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ABSTRACT

The warm plasma resonance cone structure of the quasistatic field
produced by a gap source in a bounded magnetized slab plasma is
determined theoretically. This is initially determined for a homo-
geneous or mildly inhomogeneous plasma with source frequency lyina
between the Tower hybrid frequency and the plasma frequency. It
is then extended to the complicated case of an inhomogeneous plasma
with two internal lower hybrid layers present, which is of interest
to radio frequency heating of plasmas.

In the first case, the potential is obtained as a sum of multiply-
reflected warm plasma resonance cones, each of which has a similar
structure, but a different size, amplitude, and position. An
important interference between nearby multiply-reflected resonance
cones is found. The cones are seen to spread out as they move
away from the source, so that this interference increases and the
individual resonance cones become obscured far away from the source.

In the second case, the potential is found to be expressible as
a sum of multiply-reflected, multiply-tunnelled, and mode converted
resonance cones, each of which has a unique but similar structure.
The effects of both collisional and collisionless damping are in-
cluded and their effects on the decay of the cone structure studied.
Various properties of the cones such as how they move into and out
of the hybrid layers, through the evanescent region, and transform
at the hybrid layers are determined. It is found that cones can

tunnel through the evanescent layer if the layer is thin,
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and the effect of the thin evanescent layer is to subdue the
secondary maxima of cone relative to the main peak, while slightly
broadening the main peak and shifting it closer to the cold nlasma
cone line.

Energy theorems for quasistatic fields are developed and applied
to determine the power flow and absorption along the individual
cones. This reveals the points of concentration of the flow and the

various absorption mechanisms.
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CHAPTER I: INTRODUCTION

1.1 Review of Resonance Cone Theory

Wave propagation in plasmas exhibits a variety of physical
phenomena, which is enriched and increased in complexity by the presence
of anisotropies (produced by a background magnetic field), finite temper-
ature, inhomogeneities, collisions, and boundaries in the plasma. One
such physical phenomenon which may occur in magnetized plasmas which has
been of interest in the last few years is that of resonance cones pro-
duced by a driven source in the plasma. In the special case of a point
source, simple cold plasma theory predicts that for ranges of the driving
frequency such that K;Ky< 0, where KH is the equivalent dielectric con-
stant along a static, homogeneous background magnetic field and K| is the
dielectric constant in the direction perpendicular to that field, the
fields produced by the source become singular along a surface emanating
from the source. For a homogeneous plasma this surface is that of a
double-cone concentric with the magnetic field, hence the name resonance
cones (see Fig. 1.1.) The singularities in the fields for such a plasma
were first discussed in detail by H. Kueh],] although others had pre-
viously noted the singularities.

In the quasistatic approximation, the potential of a source harmon-
ically driven at a frequency w in a cold homogeneous plasma with static
magnetic field B- 803 taken along the z axis is given by the Poisson
equation

2 2 .
Ky(w) 2-0lgaz) P52+ k() . i’(g-ﬂ N i (1.1)
P z

o




RESONANCE CONES

Fig. 1.1 Double cone surfaces along which the fields produced by a-
point source in a magnetized plasma become singular in cold

plasma theory. ec is the resonance cone angle [after
Fisherz].
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in terms of cylindrical coordinates (p,4,z), where p et is the source

e
charge density. The solution for an oscillating point source of charge

q at the origin p = z = 0 is given by
-fwt

#(0s2) = N (1.2)
41rso(K2_LI<“)U2[02/KJ_+22/Ku]1f2

It is clear that when K K| < O there is a singularity in ¢ which occurs

along the resonance cone angle ec given by

R £1.8)

and this angle defines the double-cone surface.

