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Abstract

Most phase locked semiconductor laser arrays suffer from undesirable twin
lobed farfield patterns, making them unsuitable for many applications. In this
thesis we make a detailed theoretical and experimental study of this problem, and
solve it by tailoring the spatial gain profile across the array. We demonstrate a
tailored gain chirped array which emits 450mW into a single beam 3%0 wide.

Stripe geometry lasers for use in phased arrays are examined in Chapter 2,
as are design considerations for evanescently coupled phased arrays. A power-
ful numerical method for analyzing a nearly arbitrary one-dimensional dielectric
waveguide with gain and/or loss is described.

Chapter 3 analyzes in detail the simplest array of two adjacent waveguides,
both real index and gain guided and both weakly and strongly coupled. Chapter 4
discusses why a uniform array has a twin lobed farfield pattern, and introduces
the concept of a nonuniform real index guided chirped array of lasers with widths
which increase monotonically across the array. Real index guided chirped arrays
can, in principle, be made to lase with a single lobed farfield pattern. Since such
arrays are difficult to fabricate, and will be at least partially gain guided, we
concentrate on gain guided structures. The combination of gain tailoring and a
high interchannel gain in a proton implanted chirped array enables us to achieve
our goal of fabricating a high power array with the single lobed farfield pattern
described above.

Such arrays are actually tatlored gain broad area lasers. Chapter 5 demon-
strates another method for gain tailoring, the “halftone” process, which can create
nearly arbitrary two-dimensional spatial gain profiles in an optoelectronic device,

thereby offering a new degree of freedom to the designer of semiconductor lasers.
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Single lobed nearly diffraction limited beams from tailored gain broad area lasers
50um wide are obtained.

Asymmetric tailored gain waveguides have several unusual properties. the
technique of Path Analysis for analyzing these complex waveguides is introduced.
Fundamental Fourier Transform relationships relating device structure to farfield
patterns yield additional insights. Finally, we close with a measurement of the an-
tiguiding parameter and briefly examine some design criteria for practical tailored

gain broad area lasers.
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CHAPTER

ONE

Introduction and Overview

In five minutes you will say it is all so absurdly simple.

—Sherlock Holmes, The Adventure of the Dancing Men
Sir Arthur Conan Doyle

§1.1 Historical Background

Laser action was first predicted by Schawlow and Townes in 1958,1 and first
observed by Maiman? in the ruby system in 1960. In 1962, less than 2 years later,
stimulated coherent emission from semiconductor GaAs p — n junctions was first
observed nearly simultaneously by four groups.3—® Within six years, lasing action
had been obtained in a wide variety of semiconductor materials covering the wave-
length range between 0.5um to 20um. Semiconductor lasers were not capable of
room temperature operation until the introduction of the GaAs/GaAlAs hetero-
junction in 1969. Continuous Wave (CW) lasing of GaAlAs laser diodes at room
temperatures was not achieved until 197 0.7 Since then, progress has been exceed-
ingly rapid because of the tremendous commercial importance of semiconductor
lasers as highly efficient, compact, and inexpensive light sources, particularly for
use in optical fiber lightwave communication systems.

It is a tribute to modern technological research that in the fifteen or so years
since the advent of the first room temperature CW laser diode, the state of the art
has advanced enormously. Degradation rates of 10 6hr~1 at 100°C temperature

and extrapolated lifetime in excess of 107 hours at room temperature have been
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obtained.8 Lasers that are capable of emitting up to 40mW into a stable beam with
a very narrow spectral linewidth are commercially available. Semiconductor lasers
are extremely efficient converters of electrical to optical energy. Differential power
efficiencies of 80% have been measured,9 and threshold currents as low as 2.5mA
(corresponding to a power dissipation of 5mW) have been reported.19 Amplitude
and phase fluctuations in the best laser structures have been shown to be near the
quantum limit.11

Naturally, no one laser design is capable of simultaneously achieving all of these
attributes. Since different applications require different laser characteristics, de-
vice design has been directed towards specific applications. Historically, the most
important application is that of optical fiber communication. Lasers for fiber com-
munications require high modulation bandwidths with very clean beam profiles and
exceptionally pure spectral characteristics at wavelengths near the 1.5um absorp-
tion and dispersion minimum in silica glass fibers. GaAlAs lasers are unsuitable
for such applications due to their relatively short ~ 0.85um lasing wavelength, and
so most lasers intended for fiber communications use the InGaAsP system. As a
result of having been optimized for their spectral and modulation properties, such
lasers are limited to a few milliwatts of optical power output and have beamwidths
between 10° and 30°.

Recently, some potentially important applications of semiconductor lasers have
emerged which require substantially higher output power at GaAs wavelengths.
These include freespace nonfiber optical communication (e.g., between satellites
in space), optical disk recording, laser printing, and possibly even some medical
applications. Although probably not quite as large as the market for communi-

cations lasers, these latter markets are still substantial, and interest in achieving
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high power output, perhaps as great as several watts, is rapidly increasing. Fur-
thermore, it should be possible to concentrate this several watts of optical power
into a single narrow beam less than a degree wide.

However, there is an upper limit on the width of conventional semiconductor
lasers, and so several new approaches for achieving high power operation with
narrow beams have emerged within the past few years. Two of the most promising
include unstable resonatorl? and phased array'® semiconductor lasers. The latter
topic forms the subject of this thesis.

Phased array semiconductor lasers are fabricated by placing many single-
element lasers close enough together so that the entire assembly acts as one unit.
The first laser arrays were reported as early as 1968 by Birbeck,!4 but the impe-
tus for their development did not really come until the team of Streifer, Scifres,
and Burnham at the Xerox Corporation made some major contributions to the
field.15—18 In 1983 this group set a high power record of 2.6W CW emission from
a laser diode which stood unbroken for many years.!® In 1985, Harnagel, Scifres,
et al. at Spectra Diode Laboratories broke the old record, reporting 5.4W of CW
power from a phase locked array.2C

Unfortunately, high power operation did not come without its price: almost all
of the arrays reported to date have suffered from double lobed farfield patterns.2!:22
The two beams, typically separated by about ten degrees, make such arrays un-
suitable for many applications. As a result, substantial effort has gone into under-
standing the source of this problem and devising methods for its elimination.

Most of the early work on phase locked arrays used uniform arrays of identical
elements on equidistant centers. In 1984 Kapon, Katz, and Yariv at Caltech??
introduced the concept of array supermodes, and showed that the twin lobed

farfield patterns were the result of the lossy interchannel regions inherent in the
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design of most uniform arrays. Kapon, Lindsey, et al. then proposed the concept of
nonuniform chirped arrays.?* In mid 1984 Lindsey demonstrated the first chirped
array based on this principle, which was capable of nearly diffraction limited 2°
single lobed operation.2® About one year later, in mid 1985, Welch and Scifres
used a minor variation of this design, and achieved CW power outputs of about
%W into single lobed beams only one degree wide.26

More recently, there has been a renewed interest in semiconductor lasers that
achieve high power, single lobed operation without resorting to either array or
unstable resonator structures. In particular, in 1985, Lindsey, et al. showed that
the nonuniform chirped array reported earlier might better be described as a broad
area laser with a nonuniform spatial gain proﬁle.27 He then demonstrated a tatlored
gain broad area laser which achieved nearly diffraction limited single lobed, high
power (200mW into 21°) operation from a truly broad area laser about 50um
wide.28:29

The scope of this thesis therefore begins with a discussion of the reasons why a
uniform array has an undesirable twin lobed farfield pattern, proposes and demon-
strates nonuniform tailored gain chirped arrays, and concludes with a demonstra-

tion and analysis of tailored gain broad area lasers.

§1.2 Semiconductor Lasers

In order to achieve laser action, the three requirements, shown schematically
in Figure 1.1, must be met. First, it is necessary to provide a means of exciting
electrons into higher energy states more rapidly than the rate at which they decay
into lower energy states. In a semiconductor laser, this is achieved by sufficiently

forward biasing a p — n junction in a direct band gap material such as GaAs.3°
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FIGURE 1.1 Requirements for laser action.

The spontaneous and stimulated recombination of the electrons and holes at the
junction create photons, some of which escape the device in the form of useful
light output. Secondly, provision must be made for confining the light which
is generated so that the spontaneous emission rate is negligible compared to the
stimulated emission rate.31 In a GaAs laser this is achieved by means of a dielectric
waveguide3? formed by a GaAlAs /GaAs/GaAlAs double heterostructure. Finally,
it is necessary to provide optical feedback so that a stable optical mode can build
up in the device. In most semiconductor lasers, this is achieved by cleaving the
semiconductor crystal to form a Fabry-Perot cavity.33

The GaAlAs/GaAs/GaAlAs heterostructure in the vertical direction is cre-
ated by sandwiching a thin (typically ~ 0.1um) GaAs active layer between two
Gay—zAlzAs cladding layers where z is typically ~ 0.2 — 0.4. To form the p—n
junction the upper GaAl As layer is usually doped p type, the lower layer is n type,
while the active layer is often left undoped. Figure 1.2a shows that when the p—n
junction is forward biased, the smaller energy band gap of GaAs relative to that

of GaAlAs causes both electrons and holes to be confined to the thin GaAs active
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FIGURE 1.2 GaAlAs/GaAs/GaAlAs double heterojunction (a) band energy diagram for forward
biased p — n junction (b) refractive index profile (c) optical field intensity.

layer, thus leading to the very high inversion densities (1.e., gain) characteristic of
semiconductor lasers.

Figure 1.2b shows that since the index of refraction of the GaAs core region
is greater than that of the GaAlAs cladding, the double heterojunction not only
confines the carriers, but also forms a dielectric optical waveguide as well. In
general, such a dielectric waveguide can guide many optical modes.34 The shape of
the optical mode is referred to as the mode’s nearfield pattern, while the radiation
pattern that this mode makes when it emerges from the laser is referred to as the
mode’s farfield pattern. Almost all applications of semiconductor lasers require a
clean, single lobed farfield pattern. This can be achieved by making the thickness

of the GaAs core region small enough so that only the fundamental mode in the
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vertical direction will be guided. Figure 1.2c shows schematically the mode shape
for the fundamental mode. We see that the optical energy is concentrated in the
high gain region of the waveguide. This combination of good carrier and optical
confinement makes possible the fabrication of semiconductor lasers capable of low
threshold, room temperature operation.

In order to achieve low threshold currents, it is necessary to confine the car-
riers and optical field in the longitudinal (along the junction plane), transverse
(vertical, perpendicular to the junction plane), and lateral (horizontal, parallel to
the junction plane) directions. In almost all semiconductor lasers, confinement in
the longitudinal direction is provided by the cleaved edge of the crystal, and in the
vertical direction by the heterostructure. Almost all the variation in semiconduc-
tor laser device design results from the many techniques for providing carrier and
optical confinement in the horizontal (lateral) dimension. Of particular interest to

this work are the various methods of providing lateral confinement for the optical

field.

(a) Uniform Gain Broad Area Lasers

The simplest laser based on these principles is the broad area semiconductor
laser, illustrated in Figure 1.3a, which has a uniform lateral and longitudinal
spatial gain profile. No provision for lateral optical and carrier confinement is
made other than that provided by the edges of the wafer. Although such lasers
have the advantages of being very easy to fabricate and are capable of high power
operation, they are useless for almost all applications because, as illustrated in
Figure 1.3b, they have very wide, highly irregular, and unstable farfield patterns.

These undesirable farfield patterns result from two physical effects.
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(A) BROAD AREA SEMICONDUCTOR LASER

cleaved
mirrors

Cr/Au p-contact

pt-GaAs
cap layer
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active region
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FIGURE 1.3 (a) Schematic diagram of a broad area semiconductor laser (b) typical farfield pattern
for a broad area laser ~ 50um wide. Compare with Figures 1.9 and 1.10.
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<i> The Filamentation Control Problem

First, the presence of a nonlinear interaction between the carriers and the op-
tical field in a conventional semiconductor laser with a uniform spatial gain profile
produces filaments,35 so-called because a photomicrograph of an operating device

exhibits small areas of enhanced optical intensity with a filamentary structure.
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FIGURE 1.4 Problems with broad area lasers (a) filament formation (b) higher order lateral modes.

Since the real part of the refractive index is related to its imaginary part (i.e., the
spatial gain) through the Kramers-Kroenig3® relationship, and also due to the free
carrier plasma effect,3” an increase in the gain at any point within the waveguide
produ;:es a decrease in the real part of the refractive index; this is referred to as the
antiguiding effect.3® Conversely, if a small localized “hot spot” of increased optical
intensity should develop as a result of a fluctuation within the waveguide, the

increased stimulated emission will deplete the gain,3 thus creating an tncrease
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in the local index of refraction. As illustrated in Figure 1.4a, this interaction
effectively forms a small waveguide 3 to 12um wide3 within the larger waveguide
defined by the entire broad area laser.

As a result of the translational invariance within a conventional uniform gain
broad area laser, the filaments become unstable and move about randomly. The
complicated motions and interactions of the many filaments in a conventional
uniform gain broad area laser are one cause of the poor beam quality characteristic
of these devices. If a broad area laser’s farfield pattern is to be improved, some
method of stabilizing the filaments must be found. In conventional semiconductor
lasers, this is usually achieved by making the laser’s width narrow enough, typically

less than at most ten to fifteen microns, so that only one filament can form.

<ii> The Lateral Mode Control Problem

The second problem that must be overcome in a broad area laser comes about
because the optical field must be guided in the horizontal (lateral) direction as
well as the vertical one. Since the width of a typical broad area laser is perhaps
50 to 100 times the lasing wavelength, the lateral waveguide in a broad area laser
will support many lateral optical modes. In a conventional broad area laser in
which the current injection throughout the device is uniform, only the lateral
fundamental mode will have a predominantly single lobed farfield pattern.(§2‘6)
This is illustrated schematically in Figure 1.4b, which shows the waveguide model
of a dielectric waveguide that supports two guided modes. (The mode shapes in
a gain guided waveguide are very similar; see §2.6(a).) The lasing of the higher
order modes thus increases the width of the farfield pattern, possibly making
it multilobed. To make the laser’s farfield pattern single lobed and diffraction

limited (i.e., as narrow as possible), the fundamental mode must be the only lasing
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mode. All other modes must be suppressed. This is not possible in conventional
broad area lasers due to the nearly uniform spatial gain profile. Therefore, the
conventional method of achieving single lobed farfield operation is to make the

laser narrow enough so that the waveguide supports only the fundamental mode,

making it the sole lasing mode.

(b) Single Element Stripe Geometry Lasers

We see that the twin problems of filamentation and lateral mode control may
be solved by the simple expedient of limiting the width of the laser, typically to
5um to 10um. One type of stripe geometry laser diode is illustrated in Figure 1.5a;
it is similar to the broad area semiconductor laser of Figure 1.3a except that the
surface resistivity of the entire wafer has been increased everywhere but along a

thin stripe by implanting high energy protons into the surface of the crystal.

(A) (8)
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FIGURE 1.5 (a) Proton implanted stripe geometry semiconductor laser (b) typical farfield pattern
for a strip geometry laser ~ 5um wide.
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Thus current is injected only into the narrow stripe. The optical field is then
confined in the horizontal direction by the presence of the lossy unpumped GaAs
active region at the edges of the stripe.

Since unprotected Ga Al As laser mirrors cannot sustain an incident power den-
sity greater than about SMW/ em? without damage,?? limiting the width of the
laser stripe also limits the laser’s maximum power output to ~ 50mW and, as
shown in Figure 1.5b, also limits its minimum beamwidth to ~ 10°. New semicon-
ductor laser designs which achieve high power operation by increasing the laser’s
width must therefore solve both the filamentation and latéral mode control prob-
lems.

In this thesis, we are particularly interested in phased arrays of semiconductor
lasers that use single-element stripe geometry lasers as building blocks to form
the array. We therefore lay the groundwork for our discussion of arrays with a
discussion of some simple waveguide models that describe a semiconductor laser.
A waveguide in the lateral direction may be formed either by variations in the real
part of the index of refraction (real indez guided) or by variations in the spatial gain
distribution (gatn guided). We consider several classes of laser structures based on
the strength of real index guiding which are candidates for use in phased arrays
in §2.2. Due to some fundamental and technological constraints, practical evanes-
cently coupled phased arrays are either gain guided or at best very weakly index
guided (§2.4). However, since such structures are notoriously difficult to analyze
analytically, we proceed by breaking the problem down into smaller, more man-
ageable parts by starting with simple waveguides and gradually working towards
more complicated structures.

In §2.6 we briefly review the properties of the simplest of all possible dielectric

waveguides, the symmetric three layer slab structure which forms the basic building
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block we will use throughout this thesis. Although other, more accurate modes
for gain guided lasers have been introduced,3%:4! this simple “box” waveguide has
the great advantage that it may be used to display the essential physics without
undue mathematical and computational complexity. Many of the other types of
waveguides we will encounter have such complicated refractive index and gain
profiles that their analytical analysis becomes intractable. We therefore introduce
some very simple yet powerful numerical methods for finding the optical modes of
a nearly arbitrary waveguide in §2.7, and make extensive use of these methods in

Chapters 3 and 4.

(c) Phased Array Lasers

As noted in §1.1, one promising method of achieving high power semiconductor
laser operation is to place many lasers in close proximity so that their optical fields
overlap sufficiently to bring about “phase locking.” In a phase locked array, the
optical fields of each laser add coherently, thus potentially providing the dual
benefits of high power and narrow beamwidth operation.

Figure 1.6a&b shows the simplest example of a phased array semiconductor
laser, the uniform array, which is formed by placing several identical lasers on
uniformly spaced centers. Increasing the number of lasing elements obviously will
increase the optical power output, and will also decrease the beam angle into
which it is emitted because of the inverse relationship between the width of the
nearfield and farfield patterns.4243 In such phase locked semiconductor laser arrays
the filamentation problem has been solved by confining the filaments within the

individual laser channels that comprise the array.
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FIGURE 1.8 Uniform array of semiconductor lasers (a) proton implanted (b) air ridge (mesa
stripe). Problems with phased arrays (c) not phase locked (wide farfield pattern) {d) anti-phase
operation (twin lobed farfield pattern).

However, most uniform arrays suffer from a fundamental problem that makes
them unsuitable for many applications. Figure 1.6c&d illustrates the two diffi-
culties with the uniform array that motivated the work described in this thesis.
First, Figure 1.6¢c shows that, if the laser elements comprising the array are too far
apart, the lasers do not lock in phase and the optical fields add incoherently.4445
The emitted beam then has the same width as that of an individual laser. This
implies that the laser elements must be more closely spaced. Second, if the spacing
between the elements is decreased, the lasers lock in phase (as evidenced by the
narrower beam and deep minima between them in Figure 1.6d), but the farfield
pattern is now twin lobed. These undesirable twin lobed farfield patterns have been
found in uniform arrays with a wide variety of single-element laser designs, and

thus appears to be a property of the uniform array structure itself and not of the
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individual lasers. Understanding the cause of this problem and demonstrating a
method of eliminating it form the core of this thesis.

Comparison of the uniform array’s experimental farfield pattern of Figure 1.6d
and the v = 2 theoretical farfield pattern of Figure 1.4b suggests that the twin
lobed farfield pattern may be due to a high order lateral waveguide mode. We are
therefore led to consider waveguiding properties of arrays of box waveguides. One
of the very simplest possible arrays consists of two box waveguides placed suffi-
ciently close so that their evanescent fields overlap and the lasers phase-lock. The
detailed analytic study of these coupled waveguides forms the subject of Chapter 3.
Weakly coupled real index guided waveguides are studied with the help of coupled
mode theory in §3.1, while strongly coupled waveguides are considered in §3.2.
Coupled mode theory predicts that if the two individual waveguides are single
mode, then the composite system will support two “supermodes.”?3 In §3.2(a)we
find (and explain) the interesting result that when the spatial overlap between the
elemental fields becomes large, one of these supermodes disappears, leaving only
a new single mode system.

Central to the understanding of systems of coupled waveguides is the concept
of the phase matching wavelength£§3'1) From the point of phased array semicon-
ductor laser design, the primary significance of the phase matching wavelength is
that at this wavelength equal power flows in each waveguide (i.e., the admizture
factor is unity). In §3.3 we show that not all coupled waveguides will have a phase
matching wavelength, and in §3.1(a) we present a simple method of designing a
two waveguide system around a predetermined phase matching wavelength (e.g.,

the peak in the spectral gain curve of G'a.As).46’47
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Coupling between two waveguides is illustrated in Figure 1.7. Figure 1.7a
shows the nearfield and farfield patterns for two closely spaced identical real in-
dex waveguides —1.e., a two-element uniform array. We find that if we assume
that each of the individual waveguide channels supports only the fundamental
mode, the composite structure supports two supermodes which we label the v =1
(++) and v = 2 (+—) supermodes, where (++) refers to the inphase addition of
the individual modes and (+—) refers to antiphase addition. Notice that if the
gain is concentrated in the core regions (as indicated by the hatched ovals), the

interchannel region between the waveguides is relatively lossy.
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FIGURE 1.7 (a) Supermodes of two identical coupled waveguides. The lossy interchannel region
causes the high order (+—) supermode to lase, leading to a twin lobed farfield pattern. (b)
Supermodes of two nonidentical coupled waveguides. Greater gain in the left channel than in the
right one favors the fundamental {++) supermode, potentially leading to a single lobed farfield
pattern.
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Since the twin lobed (+—) supermode has a null in the lossy interchannel
region, it will be relatively more concentrated in the high gain channel regions
than will the single lobed (++) mode; it therefore will be amplified more as it
travels down the guide (i.e., it has a higher modal gain) because it is attenuated
less by the lossy interchannel regions. The mode with the highest modal gain will
be the lasing mode at threshold, and thus near threshold, the farfield pattern will
be twin lobed. The above threshold behavior is very complicated, and must be
solved using the rate equations.® This latter topic is beyond the scope of this
work.

We find it interesting to note that the very feature which makes good single
lasers with low threshold currents (i.e., placing the gain where the light intensity
is greatest) is the very cause of the undesirable twin lobed farfield patterns in a
uniform array.

Figure 1.7b shows the supermodes for two phase mismatched nonidentical
waveguides which have the same index step but different widths. As before, we
have a (++) and (+—) supermode with single and double lobed farfield patterns
respectively, but now we notice a difference between the (++) and (+—) super-
mode: the (++) supermode is more concentrated in the wider guide, while the
(+—) supermode is more concentrated in the narrower guide.(§3'3) Thus, if it were
possible to have more gain in the wider laser than in the narrower (as indicated by
the differently sized hatched ovals), the (++) supermode should have the greatest
overlap with the gain distribution, and would then be the lasing mode — leading
to a single- lobed farfield pattern. |

Although the presence of gain has been indicated only schematically in Fig-
ure 1.7, we are able to examine its effects on the admixture factor for both weakly

and strongly coupled waveguides. For the weakly coupled case (§3.4), the major
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effect is that if the gain mismatch between the two waveguides is sufficient, equal
power will never flow in each waveguide, even at the phase matching wavelength.
For the case of two strongly coupled gain induced waveguides (§3.5), we find the
surprising and unexpected result that while we might expect to find either one or
two supermodes for two coupled single mode waveguides, we actually find four.
We discuss this interesting result in terms of gain guided “leaky” modes in §3.5(b)
and the special nature of the complex coupling between two gain guided lasers in
§3.5(c).

In Chapter 4 we utilize the ideas of Chapter 3 in our quest to design and
fabricate a phase locked array with a single lobed farfield pattern by using a
nonuniform array structure based on the ideav of Figure 1.7b. Chapter 4 tells how
the actual implementation of these ideas into a working device came to resemble
a rather exciting detective story which starts with the single clue of two phase
mismatched waveguides, and evolves as we work out its extension to more elements,
discover the limitations of the theoretical results of Chapter 3, modify our ideas,
and try again — and again... until we finally arrive at a working device. Along
the way, we will also discuss a variety of waveguides relevant to phased array lasers
so that the reader will emerge (we hope) with a good understanding of the lateral
mode control problem in evanescently coupled phased array semiconductor lasers.

We start our discussion of multi-element arrays by considering a uniform array
in §4.1 and real index guided nonuniform chirped arrays in §4.2.

Figure 1.8a shows the nearfield patterns for a five-element uniform array. Notice
that the envelope function (shown by the dashed line) for the v =1 (+ + + + +)
supermode is identical to that of the v = 5 (+ — + — +) supermode, and as in the

case of the two-element laser, the two modes differ only in the lossy interchannel
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FIGURE 1.8 Supermodes of real index guided arrays (a) uniform array (b) chirped array (c)
farfield patterns for the chirped array. (The farfield pattern for the uniform array is very similar.)
region, thus implying that the twin lobed v = 5 supermode will be the lasing mode.
This explains the twin lobed farfield patterns of the uniform array of Figure 1.6c¢.

Figure 1.8b shows the nearfield pattern for a nonuniform chirped array in
which the width of the laser waveguides decrease linearly from left to right. Now
we observe a great change in the envelope functions of the fundamental v = 1 and
highest order antisymmetric v = 5 supermodes: the fundamental supermode is
localized at one side of the laser, while the highest order antisymmetric supermode
is localized at the other. If it were possible to tailor the spatial gain profile to have

approximately the same shape as the fundamental supermode, that mode would
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become the lasing mode because it best utilizes the available gain, thus yielding
an array with the desired single lobed farfield pattern.

Prior to this work, there was no known way to easily tailor the spatial gain
profile within a semiconductor laser array without using complicated multilevel
metallizations.?? The invention of two different methods for easily achieving such
gain tailoring in §4.5(a) and §5.2 forms one of the major contributions of this
thesis.

Although we have described the concept of a nonuniform array in terms of a
real index guided structure, in §4.2(a) we show that a real index guided chirped
array suffers from some fundamental and technological limitations which make its
fabrication exceedingly difficult, if not impossible. Consequently, towards the end
of Chapter 4 we turn our attention to arrays of nonuniform gasn guided lasers and
discover that gain tailoring may be easily achieved in a chirped array of proton
implanted lasers.(84:5(2)) We are thus led to the concept of the tailored gain chirped
array presented in Figure 1.9. However, as shown in Figure 1.9a, in order to achieve
the desired single lobed farfield pattern, it is necessary to make the interchannel
gain so large that the coupling between the array elements becomes so strong that
the distinction between an array and broad area laser becomes blurred.(84.5(2),4.6)
Figure 1.9b demonstrates a tailored gain chirped array with a 1.5° wide single
lobed diffraction limited beam; other devices were capable of high power (450mW
into 31°) essentially single lobed operation.(§4'5(6))

We have therefore achieved our goal of demonstrating a semiconductor laser

array capable of single lobed high power operation.
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FIGURE 1.9 Tailored gain chirped array with (a) low interchannel gain (b) high interchannel gain,
showing diffraction limited single lobed farfield operation.
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(d) Tailored Gain Broad Area Lasers

It is interesting to note that although the schematic diagram of the strongly
coupled tailored gain phased “array” of Figure 1.9b superficially resembles an
array, examination of its gain profile via the spontaneous emission pattern below
threshold reveals that the effect of the array has been nearly, if not completely,
obliterated by current spreading in the upper cladding layer between the channels.
Therefore, in §4.6 we consider whether or not it is actually more proper to refer
to such a device as a tailored gain broad area laser rather than as an array.

However, it is possible that, despite the beneficial effects of the gain tailoring,
the improved performance was due to some residual effect of the array structure.
In Chapter 5 we propose, demonstrate, and analyze a very versatile innovation, re-
ferred to as the “halftone process,” for achieving nearly arbitrary two-dimensional
spatial gain profiles within an optoelectronic device such as a broad area semicon-
ductor laser and use it to fabricate an entirely new type of semiconductor laser, a
tatlored gain broad area laser, in which all traces of the array structure have been
removed.(85-2) This laser is illustrated in Figure 1.10a. The various sized black
dots represent areas on the surface of the laser where current is injected, while
the white regions represent insulating regions.(§2'2(6)) As may be seen from this
figure, the fractional surface coverage of the injecting contact decreases approxi-
mately linearly across the laser, and so, to a first approximation, does the injected
current density and hence spatial gain profile. This is confirmed by a plot of the
nearly linear, highly asymmetric spontaneous emission pattern below threshold in
Figure 1.10b. Figure 1.10c presents the single lobed farfield pattern of this laser
which was nearly 50um wide and emitted 200mW into 2.3°.

Chapter 5 also contains a discussion of the optical modes of a linear asym-

metric tailored gain waveguide. We introduce the method of Path Analysis?? for
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FIGURE 1.10 Halftone tailored gain broad area laser (a) schematic plan view (b) spontaneous
emission below threshold showing asymmetric linear spatial gain profile {¢) farfield pattern, showing
high power single lobed farfield operation.
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analyzing nonuniform gain induced waveguides which greatly eases the analysis of
these structures, and makes possible the calculation of many waveguide properties
using only simple algebraic and geometric arguments.(§2‘6(°)’5'4’5'8) We find that
the modes of asymmetric tailored gain broad area lasers have several very inter-
esting properties. First, the mode discrimination (t.e., difference in the modal
gains) between the fundamental and other higher order modes is much better than
it is in a uniform gain waveguide.(§5'6) Second, it is well known that symmetric
waveguides and real index waveguides have higher order modes with nulls in the
nearfield patterns.(§4'2) This is not true for asymmetric tailored gain waveguides.
The nearfield patterns of the modes of this latter structure all null-less.(85-10) Fi.
nally, the higher order modes of either symmetric or real index guided waveguides
have multilobed farfield patterns,(§4'2) while all of the modes of a linear asymmet-
ric tallored gain waveguide have single lobed farfield patterns.(gs'n) We show that
these unusual properties result from the complex nature of the electric field made
possible by gain guiding and the lack of left-right inversion symmetry in the asym-
metric tailored gain structures.(35-12) We then discuss the effect of these unusual
properties on device design, and briefly present some of the engineering tradeoffs
involved in designing tailored gain broad area lasers.(§5:14)

In this work, we consider only asymmetric tailored gain waveguides for two rea-
sons. First, although higher powers may, in principle, be obtained from a symmet-
ric structure with twice the width of an asymmetric one, the available experimen-
tal evidence suggests that asymmetric structures show better single lobed farfield
operation at higher powers than do their symmetric counterparts.’®Second, asym-
metric gain induced waveguides have properties very different from other, more

commonly known, structures. We therefore concentrate on asymmetric structures,
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and remark that the extension of this work to symmetric waveguides is straight-

forward.

§1.3 Applications and Future Extensions of This Work

Halftone tailored gain broad area lasers are very simple to fabricate, and are
thus well suited to large scale processing techniques. We anticipate that they may
find application wherever high power single lobe operation of a laser is desired,

provided that the lack of spectral purity associated with gain guided lasers is not

objectionable.
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FIGURE 1.11 Optical recording.

Figure 1.11 shows a possible application of asymmetric tailored gain broad
area lasers to optical data recording. A semiconductor laser and detector is used
to measure the amount of light reflected from microscopic pits on the surface of the

disc. In optical data recording, it is necessary to steer the laser beam to the correct
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track on the optical disc. A closed loop servo mechanism is used to insure that
the optical beam will stay centered on the track even if it is not exactly concentric
with the axis of rotation. Conventionally, this is done using electromechanical
techniques. Figure 1.12 shows how the beam emission angle from an asymmetric
tailored gain broad area laser depends on the value of the spatial gain gradient.
However, it should be possible to utilize asymmetric tailored gain broad area lasers
to electronically steer the laser beam onto a track much more rapidly than with

conventional electromechanical methods.
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FIGURE 1.12 (a) Tailored gain broad area waveguides with varying gain gradients (b) farfield
patterns showing potential for beam steering.

Although electromechanical methods would probably still be required for gross
positioning of the beam, the ability to rapidly adjust the precise position of the
beam, combined with the high power output of a tailored gain broad area laser,
could potentially increase the optical bandwidth of the unit. Thus, we anticipate

that asymmetric tailored gain broad area lasers merit further development work.
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In conclusion, we have come full circle. We started by stating that a uniform
gain broad area laser was unsuitable for many applications due to the filamentation
and lateral mode control problems. The filamentation problem was solved by using
an array structure, while the lateral mode control problem was solved by intro-
ducing gain tailoring. However, we discovered that in order to make gain tailoring
work, it was necessary to increase the interchannel gain to the point where the
device resembled a broad area laser more than it did an array. We then demon-
strated a tailored gain broad area laser (!) which is capable of single lobed, high
power operation.

