocities independent of drive field Eesu]t when the HBL
punches through each time it reaches the film surfaces. When punch-
through occurs, it is assumed the stored kinetic energy is dissipated.
When the HBL reaches either critical point, its energy is SnAMS/?ETK;,
from Eq. (2.3.23). The time required to build up this energy is just
the time required to rotate <¢> by w,;ﬁ;— from Eq. (2.3.13). Hence,

the average power absorbed by the HBL is SAMSyH %ﬂ-. By equating this

u ,
to the average input power from the external field, 2 Msthvo’ the fol-

lowing expression for the time-averaged wall velocity LA is obtained:

_ &/2m yA
° WK

u

v (2.3.30)

This average velocity is saturated, i.e., independent of the external
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drive field. Incidentally, since Yo only depends on the HBL energy at
the critical points, and since Hs(z) is 8 MS at these points by defi-
nition, the value of L does not depend on the domain configuration.
The saturatioh velocity only depends on the energy dissipated during
punch-through.

It can be seen from this analysis that velocity saturation does
not require the existence of HBL's as a specific, micromagnetic
structure. Velocity saturation comes from the assumption that a
fixed amount of energy is dissipated during each m-rotation of <¢>.
Other internal structures would serve equally well. For example,
suppose the kinetic energy of a one-dimensional structure is lost

each time it reaches its maximum value, when ¢ reaches %n Then from

o,YH
Eq. (2.2.13), the average input power is EWQZ so that the saturation

velocity is

v, = — (2.3.31)

In most bubble materials, this is only about twice the saturation
velocity expected from tha HBL model. In a recent review, de Leeuw (31)
reports that the average ratio of the experimental saturation velocity
to Yy in Eq. (2.3.30) is 3.3+2.6, with extremes of 12.3 and 0.5.
Clearly, the HBL model cannot account for the experimental data to
within an order of magnitude. It seems clear that the factor-of-two
difference between Eqs. (2.3.30,31), which results from assuming dif-

ferent internal wall structures, is not significant. Hence, the

existence of velocity saturation does not, in any sense, imply the
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existence of horizontal Bloch lines as specific structures. Instead

it is only a rough indication of average power dissipation.

Section 2.4 Numerical Simulation of Twisted Wall Motion

More rigorous, numerical solutions of the equations of motion,
Eqs. (2.3.12a-b), have been obtained by using the Dufort-Frankel
method (]2). In this finite difference technique, the solutions
¢(z,t) and q(z,t) are calculated at regular time intervals for a set
of points spaced equally through the film thickness. For a particular
grid point (i) and time step (n), the spatial derivatives are re-

placed by

g. il - - g. + g,
_ Zi=1,n i,n+T1 . i,n-1 i+1,n
I 5 P (2.4.1)
(Az)

where g can be either ¢ or q. Here, Az is the grid point spacing.

The time derivatives are replaced by a similar expression,

_ 99,041 ~ 94,01
9 2ht :

(2.4.2)

where At is the time step interval. The force-free boundary conditions,
¢Z = 0 and q, = 0, are imposed at the surfaces. In the discussion of
twisted wall motion presented in Sec. 2.3, approximations were made

in describing solutions to the equations of motion. The solutions
presented here represent more accurate descriptions of twisted wall
motion, because their accuracy is only limited by the error associated

with the numerical technique.
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The equations of motion were solyed for the particular case in
which a constant drive field, Hz = 2 0e, is suddenly applied to a
stationary wall. For initial conditions, it was assumed that the
wall slope q, was zero everywhere, and that ¢(z,t=0) was given by the
static twist structure shown in Fig. (2.3.2) as a solid curve. The
effective field gradient was zero, so that there was no restoring force
acting on the wall. The material parameters used in the calculation
were taken from the sample investigated in Ch. 3 (see Table 3.1).
The grid spacing, h/51, was chosen so that internal wall structures
were represented by several points, and the time step, At=0.1 nsec,
was chosen so that changes in internal structure take place slowly in
comparison with this time. The accuracy of the solution was verified
by comparing results with those obtained by solving the equations with
a completely different numerical algorithm, called the Crank-Nicolson
method (]2). The values of <¢> from these two solutions agree within
0.3%, and the values of <q> agree within 4%.
Results from this calculation are shown in Figs. (2.4.1-4). In
Fig. (2.4.1), the average wall position, <q>/AB (solid), and the
average angle, <¢> (dotted), are shown as functions of time. The
average angle is zero at t=0, and increases linearly with time. The
behavior of <q>/AB is more complicated due to the presence of
internal wall structure. Examples of the internal wall structure at
various times during the motion are shown in Figs. (2.4.2-4). 1In
each case, the angle ¢ is shown in the upper figure as a function of

position through the film thickness, z/h. The dotted curve represents
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<p>
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Fig. 2.4.1. Average Wall Position, <g>/A, (solid), and Average
Azimuthal Angle, <¢> (dotted), as Functions of Time (nsec) from a
Numerical Solution of the Equations of Motion, Eas. (2.3.12a-c). The
drive field was constant, H_ = 2 Qe. HMaterial parameters were taken
from the sample investigated in Ch. 3. The times for which internal
structures are shown in Figs. (2.4.2-4) are indicated by short line
segments.
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Fig. 2.4.2. Azimuthal Angle ¢(A) and Wall Surface (q-<q>) (B) as
Functions of Position Through the Film Th1ckness, z/h, for t =5, 10,
15, 20 and 30 nsec. The dotted curve is the magnetostatic solution,
Eq. (2.3.10). The dashed curve represents the average wall position
at each time. The large dots indicate the position of the HBL.
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Fig. 2.4.3. Azimuthal Angle ¢(A) and Wall Surface (g-<q>) (B) as
Functions of Position Through the Film Thickness, z/h, for t = 45,
50, 55, 60, and 65 nsec. The dotted curve is the magnetostatic solution,
Eq. (2.3.10). The dashed curve represents the average wall position
at each time. The large dots indicate the position of the HBL.
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The dotted curve represents the magnetostatic solution,

10). The wall surfaces are shown relative to the initial

position, g = 0.
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the magnetostatic solution, Eq. (2.3.10), for both senses of wall
chirality. 1In Figs. (2.4.2-3), the lower figures show the wall
position q as a function of z/h relative to the average wall position

- <g>, which is indicated by a dashed line. The 1argé dots indicate

the positions of the HBL's (i.e., where ¢ = %J shown in the upper
figures. The vértica] scale is indicated by the distance 58g. To aid
the discussion, the wall surfaces in Fig. (2.4.4) are shown relative to
their initial position, q(z)=0, and the large dots have been omitted:

In order to emphasize changes in the wall surface, the wall slopes

%% =q,, have been exaggerated by a factor of 2.3. The times for
which internal structures are shown in these figures are indicated

in Fig. (2.4.1) by short vertical lines next to the solid curve.

During the initial wall response, a horizontal Bloch line is
formed at the upper film surface. This nucleation process is shown
in Fig. (2.4.2). 1Initially, the wall has a flat surface, and a
relatively simple, static twist structure. When the drive field is
applied, at t=0, the wall responds by increasing ¢ at a uniform rate,
while maintaining a flat surface. After 5 nsec, the wall twist struc-
ture has moved up by a small amount, about 0.05w, with no significant
change in shape. By t = 10 nsec, the wall surface has a small back-
ward bend at the upper surface. The curvature in this region increases
$ locally, and causes the twist structure to rotate toward the opposite
sense of chirality, as can be seen in the upper figure. As time con-

tinues, a bridge between opposite chiralities, an HBL, is gradually
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formed. By t = 15 nsec, a small HBL can be seen at z = +0.26 h. Since
<> increases with time, the amount of twist in the HBL must also in-
crease, and it moves toward the film center. By t = 20 nsec, the HBL
is at z = +0.17 h. Note that as the twist in the HBL increases, the
size of the bulge also increases in order to provide the required
rotation necessary to propagate the HBL. By t = 30 nsec, the HBL has
moved just beyond the film center, to z = -0.03 h. It must be em-
phasized that, while the structures shown here closely resemble

those assumed in the HBL model, no a priori assumptions were made about
the nature of these structures; the HBL structures shown here come
directly from the equations of motion.

The presence of the HBL has a significant effect on the average
wall behavior at the beginning of the motion, as can be seen in Fig.
(2.4.1). This behavior results from two competing effects. Initially,
the wall has a relatively simple structure, so that it tends to ac-
celerate to a high velocity. As the HBL is formed, the wé]] absorbs
less energy per unit increase in <¢>, so that the wall tends to de-
celerate. As a result, the wall accelerates to a maximum velocity of
21 m/sec at t = 16 nsec and then decelerates, reaching a minimum -
velocity of 6 m/sec at t = 39 nsec. Hence, the behavior of the average
wall position is characterized by an initial fast response in which the

wall is relatively structure-free, followed by HBL-dominated motion.
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Internal vibrations of the wall surface, which can be seen in
Fig. (2.4.3), produce the two small bumps in <q> shown in Fig. (2.4.1).
Eqs. (2.3.29a) and (2.3.17) show that the HBL velocity is inversely
proportional to the total twist contained in the HBL, Zgo. As a
result, the HBL slaows significantly as it moves toward the Tower film
surface. The curvature required to propagate the HBL decreases so that
the bulge separates from the HBL, and moves on toward the lower surface.
At t = 45 nsec, the wall bulge has just reached the lower surface.
Between t = 45 nsec and t = 50 nsec,vthe bulge reflects off of the
lower film surface without change in sign, because of the force-free
boundary condition. Because the wall surface has a nonuniform mass
density, the bulge changes shape as it travels along the surface, so
that, by t = 65 nsec, the bulge has broken up into a number of small
undulations. Because ¢ and q are coupled dynamically, HBL motion is
somewhat irregular due to variations in wall curvature associated
with the internal vibrations. Recall that the presence of a wall
twist increases the effective wall mass. With an HBL present, almost
all of-the wall mass is concentrated in the region of the HBL, so
that the center of mass coincides with the HBL position. The effects
of vibrations on the average wall position can be seen most clearly
by considering the first bump. For t = 45 nsec, it can be seen in
Fig. (2.4.3) that the center of mass is slightly behind the average

wall position (dashed Tine). Between t = 45 nsec and t = 50 nsec,
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the aQerage wall position moves well ahead of the center of mass, so
that the average velocity in this interval is re1atiVe1y high, as can
be seen in Fig. (2.4.1). Between t = 50 nsec and t = 55 hsec, the
average position moves back toward the center of mass, which results
in the re]atiVe1y low velocity seen during this interval. The same
analysis also applies to the second bump, but by this time, the
vibrations are breaking up, so that the second bump is smaller than
the first. For larger times, the vibrations have broken up, and the
average position is no longer effected.

Punch-through occurs when the HBL reaches the lower film sur-
face. Examples of the internal wall structures during this process
are shown in Fig. (2.4.4). The twist functions are shown in the top
figure just as in Figs. (2.4.2-3), but the wall surfaces q(z) are
plotted relative to the initial starting position, q = 0, rather than
relative to the average wall position. At t = 70 nsec, before punch-
through begins, the HBL is at z = -0.31 h, and the wall surface is
relatively flat, though small undulations from internal vibrations can
still be seen. Between t = 70 nsec and t = 80 nsec, the wall moves
forward, but the lower half moves more slowly than the upper half.
This produces the ‘deceleration of the average wall posi?ion shown
in Fig. (2.4.1). During punch-through, between t = 85 nsec and
t = 95 nsec, the upper half of the wall moves forward slightly,

while the Tower half moves backward by a relatively large amount.
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As a result, the average wall position shown in Fig, (2.4,1) movyes
backward during this interval. Note that punch-through begins when
<¢> is 0.97w. Between t = 80 nsec and t = 85 nsec, the upper wall
section still moves forward, while the section below z = -0,28 h
moves backward slightly. During punch-through, the center spins near
the Tower surface rotate rapidly from about -0.137 toward +37/2, as
can be seen in the upper figure. The reason this produces the back-
ward motion found near the lower film surface can be seen by con-
sidering Fig. (2.3.3e). Recall that this curve represents the local
wall ve]ocity,'yABf(¢), as a function of ¢ for a point just below the
lower critical point, at z = -0.45 h. Between t = 85 nsec and t =
95 nsec, when ¢ rotates between +n/2 and 3w/2, Fig. (2.3.3e) shows
that the local velocity is large and negative. This produces the
large backward motion near the lower film surface. During punch-
through, the HBL disappears due to rapid rotation of the center spins
near the lower film surface. At the same time, local dynamic proper-
ties cause the wall sectibn in this same region to move backwards.
As a result, the average wall position remains constant during punch-
through.