The form of the dielectric tensor components for the "cold"

plasma is
m2 wz
G 4. pe pi
= 1oy (141
Wee @7 Wi
m2 wz-
I 5 e
where w__ = ne2 and w_. = n92 are the electron and ion plasma fre-
pe em, pi €oM; P
quencies, oy * Be/me and Wi = Be/mi are the electron and ion cyclotron

frequencies, n is the plasma density, e is the electronic charge, and m,
and m, are the ion and electron masses. From these one sees the cold
plasma resonance cones occurring for KLKH < 0 exist for three frequency

ranges of w (see Fig. 1.2):2
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(1) 0<wc< Weg

(2) Wop < W < min(wpe.wce)

(3) max(mpe.mce) <w< Wy

62, + By 12
where Wop = [ 5 v is the lower hybrid frequency

W * W s W el

pi ci ci“ce

and Wy = (wge + w%e)]lz is the upper hybrid frequency. It is the mid-
dle branch of the cones which we will be primarily concerned with in
this work.

The reason for the occurrence of resonance cones is clearly seen
from Eq. (1.1). When Ky and K| are of opposite sign, that equation has
characteristics propagating from the source. Thus when we assume a point
source, which implies a singularity in the field at that source, that
singularity propagates out along the characteristics, and the resonance
cones are just the characteristic surfaces. The occurrence of resonance
cone sinqularities is not surprising, since it is a basic mathematical
property of the simple plasma model which arises from an unphysical as-
sumption. The inclusion of physical effects in the model such as finite
temperature, collisions, or a finite source will eliminate these singu-
larities. The important point from a physics standpoint is that in
physical approximations to this idealized model, namely in plasmas with
small temperatures, small sources, and small collision frequencies, the

fields may be unusually large or concentrated along the resonance cone

direction and have a structure which is dependent upon parameters of the
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Ip1asma, particularly on those properties which are most important in
1imiting the size of the field. It is these large field structures
which occur along or near the cold plasma characteristic directions
which have more generally come to be called resonance cones, and will
be what I will refer to as resonance cones.

In this more general definition of the cones, the criterion
for the existence of the cones of KyK3 < 0 is not always a valid crit-
terion. This is because that criterion gives the condition under which
the fields are singular for cold collisionless plasmas, and not for the
finite field cone structures in a warm plasma, If one considers the warm
plasma ones going from a region where KyK < 0 to one where KyK > 0 in
an inhomogeneous plasma, the cones in the more general sense may not dis-
appear, but rather, the large field structures may remain, although they
usually spread out and decrease in size very rapidly in that region
because the waves are evanescent there.

The physical phenomenon of resonance cones is just another mani-
festation of the existence of resonances in a plasma, where the index of
refraction of a magnetized plasma becomes infinite in cold collisionless
plasma theory for a wave of a given frequency.3 It is well known that
quasistatic waves experience a resonance for phase velocities along an

angle { given by

k -Ky
TR (1.5)
tan w—'E'z—- K_L

2

As pointed out by Fisher and Gould,” this angle is perpendicular to the

resonance cone direction, because along the cones the phase velocity is
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perpendicular to the group velocity. Thus resonance cones are just
group velocity surfaces associated with waves propagating at resonance
in a magnetized plasma.

R. Fisher2 first observed the resonance cones experimentally and
measured the cone field patterns. He found that the maxima of the field
occurred inside the cold plasma resonance surface along with an oscillat-
ing interference structure (see Fig. 1.3). Such a cone field structure
is predicted by warm plasma theory, i.e., thermal effects were very im-
portant in determining the physical resonance cone fields for that
experiment (see Fig. 1.4). The upper frequency branches of the cones
have also been observed by A. Gonfalone,4 R. Briggs and R. R. Parker for

propagation into the lower hybrid 1ayer,5 K. Burre11.6 7

8

P. Colestock,

and P. Bellan and M. Porkolab. P. BeHan,9 and Ohmuna, Kuwabara,

Shibatu, and Adachi.lo

have observed the low frequency branch of the
cones.