It is interesting to note that, although we began by assuming that an array
was necessary for high power operation, we have found that the introduction of
gain tailoring makes the array structure superfluous. In fact (as we will show
in §4.5(b)), it may be that since the modulation of the laser’s nearfield pattern
introduced by the array structure increases the power present in the sidelobes and
decreases the ability of the device to operate in a phase locked mode, it may well be
advantageous to consider other structures which resemble broad area lasers more
than they do arrays of individual lasers. In particular, it would be very interesting
to combine the present work with gain tailoring with new methods of tailoring
the real part of the refractive index to create tailored indez tailored gain broad
area lasers that would potentially combine some of the benefits of both real index
and tailored gain structures. Furthermore, in one sense what we have done in this
thesis is essentially to redefine the maximum upper width of a semiconductor laser
from 10pum — 15um to perhaps 60um — 100um. One might then speculate about

the possibility of creating arrays of broad area semiconductor lasers!
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However, one crucial question remains unanswered: what is the role of fila-

mentation in a tailored gain broad area laser? Do filaments exist at all, and if

so, why don’t they degrade device performance? Unfortunately, the resolution of

these exceedingly interesting questions are beyond the scope of this thesis.

Finally, Figure 1.13 presents an overall flow chart for the work of this thesis

and for some possible future extensions.

§1.5 Conventions Used Throughout This Thesis; References

(1)

Here we summarize conventions used throughout this thesis.

The real part of a complex quantity ¢ will be denoted by either § or Re{q};
the imaginary part will be denoted by either ¢, by Sm{q}, or by a different
symbol. Since the symbol z is used to denote the lateral dimension along a
waveguide or laser, we will refer to the real axis of the complex z—plane as the
£ axis.

A plane wave moving in the +2z direction is denoted by ei(ﬂz_“’t), where [ is
the propagation constant and w is the free space radian frequency of the wave.
N.B.: some authors, [40] for example, use et (Az—wt) ¢4 represent the same
wave. See §2.6 for a brief discussion of this difference.

When we make a waveguide model of a gain guided laser, we assume a loss
in the unpumped GaAs active region of 200cm~1.(85:13) The peak gain within
the waveguide is set by the requirement that at threshold the power modal
gain ~ exactly equal the mirror losses, which we assume to be 40cm™! for a
device 250pm long.’! Unless we are attempting to model an actual device, we
will ignore the effect of the antiguiding parameter . This parameter relates

the decrease in the real part of the refractive index due to the presence of
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§1.4 Conclusion
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FIGURE 1.13 Flowchart for work described in this thesis.
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§1.5 Conventions Used Throughout This Thesis; References

gain. When it is included, we use a value b = = 3.0.52 The €'P# convention

ll>
Sk

described above implies that b > 0.
(4) Unless otherwise noted, the figures plot intensity nearfield and farfield patterns.
The phase plots for gain guided modes are in radian units. In order to simplify

the labeling of the axes, 3.41° 1 2" is used to represent 3.410, 3.411, 3.412, etc.

Throughout this work, a familiarity with the fundamentals of laser theory, and
of that of semiconductor lasers in particular, is assumed. An excellent elementary
treatment of both topics may be found in the book by Yariv,?3 while more ad-
vanced treatments may be found in the comprehensive works by Yariv,3! Casey
and Panish,*® Kressel and Butler,53 and Thompson.3* An elementary knowledge
of waveguiding in dielectric media is also assumed. Tamir®? provides a good in-
troduction to waveguiding in real index media as well as to the field of integrated

54,55 gives an advanced treatment of (mostly) real index guided

optics. Marcuse
waveguides, with particular applications to optical fibers. A good introductory ar-
ticle on semiconductor lasers is that by Panish,%® and a reasonably complete review
of recent advances in phased arrays has been published by Botez and Ackley.!3
Finally, while each chapter in this thesis leads naturally into the next, the

extensive cross-referencing should make it possible to read each chapter independ-

ently of the others.
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CHAPTER

TWO
Single-Element Stripe Geometry Lasers

‘Excellent!’” I cried. ‘Elementary,’ said he

—-Sherlock Holmes, The Adventure of the Crooked Man
Sir Arthur Conan Doyle

§2.1 Introduction

Before considering arrays of semiconductor lasers, in §2.2 we review several
classes of single-element stripe geometry lasers which are potentially suitable for
use in phased arrays. These include strongly index guided structures such as
the buried heterostructure (§2.2(a)) and buried crescent lasers (§2.2(b)), buried
ridge (§2.2(c)) and air ridge (mesa stripe) lasers (§2.2(d)), and two types of gain
guided lasers, proton implanted and Schottky isolated (§2.2(e)). We find that
technological limitations make fabrication of strongly index guided lasers such
as the buried heterostructure unsuitable for use in evanescently coupled phased
arrays, so we next consider weakly index guided ridge structures. These latter
structures are really neither entirely gain nor index guided; we briefly examine
the interplay between gain and real index guiding in §2.3. Finally, we summarize
this information by discussing some design considerations for evanescently coupled
phased arrays in §2.4.

In §2.5 and §2.6 we summarize the properties of the simplest possible optical
model for a single-element laser, that of the symmetric three layer “box” waveguide

which forms the basic building block for all of our subsequent work. Finally, in
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§2.1 Introduction

§2.7 we describe a powerful numerical method for finding the modes of a one-
dimensional waveguide with a nearly arbitrary index and gain profile; we will
make extensive use of a computer program based on this technique to check the
validity of the analytical results of Chapter 3 and also to analyze the complicated

array waveguides of Chapter 4.

§2.2 Semiconductor Lasers for Use in Phased Arrays

While almost all semiconductor lasers utilize a double heterostructure to
achieve carrier and optical confinement in the vertical direction(§1'2), the variety
of methods of achieving carrier and optical confinement in the horizontal (lateral)
dimension is almost unlimited. We consider three broad classes of semiconduc-
tor lasers which are potentially suitable for use in phased arrays: material index
guided, effective index guided, and gain guided. The primary difference between
these types of lasers is the strength of the index of refraction difference between
the core and cladding regions which form the waveguide.

The index of refraction 7 of GaAs is 3.59, while that of Gaj_,Al;As is ap-
proximately given byl # = 3.590 — 0.710z + 0.91z%2. Due to the possibility of
nonradiative recombination in Gai_,AlzAs with £ > 0.45,%the mole fraction of
aluminum is usually limited to z < 0.4. Thus, maximum feasible index step for
the GaAs/GaAlAs system is about A = 0.25.

Throughout this thesis, we will make waveguide models of both single-element
and multiple-element arrays of semiconductor lasers. In order to reduce the discus-
sion to the fundamental physical principles that apply to phased array lasers, we
will make use of the simplest possible model for a single-element waveguide, that

of the symmetric three layer slab waveguide shown schematically in Figure 1.4b.
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§2.2 Semiconductor Lasers for Use in Phased Arrays

For obvious reasons, we will refer to this simple structure as a “box” waveguide;

extension of our work to more accurate waveguide models is straightforward. 34

(a) Buried Heterostructure Lasers

Material index guided lasers provide the largest index difference, and hence

the tightest confinement of the optical field. They make use of the differing ma-

terial properties of a GaAs/Gaj_,Al; As heterojunction with the mole fraction of

Al £ = 0.2 to 0.4 in a manner entirely analogous to the double heterostructure

configuration in the vertical direction. A typical laser of this type is the buried

heterostructured® illustrated in Figure 2.1.

/—Zn diffused GaAlAs

n GaAlAs

p GaAlAs
n GaAlAs GaAs active region
n GaAlAs n GoAlAs

=—p GaAlAs

nt GaAs

FIGURE 2.1 Buried heterostructure laser.

The distinguishing feature of a buried heterostructure laser is that the GaAs

active layer is surrounded on all sides by GaAlAs. Figure 2.2a shows the lateral

waveguide model for a buried heterostructure laser 1.5um wide with z = 0.3, while

Figure 2.2b presents the intensity nearfield and farfield patterns of this waveguide

for the fundamental mode.
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§2.2(a) Buried Heterostructure Lasers
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FIGURE 2.2 (a) Lateral waveguide model for a buried heterostructure laser with a cladding Al
mole fraction z = 0.3 and a width of 1.5um. (b) Nearfield and farfield for the fundamental mode.
Note the very wide farfield pattern.

Notice that as a result of the large index of refraction difference between GaAs
and GaAlAs the field is very well-confined. This, in conjunction with the large
energy band gap difference between GaAs and GaAlAs, provides excellent carrier
and optical confinement in both the horizontal and vertical directions, thus leading
to threshold currents as low as 15mA.” However, if the laser is to have a single
lobed farfield pattern the widths of a buried heterostructure laser are limited to
about 1um.® This limits the typical power output of buried heterostructure lasers
to a few milliwatts.

Strongly real index guided lasers such as the buried heterostructure have the
very desirable property that their spectral width is very much smaller than that
of a gain guided structure. This is of crucial importance in optical fiber appli-

cations, and especially so for heterodyne detection methods.? Therefore, it would
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§2.2(a) Buried Heterostructure Lasers

be highly advantageous to be able to fabricate phased locked arrays of strongly
index guided lasers. Unfortunately, due to the techniques necessary to fabricate a
buried heterostructure laser, it is not currently possible to place two such lasers
closer than 2um — 3um apart. Figure 2.2b shows that as a result of the large index
step that tightly confines the field the overlap between the fields of adjacent lasers
will be very small, and thus an array of buried heterostructure lasers is not likely
to operate in a phased locked mode.1%11 It is possible to slightly decrease the re-
fractive index step by using smaller mole fractions z of aluminum in the cladding
layer. However, decreasing the mole fraction below z = 0;2, causes the threshold
current to rise dramatically because the carriers are no longer well-confined.1? We
therefore conclude that despite their great advantages of a low threshold current
and very pure spectral output, buried heterostructure lasers are unsuitable for use

in evanescently coupled phased arrays.

(b) Buried Crescent (Channeled Substrate) Lasers

Providing slightly less of an index step difference is the buried crescent (chan-
neled substrate or V groove) laser of Figure 2.3.13 This device takes advantage
of the differential growth rate of GaAs and GaAlAs inside and outside an etched
groove to create an active region that is thicker towards the center of the groove
than towards the edge, thus providing the good carrier confinement characteristic
of a double heterostructure.

It is possible to achieve some degree of control of the active layer thickness
between the elements, and thus control both the size of the lateral index variation
as well as the coupling between the lasers. Although the index step in these lasers
approaches that available in a buried heterostructure laser, the smooth variation

in the effective index profile provides improved mode discrimination between the
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§2.2(b) Buried Crescent (Channeled Substrate) Lasers

p+ GaAs
pAlGaAs

nGaAs

AlGaAs
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n GoAs
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FIGURE 2.3 Buried Crescent (Channeled Substrate) Laser.

fundamental and higher order modes in a single-element waveguide. These lasers
are attractive candidates for uniform phased arrays but not for nonuniform arrays
because it is not easy to obtain controllable growth using grooves of different
sizes.1* We will therefore not consider such arrays in this work. We note, however,
that arrays of identical buried crescent lasers with variable spacing between the

array elements have shown promising results.®

(c) Buried Ridge (Strip-Loaded) Lasers

Another method of confining the optical field in the horizontal direction makes
use of the “effective index” effect in a ridge guided structure.l® The refractive
index differences associated with effective index guided structures may vary widely
depending upon the particular details. Two such possible structures are shown
schematically in Figures 2.4 and 2.5. In each case, the optical mode tends to
concentrate in the high index region of the waveguide, which is indicated by the
dotted ovals in the figures. The first structure is referred to as a buried ridge or
sometimes as a strip-loaded waveguide, while the second is referred to as an air

ridge or mesa stripe laser.
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§2.2(c) Buried Ridge (Strip-Loaded) Lasers

Buried ridge structures are difficult to fabricate in the GaAs/GaAlAs sys-
tem because it is virtually impossible to obtain good regrowths over air exposed
Gay-,AlzAs with a mole fraction z of aluminum greater than 0.1.17 This fact, in
conjunction with the difficulty of controlling etching depths to a precision of better

than about 0.2um, limits the smallest obtainable index step to about An =~ 0.03.

Cr/Au Si0,
= -—;—‘4—/—- p*-GaAs cap
GGO'7AIO'3AS GGQQA!OJAS

-—qctive
region

Gag7AlgzAs waveguide

FIGURE 2.4 Buried ridge laser.

The largest index step is limited to An =~ 0.1 by the requirement that the laser’s
farfield pattern be single lobed in the vertical direction as well. Nevertheless, de-
spite the difficulties with the regrowth process, buried ridge structures also provide
excellent candidates for phased array lasers, and in fact have been used with some
success.1®

We note that many laser waveguides, while technically not single lobed, do
lase with a single lobed farfield pattern. For example, a buried heterostructure
waveguide will support only a single mode if its width is less than about 0.5um,
yet many actual devices about 1um wide show clean, single lobed farfield patterns,
suggesting that a better practical condition be that the v = 3 mode be cut off.

The improved performance probably results from the fact that the v = 2 mode

has a null at the high gain region in the center of the waveguide. (This is one
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§2.2(c) Buried Ridge (Strip-Loaded) Lasers

instance in which our simplification of the actual waveguide to a box structure
is inappropriate.) This new criterion effectively doubles the useful width of the
waveguide, and places an upper limit of about 2um — 3um on the width of a buried
ridge waveguide.

However, while this is a good design rule for an isolated laser, it is not clear
that it holds for the elements in an array of lasers. For a given index step, as
the width of the laser increases the fields become more tightly confined, but it is
always true that the higher order modes with multilobed farfield patterns are less
well-confined than the single lobed fundamental. If the individual laser waveguides
support more than one mode, the coupling between the higher order modes in the
array will be greater than it will be for the fundamental mode, thus exacerbating
the tendency of the array to operate in an undesirable multilobed farfield pattern.
Therefore, it is probably advantageous to use single mode waveguides whenever
possible. This more stringent criterion would limit the width of the buried ridge

waveguide to about 1um, with wider waveguides being marginally satisfactory.

(d) Air Ridge (Mesa Stripe) Lasers

An air ridge waveguidel%20

such as that of Figure 2.5 may be used to obtain
arbitrarily small index steps. These devices are sometimes referred to as mesa
stripe lasers because they are fabricated by etching a mesa into a four layer het-
erostructure which is similar to the three layer heterostructure described in §1.2
except for the addition of top p™GaAs cap layer. The metal to GaAs interface

forms a good ohmic contact, thus providing better injection into the laser than

does the metal to GaAlAs interface.
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§2.2(d) Air Ridge (Mesa Stripe) Lasers

+—
Schottky Barrier p -GaAs cap
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ey 3 tive
region
GaAlAs °
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FIGURE 2.5 Air Ridge (Mesa Stripe) Laser.

The maximum index step obtainable is limited by the precision with which
the etching action can be halted very close to the active region, typically about
~ 0.2um (although our experience indicates that it is very difficult to obtain uni-
form results when working to these tolerances; a better practical limit is probably
0.3um — 0.4um). This places an upper limit on the the refractive index step of
about A7 = 0.02; the lower limit is, of course, zero, and corresponds to no etching

at all.

(e) Proton Implanted and Schottky Isolated Gain Guided Lasers

A gain guided laser is usually considered to be a laser waveguide in which
there is no intentionally introduced real index guiding. Waveguiding is provided
solely by the gain distribution.?1:22 There are a variety of types of gain guided
structures; we will make extensive use of both proton implanted?® and Schottky
isolated lasers®* in Chapters 4 & 5.

Figure 2.6 presents a schematic diagram of such a gain guided proton im-

planted laser. The crystal damage caused by the implanted protons??® creates high
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§2.2(e) Proton Implanted and Schottky Isolated Gain Guided Lasers

resistivity regions in the upper cladding layer, thereby blocking injection every-
where except at the laser stripe that has been protected from the protons by a

thick (~ 3um) photoresist stripe.

H*~ implant Cr/Au p-contact
(blockin)

L p* GaAs cap layer
IO TOOIES. — 2 2222220220

A, \ bz
GaAlAs /éé}:&:%injecfed current
. <—active

GaAlAs region

FIGURE 2.8 Proton implanted laser.

Typical implantion dosages are 5 x 1016¢m=3. The implanation depth, and hence
depth of the insulating region, depends upon the proton energy. Proton implanted
lasers have been extensively studied, and offer several advantages over other types
of lasers from the point of view of phased array semiconducor laser design (see
§4.3). However, due to the thick photoresist pattern, it is difficult to achieve
feature sizes much smaller than 3um —5um, and especially so for deeply implanted
devices.

A schematic diagram of another useful type of gain guided laser, a Schottky
isolated laser, is illustrated in Figure 2.7. It consists of a standard three layer
heterostructure with the 0.2um ptGaAs cap layer. After growth, photoresist
stripes are deposited on the surface of the wafer, and the thin p™GaAs cap layer
is etched away from the unprotected areas using a a noncritical wet chemical etch.

This type of laser is actually an “air ridge” laser with a zero etching depth. The
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§2.2(e) Proton Implanted and Schottky Isolated Gain Guided Lasers

shallow etching depth does not affect the real refractive index profile, but does

control current injection into laser.

p*—GaAs cap (good injection)
Schottky Barrier : co/a tact
(blocking) /— r/Au p-contac
GaAlAs L/%tj;%kinjected current
!
A,

GaAlAs

=— qactive
region

FIGURE 2.7 Schottky isolated laser.

After removing the photoresist, a metal is deposited over the entire surface of
the device. The metal to ptGaAs interface (shown in black) forms an injecting
ohmic contact, while the metal to p Gay_;Al;As interface (shown in white) forms
a Schottky blocking contact. Thus current is injected only into the region under
the pTGaAs stripe. The very thin cap layer allows the feature size to approach
the technological limit of about 2um.

It is important to note that in both structures, at any given point on the surface
of the wafer, current is either injected into the crystal or it isn’t; there is no simple
method for achieving partial injection and hence arbitrarily controlled variations
in the spatial gain profile. However, we will return to this point in §5.2 when we
demonstrate the halftone process for achieving nearly arbitrary two-dimensional
spatial gain profiles within a broad area semiconductor laser.

In an actual gain guided laser, the free carriers in the active region, and the

change in the electronic band edge due to the gain they introduce, leads to a
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decrease in the real part of the refractive index within the core region; this is

known as the antiguiding effect.(812(¢4)) The ratio b = |An/AnR| is referred to

as the antiguiding parameter. Figure 2.8a shows the waveguide model for a gain

guided laser 6um wide. The gain in the core region is fixed by the requirement

that at threshold the modal gain of the fundamental mode be equal to the mirror

Iosses.(§1'5)
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FIGURE 2.8 (a) Waveguide model showing the effect of antiguiding parameter b. (b) Nearfield
and farfield patterns for b = 0 (solid curve) and b = 3 (dashed curve).

Figure 2.8b shows the nearfield and farfield patterns for this mode with no
antiguiding (b = 0, solid line) and with an antiguiding parameter b = 3 (dashed

line) 4 Note that the nearfield patterns are very similar. Throughout this thesis
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§2.2(e) Proton Implanted and Schottky Isolated Gain Guided Lasers

our waveguide models will therefore ignore the antiguiding parameter unless we
are attempting to model an actual device.(84.5(0),§5.13)
Finally, we remark that most gain guided structures show single filament

operation(gl‘z(“'i)) only if they are narrower than about 10um — 15um.26

§2.3 Interplay Between Real Index and Gain Guiding

If the etching depth in an air ridge structure is too small, the effect of the real
index guiding becomes weaker than the effect of the gain guiding, and the laser
loses the advantages of a real index guided structure (low thresholds and spectral
purity). There is no clear dividing line separating a weakly real index guided laser
from a gain guided one. We therefore adopt the criterion that, to be considered
index guided, the size of the intentionally introduced refractive index step must be
approximately equal to the change in the tmaginary part of the complex refractive
index in an otherwise equivalent purely gain guided laser.

The waveguide model for such a comparison is shown in Figure 2.9a. We write
the complex index of refraction step(§2‘5) as An = Afi+1 An with An = —AT/2kg
and AT =T —TI'.. We assume a loss due to the unpumped GaAs active region
—T, ~ 200cm™!, and require that the peak gain Iy inside the core region of the
waveguide be just large enough to give the fundamental mode a modal gain just
sufficient to balance the mirror losses of 40cm™1(§1-5)

A waveguide 6um wide a peak gain I'g = 50cm™1 has a gain step AT = 250cm™1.
The peak gain I'g, and hence ||, increases slightly as the guide becomes narrower

because the field extends farther into the lossy region. 250cm™!

corresponds to
a change in the magnitude of the imaginary part of the index of refraction of
An = AT /2ky = 0.0018. Figure 2.9b shows the superimposed intensity nearfield

and farfield patterns for the two equivalent (A7 = |An| = 0.0018) waveguides
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FIGURE 2.9 Waveguide model for gain guided (solid line} and equivalent real index guided {dashed
line) structure with Afi = An = 0.0018.
6um wide. The gain guided fields are indicated by the solid curves while the
index guided fields are indicated by the dashed curves. The gain guided nearfield
pattern is very slightly wider than the index guided nearfield, but because of the
phase front curvature due to gain guiding,(§2'6(b)) the farfield patterns are virtually
identical. This indicates that using the criterion A% = |AR| as a dividing line to
distinguish a real index guided laser from a gain guided one is not an unreasonable
one.

In the preceding analysis, we have neglected the effect of the antiguiding factor
b which accounts for the depression in the index of refraction due to the free
carrier and band edge effects.(§1:2(34) The antiguiding effect reduces the size of
the effective index step by about three times |A|.* Therefore, we propose that

for an actual device to be considered as real index guided, it is necessary that
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An > An + 3 |a| = 0.003 in order to offset the antiguiding effect. In an air ridge
waveguide, this corresponds to an upper cladding thickness of about 0.4um —
which is near the technoloical limit with which etching can be controlled. We
therefore conclude that almost all air ridge waveguides will be more or less gain
guided structures. We will refer to them as quasi-real index guided lasers.
Finally, we the presence of a metal film so close to the active layer will in-
troduce additional loss into the interchannel regions of an air ridge phased array,
thus promoting the tendency of the array to operate with a twin lobed farfield

pattern(§4'1) .

§2.4 Design Considerations for Evanescently Coupled Arrays

Figure 2.10 presents a graphical summary of the information presented in the
previous sections. We have plotted the waveguide width £ vs. the size of the
intentionally introduced real index step Afi. Lasers with widths narrower than
those indicated by the light dashed line support only the single fundamental mode,
while those wider than the heavy dashed line support more than two modes and
are hence probably unsuitable for use in phased array lasers. Lasers with widths
between the two lines support two modes and are therefore marginally suitable.

The vertical light dotted line indicates the approximate location of the regime
where A7 = A7 t.e., the dividing line between gain guided and real index guided
lasers if the antiguiding factor were to be ignored. The vertical heavy dotted line
accounts for the antiguiding factor of about three by indicating the approximate
location of the regime where Afi > An + 3|f|. We consider lasers to the left of
the light dotted curve to be gain guided, those between the light and heavy dotted
curves to be quasi-real index guided, and those to the right of the heavy dotted

line to be real index guided.
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FIGURE 2.10 Design considerations for evanescently coupled phased array lasers. Ideally, an array
element should be real index guided and single mode. Current technological limitations make this
difficult, so we emphasize gain guided arrays in this work.

Finally, the upper limit on the width of a gain guided laser of about 10um
and the technological limit corresponding to the smallest practical feature size of
about 2um are indicated by the horizontal heavy solid lines.

This figure shows that the only candidates for truly real index guided arrays
are the buried heterostructure and buried ridge lasers, both of which will probably
support at least two modes. As discussed in §2.2(a), such waveguides are probably
unsuitaBle for use in evanescently coupled arrays requiring single lobed farfield
patterns. Almost all air ridge lasers are only weakly real index guided at best.
Given the current technological limit of about 2um feature size and the difficulty

of fabricating buried ridge waveguides, we conclude that the laser most suitable
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for use in arrays will likely be either gain guided or at best partially gain and
partially index guided air ridge structures, and that even these will not be single
mode waveguides. For this reason, as well as others discussed in §4.2(a), most of
the experimental work of this thesis will be with gain guided lasers (also see §4.3).
We remark that these results indicate that many of the so-called “real index
guided” air ridge lasers described in the literature?”:2% are not truly real index
guided lasers as the term is commonly used. In particular, the on-axis farfield
pattern in Reference (28] is probably due to the symmetry of the waveguide, not
necessarily to the fact that they are real index guided. The effect of the gain guiding
is masked by the symmetry of the structure (see §4.2(a), especially Figure 4.5b,
and §5.12).

§2.5 The Helmholtz Equation

Having discussed some of the index of refraction profiles appropriate to semi-
conductor lasers suitable for use in phased arrays, we now summarize some of the
relevant properties of the optical modes of these waveguides.

The optical field E(r,t) inside any waveguide satisfies Maxwell’s wave

equation29
n?(r) °E

2
VIE- — g =0 (2.5.1)

where c is the speed of light in a vacuum, and n(r) is the index of refraction in

the medium. n(r) is, in general, a complex number®’

n(r) = a(r) +in(r)
(2.5.2)
= fi(r) — T (r)/2ko
and ¢ = /—1. The ordinary (real) index of refraction is denoted by #(r), while

I'(r) = —2kon(r) is the spatially dependent power gain experienced by an optical
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wave propagating through the point r. In the unpumped GaAs absorbing regions

of the waveguide, I'(r) is a negative number.

In a semiconductor laser, E(r,t) is a complicated superposition of many
transverse, lateral, and longitudinal modes oscillating at several different fre-
quencies. We simplify the problem by considering only one oscillation frequency
(thus eliminating the longitudinal modes), and make the usual effective index
approximation!® (thereby eliminating the transverse modes). Furthermore, we
consider only TE waves3! traveling in the +2z direction. After making these ap-

proximations, the electric field of a lateral mode may be written as
E(r,t) ~ XE(z)e!(fz=0) g — ko (2.5.3)

where E(z) is now a scalar electric field in the %X direction, kg = 27/X is the
free-space wavevector, 1 = ¢ kg is the circular frequency of the wave.
Substituting (2.5.3) into (2.5.1) yields the scalar Helmholtz equation:®2
2

d
TaE+ k(n*(z) —n*)E =0. (2.5.4)

Solutions of this equation are referred to as modes of the waveguide. The effective
index of the mode is given by the constant n; the propagation constant § in the z
direction is then given by 8 = kgfj. A very important quantity is the power modal
gain v = —2kon = *25. The intensity of an optical wave which is an eigenmode
of Equation (2.5.4) will grow with 2z as e7?. In a laser, the lateral mode with the
highest modal gain will be the lasing mode at threshold.

Throughout this work, we will solve this equation for various refractive index
profiles n(z). In a real index guided waveguide, there is no gain or loss present, and
so the refractive index profile, the eigenmodes, and the electric fields are all real

quantities. In particular, we note that the phase ¢ of the electric field E = |E| et®
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is restricted to either O or 7. On the other hand, in a gain guided structure,
variations in the tmaginary part of the index of refraction determine the modal
properties more than do variations in the real part of the refractive index profile.
In this case, the eigenvalues are complex, the real part being the effective index
and the imaginary part being the modal gain as described by Equation (2.5.2). In
a gain guided waveguide, the phase ¢ of the electric field is no longer restricted to
either 0 or 7 and may take on any value.

We remark that the terms “real index guided” and “gain guided” refer to two
limiting cases in which variations in one part of the complex index of refraction
dominate the other. As we have seen in §2.3, an important class of lasers suitable
for use in phased arrays, the air ridge structures, may be considered to be either
gain or index guided. Such waveguides will play an important role at one point in

our work, and will be further discussed in §4.2(a).

§2.6 Symmetric Three Layer “Box” Waveguides

The simplest possible single-element waveguide is the symmetric three layer
slab “box” waveguide illustrated in Figure 2.11 and Figure 2.12, which has a

refractive index profile described by

e (cladding region) —oco < z < ~—§
n(z) = < ng (core region) —% <z< +§ (2.6.1)
ne (cladding region) % <z<oo

The quantities ng and n. are, in general, complex. For waveguiding to occur, it
is necessary that in a real index guided laser ng > n., while in a gain guided
laser T'g > T'¢, where I'g . is related to the imaginary part of the complex index
of refraction through Equation (2.5.2). The properties of the real index guided

version of this waveguide have been extensively discussed in the literature,33—3%
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while the gain guided version has been somewhat less well studied.?? In this work
we will introduce only selected aspects of the theory of these waveguides necessary
to aid our understanding of phased array semiconductor lasers.

In general, a waveguide will support many optical modes E¥(z) where v is the

mode number. For the box waveguide of width £ illustrated in Figure 2.11, E¥(z)

is given by
Bed(a+4/2) —o <z < —-%
. coskz symmetric modes v =1,3,5,... ) )
E(z) = {sin kz antisymmetric modes) v = 2,4,6,... 2 <T<+3
Be—9(z=¢/2) % <z <oo
(2.6.2)

where the normalization constants A and B are given by

1
z
Z_2P B = Acos ke (2.6.3)
n¢/2+g¢1 2

with Zy = +/ug/€o the impedance of free space and P the power flowing in the

mode; this gives the conventional electromagnetic normalization3®

/_  E(2)E(j(z) dz = z‘i’-g—oaij- - 2-Zﬂ—qk05i]- (2.6.4)

with é;; the Kronecker delta function. The lateral wavevector k inside the core

region and the evanescent wavevector ¢ in the cladding region are given by

27
k= (n§ —n?)!/?

3 5 a i (2.6.5)
g=(n?—n2)Y

A

where A is the free space optical wavelength. The eigenvalue % is determined by

the roots of the secular equation

_ ) —k/g symmetric modes v =1,3,5,...
tan(kt/2) = { —g/k antisymmetric modes) v = 2,,4,6, et (2.6.6)
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Equation (2.6.2) to (2.6.6) are valid for both real index guided and gain
guided box waveguides. The nearfield pattern is given by the magnitude of Equa-
tion (2.6.2), while the farfield pattern is given by a slightly modified Fourier Trans-
form of the amplitude nearfield pattern.37,38

Note that Equation (2.7-7) of Reference [37] uses the e *#? convention, leading
to the (+17) transform of (2.7-28). Our use of the e7*#? convention in (2.5.3) implies
the use of a (—¢) transform to obtain the farfield pattern. Furthermore, through

Equation (2.5.2), it also implies that the antiguiding factor b is greater than zero.

(a) Real Indez Bozx Waveguides

For guided modes in a real index waveguide, n, < n < nyg. When n < n,
the mode is cut off and is no longer guided. Figure 2.11a presents a typical real
index box waveguide. Figure 2.11b shows the intensity nearfield and corresponding
farfield patterns for the first five low order modes, while Figure 2.11c consists of a
plot of the effective index 7 for each of the eight guided modes. Notice that all the
higher order modes have nulls in their nearfield patterns, and that the intensity
of each maximum is the same. It is of particular interest to note that only the
fundamental mode has a single lobed farfield pattern; the farfield patterns of all

higher order modes are multilobed and symmetrical about 0°(85.12)

(b) Gain Guided Bor Waveguides

Figure 2.12 presents the corresponding plots for a gain guided box waveguide.
Since the refractive index is now a complex quantity, so also is the modal eigenvalue
n. As discussed in §2.5, the real part of the eigenvalue, denoted by # or Re{n}, is
the effective index for the mode, while the imaginary part, denoted by 7 or Sm{n},

defines the power modal gain v = —2kofi. We therefore present the eigenmodes of
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FIGURE 2.11 Modes of the real index box waveguide (a) refractive index profile (b) nearfield and
farfield intensity patterns for the first five modes (c) mode structure. Note the nulls in the nearfield
patterns and the multilobed farfield patterns for all except the fundamental mode.
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FIGURE 2.12 Modes of the gain guided box waveguide (no antiguiding) (a) gain profile (b)
nearfield and farfield intensity patterns for the first five modes (c) mode structure. Note the
slight differences from the modes of the real index box waveguide of Figure 2.11.
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a waveguide with gain in a modal diagram which plots « vs. 7. The modal diagram
for the waveguide of Figure 2.12a is presented in Figure 2.12b. The modal gain of
a mode is approximately related to the overlap between the optical field and the
gain distribution within the waveguide. This implies that since the lower order
modes are more well-confined, they have higher modal gains than do the higher
order modes.