Kinetic energy from the HBL is transferred to the wall surface
during punch-through, and stored as elastic and potential energy.
The wall section near the lower surface moves backward, thereby in-
creasing the wall's surface area, and returning energy to the external

field. When the wall rebounds, energy is coupled into internal vibra-
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tion modes. This produces very large fluctuations in both the wall
syrface and the wall twist function, which éan be seen in Fig, (2.4.4)
for t = 100 nsec. Presumably (27), the energy stored in the modes is
eventually dissipated by viscous damping, and the wall is left with
the opposite sense of chirality. If the drive field is maintained,

a second HBL is formed at the lower critical point, and the process
is repeated. However, the presence of vibrations makes the wall
structure different from the initial static structure, so that a

fast response like that found at the beginning of the calculations

is not observed. In the example considered here, where the damping
is very small, the vibrations persist, and the calculation diverges
for t = 100 nsec; In other examples with higher damping, the

periodic formation and punch-through of HBL's is observed.

In one sense, HBL propagation is analogous to domain wall motion.
In the absense of surface demagnetizing fields, thé magnetostatic
curves shown in Fig. (2.4.2) would be horizontal lines, ¢ = 0 and
¢ = m. In order to change wall chirality, the center spins would
have to rotate uniformly by = throughout the film thickness, The_
main effect of the surface fields is to move the magnetostatic curves
closer together in the upper half of the wall, and farther apart in
the lower half. Instead of changing chirality uniformly, it becomes
much easier for the wall to change sequént1a11y through HBL motion.
In the same sense that wall motion represents sequential rotation

between opposite orientations along the easy anisotropy axis, HBL
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Fig. 2.4.5. Calculated Wall Position, q/A,, from the Horizontal
Bloch Line (dashed) and Simple Harmonic Os§i11ator (dotted) Models.
The drive field conditions and material parameters are the same as
those used in Fig. (2.4.1-4). For reference, the average wall posi-
tion from Fig. (2.4.1) is shown as a solid curve.
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motion represents sequential rotation between opposite wall chirali-
ties. Hence, the analogy drawn earlier between static HBL's and static
domain walls also applies when these structures are moving.

Results from this numerical solution of the full equations of
motion may be compared with the more approximate analysis presented
in Sec. 2.3. Fig. (2.4.5) compares the motion expected from the
harmonic osci]]atory‘mode1 (dotted) and the HBL model (dashed) with
the average wall motion obtained in the numerical solution (solid).
It was shown earlier that the wall has a relatively simple wall struc-
ture during the first few nanoseconds of motion, so that the initial
response should resemble a wall moving with a constant effective mass.
In the presence of a constant restoring force, the initial response
should resemble simple harmonic motioh [see Eq. (2.2.18)]. However,
in the example shown in Fig.[2.4.5], the restoring force is zero, and
ﬁ/u is never significant, so that the initial response is parabolic,

q(t) = HaMStZ/m, rather than sinusoidal. The mass used in this expres-

sion, m = 1.75 Mp» is just the effective mass of the sta;ic twist
structure that was used as initial conditions in the numerical solu-
tion. It can be seen that these two curves are in good agreement
for the first few nanoseconds. As expected, deviations occur after

about t = 16 nsec, when the HBL begins to affect the wall motion.
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The equations of motion from the HBL model, Eqs. (2.3.29a,b),
have been solved numerically for the same conditions, and the results
are shown in Fig. (2.4.5) as a dashed curve. Since the model assumes
that the HBL is always present, the calculation begins at t = 16 nsec,
with an HBL located at the upper critical point, and ends at t = 79
nsec, when the HBL reaches the lower critical point. The position
of the dashed curve has been adjusted to match the solid curve at
t = 16 nsec. It can be seen that the two solutions are in good agree-
ment up to about t = 45 nsec. In the time interval, 45 < t < 65 nsec,
the solid curve shows two bumps which are not seen in the HBL model.
However, agreement is not expected in this region, since the bumps
are due to vibrations of the wall surface that are not treated by
the HBL model. As the HBL approaches the lower surface, for t > 60
nsec, the HBL model underestimates the actual wall velocity. This
is due to the assumption made in the HBL model, that the field
gradient BHS/az is uniform across the HBL width. As can be seen in
Fig. (2.3.1), the surface fields from zero-bias stripes are fairly
uniform near the film center. Hence, the approximation is most yalid
when the HBL is in this region. The surface fields are quite non-
uniform near the film surfaces, so the model does not accurately
describe wall motion when the HBL is in this region. The average
field gradient on the HBL 1is somewhat higher than the value assumed
by the model, aHS/Bz , so that the actual wall velocity is higher

Z=ZL ) )
[see Eq. (2.3.29b)]. Since the HBL reaches the lower critical point
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at about the same time in both solutions, this comparison shows that
the HBL model accurately describes the motion of the HBL.

The numerical solution of the full equations of motion may also
be compared with other aspects of the discussion in Sec. 2.3.
Momentum conservation requires that <$> be proportional to Hz regard-
less of the internal wall structure [see Eq. (2.3.13)]. Since H,
is constant in the numerical solution, <¢> increases linearly with

time [see Fig. (2.4.1)], and the slope, 3.59x107sec']

7

, 1S 1in good

sec”!. The 2%

agreement with the expected value, YHZ = 3.70x10
difference between these values is attributed to the effects of
damping. The HBL widths given in Eq. (2.3.25) have been compared with
the structures shown in Figs. (2.4.2-3). Since internal vibrations
produce significant changes in ¢(z), an accurate comparison can only

be made with structures for t < 50 nsec. While the HBL width shown
in these structures varies by nearly 40%, the average difference
between the HBL width shown here and HL is only 4%, so that the HBL
width is given accurately by Eq. (2.3.25). The wall curvature qzz'}
has been calculated numerically from the structure shown in Fig.

(2.4.2) for t = 30 nsec, and the results have been compared with

q -1 from Eq. (2.3.26). The average radius of curvature in the

2z
numerical solution, 3.8 ym, is in good agreement with the value given.

by the HBL model, 4.0 um. The peak velocity from Eq. (2.3.28),
v_ = 19.6 m/sec, is in good agreement with the maximum velocity at-

p .
tained during the initial response shown in Fig. (2.4.1), <g> = 21 m/sec
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at t = 16 nsec. According to the HBL model, the wall should also
reach this velocity when the HBL reaches the Tower critical point, but
the maximum velocity attained in the numerical solution, <é> = 25.5
m/sec at t = 76 nsec, is about 30% higher than vp. This discrepancy
is due to the approximation used in the HBL model to estimate

BHS/BZ. The saturation velocity given in Eq. (2.3.30), v 8.2 m/sec,
is much smaller than the average velocity shown in Fig. (2.4.1), 11.5
m/sec. This difference is due in part to the fast initial response
found in the numerical solution. Since the HBL model assumes that an
HBL is always present, it is more appropriate to compare Yo with the
average velocity during the interval when an HBL is actually present,
16 < t < 76 nsec. The average velocity during this interval, 9.4

m/sec, is only 15% higher than ¥y

Section 2.5. Conclusions

In treating domain wall motion in magnetic bubble materials,
both the wall center q and azimuthal angle ¢ must be allowed to vary
with position along the wall surface. In the more approximate HBL
model, only the azimuthal angle varies with position, whi]elthe wall
surface remains flat, and perpendicular to the film surfaces, This

model is able, within limits, to account for some properties of wall



o

motion. However, numerical solutions of the full equations of motion
show that changes in the wall-surface can also be important. For
example, HBL nucleation, which cannot be treated in the HBL model,
results from the formation of a bulge in the wall surface. The bulge
accompanies the HBL as it moves along the wall, and supplies the added
rotation necessary to propagate the HBL. Internal vibrations are
excited, when the bulge is reflected from the film surface. Because
of the nonuniform wall mass density, these vibrations produce small
fluctuations in the average wall position. When the HBL disappears
at one of the film surfaces, the wall section in the same region
travels backwards. As a result, the average wall position remains
stationary during punch-through. Hence, while the HBL model is use-
ful in describing some aspects of twisted wall motion, a complete
analysis of horizontal Bloch line dynamics requires that varjations
in wall surface also be taken into account. This is accomplished

here by solving the equations of motion numerically.
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Chapter 3

HBL Motion in a Low-loss Magnetic Bubble Material

The bias pulse technique (1,2.3) has been used to investigate
domain wall motion in magnetic bubble materials. Because the equili-
brium sizes of bubble and stripe domains depend on the magnitude of
the external bias field, a bias field pulse can be used to produce a
step change in equilibrium wall position. As the wall moves to its
new equilibrium position, its response is measured by using either

(1) (2) g @

the optical sampling , photometric or stroboscopic metho

The response can also be measured indirectly by using the bubble

, (5)

collapse metho , but in situations where the response is relatively

complex this method can give erroneous results. Other techniques

have also been used to investigate wall motion. In wall resonance (6),
the equilibrium position varies sinusoidally with time, and the
amplitude and phase of the wall response are measured as a function of
the excitation frequency. However, the resonance curves are usually
quite complicated and difficult to interpret in terms of the underlying
mechanical properties of the domain wall. Gradient propagation (7) of
bubble domains has also been used because it more closely reproduces
the conditions found in bubble devices. In this technique, bubbles

translate along a bias field gradient that is produced by a pair of

current conductors. Unfortunately, results from this method are com-
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plicated by nonuniform drive field conditions and by the presence of
vertical Bloch line structures. Of the experimental techniques cur-
rently in use, the bias pulse technique provides the simplest means
of studying wall motion in bubble materials.

Wall oscillation is observed during bias pulse experiments in
some low-loss materials. In most materials, the wall stops when it
reaches its new equilibrium position, and no inertial effects are

(1) (8-11)

observed However, in some low-damping materials the

wall moves well past equilibrium, and oscillates around this position

with decreasing amplitude until the oscillations damp out. Oscil-

(9) (11-13)

lations have been found in bubbles and

(10,14).

, Stripe domains

in isolated domain walls The shape and frequency of these

oscillations depend on the internal wall structure, while the damping

rate depends on the energy dissipated by the wall as it moves through

the material. Wall oscillation is used here as a sensitive means of

observing the effects of internal wall structure on domain wall motion.
Wall motion will be analyzed by using the model presented in Ch.

2. In comparing experimental results with those from the model, it

is necessary to make several simplifying assumptions. Bubble and

stripe walls are treated as isolated, straight domain walls. It is

assumed that internal structures are uniform along the length of

the wall, and that nonuniform twist structures, such as vertical Bloch

Tines, are not present. The restoring forces produced by the sur-

rounding domains are taken into account with a constant effective
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field gradient H' [see Eq. (2.2.18)]. In principle, this gradient

may be calculated from the static properties of bubble and stripe
domains, but it is usually more accurate to calculate it from the
measured change in equilibrium wall position, and from the bias
pulse amplitude. Surface demagnetizing fields, which produce the
horizontal twist structures, are taken into account, but the slight
variations in these fields with domain size are neglected. Hence,
the fields for a 4.7 um bubble and zero-bias stripe domains will be
used.

A sampling optical microscope system, which is described in
detail in Appendix B, was used to investigate wall oscillation.
In this system, a pulsed dye laser and polarizing microscope are
used to obtain transient pictures of isolated bubble domains as they
respond to a bias field pulse. The laser, which illuminates the
sample with a 10 nsec light pulse, is always triggered at a fixed
time relative to the bias field pulse. The relative time can be
adjusted manually, or automatically incremented after each pulse.
For convenience, the origin, t = 0, is defined as the time when the
pulse reaches half of its maximum amplitude. The Faraday effect is
used to produce real images of the domains on the target of a TV
camera. These images are then recorded on video tape. Later, the
transient bubble radius is measured frame by frame with a computer
controlled digitizer. The resolution in wall position is Timited
by diffraction effects to about 0.2 ym. If the motion is repro-

ducible from one pulse to the next, the wall motion is obtained by
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plotting the sampled bubble radius as a function of the relative

time.

A photometric technique was sometimes used in parallel stripe
domains to obtain greater spatial resolution. Instead of measuring
wall position from transient pictures, the wall position is determined
by measuring image intensity. An electrical signal proportional to
the average intensity over the field of view is obtained from a photo-
diode. The signal is amplified and averaged over many pulse repeti-
tions by a lock-in amplifier. Since the changes in image intensity
are proportional to changes in stripe width, the output from the
detector 1is directly proportional to wall displacement. The wall
motion is displayed by plotting the output signal as a function of
the relative time between the bias pulse and laser flash on an x-y
chart recorder. This method was calibrated by comparing results
" with those obtained by optical sampling under identical circumstances.
The effective spatial resolution obtained here, 0.03 um, is nearly an
order of magnitude better than with the optical sampling method.