Resonance cones are of interest for a couple of reasons other than
just being interesting phenomena associated with wave propagation in
plasmas. The first is their potential use as a plasma diagnostic under
the right conditions. As seen from Egs. (1.3) and (1.4), the cone angle
is a unique function of the plasma frequency and hence the density. Thus
by measuring the trajectory of the resonance cones one may deduce the
density profile, as pointed out by Fisher and Gou1d.2 Also, the inter-
ference spacing in the cone field structure as in Fig. 1.4 is a unique
function of the electron temperature. Fisher and Gould calculated the
angular interference spacing of the interference structure inside the

cone for a point charge source in a homogeneous plasma with ion motions
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neglected to be

48 = 5.8° (—x 223\;—)2/3 tan'/3 0, (1.6)
pe e

where r is the distance from the source and Vo is the electron thermal
velocity. There are advantages to using the resonance cones as a diag-
nostic. While sheath effects at the transmitting and receiving antenna
and probe geometry may significant]y affect the amplitude of the re-
ceived signal, they should not affect the resonance cone trajectory or
the interference spacing, and hence not the measured temperature and
density. Also, although Langmuir probe measurements can in principle be
used to measure density and temperature, the theory is not very well de-
veloped for magnetized plasmas. Thus resonance cone measurements would
provide a useful and in some cases more reliable supplement to Langmuir
probe measurements of temperature and density.

Second is their importance in being channels along which energy
flow is concentrated. This is of particular interest in understanding
the transport of energy to the Tower hybrid resonance in lower hybrid
heating studies. Briggs and Parker5 showed that enerqgy flow from an
electrostatic wave source to the lower hybrid layer in an inhomogeneous
plasma is confined to the narrow resonance cone channels, and near the
hybrid layer the cones are aligned at a small angle m(me/mi)]/z with
respect to the magnetic field. The wave energy travels along the cones
until it is absorbed or changed by damping, nonlinear effects, or mode
conversion (to be discussed in the next section). For a linear open-ended

device, the energy may reach the end of the plasma before it has been
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totally absorbed at the hybrid layer because the cone is oriented
almost parallel to the magnetic field (the density gradient being as-
sumed to be perpendicular to the magnetic field) and thus be lost at
the end. For a closed device such as a tokamak, the cones will circu-
late around the torus at the small angle until the lower hybrid layer
is reached and the energy is absorbed or changed. The resonance cones
excited by a ring source have been observed in a toroidal geometry in

WII stellarator by P. Javel, G. Miiller, U. Weber, and R. Neynants.]]

1.2 Review of the Theory of Mode Conversion

It has long been known that a wave in a magnetized plasma may ex-
perience a "resonance" in the plasma, i.e., a region where the index of
refraction for the wave goes to infinity in cold collisionless plasma
theory.3 For wave propagation perpendicular to the magnetic field in
the extraordinary mode [for y = w/2 in Eq. (1.5)], there are two such
resonances: the lower and upper hybrid resonances. That is, if
W= wop OF w = W, for the value of Woh OF Wun for the local density and
magnetic field of the plasma, the wave experiences a resonance at that
point. These resonances have been of interest for wave heating of
plasmas. The original idea was that a wave propagating into a reson-
ance layer in an inhomogeneous plasma should have its phase velocity
slow to zero and its enerqy density begin to diverge as suggested by
cold plasma theory, and be completely absorbed by damping processes
there. The wave energy would then go into heating of ions and elec-
trons. If the damping processes were not present, however, the wave

should be reflected at the resonance layer, since the wave becomes evan-

escent there (see Fig. 1.5).
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When the problem of wave propagation into a lower hybrid layer
was considered from a warm plasma point of view, it was found that a
finite temperature changes this p1‘ctur'e.]2 The effect of temperature
in a plasma is to add more possible modes of wave propagation, in prin-
ciple an infinite number, but in practice only a few are important--the