Another effect of the gain is to make the wavevectors k and g complex, and
to introduce curvature into the phase fronts of a mode, reflecting the fact that
power flows from the high gain region of a mode (inside the core region) towards a
low gain region (in the cladding region).3® The phase front curvature (and hence
astigmatism) will therefore be less for the fundamental mode in a very wide wave-
guide than it will be in a narrow waveguide in which the fundamental has a modal
gain much less than the peak modal gain. Unfortunately, because of the poor
mode discrimination, the higher order modes of a wide laser will also lase; this
is one cause of the poorly characterized farfield patterns of conventional uniform
gain semiconductor lasers(§1-2(ai1)) (The effect of the complex wavevectors will
be further discussed in §3.5(c); also see §5.10).

Figure 2.12b presents the corresponding intensity nearfield and farfield pat-
terns for the first five modes of a gain guided box waveguide. Comparison of
nearfield patterns of the real index box waveguide of Figure 2.11 with that of the
gain guided box waveguide of Figure 2.12 shows that unlike the real index guided
case, the gain guided structure has deep minima in the nearfield patterns. The
only exact null occurs only at the center of the waveguide. Furthermore, the in-
tensity peaks in the nearfield pattern are no longer uniform but increase slightly

towards the edge of the waveguide.
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(¢) Path Analysis of Box Waveguides

These differences between real index and gain guided box waveguides may
be easily understood by introducing a new, very powerful method for analyzing
waveguide modes. In brief, the method consists of following the path of the ar-
gument of the optical eigenfunction (e.g., kz in the sine or cosine functions of
Equation (2.6.2)) throughout the complex plane; hence the name “Path Analy-
sis.” We will use this method to analyze the uniform box waveguide in this chapter;
however, the real power of Path Analysis will not become apparent until we begin
our study of the asymmetric linear tailored gain waveguide in Chapter 5, where
we will see that it allows analytical calculation of waveguide properties using some
simple geometric and algebraic arguments.

In general, a waveguide eigenmode must be described in terms of a linear com-
bination of the two linearly independent solutions of the second order differential
Helmholtz equation (2.5.4) inside the waveguide. In the case of the uniform box
waveguide, these are the sine and cosine functions. The boundary conditions then
determine the relative contribution of each of the two linearly independent solu-
tions to the optical field on each side of the interface. However, it is often possible
to simplify the analysis by eliminating one of the independent solutions by suitable
choice of the coordinate system. For example, if the origin is taken to be at the
center of the box waveguide, symmetry implies that each eigenmode has a definite
parity, either even or odd, corresponding to the cosine or sine functions, respec-
tively. Thus, the symmetry of the waveguide allows the eigenmode to be described
entirely in terms of the properties of either the cosine function (symmetric modes)
or sine function (antisymmetric modes).

Figure 2.13 illustrates the use of Path Analysis for the simple case of a real

index box waveguide. The boundary conditions require (1) that E(z) and dExx
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be continuous at the edges +£/2 of the waveguide, and (2) that the electric field

outside the waveguide be an evanescent exponential.

REAL INDEX GUIDED: k real

v=1l 2-\ + e
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FIGURE 2.13 Path analysis for a wide real index guided box waveguide showing the path of the
argument kz of the sine or cosine function along the real axis for the first three modes.

For a well-confined mode, the argument kz must be approximately equal to a
zero of the cosine or sine function when |z| = % This is shown by the endpoints
of the heavy solid horizontal line in Figure 2.13. This line plots the line £ that
the argument { = kz of the sine or cosine function follows along the real axis
for the first three modes in a wide real index waveguide with many well-confined

modes. For the fundamental mode, the line starts near £ = —k£/2 ~ —x/2 and
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ends near £ = +k€/2 ~ +n/2. Equation (2.6.5) shows that the length of the line
L increases with the mode number v. In a real index waveguide, k is real so that
L is restricted to the real axis.

Figure 2.13 also plots the sine and cosine functions using a solid line for the
first three modes, thus yielding the v = 1,2,3, modes of Figure 2.11. Since the
sine and cosine function vary between 0 and +1 along the real axis, the minima
of the electric field will all be exact nulls, while the intensity maxima will be the

same for each peak across the guide, as shown in Figure 2.11b.
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FIGURE 2.14 Path analysis for a wide gain guided box waveguide showing the path of the argument
kz of the sine or cosine function in the complex plane for the v = 11 mode. The values of the
complex sine function are indicated using level lines.

Now consider the case of a gatn guided box waveguide of Figure 2.12. The
eigenvalue 7 and wavevector k are now complex, and the path of the argument

L : z = kz of the sine or cosine function is no longer restricted to the real ¢ axis. It
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-1 &;;:{: with the real axis, and will cross it only once

now makes an angle § = tan
at the exact center of the waveguide when z = 0. We therefore need to consider
sin z or cos z as a function of the complex argument z = (k + ?k)x. Figure 2.14
shows a plot of the level lines of |sin z| near the real axis along with the path £
for the v = 11 mode of a very wide waveguide. Since the only zeros of the sine
and cosine functions occur along the real axis, we see that there will only be one
exact null in a gain guided box waveguide at z = 0. The exponential growth of the
sine and cosine functions away from the real axis suggests that the intensity of the
optical field will also grow exponentially away from the center of the waveguide.
Physically, this is due the incomplete reflection of the wave at the edge of the
waveguide, which in turn leads to net power flow away from the waveguide core
into the surrounding lossy media. This causes the phase fronts of the mode in the
core region to be curved (see §2.6(b) and 3.5(c.ii)). Mathematically, we can write
the electric field intensity inside the waveguide as
I(z) = |E(z)[?
= |cos(k + ik)z 2 (2.6.7)
= cos? kz + sinh? kz .
The nearfield pattern of a high order mode have an envelope function which grows
exponentially away from the center of the waveguide. These results are plotted in
Figure 2.15, which compares the high order v = 11 mode of a real index and gain

guided box waveguide, clearly illustrating the effect of the complex k vector and

its effect on the nearfield pattern.
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Real Index Guided Gain Guided
(A) ' (B)

) -

v =1l v =1l

FIGURE 2.15 Comparison of the v = 11 mode for (a) real index and (b) gain guided box waveguide
showing the effect of the complex k vector on the nearfield pattern.

Although the preceding discussion was directed towards waveguides which sup-
port many high order modes, we remark that the complex k vector also has an
effect on the width of the fundamental mode when compared with an equivalent
real index guided mode (see Figure 2.9). The evanescent wavevector g of Equa-
tion (2.6.5) is also complex. This has a very important effect on the modes of
coupled gain guided box waveguides (see §3.5(c.ii)), and may lead to enhanced

coupling between the elements in an array of gain guided lasers(83-5(c4))

§2.7 Numerical Solutions for Arbitrary Waveguides

The Helmholtz equation (2.5.4) describing optical wave propagation in a di-
electric media may be solved exactly over all space only for a few continuous index
profiles n(z) such as the quadratic and inverse cosh distributions.®* As we saw
in §2.6, the effect of step discontinuities, such as those encountered by the stan-
dard double heterostructure, may be included by solving the Helmholtz equation
within piecewise continuous regions of space and then requiring that the electric

field and its derivative be continuous at the interface. This technique works well
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for the simple case of a double heterostructure because the eigenfunctions of the

free space Helmholtz equations are the sine and cosine functions, which are easy

to evaluate numerically.

— exact
. seeesve Gpprox,

[}
=
[
x
L
()]
P

LATERAL DIMENSION x

FIGURE 2.186 Numerical approximation for complicated waveguides showing an arbitrary index
profile (solid line) and its slab waveguide approximation (dashed line).

As illustrated in Figure 2.16 the same technique may be used to obtain the
approximate eigenvalues of waveguides with more complicated index profiles by
subdividing a wide waveguide with a continuously varying index of refraction into
many smaller contiguous slab waveguides, each having a constant index of refrac-
tion. The electric field inside each elemental slab waveguide may then be written
in terms of the sine and cosine functions (or, alternatively, as complex exponen-
tials). Matching the boundary conditions at each interface and requiring that
the field decay evanescently outside the waveguide yields an eigenvalue equation
which may be solved numerically. The net effect of this approach is to transform
the Helmholtz equation from a second order differential equation into an algebraic

equation whose roots give approximations for the eigenvalues.
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We use a matrix propagation technique which has found application in quan-

tum mechanics?® and in the study of periodically stratified optical media*! and

extend its use to waveguides with arbitrary index and gain profiles. We write the

electric field at any point z inside the r** elemental slab waveguide as a superpo-

sition of traveling waves moving to the left and right:
E, (z) = (are“k’x + b,-e—ik'$> eilkonz—0t) . _ 1,2,...n; (2.7.1)

ar and b, are constant coeflicients, which are, in general, complex. (1 is the angular

frequency of the optical wave, and k, is the spatial lateral wavevector in the rt*

ky = koy/n2 — n? (2.7.2)

where kg is the free space wavevector 2%, ny is the (possibly complex) index of

slab which is defined by

refraction in the rth layer, and 7 is the effective index of the eigenmode. In
what follows, the 2z and ¢ dependence is superfluous, and so we drop the second
exponential product in (2.7.1).

If we write the electric field in Equation (2.7.1) in vector form

E,(z) = [C-H'krz , e—ikrz} [ar} (2.7.3)

by

and match the boundary conditions at the interface between the rt® and rth + 1
layer. We can derive a relationship between the a and b coefficients on each side

of the interface in terms of a matrix equation

Qyr41 =17 ar 274
[ br+1 J i { br ] ( o )
where the tnterface propagation matriz I is given by

= ...__1_ kr+1 + ky kr+1 — ky
= 2ky 41 [k'+1 —kr kpp1+ke| (2°7'5)
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Similarly, after free space propagation a distance / through the layer, the elec-

tric field becomes

Er(z+1) = apetthr(z+l) 4 p e=tkr(z+])
. , (2.7.6)
— a:_e+'lkrI + b:’e——zer )
The new coefficients a}. and b/ are given by the matrix equation
'

[‘;,:} =7 [‘g:] (2.7.7)

where the free space propagation matriz ¥ is given by

thel
_ r 0
7= [eo e—ikrl} . (2.7.8)

Given arbitrary ay and by, coefficients at the far left of a guide with n layers,
the corresponding ap and bp coefficients at the right of the guide may be found

by multiplication of the ¥ and I matrices:

#)-[¢ B[

where

M= [é b } = InFadn1Fu1 - DR ly (2.7.10)
and the layers are numbered from left to right.
For areal index waveguide, the fields must be evanescent in the cladding region,
so that k7 and kp are imaginary. If we write
kL,R = igL,R (2.7.11)
the exponential functions then have real arguments gy, p:

+1kz —gz
[z—ikx} - [2«1—ng : (2.7.12)
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For a guided mode, the coefficients ay, and bp to the exponentially growing terms

must be zero. This leads to the dispersion relationship
D=0. (2.7.13)

This result may also be derived by invoking the radiation condition that allows
only outward traveling waves to contribute to the field of a guided mode. Gain
guided waveguides are similar, but the condition (2.7.11) becomes Sm{kz} < 0.
The dispersion relation (2.7.13) remains unchanged, but the k, are complex.

As an example, consider the symmetric three layer slab waveguide

n] = N, —oco<zz<0™
n(z) = § n2 = ng ot <z < (2.7.14)
ng = n, F<z<o0

where n, and ng are (possibly complex) constants. The evanescent wave vectors
in regions 1 and 3 are imaginary, k; = kp = tg and the propagation matrix is
simply M = Is 5 1;. The eigenvalue condition becomes

(ig + k)Ze-ikl _ (~—ig + k)2e+ik£
41kg

0 = Dipree layer = (2.7.15)

where k and g are given by Equation (2.6.5). Equation (2.7.15) reduces to

_ ) —k/g positive root — symmetric modes)
tan(k/2) = { —g/k énegative square root — antisymmetric modes)

(2.7.16)
which is the eigenvalue equation (2.6.6).

This method may be extended to slab waveguides with more layers, although
the analytic results rapidly become unwieldly. The multilayer slab approximation
to a continuous waveguide is a good one provided that k!, is not too large. From
a numerical point of view the series of 2 X 2 matrix computations (2.7.10) are easy
to perform for any number of layers. D may be considered a function of 5, with

the zeros to be found numerically. For real index waveguides, 1 is real, and the
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zeros of D are easy to find. If, however, the effects of gain and/or loss are to be
considered, n becomes complex, and it is necessary to search a two-dimensional
parameter space Re{n} ® Sm{n}. The problem is further complicated because D
is not analytic due to the branch points arising from the square-root dependence
of k on n in Equation (2.7.2). Therefore, complex root finders which make use
of the analyticity of the function cannot be easily used. Furthermore, from the
point of view of semiconductor laser design, it is important to find all of the modes
with high modal gains, and especially the mode that has the highest modal gain
because that will be the lasing mode at threshold.

In waveguides in which gain is not a perturbation (e.g., in a gain guided laser),
the task of finding the zeros of D is considerably simplified by the equivalent
technique of minimizing |{D|. We find that it is not unusual for V |D| to be very
large, often as much as 1020, As a result, automated root finders often miss roots.
This problem can be minimized by making use of a contour plot of |D|; roots may
be approximately located merely by the structure they introduce into the contour
lines.

For example, inspection of the contour plot of Figure 2.17 shows that there is
almost certainly a root within the area enclosed by box B, while there may be one
in the box marked C. Note that the minimum value of |D| in box B is 103; the
gradients are so steep in this region that an automated root finder will probably
miss the root unless the program is given a good initial guess. Furthermore, it is
obvious that there are no roots to be found within box A; this is the most effective
way of insuring that all the high gain modes have been found.

Once the eigenvalues have been found, the electric field may be calculated by

setting (zf) to ((1)), multiplying by I to get the a and b coefficients inside the first
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FIGURE 2.17 Contour plot of the level lines of the magnitude of the dispersion function of a
complicated waveguide showing several regions of particular interest.
layer, using (2.7.1) with z = O taken to be the left edge of the layer to get the
electric field within the layer, then using (2.7.4) to cross the boundary, etec.
Finally, we remark that, if one starts with an a priori index and gain distri-
bution, the method applied here is valid only for the unsaturated waveguide (i.e.,
only at threshold). However, an iterative scheme could easily be devised which
includes the effects of gain saturation via the rate equations. The effect of gain
saturation is to reduce the mode discrimination between the modes; therefore, an
accurate model requires that all the high gain modes be identified. This can be
easily done with the method described here.
A listing of the essential parts of the MODES and the CONTOUR plotting

computer programs used to calculate the dispersion function D, and to calculate
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the nearfield and farfield patterns of a mode are given in the Appendix. We have

made extensive use of these programs throughout this thesis.
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CHAPTER

THREE
Two Coupled Lasers

Better two than one by himself,
since thus their work is really profitable.

—Ecclestiastes 4:9

In this Chapter, we consider in detail the very simplest possible array, that
of two coupled box waveguides. When two waveguides are placed close together
so that their optical fields overlap, an optical eigenmode of one of the individual
waveguides will not be an eigenmode of the composite two waveguide system. If
each waveguide supports only the fundamental mode, to an excellent degree of
approximation, the new eigenmode will be given by a linear combination of the
two individual waveguide modes. In a laser, the mode of the composite system
with the highest modal gain will be the lasing mode. We therefore need to find
an expression for this mode’s effective index, as well as its nearfield and farfield
pattern. |

We consider weakly coupled real index guided waveguides in §3.1, strongly
coupled waveguides in §3.2, show which classes of coupled waveguides have phase
matching wavelengths in §3.3, and give a means of designing two coupled wave-
guides with a given phase matching wavelength in §3.1(a). We then take up the
effect of gain on weakly coupled waveguides in §3.4. Finally, the complex character
of the wavevectors for the case of two strongly coupled gain induced waveguides
makes these systems especially interesting; they are studied both theoretically and

experimentally in §3.5.
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§3.1 Coupled Mode Theory of Weakly Coupled Waveguides

The solution of the Helmholtz equation with an index profile consisting of two
adjacent waveguides may be found by use of the coupled mode equations. These
equations and their derivation have been extensively discussed in the literature;
thus here we merely present an outline of their derivation with a view to under-
standing their applicability and limitations when applied to the understanding of

phased array semiconductor lasers.

(a)

Ne ™ ""‘el IAn,

(b) - 4 An,
Ne

(c)

Ne

FIGURE 3.1 Spatial variation of the refractive index for two uncoupled waveguides (a) ny(z) and
(b) nz(z), and (c) the two coupled waveguides n(z).

Following Yariv,}? we consider the case of the two planar waveguides illus-
trated in Figure 3.1. Refractive index distributions for the individual two guides
are given by nj(z) in Figure 3.1a and n(z) in Figure 3.1b. The spatial refrac-
tive index variation for the combined two waveguide system, which is shown in

Figure 3.1c, is given by

n?(z) = n¥(z) + nd(z) — n? (3.1.1)
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where n. is the common cladding index external to all the core regions. We
will often use the term “channel region” interchangably with “core region” and
“interchannel region” to refer to the cladding layer between the waveguides.

We denote the eigenmodes of guide 1,2 as El’g(x)eiﬁlﬂz with both fields as-
sumed normalized by Equation (2.6.4). We also assume without loss of generality
that f3 > (1. For many purposes, the mode propagation constants B2 = koni2
are more convienient to use for analytical calculations than are the mode effective
indices 71 2; we will use both formalisms interchangeably.

The eigenmodes of the combined guide are denoted by E(z,z). In the limit
of weak coupling, £ may be approximated as a linear combination of the electric

fields in the two elemental waveguides:
1 iB1z iBaz
E(z,2) = 3 {Al(z)El(z)e 12 4 Ay(2) Ez(z)e'P? } +c. c. (3.1.2)

where c. c. represents the complex conjugate. In the absence of coupling — that
is, if the distance between the waveguides were infinite — A;(z) and As(2) will
not depend on z and will be independent of each other since each of the two
terms on the right-hand side of (3.1.2) satisfies the Helmholtz equation (2.5.4)
separately. When the guides are placed in close proximity, an eigenmode of the
composite system has the property that the shape of the mode (i.e., the ratio
|A2(z)|/|A1(2)] is independent of z). This implies that (3.1.2) may be rewritten
a'S(§3.2)

E(z,2) = |Ey(z) + 0 Ey(z)] €F7 . (3.1.3)

We desire to find the new mode propagation constant 8 and the admixture factor
¢ which relates the optical amplitude in one guide to that in the other.

If we define a column vector E(z) to represent the two terms in (3.1.2)

wo-[)- 5] o
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then the evolution of E(z) is described by the matrix equation

dE
— =1CE 1.5
= iC (3.1.5)
with
— b1 K12 1.6
C ['C21 By . (3.1.6)
The coupling coefficients 12 are given by3
21
1kg [®
K1z = - —> [nzl (z) — nf] Ei(z)Es(z) dz . (3.1.7)
21 420 /0| 2

_ [eao s ; -
where Zy = w8 the impedance of free space. The new propagation constants
B and the admixture factor g are given by the eigenvalues and eigenvectors of the

matrix (3.1.6).

The eigenvalues of (3.1.6) are given by the roots of the secular equation

Pr—8 k12 |_g.

K21 By~ (3.1.8)

Since the two basis vectors Eq o(z) are assumed to be orthogonal, the diagonaliza-
tion of the perturbed matrix (3.1.6) also yields two eigenvectors, denoted E*(z),

which are known as the “supermodes” of the composite waveguide. They may be

written as
+h_ |1 itz
E*(2) = { i} e (3.1.9)
where

fE =B+ VAL + k2 (3.1.10)

is the propagation constant of the (£) supermode and k = \/k{3K321 is the mean
coupling constant. The average propagation constant [; and phase mismatch pa-

rameter A are defined to be

B = 1(B1 + B2)
(3.1.11)
A=

5(B1—82) .
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Finally, the admixture factor o% is given in terms of the normalized phase

mismatch parameter §

oF =6+V1+62

= + exp(£sinh™! §)

(>
If

(3.1.12)

alb

The special condition § = 0 (which corresponds to §1 = ;) is referred to as the
phase matching point. Obviously, identical waveguides will be phase matched at
all wavelengths, while nonidentical waveguides, having differing dispersion curves
(see Figure 3.3), will not be phase matched except at a possible phase matching
wavelength Ap. We note in passing that not all waveguides have a phase matching
wavelength; we will discuss this point further in §3.3.

The phase matching wavelength is a very important number which character-
izes a system of two coupled waveguides. Equation (3.1.12) shows that far away
from the phase matching wavelength § — oo and the supermodes are identical to

the modes of the isolated waveguides:
ET(2) — [(1)} e'h2? E=(2) — ':(1)] eth1z (B2 > B1) - (3.1.13)

As the two waveguides become more closely phase matched, the supermode
becomes more equally distributed between the two waveguides. At the phase
matching wavelength § = 0, the admixture factor is unity, and equal power flows

in each guide. The solutions E*(z) become
ET(2) — {ﬂ Ptz E™(2) — { 1 } Pz (3.1.14)

This is, of course, to be expected in the special case of two identical waveguides
where, by symmetry, |¢| must be unity, and since all the quantities in (3.1.12) are
real, the phase of the fields can only be either 0 or 7. The inphase addition of the

two modes (corresponding to 87) is usually referred to as the (++) supermode,
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while the out-of-phase combination (corresponding to §7) is referred to as the
(+—) supermode. Equation (3.1.14) also applies to two dissimilar waveguides at

the phase matching wavelength.
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FIGURE 3.2 Schematic diagram of supermodes near the phase matching wavelength.

These results are shown schematically along with the dispersion curves for the
coupled waveguide system in Figure 3.2. The individual unperturbed dispersion
curves are indicated by the straight dashed lines, while the supermodes of the com-
posite waveguide are shown as the solid curves. The phase matching wavelength
is indicated by the intersection of the two dashed lines. Far away from the phase
matching wavelength, the dispersion curves for the two supermodes are asymptotic

to the dispersion curves for the uncoupled individual waveguide modes. Near the
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phase matching wavelength at which the two individual waveguide modes cross,
the dispersion curves of the supermodes separate. The difference in the super-
mode propagation constants at the phase matching point is then simply twice the

coupling constant.

(a) Calculation of the Phase Matching Wavelength

From the point of view of optoelectronic device design utilizing two nonidenti-
cal waveguides, it is important to know the location of the phase matching wave-
length Ap. Given two arbitrary waveguides, the phase matching wavelength can
usually be found only by numerically solving the dispersion equation (2.6.6) for
each individual uncoupled waveguide separately. However, for the case of two
nearly identical coupled waveguides, it is possible to derive a general relationship
between the waveguide parameters so that two guides may be designed around a
predetermined phase matching wavelength (e.g., within the spectral gain curve of
GaAs).S

We start with the dispersion equation (2.6.6) for the fundamental mode of a
box waveguide, and write it as an explicit function of the parameters defining the

guide. Equation (2.6.6) is of the form

D(2?) = D(ne,ng, A, £, 1) = k£/2tanke/2 — g€/2 = 0 (3.1.15)

ng—n
o (3.1.16)
g= —/\—-(n2 —ng)/?

and the x? represent the five parameters n.,ng, A, £,n which define a mode in
a box waveguide. Equation (3.1.15) is an implicit relationship among these five

parameters. If we expand the dispersion equation (3.1.15) for the second waveguide
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about the unperturbed parameter values of the first guide using a first order Taylor

expansion, we can write

L 6(z;) =0 (3.1.17)

12,'——:5‘-

oD
0 0

D(z; + 6z;) ~ D(z;) + E 3z,
(2

where z; represent the parameters corresponding to the first guide and 6(z;) rep-
resent the differences between the two waveguides. Since the dispersion equation
D(x?) = 0 is satisfied for the unperturbed parameter values, Equation (3.1.17)

establishes a linear relationship between the partials of D and changes in at most

four of the five parameters:
Ab(ne) +Bé(no) +C6(A)+ES(L)+Fé(n)=0. (3.1.18)

For example, if we allow changes only in the width £ of the guide and the core

index ng, 6(€) and 6(ng) are related by

5(8) = ~ Z8(n0) = - 2% b(ro) (3.1.19)
where k2
a = ———— + tan(k{/2)
coizéke/ 2) (3.1.20)
" (kfko)

and k and g are given by Equation (3.1.16). We remark that essentially the same
relationships may be obtained using first order perturbation theory;%7 the present
method has the great advantage that it does not require a priori knowledge of
the electric field and power filling factors, and also that the method may be easily
extended to any waveguide for which the dispersion equation is known. It can
also be used to derive simple relationships between any other two or three of the

parameters in Equation (3.1.18).
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We now consider a numerical example to help explore the limitations of the
coupled mode theory. If we start with a guide with the parameters n, = 3.550,
An = ng—n, = 0.050, £; = 1.0pum, and require the phase matching wavelength to
occur at 0.85um, we find that a waveguide with An = 0.051 will phase match to
the first waveguide at Ay, = 0.846975446um if the width of the second guide has a
width £, = 0.943274347pum. Equation (3.1.19) does not exactly predict the phase
matching wavelength due the effect of the Coulomb self-energy term (see §3.2) on
n and the effect of higher order terms in (3.1.17), both of which have been ignored;
the exact phase matching wavelength was found numerically. The dispersion curves
for these two guides at infinite separation is plotted in Figure 3.3 along with the
electric field amplitude at three different wavelengths. Note that the fields become
less well-confined at longer wavelengths, and so the coupling between two adjacent
waveguides a fixed distance apart will increase as the wavelength increases. Also,
there is only one phase matching wavelength; this point will be discused further

in §3.3.

(b) Comparison of the Coupled Mode Theory With the Ezact Theory

We use the two waveguides of Figure 3.3 to illustrate the predictions of the
coupled mode solutions of §3.1 by plotting the exact numerical eigenmodes near the
phase matching wavelength (Figure 3.4) and far away from it (Figure 3.5). Close
to the phase matching wavelength the predictions of the coupled mode theory
appear to be correct: away from the exact phase matching wavelength, the optical
field ié concentrated in either one or the other of the two guides, while at the phase

matching point the admixture factor is unity, as expected.
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FIGURE 8.3 Dispersion curves for two slightly different real index guided box waveguides. The
insets indicate the extent of the field amplitude relative to the guide width ¢ at various wavelengths.
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FIGURE 3.4 Exact solutions near the phase matching wavelength for the two waveguides of Fig-
ure 3.3 separated by 2um. Note that they compare well with the coupled mode theory predictions
of Figure 3.2.

However, Figure 3.5 shows that far away from the phase matching wavelength in
the direction of longer wavelength the admixture factor (which is predicted by the
coupled mode theory to decrease indefinitely) actually tnereases towards a limiting
value of unity! The reasons for this behavior will be discussed in the next section,

especially in §3.2(b).
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FIGURE 8.5 The solid lines plot the exact solutions far away from the phase matching wavelength
for the waveguide of Figure 3.4. The dahsed line shows the dispersion curve of the individual
isolated waveguides of Figure 3.3. Note that the coupled mode theory prediction that power flows
in only one guide or the other when the waveguides are very phase mismatched is correct at short
wavelengths, but is incorrect at long wavelengths (or equivalently, large overlap between the fields).
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§3.2 The Quantum Chemistry of Strongly Coupled Waveguides

Three assumptions have been made in the derivation of the coupled mode

equations:

(1) that the composite eigenmode can be expressed as a linear combination of the
individual eigenmodes (Equation (3.1.2)),

(2) an adiabatic approximation® which makes the coupled mode equations (Equa-
tion (3.1.5)) first order in 2, and

(3) that the individual eigenmodes E; o(z) in (3.1.2) are orthogonal.

These assumptions restrict application of the coupled mode theory to weakly
coupled waveguides in which the optical fields do not overlap strongly. However,
as we pointed out in Chapter 1 (and discuss further in §4.6), there are a variety
of reasons for wanting to make strongly coupled arrays. We therefore take up the
study of two strongly coupled waveguides.

Assumption (1), that the composite eigenmode can be expressed as a linear
combination of the individual waveguide modes, ignores the fact that even in the
case of a single isolated waveguide, the guided modes are an incomplete basis set
because leaky and radiation modes have been ignored.® We will show in §3.2(c),
however, that for the symmetric single slab waveguides we are interested in assem-
bling into laser arrays, the contribution of the leaky and radiation modes can be
safely ignored except for the case of very strong coupling.

We will now construct a more precise theory of the coupling between two
waveguides that does not assume weak coupling (Assumption (2)) and explicitly
takes into account the nonorthogonality of the basis states El,z(:z:) (Assumption
(3)). This theory is in many ways similar to the quantum mechanical approach

known as LCAO theory (for “Linear Combination of Atomic Orbitals”)!0 that is
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used to calculate the wavefunctions and eigenenergies of simple molecules such as
the H. 2+ ion; hence the title of this section as “The Quantum Chemistry of Strongly
Coupled Waveguides.” (This problem has recently been treated by Hardy and
Streifer!! from a slightly different perspective.)

If we rewrite the Helmholtz equation (2.5.4) as

1 d? 9 5
{—“];gzi-;i + [—n (:C)} - [—77 ] E(.’B) =0 (3.2.1)
and compare it with the time independent quantum mechanical Schroedinger
Equation
h2 d2
———s+V(z) - FE =0 2.2
s V(@) ~ B () (322)
we see that the equations are mathematically identical if we make the correspon-
dence
1<:>h2 2(z) & V(z) o E (3.2.3)
— & — —n°(z r) — . 2.
kg 2m "

Although the equations are mathematically similar, there are some differences
between the quantum mechanical and electromagnetic theories. First, the time
dependent Schroedinger Equation is of first degree in the time variable, while
Maxwell’s equations are of second degree in both the time and spatial variables.
However, as we will show below, this difference is not important for the waveguides
of interest here. Secondly, there is no quantum mechanical analog of the optical
dispersion curve. Equation (3.2.3) shows the correspondence between the optical
wavelength and the quantum mechanical particle mass. Since the free space quan-
tum mechanical electronic mass is a fundamental constant of nature, the optical
analogy corresponds to considering only one wavelength. Finally, we note that
the effect of gain and/or loss may be conveniently included in the optical formula-
tion through a complex potential which has no analog in the quantum mechanical

formulation.
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The optical problem of finding the effective indices and electric field for a single
real index guided dielectric slab waveguide is therefore essentially equivalent to the
quantum mechanical problem of finding the energy levels and wavefunctions for
a particle in a finite potential well. As remarked earlier, the problem of two
coupled real index guided dielectric waveguides is mathematically similar to the
quantum chemical problem of the Hydrogen molecule-ion. In particular, since
both the Helmholtz equation (3.2.1) and the Schroedinger equation (3.2.2) are
both Sturm-Liouville eigenvalue problems, we can adopt the powerful and elegant
Dirac notation of quantum mechanics to simplify the mathematical manipulations.