Since the image intensity is sensitive to domain configuration, it
is neceséary to keep the configuration constant during the experiment.

For this reason, the method is usually used on stripe domains(2’1]’12’]5)

and isolated straight walls (10)

» though the method can also be used
with isolated bubble domains by taking advantage of laser heating
effects (9). This method is described in more detail in Appendix

B.
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The results reported here are for a single, very low-loss
magnetic bubble material. The material parameters are shown in
Table 3.I. By concentrating on a single material under a variety of
experimental conditions, a more thorough understanding of wall motion
can be achieved. However, many of these results have also been con-
firmed in more conventional materials. These results will be in-
dicated by reference to the literature. The first three material
parameters, vy, Hk-4wMS, and o, were obtained from resonance measure-
ments, while the rest come from measurements of static domains. The
uncertainty in H' for bubbles represents the variation over the range
of stable bias fields. The uncertainty at a single static bias field
is typically 0.1 Oe/pm. There is much less variation in H' in
stripe domains. Derived parameters, along with their definitions,
are listed in the second part of the table. Note that the uncertainty
in some parameters, particularly those involving a, can be quite
large, because the uncertainty in o is nearly 30%.

The investigation of horizontal Bloch Tine motion in magnetic
bubble materials is divided into three parts. In Sec. 3.1, it is
shown that the presence of horizontal Bloch lines produces the un-
usual dynamic behavior found during wall oscillation. In Sec. 3.2,
it is shown that HBL punch-through produces a series of transitions
to overdamped motion, which are accompanied by changes in wall
chirality. Finally, wall oscillation in the presence of the ex-

ternal in-plane fields is investigated in Sec. 3.3. For sufficiently
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TABLE 3.1

Material Parameters

1.85 + 0.02 x 10’ 0e”! sec”

1]

I

In

Y =
Hk—llﬁMS = 1005 + 10 Oe
o = 0.0032 + 0.0009
41TMS = 95 + 3 Qe
h = 4.1 + 0.2 um
A = 0.30 + 0.02
[} = 1.23 + 0.14 um
Hk = 1100 + 13 Qe
H* = 2.2 £+ 0.3 0e/um
H' = 6.4 + 0.4 0e/um
Derived Parameters
Q = Hk/4wMS
Ku = HkMS/Z
AB = 2/2Q

a2
A = ABKU

- 2
g = 4HMS£
u = ybg/o :
Vi, = ZHMSYAB/(1+§6)
Vp = 24yﬂBJﬂ7h
¥ = 4/?FYABJﬂ]h
Hw = ZNMSa
Hp = 24a/A/h

2 .o

m = (2my°ag)!

1

(bubbles)
(stripes)

1.5+ 0.5
4158 + 170 erg/cm>
.053

I+

0.008 um
117

I+

0.40 erg/cm
0.088 + 0.015 erg/cm2

306 + 140 m/sec-0e
44 .6 + 8 m/sec

19.6 + 7 m/sec
8.2 + 3 m/sec
0.15 + 0.05 Oe
0.064 + 0.03 Qe

8.8 + 1.5 x 10" gm/cm?
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large in-plane fields, the dynamic wall structure is essentially
one-dimensional, resulting in the sinusoidal oscillations expected
from the harmonic oscillator model. The onset of unusual dynamic
behavior at reduced in-plane fields is then identified with HBL

nucleation.

Section 3.1. Wall Oscillation and HBL Motion

Past studies indicate that the dynamic properties associated
with wall oscillation are quite unusual. In the simplest approxi-
mation, the harmonic oscillator model, a wall with a one-dimensional
structure oscillates with a constant frequency, v, which is charac-
teristic of the material. However, attempts to model wall oscil-
lation as simple harmonic motion (10.16) have failed for two reasons.
First, the experimental frequency is usually many times lower than
the value expected from Eq. (2.2.19), and second, the frequency
changes rapidly with the bias pulse amplitude. Instead, there is

(9,11,14,17)

some evidence , which suggests that the wall velocity is

saturated, i.e., independent of the instantaneous drive field. It

has been suggested that this behavior is due to the presence of hard

wall sections, containing many vertical Bloch Tines (10)

(11)

, or multiple
horizontal Bloch lines , but no quantitative analysis has been
reported. The purpose here is to investigate wall oscillation in

bubble domains, and to show that the unusual behavior is due to the
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presence of a single HBL.

An example of wall oscillation during radial expansfon is shown
in Fig. (3.1.1). Here, the sampled bubble radius is plotted as a
function of time in response to a 2.13 Oe step change in bias field.
When the pulse is applied at t = 0, the bubble expands from jts
initial equilibrium radius, 4.7 um, toward its new equilibrium
radius, 5.7 um. The wall moves well beyond equilibrium and oscillates
with decreasing amplitude until the osci]]afions damp out. Similar
behavior is also seen at the end of the bias pulse (not shown)
when the bubble returns to its original size. Several features indi-
cate that this is not simple harmonic motion. The wall velocity is
. nearly constant during the initial expansion at 5.0 m/sec. The
velocities during the subsequent return and second expansion are
also constant, with values of 4.1 m/sec and 5.0 msec respectively.
The frequency associated with the first half-period, 1.6 MHz, is
much smaller than the value predicted by the harmonic oscillator
model, 9.8 MHz. It can also be seen that the frequency increases
as the size of the oscillations decrease; the frequencies associated
with the second and third hd1f-periods, 2.0 MHz and 3.2 MHz, are
much higher. Immediately after the pulse is applied, the bubble ex-

pands rapidly for the first 20 nsec, and then assumes a Tower, con-

stant velocity. The wall moves backwards slightly, just before it
reaches the first extremum. This effect, which is called initial rapid
motion,has been seen previously under a variety of circumstg%géla’]S’]Bl
This behavior is investigated in more detail in Sec. 3.3. A1l of

these features indicate that the oscillations cannot be modelled as
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Fig. 3.1.1. Bubble Radius (pm) as a Function of Time (nsec) in
Response to a 2.13 Oe Bias Field Pulse. The static bias field was
24.1 Oe. The half-period, t/2, is indicated,
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simple harmonic motion.

The first half-period, t/2, has been measured as a function of
pulse amplitude, and the results are shown in Fig. (3.1.2). Measure-
ments were made by using both expanding (+) and collapsing ([J) bias
field pulses. To eliminate possible bubble size effects, the static
bias field HB was adjusted so that the average bias field, HB+Ha/2,
was constant at 23.5 Oe. The half-period was determined by manually
adjusting the laser position until the first extremum was located.
The relative time between the beginning of the bias pulse and the
laser flash is then t/2. It can be seen that 1/2 increases rapidly
with increasing Ha' Beginning at Ha = 1.0 Oe, the smallest amplitude
for which oscillations can be seen, 1/2 increases from 130 nsec to
280 nsec at Ha = 2.0 Oe. The oscillation frequency is not constant,
as would be expected from the harmonic oscillator model, but in-
creases with bias pulse amplitude.

These results can be analyzed by assuming that the wall velocity

(19)

is constant, <gq> = Ve With this assumption, the average value

of $ may be written from Eq. (2.3.12b) as

<> = vin, - o1 s (3.1.1)

sV

where HSV = vs/u is an effective damping field. Since Ve is less than
8 m/sec, HSV is less than 0.03 Oe. Equation (3.1.1) may be integrated

to obtain <¢> as a function of time:

t
<p(t)> = v J dt® [H (t') - H,d - (3.1.2}
0
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lapsing (0O) motion.

stant at 23.5 Qe.

Results are shown for both expanding (+) and col-
+%Ha, is held con-

The average bias field, HB

Each point, which represents the average value of

6 experiments, has an uncertainty of about 20 nsec.
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Since the bias pulse rise time is short compared with t/2, the pulse

shape may be approximated by a step function, so that Hz(t') is given
by Hz(t') = H, - H'v.t' . Under this assumption, <p(t)>1is a para-
bolic function of time. When the pulse is applied,<¢> increases

from zero, and reaches a maximum value of

R - 2
“P>nax ZVSH' (Ha Hsv) i (3.1.3)

It then decreases, and reaches zero again at a time,

2(H.-H_)
R L (3.1.0)
S

With a constant wall velocity, the half-period increases linearly with
Ha' It must be emphasized that this simplified model does not indi-
cate why the velocity is constant. It is only a simple way of cal-
culating the internal rotation based on the experimental fact

that the wall velocity is approximately constant.

Average velocities obtained from measurements of %-have been com-
pared with more direct measurements, and the results are shown in
Fig. (3.1.3). Here, the velocities are plotted as a function of Ha.
Note the suppressed zero in the pulse amplitude scale. Points ob-
tained from radius vs time data similar to those shown in Fig.
(3.1.1) are indicated by OO, while points calculated from % Vs
H, data by using Eq. (3.1.4) are indicated by +. The point M
was calculated by using the model from Ch. 2 and will be discussed
later. The theoretical value of Ve from Eq. (2.3.30) and the minimum

velocity v , which occurs when the HBL reaches the film center, are

min
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Fig. 3.1.3. The Average Wall Velocity (m/sec) as a Function of Bias
Pulse Amplitude (Oe). The points [0 were obtained from direct measure-
ments, while the points + were obtained from measurement of t/2. The
uncertainty in each velocity is about 1 m/sec. The point B was cal-
culated by using the theoretical model presented in Ch. 2. The
theoretical value of V_ and the minimum velocity V_. for bubble
domains are shown for 8omparison. s



-113-
indicated. The uncertainty in the data is about 1 m/sec. It can

be seen that the velocities measured by using these two different
techniques agree within experimental error. It can also be seen that
the average velocity is not strictly constant, but varies slightly
with pulse amplitude. The velocity is about 7.0 m/sec at Ha=1 Oe,
and decreases to about 5.5 m/sec at Ha=].5 Oe. It then increases,
reaching 7.5 m/sec at Ha#2.2 Oe. Measurements cannot be performed

at higher pulse amplitudes due to HBL punch-through.

The unusual dynamic behavior found during wall oscillation results
from the presence of an HBL during wall oscillation. Before the bias
pulse, the stationary wall has a simple twist structure like the one
shown in Fig. (2.3.2) as a solid curve. When the pulse is applied, the
wall accelerates rapidly while maintaining this structure. This results
in the initial rapid motion shown in Fig. (3.1.1). Soon, however, an
HBL is formed and moves toward the film center. The velocity drops
and remains roughly constant. When the bubble reaches its new
equilibrium radius at 5.7 um, the effectivé drive field changes sign,
so that <$> becomes negative, and the HBL moves back toward the
original critical point. When the HBL reaches this point, it dis-
appears, leaving the wall with a static twist structure. The ef-
fective drive field is negative, so that the wall moves back toward
equilibrium and a second HBL is formed at the opposite critical point.
Each time the wall reverses direction, an HBL of the opposite sense
is formed, and the process is repeated.

Oscillation results from a redistribution of energy within the

magnetic system. In the limit o»0, the total energy, which is a con-
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stant of the motion, is divided between kinetic energy, which is

stored in the HBL, and potential energy due to the external field,
-2M5H2h<q> . Just after the bias pulse is applied, the energy is all

in the form of potential energy. Since HZ is positive, <¢> must

increase [see Eq. (2.3.13)]. As <¢> increases, an HBL forms, and

absorbs potential energy from the external field. This causes the

wall to move forward until, when the wall reaches its new equilibrium
position (Hz=0)’ the energy is all stored as kinetic energy. If the

wall were to move backward slightly, Hz would be positive again, and <¢>
would increase. This would increase the HBL energy at the expense of po-
tential energy, and the wall would return to equilibrium. However, if the

wall moves forward slightly, H_ is negative, and <¢> decreases. The HBL

z
energy decreases,and the wall moves forward,which further decreases Hz.
Hence, a wall containing an HBL at equilibrium is unstable, and must
move forward even though HZ becomes negative. As <¢> decreases, the
HBL energy decreases until, when the wall reaches its first extremum,
the energy is all stored as potential energy, and the wall is left
with its original static twist structure. Since HZ is still negative,
<¢> decreases and becomes negative. A second HBL is formed at the
opposite critical point, and the process is repeated. In the presence
of damping, energy is slowly dissipated, and the oscillations damp out.
Oscillation occurs only if the HBL 1is stable during the process. If,
as in the case of HBL punch-through, it becomes unstable, the HBL

energy is immediately dissipated, and the wall does not overshoot

equilibrium. This process is described further in Sec. 3.2.