13 Stix showed

least damped root or roots which arise in Vlasov theory.
that theoretically an electrostatic extraordinary wave (see dispersion
relation in Fig. 1.6) propagating into a lower hybrid resonance layer
will not actually reach the layer but will convert into a purely thermal
mode (an ion thermal or Bernstein mode14) just before the resonance layer
and propagate out on the same side (see Fig. 1.7). Two exponentially
decaying modes continue into the evanescent side of the resonance layer.
It was concluded that for a large evanescent region, all of the power
coming into the resonance layer should convert to the thermal short wave-
length mode coming out of the layer. This mode would be much more

highly damped than the mode coming into the resonance layer, and would
rapidly decay away with its energy going to thermal energy of the ions
and electrons. Thus it was thought that mode conversion at the lower
hybrid would be a method of heating the plasma by waves.,

3

It was shown by Stix™ that only those kz excited by the source

that are sufficiently large will reach the hybrid layer and be able to
convert to the other mode, because the smaller kz encounter substantial
intermediate regions where kx is imaginary. Stix gave the criterion

15

kz > 2w/c for accessibility and Golant ~ gave the stronger condition

k, S w/c (1 + wpe/wce)1/2 {1.7)
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The theory of mode conversion for a single kz component was

studied in greater detail by B. Moore and M. Oakes.16

who studied the
form of the solution very near the hybrid layer (the "conjugate"

regions) and gave an expression for mode conversion efficiency in terms
of the damping and density inhomogeneity. Similarly, I Fidone has
studied mode conversion at the lower hybrid, both linear and non]inear.17
R. Briggs and R. Parker showed that enerqy flow into the lower hybrid
resonance from a source was concentrated along the resonance cones.5
Mode conversion from the resonance cone point of view has been studied

numerically by M. Simonutti,18

19

for finite sources by P. Bellan and M,

Porkolab, 20

and by K. Ko and H. Kuehl,”™ who discussed the thermal ef-
fects on the cone structures.

The reason for mode conversion is that near the lower hybrid the
X mode and the ion thermal mode become coupled because their phase velo-
cities become approximately equal, whereas away from this layer they
each can exist as independent modes. As the X mode propagates in, it
has a frequency in the electron frequency range in the low density and
the wave drives predominately the electrons. As the wave moves into
higher density regions, ion motion becomes more important. Because of
finite temperature, thermal effects are important in the ion motion, and
at the mode conversion point, ion thermal effects on the X-mode and the
effects of electron motion on the purely ion thermal mode have caused
the two modes to be coupled, matching in wavelength, phase and aroup

velocity, E—fie]d components, etc. Thus, once the wave has reached the

coupling point where there is no distinction between the two modes, the
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wave can come out in a different mode.

In Tinear plasma devices, one usually has an approximately con-
stant background B-field, with an approximately circular cross-section
with highest density at radius r=0, and a fall-off in density as the
radius increases out to the boundary. In such devices the lower hybrid
layer, if it is present, occurs at an approximately constant radius
where the density is the right value. A waveguide source would lie on
or near the boundary. The slab model to be used in this work, which
will be discussed in the next section, would be a model of this case,
where x = a/2 corresponds to the high density plasma at radius r = 0,
with the x axis corresponding to the radius and the y axis to the azi-
muthal angle. In tokamaks there is an added complication not present
in this model, in that such devices contain an inhomogeneous background
magnetic field. Thus the lower hybrid is not at a constant minor radius
in tokamaks, and the proximity of the wave frequency to the ion cyclotron
harmonics varies with position, so that one might expect important phys-
ical processes to be present in such devices for lower hybrid mode conver-

sion studies that would not be present in this model.

1.3 Model

This work is a theoretical study of the quasistatic resonance cone
fields and of the process of mode conversion in a simple model of a warm
bounded magnetized plasma which has many of the characteristics of
plasmas encountered in the laboratory. The model we will use is that of

a slab plasma, extending from x=0 to x=a, and from -« to « in the y
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and z directions. A background magnetic field E = Bc; is taken in the
z direction, and conducting plane boundaries parallel to this field are
assumed at x=0 and x=a. A gap source is assumed at x=z=0 which
extends to infinity in both directions along the y axis. This enables
us to treat the problem in two dimensions, i.e., in the x-z plane (see
Fig. 1.8). The plasma is assumed to be homogeneous in the z direction,

with all inhomogeneities in the density being in the x direction.