We therefore rewrite the Helmholtz equation (3.2.1) as an eigenvalue equation:
H|E >=B%|E > (3.2.4)

with ¥ being the “optical Hamiltonian”:
(3.2.5)

where nq(z), no(z), and ne are given by Figure 3.1.
We keep the LCAO approximation (Assumption (1)) by writing the electric
field E(z) (which is denoted in the Dirac notation by |E >) as a linear combination

of the electric fields E1(z) and E5(z) (or |1 > and |2 >, respectively):
|E >=¢1]1 > +¢2]2 > (3.2.6)

where ¢ 9 are constants (note that the coupled mode theory admixture factor

= ¢g/c1). The single guide field |1 > satisfies the Helmholtz equation

d2
X1l >= [d_xz + Icgn%(z)] I1>= 621> (3.2.7)
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and similarly for ¥3|2 >. For |E > to be an eigenvector of ¥ it is necessary and

sufficient that

<iN|E>=p2<iE>  fori=1,2 (3.2.8)
that is:
2 2
Zc3~<i|}(’j >= ,8220]- <itlg> . (3.2.9)
=1 =

This system of equations has a nontrivial solution only if

_ 32 _ A2
moR izl e
where S;; =< i|j >, ¥;; =< ¢|¥|j >, and
Hip =< 1{H|1 >
=< 1{;;2 + k&2 (2) 1 > + < 1]k [n(z) — nl]j1 > . (3.2.11)
=fi+C
Similarly,
Moz = B3 + Cy
Y12 = B3S12 + Ria (3.2.12)

a1 = B2S21 + Ryt
where 12 = kon1,2 are the mode propagation constants, the terms C; and Cy
represent a small correction to the propagation constants ﬁ% and ﬁ%, respectively,
due to the presence of the other guide. R 12 is the coupling coefficient between the
first and second (second and first) guide; its relation to the coupled mode coupling

parameter k will be discussed below. In general, Ri2 need not equal Ry;. C1,2 and

R12 correspond to the Coulomb and resonance coupling integral in the quantum
21
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mechanical formulation. For the optical problem considered here, the integrals S,

C, and R are given by

oo

<ili >=5; = Ei(2)E;(z)dz fori,j = 1,2

Cy = ki /_ _ [n% (z) —nz] Ez (z) dz (3.2.13)

Ri2 = k? /oo {né (z) — nf] E(z)E3(z) dz

where for convenience we have used the normalization condition < 7|t >= 1 instead
of the power normalization normally used in electromagnetic theory for which
<iji >= %%ZQ (see Equation (2.6.4)).

Since the fields |1 > and |2 > are assumed to be normalized, we have Si; =
S22 = 1. However, both of the electric fields of the individual waveguides are TE

modes and so they are not orthogonal: Sj3 and S3; are non-zero. For real index

waveguides S12 = Sp; = S, and the eigenvalue condition (3.2.10) becomes

Bl —B2+C1  (B;—B%)S+ Ry _

(5% - 52)5 + Ko ﬁ% — ﬂZ + Cy 0. (3.2.14)

The solutions derived from (3.2.14) make no assumptions about the strength of
the coupling constant Rj 2, and are limited only by the validity of the assumption
that the total electric field may be written as a linear combination of the individual
electric fields in Equation (3.2.6). This is usually a very good assumption; however,
we will briefly discuss the limit of its validity in §3.2(c).

Aside from the explicit inclusion of the overlap and Coulomb integrals, we
note one major difference between the coupled mode formulation of this problem
in Equation (3.1.8) and the LCAO approach summarized by Equation (3.2.14).
The coupled modes solution is expressed in terms of the first power of 8 while the

the more exact LCAO approach gives the eigenvalue as §2. This difference actually
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has no significant effect on the numerical values of the propagation constants for
the waveguides of interest here.

The term 32 occurs in the Helmholtz equation because Maxwell’s wave equa-
tion is second order in the spatial z variable. However, in the derivation of the
coupled mode equations (3.1.5), an adiabatic approximation (Assumption (2)) has
been made which assumes “slow variation” of the Aj 2(2) in Equation (3.1.2), ef-
fectively replacing 82 by 8. For the adiabatic approximation to be valid, it is

necessary that®

d?412(2) dA1,5(2)
——d';T— < 6 ,2 d (3.2.15)
Using Equations (3.1.2) and (3.1.10), we can write A} (2) as
Af () = (B+VAI A (3.2.16)

and similarly for Ai"(z) and for the (+—) supermode. The inequality which ex-

presses the validity of the adiabatic approximation (3.2.15) becomes
A+ VAL+ K2 Brg. (3.2.17)

It is easy to show that this condition is always satisfied for GaAs/GaAlAs wave-
guides by overestimating the left-hand side and underestimating the right-hand
side of Equation (3.2.17). Using Equations (2.6.4), (3.1.7), and (3.1.11), we arrive

at k P
A= EQA” < —QAn
_ 1k 2 2
K= == nl(I) —n,| E1(z)Ez(z) dz
4 7o .

k
< 1% (2nAn)
4 Zy
B1,2 = kone .

For a GaAs/GaAlAs/GaAs waveguide, the inequality (3.2.17) reduces to

(3.2.18)

An/n, < 0.6. The worst case An, corresponding to a GaAs/GaggAly4As
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heterojunction, gives An/n. ~ 0.3/3.5 < 0.6, and so the adiabatic approximation
(3.2.15) is a good one. (In fact, for a typical laser waveguide, the left-hand side
of (3.2.15) has been overestimated by several orders of magnitude!) We therefore
conclude that the adiabatic approximation of Assumption (2) is never violated in
the waveguides of interest here. This also implies that the presence of the squared
terms in Equation (3.2.14) are not important.

The coupled mode theory secular equation Equation (3.1.8) may be derived
from the corresponding LCAO (3.2.14) by (1) multiplying R;zl» by 1/2 to account
for the fact that the coupled mode theory expression for the electric field ((3.1.2))
is written in terms of complex exponentials and complex conjugates, whereas the
LCAO electric field ((3.2.6)) is not; (2) taking the different normalization conven-
tion for < 7|t > into account by multiplying R'ﬁ by B1,2/2koZp; (3) ignoring the
mode nonorthogonality by setting S = 0; (4) absorbing the Coulomb term Cio
into the propagation constant ﬂ%,z? and finally by (5) dividing through by B1,2-

Of far greater importance than the adiabatic approximation is the appearance
of the overlap integral S. This term is nonzero because the two overlapping TE
modes are not orthogonal to each other. The effect of the overlap integral becomes
increasingly important as the two waveguides become more closely coupled. Un-
fortunately, we find that for the general case of two phase mismatched waveguides
the effect of this integral is about the same order as the effect of the Coulomb
and resonance integrals. In the coupled mode formulation of the problem, the
individual propagation constants 81 2 appear only in the diagonal elements of the
matrix Equation (3.1.8), and hence the Coulomb term C may be absorbed into the
propagation constant. However, in the LCAO formulation, the individual guide
propagation constants also appear without C in the off diagonal matrix elements of

Equation (3.2.14). Unlike the coupled mode theory, the Coulomb term cannot be
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absorbed into the propagation constant in the LCAO formulation of the problem.
As a result, the exact analysis becomes analytically intractable due to the large

number of independent parameters (e.g., 81, B2, C1, C2, R12, R21, and S).

(a) Two Identical Waveguides

However, considerable insight may be obtained by considering several special
cases. We start with two identical coupled waveguides, for which Equation (3.2.14)

becomes
BE-p*+C  (BP-BY)S+R|_,
(B2-BHS+RrR B*-p%+cC

where 3 = 8 = 3, C = C1 = Cy, and R = Ry3 = Ry;. Equation (3.2.19) has the

(3.2.19)

solution '
1+5 (3.2.20)
(67)2 =52 - =2 -
1-8
The splitting between the eigenvalues is given by
R-CS
B - ) =2—F (3.2.21)

1— 82
This gives the well-known coupled mode theory result that when C and S are
ignored, the splitting is given by twice the coupling constant. When the effects of
the nonorthogonality of the TE mode basis states and the Coulomb integral are
included, the splitting between the eigenvalues becomes greater than the coupled
mode theory predicts. The term (1 — S?) in the denominator of (3.2.21) shows

that the splitting increases as the overlap between the fields increases.
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FIGURE 3.6 Cut-off of the highest order supermode. The strong coupling drives the effective
index of the highest order supermode below the cladding effective index, and into cut-off.

The effect of the overlap integral on the eigenvalues has an interesting effect
on the number of guided supermodes. This is illustrated in Figure 3.6, which plots
the effective index nT as a function of the separation d between two waveguides.
As § — 1, the term (1 — S) in Equation (3.2.20) goes to zero faster than does the
term (R — C), and so (87)? decreases relative to (3)2; however, since ()2 can
never be less than (2, the (+—) mode is eventually driven into cut-off and we are
left with a single mode system.

At first glance, it appears that there is a paradox in the disappearance of

this second mode because, as indicated on page 70, the effect of the perturbation
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produced by the second waveguide upon the first is to introduce nondiagonal
elements («x or R) into the optical Hamiltonian. By rediagonalizing this perturbed
matrix, we obtained the supermodes of the coupled waveguides, and since we
started out with a basis set consisting of two elements, we expect to find two
supermodes — which we do, provided that the overlap between the fields is small.
When the effect of the overlap integral is considered, it becomes apparent that
the original basis set does not span a true two-dimensional space, and in fact,
in the limit that the distance between the waveguides decreases to zero, the two
guides become one — with only a one-dimensional basis set, and hence only one
“supermode,” the (++) mode, remains.

Equation (3.2.20) shows that (87)2 — 32+ (R+C)/2 as the distance between
the two waveguides decreases. In that limit, the resonant coupling integral R
becomes almost identical to the Coulomb integral C' so that (ﬂ“*)2 approaches
(ﬂ1)2 + C, which is simply the value that first order perturbation theory gives for
the change in 32 for the fundamental mode of a single waveguide that has been
perturbed by doubling its width.

We close this section by noting that this latter result could have been antic-
ipated by considering the two waveguides in the limit A — oo. In that case, the
wavelength becomes very much larger than the dimensions of the coupled wave-
guides. The electric field is then so poorly confined that it comes to resemble
the field of a single-element waveguide twice the width of the original one. (cf.

Figure 3.7¢).
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(b) Two Nonidentical Waveguides

We next examine the case of two nonidentical coupled waveguides, taking into
account the differences in the propagation constants but ignoring the the Coulomb
integrals C7 2. This case corresponds closely to the coupled mode theory of §3.1
except that we now explicitly include the effect of the overlap integral. In this
way, we will be able to show that the effect of the overlap integral is to decrease
the effective phase mismatch between the two individual waveguides, thus leading
to admixture factors that approach unity as the overlap increases — exactly as
shown by Figure 3.5.

The eigenvalue secular equation (3.2.14) becomes

82 — g2 (53 - 32 S+ R‘ —0. (3.2.22)

B -B%)S+R B2 ﬂ2 |
This equation has the solution
~ RS 1 1/2
+\2 _ 22 "2 2
(6%)% =3 1_3211_52((A) +R) (3.2.23)

where 3 = %(ﬁ% + ﬂ%) and the effective phase mismatch parameter A’ is given by

Al =(1-8HA
A =1/2(8% - 83) (3.2.24)
220124

where A is the coupled mode theory parameter of Equation (3.1.11). Note that in
the limiting case S — 0 Equation (3.2.23) reduces to the equivalent coupled mode
theory results of Equation (3.1.10). We also see that at the other extreme, when
S — 1, the effect of the overlap integral is to decrease the effective phase mismatch
A relative to its coupled mode theory value A (recall that when comparing coupled

mode theory and LCAO theory parameters, it is necessary to divide the LCAO
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parameters by f1 2). We therefore anticipate that the admixture factor ¢ will tend
to unity as § — 1.
In the limit S — 1, A’ < R and (67)? becomes cut-off, as before. The
propagation constant for the remaining (++) supermode is then given by
(%)% ~ 8% + Ra

1 A2 (3.2.25)
aE—I—+u—s%——-

The admixture factor g is obtained from Equation (3.2.22) as
(83 - B*)S+R
53 - B
(A - Ra)S + R
A + Ra

(3.2.26)

If wewriteco=1—S and § = A /R as the normalized phase mismatch parameter,
the limiting admixture factor as S — 1 becomes
(6—a)(l1-0)+1

5+Z (3.2.27)
+o6* -

Q:
1

— 0

o =

As § — 1so that 0 — 0, ¢ — 1 no matter what the value of §. In other words, no
matter how badly phase mismatched the two waveguides might be when they are
far apart, as they come closer together (or the wavelength increases), the overlap
becomes stronger, and the effect of the phase mismatch on the admixture factor
becomes weaker, thus leading to roughly equal power flowing in each waveguide.

We have therefore fully explained the long wavelength result of Figure 3.5.
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(¢) Breakdown of the LCAO Theory

To summarize: we have shown that the adiabatic approximation (Assump-
tion (2) in the derivation of the coupled mode theory) is never violated for
GaAs/GaAlAs dielectric waveguides, and we have developed a more accurate
theory which relaxes Assumption (3), that the individual eigenmodes be orthogo-
nal. We now briefly examine the single remaining approximation inherent in both
the coupled mode and LCAO theories. Assumption (1) on page 79 states that the
total electric field may be written as superposition of the two individual waveguide
fields in Equations (3.1.2) and (3.2.6). To simplify the analysis, we consider the
special case of two identical guides. The symmetry of the problem implies that
the admixture factor must be unity. The coupled mode theory and the LCAO
theory will give different values for the propagation constants, but both theories
must yield the same admixture factor of unity.

Figure 3.7 presents a graphical comparison of the exact electric fields (dashed
lines) which were obtained numerically using the MODES program(§2'7) and the
equal admixture of the individual waveguide fields which are separated by varying
amounts (solid lines). The waveguide parameters are n, = 3.50, An = 0.01,
£ = 0.5um, and A = 1um. Portions of the individual electric fields are indicated
by the dotted lines, while the shaded region corresponds to the overlap between the
two fields. In Figure 3.7a with a separation d = 2um between the two waveguides,
we see that although the overlap is fairly large (approximately 40%), there is only
a very small difference between the superposition field and the exact field, thus
indicating that the superposition hypothesis is a very good one even when the
overlap integral is quite large. As the separation between the guides decreases
to 1um in Figure 3.7b, the differences between the exact and superposition fields

increases. Finally, when the waveguides just touch each other, we see that the
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FIGURE 8.7 Comparison of the amplitude superposition (solid curve} and exact (dashed curve)
modes for strongly coupled waveguides (a) separated by 2um (b) separated by 1um (c) just touch-
ing.

superposition field is less clearly well-confined than the exact result. This occurs,
of course, because the exponential decay of the field in the cladding region depends

upon the product v/ Ané, which is greater for the two touching waveguides than

it is for the separate individual waveguides.1?
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In the previous sections we have seen the paramount importance of the phase
matching wavelength Ap in determining the properties of two coupled waveguides,
and described a method for designing a coupled waveguide structure with a given
Ap in §3.1(a). We will now show that the class of real index guided waveguides
typified by those of Figure 3.4 in which é(r) - §(£) < 0 are the only types of
coupled waveguides which have a phase matching wavelength. In particular, we
will show that a technologically very important class of waveguides, two ridge
guided structures (see Figure 2.5), are not phase matched at any wavelength.

Ridge guided (mesa stripe) lasers are fabricated by etching away selected re-
gions of the low index upper cladding layer in a standard four layer heterojunction
laser such as that of Figure 1.3a. In a ridge guided structure the only parameter
that can be conveniently varied is the width of the guide and the etching depth. In
an array of such ridge guided waveguides, it is not technologically possible to easily
and controllably vary the etching depth across the array; hence, for all practical
purposes, the only degree of freedom is the width £ of the waveguide(s). Therefore,
for this type of guide §(n) = 0 and 6(¢) # 0. The index profiles for two such ridge
waveguides are shown superimposed by the solid and dashed lines in Figure 3.8a.
The first waveguide, denoted by the solid curve, satisfies the Helmholtz equation
(3.2.1)

2
Hsls >= [dd? + kgng(z)] |s >=p%s > (3.3.1)

where we have used the Dirac notation of §3.2, ns(z) represents the refractive
index of the solid curve in Figure 3.8a, and |s > represents the corresponding
electric field of the fundamental mode for that waveguide. The refractive index
ngy(z) of the second guide is indicated by the dashed line in Figure 3.8a. The core

index ng for this waveguide is the same as that of the first waveguide, but is of
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FIGURE 3.8 Dispersion curves for various coupled waveguides (a) Schematic diagram of an air
ridge laser suitable for use in phased arrays; waveguides and schematic dispersion curves for various
cases (b) én = 0, 6¢ # 0 (air ridge) (b) én # 0, 6£ =0 (c) én # 0, §£ # 0 with én - 6£ < 0. The
solid curve represents the first waveguide, the dashed curve the second.
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greater extent in the lateral direction by an amount §(¢). We consider differences

between the two guides é6n(z) to be a perturbation on the first guide:
ng(:z:) = n(z) + 6n(z) (3.3.2)

where én(z), which is also shown in Figure 3.8a, is non-zero only over the region
€ <z <€+ 6(€). We can calculate the second guide’s propagation constant in

terms of the first using first order perturbation theory:s’7
B3 =< s|¥gls >
=< s|4s + k26n(z)|s > (3.3.3)
=67 + kczlre,ew(e)An

where An = ng — n, and the power filling factor I' is defined by

b
Typ= / |Ey(z)? dz . (3.3.4)
a
The phase mismatch parameter A = }(84 — ) is then given by

ko
A= EI‘E,Z_H;(K)ATL . (335)

Although the numerical values of the power filling factor I‘z’e +6() and the prop-
agation constant 1, depend upon the wavelength, they are both positive definite
quantities, and so the sign of A is the same as that of §(¢). As a result the two
dispersion curves never touch or cross; t.e., two coupled ridge guided waveguides do
not have a phase matching wavelength. A schematic dispersion curve for §(£) both
positive and negative are shown in Figure 3.8a. The two curves touch asymptoti-
cally as A — 0 or oo, but due to the absence of a phase matching wavelength, do
not touch in between.

Similarly, it can easily be shown that waveguides with §(n) # 0, and §(¢) =0

also do not have a phase matching wavelength. This result may also be shown
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using the Taylor expanson of (3.1.17) because if only one of the §(z;) # O then
the corresponding dD/dz; must be zero if the guides are to be phase matched at
Ap, which is not true except fortuitously. Equation (3.1.17) is better for numerical
calculation because it does not require a priori knowledge of the Ly p, while the
method of this section has the advantage that it shows the general trends and
gives the correct result for the case 6(n), 6(¢) # 0 with 6(n) - §(£) > O (the latter
result is not readily apparent from Equation (3.1.19)).

We therefore conclude that the only types of waveguides which will have phase
matching wavelengths are those for which an increase in one parameter is offset by
a decrease in the other — i.e., §(n) - §(€) < 0 with the ratio between the two given
by Equation (3.1.19). To summarize these results, schematic dispersion curves for
the other various types of waveguides are presented in Figure 3.8.

The fact that two nonidentical ridge waveguides do not have a phase matching
point has an extremely important consequence for the operation of an array of
such lasers because it implies (through Equations (3.3.5), (3.1.12), and (3.1.3))
that the only supermode with a single lobed farfield pattern, the fundamental
(++) supermode, is preferentially concentrated in the wider waveguide. We show
in §4.4(a) that this idea extends itself in a natural way to chirped arrays of ridge
guided lasers with widths that vary monotonically across the array. The spatial
segregation of the (++) supermode in one half of the array, and of the (+-)
supermode in the other, combined with a nonuniform gain profile designed to
favor the fundamental supermode, provides the clues we need to design an array
which will have a single lobed farfield pattern. The chirping concept is extended
to gain guided arrays in §4.4, and ultimately leads to the concept of a tailored

gain broad area laser in Chapter 5.
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§3.4 The Effect of Gain on Weakly Coupled Waveguides

We now consider the case where gain and/or loss are present.!3 To simplify the
analysis, we make use of the coupled mode theory for weakly coupled waveguides,
and note that extension of the results to the more strongly coupled case using
LCAO theory is possible. We will discuss strongly coupled gain guided lasers from
a slightly different perspective in §3.5.

When gain is present, the quantities B1,25 BE, k, and § are complex numbers.
We write the complex propagation constant as B2 = ,Bl’z + igl’z with 31,2 =
71,2/2, where 71,2 is the power modal gain of the first (second) mode. We then
write the normalized mismatch parameter § = §3+16~ where 68 = (61 —PB2)/2x is
the normalized phase mismatch and 6y = (51—52)/2143 is the normalized amplitude
gain mismatch.

At the phase matching wavelength (8; = By = B) the complex propagation

constant (Equation (3.1.10)) is given by

BE=B+1i}(B +By) £ ky/1—(679)% . (3.4.1)

The eigenvectors E(z) are (compare with (3.1.12))

1
[:texp(;isin“l 57)] b7l <1

E*(z2) = (3.4.2)

[ii exp(—g“:z'lcosh_1 5'7)} 69> 1

The amplitude admixture factor g is now a complex number which we write
as ot = ]g]i ei‘ﬁi; its behavior is described in Figure 3.9. When |6+| < 1, sin™1 64
is real, and so the gain mismatch does not appreciably affect the optical intensity

distribution: both supermodes have equal intensity in each waveguide.
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FIGURE 8.9 Effect of gain on the admixture factor for two phase matched waveguides (a) phase
angle ¢ (b) intensity |o|?.

The relative phase shift ¢ between the electric fields in each guide varies con-
tinuously with é+ as shown in Figure 3.9a.

When there is no gain mismatch (64 = 0), ¢* = 0 for the inphase (++)
supermode (solid arrow) and ¢~ = 7 for the out-of-phase (+—) supermode (dashed
arrow). As 6+ increases, so does ¢. When 6y =1 (i.e., El — Bz = 2k), Igi[ =1
and ¢+ = —r /2, so that the modes become degenerate. They then have the same
propagation constant and field distribution, and have 7 /2 phase shift between the
individual waveguide fields.

The term sin™! § becomes imaginary when there is a large gain mismatch at
the phase matching wavelength. When |6+| > 1, the relative phase shift between
the guides is always 7/2, but the intensity distributions of the supermodes are

now different from each other. As is illustrated in Figure 3.9b, one supermode has
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most of its power in one channel, and the optical field of the other supermode is
concentrated in the other channel.
Figure 3.10 plots the intensity admixture factor ]glz and relative phase angle
¢ for the (++) supermode versus the normalized phase mismatch parameter 63

for several values of the normalized gain mismatch parameter 6~.
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FIGURE 38.10 Effect of gain on the admixture factor for two phase mismatched waveguides.
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The corresponding values for the (+—) supermode may be obtained by reflecting

the curves about [g]2 =1 and ¢ = 7/2, respectively. It is interesting to note that
when [§+| > 1, none of the supermodes can have an admixture factor |g| = 1 even
at the phase matching wavelength 63 = 0, and that the intensity admixture factor
| p{z does not depend on the sign of 4. We therefore conclude that if equal power
is to flow in each waveguide, they must be both phase and gain matched.

Figure 3.11 plots the exact numerical results for the same waveguide as Fig-
ure 3.5, but with §v > 1. We see that as A — oo, the intensity admixture factor
approaches unity while the relative phase difference approaches 0 for the (++) su-
permode and 7 for the (+—) supermode. Comparison of two coupled waveguides
without gain in Figure 3.5 with the same two waveguides with a gain mismatch in
Figure 3.11 shows that as A — oo, the effect of the gain mismatch becomes sub-
dominant to the phase mismatch, and that eventually both of these are overcome
by the effect of the overlap integral.

Finally, although Figure 3.10 shows that the modified coupled mode theory
of this section works for weakly coupled waveguides, we will find in §4.4(a) that
it gives entirely incorrect results for the case of a strongly coupled gain guided

chirped array.

§3.5 Strongly Coupled Gain Induced Waveguides

We have seen in §3.1 that when we consider the case of two weakly coupled
real index guided waveguides, we found two new modes to describe the field in the
composite cavity. When we considered that the two individual waveguide modes
are not orthogonal in §3.2, we found that the strong coupling drove the higher

order supermode into cut-off so that only one supermode remained. The addition
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FIGURE 3.11 Exact solutions of two coupled real index waveguides with large gain mismatch.
Note that the admixture factor is not unity at the phase matching wavelength. At longer wave-
lengths, the solutions are very similar to those of Figure 3.5.
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of gain (§3.5) did not change the situation appreciably; we still found two modes

for weakly coupled waveguides.
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FIGURE 3.12 Eigenmodes of two strongly coupled gain guided box waveguides (a) gain profile
(b) nearfield patterns for the expected v = 1 and v = 2 supermodes (c) nearfield patterns for the
unexpected v = 3 and v = 4 supermodes (d) modal diagram.

When we numerically solve for the supermodes of two strongly coupled single
mode gain waveguides, we find an entirely unexpected surprise: as is illustrated
in Figure 3.12, even if each individual gain waveguide supports only one guided

mode, the two coupled waveguides support not just one or two but four modes!
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Notice that the intensity nearfield pattern for the v = 3 supermode has three
peaks, while that of the v = 4 supermode has four, and that the number of
approximate nulls in the nearfield pattern is one less than the mode number. This
suggests that the unexpected v = 3 and v = 4 modes are higher order modes of the
composite structure. The reason why we obtain four modes when we expected only
two is not fully understood at the present time. However, we will now examine
some interesting aspects of gain guided waveguides that make them qualitatively
different from their more intuitive real index guided counterparts and which may

have a bearing on this puzzle.

(a) Two Coupled Multimode Real Index Guided Waveguides

Finding four modes suggests that although we claimed that the single-element
waveguide was single mode, perhaps in some sense it isn’t. We therefore first
examine the simpler case of two identical coupled real index waveguides each of
which supports two guided modes, and then consider the corresponding gain guided
case. We consider the four possible mode combinations g ® Vrigny: 191, 192,
2®1, and 2®2. The 1 ® 1 combination (coupling between the two fundamental
modes) is the usual one we have studied before; the nearfield patterns for the
inphase and antiphase combinations of the two fundamental modes are shown in
Figure 3.13b.

Since the modes of a symmetric waveguide must have a definite parity,1* sym-
metry rules out the possibility of 1 ® 2, and 2 ® 1 (symmetric ® antisymmetric)
coupling (this is analagous to a quantum mechanical selection rule). Figure 3.13c
presents the inphase (v = 3) and out-of-phase (v = 4) supermodes of the coupled

waveguides that arise from the 2 ® 2 coupling. Notice that the intensity nearfield
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FIGURE 8.13 Eigenmodes of two coupled double mode box waveguides (a) waveguides (b)
nearfield patterns for the 1 ® 1 coupling (c} nearfield patterns for the 2 ® 2 coupling. Note the
similarities to the modes of Figure 3.12.
pattern for the v = 3 supermode has three peaks, while that of the v = 4 super-
mode has four, and that the number of nulls in the nearfield pattern is one less
than the mode number.

These results are very similar to what we found for the gain guided case of

Figure 3.12, and suggest that our “single mode” gain guided waveguide of Fig-

ure 3.12a is not as “single mode” as we had thought.
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(b) Leaky Modes of a Gain Induced Waveguide

It is possible to find solutions of the secular eigenvalue equation (2.6.6) for
the box waveguide that satisfy the boundary conditions at |z| = £/2 but diverge
at infinity. These modes, referred to as “leaky” modes, are nonphysical because
they cannot be normalized to carry finite power. Such modes have been studied
in the case of real index guided waveguides!® but not, to our knowledge, in gain
guided structures. We briefly discuss these modes here because, although it does
not appear that they play a role in the coupling between two real index guided
box waveguides, they may play a role in explaining the two extra supermodes we
found in §3.5.

Figure 3.14b presents the modal diagram for the single-element gain guided
box waveguide which we considered in §3.5. Since the cladding loss T, =
—200cm ™1, it is physically impossible for a guided mode to have a modal gain
smaller than this amount. The line y = —200cm™! therefore separates the physi-
cal guided modes from the nonphysical leaky modes.

The pole at n» = n, and the branch cut to the right of this pole are due to
the square root dependence of the wavevectors k and g on 7 in Equation (2.6.5).
We find that this waveguide has two solutions to the dispersion equation (2.6.6),
one of them corresponding to a guided mode, the other to a leaky mode. Use
of the CONTOUR program of §2.7 indicates that there are no other solutions in
the region indicated in Figure 3.14b. The nearfield patterns of these modes are
presented in Figure 3.14c; as expected, the intensity of the leaky mode diverges as
|z| — co. Notice that the leaky mode has a phase shift of 7 radians at the middle
of the guide; it therefore in some sense corresponds to the “cut-off” v = 2 guided

mode.
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FIGURE 3.14 Leaky modes of the gain guided box waveguide (a) waveguide of Figure 3.12(b)
modal diagram showing one guided and one leaky mode (c) nearfield patterns for the v = 1 and
leaky mode.

Examination of the nearfield patterns for the “extra” v = 3 and v = 4 modes
of the coupled gain guided waveguide system of Figure 3.12 reveals that there is
approximately a phase shift of 7 radians between each of the peaks in the nearfield
patterns for the higher order modes. This suggests that although leaky modes do

not play a role in the coupling between real index waveguides, they may play a

role in the case of strongly coupled gain induced waveguides.

(¢) Coupling Mechanism Between Gain Guided Lasers

The complex nature of the index of refraction in a gain guided laser makes
the coﬁpling between two lasers significantly different than that between two real
index guided lasers. Experimentally, we find a standing wave pattern between
two gain guided lasers that is not observed between real index guided lasers. We

show that this effect is a direct result of the interference of the complex evanescent
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waves associated with each gain guided laser, and briefly discuss the implications

for coupling between gain guided lasers.

<i> Coupling Between Mechanism Gain Guided Lasers: Experiment

We have used the separate contact laser developed by Katz, et. al.l® to ex-
perimentally investigate the coupling between two gain guided lasers.l” The laser
stripes were delineated by using proton implantation, the separation between the
centers of adjacent stripes being 9um. Separate contacting was accomplished by
using two-level metallization. The threshold current of each individual laser was
typically 60mA (pulsed operation). A schematic cross section of the device used
for this experiment is shown in Figure 3.15a.

The spectrally resolved nearfields of pairs of coupled lasers, separated by var-
ious multiples of 9um, were obtained by imaging the nearfield of the lasers on
the entrance slit of a spectrometer and displaying the output on a monitor using
a silicon-vidicon TV camera. The spatial intensity distribution of the coupled
modes at a given frequency could then be obtained by scanning a selected line of
the video signal.

Generally, the phase locked modes of the coupled lasers appeared at wave-
lengths which were ~ 50 to 100 Angstroms longer than the wavelengths of the
individual laser modes, and the spectral width of the phase locked lasers was con-
siderably smaller than that of the individual ones. When the interacting lasers
were separated by more than 18um, gain had to be introduced into the coupling re-
gion (by pumping current through the intervening stripes) in order to obtain phase
locked modes. The nearfield pattern of a phase locked mode consisted of two main
lobes, located approximately below the centers of the coupled laser stripes, and

secondary peaks in the intervening coupling region. An example of such a phase
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locked mode is shown in Figure 3.15. Figure 3.15a illustrates the way in which
current injection I; and I3 form the two gain guided lasers with I controlling
the coupling between them. The coupled lasers operated in essentially a single
longitudinal mode, at A = 0.88 um, thereby showing phase locked operation. Fig-
ure 3.15b shows the spectrally resolved nearfield pattern of two lasers separated
by 27um. Thirteen approximately equally spaced fringes are visible.

As the current through the contact between the coupled lasers was increased,
the lasing modes hopped to shorter wavelengths, resulting in a tuning range of
~ 50 Angstroms. When this current was further increased, the lasing mode hopped
back to longer wavelengths, but the spatial mode pattern was now different. This
behavior repeated at still higher currents through the intermediate stripe. Fig-
ure 3.16 shows the evolution of the spatial mode pattern of the phase locked modes
of two lasers separated by 18um for two sets of laser currents I; and I3. For all
the spectrally resolved nearfields of Figure 3.16, the wavelength is A ~ 0.88um.
It is clear that the separation between the secondary peaks in the mode pattern

increases with increasing current I.

<ii> Coupling Mechanism Between Gain Guided Lasers: Theory

The nearfield patterns presented above can be understood by recalling that
the curved phase fronts in a gain guided laser cause power to flow outward from
the laser axis.(326(0)) As a result, the evanescent lateral wavevector ¢ in Equa-
tion (2.6.5) is complex. When two gain guided lasers are placed in close proximity,
the radiating modes of the adjacent gain guided lasers interfere to form a lateral
standing wave pattern in the intervening region.