-115-

The equations of motion haye been solved numerically for the
conditions associated with Fig. (3.1,1), and the results are shown
in Fig. (3.1.4). Here, the average wall position <gq> is plotted as
a function of time. The rise time of the 2.13 Oe bias field pulse
was approximated by a 20 nsec ramp with its center at t = 0. The
averaging effects of the laser flash were simulated by passing the
results through a 10 nsec averaging window. The conditions considered
here are somewhat different than those considered in Sec. 2.4. There,
a constant drive field of 2 Qe was used, while here, the drive field
decreases as the wall moves toward equilibrium. In general, the motion
of the HBL here is much slower due to the smaller drive fields. The
calculated motion closely resembles the experimental data shown in Fig.
(3.1.1). The calculation shows that the initial rapid motion, which can

be seen in both figures, represents wall motion before an HBL is formed.

After the initial response, an HBL structure, like those shown in

Fig. (2.4.2), is formed. The presence of the HBL produces a rela-
tively low, constant wall velocity of about 7.5 m/sec. The ir-

regular motion shown in the calculation is produced by internal wall
vibrations like those described in Sec. 2.4. It is tempting to associ-
ate the reverse motion in the interval, 153 < t < 174 nsec, with a
similar feature in the data; however, it is an artifact of the numerical
technique since it does not appear in the Crank-Nicolson solutions of
the same problem. Though the average velocity is 35% higher than

the value shown in Fig. (3.1.1), it is in good agreement with other mea-

surements shown in Fig. (3.1.3), where the calculated velocity is indi-
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Fig. 3.1.4 The Calculated Average Wall Position, <q> (ym), as a
Funct}on of Time (sec) for the same experimental conditions shown in
Fig. [3.1.1).
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cated by ®. When the wall passes equilibrium, at <g> = 0.96 um, the
drive field becomes negative, and the HBL moves back toward the film
surface where it originally formed. As the wall reaches its first
extremum, at t = 207 nsec, the HBL disappears, and the wall structure
resembles the original static structure. The drive field at this point
is -1.5 Qe, so the wall moves back toward equilibrium. A second HBL
is formed at the opposite film surface, and the process is repeated.
Since the wall vibrations are still present, initial rapid motion is
not observed.

The small changes in average velocity shown in Fig. (3.1.3) can
be explained by considering HBL motion. The instantaneous wall velocity
depends on the HBL position [see Fig. (2.3.5)], so that the average wall
velocity depends on how far the HBL penetrates into the film. For
small pulse amplitudes, only a small HBL is formed near the film
surface, and the average wall velocity is relatively large. As the
pulse amplitude is increased, the HBL approaches the film center,
where the instantaneous wall velocity is smaller. This causes a
slight drop in average velocity, which can be seen-in Fig. (3.1.3)
in the region 1.0 < Ha < 1.7 Oe. The value of <¢;axcorresponding to
this velocity is 0.68n [see Eq. (3.1.3)]. This shows that the minimum
average velocity occurs when the HBL penetrates just beyond the
film center. For higher amplitudes, the HBL approaches the opposite
film surface, and the instantaneous velocity increases. This pro-
duces an increase in the average velocity, which can be seen in the

region 1.7 Oe < Ha < 2.5 0e. For larger amplitudes than those used
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here, the HBL reaches the o¢pposite surface and punches through.

Section 3.2. Horizontal Bloch Line Punch-Through

Horizontal Bloch line punch-through takes place for sufficiently
large pulse amplitudes, If the pulse amplitude is somewhat larger
than those used in Sec. 3.1, the HBL reaches the opposite critical
point before the wall reaches its new equilibrijum position. When the
HBL punches through, the momentum and energy stored in the HBL are
dissipated, and the wall is left with a simple, static twist struc-
ture, but with the opposite sense of chirality. Some evidence for
momentum dissipation has been reported by de Leeuw and Robertson
(]0’14). They found large wall oscillations at some pulse amplitudes,
while for larger amplitudes, oscillations were completely absent;
however, this transition to overdamped motion was not investigated
further. Independent evidence for chirality changes has been ob-

(20,21)  1h46

tained by using an indirect, automotion technique
technique was used to investigate changes in bubble chirality as a
function of bias pulse rise time with the pulse amplitude held
constant. Changes in chira]fty were analyzed in terms of HBL punch-
through, but poor quantitative agreement was found for rise times
Tess than 100 nsec. Hence, while there is some experimental evidence
for momentum dissipation and for changes in wall chirality, the
relationship between these two phenomena has not been established.
The purpose here is to investigate transitions to overdamped motion

and chirality changes in the same material, and to show that these

two related effects are, in fact, due to HBL punch-through.
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Transitions to Overdamped Motion

Wall oscillations have been measured during radial expansion,
using larger pulse amplitudes, and the results are shown in Fig.
(3.2.1). Here, the sampled bubble radius is plotted as a function
~of time with pulse amplitude as a parameter. Each point represents
an average of from 3 to 5 independent measurements. In each case,
the static bias field was 23.0 Oe. Two distinct types of behavior
can be seen, For the case, Ha = 2.1 Qe, the bubble expands from
its initial equilibrium radius, 5.0 pym, when the pulse is applied
at t = 0. The wall moves past equilibrium, and large oscillations
can be seen. The oscillations damp out, and the wall remains
stationary at the new equilibrium radius, 6.1 um, until the pulse
ends at t = 2 pysec. Large oscillations can also be seen when the
bubble returns to its original radius. These oscillations are
similar to those shown in Fig. (3.1.1). Overdamped motion can be
seen in the case, H = 4.0 0e, When the pulse is applied, the wall
moves smoothly toward equilibrium and no oscillation is observed.
Similar behavior can be seen at the end of the pulse, when the wall
returns to its original position.

Transitions between wall oscillation and overdamped motion can
be seen for intermediate pulse amplitudes. Consider the motion at
the end of the pulse. When Ha is 2.1 0e, oscillations are present,
but when Ha is ijncreased to 2.6 Oe, overdamped motion is observed.

When Ha is increased to 2.8 Oe, oscillations return. Wall oscil-
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lation is also seen when Ha is 3.4 Oe, but when Ha is increased to
4.0 Oe, overdamped motion returns. Hence, two distinct transitions
from oscillatory motion to overdamped motion can be seen. Two such
transitions can also be seen in the motion at the beginning of the
pulse; however, the pulse amplitudes at which these transitions
occur are somewhat higher. Similar results have been obtained in
other materials (8).

The pulse amplitude at which overdamped motion first occurs can
be measured by monitoring the transient bubble size at a fixed time.
With the laser flash positioned at the first extremum, which is
indicated by an arrow in Fig. (3.2.1), the bubble size indicates the
type of motion. If oscillation occurs, the bubble is relatively
large, but if overdamped motion occurs, the bubble diameter is
about 0.8 um smaller. Measurements are performed by repeating the
bias pulse experiment at a 15 Hz repetition rate. The pulse ampli-
tude is slowly increased until size fluctuations are observed. These
fluctuations represent a mixture of oscillatory and overdamped motion
during different pulses. The pulse amplitude where fluctuations
first occur is the transition field HI. Above this region, all bubbles
are small, and the motion is always overdamped. As Ha increases,
the size increases, and oscillatory motion gradually returns, until
a second transition is observed at HII'

The first and second transition fields are shown in Fig. (3.2.2)
as a function of static bias field. Points indicated by + are for

expanding motion, while those indicated by [J are for collapsing



-121-

1

RAD 1US LMD
£

TIHME «LSEL

Fig. 3.2.1. Bubble Radius (um) as a Function of Time (usec) with
Bias Pulse Amplitude as a Parameter. The pulse begins at t = 0 and
ends at t = 2 pusec. The amplitude is indicated in each case. The
arrow is explained in the text.
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as a Function of Static Bias Field (Oe). Points 1ndicatealby + are
for expanding motion, while points indicated by [0 are for collapsing
motion. The arrow indicates the bubble collapse field.
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motion. Note the suppressed zerpes in both scales. The arrow indi-
cates the bubble collapse field. Though the sjze fluctuation regions
extend 0.5 Oe above HI and HII’ the beginning of these transitions
regions may be determined within 0,04 Oe. It can be seen that the
transition fields vary slightly with bias field. The values of HI
for expanding motion are relatively small at HB = 21 Oe, reach a
maximum around HB = 25 Qe, and then decrease sharply near the bubble
collapse field. These variations are due to changes in H' with bias
field. Similar variations in HI can also be seen for collapsing
motion. Note that during collapsing motion, the bias field pulse
adds to the static bias field, so that bubbles collapse at a static
bias field that is about 3 Qe smaller than for expanding motion. The
values of HII also vary somewhat with bias field. In comparing these
results with changes in bubble chirality, variations in HI and HII
with bias field will be ignored. Hence, the average transition
fields for expanding motion are HI = 2.47 * 0.14 Oe, and

H = 3.87 + 0.15 Oe, while for collapsing motion, HI = 2,30 £ 0.06 Qe,

I

and H = 3,63 + 0.06 Oe. Note that the transition fields for ex-

11
panding motion are generally higher than for collapsing motion. This
accounts for the differences between expanding and collapsing motion

shown in Fig. (3.2.1).

Changes in Bubble Chirality

Changes in bubble chirality have been observed, using a technique
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(22) 14 this

recently developed by Gallagher, Ju, and Humphrey
technique, bubbles are expanded with a small bias pulse in the presence
of a small in-plane field. This situation is shown schematically in
Fig. (3.2.3) for two bubbles with opposite wall chiralities, designated
X" and X~. The direction of M in the center of the wall, and in the
center of the film, is indicated by arrow heads. They found that the
wall section with the center moment antiparallel to the in-plane field
moves much more slowly than other wall sections. This behavior can be
seen most easily by comparing the static bubble shape, which is
indicated by the smaller circles, with the transient shape taken some
time after the pulse is applied, which is indicated by the larger
circles, For the X+ bubble, the slow section is on the right, so the
bubble expands asymmetrically to the left, while for the X~ bubble, the
asymmetry is reversed. Since the pulse amplitude is small, this

method does not change the bubble chirality. For this reason, it is
preferred over the destructive automotion technique used previously
(20,21)_

An example of the large differences in dynamic behavior is
shown in Fig, (3.2.3). The sampled displacements of the parallel and
antiparallel sections, which are shown as A and B in the inset, are
plotted here as a function of time in response to a 1.78 Oe bias field
puise. The in-plane field was 4.1 Oe, and the static bias field was
22.9 0e, For case A, the wall moves rapidly when the pulse is applied
at t = 0, with an average velocity of 9.4 m/sec, The wall moves past

equilibrium, and returns with an average velocity of 10.4 m/sec. The
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Fig. 3.2.3. Sampled Wall Displacement ( um) + for the Parallel (A)
and Antiparallel (B) Wall Sections. In both cases, H. = 1,78 Oe,
Hip = 4.1 Qe, and Hg = 22.9 Qe. The direction of the center spins
in the X' and X~ chirality. the direction of the in-plane field, and
the displacements A and B are shown in the inset.
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oscillations shown here are similar to those described in Sec. 3.1,
but the average velocities are significantly higher. This is due to
the in-plane field, and is investigated further in Sec, 3.3. The
behavior of the antiparallel sections, shown in case B, is quite
different. When the bias pulse is applied, the wall hardly moves.
(23)

The reason for this is that the in-plane field nucleates a
static HBL structure. Calculations indicate that the effective mass
of this structure, which is obtained from Eq. (2.3.15), is more than
100 times larger than My - Hence, the antiparallel wall section is
effectively pinned. Bubble chirality is determined by placing the
laser flash at the first extremum, indicated by the arrow, and then
observing the asymmetry in radial expansion shape.

This technique has been used to investigate changes in bubble
chirality during collapsing motion.. Since transitions to overdamped
motion occur both at the beginning and the end of the pulse, changes
in chirality may also occur in both places. To eliminate this pos-
sibility, the bias field is first lowered quasistatically by an
amount Ha over a 10 usec period, and then abruptly returned to its
origiﬁaT value with a 12 nsec rise time. Any changes in chirality
may be attributed to a single step change in bjas field with ampli-
tude Ha' If the experiment is repeated N times with M changes, the

probability of changing chirality is M/N, with an uncertainty of

M(N-M) | 2
OD - [_(-I\]—B——)—:J . (3.2.])

Though the results reported here are for collapsing motion, similar
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results have also been obtained with expanding motion (24).