We will use the quasistatic approximation
E = -V (1.8)

to calculate the fields produced by the gap source for a warm plasma. As

3

pointed out by T. Stix,” the electrostatic approximation assumes

ST TN (1.9)

for all i and j, where k is the wavenumber of the wave and Kij is any
component of the dielectric tensor. The source is assumed to be driven
harmonically at a frequency w, so the time dependence of the source and

-1wt  The resonance cones

all the fields produced by it are taken to be e

we will be interested in are of the middle branch, for which

wzh(x) <w < wpe(x). However, in our consideration of the lower

hybrid mode conversion problem, in which the density is inhomogeneous

along x, there will be a thin high density layer in the center of the

plasma for which w < w&h(x)’ and there may be a thin layer in the low

density region near the boundaries where u > mpe(x). We take the range
2 2

2
of plasma parameters to be Wej << W << Wogs and Weq < mpi < We < Wegt
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Fig. 1.8 Plasma geometry
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which is typical of tokamak plasmas and fields, and a large number of
other experiments. Under these approximations the Jower hybrid fre-

quency is given by

g () ¥ @00 /11 + W20/, (1.10)

i.e., is just slightly below the ion plasma frequency.
In addition to the "strong magnetic field" assumption, we as-
sume small electron and ion temperatures: T. < Te so
= 1/2 . i
Vi < Vg << w/k, where Vo= [2kTa/mu] is the thermal velocity and
kz is the wavenumber component along z for the waves of interest. Our
approximations mean r_ ., << Ap, << X, where Fea ® ve/mce is the elec-

is the electron Debye length,

tron cyclotron radius, Ap, = ve/JZ'wpe

and A is the wavelength of the waves. This means that for all prac-
tical purposes we can assume that the electrons are tied to the
magnetic field lines because the Larmor radius is much smaller than
any other relevant physical quantity.

The ions, on the other hand, are only very weakly tied to the
field lines (i.e., have a much smaller Lorentz acceleration than the
electrons), and have a rather large Larmor radius. It has been shown

£l and M. Brambi]1a22 that near the lower hybrid the

by M. Simonutti,
large ion Larmor radius approximation is valid, kxvifwci >> 1 or
Fag 72 A. This assumption along with the small thermal velocity
assumption will be used in obtaining the approximate form of the
dielectric tensor to be used in this work. It assumes that the ions

travel in approximately straight line orbits.
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The small size of the electron Larmor radius helps ensure that

it does not significantly affect the boundary. Also, the ions will, for
the most part, be repelled by the sheath at the boundary and the few
energetic ones which penetrate the sheath will undergo simple specular
reflection at the boundary since they are not strongly held in their orbit.
Thus, finite ion Larmor radius effects do not significantly affect the
boundary. This assures us that we may use the boundary conditions ap-
propriate for the interface between a dielectric medium and a conductor.

We will assume the plasma to be in thermal equilibrium except for
the small perturbation from equilibrium produced by the waves from the
source, so the background particle velocity distribution can be assumed
to be Maxwellian. We will characterize the plasma by the warm plasma
dielectric tensor, which may be expanded to first order in thermal terms

for Vi € Vg << m/kz. This takes the form:

: =
K Ky K
K= Ky KL Ky (1.11)
“Kyz —ny Ki

The forms of the dielectric tensor componénts obtained from Vlasov

theory for a Maxwellian plasma are3'23
w2
Kn=1-1 552" (g5 (1.12a)
o kz L AT
K =347 J -IEL-{§1j§- In(Aa) 2(z,) (1.12b)

o N=-c wk k
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nfiuwzu -)\a
Ky =1 g n;_m m I LIa (A - T(x ) 370c.) (1.133)
2m2a Weol =
Keg == 25 —2—2—e *1 (0 )1 +z2(z)] (1.13b)
on wk k, v & n==n
Z X O
K =1ZZM6“A[I(A)-I'(A)][1+ Z( )]‘ 1.13
¥z a8 @ B k n* o n‘ o Cn “Cn (1.13¢c)
oo 2

where o runs over the species i and e, ke # ki vi/ZmEa, In(x) is the modi-
fied Bessel function of the first kind, Ey = +1 is the charge, Z(z) is

23

the plasma dispersion function,“” and By = (w + nwca)/kzva. These forms

do not 4include collisional effects, but those can be included by adding
a phenomenological collision frequency in the cold plasma terms when the

components are expanded.