To illustrate the phenomenon, first consider a single gain induced waveguide

of width £. We take the origin to be located a distance s/2 to the right of the
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(a)
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FIGURE 38.18 Variation of the standing wave pattern with coupling current. Note that as the
current (¢.e., interchannel gain) is increased, the spacing between the fringes also increases.
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guide. The electric field amplitude external to the channel region (z > —s/2) may
be written as an evanescent exponential (¢.e., ‘El,g(x)lz — 0 as |z] — o) so that
we can express the (unnormalized) electric field to the right of the solitary guide
as

Ey(z) = e~ (%9/2)9 L (=137 o—0= (3.5.1)

where ¢ is the complex evanescent lateral wave vector given by

g=3+13 = ko\/n? —n?. (3.5.2)

The effect of g # 0 is to cause the phase fronts of the evanescent field to be tilted
by an angle § = sin_l(ﬁ /kg) with respect to a plane normal to the mirror facets.
Note that in a real index guided laser, § = 0, and so the phase fronts propagate
normal to the mirror facets. When we calculate the nearfield intensity pattern
external to the waveguide I(z) = |E(z)|?, we see that the effect of the imaginary

part of ¢ is masked by complex conjugation:
Ii(z) = e729% (3.5.3)

The interchannel nearfield pattern corresponding to a single laser is thus a simple
exponential.

Now consider two identical coupled gain induced waveguides separated by a
distance s. We take the origin to be located midway between the two guides. The
individual fields are given by expressions similar to Equation (3.5.1). The total

electric field between the waveguides is therefore given by
Erotal(z) = Ey(z) + Eo(z) = e~ (518/2)9 4 oH(z—3/2)g (3.5.4)
and the nearfield intensity between the waveguides is

1, _5- 3 -
Tiotat(z) = 5 (e 297 4 ¢*297) 4 cos 25z (3.5.5)
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This function is plotted in Figure 3.15¢ with ¢ = 0.3 + 1.4m i um™!. Interference
between the two electric fields, expressed by the cos 2§z term, leads to a standing
wave pattern which makes visible the imaginary part of the complex wave vector
g-

The fringe period depends on the angle § = sin_l(f]/ ko) between the phase
fronts of the interfering fields, larger angles giving more closely spaced fringes.
Equation (3.5.2) shows that this angle increases with increasing difference between
the peak gain under the laser stripe and the gain in the region outside the laser
stripe.(§2'6(b)) The period of the interference fringes in the pattern of the phase
locked modes increases when the region between the coupled lasers becomes less
lossy, which is experimentally verified by the results of Figure 3.16. We also note
that increasing the interchannel gain will decrease the phase front curvature of a
mode(§2:6(0)) because less power needs to flow from the high gain regions of the
mode to the low gain regions, thus possibly leading to a decrease in the astigmatism

of the output beam.
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CHAPTER

FOUR
Phased Array Lasers

I am afraid that I rather give myself away when I explain.
Results without causes are much more impressive.

——Sherlock Holmes, The Stock-Broker’s Clerk
Sir Arthur Conan Doyle

In this chapter, we extend the results of the previous chapter to systems of
many coupled waveguides. The coupled mode analysis of §3.1 is extended to a
uniform array of waveguides in §4.1, where we show why a uniform array has a
twin lobed farfield pattern. In §4.2 we introduce the idea of chirped arrays of
nonuniform lasers as a means of spatially segregating the fundamental supermode
from the higher order supermodes. Unfortunately, we find in §4.2(a) that given
current technological constraints, it is exceedingly difficult to fabricate a real index
guided chirped array, and in any event, such structures are almost certainly to be
partially gain guided. We therefore turn our attention to the possibility of using
the chirping concept in a gain guided array.

The actual implementation of these ideas into a working device came to re-
semble a rather exciting detective story (that even Sherlock Holmes might enjoy!)
which starts with a single clue — chirping — and evolves as we work out its con-
sequences, discover the limitations of the theoretical results of Chapter 3, modify
our ideas, and try again — and again... until we finally arrive at a working de-

vice. Along the way, we will discuss a variety of waveguides relevant to phased
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array laser design so that the reader will, we hope, emerge with a good under-
standing of the lateral mode control problem in evanescently coupled phased array
semiconductor lasers.

In particular, we will stress time and again the importance of a large inter-
channel gain for device performance. Since the region external to the array is
always lossy due to the unpumped GaAs active layer, this leads us to discuss the
interesting concept of the interplay between array and box modes in §4.3(a) and
4.4(a). We introduce chirped arrays of gain guided lasers in §4.4, and discover the
theoretical possibility of suppressing one lobe of a twin lobed farfield pattern in
§4.4(a). We discover gain tailoring in §4.5 and fabricate a device based on these
principles. The combination of gain tailoring and a high interchannel gain enables
us to achieve our goal of fabricating an array with a single lobed farfield pattern.
We demonstrate that such tailored gain chirped arrays are able to operate with
both single lobed diffraction limited operation (1.5° beamwidth) or high output
power (450mW into 3.5°).

Finally, in §4.6, we summarize the many advantages of an array with a very
high interchannel gain, and pose the question: are such devices really arrays, or
should they be considered as tailored gain broad area lasers? This then leads
naturally into Chapter 5, where we fabricate and analyze a truly tatlored gain

broad area laser.

§4.1 Uniform Arrays of Real Index Guided Lasers

The coupled mode analysis of Chapter 3 may be readily extended to the case

1 we presume that

of more than two channels. Following Kapon, Katz, and Yariv,
each individual waveguide, when isolated from its neighbors, supports only the

fundamental spatial mode. This elemental mode is described by its electric field
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E;(z) Pz wherel=1,2...N and B, is the propagation constant for the elemental
mode in the [*P-channel. In a manner entirely analogous to Equation (3.1.2)
the total electric field for the array supermode may then be written as a linear

combination of the elemental modes:
1 N -
E(z,2) = 2 ) A(2) E(z)eP® +c. c. (4.1.1)
2 =1

where N = 2 for the two coupled waveguides of Figure 3.1 and the z dependence
of the A;(z) is due to the interaction between the waveguides. The coupled mode

equations for the array may once again be written in the form

dE |
—, =iCE (4.1.2)

where E is a vector n whose elements are E; = Aleiﬁ'z . We assume weak overlap
between the fields so that coupling occurs only between nearest neighbors, and so
the only nonvanishing elements of the matrix C are Cl,l = f; withl =1,2,...N
and Cyj11 = K141 Cip1,0 = Kig1, With 1 = 1,2... N — 1. The definition of the
coupling coefficients x;; is the same as in the case of a pair of coupled waveguides
(3.1.7).

The array supermodes are, by definition, the eigenvectors of Equation (4.1.2),

i.e., those vectors that satisfy
EY(z) = E(0)e#"? (4.1.3)

where §” is the propagation constant of the supermode E¥(z). Substitution of

(4.1.3) into (4.1.2) gives the matrix eigenvalue problem
(C-B'I)E¥ =0 (4.1.4)

where I is the identity matrix.
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A solution of Equation (4.1.4) yields the N supermodes that are supported by
an array of N single-mode lasers. The eigenvectors E¥, v = 1,2,... N can be used
in Equation (4.1.2) to evaluate the nearfield of each supermode; each such mode,
say EY, describes a phase locked combination of the individual laser modes with

amplitude o] Ey:
= —e‘ﬁu ZQ Ei(z) +ec. c. (4.1.5)

Generally, the eigenvalues of an arbltrary N-channel array must be found
by solving Equation (4.1.4) numerically. The special case of a uniform array of
identical lasers on equispaced centers may be solved analytically. In this case

B, = B and k;; = & and the solution of Equation (4.1.4) is?

BY = B + 2k cos <NV: 1)

o] =sin (INU_:_r 1)

Figure 4.1 shows the nearfield patterns of the five supermodes which are sup-

v=1,2,...N . (4.1.6)

ported by an index gt_lided array of five identical channels. The lateral distribution
of the effective index (in the junction plane) was taken, for definiteness, as that
corresponding to an array of typical GaAs/GaAlAs ridge waveguide lasers such
as those of Figure 2.5. The channels are 4um wide and the interchannel spacing
is 2pm; the index step An = 0.002. The supermode patterns were calculated
by using the numerical methods of §2.7, and confirm the predictions of the cou-
pled mode theory. The supermodes designated by v = 1,2,3,4,5 correspond to
+++++4), (+4+0~-), (40~ 0+), (+ =0+ —), and (+ — + — +) field
amplitudes in the various array channels, respectively. The +, —, and 0 sym-
bols indicate whether the field is positive, negative, or zero in the corresponding

channel. The (+ + + + +) supermode of the five-element uniform array (which
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FIGURE 4.1 Supermodes of a five-element real index guided uniform array. The channel width
is 4um and the channel spacing is 2um with an index step An = 0.002. (a) refractive index
profile (b) intensity nearfield and farfield patterns. Note the envelope functions (dashed lines) of
the fundamental and highest order supermode nearfield patterns are very similar. The two modes
differ only in the lossy interchannel regions.
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is referred to as the fundamental mode) corresponds to the (++) supermode of
the two-element array studied in Chapter 2, while the highest order completely
antisymmetric supermode (+ — 4 — +) corresponds to the (+—) supermode in the
two-element array. It is clear that the nearfield envelopes (given by the dashed line
in Figure 4.1) of the » = 1 and the v = 5 supermodes are very similar. (In fact,
as shown by (4.1.6), in the limit of very weak coupling between the channels they
become identical.) The intensity nearfield patterns differ only in that the v = N
supermode has nulls in the interchannel region. This has an extremely important
effect on the operation of a uniform array of semiconductors.

Almost all semiconductor laser structures are designed so that the gain is great-
est in the core region of the waveguide; the cladding region is therefore relatively
lossy when compared with the core region. In a single-element semiconductor
laser, this minimizes the threshold current density and leads to more efficient
operation.(gl'z) However, the very properties that lead to low threshold currents
in a single-element laser promote the undesirable twin lobed farfield pattern in an
uniform array. Since the highest order completely antisymmetric supermode has
nulls in the lossy interchannel region, relatively more of its light is concentrated in
the high gain core regions of the laser channels than is the case for the fundamen-
tal supermode. The highest order supermode therefore has a higher modal gain
than the fundamental supermode and will thus be the lasing mode at threshold.
This in turn leads to the undesirable twin lobed farfield patterns characteristic of
uniform arrays such as that of Figure 1.6d.

Finally, we note that the farfield pattern of the fundamental supermode is
similar to that of an array of uniformly illuminated slits, and thus will have a
single lobed farfield pattern only if the elemental waveguides are closely spaced.?

This is the case for all the array waveguides considered in this thesis.
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§4.2 Chirped Arrays of Real Index Guided Lasers

We showed in Chapter 2 that two phase mismatched waveguides will support
two supermodes that have unequal power distributions in each channel. If we
consider two coupled ridge waveguides of unequal widths, we know from the results
of §3.1 and Figure 3.8 that the fundamental supermode will be concentrated in
the wider channel. If we can then also preferentially concentrate the gain in this
channel, the fundamental supermode will have the highest modal gain and will
therefore be the lasing mode. This in turn should lead to the desired single lobed
farfield pattern.

These ideas extend themselves in a natural way to a chirped array of lasers
in which the widths of the individual channels increase monotonically across the
array.? (The term chirp is borrowed from the communication theory term for a
signal with a temporal frequency that varies linearly with time; in a chirped array,
however, it is the spatial frequency which varies with distance). We consider real
index guided arrays in this section, and discuss and gain guided chirped arrays in
§4.4 .

Figure 4.2 shows the supermodes supported by a real index guided chirped
array with channel widths that are linearly chirped from 5um to 3um across the
array. The channel spacing is uniform (2um). Comparison of Figure 4.1b (which
plots the mode profiles for a uniform array) with Figure 4.2c (which plots the
mode profiles for a chirped array) reveals a striking difference between the two
types of arrays. Unlike the uniform array, the fundamental supermode in the
chirped array is preferentially concentrated at one side of the waveguide, and the
completely antisymmetric supermode is concentrated at the other side.

In principle, the lasing of higher order supermodes in a chirped array could be

suppressed by tailoring the spatial gain profile across the array so as to favor the
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FIGURE 4.2 Supermodes of a five-element real index guided chirped array. The channel widths
vary linearly between 5um and 3um in steps of 0.5um. The channel spacing is 2um, and the index
step AR = 0.002. (a) plot of guide width £ vs. effective index n. (b) refractive index profile (c)
intensity nearfield and farfield patterns. Note that the fundamental v = 1 supermode is located
to one side of the array and the highest order v = 5 supermode is at the other. Also note that
despite the asymmetric nearfield patterns, the farfield patterns are all symmetric.
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fundamental supermode. Since the other supermodes are increasingly localized at
the other side of the array, their overlap with the gain distribution will be smaller,

and they will not lase until well above threshold.

(a) Limitations of Real Index Guided Chirped Arrays

Unfortunately, there are both fundamental and technological limitations that
make real index guided chirped arrays impractical. The fundamental limitations
result from the interplay between real index and gain guiding discussed in §2.3,
while the technological limitations result from the limited precision with which it
is possible to fabricate real index guided structures.

Reference to Figure 2.10 in our discussion of the types of lasers suitable for
integration into arrays shows that if an array is to be considered real index guided,
the size of the built-in index step must be sufficient to overcome the antiguiding
effect due to the carriers. This implies that the built-in index step A7 must be
greater than about 0.003, and so a single mode waveguide must be no wider than
~ 2um (5um if the waveguide is allowed to support at most two modes). If 2um is
adopted as the smallest feature size, and 0.5 microns for the precision with which
the guide width may be varied, we see that at best we could fabricate a five-
element array with a maximum width of about 22um. The volume of the lasing
mode has then been increased by only a factor of four from that of a single-element
laser. Thus, we expect only moderately high power outputs from real index guided
chirped arrays.

Furthermore, given a variation in the stripe width of 0.5um, the phase mis-
match parameter between adjacent waveguides will be quite large. This is illus-
trated by Figure 4.3, which plots the nearfield pattern of the fundamental mode

for the same array as Figure 4.2 but with various values of the refractive index
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step Af. (The effect of gain has been ignored for the moment). We see that
for A = 0.0025 the admixture factor between adjacent channels is 3:1, and thus
there is significant optical intensity in only the first two channels. Power may be
spread out over more of the lasers (i.e., the admixture factor may be decreased) by
decreasing the size of the index step; however, Figure 4.3 shows that as the index
step becomes even slightly smaller, the channels become more strongly coupled
and the fundamental mode shifts to the center of the waveguide. If the index step
is too great, power will be concentrated in only a few elements of the array. If
the index step is too small, the beneficial effects of the spatial segregation of the
supermodes is lost. Figure 4.3 indicates that it is therefore necessary to control

the refractive index step across the array to about +0.0002.
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5._
< VERTICAL INDEX PROFILE
40 © 10} 33850 ——
X $—o
* c 15} n’ "’l ::
< O.lpm L
€ 30 { : 1.0
25l
20}
—»ija— +0.0lum
1 1 !
3.41 10 0.5 1.0 1.5
— THICKNESS OF UPPER CLADDING LAYER t (um)—e

FIGURE 4.4 Plot of the refractive index step A# in an air ridge waveguide as a function of the
thickness of the upper cladding layer.

This number implies some extraordinary constraints on the precision with
which the channels must be etched. Figure 4.4 shows that the etching depth

into the upper cladding region must stop just under 0.5um from the active layer
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(which is easily possible), but that the uniformity with which the etching must
occur over the array must be better than 200 Angstroms! At the present time this
is impossible.

Furthermore, even if new technology made it possible to control the etching
to this precision, there is the question as to whether or not this device could be
considered a real index guided laser at all. Figure 4.5a shows the waveguide model

for the chirped array of Figure 4.4, but now the effect of gain has been included.
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FIGURE 4.5 Limitions of chirped arrays due to the effect of gain. (a) Waveguide model and
(b) nearfield pattern for the chirped array of Figure 4.2 including the effect of gain. (c) Farfield
patterns (solid line) for the array of part (a), and (dashed line) for a gain guided waveguide with
a spatial gain profile given by the envelope function of the gain profile of the waveguide of part
(a). The nearly superimposed solid and dashed lines of part (c) indicate that the chirped array of
part (a) is essentially gain guided.

The gain profile is tailored to match the fundamental mode, thus assuring
single lobed operation. The solid curve in Figure 4.5b shows the farfield pattern

for this chirped array. Note that it is essentially single lobed, but slightly displaced
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from the facet normal. We will see in §5.12 that the off-axis farfield pattern is
the result of an asymmetric gain profile. Here, it provides a convenient measure
of the extent to which this chirped array should be considered either real index
or gain guided. The dashed curve in Figure 4.5b shows the farfield pattern for
a gain guided laser with no variation in the refractive index profile and with a
spatial gain profile that matches the gain envelope function for the waveguide of
Figure 4.5a. The fact that the two curves are almost superimposed indicates that
this array is almost entirely gain guided.

In conclusion, we have shown that fundamental and technological limitations
make the fabrication of real index guided chirped arrays difficult, if not impossible.

We therefore turn our attention to arrays of gain guided lasers.

§4.3 Uniform Arrays of Gain Guided Lasers

We have seen in previous sections that reducing the size of the index step
which confines the mode allows it occupy a larger volume of space. However, as
we have shown in §2.3 and §4.2(a), there is a lower limit on the minimum possible
index step due to the presence of gain, and that laser waveguides with index step
differences of A#i < 0.003 should be considered as gain guided.

Although suffering from the disadvantage that their spectral properties are
less desirable than those of strongly real index guided lasers, gain guided arrays

offer several important advantages over their real index counterparts.

(1) Most importantly, from a research point of view, gain guided lasers are far
easier to fabricate than real index guided lasers, thus allowing more rapid
improvements in device design.

(2) The spatial gain profile simultaneously determines both the eigenmodes as well

as the modal gains, thus potentially simplifying device design.
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(3) The interchannel gain in a proton implanted laser may be controlled by simply
reducing the depth of the proton implantation.(§4'3)

(4) A gain guided laser confines the optical field significantly less strongly than a
real index guided laser. The modal volumes can therefore be much larger,
thus potentially increasing the device’s power output and decreasing the
beamwidth. Accordingly, all the high power records to date have been set
with gain guided lasers.

(5) Finally, in a nonuniform structure the intrinsically weak nature of the gain
guiding reduces the effect of phase mismatching, effectively increasing the size

of the device.

We commence our study of arrays of gain induced waveguides by noting that
the formalism used in §4.1 to predict the supermodes of a uniform array of real
index guided lasers may also be used to calculate the supermodes of a weakly
coupled gain guided structure. However, for the more important case of strong
coupling, we must make use of the numerical methods of §2.7. This is especially so
because, as we will see in §4.4(a), the exact (numerical) results are quite different
from what we would expect based on a naive application of the theory of §3.4 to
strongly coupled gain guided lasers.

In most of the waveguide models we discuss, the antiguiding factor has been
ignored for simplicity. Its exclusion in no way alters any of the conclusions we will
draw from our work. We will incorporate the antiguiding effect into our models
when appropriate.(§2'2(e)’4'5(b))

Figure 4.6 presents (a) the gain profile, (b) the nearfield and farfield patterns,
and (c) the modal plot for a uniform array of five lasers 4um wide on 9um centers.
Comparison with the corresponding Figure 4.1 for a uniform array of real index

guided lasers shows that the nearfield and farfield patterns are essentially identical.
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FIGURE 4.6 Supermodes of a gain guided uniform array of five lasers 5um wide on 9um centers:
(a) gain profile (b) intensity nearfield and farfield patterns (c) modal diagram with the lasing
v = 5 supermode circled (d) phase plots for the v = 1 and v = 5 supermodes. Note the symmetric
farfield patterns.
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Note that the phase plot diagram in Figure 4.6d shows that the phases of each
of the lasers is the same for the v = 1 fundamental mode, but that the effect
of the phase curvature is the same as that of a single-element laser. Since the
astigmatism of gain guided lasers is proportional to the phase front curvature,
this array will also be astigmatic.

Of somewhat more interest is the modal diagram of Figure 4.6c. Not surpris-
ingly, the v = 5 mode, which has nulls in the lossy interchannel regions, has the
highest modal gain. It is of interest, however, to note that the pattern of the modes
is reminiscent of a resonance curve. We will see below that a type of “resonance”
between the nearfield pattern and the spatial frequency of the peaks in the gain
distribution does occur. This concept will prove helpful in understanding strongly

coupled gain guided chirped arrays.(§4'4(“))

(a) Box Modes and Array Modes

Figure 4.7 illustrates another interesting point about waveguide models for ar-
ray structures in which the interchannel gain has been increased to enhance phase
locking among the array elements. Starting from an array picture, Figure 4.7a
shows the mode pattern and nearfield pattern for the lasing v = 5 supermode (i.e.,
the one with the highest modal gain) for a five-element array in which both the
interchannel regions and the region external to the waveguide have been pumped
to transparency. The mode pattern and nearfield pattern for the lasing mode are

also shown.
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FIGURE 4.7 Comparison of the mode patterns and nearfield and farfield patterns for (a) an array,
(b) a “box plus array” and (c) a box waveguide.

When the effect of the unpumped active region external to the array is added
in, we obtain the “array plus box” waveguide of Figure 4.7b. Note that, as might
be expected from elementary perturbation theory, the effect of the lossy external
region that defines the “box” has only a minimal effect on the eigenmodes because
the field is small in that region. The effect of the “box” may then be considered
as a small perturbation on the array structure.

The interesting point is to compare the modes of Figure 4.7b with the v = 5

mode of the wide box waveguide with the same width in Figure 4.7c, where we see
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that (except for a relatively minor change in the envelope functions), the v = 5
box mode is very similar to the array and “array plus box” modes. In fact, another
way of thinking about the same waveguide of Figure 4.7b would be to start with
a uniform gain boz waveguide and add the array as a perturbation to form a “box
plus array” waveguide. Elementary perturbation theory predicts that the boz mode
which has the greatest overlap with the high gain region of the perturbation (i.e.,
the array) will have the highest modal gain. The high modal gain of the v = 5
mode may then be viewed as coming about because the spatial frequency of the
perturbation (t.e., the array) is “resonant” with that of the v = 5 boz mode (both
have five periods over the width of the waveguide), thus enhancing the modal gain
of the v = 5 mode.

We remark that examination of Figure 4.7 reveals that for the special case of
a strongly coupled uniform array either the “box plus array” picture or the “array
plus box” picture works equally well, although the “array plus box” viewpoint
is probably somewhat better. However, we will see in §4.4(a) that making a
distinction between the two perspectives aids understanding of strongly coupled

nonuntform gain guided arrays.

§4.4 Chirped Arrays of Gain Guided Lasers

In a single-element laser the modal gain of the fundamental mode is approx-
imately proportional to the overlap between the optical intensity profile and the
gain distribution inside the laser. If we make a chirped array of gain guided lasers,
the wider lasers should have higher individual channel modal gains than the nar-
rower ones, and hence in a manner entirely analogous to the way in which we have
effectively tailored the real index profile in a real index guided chirped array, we

should also achieve some degree of gain tailoring in a gain guided chirped array.
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In such an array, we can take advantage of the fact that in a gain guided laser
the gain profile determines the eigenmodes as well as the modal gains to devise an

array structure that favors the fundamental single lobed supermode.

(a) Chirped Arrays of Gain Guided Lasers: Theoretical

For example, Figure 4.8 plots the increase in the real part of the effective index
7 and the power modal gain ~ of the fundamental mode in a single-element gain
guided laser as a function of the width £ for a laser with a channel gain T of

60cm ™! and a cladding loss of 200cm™!.

1 { 1 | |
851 |+ - { -
£ +60
z ° $
80 | 3 _
o * TE
75 - £
{ 480 *
~=~ 70} =
& —440 «
0' (&)
65 -0 .
1 2
—-40
60} g — 2
7 —-80
d H
55+ —-120
// ~ single | two N C;D
4 "~ mode " modes —1-160 &
3.414 50 7
] | ! I 1 |
2 4 6 8 10

— GUIDE WIDTH £ (um)—e

FIGURE 4.8 Variation of effective index and modal gain in a gain guided laser. The channel
effective index (solid line) and modal gain (dashed line) are shown for a gain guided box waveguide
as a function of the waveguide’s width.
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We see that as long as the widths of the laser channels are greater than about
4pm, the wider channels will have both higher effective indices and modal gains.
The theory of §3.4 then leads us to expect the fundamental supermode to be
concentrated in the wider channels. Since the gain is also greatest there, we then
expect the fundamental supermode to have the highest modal gain, which in turn
should yield the desired single lobed farfield pattern.

Figure 4.9 illustrates the waveguide model for such a chirped array of five-
elements with widths ranging between 8um and 4pum in lpm increments with
5um separations between the lasers. The heavy solid horizontal lines indicate
the effective refractive index in each channel, while the dashed lines indicate the

effective modal gain in each channel.
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FIGURE 4.9 Schematic diagram of a five-element gain guided chirped array based on the plot of
Figure 4.8 showing the variation of the channel index and gain. §3 and §~ are the phase and gain
mismatch parameters of §3.4.

If we number the channels sequentially from the wider to the narrower, then
both the phase mismatch parameter §3 and gain mismatch parameter 6+ of §3.4
are negative. Figure 3.10 then indicates that the fundamental supermode should
have more power in the wider guides than in the narrower ones. Since the con-

finement factor of the channel mode is greater in a wider guide than in a narrower
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one, the fundamental supermode should also have the highest modal gain. We
therefore hope that we might be on the verge of achieving our goal of designing a
laser array that favors the fundamental supermode.

Unfortunately, when we compute the supermodes of this array, we discover
the actual situation is very different from what we had anticipated. Figure 4.10
presents the modal distribution diagram for the first six modes of this waveguide.
To our surprise, we find that the fundamental supermode does not have the highest
modal gain as we had expected. In fact, the fundamental supermode has one of
the lowest modal gains of all the modes! Furthermore, when we examine the phase
plots for the v = 2 supermode (in Figure 4.10d), we see that the phase difference
between adjacent channels is approximately 7 radians, which implies that the so-
called v = 2 supermode is actually the “highest order antisymmetric” supermode.
Figure 4.10 shows that the supermodes in complicated gain guided structures can
no longer be characterized simply by means of ranking them in order of decreasing
effective index.

More importantly, as a result of the 7 phase shift between adjacent channels,
the v = 2 high gain supermode has the undesirable twin lobed farfield pattern,
so we have not yet achieved our goal. When we examine the intensity nearfield
patterns of Figure 4.10, we see why this supermode has the highest modal gain of
all the supermodes: once again, the lossy interchannel regions favor the supermode
which has nulls in the interchannel regions.

We also note that the v = 2 “antisymmetric” mode is localized under the
relatively wider channels, while the v = 1 fundamental mode is localized under
the narrower channels. This result is also completely unexpected. The reasons for

this anomalous behavior is unknown; however, it may be related to the fact that
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FIGURE 4.10 Supermodes of a weakly coupled gain guided linearly chirped array of five lasers
with widths between 8um and 4um, and separated by 5um. (a) gain profile (b) intensity nearfield
and farfield patterns (c) modal diagram (d) phase plots for the ¥ = 1 and v = 2 supermodes. Note
that the farfield patterns are no longer symmetric about 0°.
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this particular array is both gain guided and very strongly coupled; these results
clearly show the limitations of the theory of §3.4.

We also observe another interesting aspect of asymmetric gain-induced wave-
guides: unlike the symmetric real index guided waveguides of Figures 2.11 and 4.1,
the symmetric gain-induced waveguides of Figures 2.12 and 4.6 and the asymmet-
ric real index waveguide of Figure 4.2 for which all the higher order modes have
symmetric farfield patterns, the farfield patterns of this asymmetric gain-induced
waveguide are asymmetric about 0°. Asymmetric gain induced waveguides are a
unique class of waveguide because of the complex nature of the electric field due
to gain guiding and the lack of left-right inversion symmetry of the waveguide. We
will explore this point further in §5.12.

Finally, note that both the v = 1 and v = 2 supermodes have appreciable
intensity over approximately one half the array, thus indicating that although gain
guiding has reduced the effective phase mismatch between the channels, there is
still too large a degree of phase and gain mismatch present. Although the mismatch
between the channels could be reduced by decreasing the variations in the widths
of the waveguides, as is pointed out in §4.2(a), there is a practical lower limit
on the the attainable photolithographic resolution which makes this difficult, and
especially so for proton isolated lasers. We therefore consider another method of
reducing the channel mismatch by increasing the interchannel gain. This is also
advantageous from the point of view of promoting phase locked operation of the
array.> Now, however, we see that there are at least two additional advantages
to beAderived from an enhanced interchannel gain. Firstly, the phase and gain
mismatch between adjacent channels will be reduced (because the fields of the
isolated lasers will be less well-confined, and hence less sensitive to variations in

the width of the laser). This should also cause the mode to spread out over more
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of the array, thus making more effective use of the gain distribution. Secondly,
if we recall that the twin lobed antisymmetric supermode is favored over the
single lobed fundamental supermode because it has nulls in the lossy interchannel
regions, we might surmise that increasing the interchannel gain will tend to favor
the fundamental supermode more than it will the antisymmetric supermode.

Figure 4.11a shows just such a waveguide. This waveguide is identical to that
of Figure 4.10 except that the interchannel gain has been increased from —200cm ™!
to transparency (Ocm"l). When we examine the theoretical farfield patterns of
this waveguide, we immediately receive another surprise, this time rather pleasant:
whereas in all of the waveguides we have studied so far only the fundamental mode
has the desired single lobed farfield pattern, we now find many modes with single
lobed farfield patterns! Understanding how and why this come about will lead us
down some exceedingly interesting mathematical paths in the next chapter.

Figure 4.11b shows that one possible exception to this pattern is the v = 5
supermode, which is quite unlike the other supermodes plotted in Figure 4.11
because it alone has a twin lobed, nearly symmetrical, farfield pattern. The reason
that this mode is so different from the others may be best understood in the light
of §4.3(a), where we showed that due to the lossy unpumped GaAs active region
at the edges of the array, it is possible to consider a strongly coupled array (i.e.,
one with a large interchannel gain) as either an array perturbed by a box (“array
plus box” picture) or as a box waveguide perturbed by an array (“box plus array”
picture). In the case of a uniform array, we remarked that it was immaterial which
description is used, although the “array plus box” description is probably a little
better.

However, it is clear from Figure 4.11b that the effect of the small nonuni-

form array perturbation, while only slightly affecting the nearfield patterns, has
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FIGURE 4.11 Supermodes of a five-element strongly coupled gain guided chirped array (same
as Figure 4.10 but with the interchannel gain set to transparency (Ocm™1). (a) gain profile (b)
intensity nearfield and farfield patterns (c) modal diagram (d) phase plots for the v =1 andv =5
supermodes. Note that all the farfield patterns except that of the v = 5 supermode are single
lobed.
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introduced a radical change in all of the farfield patterns save that of the v = 5 su-
permode. We note that the spatial frequency of the nearfield intensity distribution
for the v = 1...4 box modes are non-resonant with that of the perturbation, while
the v = 5 mode, having as many peaks as there are array elements, is resonant
with the array structure. In a manner entirely analogous to the uniform array
case of §4.3(a), this explains why the v = 5 supermode has the highest modal
gain of all the waveguide modes. When we compare the strongly coupled uniform
array of Figure 4.7b with the strongly coupled asymmetric nonuniform array of
Figure 4.11, we see that the asymmetrical nature of the gain perturbation alters
the character of the nonresonant box modes by suppressing one of the twin lobes
of the farfield pattern. However, the asymmetric gain perturbation is incapable
changing the character in the resonant v = 5 mode so that this mode has the usual
twin lobed farfield pattern. We therefore see that, unlike the strongly coupled uni-
form array of Figure 4.7b, which was better described as an array perturbed by
a box, the strongly coupled nonuniform gain guided array must be thought of
in terms of a box waveguide perturbed by the array. This will be true for any
strongly coupled gain guided array: whatever the array design, the interaction of
the array and box modes cannot be ignored.

Given our quest to design an array with a single lobed farfield pattern, the
discovery of a means of supressing one lobe of a twin lobed farfield pattern is an

exceedingly interesting one.
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(b) Chirped Arrays of Gain Guided Lasers: Ezperimental

At this point in our work, a rather fortuitous accident occurred. We noted in
our discussion of numerical techniques in §2.7 that it was important to find all
the modes of a waveguide, and especially so for the mode with the highest modal
gain (because that mode will be the lasing mode). Unfortunately, the automated
root finding routine in the MODES program described in §2.7 occasionally misses
roots of the dispersion equation (2.7.13), and in fact it first missed finding the
v = 5 mode discussed above. It therefore seemed (erronously, as it turned out) as
if all the modes of the strongly coupled gain guided chirped array had the desired
single lobed farfield pattern, and so we therefore decided to fabricate a chirped
array of gain guided lasers.