The probability of changing chirality has been measured as a
function of Ha’ and the results are shown in Fig. (3.2.4). The
error bars, t0p, are typically less than 6%. Note the suppressed
zero in the Ha‘sca1e. For Ha less than 2.0 Oe, P is zero. In the

region, 2.0 Qe < Ha < 3.0 Oe, P changes from 0% to nearly 100%. In

the region, 3.0 Qe < Ha < 3.5 0e, the bubble changes chirality almost

every time the pulse is applied. Between Ha 3.5 Oe, and Ha=4.0 Oe,
P changes to 0%. This cyclic behavior in P is repeated three times
for pulse amplitudes up to 7 Oe. Note that as Ha increases, the
changes jn P become smaller, and P approaches the random result,

P = 50%., The behavior shown here may be characterized by the values

of Ha where P crosses 50% for the nth

time Hn' The first seven
values of Hn are 2.5, 3.8, 4.7, 5.3, 5.7, 6.6 and 6.6 Oe, each with
an uncertainty of about 0.2 Oe.

By comparing these results with those shown in Fig. (3.2.2),
it can be seen that the transitions to overdamped motion described
earlier coincide with changes in bubble chirality. Recall that HI
and HII represent the beginning of the transition region, and that
transitions occur in a 0.5 Oe region above these values. For example,
the first transition region for collapsing motion takes place between
Ha = 2.30 and Ha = 2.80 Oe. It can be seen in Fig. (3.2.4) that this
coincides with a region in which P changes abruptly from 0% to 100%.

Similarly, the second transition region, between 3.53 and 4.03 Oe,

coincides with an.abrupt change in P from 100% to 0%. Clearly, since
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Fig. 3.2.4. The Probability P(%) of Chanaing Chirality as a Function
of Bias Pulse Amplitude, Hy (Oe). The error bars are *o_. The line
segments are only intended to guide the eye,. P
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behavior at the second overdamped transition is similar to the first,
the second abrupt change in P mnust correspond to a second chirality
change during the same step change in bias field. Therefore, the
fields Hn correspond to the minimum pulse amplitude required to pro-
duce n chirality changes during a single step change in bias field.

Transitions to overdamped motion, which are accompanied by
changes in bubble chirality, result from HBL punch-through. Recall
from Sec. 2.3 that when the HBL reaches the opposite critical point,
it punches-through, leaving the wall with its original, static twist
structure. If punch-through occurs just before the wall reaches
equilibrium, the wall remains there,and no oscillation is observed.
This produces the transitions to overdamped motion described earlier.
For larger values of Hz’ punch-through occurs earlier, well before
the wall reaches equilibrium. This gives the wall the opportunity to
nucleate a second HBL during the same bias pulse, so that the oscil-
lations return. If the second HBL punches through before the wall
reaches equilibrium, a second transition is observed, and so on.
The wall changes chirality each time punch-through occurs, so that,
as was shown in Fig, (3.2.4), several changes can occur during a
single bias field pulse.

The effects of: punch-through on wall motion can be seen in Fig.
(3.2.5). The sampled bubble radius is plotted as a function of time
in response to a collapsing bias field pulse, In case A, Ha was

2.0 Oe, so that HBL punch-through never occurs, while in Case B,
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Fig. 3.2.5. Sampled Bubble Radius (um) as a Function of Time (nsec)
in Response to Collapsing Bias Field Pulses, For case A, Hy = 2.0 Oe,
and for case B, H; = 3.0 Oe. Static bias field was 22,0 Oe, The
arrows are explained in the text.
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H, was 3.0 Oe, and punch-through always occurs. 1In case A, the
bubble collapses with a nearly constant velocity of 5.6 m/sec after
the pulse is applied at t = 0. The wall moves well beyond equilibrium
(at 4.6 ym), and reaches maximum excursion at t = 253 nsec. It then
returns to equilibrium with a slightly smaller constant velocity,
4.6 m/sec. The oscillation shown here is similar to those discussed
in Sec. 3.1. The motion shown in case B 1is quite different. The
wall moves toward equilibrium, and reaches a maximum velocity of
14 m/sec at about t = 85 nsec. There is a 30 nsec pause in the motion,
and then the wall moves toward equilibrium with a 4.0 m/sec average
velocity. In this case, no oscillation is obséerved. Note that the
pause occurs well before the wall reaches equilibrium. Similar
behavicr was found in the numerical solutions of the equations of
motion presented in Fig. (2.4.1). There, it was shown that <d>
increases as the HBL approaches the opposite critical point. When
punch-through occurs, the calculation shows that the wall stops due
to the rapid rotation of ¢ near the film surface. Hence, it seems
clear that increased wall velocity and 30 nsec pause shown in case B
are due to HBL punch-through. At higher pulse amplitudes, there is some
evidence for a second plateau corresponding to-a second HBL punch-
through, but this feature is at the limit of experimental resolution.

The internal rotation <¢> required to produce HBL punch-through
can be calculated from these results. The instantaneous drive field
may be calculated from HZ = Hau(t) - H'(ro—r(t)), where u(t) takes

into account the pulse rise time; Q)is the initial equilibrium radius,
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and r(t) is the experimental bubble radius as a fynction of time. This
result has been used in Eq. (3.1.2) to estimate <¢(t)> from the
experimental data shown in Fig. (3.2.5). In case A, the maximum rota-
tion, <¢> - 0.71m , is attained when the wall reaches equilibrium
at t = 154 nsec. This time is indicated by an arrow. From the HBL
model, this amount of rotation is not sufficient to cause punch-through,
so that wall oscillation should be seen without changes in wall chir-
ality. This is, in fact, the case, as can be seen in Figs. (3.2.2)
and (3.2.4). In case B, <¢> reaches m at t = 92 nsec, just at the
beginning of the 30 nsec pause (see arrow). This shows that the
beginning of the pause corresponds to the amount of rotation required
for punch-through, as expected. Incidentally, these results are in-
consistent with the Walker breakdown mechanism associated with one-
dimensional structures. As was shown in Sec. 2.1, the wall reverses
direction when ¢ reaches g: If this occurs before the wall reaches
equilibrium, rotation continues, and the wa1} changes chirality.
However, Fig. (3.2.5a) shows an example in which the maximum rotation
is much larger than g; but in which chirality never changes. Note
also that the wall motion predicted by the Walker model is incon-
sistent with the motion shown in this figure.

Cases where more than one punch-through occurs may be analyzed
by, again, assuming that the wall velocity is constant, <é> = N
Assume that punch-through occurs each time <¢> reaches an integer

multiple of . Then, from Eq. (3.1.3), the pulse amplitude required

just to produce a maximum rotation of nu is
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‘/ZV,H' :
i = e + Hsv ; 13.2.2)

Note that since Hz decreases as the wall approaches equilibrium,

this simple model predicts that Hn is proportional to /nmw.

The experimental values of Hn from Fig. (3.2.4) have been plotted
in Fig. (3.2.6) as a function of V/nw. The uncertainty in Hn is about
the size of the symbols. The straight line is a least squares fit
to the data. It can be seen that the points all Tie on a straight
line, within experimental error, which indicates that Hn is propor-

tional to vnm, as expected. The fitted slope, 1.38 Oe, is_in good

oy i
agreement with the value calculated from Eq. (3.2.2),\ - ; = 1.38 Oe.

The value of Vg used here was extrapolated from Fig. (3.1.3) for

Ha = 2.30 Oe, Mg = 7.9 m/sec. The fitted intercept, +0.238 Qe, is much
larger than the expected value, HSV = 0.03 Oe. However, since Hsv is
much less than the uncertainty in Hn’ agreement is not expected. These
results indicate that punch-through occurs each time <¢> reaches an
integer multiple of 7 and are clearly inconsistent with the HBL stacking

mechanism.

Section 3.3. Wall Oscillation in the Presence of In-Plane Fields

Past studies of wall oscillation indicate that the dynamic wall
structure is influenced by the presence of external in-plane fields.
There is some indication that with large in-plane fields present, the
dynamic wall structure is essentially one-dimensional. With this

structure, wall motion is described by the harmonic oscillator model.
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Fig. 3.2.6 Experimental Values of H_ (0e) from Fig. (3.2.4) as a
Function of v/nr . Uncertainty, 0.2 8e, is about the size of the
symbols. The straight line is a least-squares fit to the data.
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In this model, the oscillation frequency v, which is given in Eq.
(2.2.19), s strongly influenced by in-plane fields. The first

measurements of v as a function of Hx gave ambiguous results, which

© did not agree with the model. In one case (12)

(11)

,V was independent of

H,, while in another

" ,V was proportional to Hx‘ More recent
(10) |

measurements made with large in-plane fields perpendicﬁ1ar to the
wall indicate that v2 is proportional to Hy, in agreement with the
model. However, in all cases, strong deviations from simple harmonic
motion were observed at reduced in-plane fields. Low-frequency

(9-11)

oscillations were observed in low-loss materials , while in

higher-loss materials the oscillations disappear completely (]2’13).
The purpose here is to show that large in-plane fields do, in fact,
produce one-dimensional dynamic wall structures during wall oscil-
lation. Having established this structure, it is then shown that the
onset of nonlinear behavior at reduced in-plane fields is due to HBL
nucleation. Finally, by observing initial rapid motion in this region
of in-plane fields, it is shown that prior to HBL nucleation, the wall
haé a simple dynamic twist structure.

Parallel stripe domains are used here instead of bubbles because

of the in-plane field. Past studies (25)

indicate that dynamic
behavior can depend on both the magnitude and difection of the in-
plane field. In this situation, the behavior of bubble domains would
represent a complicated mixture of all possible orientations. This

makes bubbles less suitable for in-plane field studies. Instead,

parallel stripe domains are used here since the walls make a constant
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angle with respect to thg in-plane field. In this domain configuration,
direction and magnitude effects can be studied independently. As can be
seen in Fig. (2.3.1), the surface demagnetizing fields in bubble and
zero-biés stripe domains are similar, so that the twist structures
produced by these two configurations are not significantly different.
However, the effective field gradient in zero-bias stripes, 6.4 Qe/

um, is nearly three times highér than in bubble domains. This pro-
duces much higher oscillating frequencies.

Wall Oscillation with Large In-plane Fields

Wall oscillation has been observed with large in-plane fields
parallel to the domain wall (Hx)’ and the results are shown in Fig.
(3.3.1). Half of the sampled stripe width, which corresponds to wall
position, is shown here as a function of time with Hx as a parameter.
The pulse amplitude was the same in each case, Ha = 4.33 Oe, and the
static bias field was zero. MNote that the time scales are different
in each case in order to show the oscillations more clearly. The smooth
curves are fits to the harmonic oscillator model, and will be dis-
cussed later. The oscillations in case A, for HX = 41 Oe, are sinu-
soidal rather than triangular, and four complete oscillations can be
seen. The frequency, v = 18.1 = 1.4 MHz, is approximately constant
from one cycle to the next. In fact, more detailed measurements
indicate that v is independent of Ha over the range, 2.0 Qe < Ha< 6.5
Oe (25). Sinusoidal oscillations can also be seen in case B, where
Hx is 80 Oe. Again, four complete oscillations can be seen, but the

frequency, v = 25.1 + 2.6 MHz, is 40% higher than in case A. When
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Fig. 3.3.1. Sampled Stripe Half-Width (um) as a Function of Time
(nsec) with In-plane Field, H_ (Oe), as a Parameter. The magnitudes
(angles between in-plane field and wall) for cases A, B, and C are 41
Oe (0°), 80 Oe (20°), and 160 Oe (15°), respectively. In each case
the pulse amplitude was 4.33 Oe, and the static bias field was zero.
The smooth curves are solutions of the harmonic oscillator model

and are discussed in the text.
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Hxis raised to 160 Oe in case C, the frequency increases to 36 MHz.
Note that only one oscillation can be seen in this case eyen though
the pulse amplitude is the same. It will be shown that this is due
to the nonzero rise time of the bias pulse. Over the range of Hx
shown here, the in-plane field produces sinusoidal oscillations

in which the frequency increases with increasing in-plane field.

The wall twist structure is strongly affected by large external
in-plane fields. For example, with the in-plane field parallel to the
wall (Hx), the twist is reduced as each center spin reorients toward
the +x-axis. For large in-plane fields, the surface demagnetizing
fields become insignificant, and the static twist function assumes
the one-dimensional form, ¢(z) = 0. The dynamic effects of the in-
plane field have been estimated by calculating the effective wall mass
given in Eq. (2.3.15) as a function of H , and the results are shown
in Fig. (3.3.2). For comparison, the dotted curve shows the wall
mass for one-dimensional structures, m/my = £1 * HX/SMS)'T, from
Eq. (2.2.16). When Hx‘is zero, the twisted wall mass is 75% larger
than My As Hx increases, the twisted wall mass decreases, and
asymptotically approaches the curve for one-dimensional wall struc-
tures. In fact, for Hx = 41 Oe, (see arrow) the smallest field
used in Fig. (3.3.1), the twisted wall mass is only 6% larger than
the one-dimensional value. For other orientations, the twist is
reduced as the spins reorient toward the direction of the in-plane
field, and the effective mass, again, approaches the one-dimensional

value.
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M/ Mp

Fig. 3.3.2. Calculated Effective Wall Mass (m/mD) as a Function of
In-plane Field Parallel to the Wall (H /4MS) for Twisted (solid) and
One-dimensional (dotted) Wall Structures. “The arrow indicates the
field 41 Oe/4Ms = 1.36.