We want an expansion for KL and Ky to first order in temperature
for ki vi/wz << 1, which includes collisional corrections. The latter
may be added by substituting a phenomenological collision frequency v

into the cold plasma terms in Kl and K" of the form

wz w2 w2 v wz
o pa n _Po _ __0 po (1.14)
_if w(w+1\)a) w2 w3
where we have expanded for Vy << 0. Thus from the large argument expan-
sion of the plasma dispersion 'Function23
2(z) ¥ - - - Lo+ i/7 exp(-2%) (1.15)
T

we obtain
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2 2 .2 @2 2 2 Ly 22
W k> vo w VW w_ W -w /kZ v
3 ;
Kp-5- 5225 e+1[—§+zm-3£T)e Ze}(ms)
w w w k> v
zZ e
gz _ 2 2
where wp _ube + wpi' and ion thermal terms that are negligible compared

with the electron thermal terms were dropped.

To get an expression for EL we must use the approximation
ki v?/mii >> 1 (along with k:vszie << 1 and kg v?/wz << 1). This
assumption is that the ion Larmor radius is large compared with the
perpendicular wavelength. For frequencies considerably above the lower
hybrid (m2 >> wﬁh) this approximation may break down for the extra-
ordinary mode, since kxvi/wci may become < 1 in some cases, but when it
does, the ion thermal effects on the X-mode are masked by the electron
thermal effects, so the approximation does not give a problem. The
assumption was shown to give an ion thermal correction to the real part
of Kj which is equivalent to assuming straight T1ine orbits by M.

2 21 Since kg VE << w2 and w >> Weis it

Brambi]]az and M. Simonutti.
gives the same result for the real part of K| as the opposite limit
ki V§/wii << 1, implying that as long as the former approximations are
satisfied, the thermal correction form is not very sensitive to the

magnitude of kxvilwci' From the small and large argument forms for the

Bessel functions24
x <<
-A ]! W n n+l
e In(k) v HT-(EJ +00G"") (1.17a)
X 2>
e 1 (\) o (2m)" V2 + @32 (1.17b)

we obtain
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2 2 2 2 2 2
™ w, w V, W V_w
Y4 _ _pi ge _ 3,2/ i “pi e pe
® KL ] wz ' w z-kx[ w4 ! 4w 2 ] (1.18)

The form of Re K, obtained under the assumption that the ion
Larmor radius Py = Vi/“i'wbi is much larger than the perpendicular wav-
length Ax = Zn/kx, has the same form as it would if the ions were unmag-
netized, which is to be expected, since the ions orbit with effectively
infinite Larmor radii. From our discussion above, this form is pretty
¢ 2.2 2 2

. . : <<
v V5 /wc1 when Wej w . However,

for Im K, the size of that quantity is important, and is not the same

much independent of the size of k

form as for unmagnetized ions. The contributions to Im K; involve ion
Landau, cyclotron and collisional damping, and these are influences by
a finite cyclotron period. The reason for this is related to the well-
known fact that Bernstein waves are undamped in collisionless plasmas

when kz = (0, even when the wave frequency is quite close to cyclotron

15

harmonic frequency. The reason is that even though cyclotron harmonic

wave particle interaction occurs and causes phase mixing over time
periods much larger than the wave period and much smaller than the cyclo-

tron period, the phase is restored after a whole cyclotron period and no

25

net damping results. However, if the restoration of phase correlation

over a cyclotron period is impeded by a kz # 0 component, or by colli-
sions, then net damping may result.