Figure 4.12 presents a cross-sectional schematic diagram of two such nonuni-
form gain guided proton implanted chirped arrays in which the damage created
by the implanted protons creates the high resistivity regions that separate the
laser channels. Two channel configurations were used. In the first® (pattern A in
Figure 4.12a), the widths of the laser channels vary from 8um to 3 pm in steps of

1pm with 5um between channels.
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FIGURE 4.12 Schematic diagram of a (a) weakly and (b) strongly coupled proton implanted
chirped array.
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For the second configuration’ (pattern B in Figure 4.12b), which is essentially
the same as the first but allows enhanced interchannel coupling, the widths of
the laser channels vary from 8um to 5um in steps of 0.5um with 2.5um between
channels. The width of each laser array was approximately 60um.

To fabricate the array, four layers were grown by molecular beam epitaxy
(MBE) on a ntGaAs substrate (S¢ doped, 2 x 1018¢m™3). The composition and
thickness of the layers are as follows: n Gag gAlg 4As lower cladding layer (2.0um
thick), S7 doped, 3 x 1017cm"3; undoped GaAs active region (0.15um thick);
p GaggAlg4As upper cladding layer (1.8um thick), Be doped, 3 x 107 em 3,
pTGaAs cap layer, (0.2um thick), Be doped, 1 x 1018¢m 3. Immediately after
growth a single contact of Cr/Au was deposited to form the p contact. Thick
photoresist was patterned to define the array, and protons were implanted to define
the laser channels. Various proton implant energies were used to demonstrate the
importance of strong interchannel coupling (i.e., gain) for achieving single lobed

016¢m—3. After implantation, the

farfield operation; dosages were typically 3 x 1
photoresist was removed, the devices were lapped to ~ 75um, AuGe/Au was
deposited to form the n contact, and the contacts were annealed at 380°C for 20
seconds in an Hp atmosphere. Devices were then cleaved into bars ~ 250um long
and tested under low duty cycle, pulsed conditions.

The interchannel gain in a chirped array of proton implanted lasers may be
conveniently varied by changing the depth (energy) of the proton implantation; a
smaller implant energy increases the distance between the bottom of the insulating
proton damaged regions and the active layer. If the proton penetration depth
does not extend to the active layer, current will spread into the regions between

the laser channels, thus increasing the interchannel coupling (gain). For a given

implantation pattern, it is therefore possible to vary the interchannel coupling
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from its minimum value (deep implant, minimum interchannel gain) to a maximum
value (shallow implant, maximum interchannel gain). The maximum interchannel
gain is determined by the envelope function for the spatial gain distribution.

We remark that our early work® used wafers grown by liquid phase epitaxy
(LPE) while later work’ utilized wafers grown by molecular beam epitaxy (MBE).
Better results were obtained with the MBE grown wafers; we attribute this to the

greater uniformity of the MBE process.
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FIGURE 4.13 Experimental farfield patterns for (a) weakly and (b) strongly coupled proton
implanted chirped arrays. Note the importance of a high interchannel gain.

The farfield patterns just above threshold for an array with small interchan-
nel gain (Figure 4.12a, pattern A, deep implant of 160KeV, 0.5um spreading

thickness), and an array with very much larger interchannel gain (Figure 4.12b,
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pattern B, shallow implant of 80KeV, 1.1um spreading thickness) are shown in
Figure 4.13a and 4.13b, respectively. Notice that, as expected from the model
of Figure 4.10, the farfield pattern of the deeply implanted array is multilobed.
However, Figure 4.13b shows that the farfield pattern of the shallowly implanted,
strongly coupled array is a very narrow, single lobed beam.

Figure 4.14 shows the experimental farfield patterns at various current levels
for two shallowly proton implanted chirped arrays from the same wafer. Fig-
ure 4.14a demonstrates a single lobed, very narrow diffraction limited beam at
approximately 1.31;, while Figure 4.14b demonstrates high power (450mW into
31° at 5.3I;) operation. Both beams are emitted at an angle of about 4° with
respect to the facet normal in the direction of the smaller stripes. At high power,
the single lobed beams broaden slightly, and some power starts to appear in a
sidelobe at —4°. These effects will be discussed in Chapter 5.

We have therefore finally achieved our goal of creating a high power phased

array with a single lobed farfield pattern.

§4.5 Tailored Gain Chirped Arrays

After achieving single lobed operation of a strongly coupled proton implanted
chirped array, we carefully rechecked the theoretical results of §4.4(a) by using
the CONTOUR program of §2.7 and discovered that we had missed the v = 5
mode which had the highest modal gain and a twin lobed farfield pattern! We were
now in the curious position of having developed a theory which predicted that our
array should not work — only to find that did!

We noted in §4.4(a) that the v = 5 mode has the highest modal gain and the
twin lobed farfield pattern because it is “resonant” with the array perturbation,

and therefore excites the v = 5 “box” mode. This higher order mode will always be
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FIGURE 4.14 (a) Diffraction limited operation at 1.31;, and (b) high power operation at 5.3I3;
of a proton implanted chirped array with a high interchannel gain.
favored as long as there is less gain in the interchannel regions than there is in the
channel regions. The only parameter left in our model which might be changed is
the spatial gain envelope function. Up until now, we have assumed that the peak
gain in each laser was identical; the “gain tailoring” effect described in §4.4(a)
resultea from our use of the effective index method to analyze a two-dimensional
waveguide in terms of a simpler one-dimensional slab waveguide.

We are greatly indebted to Dr. Shlomo Margalit for pointing out that it was

quite possible that the spatial gain profile across the array was not uniform as we
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had first assumed. In the proton implanted chirped array of Figure 4.12, each of
the laser channels share common contacts and are thus electrically connected in
parallel. The voltage drop across all the lasers is the same and hence, to a first
approximation, the current density flowing through each laser is also. It is known
that narrower proton implanted lasers have larger threshold current densities than
wider lasers. This effect has been described in terms of a “leakage current”® and
implies that, when the array is operated below threshold and for a given current
flowing through the entire device, the wider lasers will be closer to threshold than
the narrower ones. In other words, the gain will be greater under the wider stripes

than it is under the narrower ones.

(a) Tailored Gain Chirped Arrays: Ezperimental

The gain tailoring effect in a proton implanted chirped array is confirmed by
an examination of the nearfield spontaneous emission pattern just below thresh-
old which makes visible the spatial gain profile across the array. Figure 4.15a
shows the spatial gain profile in the deeply implanted array of Figure 4.12a, while
Figure 4.15b does the same for the shallowly implanted array of Figure 4.12b.
The considerably greater light intensity under the wider stripes indicates that the
gain is greater there than it is under the narrower stripes, thus making visible the
nonuniform gain profile across the array.

The weak interchannel coupling due to the deep implant in Figure 4.15a is
evidenced by the large modulation of the spontaneous emission pattern which
results from the well isolated lasers, while the very strong interchannel gain of the
shallowly implanted laser in Figure 4.15b shows very little, if any, modulation in

the spontaneous emission pattern.
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FIGURE 4.15 Spontaneous emission pattern showing gain tailoring in (a) weakly coupled (b)
strongly coupled proton implanted chirped arrays.

We have therefore discovered a very effective means of intentionally control-
ling the spatial gain profile within a proton implanted laser array; such lasers
will be referred to as tailored gain semiconductor lasers. Evidently, the effect of
gain tailoring in the strongly coupled chirped array is sufficient to overcome the
propensity to excite the twin lobed box modes, thus yielding the desired single
lobed farfield pattern of Figure 4.13b. This is a result of great importance, and
understanding the mechanism behind the suppression of the twin lobed farfield

patterns will form the bulk of the remainder of this thesis.
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(b) Tailored Gain Chirped Arrays: Theoretical

We now need to incorporate gain tailoring into our waveguide model. The
most important new parameter to be determined is the spatial gain gradient. This
parameter may be estimated by noting that the experimental results indicate that
light is emitted over the entire width of the array, which implies that the low gain
edge of the array is pumped at least to transparency. The value of the gain at the
high gain edge of the array is then fixed by the requirement that the modal gain
of the lasing mode be equal to the mirror losses.(81%) The only other parameter
needed is the value of the gain in the interchannel region. This is not an easy
parameter to estimate either experimentally or theoretically; however, we will see
that of the three it is the least important because we will want it to be as large as
possible.

We have discussed at length several advantages of a high interchannel gain,
among them a decrease in the phase mismatch parameter(§4'4(“)) and an improve-
ment in the phase locking characteristics of the array.> We now add one more.”
Since the farfield pattern of the array is given by the Fourier transform of the
device’s nearfield pattern, and the power radiated into the central lobe is propor-
tional to the Fourier coefficient with zero spatial frequency (i.e., the DC term), it is
clearly desirable to make the nearfield pattern of the array as uniform as possible.
This may also be achieved by strongly coupling the array elements. This second
point is illustrated in the theoretical waveguide models of Figure 4.16, which are
used to predict the theoretical intensity nearfield and farfield patterns of the lasing
supermode in a tailored gain chirped array 60um wide. Figure 4.16a models an
array with small interchannel gain, and Figure 4.16b an array with large inter-

channel gain. The laser channel widths varied from 8um to 5um in steps of 0.5um.
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FIGURE 4.16 Theoretical nearfield and farfield patterns for the predominant lasing mode in a
(a) weakly and (b) strongly coupled tailored gain chirped array with the antiguiding parameter
b = 3. (c) shows the same mode for a truly tailored gain broad area laser in which there is no
trace of the array structure. Note that increasing the interchannel gain decreases the amount of
power radiated into the sidelobes, with the natural limit of this process being the tailored gain

broad area laser shown in (c).
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The interchannel thickness was 2.5um. These dimensions correspond to the device
shown schematically in Figure 4.12b.

Up to this point, we have considered gain guided lasers in which there is no
variation in the real part of the spatial index of refraction. In actual devices,
however, there is an approximately linear relationship between the value of the
gain at any point in the laser and a depression in the real part of the index of
refraction profile; this effect is known as the antiguiding effect.(81-5) 1t is usually
assumed that this ratio, referred to as the antiguiding factor b, is a constant which
is approximately equal to three. (An experimental determination of this ratio will
be made in §5.13, where we find b = 2.5 + 0.5.) Including the antiguiding factor
does not appreciably change the results of this chapter. However, since we are
now attempting to make a simple model for a working device, we will henceforth
incorporate this parameter into our waveguide models.

Figure 4.16 demonstrates how increasing the interchannel gain decreases the
spatial modulation of the nearfield pattern, with the result that the farfield pat-
tern becomes increasingly single lobed. Figure 4.16a shows that a tailored gain
chirped array with small interchannel gain (well defined individual laser channels)
will not have a single lobed farfield pattern. On the other hand, Figure 4.16b
illustrates that a device with large interchannel coupling will have a single lobed
farfield pattern 1.5° wide. The experimental single lobed diffraction pattern for
the shallowly implanted chirped array of Figure 4.13b is thus diffraction limited.

Figure 4.16¢ shows the limiting case of a tailored gain chirped array in which
the iﬁtercha.nnel gain has been made so strong that all traces of the array — and
the sidelobe — have disappeared. Obviously, since the gain tailoring effect in a
proton implanted laser depends upon chirping the widths of the array elements,

Figure 4.16c is an idealization which cannot be achieved by the methods of this
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chapter. We will fabricate and analyze such a true tatlored gain broad area laser
in Chapter 5.

The theoretical nearfield and farfield patterns for the shallowly implanted
chirped array of Figure 4.16b are shown in Figure 4.17. Unlike all the other
waveguides we have previously encountered, the farfield patterns of all the modes
of this waveguide are single lobed. It therefore no longer matters whether or not
the “fundamental” mode has the highest modal gain. This point will be further
discussed in Chapter 5.

Notice also that the fundamental v = 1 mode has a nearfield pattern which is
strongly localized towards the high gain side of the array and a very wide farfield
pattern much closer to 0° than that of the other modes. Despite the fact that this
mode has the highest modal gain, experimental farfield patterns corresponding
to this mode have not been observed. We suggest three reasons for this. First,
the narrow mode width causes this mode to saturate rapidly, thereby reducing
its saturated modal gain relative to that of the other modes. Second, the v = 1
mode does not utilize the gain medium as effectively as the broader high gain
v = 3 mode does and as a result it will contribute less power to the output beam.
Finally, there can be no step discontinuity in the spatial gain profile in an actual
device. The model of Figure 4.17a therefore is not a good one for that mode.
We therefore refer to the v = 3 mode as the “principal” lasing mode and will
henceforth ignore the v = 1 mode.

Notice that unlike the uniform gain box waveguide of Figure 4.7c in which the
mode discrimination between the the fundamental and the higher order modes
is less than lcm™!, in the shallowly implanted tailored gain chirped array the

mode discrimination between the principal v = 3 and v = 4 modes is 9cm™L.
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FIGURE 4.17 Theoretical supermodes of the strongly coupled tailored gain chirped array of
Figure 4.16b (a) waveguide model with the antiguiding factor b = 3, (b) nearfield and farfield
patterns, (c) modal plot, and (d) phase variations for the nearfield patterns. Note that all modes

have single lobed farfield patterns.
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Near threshold (where the effects of gain saturation are less important) a strongly
coupled tailored gain array will lase in predominantly one supermode.

Figure 4.17d shows that the phase fronts of both modes are nearly linear and
tilted with respect to the waveguide axis. This leads to the off-axis beam emission

§5.11) Furthermore, the phase front curvature of the fundamental mode of

angle.(
the tailored gain chirped array of Figure 4.17a is much less than that of the uniform
array of Figure 4.6, thus implying a possibly less astigmatic output beam. This
comes about because less power flows from the high gain channel regions into the
low gain interchannel regions of a strongly coupled array than in a weakly coupled
device with a lossy interchannel region.

Finally, Figure 4.17b shows that the farfield patterns of the modes of the
strongly coupled tailored gain chirped array have single lobed farfield patterns
only slightly displaced from that of the fundamental. This is a direct result of
the complex nature of the electric field and the lack of left-right symmetry in
the asymmetric structure of Figure 4.17a and will be extensively discussed in
Chapter 5. From a practical point of view, however, this is an important result
because when the array is operated well above threshold, gain saturation will
cause higher order modes to lase. In any symmetric waveguide, or any real index
waveguide, these modes emit power on both sides of § = 0,(§5'12) thus leading
to rapid degradation of the farfield pattern. In a strongly coupled tailored gain
chirped array, however, the farfield pattern of the higher order modes are all single
lobed and only slightly displaced from the fundamental, so that when these modes
lase the effect will be to merely broaden the beam slightly and cause a small shift

in the emission angle. These predictions are confirmed by the experimental results

of Figure 4.14.
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§4.6 Tailored Gain Phased Array or Broad Area Laser?

Throughout this work, we have emphasized the importance of a high inter-

channel gain in a phased array laser. In summary, the high interchannel gain

(1)
(2)

enhances the ability of the array to operate in a phase locked mode;?

reduces the phase and gain mismatch between nonidentical waveguides, thus
causing the optical field to spread out over a larger volume, thereby potentially
increasing the power output and decreasing the beamwidth;(§4'4(“))

decreases the tendency of the array to operate in a high order mode with a
twin lobed farfield pattern;(§4'4(“))

decreases the amount of power radiated into the sidelobes in a tailored gain
array.(§4'5(b)) In fact, as the experimental multilobed farfield pattern of the
deeply implanted array with small interchannel gain of Figure 4.13 shows,
a high interchannel gain is cructal to achieving single lobed operation in a
tailored gain chirped array.

reduces the phase front curvature, thus potentially reducing the astigmatism
of the output beam. (§45())

may increase the reliability of the array. If any laser element in a weakly
coupled array fails, the two halves of the array are effectively decoupled, and
will be unlikely to operate in a phase locked mode. This problem is reduced in
a strongly coupled array because there will be coupling between second nearest

neighbors as well.

It is interesting to note that although the schematic diagrams of Figure 4.15b

superficially resemble those of an array, examination of the gain profiles via the

spontaneous emission patterns below threshold reveal that the effect of the array

has been nearly, if not completely, obliterated by current spreading in the upper
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cladding layer. Therefore, it is actually better to refer to such a device as a tailored
gain broad area laser than as an array. We will extensively explore this topic in
the next chapter.

Finally, the work of Welch, Scifres, et al.191! should be mentioned. We uti-
lized the proton implanted chirped array structure to provide gain tailoring, and
achieved large interchannel gains by the simple expedient of a shallow proton im-
plantation so that current spreading in the upper cladding layer created gain in
the active layer between the array elements. Welch and Scifres have also used
proton implanted chirped arrays to provide gain tailoring, but they achieved the
necessary high interchannel gain by means of an offset stripe structure that effec-
tively creates gain in the interchannel region. A schematic view of their device is
shown in Figure 4.18a&b, which is reproduced from their work.

As shown in Figure 4.18¢c, they demonstrated that best results were obtained
when the length of the center section of the laser was equal to the length of the two
offset end sections.!® Thus, there is effectively no distinction between the channel
and interchannel regions because the total integrated gain along the length of the
laser is (approximately) the same in the center channel regions as it is in the
interchannel regions. This indicates that their device also resembles a tatlored
gain broad area laser more than it does an array of individual lasers, providing
independent confirmation of our own work. Figure 4.18c demonstrates that the
published description of their device as an “array” is actually a misnomer. Like
our own version, it is more properly referred to as a tailored gain broad area laser
and not as an array. We remark in passing that we can see no advantage to the
offset stripe version of the proton implanted chirped array over our own shallowly

implanted version, and especially so since the presence of lossy unpumped regions
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FIGURE 4.18 “Offset Stripe” geometry tailored gain chirped array. (a) top view showing offset
stripe pattern of proton implantation (b) side view showing chirped structure (c) experimental
farfield patterns. When the length of the center section equals the length of the two end sections,
there is effectively no distinction between the channel and interchannel regions, making the device
resemble a broad area laser more than an array.

can only increase the device threshold relative to that of our own version of the

device.



~ 155 ~

§4.7 Summary of Chapter 4

§4.7 Summary of Chapter 4

To summarize: one way to achieve single lobed operation in a semiconductor
laser array is to meet three criteria: (1) the fundamental supermode must be
spatially segregated from the other supermodes (e.g., by chirping the widths of
the lasers); (2) the gain profile must be tailored so as to favor the fundamental
supermode (e.g., in a proton implanted chirped array); and (3) the interchannel
coupling must be sufficiently increased so as to bring about single lobed operation
(e.g., by shallow proton implantation in a tailored gain chirped array — really a

tailored gain broad area laser).
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CHAPTER

FIVE

Tailored Gain Broad Area Lasers

God created man simple;
man’s complez problems are of his own devising.

—Ecclestiastes 7:30

§5.1 Introduction

As we have shown in Chapters 1 to 4, conventional broad area semiconductor
lasers with uniform spatial gain profiles and widths greater than ~ 10um have
very wide, poorly characterized, and unstable farfield patterns many times the
diffraction limit. These undesirable farfield patterns result from the poor mode
discrimination between the fundamental and higher order lateral modes, and the
presence of uncontrolled filamentation.(§1-2(a))

One method for achieving high power semiconductor laser operation is to
place many individual lasers in close proximity to form a phase locked laser
array.(gl'z(c)) Although the filamentation problem has been suppressed in an ar-
ray, the lateral mode problem remains. The well-known undesirable twin lobed
farfield pattern of a uniformly spaced array of identical lasers (Figure 1.6) comes
about because the lossy interchannel regions in the uniform array cause the highest
order supermode to have the highest modal gain, and this mode has a twin lobed
farfield pattern.(§4'1) In principle, fundamental mode operation in an array could
be achieved by chirping the widths of the array elements so that the fundamental

mode is localized in a different spatial region than the higher order modes.(84.2) 1f
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the gain profile within the laser is then tailored to match the intensity pattern of
the desired fundamental mode, the fundamental mode will be the preferred lasing
mode at threshold, and the desired single lobed farfield pattern will be obtained.

In an index guided laser, the electric field is determined by the spatial de-
pendence of the variation in the real part of the refractive index, and the modal
gains are then determined by the overlap between the electric field and the spa-
tial gain distribution. In Chapter 4, we explored the idea of a real index guided
chirped array which achieves fundamental mode operation by spatially segregating
the fundamental from the higher order modes. (§4:2) Unfortunately, the fundamen-
tal and technological limitations of the real index guided chirped array structure
make this structure very difficult, if not impossible, to fabricate.(§4-2(a)) However,
by taking advantage of the fact that in a gain guided laser the spatial gain pro-
file determines both the electric field as well the modal gain, we demonstrated a
single contact tailored gain array of semiconductor lasers in which gain tailoring
was achieved by chirping the widths of the proton implanted laser elements com-
prising the array.(§4'4(b)) Subsequently, we showed that the desired single lobed
farfield patterns could best be obtained in devices in which the interchannel gain
had been made so strong that the distinction between an array and a broad area
laser became blurred.(§46) The proton implanted chirped array structure provided
gain tailoring, while the shallow proton implantation provided a large interchannel
gain.

Nevertheless, it is possible that some residual effect due to the chirped array
structure gave the improved results. In §5.2 we will demonstrate the “halftone
process” of achieving gain tailoring which does not use an array geometry. The
halftone process works by varying the fractional coverage of injecting (metal to

ptTGaAs) contact relative to Schottky blocking (metal to pGaAlAs) contact over
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the surface of the laser. We will obtain single lobed diffraction limited beams from
such tailored gain broad area lasers 40um wide.

We will also show in §5.9 that the highly nonuniform gain profile made possible
by either tailored gain proton implanted chirped arrays or in tailored gain broad
area lasers plays an important role in the suppression of the lateral mode control
problem in these devices. It may also possibly contribute to the suppression of the
filamentation problem as well. In this thesis, however, we restrict our attention
primarily to the analytic study of the (unsaturated) optical eigenmodes of a linear
asymmetric tailored gain waveguide, leaving the complicated subject of the above
threshold behavior (e.g., filamentation problem) of these devices for further study.

To analyze asymmetric ramp wa.veguides,v we make use of the method of Path
Analysis introduced in §2.6(c), first considering the somewhat simpler case of a real
index guided waveguide with a linear variation of the refractive index in §5.3. How-
ever, it is for the complex asymmetric tailored gain waveguides that the technique
of Path Analysis proves its elegance and power. We will find that by following the
path of the argument of the optical eigenfunction (in this case the Airy function)
throughout the complex plane,(§5'8) we will be able to determine all the important
properties of asymmetric tailored gain laser waveguides. In particular, we are able
to give simple closed form expressions for the eigenvalues, mode discriminations
(§5.9), nearfield patterns (§5.10), and farfield patterns (§5.11) using fairly simple
algebraic and geometric arguments.

We find that the linear asymmetric tailored gain waveguide has several unusual
properties that make it very different from either real index guided or symmetric
waveguides, thus making them especially interesting from both a theoretical and
a practical point of view. Unlike all real index guided lasers or symmetric gain

guided lasers in which higher order modes have nulls in their nearfield patterns
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and multilobed farfield patterns, the higher order modes of linear asymmetric
tailored gain lasers do not have nulls in their intensity nearfield patterns(§5.10),
and as a result also have farfield patterns that are all single lobed and only slightly
displaced from the fundamental (§5.11). Thus, when gain saturation at high power
operation causes several lateral modes to lase, the farfield pattern remains single
lobed, albeit with a slightly larger beamwidth. These unusual properties come
about as a result of the Stokes phenomenon,! which plays a prominent role in the
theory of the asymptotic approximations of complex valued functions. In §5.12
we discuss some general Fourier Transform relationships which relate a device’s
geometry to its farfield pattern.

The beam emission angle at threshold is sensitive to the exact value of the an-
tiguiding parameter,? and in §5.13 we are able to make use of asymmetric halftone
tailored gain lasers with varying spatial gain gradients to make a measurement of
this important parameter.

Finally, in §5.14, we briefly discuss the effects of gain saturation on the farfield
patterns, and touch upon some design criteria and engineering tradeoffs for prac-

tical tailored gain broad area lasers.

§5.2 Tailored Gain Broad Area Lasers: Experimental

In our discussion of proton implanted lasers in §2.2(e) we pointed out that
current into the GaAs crystal is either fully injected (into the pTGaAs cap layer)
or completely blocked (by the proton implantation); there is no simple way to
achieve intermediate values of injected current. In §4.5(a) we discovered that gain
tailoring could be achieved in a proton implanted chirped array by making use
of the “leakage current” effect, but that the desired single lobed farfield patterns

could be achieved only if the interchannel gain was very large. We did this by
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means of a shallow proton implantation. Obviously, the leakage current model is
inadequate for explaining the gain tailoring effect when the implant depth is very
small.

A moment’s reflection will reveal that our goal of achieving intermediate values
of the gain using contacts that either fully inject or completely block current flow
is conceptually identical to the problem that the graphics artist faces when he
(or she) desires to print a photograph with many shades of grey in a newspaper
using black ink on white paper. We therefore consider solving our problem the
same way graphics artists solve theirs: by means of a halftdne pattern. A halftone
pattern such as that of Figure 5.1 achieves the illusion of grey tones by varying
the fractional surface coverage of black ink to white paper over the newspaper’s

surface by using many very closely spaced dots of varying size.

®RM ATT@ | No. 7278  uonloecn
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FIGURE 5.1 Graded halftone screen obtained from an artist’s supply store. This pattern was used
to create the “halftone” laser of Figure 5.2 and Figure 5.3.

The eye’s limited spatial resolution causes the discrete nature of the dot to
be smeared out so that the illusion of a uniformly varying grey scale is created.

A quick glance at any newspaper or magazine photograph fully illustrates the
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versatility of the halftone process for achieving complicated patterns with varying
shades of grey.

We did something very similar to this when we made the shallowly implanted
chirped array. Another way of thinking about this structure would be to real-
ize that for a very shallow proton implantation depth it is the fractional surface
coverage of injecting to noninjecting contact that varies over the surface of the
chirped array. For example, in the strongly coupled array of Figure 4.12b the
fractional surface coverage of injecting contact varies from 8782—5 ~ 80% on the left
to 5157—5 =~ 70% on the right. This is very similar to the idéa of a halftone pattern,
but unfortunately the thick photoresist required to block the protons limits the
usefulness of this method to very simple patterns such as those of Figure 4.12.

Much smaller feature sizes, on the order of 1lum — 2um, may be obtained by
utilizing a halftone pattern in conjunction with Schottky isolation that has been
described in §2.2(e). The practical difficulty with this method lies in obtaining
the desired pattern of dots. Linearly graded halftone may be readily obtained at
any artist’s supply store for only a few dollars. A typical pattern is illustrated in
Figure 5.1. The photolithographic mask used to create the microscopic halftone
pattern on the surface of the wafer was made by photoreducing the graded halftone
screen of Figure 5.1 by 250x.

A plan view of an asymmetric tailored gain broad area laser based on the
halftone method for achieving gain tailoring® is shown in Figure 5.2a. The stan-
dard four layer heterostructure was grown by molecular beam epitaxy (MBE). The
thickness of the upper cladding layer has been increased to enhance lateral carrier
diffusion in the region between the pTGaAs cap layer and the active layer. The
layers were grown on an nt GaAs substrate (Si doped, 2x10¥cm™1). The compo-

sition and thickness of the layers are as follows: n Gag.7Alg.3As lower cladding layer
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FIGURE 5.2 (a) Plan view of a “halftone” asymmetric linear tailored gain broad area laser, (b)
waveguide model showing nonuniform spatial gain profile, and (c) top view of a halftone laser
showing direction of output beam. The black dots on the surface of the laser represent injecting
ptGaAs while the white areas represent noninjecting GaAlAs. The varying fractional surface
coverage of injecting to noninjecting contact creates a controlled nonuniform spatial gain profile
within the device.
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1.5um thick, S¢ doped, 3 x 107cm™!; active region composed of a four layer multi-
ple quantum well (MQW) of 200 Angstroms of GaAs separated by 200 Angstroms
of Gag7Alp3As; p Gag7Alp3As upper cladding layer 3.0um thick, Be doped,
3 x 107ecm™L; pt Gads cap layer, 0.2um thick, Be doped, 1 x 108cm™1.

The 0.2um ptTGaAs cap layer was etched away using H,S04:H209:H,70

1:8:40 according to the pattern of Figure 5.1. As described in §2.2(e), the

metal to pTGaAs interface forms an injecting ohmic contact, while the metal to
pGag.7Alg 3As forms a Schottky blocking contact. The black areas of the pattern
block the etch, leaving the injecting p™GaAs cap layer, while the white areas on
the mask allow the etch to remove the cap layer, leaving the pGag 74l 34s block-
ing contact. The current injection density (and hence gain) thus decreases from
left to right with the decrease of fractional coverage by pt GaAs. The enhanced
lateral carrier diffusion provided by the thick upper cladding layer smears out the
effects of the discrete dots and makes for a smooth, nonuniform spatial gain dis-
tribution within the active layer. Since the dot size varies linearly across the laser,
to a first approximation the gain profile varies linearly as well. Thus, halftone
tailored gain lasers provide a well-characterized means of experimentally studying
strongly asymmetric linear tailored gain waveguides.

Although the halftone laser of Figure 5.2a has only a one-dimensional variation
in the spatial gain profile, the same idea may be easily extended to create nearly
arbitrary two-dimensional spatial gain distributions within a broad area laser,
offering an entirely new degree of freedom to the designer of semiconductor lasers.
In such halftone tailored gain lasers, the nature of the halftone pattern, combined
with the enhanced current spreading in the upper cladding layer, removes all traces

of the array structure; such devices are truly broad area lasers, with the desired
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spatially nonuniform gain profiles controlled by the p™Gads dot density on the
surface of the laser.

Figure 5.2b shows a schematic waveguide model with a linear spatial gain
profile for the halftone tailored gain broad area laser of Figure 5.2a. Figure 5.2¢
shows a top view of the laser of Figure 5.2a, and schematically illustrates how the
output beams are directed at an angle © to the mirror facets in the direction of
the low gain side of the laser. As will be shown in §5.11, this is a direct result of
the asymmetric spatial gain profile.

The pulsed, low duty cycle nearfield and farfield patterns for the linear asym-
metric halftone laser are shown in Figure 5.3. This figure demonstrates that linear
asymmetric tailored gain halftone broad area lasers are capable of nearly diffraction
limited high power (~ 200mW into 2}°) single lobed farfield operation. Note also
that the farfield patterns are strongly asymmetric (the beam is emitted about 4°
off-axis), and that the beamwidth increases gradually at high power. The reasons
for this behavior will be discussed below.

The structure in the nearfield pattern at 3.2I;; in Figure 5.3a may be due to
either lateral modes, filamentation, or both. The detailed experimental resolution
of this question (by very careful measurements of the spectrally resolved nearfield
patterns)(§3‘5(°'i)'5'9) and the theoretical analysis of filamentation(81-2(29)) in tai-

lored gain broad area lasers are beyond the scope of this thesis.

§5.3 Linear Tailored Real Index Waveguide

We begin our analysis of tailored gain broad area lasers by first considering

the much simpler example of a real inder guided ramp waveguide with a refractive
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FIGURE 5.3 (a) Nearfield patterns and (b) high power single lobed farfield patterns for the

“halftone” laser of Figure 5.2. Note the nearly linear spatial gain profile as evidenced by the
spontaneous emission pattern at 0.71;.
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FIGURE 5.4 Modes of the asymmetric tailored real index ramp waveguide (a) refractive index
profile (b) intensity nearfield and farfield patterns (c) mode pattern.
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index profile described by
T —0o<z<0™
n(z) =< ng — okpz 0F <z < (5.3.1)
Ne Tt <z< o0
where n. is the (constant) index of refraction external to the waveguide, ng is the
index of refraction at £ = 07, and o is the gradient of the index of refraction
profile within the core region of the waveguide.
After substituting Equation (5.3.1) into Equation (2.5.4) and dropping the

term second order in z, the Helmholtz equation inside the guide becomes

d2
TaE+ kZ((nd — 1?) — 2nokgoz)E = 0 (5.3.2)

which has the solution
E(z) = a Ai(£) + bBi(&) E=p+uwr (5.3.3)

where a and b are real constants, Ai(£) and Bi(¢) are the Airy functions, and

K, 2 o
'w—g(’? “no)

w = k0(2n00‘)%

P= (5.3.4)

The secular equation yielding the eigenvalue condition may be found by match-

ing the boundary conditions at £ =0 and z = 8:(§5'6)

V7, Bilp) = Bi'(p)  /p,Bilp+wt) +Bi'(p+wl)

=0 5.3.5
VP Ai(p) — Ai'(p) /b, Ai(p + wl) + Ai'(p + wi) ( )
where
k(2) 2 2
Pe = J(T] - ne) . (5.36)

Figure 5.4b presents the intensity nearfield patterns for the first five modes of
the tailored real index ramp waveguide shown in Figure 5.4a. Notice that, like the
real index and box waveguides of Figure 2.11 and 2.12, the higher order modes of

the real asymmetric linear tailored index waveguide all have nulls in their nearfield
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patterns, but unlike the box waveguides the peak intensity within the waveguide
gradually shifts from the high index side of the waveguide to the low index side.
This is similar to the real index guided chirped array of Figure 4.2, and may be
understood by using the method of Path Analysis(§2‘6(c)) to follow the path of the

argument £ of the Airy function along the real axis.