-140-

The results shown in Fig. (3.3.1) have been fitted to the harmonic
oscillator model, and the results are shown as smooth curves. Analytic
solutions of Eq. (2.2.18) have been fitted by using fé, which is
related to the wall mass [see Eq. (2.2.16)], as an adjustable para-
meter. Theoretical values of fé were calculated from Eqs. (2.2.6a)
and (2.2.9d). The fitted (calculated) values of fé for cases A, B,
and C are 115 Oe (156 Oe), 206 Oe (210 Oe), and 342 Oe (337 Oe),
respectively. In all three cases, the shape of the oscillations is
in good agreement with the shapes calculated from the model. In cases
B and C, the fitted values of fé are in good agreement with the
theoretical values, which indicate that the wall mass is correctly
given by Eq. (2.2.16). In case A, the fitted mass is 35% larger
than the theoretical value. This difference is due to the close
proximity of HBL-dominated motion at slightly lower in-plane fields.
Note that the reduced amplitudes shown in case C is also found in the
calculated motion. Thé reason for this reduction is that as Hx in-
creases, the mass decreases, and the initial wall response becomes
faster. In the limit of large Hx, the 12-nsec-rise-time bias field
pulse represents a quasistatic change in bias field, and no oscil-
lation is observed. Case C represents an intermediate case in
which some oscillation can still be seen, but with a somewhat reduced
amplitude. Note also that the damping shown in Fig. (3.3.1) is con-
sistent with the resonance value of o, 0.003, used in the calculation.
A comparison of the motion shown in Fig. (3.3.1) with the harmonic

oscillator model shows that the dynamic wall structure is essentially
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one-dimensional for in-plane fields Hy larger than 41 QOe.

The oscillation frequency has been measured as a function of both
the magnitude and direction of the in-plane field, and the results
are shown in Fig. (3.3.3). It can be seen from Eq. (2.2.19) that
v depends on a single independent variable, fé, which may be calculated
from experimental values of ﬁ}p and 4MS. Hence, the combined depen-
dence of v on both the magnitude and direction of ﬁfp is shown here
in a single plot of v as a function of /T; . The minimum in-plane
field magnitude used was 30 Oe, due to the HBL-dominated motion at
lower values, while the highest magnitude was Timited to 180 Qe by
reductions in oscillation amplitude. The largest acute angle between
the wall and the in-plane field was 80°, because at higher angles,
the parallel stripe array tends to buckle severely. The typical un-
certainty in v, which is indicated by a few error bars, is 15%.
The relationship predicted by the harmonic oscillator model, Eq.
(2.2.19), is indicated by a straight 1ine. It can be seen that about
80% of the points lie along this line, within experimental error. This
indicates that v is correctly given by the harmonic oscillator model
over a wide range of in-plane field conditions. This result has also

(24). The inset shows a histogram

been verified fof specific examples
of the ratios of the experimental wall mass, me = H’fé/(Zn)avz, to
- The strong peak at mE/mD = 1 indicates that the wall mass is
correctly given by the harmonic oscillator model for most of the

data. The remaining points, which correspond to points well below
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Fig. 3.3.3. Oscillation Frequency v (MHz) as a Function of the Derived
Independent Variable, /T; /( Oe). The significance of fo is explained

in the text. The straight line is the theoretical relationship based
on the harmonic oscillator model. The inset is a histogram of the
experimental mass divided by its theoretical value.
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the line in the main figure, represent higher masses. The reason for
these anomalously heavy walls is unknown at the presént time.

These results show that, regardless of the in-plane field direction,
the dynamic wall structure is essentially one-dimensional for suffi-

ciently large in-plane field magnitudes.

HBL Nucleation and Initial Rapid Motion at Reduced In-plane Fields

A gradual transition to HBL-dominated wall motion with decreasing
in-plane field is shown in Fig. (3.3.4). Wall displacement in zero-
bias stripes is shown here as a function of time with HX as a param-

eter. In each case, Ha was 3.00 Oe. Greater spatial resolution is
obtained by using the photometric technique described earlier. The
new equilibrium wall positions are indicated by arrows. The curves
are analytic solutions of Eq. (2.2.18), and are discussed later. The
initial rapid motion described earlier can be seen quite clearly in

all three cases. When the pu]sg is app?iedvat t=0 1in case A (Hx=0), the
stripe domains expand rapidly for about 22 nsec, and reach a maximum ve-
locity of about 18 m/sec. The total.dfsplacement during this time is 0.29
um. After this initial rapid motion, there is a short pause, and then
the wall moves with a much lower average velocity, 6.4 m/sec. After

reaching its maximum displacement at t=114 nsec, the wall moves béck

toward equilibrium. The behavior shown here is similar to that
found earlier in bubble domains [see Fig. (3.1.1)]. The behavior shown

in case B (Hx = 4 QOe) is somewhat different. Again, initial rapid
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Fig. 3.3.4. Wall Displacement (um) in Zero-bias Stripes, Obtained by
Using the Photometric Technique, as a Function of Time (nsec) with In-
plane Field HX as a Parameter. The values of H, for cases A, B, and

C are 0 Oe, 470e, and 10 Oe, respectively. In each case, the pulse
amplitude was 3.00 Oe. The dotted curves are solutions of the har-
monic oscillator model and are discussed in the text. The new equili-
brium wall positions are indicated by arrows.
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motion is seen for the first 22 nsec, but the maximum velocity, 23
m/sec, and total displacement, 0.39 um, are both significantly greater
than in case A. After a short pause, the wall moves with a lower
velocity, 8.2 m/sec, ‘and reaches maximum displacement after 87 nsec.
In case C (Hx = 10 Oe), the wall reaches a maximum velocity of 26
m/sec during initial rapid motion. After a displacement of 0.44 um,
initial rapid motion ends just before the wall reaches equilibrium,
at 0.48 ym. After a short slow section, the wall moves past equili-
brium with a relatively high velocity, 19 m/sec, and reaches maximum
displacement after 54 nsec. For higher values of Hx’ the slow sec-
tion disappears, and the motion is sinusoidal, as described earlier.

The extent of the low velocity sections shown in Fig. (3.3.4)
depends on where the wall is when the HBL is formed. Case A (10west
curve) represents a situation in which the HBL is formed well before the
wall reaches equilibrium. When nucleation occurs, H, is still relatively
large, so that the HBL moves well into the film center, producing a
long slow section with a relatively 10wlaverage velocity. In case B,
the HBL is formed somewhat closer to equilibrium, so that HZ is
smaller. The HBL only moves part way into the film, so that the slow
wall velocity is higher than in case A, and the slow section ié shorter.
Case C represents a situation in which the HBL forms just as the wall
reaches equilibrium. The HBL remains near the film surface and pro-
duces only a slight drop in wall velocity. When the wall passes
equilibrium, HZ reverses sign, and the HBL disappears, leaving the

wall with a simple twist structure. Because of the small mass
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associated with this structure, the subsequent motion resembles initial
rapid motion. For larger in-plane fields, the wall reaches equilibrium
before the HBL is formed, resulting in sinusoidal motion.

Changes in initial rapid motion with in-plane field shown in Fig.
(3.3.4) are due to reduced effective wall masses. The dotted curves
shown here are analytic solutions of the harmonic oscillator equation,
Eq. (2.2.18). The effective masses used in these calculations were
taken from the results shown in Fig. (3.3.2) for simple twisted walls
in the presence of an in-plane field Hx' The values for cases A, B,
and C are 1.75 mys 1.38 My and 1.12 My respectively. It can be seen
that in each case, the calculated motion is in good agreement with
the experimental results up to the point where the HBL is formed.

Of course, beyond this point, the twist structure is no longer of the
simple type, and agreement is not expected. As can be seen, the time

at which the HBL forms is about the same in each case, 22 nsec, so that
as the effective mass decreases with increasing Hy, the disp]acgment
during initial rapid motion increases, and the HBL nucleates closer to
eqﬁi]ibrium. Hence, the transition to sinusoidal motion with increasing
Hx shown here is due to a reduction in effective wall mass, and the
corresponding increase in displacement during initial rapid motion.

The equations of motion, Eqs. (2.3.12a-c), have been solved
numerically for the specific examples shown in Fig. (3.3.4), and the
results are shown in Fig. (3.3.5). The motion shown in case A closely
resembles the data. The calculation shows that the twist structure

during initial rapid motion is similar to the original, static twist
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Fig. 3.3.5. Calculated Wall Displacement, (um), as a Function of Time
(nsec) with In-plane Field H  as a Parameter. The pulse amplitude and
in-plane fields used in the Calculation are the same as those used

in Fig. (3.3.4). :
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structure, as expected, and that the onset of slower wall velocities
does, in fact, correspond to the formation of an HBL. The irregular
motion, which in the calculation is due to internal vibrations is
also found in the experimental data. This indicates that the wall
may actually deviate from a flat surface as it moves. The calculated
velocities shown here are about 20% higher than the experimental
values. Recall that a similar discrepancy was also found in the
numerical simulation of wall motion in bubble domains [see Figs.
(3.1.1) and (3.1.4)]. This may be due to slight differences between
the form of Hs(z) used in the calculation, and the actual surface
demagnetizing fields. Because of the long calculation times involved,
no attempt has been made to adjust HS in order to fit the data more
closely. In case B, the HBL forms when the wall is closer to
equilibrium, and the HBL stays closer to the film surface. Since
velocities are somewhat higher in the calculation, the motion cor-
responds more closely to an experimental situation with a somewhat
higher in-plane field, HX Z 8 0e. In case C, the initial rapid motion
is so fast that the HBL never forms,and the resulting motion is
nearly sinusoidal. Again, the calculated result corresponds to an
experimental situation with a slightly higher in-plane field, Hx

~ 14 Oe.

Section 3.4. Conclusions

The presence of horizontal Bloch lines during domain wall motion

has been established by comparing results from wall oscillation
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experiments with the model of domain wall motion presented in Ch. 2.
During the initial response to a bias field pulse, the dynamic wall
structure is similar to the original static structure. Since the
effective mass is relatively small, the wall accelerates quickly,
resulting in the initial rapid motion shown in Figs. (3.1.1) and
(3.3.4). An HBL gradually forms near one of the film surfaces as a
result of local dynamic properties. As the HBL moves toward the op-
posite surface, it significantly decreases the wall velocity, and, in
wall oscillation experiments, produces the low frequency, triangular-
shaped oscillations shown in Fig. (3.1.1). If the HBL reaches the
opposite film surface, it becomes unstable, and disappears in a pro-
cess called punch-through. During punch-through, the energy and
momentum stored in the HBL are dissipated, and the wall changes
chirality. If punch-through occurs just before the wall reaches its
new equilibrium position, an abrupt transition to overdamped motion
is observed [see Fig. (3.2.1)]. Chirality changes, which occur each
time the average azimuthal angle reaches an integer multiple of m,
have also been observed [see Fig. (3.2.5)]. These results show for the
first time that changes in wall chirality coincide with a loss of
stored momentum. An external in-plane field reduces the effective wall
mass of the initial static twist structure so that the wall travels
further before the HBL is formed. If the wall reaches equilibrium
before an HBL is formed, sinusoidal oscillations, which are as-
sociated with structure-free domain walls, are observed [see Fig.

(3.3.1)]. At reduced in-plane fields, the onset of reduced wall
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velocities shown in Fig. (3.3.4) is associated with HBL formation.
These results clearly establish the existence of horizontal Bloch

Tines as specific internal wall structures.
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Appendix A. Static Properties of Stripe and Bubble Domains

Statically stable domain configurations are determined by
minimizing the total energy with respect to the domain dimensions.
First, the total domain energy ET is calculated as a function of
adjustable parameters, which describes the domain geometry. Equilibrium
conditions are obtained by setting the first derivatives of ET, which
represent generalized forces, equal to zero. Finally, it is necessary
to demonstrate stability, since, as will be shown later, not all
force-free geometries represent stable configurations. Contributions
to ET come from three sources: domain walls, external magnetic fields,
and demagnetizing sources. It is assumed here that the wa1T energy
(per unit area) Oy is constant, i.e., independent of the domain
geometry, Though internal wall structures are important in wall
dynamics, it was shown in Ch. 2 that such structures do not signifi-
cantly alter g in high-Q materials. The wall energy Ew produces
a constant surface tension, which always tends to minimize wall area.
The external bias field energy EB’ which is just the integral of
-M - ﬁé over the sample volume, always tends to expand those domains
with M parallel to ﬁé at the expense of the antiparallel domains. The
effects of in-plane fields are not considered here. Energy contribu-
tions from interactions between the sources V +« M at the film sur-
faces are calculated by using Eq. (2.1.6d). This demagnetizing energy
Eq tends to return the sample to its demagnetized state, with up and

down domains occupying equal surface area. It is assumed here that M
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in the domain interiors is always parallel to the easy axis and that
energy contributions from exchange and anisotropy occur only in the
vicinity of the domain walls. The purpose of this appendix is to
present a brief summary of the static properties of stripe and bubble
domains as a function of the bjas field, and to present examples

calculated for the sample studied in Ch. 3.

Parallel Stripe Array

A schematic diagram of the simplified model of stripe domains

(1)

used here is shown.in Fig. (1.2a). The origin of a coordinate
system (x,y,z) is located in the center of a domain that has M paralilel
to ﬁé, with the stripes all parallel to the x-axis. For the sake of
consistency, ﬁé points along the +z-axis. The widths of domains with
M parallel and antiparallel to ﬁé are indicated by d1 and d2 respec-
tively. It is assumed that the walls are always parallel to the z-axis
and that any wall bulging, which may occur when ﬁé is not zero, may be
neglected. It will be convenient to specify the domain configuration

by two dimensionless parameters s and q, which are defined by

(A.1a)

and
s = d]—dz/d]+d2 : (A.1b)

This model presents a simplified picture of the actual domain configura-
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tion, but the results of this analysis are in good aareement with the
experimental properties of stripe domains.

The total stripe energy (per unit area of the material) ET may
be calculated as a function of s and q. The wall energy is just o,
times the total wall area contained per unit area of the material.
The wall area per unit stripe length in a pair of stripes is 2h, so

that Ew is Jjust

E, = 209 . (A.2)

The bias field energy per unit stripe length of a domain with M along

ﬁé is 'MSHBd1h’ and the energy for a domain with the opposite orienta-

tion is +MSHBd2h, so that the bias field energy is

EB = —MSHBhs @ (A.3)

The demagnetizing energy is obtained from Eg. (2.i.6d) as
[[ wxay v o (A.4)

unit
area

o
M| —

where the magnetostatic charge density p(r) originates from Vv « M at
the film surfaces and the potential V is obtained by solving Poisson's
equation with standard techniques. The integral in Eq. (A.4) is

(1)

evaluated, and the result is
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E, - 2aMehs® #
S

sinz(%ﬂ{T+s))

3 (]_e“znﬂq)

. (A.5)

8 .2 =
_?'Ms §
Tr -—

h
q n=1 n

By combining the results of Eq. (A.3-5), the total energy per unit
area of the material may be expressed in terms of s and q.

The equilibrium conditions for the stripe array are obtained by
setting the first derivatives of ET equal to zero. The first condi-

oE
tion, which is obtained by equating 5§I/4HM§h to zero is

o0

-B + 5 + —%r— ¥ §lﬂiﬂ%ﬁlﬁ§ll(1_e’2“"q)= o ., (A.6)
mq n=1 n

where B = HB/4WMS. The first term represents a force due to the exter-

nal bias field and the second and third terms represent surface ten-

sion and demagnetizing forces respectively. By using a similar pro-

cedure with BET/aq, the second equilibrium condition may be written as

q (m sinz(gl(ns))
n

A - —=5 b2 .
1T3q2 = n3
[1 . e'zmq(1+2nﬁq)]) =0 , (A.7)
& :
where X = &/h, and 2 = g e The first term represents surface ten-
4nMe

sion, while the second term represents the demagnetizing force. The

equilibrium values of d] and d2 are determined by solving Eqs. (A.6-7)
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simultaneously for the equilibrium values of s and q.
The stability conditions for a stripe array are obtained by ex-
panding ET around equilibrium and by making the quadratic terms posi-
tive definite functions of As and Aq. The domain configuration is

stable if ET satisfies

o%E
5 > 0 g (A.8a)
9s
and
2%k (9%, 5%E et
v o 5 () . A.8b
as2 an 959q

(1)

Numerical calculations indicate that these conditions are satis-
fied for all meaningful values of s and q.

The equilibrium conditions have been solved numerically by using
material parameters from the sample investigated in Ch. 3 (see Table
(3.1)), and the results are shown in Fig. (A.1). The equilibrium

values of s and q were used to calculate the equilibrium values of

d1+d2

h
when HB is zero, the net magnetization is zero, since d]=d2. By

d]/h, dz/h, and as functions of HB/4wMS. It can be seen that

setting s to zero in Eq. (A.7), A is given in terms of q by

1

n3q2 n

AL =

1 - e_zan(1+2nﬂq)
3

1 n

™M g

(A.9)

This relationship is often used to determine )\ experimentally from
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WITDTH

Fig. (A.1): Equilibrium Stripe Width and Period, d]/h, d2/h, and
d]+d2/h, as Functions of Bias Field, HB/4WMS, Calculated for the
Case A = 0.3. The bubble stripe-out field HSO is indicated.
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measurements of the zero-bias stripe width and h. As Hg increases,

those domains with M parallel to _E expand, so that d. increases and

1
d, decreases while d]+d2 remains roughly constant. The effective
field gradient H' for zero-bias stripes is just the slope of either
curve at the origin., In this example, the value 6.69 Oe/ um is in
good agreement with the experimental va1ug, 6.4 + 0,4 Oe/um. As HB
increases further, the force balance required by Eq. (A.7) can only

be achieved for larger values of d]+d2. EventuaT]y? when HB approaches
the bubble stripe-out field Hso’ the remaining stripes contract and

form bubble domains.

Bubble Domains

The static properties of an isolated bubble domain were first
calculated by Bobeck (2) for a strictly circular cross section, In

the more general approach used here, due to Thiele (3,4)

, the bubble
is allowed to deviate slightly from a circular cross section. A
cylindrical coordinate system (r, ¢, z) is located in the center of
the bubble with the z-axis perpendicular to the plane. The magnetiza-
tion points along the -z-axis inside, and a along +z outside (see

Fig. (1.2b)). The radius r is given as a function of ¥ by the Fourier

series
o cos(nfw—wn)) ; (A.10)

Here, the expansion coefficients {rn} are small compared to o and
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wall bulging, i.e., r(y,z), has been neglected. Though these as-
sumptions are fairly restrictive, the results obtained here are in
good agreement with experimental properties.
The equilibrium and stability conditions are obtained by expand-
ing ET in powers of ¥ and wn aroundrthe cylindrical reference state

r = a, a constant, This expansion may be written as

Ep(rgs{r }s (v }) = Ex(a,0,0) +

x T
+ % (| Ar | Ap |+
o (Bﬂql n (Bw ) n

n=0 nla
;] ° e BZET 8E; )
+ 5 B L ||zmae] ArAr_ 4+ 2 |—a—| Ar Ay
2 n=0 =01 V9% 5% a 0 m 8rn3wn,a nn
BZET
W A AP AY o . (A.11)
Bll)nol{)m 4 nom

For the domain to be in equilibrium, the first order terms nust be
zero. The domain is stable if the quadratic terms are a positiﬁe—
definite function of the increments Arn and Awn. Many of the terms
in Eq. (A.11) can be eliminated without calculating the necessary
derivatives by making use of the symmetry properties of ET for a
cylindrical bubble. The term r, cos(w—wn) corresponds to a transla-
tion of the bubble without changing shape. Since ET does not depend
on bubble location, all terms in Eq. (A.11) proportional to Ar] are

zero. Furthermore, since E_ does not change when the domain is rotated,

T
all terms proportional to wn are also zero. This can also be shown
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by direct calculation (3). The only nonzero terms are proportional
to either Arn or ArnArm, and will be evaluated separately for the
three components of ET'

The first and second derivatives of Ew are obtained from

Ew =0, % (wall area), Since the wall area is h times the domain
perimeter, Ew is given by
2
3
E, =0 h dy r2(¢) + (g£)2 : (A.12)
W w dy E :
0

The only nonzero first derivative is

9E,,
2 =%mh - (A.13)
37"0 a ¥

This represents a uniform surface tension which tends to collapse. the

bubble. The only nonzero second derivatives are the diagonal terms,

2
o E o h

(__?W) = aw -n2 for n>2 . (A.14)
arn -

The wall energy always increases when the shape of a circular bubble is
perturbed, so that surface tension enhances bubble stability with
respect to shape distortion.

The first and second derivatives of EB are obtained from the

expression,
21
_ 2
EB = MsHBh J dy r°(y) . (A.15)
0

The only nonzero first derivative is
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(EEE) = 4maM_H,h (A.16)
aro by s B ! :

Since ﬁé opposes M inside the bubble, the bubble experiences a uniform
pressure which tends to collapse the bubble. The only nonzero second

derivatives are

BZEB
5| = 4tM_Hgh o, (A.17a)
ory 1,
and
BZEB\
; = ZﬂMSHBh (n 3_2) . (A.17b)
r i
n .

Like surface tension, the external bias field also enhances bubble
stability against shape distortion.

The derivatives of Ed are obtained by evaluating the integral
in Eq. (2.i.6d) for the surface charge distribution specified by

r(¥). This energy has only one nonzero first derivative,

ok
(ﬁ)a = -(2nh?) (amtl) 6(22) (A.18)

where

2 2
2X - X
G(x) = = +x ° E(——5) -1
ki [ 1+x2
Here, E is a complete elliptic integral of the first kind. Since G(x)
is greater than zero for all x, the demagnetizing energy tends to

expand the bubble, and return the sample to its demagnetized state,
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as expected. The nonzero second derivatives are

2
3 Ed 5
( 5 ) = H(4ﬂh)(4ﬂms) G'(d) " (A.19a)
a

BPO

where d = 2a/h is the dimensionless bubble diameter, and

2
s
( zd) < ~(2wh)(4nM§) G' (d)
a

Brn
2 -2
+ dh (4aMO) L (d°) - L (o) y (A.19b)
s’ n n
where Ln(x) is given by
" _
L, (x) = f do 11‘ cosie . (A.19c)
4 [x + ?{1—cosa)]2

These terms always decrease bubble stability against shape distortion.
Equilibrium conditions are obtained by setting the sum of the
generalized forces for each independent perturbation equal to zero.
Fortunately, all are associated with a uniform radius change, so that
there is only one equilibrium condition. By combining the results
from Egs. (A.13), (A.16), and (A.18), and after dividing by (thz)

. (4HM§), this condition may be written as
A+ Rgd - G(d) =0 . (A.20)

This equation requires a force balance between surface tension and Hé,

which tends to collapse the bubble, and the demagnetizing force, which
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tends to expand 1t¥
Since all nondiagonal second derivatives are zero, the stability
of the domain may be determined by separately considering each Fourier
component. By combining the results of Egs. (A.17a), and (A.19a),

the stability condition for uniform changes in bubble radius may be

written as

So 5 A . | (A.27a)
where

so(d) = G(d) - dG'(d) 5 (A.21b)

By combining the results of Eqs. (A.14), (A.17b), and (A.19b), the

stability condition for n-fold shape distortion is
s <A . (A.22a)

where

s (d) = - L. [S (d) +-93(L (d_z) * L (0)} (A.22b)
n 2 0 Gl | n . ®

n -1
The overall stability of a bubble is achieved if the radial stability
condition and each of the shape distortion conditions are satisfied
by the force-free bubble geometry.
The equilibrium and stability conditions may be solved by using
a relatively simple graphical technique. The functions G, So and
s, are shown in Fig. (A.2) as a function of d. These functions are

quite general, and do not depend on material parameters, The other
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BILITY

AH/H

Fig. (A.2): Bubble Force Function G and Stability Functions So and
S, as Functions of Bubble Diameter 2a/h. These functions are used
in a graphical determination of bubble size and stability discussed
in the text. The stripe-out radius Ly
dicated. The radii r*oand v~ represent force-free domain geometries,

The lines AB and AC are constructed for A = 0.3 and HB/4ﬂMS = 0.25.

and collapse radius r. are in-
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stability functions for n > 2 1ie below So and are not shown. Given
h, 4ﬂMS, %2, and HB the equilibrium bubble radijus may be determined by
constructing a Tine AB with slope B, and y-intercept A. The points
where AB crosses G(d) correspond to solutions of the equilibrium
condition. In general, there can be two equilibrijum radii, r" and
r . The stability of these solutions is determined by constructing
a horizontal line AC with y-intercept A. The point where AC crosses
So determines the minimum bubble radius, called the collapse radius
res that can satisfy the radial stability condition. Since the
equilibrium solution v~ is smaller than res it always represents an
unstable solution, and is usually not seen experimentally. Since rh
is greater than re it represents a stable solution, at Teast with
respect to uniform radius changes. When HB increases, the slope of
AB increases, and r and r~ move closer together. When Hg reaches
the collapse field Hc’ AB is tangent to G with r+=r"=rc. For larger
values of HB’ there are no equilibrium solutions. It is found experi-
mentally that the bubble collapses, leaving the material saturated with
M along Hy. The point where AC crosses s, determines the maximum
radius that can satisfy Eq. (A.22a) for n=2. This is called the
stripe-out radius L As Hp decreases, the slope of AB decreases,
and r' increases. When r" reaches Yoo the bubble becomes unstable with
respect to elliptical distortion. It is found experimentally that the
bubble stripes-out, and forms a stripe domain.