§5.4 Path Analysis of the Linear Tailored Real Index Waveguide

Before we make use of Path Analysis, it is necessary to determine which one
of the functions Ai(€) or Bi(¢) dominates the contribution to E(z) in Equa-
tion (5.3.3). (If both were equally important, it would not be possible to analyze
the waveguide in terms of any simple function, and the analysis would have to
be carried out numerically.) Figure 5.5 plots Ai(£) (solid line) and Bi(¢) (dashed
line), showing that along the negative real ¢ axis as ¢ — —oo, both functions
are sinusoidal with a gradually decreasing period and amplitude, while along the
positive real axis Ai({) decays exponentially and Bi(¢) grows exponentially.
Since E(z) must match to a decaying exponential outside the waveguide, the func-
tion Bi(¢) will not satisfy the boundary conditions and hence will not contribute
appreciably to E(z). (This point will be discussed in detail when we discuss the
asymmetric linear tailored gain waveguide in §5.8.) We can therefore approximate

the electric field inside the waveguide by

E(z) ~ Ai(¢) E=p+wz
a2 sin[3(-6)T + 7] £<0 (5.4.1)
%W—1/2£—1/4e—§63/2 £>0

where we have used the appropriate asymptotic approximation for the Airy

function.?
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1.5} Bi(x): exponential growth [

Ai(x): exponential decay

J i 1 i i 1 1 1
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FIGURE 5.5 Plot of Ai(£) and Bi(¢) along the real axis showing that Bi(¢) does not satisfy the
boundary conditions because it grows exponentially as z — oo.

We saw in §2.6(c) that each of the modes of the box waveguide could be asso-
ciated with a zero of the sine or cosine function, the parity condition determining
which function to associate with each mode. In the case of the linear tailored index
waveguide however, the boundary conditions require that all of the well-confined
modes be determined by the Airy function Ai(¢). Each mode is then associated
with a zero —ry of Ai(¢).

In a manner entirely analogous to the case of the box waveguide, for a well-
confined mode the path £ of the argument of the Airy function ¢ = p + wz

h

has one endpoint at at the r*" zero of the Airy function p = —ry and the other

endpoint at p+wf. The length of this line is |w£| with w given by Equation (5.3.4).
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The quantity w corresponds to the lateral wavevector k of the box waveguide in
Equation (2.6.5). Note that while |k| (and hence the length of £ for the box guide)
depends on the eigenvalue 7, for the case of the linear guide |w| is tndependent of
n: the eigenvalue dependence of the argument to the Airy function is contained
entirely in p. Thus, unlike the argument kz for the box waveguide,(§2'6(c)) for the
various modes of the real ramp waveguide the line £ translates along the real axis

but does not change its length.

v=| _
7\
~ N \ +
; \\ // \\ // \ ID (.U-e
vl . \
\_/ \_/ . \
p/-‘-‘ w4 >
N
o
> v=2
3 /r\ /‘\
+ A \
Q \ s v, N
S
<J

FIGURE 5.8 The path of the argument to the Airy function along the real axis for the first three
modes of the tailored real index ramp waveguide is shown by the heavy horizontal line. Compare
with the corresponding Figure 2.14 for the real index box waveguide.
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Figure 5.6 plots the intensity |Ai(£)| (dashed line), the path £ along the real
¢ axis (heavy solid line), and the mode shape (medium solid line) for the first
three modes of a real ramp waveguide. It is of particular interest to note that
the optical power of the fundamental mode is located to the far left of the guide
(at z = 0 and £ = p) due to the exponential tail of Ai(¢) when & = p+ wf > 0,
while the peak intensity for the higher order modes gradually moves to the other
side of the waveguide due to the (~$)1/4 amplitude dependence in the sinusoidal
approximation of Ai(¢) in Equation (5.4.1).

Path Analysis may be used to derive an approximate expression for the cut-
off condition for a mode. A guided mode given by Ai(p + wz) must match to a
decaying exponential at z = ¢, and this can occur only if the rightmost endpoint
of £ (£ = p + wf) lies to the right of the first zero of the derivative of Ai(¢) at
¢ ~ —1.02. The condition for the v** mode to be guided is thus |wé| +1.02 < —r,.
This condition is approximate because our assumption that one end of £ starts at
a zero of the Airy function is only satisfied for a well-confined mode, and this is

not true near cut-off.

§5.5 The Linear Tailored Gain Waveguide

If we allow the constants in Equation (5.3.1) to be complex numbers, the
solutions of the Helmholtz equation (5.3.2) are once again linear combinations of
the Airy functions, but now with a complez argument. For convenience, we split
ne and ng into their real and imaginary parts:

ne = ﬁc - ire/2k0
(5.5.1)
ng = ng — ZTO/ZICO -

The gradient of the complex index of refraction within the guide 0 < z < £ is

given by okg. o is a dimensionless quantity which plays a key role in determining
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the properties of the waveguide. It is a real number in a real index guided laser,
imaginary in a gain guided laser in which antiguiding has been ignored, and be-
comes complex when either intentionally introduced real index guiding is present
or in a gain guided structure in which the effects of antiguiding are included. It is

defined by

o = s(b—1) (s >0) (5.5.2)

where b is the antiguiding factor which relates the depression in the real part of the
index of refraction due to the presence of gain through the free carrier and band
edge effects. The antiguiding parameter b (sometimes referred to by R) has been
assigned values in the literature® between 2 and 6. In (85.13) we experimentally
measure b = 2.5. The real constant s is related to the guide parameters by

_To-Ty. 553

2kge

It should be noted that in this model there will always be a step discontinuity
in the index of refraction n(z) at the left edge of the guide z = 0, while there will
be a corresponding step discontinuity at the right edge of the guide z = £ only
if n, # ny = ng — okgl. The effect of the discontinuity in n(z) at the right edge
of the guide depends upon the magnitude of the discontinuity and also upon the
particular eigenmode as well as the width £ of the guide. Of course, in an actual
device there can be no real discontinunity in the spatial gain profile. However, since
it is only the value of the gradient which is important, to first order at least, the
discrepancy between the model waveguide and an actual device may be ignored.

The solution to the Helmholtz equation (5.3.2) is given by a linear combination

of the two Airy functions

E(z) = a Ai(p + wz) + bBi(p + wz) (5.5.4)
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where a and b are complex constants, and

2
p= Eq(n2 ~nd)

w? 0 (5.5.5)
w= ko(ZnOU)%

Recall that(85-49)the equation z = p + wz describes a straight line £ in the
complex z—plane with one endpoint at z = p and the other endpoint at z = p+w¥.

The length of this line is [w£|, but the line £ now no longer lies on the real axis.

—1%m{c}
Re{o}

Notice that the orientation of £ in the complex plane does not depend on either

The angle ¥ that £ makes with the real axis is given by ¢ = /w ~ %tan

the width of the waveguide or the gain gradient but only on the antiguiding factor.
For the case of index guiding with no gain, ¢ is zero. For the case of gain guiding,
with no index antiguiding (b = 0), ¢ may be written as an imaginary number 1 s
with s real:

o=—18 (pure gain guiding, s real) (5.5.6)

where s is related to the guide parameters by Equation (5.5.3). We can then write

W as

w = ko(2ngs)8(—i)3 . (5.5.7)

Each branch of the cube root gives rise to a physically meaningful mode, leading
to three distinct families of modes, which will be referred to as the (+) , (0) , and
(—) branches. Since fg < fg, ¢ is determined almost entirely by the cube root of
—1 which takes the values e_i’r/6, e‘is"'/6, and et*"/2, The angle v then takes on
the values +30°, and +90°. The inclusion of index antiguiding (b # 0) effects a

rotation in the complex plane; this will be discussed in §5.13.
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Once again, for a well-confined mode, the path £ will start near a zero of Ai(z).
Since the quantity w! is now a complex quantity, £ is no longer restricted to the
real axis. To determine its origin, the eigenvalue n is required. The normalized
eigenmodes will then be completely specified when the ratio of coefficients a/b is
known. Both of these quantities are determined by the boundary conditions which
require E and dFE/dz to be continuous at the edges of the guide and bounded at
infinity. If we require the field to decay exponentially as £ — —oo and match the
boundary conditions at the left edge of the guide, we may derive an expression for

the ratio a/b inside the guide:

a __VaBile) ~Bi(p) .
blz=0 VP, Ai(p) — Al (p) o
where the prime (') denotes a derivative with respect to z, and
_ kK a2
pe = —5(n" —ng) . (5.6.2)
w
Similar consideration at the right side of the guide leads to
Bi(p + wf) + Bi'(p + wt

VP, Bilp + wi) (o + we) (5.6.3)

bla=t /5 Ai(p+ wl) + AT (p + wl)
Inside the guide, the ratios (a/b)|,_, and (a/b)|;—¢ both describe the same linear
combination of Ai(z) and Bi(z). Setting them equal yields the eigenvalue equation
for n Equation (5.3.5). This technique for determining the secular equation is
reminiscent of the method by which the eigenvalue condition is derived in the
WEKB method.”
Equation (5.3.5) may be solved numerically for the eigenvalues 1. The electric
fields may then be determined using Equation (5.6.1)and (5.5.4). For comparison

with the box waveguides of Figures 2.11 and 2.12 and the real ramp waveguide
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FIGURE 5.7 High gain modes of an asymmetric tailored gain ramp waveguide (a) gain profile (b)
intensity nearfield and farfield patterns {c) modal plot. Note that all the nearfield patterns are
null-less and that the farfield patterns are all single lobed (cf. Figures 2.12and 5.4.
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of Figure 5.4, we present the equivalent tailored gain waveguide of Figure 5.7.
Only the first five modes with the highest 77 are shown. It is interesting to note
that while there is very little difference between real index and gain guided box
waveguides (Figure 2.11 and 2.12, respectively), comparison of Figure 5.7 with
that of the corresponding one for the real index waveguide of Figure 5.4 reveals a
striking difference between the two ramp waveguides. The higher order modes of
the real index waveguides have nulls in their nearfield patterns, while the tailored
gain guide modes do not. For real index waveguides, all higher order modes have
multilobed farfield patterns, but the farfield patterns of the tailored gain waveguide
have single lobed farfield patterns.

To understand these differences, we examine in detail the Airy functions of

complex argument.

§5.7 The Airy Functions of Complex Argument

In order to obtain simple analytical expressions for the eigenvalues, nearfield
patterns and farfield patterns in terms of elementary functions, it is necessary to
eliminate either Ai or Bi from Equation (5.5.4).

As we have shown in §5.4, along the negative real axis, Ai(£) resembles a
damped sinusoidal function with a gradually decreasing period, while along the
positive real axis Ai(¢) decays exponentially without oscillations or zeros. Simi-
larly, along the negative real axis, Bi(£) resembles a damped cosinusoidal function
with a gradually decreasing period, while along the positive real axis Bi(&) grows
exponentially without oscillations or zeros. However, as gain is introduced into
the waveguide, the mode paths deviate from the real axis and the eigenmodes of
this complex waveguide are determined by the analytic continuations of Ai(£) and

Bi(¢) into the complex z—plane.
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At this point we introduce the full first order asymptotic expansions to the Airy
functions which are valid throughout the complex plane. These approximations
will be seen to greatly facilitate the analytic treatment of linear tailored gain

waveguides. The leading behavior of Ai(z) and Bi(z) as |z| — oo is*

Al(2) ~ r U2 (—z)"V4sin(3(—2) T+ 5] T</le<iE 571
%—7(_1/2,2_1/46_%23/2 |lz| <m -
3
Bi(z) ~ 712 (—z)"1/4 cos[$(—2)% + I] T<lz< L (5.7.2)
r—1/2,—1/4,+32%/? L2 < T

The magnitude and phase of both Airy functions are illustrated over the com-
plex plane in Figure 5.8. Even though the approximations (5.7.1) and (5.7.2) are
strictly valid only as |2| — oo, we have found them (numerically) to be fairly ac-
curate even for |z| as small as 2 or 3. We see that Ai(z) has zeros only along the
negative real axis, grows exponentially as |z| — oo in the sectors § < |/z] < T,
and decays exponentially as |2| — oo in the sector |/z| < T. Bi(2) also has zeros
along the negative real axis (but at different locations than those of Ai(z)), as well
as along the lines /z = 13’5. Otherwise, Bi(z) grows exponentially everywhere as
|z| — oco. Unlike Ai(z), there is no sector in which Bi(z) decays exponentially as
z — 0o.

The various sectors described by Equations (5.7.1)and (5.7.2)are referred to as
Stokes regions;1the negative real axis and the lines /z = +% are the Stokes lines.
The Stokes regions play a crucial role in the analysis of asymmetric linear tailored

gain waveguides and will be discussed further in §5.8, and §5.10 to §5.12.
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FIGURE 5.8 Airy Functions of Complex Argument. Level lines for the magnitude of (a) Ai(z)
and (b) Bi(z); the arrows show the direction of increasing magnitude. Lines of constant phase for
(c) Ai(z) and (d) Bi(z); the arrows show the direction of increasing phase. The contours in (a) &
(b) differ by a factor of ten and by 7/4 in (c) & (d).
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In order to proceed with the theoretical analysis, it is necessary to deter-
mine which one of the terms a Ai(z) or bBi(z) provides the dominant contribution
to E in Equation (5.5.4). We therefore examine both the ratio a/b as well as
|Ai(z)] / |Bi(2)| for modes on the (+) branch. Since the modes on the (—) branch
are cut off due to the relatively small width of the waveguide of Figure 5.7, we will

make use of the wider waveguide of Figure 5.9 for the remainder of this work.

= fiy= 3.415
E *100 ° -~ =+60 cm!
O o
< «T,= -60 cm™
< -100
© <—120pm
-200 ~—I, =-200 cm!

FIGURE 5.9 Asymmetric tailored gain ramp waveguide used for illustrative purposes throughout
this chapter.

Using the root of (—i)}/3 = ¢~**/® which is appropriate for the this branch
along with (5.6.1) to compute the ratio a/b in the sector |Zz| < ¥ for the v** (+)

mode, we get

(+) 4 3
]%’: ~ 2 exp 3 {]w£]3/2 + Ep,,lwell/z (5.8.1)

This ratio is plotted in Figure 5.10 for a guide with a constant gain gradient of
approximately lem™! /um and varying widths £. The ratio a/b can approach a
value as high as 1012, suggesting that the contribution of Ai(z) to E completely

dominates that of Bi(z) for the first few modes of guides wider than about 50xm.
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1!0'2- E(x)=aAi(z)+bBi(z)
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FIGURE 5.10 Ratio of |Ai(z)] / |Bi(z)| for the first three modes on the (+) branch for guides of
different widths. To an excellent degree of approximation, the mode is determined almost entirely
by the behavior of Ai(2).

However, this ratio, by itself, is conclusive only when the magnitudes of the two
functions Ai(z) and Bi(z) are of the same order. Consequently, we must examine
the paths £ of the argument p+wz. The various paths taken by L for each branch
are shown superimposed on |Ai(z)| in Figure 5.11. One endpoint z = p (z = 0)
lies near a zero of Ai(z) and the other is in the sector |{z| < % where |Ai(2)] is
exponentially small. This merely expresses the fact that the modes of the wide

waveguide of Figure 5.9 are well-confined: the electric field is close to zero at the

edges of the guide.
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FIGURE 5.11 Path analysis for the asymmetric linear tailored gain ramp waveguide of Figure 5.9
(2) (+) & (=) branches, (b) (0) branch.

From Figure 5.8 we note that in the sector |{z| < %, |Bi(2)| is exponentially
large, so that its magnitude at z = p + wf is much larger than it is at z = p.
Consequently, its profile is not consistent with a well-confined mode. This explains
why the ratio a/b above is so large for the (+) modes. As the guide width £
is increased, the endpoint z = p + wf penetrates deeper into the Stokes region
|Z2z| < % and the increasing ratio a/b reflects the growing dissimilarity between
Ai(z) and Bi(z). Only when the endpoint 2 = p + wf lies near the Stokes line at
|/z|is = § does Bi(z) make a significant contribution to the eigenmode. Thus the
solution E,(,+) (z) of the Helmholtz equation can be expressed as a single term for
guides wider than some critical width £*, to be determined in §5.10.

The peak intensity within the waveguide occurs when the line £ is tangent
to a level line of Ai(z). For modes on the (+) branch this point lies near the
high gain side of the waveguide near z = 0, and so these modes have modal gains

higher than those on any other branch. Of these modes, the v = 1 mode has the
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largest spatial overlap with the lateral gain profile and hence will be the lasing
mode at threshold. As is evident from Figure 5.7, it also has the highest effective
index of any mode on the (+) branch and will henceforth be referred to as the
“fundamental” mode of the waveguide.

Similar arguments can be applied to both the (0) and (—) branches. The
paths £(—) with ¢ = +30° are also illustrated in Figure 5.11 and are similar to
L{+) except that now the zero of the Airy function occurs at z = p + wl. As a
consequence, these modes are concentrated in the lossy regions of the waveguide.

The path of the argument of the Airy functions for the (0) branch is plotted
in Figure 5.11b with ¢ = +90°. Unlike the previous two cases, Bi(z) plays a
much more prominent role on the (0) branch because the lines £(0) are nearly
symmetric about the real axis, and Ai(2) grows exponentially towards the Stokes
lines at £z = £% while Bi(2) decays. Since the electric field at the interface must
match to a decaying exponential that is bounded at infinity, Bi(z) better satisfies
the boundary conditions on the (0) branch than Ai(z) does, and hence plays a
much more important role in determining E. Due to the symmetry of Bi(z) about
the positive real axis, the nearfield patterns of these modes are approximately
centered within the waveguide. These modes therefore have a modal gain which is
between modes on the (+) branch and modes on the (—) branch. They correspond
to the (0) branch of Figure 5.11. We remark that this description of modes on the
(0) branch holds for the wide waveguides considered here but becomes considerably

more complicated for waveguides in which |wf| — 0.
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Once it has been determined that the contribution of Ai(z) dominates that due
to Bi(z) on the principal (+) branch, it becomes possible to derive very simple
analytical expressions for the mode effective indices and modal gains by recalling
that £ for the principal branch starts near a zero of Ai(z) and ends in the sector
of exponential decay. At the left edge of the guide E(0) = aAi(p), where p is given
by Equation (5.3.4). Setting p equal to one of the (real) zeros —r, of the Airy
function

o2 2
—Ty = py = ;—2-(171, —ng) (5.9.1)
and approximating (72 — n(z)) by 2ng(n, — ng) yields an expression for the v®

eigenvalue 7,:

1w (5.9.2)
~ng— ——r 9.
U 0 2n0 kg v
where the 1" zero of Ai(z) is approximately given by (Equation (5.7.1))
3 1 2/3
—r, o~ [5 <V—Z> r] vr=1,23.... (5.9.3)

After using the definition of w in Equation (5.3.4) for the case of gain guiding
with no index antiguiding (¢ = —is), taking the principal (+) branch of w, and
equating the real and imaginary parts we obtain an expression for n =  + 7 on

the (+) branch:

1
8 =m0 be
(5.9.4)
) 5 L V3
Ny =no -+ €y
2
where
$2 (13
ey — — ry (5.9-5)
2ng

and the parameter s is related to the guide parameters by Equation (5.5.3). We

therefore see that in the complex n plane, the mode structure is particularly simple:
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all the modes of the principal branch lie on a straight line emanating from the point
(fig , Ng) and making an angle tan~14/3 = 60° with the real axis. The modes are
spaced along this line according to the zeros of the Airy function, with the higher

order modes being more closely spaced together.

Since the modal gain '7,(,+) is related to 7, through v, = —2k¢7, (Equa-

tion (2.5.2)),
'7£,+) ~Tg— 2k0\/7§e,,
1/ (5.9.6)

g2
—— Ty

~ g — \/§k0

2ng
and 0 < r; < ry..., we see that the fundamental mode has the highest modal gain

and hence will be the lasing mode at threshold. At threshold, the modal gain '7§+)
of the fundamental mode must equal the mirror losses —TI'y, (scattering losses are
probably insignificant in a wide gain guided laser). Equation (5.9.6) may thus be
inverted to give the required peak gain I'g at threshold in terms of I'y, and the
gain gradient s. Equation (5.9.6) shows that the required peak gain at threshold
(i.e., inversion density) increases sublinearly with the gain gradient.

The mode discrimination between any two modes is given by
1/3

2
i B S (5.9.7)

A5 =400 =)~ V3K

2ng
where

8 = |ry — Tyt (5.9.8)

is the spacing between the zeros of Ai(£). The mode discrimination scales sublin-
early with the gain gradient, and is greatest between the fundamental v = 1 and
the next higher order v = 2 mode. Equation (5.9.7) is typically accurate to within
a few percent for wide waveguides.

Each lateral mode of the waveguide has a slightly different guide wavelength

due to the different effective indices of refraction 7. Spectrally resolved nearfield
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patterns(§3'5(c'i)) may be used to make visible the various lateral modes in a laser
operated above threshold. The wavelength separation between any two modes is

given by

A/\Sf) ~ é—g—
"o
2o

)
ng

lfu - 61/-+-1I

2
S
by

279

1R

In an entirely analogous manner, formulae for the propagation constants of
modes on the (—) branch may be determined by setting p + wf equal to a zero of

the Airy function:

kZ
—ry 2 py +wl = w—g(nﬁ —nd) +we. (5.9.10)

The the additional term wf and the (—) root of w lead to slightly different expres-

sions for the eigenvalues 17(—):

=(=) _ = V3
Ny 2ne—"'2—€u
(5.9.11)
2 1/3
AV 2T+ V3Bko |—| 10 -
2ng

As before, the approximations for the eigenvalues on the (—) branch lie on a
straight line, but this time they emanate from the point (7i;, fiy). The angle that
this line makes with the real axis remains 60°, so that it makes an angle of 120°
with the corresponding (+) line. Similarly, the modes are spaced along this line
according to the zeros of the Airy function, with the higher order modes being
more closely spaced together. In this case the » = 1 mode on the (—) branch has
the lowest modal gain of all the modes. We remark that Equation (5.9.11) is not

as accurate as Equation (5.9.6) for truncated waveguides in which ny # ng — okol
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because of the perturbation introduced by the truncated region at the lossy edge
of the guide. Modes on the (—) branch will not lase, however, so the error is
unimportant from a practical point of view.

Modes on the (0) branch have nearly constant modal gains and are composed
almost entirely of Bi(z). It is not possible to obtain simple closed form analytic
expressions for the eigenvalues for these modes. Once again, however, since they
have low modal gains and will not lase until much above threshold, the formulae
are not required.

We have confirmed these results using the numerical methods of §2.7. Fig-
ure 5.12a shows the mode diagram for the waveguide of Figure 5.9. Figure 5.12b
shows an enlargement of the boxed region of Figure 5.12a. Note that the spacing
of the modes on both the (+) and (—) branches are consistent with the spacing

between the zeros of the Airy function, as predicted by Equation (5.9.4).

§5.10 Nearfield Patterns

Qualitative features of the nearfield patterns of the eigenmodes of an asym-
metric linear tailored gain waveguide were indicated by Figure 5.11. Considering
first the (+) branch, we recall that £ starts from a zero of Ai(z) and terminates
in the sector of exponential decay |Zz| < m/3. Since the zeros of Ai(z) occur only
along the negative real axis, we see that unlike the eigenmodes of a symmetric or
real index guided structure, the eigenmodes of an asymmetric linear tailored gain
waveguide do not have nulls in their intensity nearfield patterns.

Quantitatively, this unusual property may be understood by considering the
behavior of Ai(z) off the negative real axis. We expand the sine function in (5.7.1)

as a superposition of exponential terms:

Ai(z) ~ %71.—1/2(_;,)—1/4 (c R + c* e_§23/2) (5.10.1)



- 187 -~

§5.9 Analytical Approximations for the Eigenvalues

A
(A) — V| = i, = 3.4i5
,E 'g +100 Mo V - FO = +60 (;m_1
s S ER ]
= < -100| | —Tex ~60 en” .|
ao0F | © l20um |
> -200 T =-200 cm™! branch
= {+)branc
< 20 ¢ \
5 (0 .
_._j O— / " o o 0 000 s W
< . . e v e * ’\——-'——.—’.‘\./L‘:_:—) 1
o "
% -20 - (0) branch . W(—)bronch
¢ -4ofF "
!
= -60}
O
a
' ) , ; | I ] >
3.4 25 30 35 40 45 50
Re {n}—>
(B) 60f- /”O
lr (+), +
- 40 /
i
g (+), ¥
P 20 (+)3 +
= /
= +
3 oL o) 0y, /
- ___,__.+———-+—“‘+"”+’—+~—+\
Z (0),
o —
S -20fF ( )3+\
o (=), K
L 2
s . \
i h \
-601 On,
| | L . .
34! 46 47 48 49 50
Re {n}—

FIGURE 5.12 Summary of the eigenvalues of the asymmetric tailored gain waveguide of Figure 5.9,
showing the (+) , (—) , and (0) branches. (a) overview (b) closeup of boxed region of part (a}.
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where ¢ = e *%. The relative contribution of each of the two terms to Ai(z) varies
within the region of validity of (5.7.1). If we write z in polar form, z = r e*(7=6)
near the negative real axis Re{z%/2} = r3/2 cos(%(w - §8) = —r3/2sin %6. Above
the negative real axis sin %5 > 0, so that as |z| — oo the second term becomes
exponentially larger than the first. Correspondingly, below the negative real axis
sin %5 < 0, so as |z| — oo the first term becomes exponentially larger than the
second. Along the negative real axis (the Stokes line), both terms are of equal
magnitude but differ in phase, while along the line /Zz = i%’-r- (the antiStokes
lines) the second term in (5.10.1) most dominates the contribution due to the
first term. The switching of dominance between the two exponential terms in
Equation (5.10.1) (s.e., Stokes phenomenon) plays a central role in the analysis of
asymmetric linear tailored gain waveguides because it allows the Airy function to
be written as a single term asymptotic expansion in a region of the complex plane
away from the Stokes line along the negative real axis. As will be discussed below,
this is also directly responsible for the single lobed farfield patterns characteristic
of these waveguides.

The nearfield intensity for modes on the (+) branch is given by I(z) =

|Ai(p + wx)|2. Writing Ai(z) as a single term asymptotic expansion, the nearfield

intensity for the v** mode becomes

3/2|2

I(z) =~ |(py + wa:)“l/‘ie”%(/’"”'“’x) (5.10.2)

We desire to find the position of the maximum x, and the half-width w, of mode
E,. The usual technique of setting %%l = 0 does not yield an expression giving a
closed form solution for x,,. However, x, may be determined from the geometrical
relationships between £ and the level lines of Ai(z). Along £ both the real and

imaginary parts of p + wr are approximately equal. By introducing a coordinate
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rotation such that one coordinate axis lies along £, and the other coordinate axis
goes through x,, we can make a Taylor expansion of the radicals in the asymptotic

expression for Ai(z) to derive first order approximations for the electric field E(z).

A

-

Level Lines/

of Ai(z)

FIGURE 5.183 Geometrical construction to determine the position of the peak intensity x,. The
30° — 60° right triangle makes the calculation of x, especially simple for the special case of no
index antiguiding.

Referring to Figure 5.13, we see that along the path £, |Ai(z)| reaches its
maximum when [ is tangent to the level lines of Ai(z). These level lines are
perpendicular to the lines of constant phase of Ai(z). The antiStokes line asso-
ciated with the principal branch is asymptotic to the line of constant phase (see
Figure 5.8c), which makes an angle of —60° with the negative real axis. The corre-

sponding tangent lines are at an angle of —30°, which is precisely the angle ¢ that
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L makes with the negative real axis for the special case of no index antiguiding.
The quantity p, — x, therefore lies on the Airy function’s antiStokes line. This

happens when

lz=L(py —x) = V3 (5.10.3)

where the minus sign is used for the principal (+) branch. If we approximate p,
by a (real) zero of the Airy function, use Equation (5.3.4) for the complex quantity
w, and make use of a simple geometric construction shown in Figure 5.13, we can

derive an expression for x,:

\/3-7'1/

- _¥ 5.10.4

It should be noted that, for a wide guide, the position of the mode within the
guide x, depends only on the gain gradient and is independent of both the peak
gain I'g and the width £ of the guide. The mode maxima are separated within the
guide by

3
Axy = v |2ngs| /36, (5.10.5)
2kg

where s is given by Equation (5.5.3) and 6, by (5.9.8).

Equation (5.10.5) may be used to derive a particularly simple expression for
the modal gains on the principal branch. If we take I'(z) as the lateral gain profile
and g = (['p — I';)/¢ as the spatial gain gradient, the expressions for the modal

gain and mode discrimination become

'71(/+) = F(Xv)
; (5.10.6)

A5 = gAx,
i.e., the modal gain of the mode is given simply by the value of the spatial gain
at the point where the electric field has its peak value. This suggests that, to

first order, the mode intensity profile is approximately symmetric about its peak

position, and that its width is much less than the width of the waveguide.
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To find an expression for the nearfield pattern, we write 2 in terms of the rec-

tangular coordinates z = u/+1v' and rotate the coordinate system (see Figure 5.14)

to new variables v and v so that u lies along the antiStokes line /z = e~%27/3 and

v lies perpendicular to it (i.e., along L£).

vl

A

u

FIGURE 5.14 Coordinate rotation of —27/3 = 120° for used in the calculation of the nearfield
pattern.

After making the rotation, near the antiStokes line associated with the (+)

branch, the Airy function may be written as a single term asymptotic expansion

Ai(u+tv) =~ (u + iv)'1/4c+§(“+i”)3/2 . (5.10.7)
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where we have dropped some unimportant global constants. The radicals may be

simplified by making a binomial expansion about v = 0 with v <« u:

)32 n 082 |1 4402 _ 3 (2)?
(v +w)/*=u [1+12u 8(u)}
(5.10.8)

1/2
V=174 o, . —1/4 v \? —i
(u + 1) ~ul [1—}—(4“)} e 't

Along the antiStokes line, v = 0 while along the line £ u is constant and Figure 5.13

shows that v is linearly related to the lateral position z within the guide:

2 (5.10.9)
v=(z-xv) | -

u =

Substituting Equations (5.10.8)and (5.10.9) in (5.10.7), we find that the expression
for the electric field reduces to '
o T .
E(z) ~ A1(—2E +i(z — xv) [w])

5.10.10
~ Bi (7_21/_) e—(a:—-x,,)z/ng eicﬁy(x—x,) ( )

which is a Gaussian centered at x, with half width w, multiplied by a linear phase

variation ¢, , where x,, is given by Equation (5.10.4), and w, and ¢, are given by

1/4
w, = (2r,)
[l (5.10.11)
4, = (2)1/2_ 2ot -
YT\ 2 2ry
The normalized nearfield intensity I,(z) is hence
Iy(2) ~ —me—(50) /w} (5.10.12)

Vruwl

The intensity nearfield patterns may be found for the (—) branch in a similar
manner. The exact (numerical) nearfield intensities and phases for representative
modes on each of the three branches is plotted in Figure 5.15. All of the modes are

approximately Gaussian in shape with essentially linear phase variations over the
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FIGURE 5.15 (a) the asymmetric linear tailored gain ramp waveguide of Figure 5.9, (b) the
nearfield patterns of representative modes on each of the three branches (c) the correspoinding
phases. Note that all the nearfield patterns are all approximately Gaussian in shape, and that the
phase fronts are nearly linear over the region of appreciable light intensity.
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region of appreciable light intensity. The linear phase variation reflects the fact
that power flows from the high gain region of a mode towards a low gain region (the
phase fronts of a gain guided mode are curved for a similar rea.son.(§2'6’3'5(c))) The
small amount of power which travels in the opposite lateral direction is described
by the term of Equation (5.10.7) which we neglected, and contributes to farfield
emission at an angle —©, off-axis. Thus it is the asymmetry of the lateral gain
profile which is responsible for suppressing the farfield emission at —©, and leads
to the off-axis single lobed farfield patterns characteristic of linear tailored gain
semiconductor lasers. Higher order terms in the expansion of Equation (5.10.8)
lead to slightly asymmetric nearfield patterns with some curvature in the phase
fronts.