The equilibrium radius is determined implicitly from Eq. (A.20),

and the results for the sample investigated in Ch. 3 are shown in Fig.
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(A.3). The radius rt decreases rapidly with increasing HB over its
stable range. For larger values of A, the rt curve is below and to
the left of the curve shown here, while for higher values, the curye
is higher, and to the right, In this case, r' varies by a factor of
three while Hy only varies by a factor of 1.4, Since r+(HB) is al-
most Tinear, it'is convenient in analyzing bias pulse experiments to
approximate it by a straight Tine with slope (H‘)_]. The value of H!'
at B = 0,252 (HB=24 Oe) is 2.0 Oe/um, in good agreement with the
experimental value, 2.2 + 0,3 Oe/um. Note that this value is more
than three times smaller than H' in parallel stripe domains, so that
the domain configuration has a significant effect on the effective

field gradient.
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Fig. (A.3): Equilibrium Bubble Diameter 2a/h as a Function of Bias
Field HB/41TMS for the case A = 0.3. The collapse radius, stripe-out
radius, collapse field Hc and stripe-out field HSo are indicated.
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Appendix B, Experimental Apparatus

The sampling optical microscope system used in this work uses
the Faraday effect to obtain transient pictures of magnetic domains
during pulsed field experiments. In contrast with stroboscopic
systems, in which the necessary image intensity is obtained by repeated
illumination at a high repetition rate (typically 3 kHz), this system
uses a single laser flash to provide visible images. The flash is
short enough so that domain walls never move a significant distance
(<0.1 ym) during the exposure time. Domains are manjpulated by a
combination of static and dynamic magnetic fields directed both
parallel and perpendicular to the sample plane. The relative timing
between the field pulses and laser flash is controlled by a custom-
built sampling unit. In this way, the system provides pictures of
transient domain wall behavior during single experimental events. The
system can also be easily modified to conduct photometric measurements,
which provide greatly enhanced spatial resolution. This versatile
system has proven to be a useful tool in studying domain wall dynamics.

The static and dynamic field environment is provided by current
conductors, The uniform static bias field necessary for bubble
stability is provided by placing the sample in the center of a bias
field coil (4 cm i.d, x 8 cm 0.d. x 2.5 cm). This field is calibrated
by measuring the bubble collapse field of a standard sample, Static
in-plane fields come from a pair of large coils (10 cm i.d, x 35 cm

o.d. x 6 cm) mounted on either side of the sample. Calculations show
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that this field, which is calibrated with a magnetometer, is uniform
over the sample volume to within 2%. Bias field pulses are proyided
by a lmm-diameter 5-turn pancake coil mounted just below the sample.
When driven by an HPZ14A pulse generator, this coil has a 12 nsec
rise time with no visible ringing present, Calculations show that
the bias component of the pulsed field is uniform over the 200 pm-
diameter field of view to within 2%, while the in-plane component is
limited to 6% of the bias component. The pancake coil is calibrated
by observing changes in bubble collapse field produced by d.c.
currents., These coils provide static and dynamic control over fields
perpendicular to the sample plane, and static control over in-plane
fields,

A block diagram of the sampling microscope system is shown in
Fig. (B.1). The sequence begins when the TV camera sends a trigger
pulse to the sampling unit. This unit then triggers an Avco Everett
flowing nitrogen laser at a controlled time relative to the field
pulses. The laser produces a 10 nsec pulse of UV Tight (3371 g) with
100 kW peak power. The nitrogen laser pumps a rhodamine 6G dye laser,
which provides a 10 nsec pulse of yellow (5800 g) light with about 1
kW peak power. This light is polarized by a prism polarizer and then
undergoes Faraday rotation as it passes through the sample, Contrast
is produced with a sheet analyzer., The polarizer and analyzer are
part of a Leitz Ortholux po]arizing microscope in which most of the
optical elements have been removed, leaving only the condenser lens,

a 32X objective lens, and a 5X eyepiece. A real image of the domains
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Fig. (B.1): Bloch Diagram of the Sampling Optical Microscope Used

in this Work. System operation is described in the text.
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is produced on the target of a Cohu 4400 SIT TV camera, which
retains the image for about three vertical scans. This image is then
sent to the sampling unit for processing and recording, The spatial
resolution obtained by optical sampling is limited by diffraction
effects to about 0.2 ym, while temporal resolution is Timited by
the laser pulse width to about 10 sec.

A block diagram of the sampling unit is shown in Fig. (B,2).
The core of this unit is a programmable sequencer, which controls
eight independent trigger lines during up to 64 program steps. In
the simple example shown here, the first line is used to trigger an
HP214 A pulse generator, which provides the bias field pulses, and
the eighth line triggers a Tektronix 3T77 sampling sweep generator,
which later triggers the nitrogen laser after a controlled delay.
The image from the TV camera is encoded with digital information from
the sequencer and from the sampling unit and then recorded on video
tape with a Sanyo VTR 1200 recorder. Encoded information may include
the delay time, the particular trigger combination being executed,
the program step number, the frame number, the static bias and in-
plane fields, etc, The time of the laser flash is monitored by placing
a beam spiitter and PIN diode in the optical path just before the
light enters the microscope. The time of the current pulse is
“moni tored by a 0.5 nsec-rise time Tektronix CT-2 current probe. The
relative timing between these two signals is monitored on an oscil-
loscope and may be controlled to within 1 nsec. The ability to program

different trigger patterns has proven to be very useful, especially
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Fig. (B.2): Block Diagram of the Sampling Unit Used to Control the

Experiments. Operation is described in the text.
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in more complex experimental situations.

A block diagram of the photometric experiment is shown in
Fig. (B.3). Light from the dye laser is split into two beams. The
first (A) goes through the sample and polarizing microscope, and its
intensity is measured with a UDT PIN 10 photodiode. The laser power
is monitored by measuring the intensity of the second beam with a
similar diode. Electrical signals from the diodes are amplified by
Tow-noise dual FET amplifiers. The gain of these amplifiers is ad-
justed so that the output signals are approximately equal. Diode
capacitance, together with the limited frequency response, combine to
widen the 10 nsec laser pulse into a 0.5 msec electrical pulse.
Since this signal still only occupies 2% of the duty cycle (30 Hz
repetition rate), latch and hold circuits are used to retain the peak
signal voltages throughout the entire cycle. The latches are auto-
matically reset by a self-trigger circuit at the beginning of each
cycle. Electrical signals from the latch and hold circuits are sub-
tracted in order to compensate for fluctuations in laser power (<10%).
This difference signal is detected by a PAR HR-8 lock-in amplifier,
using either 1 or 5 sec time constants. The bias pulse is only
applied on alternate laser flashes, and the signal is detected at half
of the laser frequency (i.e., 15 Hz) in order to compensate for small
changes in the domain configuration. The averaged signal is plotted
on an HP 7005B X-Y recorder as a function of delay time. The noise
level in the output signal is equivalent to an effective spatial reso-

lution of 0.03 ym, while temporal resolution is still Tlimited by the
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Fig. (B.3): Block Diagram of the Photometric Experiment. Operation is

described in the text.
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laser pulse width to about 10 nsec. By giving up the ability to
monitor individual experimental events, the photometric experiment
provides an order of magnitude improvement in resolution over optical

sampling.
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Appendix C. Notation

Magnetic Units

The cgs system is used throughout. Magnetic fields H are measured

in oersteds (0e) and magnetic induction B is measured in gauss. The

relationship between these units and their MKS counterparts is given

by
1 0e = 79.58 amps/m - (C.1a)
and
I 2
1 gauss = 10 " webers/m (C.1b)
Conventions

1. Vector quantities are indicated by a bar over the symbol, e.g.,
H. Vector components are indicated by a subscript, e.g., Hx is the x-

component of H.

2. Partial derivatives with respect to time are indicated by a dot

over the symbol, e.qg.,

30 _ - .

=9 (C.2a)
and

2. "

i—g= 0 (C.2b)

at

3. Partial derivatives with respect to spatial coordinates are indi-

cated by subscripts, e.g.,
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30

o = ex p (C.3a)
and
2
9 6
=9 ” (C.3b)
g;? XX |

However, subscripts on vector quantities indicate vector components,

and not spatial derivatives.

4, Magnetic fields are sometimes scaled to Hk’ the anisotropy field.
Such fields are indicated by lower case letters, e.qg., ﬁ]Hk = h,

and Hx/Hk = hx’

5. Averaged values through the film thickness are indicated by

brackets, e.qg.,

h~] f dz ¢(z) = <¢p> . (C.5)

Use of Symbols

A table of symbols together with a brief description and units
is given below. The first part of the table 1lists Latin symbols used
in this work in alphabetical order, and the second part lists Greek

symbols also in alphabetical order.

Latin Symbols Description (units)
A exchange constant (erg/cm)
d dimensionless bubble diameter
d ,d2 stripe domain widths (cm)

1



HSO

HSV

HW

|
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bias field energy (erg or erg/cmz)

demagnetizing energy (erg or erg/cmz)
total domain energy (erg or erg/cmz)
wall energy (erg or erg/cmz)

dissipation per unit volume (erg/cm3-sec)

disiipation per unit wall area (erg/cmz-
sec

magnetic field (Oe)
film thickness (cm)
effective field gradient (0Oe/cm)

magnitude of the externally applied
bias field pulse (Oe)

Hamiltonian per unit wall area (erg/cmz)
external bias field (0Oe)

bubble collapse field (Oe);
coercive field (Oe)

demagnetizing field (0Oe)
in-plane field (0Oe)
anisotropy field (Oe)

perpendicular component of surface
demagnetizing field (0Oe)

bubble stripe-out field (Oe)

effective drag field resulting from
saturated wall velocity (Oe)

Walker field (Qe)

uniaxial_anisotropy energy density
(ergs/cm3)

Lagrangian per unit volume (erg/cmB)

anggTar momentum per unit volume
(0e¢ sec/cm)
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L characteristic length (cm)
La ‘ Lagrangian per unit wall area (erg/cmz)
M magnetic moment per unit volume
or magnetization (Oe)
m effective wall mass per unit area
(gm/cm?)
my Doring mass (gm/cmz)
M, saturation magnetization, [M|(Oe)
Q quality factor
q wall position (cm)
r bubble radius (cm)
v steady-state wall velocity (cm/sec)
Vi average wall velocity (cm/sec)
v peak steady-state velocity attainable
P with an HBL present (cm/sec)
Ve saturated wall velocity (cm/sec)
v Walker velocity (cm/sec)
W kinetic energy per unit volume (erg/cm3)
Wy HBL width (cm)
Z.ys2Zco locations of the critical points (cm)
z, HBL position (cm) -
Greek Symbols Description (units)
o Gilbert damping parameter
B dimensionless bias field
Y gyromagnetic ratio (Oe']sec'])

A wall width (cm)
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Bloch wall width (cm)
Neél wall width (cm)

HBL energy per unit wall length
(erg/cm)

polar angle between M and +z-axis
asymptotic value of 6 far from the wall
dimensionless characteristic length
wall mobility (cm/sec-0Oe)

wall oscillation frequency (Hz)

potential energy per unit volume
(erg/cm?)
asymptotic value of PE (erg/cms)

Bloch wall energy per unit area
(erg/cm?)

kinetic_wall energy per unit area
(erg/cm®)

Neél wa%] energy per unit area
(erg/cm¢)

wall energy per unit area (erg/cmz)
half-period of wall oscillations (sec)
azimuthal angle between projection

of M in the x-y plane and the +x-

axis

asymptotic value of ¢ far from the wall

static orientation of ¢

value of ¢ inside the domain wall