The fact that the nearfield patterns of all of the modes are single lobed is a
direct result of the fact that the path L is constrained by the argument of the
cube root of (—i) in Equation (5.5.7) for the high gain modes to make an angle
of —30° with the real axis, and so (see §5.8) the point of peak intensity x, lies
well within a Stokes region. This allowed Ai(z) to be expressed in terms of a
single exponential in Equation (5.10.12). Since a single exponential term has no
zeros (except at infinity) the nearfield pattern cannot have any nulls. The null-less
nearfield patterns are therefore a direct result of the Stokes phenomenon. We will
discuss this point further in §5.11.

The experimental nearfield patterns of Figure 5.3 show a structure similar to
the mode patterns of Figure 5.7. However, it should also be noted that the effect
of filamentation(31-2(29)) must be included in the discussion of the above-threshold
experimental results. The role of filamentation in an asymmetric linear tailored

gain laser is a complicated one, and is beyond the scope of this thesis.
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The nearfield patterns of the low order eigenmodes of the tailored gain broad
area lasers considered here are strongly localized near the left edge of the guide,
and are hence relatively unaffected by the gain distribution in the right half of the
guide. The eigenvalues and nearfield patterns of the low order modes on the (+)
branch will not be significantly affected if the the guide is truncated in a region

where the field does not penetrate. The critical guide width £* is approximately

given by
=y, + 2w,
V3r, _(2r,)Y/4 (5.10.13)
SRALONE AL
2wl jw]

If £ is sufficiently greater than £* so that part of the waveguide is pumped below
transparency (but above —T',), the optical field of the low order modes will not
extend into that region, and the injected carriers will be wasted. This will tend
to both raise the threshold currents and lower the differential quantum efficiency.

These effects will be discussed further in §5.14.

§5.11 Farfield Patterns

Once Ey,(z) has been found to have such a simple form, it is easy to find
the mode’s farfield pattern. In the Fraunhofer approximation, the farfield pattern
F,(0) is given by the square of the Fourier transform of E,(z) times an obliquity
factor cos6.” The wide asymmetric tailored gain broad area lasers of interest here
have very narrow farfield patterns near the axis, and thus the obliquity factor may
be ignored. The electric field E,(z) in Equation (5.10.10) is the product of two

functions of the spatial variable z. Making use of the shift and convolution Fourier
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Transform theorems,? the intensity farfield pattern may be written as

F,(0) = i?{e—(x_x”)z/zwﬁ} x F{tEx)y 2
_ ‘e-eﬂ/m?, « 60— 0,) 2 (5.11.1)

— o (6-8,)%/282

where F{} denotes a (—t) Fourier Transform,(826) « denotes the convolution

operation, and the emission angle ©, and beamwidth ¥, are given by
. 180\ ¢u 180\ [/r\1/2 1
e) = (=) (== WLl =
0= ()%= (2 G -7 ]w
o = (B0) L1 _ (1)l
Y m ) kows  \ 7 ) ko(2r,)!/4

Intensity farfield patterns for the (—) branch may be calculated similarly, and are,

(5.11.2)

in fact, identical (except for an unimportant global phase factor) to those on the
(+) branch.

Figure 5.16 summarizes the nearfield and farfield patterns for the first three
modes on each branch. We see that the farfield patterns for all modes are
single lobed, and approximately Gaussian in shape, in agreement with Equa-
tion (5.10.12).

Of some practical importance is the fact that the farfield patterns of the higher
order modes on the (+) branch are only slightly displaced from the fundamental.
From (5.9.3) and (5.11.2) we see that the emission angle ©, of the higher order
modes scales approximately as V%. Thus, when gain saturation at high power
operation causes many lateral modes to lase, the beamwidth will degrade gradually,
becoming slightly broader and shifting very slightly in angle. This analytical result

is borne out by the experimental data of Figure 5.3.
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FIGURE 5.16 Summary of nearfield and farfield patterns for all branches of the asymmetric linear
tailored gain waveguide (a) intensity nearfield patterns (b) intensity farfield patterns.
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§5.12 Effect of Fourier Transform Symmetry Relations on Farfield Pat-

terns

In this work, we have considered several examples from each of the four gen-
eral classes of waveguides: real index guided symmetric (§2.6), real index guided
asymmetric (§4.3 & §5.3), gain guided symmetric (§2.6), and gain guided asym-
metric (§5.5 to §5.11). We have seen that with the exception of the asymmetric
gain waveguide, all the higher order modes of the other waveguides have nulls in
their nearfield patterns and symmetric, multilobed farfield patterns.

The particularly interesting property that the farfield patterns of asymmetric
tailored gain waveguide are all single lobed and asymmetric about 0° is the result
of some fundamental Fourier Transform relations which relate a mode’s nearfield
patterns to its farfield pattern.

Let us consider symmetry and asymmetry as it relates to Fourier Transform
pairs. It is easy to understand why symmetry in the nearfield pattern of either a
real index guided or gain guided waveguide results in a symmetric farfield pattern,
but less easy to understand why an asymmetric real index guided waveguide should
have a symmetric farfield pattern.

One possible approach would be to quote the Fourier Transform theorem which
states that the power spectrum of a real valued function is symmetric in the
transform plane.9 If the indices of refraction of the waveguide are real, so also will
be the electric field, and hence the farfield pattern must be symmetric.

However, it is possible to give a much more satisfying answer that is based
on physical principles. The nulls in a mode’s nearfield pattern result from the
complete destructive interference of two waves of equal amplitude (¢f. Equa-

tion (2.7.1), (5.10.1), or the zig-zag ray modell® for a real index box waveguide).
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Inside any waveguide, the optical field may be considered as a Fourier super-
position of many plane waves, each traveling at an angle § = sin" 1k ko relative
to the axis of the guide. In a real index guided waveguide for which there is no
gain or loss, there can be no power flow perpendicular to the waveguide axis (be-
cause of total internal reflection at an index step, or because of ray bending in a
nonuniform real index media such as the quadratic index fiber).11 Thus, the mag-
nitude of a Fourier component at +%k must be precisely equal to the magnitude
of the corresponding component at —k, where k is the lateral wavevector in the
z direction. The vector sum of the two then has no component perpendicular to
the waveguide axis, so that the sum of the components of all the waves moving in
+z direction must equal the sum of the components of the waves moving in —z
direction. This in turn leads to complete cancellation (i.e., nulls) in the electric
field at isolated points, and explains the nulls in the nearfield pattern of any real
index guided waveguide.

Furthermore, since the waveguide’s farfield pattern is essentially given by the
Fourier Transform of the nearfield pattern, the equality condition on the Fourier
components mentioned above implies that the farfield patterns of a real index
guided laser must be symmetric about § = 0° — even if the waveguide is asym-
metric. A symmetric farfield pattern implies a single lobed (more precisely, a
null-less) farfield pattern for the fundamental mode (because all Fourier compo-
nents interfere constructively along 8 = 0°). Since the Fourier Transform of a high
order mode must be orthogonal to that of the fundamental mode, the farfield pat-
tern of the high order mode must contain at least one null — 1t.e., it is multilobed.
We therefore see that the requirement that there be no power flow perpendicular

to the axis of a real index guided waveguide implies multilobed farfield patterns
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for the higher order modes, even if the nearfield pattern is asymmetric, as in the
case of the chirped array of Figure 4.2 or the real ramp waveguide of Figure 5.4.

The case of an asymmetric complezx valued function such as that of an asym-
metric (not necessarily linear) gain induced waveguide is very different. As we
have seen, the electric field is now a complex quantity, and there is in general no
symmetry relation between an asymmetric complex valued function and its Fourier
Transform.? This makes possible the unique nearfield and farfield patterns of the
linear asymmetric tailored gain waveguides.

First consider the null-less nearfield patterns. @ Mathematically, Equa-
tion (5.10.1) represents two superimposed traveling waves. Since the exponential
function itself has no zeros, the zeros of the asymptotic representation of Ai(z)
result from the complete cancellation when the two terms of (5.10.1) have equal
magnitude and opposite phase. This can occur only when £ lies along the Stokes
line on the negative real axis and implies that ¢ & @ = 0, which in turn can only
occur if there is no gain or loss—i.e., in a real index waveguide. For an asymmet-
ric gain induced waveguide for which ¢ # 0, the path of the argument to Ai(z)
will not lie along a Stokes line (negative real axis), and cannot pass through a
zero of Ai(z). As we remarked earlier, £ near the peak in the nearfield intensity
is restricted to lie in a Stokes region, and therefore since v depends only upon
the slope of the gain gradient ¢ and not upon the eigenvalue 7, the higher order
modes of an asymmetric linear gain induced waveguide will not have nulls in the
nearfield patterns.

The farfield patterns are given by the Fourier Transform of Equation (5.10.1).
We showed that the Stokes phenomenon allowed dropping one of the terms in this
equation. This led to the expression (5.10.12) for the electric field as a Gaussian

times an exponential of a linear phase term ¢. If we had kept the other term in
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Equation (5.10.1), we would arrive at the same result with ¢ replaced by —¢; 1.e.,
power would be radiated at —f8. The fact that the the latter beam is suppressed
is directly due to the necessity for power to flow from the high gain region of the
mode to the low gain region(§5'10). This is reflected mathematically in the tilted
phase fronts arising from the effect of the Stokes phenomenon which comes into
play because of the complex nature of the electric field in a gain guided laser and
the lack of left-right inversion symmetry in the asymmetric linear tailored gain
waveguide.

It is a very beautiful thing to see such an abstract mathematical concept as
the Stokes phenomenon come to life in the laboratory every time we increase the
current to a tailored gain broad area laser and see a narrow, single lobed farfield

pattern such as that of Figure 5.3.

§5.13 Measurement of the Antiguiding Parameter

In the interest of simplicity, the preceding analysis considered only the case
of a pure gain waveguide with no index variation within the waveguide. In actual
devices, however, the effect of gain created by the carriers in the active region
gives rise to a change in the real part of the refractive index within the wave-
guide through both the free carrier plasma effect and the band-edge effect.12 In
a semiconductor laser, this relationship between the real and imaginary parts of
the complex index of refraction is usually assumed to be linear. The effect of the
antiguiding parameter b on the eigenmodes may be determined by recalling the

definition of o in Equation (5.5.2), viz. 0 = —s(b + ¢). Rewriting o as

a(b) = o(0) (1 — 1b) (5.13.1)
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then
w(b) = w(0) (1 — b)1/3

w(b)] = [w(0)] (1 + %)/ . (5.13.2)
Lu(b) = £0(0) ~ 5tan™ b
Aside from a slight increase in its length, the principal effect on £ (which is of
length |wf| and makes an angle ¥ = Zw with the real axis) is a clockwise rotation
about —r, of %ta.n’lb radians. The expression for the eigenvalues on the (%)
branch becomes slightly more complicated:
1/3

g

2ng

() o

Ny " =noy + e—@(i)f
)

v (5.13.3)

where ®(*) = %tan—lb + %. The mode discrimination for the () branch becomes

AN (b) = (1 + 6913 [so + L sin w} A~7(0) (5.13.4)

V3

where p = %tan'lb. When compared with the special case of no index antiguiding,
for b = 2.5, the mode discriminations on the (+) branch are increased by a factor of
about two. The cluster of modes centered about the middle of the guide (i.e., the
(0) branch) is relatively insensitive to the effect of the antiguiding parameter. The
number of modes on the (+) branch actually decreases with increasing b, consistent
with the notion that index antiguiding should shift the high-gain modes towards
the lower-gain regions of the waveguide.

Mathematically, the effect of antiguiding on the nearfield patterns may be
qualitatively determined with the aid of Figure 5.17 and a simple geometrical
argument. As b increases from 0, the angle that £ makes with the real axis
increases. As a result, £ becomes tangent to the level lines of Ai(z) at a point
further removed from z = 0, implying that the position x, of the maximum
intensity of E has shifted towards the low gain side of the waveguide. Furthermore,

as these latter level lines are less strongly curved than those near the origin, the
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FIGURE 5.17 Effect of the antiguiding factor on the path of the argument to the Airy function
throughout the complex plane. The line £ rotates about —r, and slightly changes its length.
width of the mode increases as well. Nearfield profiles along the two lines of
Figure 5.17 are compared in Figure 5.18.

When the antiguiding factor is included, the farfield beamwidth remains ap-
proximately constant because the increase in the width of the nearfield is offset
by an increase in the phase curvature. The major effect of antiguiding on the
farfield patterns is to shift ®, to larger angles. ©, is a sensitive function of b,
and therefore knowledge of the guide parameters (made possible via the halftone

process described in §5.2) allows a determination of the antiguiding factor.
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FIGURE 5.18 Effect of the antiguiding factor on the nearfield patterns. Antiguiding causes the
mode move towards the center of the waveguide and its width to broaden slightly.

To make an experimental determination of the antiguiding factor it is necessary
to know the values of the three parameters I'g, I'y, and £ which define the parameter
s in Equation (5.5.3). The constant I'y is fixed by the requirement that at threshold
the modal gain of the lasing mode ’7(1+) must precisely equal the sum of losses, which
are principally due to the mirrors, and are typically about 40cm™! for a device
250um long. T'g is then given by inverting Equation (5.9.6). We estimate 'y by
measuring the gradient of the spontaneous emission profile just below threshold.
In an asymmetric tailored gain halftone laser in which the fraction of injecting

contact varies between 100% at the left edge of the laser and 0% at the right edge,
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light will be emitted only where the gain is greater than zero. Knowledge of the
gradient of the spontaneous emission pattern, 'y, and the width of the device £
(which is determined by photolithography) then allows estimation of I'y. Assuming
for simplicity a linear gain-carrier relationship gives I'y ~ —170 & 20cm™1.

The position of the off-axis farfield beam position 9(1+) as a function of the
antiguiding factor b may be computed numerically. Figure 5.19 plots the theoret-
ically expected emission angles for several values of the antiguiding factor along
with experimental data from halftone asymmetric tailored gain lasers with differ-
ing gain gradients. We find a value b = 2.5 £ 0.5, which is consistent with earlier

published results.

§5.14 Design Considerations for Tailored Gain Broad Area Lasers

In §5.10 we determined the minimum width £* of a waveguide in terms of the
number of modes we wanted to be well-confined. If the width of the guide is made
larger than £*, carriers that are injected to the right of £* will not contribute to
the optical output near threshold, thus leading to unnecessarily high thresholds
and low quantum efficiencies.

This is confirmed experimentally by Figure 5.20 which plots the excess current
above threshold I — I versus the optical power emitted per facet for pulsed, low
duty cycle operation of lasers similar to that of Figure 5.2 for several gain gradients
s. The total (two mirror) differential quantum efficiency 7. is also indicated. As
expected, 7.4+ increases as the width of the laser decreases. We therefore see that

it is advantageous to decrease the width of the laser.
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FIGURE 5.19 Experimental determination of the antiguiding factor. Solid line: Plot of the
beam emission angle © as a function of the antiguiding parameter and spatial gain gradient. The
experimental data points fit 6 = 2.5 £ 0.5, in agreement with previously published results.
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FIGURE 5.20 Light-Current curves for tailored gain broad area lasers. (a) Waveguide model for
various truncated waveguides. The shaded areas represent regions of the waveguide which are
pumped below transparency, and therefore waste carriers. (b) Experimental light-current curves
showing variation of two mirror differential quantum efficiency 5 as a function of device width.
Truncated lasers have higher differential quantum efficiencies because fewer carriers are wasted;
they are, however, less resistant to the effects of gain saturation at high power.

Decreasing the width of the laser is roughly equivalent to decreasing the gain
gradient across the laser, both of which decrease the product wf and shorten the
path L. Equation (5.8.1) shows that, as wf decreases, the contribution of Bi(z)
increases, and so it is no longer possible to use Path Analysis. We therefore
resort once again to the numerical methods of §2.7 to calculate the eigenvalues
and eigenmodes.

We have seen that the beneficial effects of both good mode discrimination be-
tween the fundamental and the higher order modes, and the single lobed nature
of the farfield result from the gain tailoring across the laser waveguide. Above

threshold gain saturation will reduce the gain in the regions of high optical in-

tensity (i.e., the high gain side of the wa,veguide),13 effectively reducing the gain
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gradient. While this will not affect the single lobed farfield pattern of the v = 1
mode, it will add a sidelobe to the v = 2 farfield pattern.

In any waveguide, the v = 1 mode is always single lobed. In all except a
strongly asymmetric tailored gain waveguide, the v = 2 mode has a twin lobed
farfield pattern, and is thus primarly responsible for the degradation of the single
lobed farfield beam. Figure 5.21 presents a numerical study of the effect of a
decrease in the amount of gain tailoring on the single lobed nature of the farfield
pattern by plotting the farfield pattern of the v = 2 mode for various values of the
gain gradient.

The mode discrimination between the fundamental and the v = 2 mode is
also shown. We see the rather remarkable result that even when the gain tailoring
amounts to only 525% = 8% of the total possible value, the suppression of the
sidelobe at —@ as a result of the Stokes phenomenon is very good indeed. This
figure shows that a little bit of gain tailoring goes a long way towards bringing
about a single lobed farfield pattern.

The mode discrimination for this case has decreased to only 2.7cm™!; this
implies that this mode will start lasing just above threshold. The actual effects
of gain saturation must be determined by carrying out a simultaneous solution
of the rate equations and the Helmholtz equation.!* However, we can arrive at a
qualitative feeling for the situation by considering the waveguides of Figure 5.22a.

Figure 5.22a shows a waveguide with a very small amount of gain tailoring.
The unsaturated waveguide is shown in the heavy solid line, and the mode shape
in the light solid line. The increased stimulated emission resulting from the high
intensity regions of the modal field will deplete the carriers, thereby changing the
shape of the gain induced waveguide. We can then roughly approximate the gain

profile of the saturated guide by the dotted line. (The actual situation is much
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FIGURE 5.21 Design considerations for tailored gain broad area lasers: mode discrimination.
The figure shows the suppression of the sidelobe of the v = 2 mode by the Stokes phenemonon for
various values of the gain gradient. The number inside the waveguide gives the gain gradient in
cm~ L. Notice that even a small amount of gain tailoring is sufficient to suppress the sidelobe.

more complicated, and beyond the scope of this thesis.) The farfield patterns
corresponding to the unsaturated and saturated waveguides are shown in the right
half of the figure. Once again, we consider the v = 2 mode. We see that a small
wf product due to either a truncated guide or a small gain gradient combined

with gain saturation over a large fraction of the guide leads to multilobed farfield

patterns.
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FIGURE 5.22 Effect of gain saturation on the farfield pattern of the v = 2 mode. (a} weak gain
tailoring (b) strong gain tailoring. Notice that increased gain tailoring gives better resistance to
gain saturation.

Figure 5.22b presents another unsaturated guide (heavy solid line) and satu-
rated guide (light solid line), but this time with a steeper gain gradient. We see
that the corresponding farfield patterns are both essentially single lobed. Wave-
guides with increased gain gradients are therefore less susceptible to the effects of
gain saturation than are guides with smaller gradients.

We can therefore summarize some of the engineering tradeoffs which need to

be considered when designing asymmetric tailored gain broad area lasers.
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FIGURE 5.28 Design tradeoffs for tailored gain broad area lasers. (a) Nontruncated waveguide
(solid line) truncated waveguide (dashed line). (b) Design tradeoffs.

These considerations are summarized in Figure 5.23, and have been borne out
by experimental study. Nontruncated waveguides (solid line Figure 5.23a) offer
better response to gain saturation and better high power single lobe operation, but
have higher threshold currents and lower differential quantum efficiencies. On the
other hand, truncated waveguides (dashed line, Figure 5.23b) offer lower threshold
currents and higher differential quantum efficiencies but are less resistant to the

effects of gain saturation and will give relatively low power single lobed operation.

§5.15 Conclusion

In conclusion, we have come full circle. We started by stating that a uniform
gain broad area laser was unsuitable for many applications due to the filamentation
and lateral mode control problems.(§1'2(a)) The filamentation problem was solved
by using an array structure,(§1'2(c)) while the lateral mode control problem was

solved by introducing gain tailoring.(§4‘5(b)) However, we discovered that in order
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to make gain tailoring work, it was necessary to increase the interchannel gain
to the point where the device resembled a broad area laser more than it did an
array.(83-2()) We then demonstrated a tailored gain broad area laser (1) which is
capable of single lobed, high power operation.(§5'2)

It is interesting to note that, although we began by assuming that an array was
necessary for high power operation, we have found that the introduction of gain
tailoring makes the array structure superfluous. In fact (as we showed in §4.5)
it may be that since the modulation of the laser’s nearfield pattern introduced
by the array structure increases the power present in the sidelobes and decreases
the ability of the device to operate in a phased locked mode, it may well be
advantageous to consider other structures that resemble broad area lasers more
than they do arrays of individual lasers. In p#rticular, it would be very interesting
to combine our work with gain tailoring with new methods of tailoring the real
part of the refractive index to create tailored index tatlored gain broad area lasers
that would potentially combine some of the benefits of both real index and gain
guiding. Furthermore, in one sense what we have done in this thesis is essentially to
redefine the maximum upper width of a semiconductor laser from 10pum — 15um
to perhaps 60um — 100um. One might then speculate about the possibility of
creating arrays of broad area semiconductor lasers!

However, one crucial question remains unanswered: What is the role of fila-
mentation in a tailored gain broad area laser? Do filaments exist at all, and if so,
why do they not they degrade device performance? Unfortunately, the resolution

of these exceedingly interesting questions is beyond the scope of this thesis.



- 213 -

Appendix

Computer Program to Calculate Eigenvalues
of a One Dimensional Waveguide
(see §2.7)

GUTS OF MODES PROGRAM by Chris Lindsey, Applied Physics Department
Caltech 128-95 Pasadena CA 91125 or Polaroid Corp, Cambridge, MA

complex dispersion function

input complex effective index cneff [exp(+i beta z) convention]
output value of complex dispersion function cdisp

© 0 ~3 O O b W

B b Bk b R B W W W W W W W W W W NN NN N R KRN PR R R e e
D Dok W O O 0 DN WO O O CEe WN OO IO W kO

0o 0 0 0 00 00

[2]

complex*16 function cdisp(cneff
index, t, nregiom, kO)
implicit real *8 (a-h), (o-z)

complex *16 index(nregion) ! complex refractive indicies
real *8 t(nregion) ! thickness of each region

complex*16 k(nregion)
complex *16 cneff, cdisp
complex *16 neff2, arg
complex*16 i / (0.0,1.0d0) /
complex*16 m(2,2), mt(2,2)
neff2 = cneff**2

do 1 L = 1, nregion ! calculate lateral kvectors in each region

k(L) = kO * sqrt (index(L)**2 - neff2)
continue

call interface (m, k, 1) ! calculate propagation matricies

do 2 L = 2, nregion-1
call freespace (mt, k, t, L)
call mult22r (mt,m) !m=mt #m
call interface (mt, k, L)
call mult22r (mt,m)
continue
cdisp = m(2,2)
return
end

subroutine interface (mt, k, L)
implicit real*8 (a-h), (o-z)
complex*16 mt(2,2), k(L+1)
integer L

complex*16 ct

ct = k(L) / k(L+1)

mt(1,1) = (1.0 + ct ) / 2.0
mt(1,2) = (1.0 ~-ct ) / 2.0
mt(2,1) = mt(1,2)

mt(2,2) = mt(1,1)

return

end
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47 subroutine freespace (mt, k, t, L)

48 implicit real*8 (a-h), (o-z)

49 complex*16 mt(2,2), k(L), ct

50 real *8 t(L)

51 integer L

52 complex*16 i / (0,1.040) /

53 mt(1,2) = 0.0

54 mt(2,1) = 0.0

55 ct = i * k(L) * t(L)

56 mt(1,1) = exp ( ct )

57 mt(2,2) = 1.0 / mt(1,1)

58 return

59 end

60 ¢

61 subroutine mult2i (m, a, b) ! matrix multiplication routines

62 implicit real*8 (a-h), (o-z)

63 complex*16 m(2,2)

64 complex*16 a,b

65 complex*16 an, bn

66 an = m(1,1) * a + m(1,2) * b

67 bn = m(2,1) * a + m(2,2) * b

68 a = an

69 b = bn

70 return

71 end

72 €

73 subroutine mult22r (ml, mr) ! mr = ml * mr

74 implicit real*8 (a-h), (o-z)

75 complex*16 ml1(2,2), mr(2,2), a, b, ¢, d

76 a= ml(1,1)*mr(1,1) + ml(1,2)*mr(2,1)

77 b= ml(1,1)*mr(1,2) + ml1(1,2)*mr(2,2)

78 ¢ = ml(2,1)*mr(1,1) + m1(2,2)*mnr(2,1)

79 d = ml(2,1)*mr(1,2) + ml1(2,2)*mr(2,2)

80 mr(1,1) = a

81 mr(1,2) =b

82 mr(2,1) = ¢

83 mr(2,2) = 4d

84 return

85 end

86 ¢

87 ¢ calculate electric field

88 ¢

89 subroutine efield (npoints, x, xleft, xright,

90 & e, neff, wavelength)

o1

92 implicit real*8 (a-h), (o-z)

93 integer npoints ! number of x,e data points

94 real*8 x(npoints) ! put x values here starting at

95 real*8 xleft, xright ! xleft & ending at

96 ! <thickness of guide> + xright

97 complex*16 e(npoints) ! electric field
1

98 complex*16 neff effective index of mode
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real*8 wavelength ! wavelength in microns
complex*16 neff2, cdisp, a, b, ekp, ekx
complex*16 mi(2,2), mf(2,2)
complex*16 enorm, enorml, enormr
real*8 mag?2
if (abs(cdisp(neff)) .gt. .01) ! set up kvectors & see if root
type *, 'efield: cdisp <> 0', neff, cdisp(neff)
tsum = xleft + xright
do 2 kr = 2, nregion-1
tsum = tsum + t(kr)
continue

t(1) = 0.04d0
t(nregion) = 1.1 * xright
dx = tsum / (npoints-1)
xx = - xleft - dx
xt = xx
kr = 1
a = demplx (0.040,0.0d0)
b = dcmplx (1.040,0.0d0)
enorm = 0.0d0 ! normalization
enorml = mag2(b) / dimag ( 2.0d0 * k(1) )
do 200 kp = 1, npoints
xx = xx + dx
xt = xt + dx
x(kp) = xx
if (xt .le. t(kxr)) go to 210

¢ here if we pass into a new region

210

200

300

call freespace (mf, k, t, kr) ! propagate over free space region
! we just passed through

call interface (mi, k, kr) ! then through the interface
call mult22r (mi, mf)

call mult21 (mf, a, b) ! get new a,b coefficients
kr = kr + 1

xt = 0.0d40

ekx = exp ( demplx(0.0d0,xt) * k(kr) )

ekp = a * ekx + b / ekx

if ((kr.ne.1).and. (kr.ne.nregion))
enorm=enorm+ekp*conjg{ekp)

e(kp) = ekp
continue
enorm = enorm * dx ! numerical integral
enormr = mag2(a) / (2.0d0 * dimag(k(nregion))) ! analytic integrals

enorm = enorm + enorml + enormr
enorm = sqrt ( enorm )
do 300 kp = 1, npoints

e(kp) = e(kp) / enorm
continue
return
end



Cc

- 216 -

Appendix: Waveguide Eigenvalue Program

c FARFIELD PATTERN (uses IMSL routines)

[

o a0 o0 o0o0n0600

a0 o0 o0

subroutine farfield (x,nearfield,np,theta,fi,nfp,cut,

& lambda,cwork,npoints)
x(ap) real*8 array of x data values for nearfield points
nearfield(np) complex*16 array of nearfield electric field points
np integer number of nearfield points (200 suggested)
theta(nfp) real*d theta values for farfield
fi(nfp) real*4 farfield intensity pattern
nfp integer number of points in farfield
!  (20*np or 4000 suggested)
cut real*3 threshold value for plot (0.01 suggested)
lambda real*8 wavelength in microns
cwork complex*16 working array
npoints integer number of points in working array
! (10*np or 2000 suggested)

parameter PWORK = 200

implicit real*8 (a-h), (o-z)

real*8 x(np), lambda, mag2

complex*16 nearfield(np), cwork(npoints)

real theta(x), fi(*)

integer iword

equivalence (work(1),iwork(1))

real*8 work(PWORK)

integer iwork(PWORK)

radtodeg = 180.0d0 / acos(~-1.0d0)

nextra = (npoints - np) / 2 ! get extra resolution by padding with

do 101 j = 1, nextra ! zeros to the left and right of the
101 cwork(j) = demplx(0.0d0,0.0d0) ! waveguide

1=0

do 102 j = nextra+l, nextra+np

1=1+1
102 cwork(j) = nearfield(l)

do 103 j = nmextra+np+l, npoints
103 cwork(j) = demplx(0.0d40,0.0d0)

dx = x(2) - x(1)

xr = (npoints-1) * dx

fmax = 1.0d0 / ( 2.0d0 * dx )

df = 2 * fmax / (ppoints-1)

if (iword(npoints) .gt. PWORK) pause ’'farfield: work too small!’
call fftcem (cwork, nmpoints, iwork, work) ! complex FFT

fnorm2 = 0.0d0 ! find areas where there is appreciable power
do 210 j = 1, npoints/2
save = mag2 (cwork(j+npoints/2))
cwork(j+npoints/2) = dcmplx ( mag2(cwork(j)),0.040)
cwork(j) = decmplx (save, 0.0d0)
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if (save .gt. fnorm2) fnorm2 = save
if (dreal(cwork(j)) .gt. fmorm2) fnorm2 = dreal(cwork(j))
continue

flim = 1.0/lambda ! 8in(90)/lambda
j1 = flim / df - 1
jim = max ( npoints/2 - j1 +#1 , 1 )
j2m = min ( npoints/2 + jl , npoints )
nfpm = 2 * jl
cutoff = cut * fnorm2
do 221 j1 = jim, npoints/2
if (dreal(cwork(j1)) .gt. cutoff) go to 222
if (dreal(cwork(npoints-ji+1)) .gt. cutoff) go to 222
continue
j2 = npoints - j1 + 1

nfp = j2 - j1 + 1

1=0
do 223 j = j1, j2
1=1+1
sf = (1 - nfp/2) * df
sint = sf * lambda
if (sint .gt. 1.040) type *, ’'sint .gt. 1’
cos2 = 1.0d0 - sint#**2
fi(l) = cos2 * dreal(cwork(j))/fnorm2
continue

do 224 1 = 1, nfp
sf = (1 - nfp/2) * df ! spatial frequency
sint = sf * lambda
if (abs(sint) .gt. 1.040) sint = sign (1.0d40,sint)
theta(l) = asin (sint) * radtodeg
continue
return
end

¢ compute minus i transform req’'d by exp(i beta z) convention

10

20

subroutine fftcem (cwork, npoints, iwork, work)
complex*16 cwork(*)

integer npoints, iwork(*)

real*8 work(*)

do 10 i = 1, npoints

cwork(i) = conjg(cwork(i))

call fftce (cwork, npoints, iwork, work)
do 20 i = 1, npoints

cwork(i) = conjg(cwork(i))

return

end
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Men passionately desire to live after death,
but they often pass away without noticing the
fact that the memory of a really good person
always lives. It is impressed upon the next
generation, and is transmitted again to the
children. Is not that an immortality worth
striving for?

—PETER KROPOTKIN
Memoirs of a Revolutionist