The correct form of Im K for the large ion Larmor radius case

22

can be obtained from M. Brambilla for Vi < Wy and is

(o]
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2,22
3/2 2 "8 KV
™ w uav, e
Im K.L = D'i 1
ki vf wq sin(I)
ci
2
T
pri Wi = 2 kS vS
® I pn“e "z Y4 (1.19)
Mkzkx \.'1 n

The first term is collisional damping, which is modulated by a perpen-
dicular ion Landau damping term and by proximity of w to an ion
cyclotron harmonic. This is expected because for v < Wei there is less
than one ion collision per cyclotron period, so the primary role of col-
lisions in that case is to produce net phase mixing over several
cyclotron periods, and the net damping is thus sensitive to how large
the ion cyclotron wave-particle interaction is, i.e., the proximity of
w to some Nwe g« The second term is a cyclotron harmonic damping, also
in combination with perpendicular Landau damping. [The correct form of
the cyclotron harmonic contribution to Im K differs from that obtained
by direct expansion and evaluation from the imaginary part in Eq. (1.13)

-w2 /k2ve
X*1.) Note that for k, = 0, this contribution is

by the factor e
zero, thus giving Bernstein waves which are undamped for perpendicular
propagation in a collisionless plasma.

The collisional contribution to Im Kj given above is not correct
for v >> w_;, i.e., for highly collisional plasmas. In that case, an
jon undergoes many collisions before it completes a cyclotron orbit. In
that case, the finite ion Larmor radius effects should not significantly

affect the collisional damping, since the ion motion is much more
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strongly influenced by collisions than by the magnetic field, and a
simple phenomenoloaical collisional model of the form in Eq. (1.14)

should be adequate. Thus for v >> Wej

-w v S e e
\)_iwz_i 2w2,i wg_i e L 2 kZ Vi
Im K| = ——5-+ —P—Say Jn°e (1.20)
wkzkX vy n

The ny and Kyz will not be important in our caleculations because
of the two-dimensional nature of our problem. The sz have no cold
plasma contributions, and have a thermal contribution which gives rise
to terms in the dispersion relation that are negligible compared to
the thermal contributions from K" and KL to the dispersion relation.
When o >> wﬁh(x)’ the contribution of sz to the dispersion relation
is negligible compared with the contribution of the thermal terms of
Kyjs and when w ~ mzh(x)' that contribution is small compared with that
of the thermal temrs of %L in the dispersion relation. Thus the sz
may be considered "higher order" and will be neglected in the field
equation.

We have given the components of K in Z-space. We can represent
K in F-space as an operator form which is the Fourier transform of the
E-space representation by replacing kZ by -i %E-and kx by -i g;—. This
replacement can be done uniquely for homogeneous plasmas, but since we
are allowing for possible inhomogeneities in the x-direction, there is

an ambiguity in the replacement of the kx since the coefficients of ki

in K are density dependent, and thus a function of x. The proper form
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of the replacement for an inhomoceneous plasma can be derived from
the Boltzmann-Vlasov equation, from which the form of the dielectric
tensor for the warm plasma was originally derived. Thus, for
example, the correct replacement of the thermal terms Bki in K can

be obtained from the form of Poisson's equation in L. Pearlstein and
26

D. Bahdra, derived directly from the Boltzmann-Vlasov equation®, that
is
2 ad 9
ka # W[B(X)W (1.21)

The two principal approximations used in our model are the elec-
trostatic approximation for the field and the small thermal velocity
approximation for expanding the dielectric tensor. By combining the
criteria for the electrostatic approximation, Eq. (1.9), with the
electrostatic dispersion relation, given by Fourier transforming
Poisson's equation for a charge-free plasma and requiring that there be

nontrivial solutions for the potential:

K2 K (k) + KE Ky (k) = 0 (1.22)
we obtain a window on the kz components for which both approximations
are valid :

m2|K

1jl << k2 << mz/v2 (1.23)
& ln= Ky/KL| f g

In our model the point source excites the whole kzspectrum, and we will
consider the whole kz spectrum when calculating the fields by Fourier

transforming in the z direction. The field components for kZ out of



-28-

the range given by Eq. (1.23) will not be correct, so our approxima-
tions assume that those components make a small contribution to the
total field, or are of minor importance to the resonance cone field
structures that we will investigate. The lower bound region is very
small and negligible everywhere except for a thin region near the
source if the source is assumed to be in the vacuum outside the

plasma, and the approximation is even better if the source 1ies in the
plasma low density region. We shall see that the upper bound region
contributes primarily to the small rapidly oscillating structure of the
resonance cones which is far removed from the primary and first few
secondary maxima of the cones, so that if we concentrate on the central
part of the cones and ignore the small fine structure far removed from
it, we eliminate the contributions above the upper bound.

There are conditions on the laboratory plasma that help insure
that k, components outside the range given by (1.23) are not important.
First, a real source is finite so that kz > L']. where L represents the
characteristic source size, is not excited to any significant amplitude
by the source. Also, the very large kz components are highly Landau
damped, and thus become increasingly unimportant as one moves away from
the source. We will concentrate on the point source, but will include
damping in our calculations of the resonance cone field structures,
which decrease the importance of the very large kz's contributing to

the cone.
Near the lower hybrid, the accessibility condition ensures

k. > w/e (1 +w__/w )%so that none of the kz outside the lower limit

z ce’ “pe
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of (1.23) make it into the hybrid layer. Also, Troyan and Perkinsz7

have shown that only components of k, such that kz< w/4.5 Vo Make it
into the Tower hybrid layer without being virtually damped away. This
gives a window on the kz which make it into the Tower hybrid layer
from the source:

2

201 + e/ tpe) /e < k2 < W?/ (20v2) (1.24)

w
This means that for studying mode conversion, the kz's that are important
lie easily in the range given by (1.23).

An important point about our use of a point gap source is that it
serves as a Green's function for any finite gap type source. Thus, even
though our field calculations will contain extraneous contributions from
kz outside the range in (1.23) for any source for wave heating that con-
centrates energy into kZ inside that range, our fields serve as accurate
Green's functions from which the field for that source can be obtained

by integrating the source over the Green's function.

1.4 Purpose of This Work

One purpose of this work is to see the effects of boundaries on
warm plasma resonance cones, which we will do for the slab model just
discussed. We will do this by studying the fields produced by the gap
source from the resonance cone approach as an alternative to the gquided
wave approach. The resonance cone approach can give new physical in-
sights that are not apparent in the guided wave approach. The cones are
localized structures near the source, so normally only a few cones con-

tribute significantly to the fields at a given point, in contrast to the
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guided wave approach, in which many guided wave modes contribute.
Thermal effects will be seen to cause the cones to spread out (de-
localize) as they move away from the source. We want to see how they
spread for the bounded plasma. We will see that thermal effects and
spreading cause interference between nearby cones, most significantly
for relatively large cone angles with respect to the magnetic field.
We want to study the nature of this interference. We also want to see
the effect that collisions and Landau damping has on the cones.

We will be primarily interested in the middle branch of the cones

[wgh(x) < w< w._(x)], and are particularly interested in the lower end

pe
of the branch, where w = wgh(x), from the standpoint of plasma heating
by waves. A major portion of this work, then, will be concerned with
the case of an inhomogeneous plasma where w - wmh(x) at some point in-
ternally in the plasma, so that we have a pair of lower hybrid layers
present in the plasma, for a symmetrical density profile. The purpose
will be to see how a gap source (a model of a waveguide source) couples
the cones into the lower hybrid layer of interest to lower hybrid heat-
ing, and to study the process of mode conversion near the lowerhhybrid
from a resonance cone point of view. We want to obtain the warm plasma
cone structure near the lower hybrid layers. We also want to see what
the boundary effects on the wave processes involved in mode conversion
are, and the resonance cone picture is more useful than the guided wave
approach for this.

With the two lower hybrid layers present, there is a high density

region in the center of the plasma between the hybrid layers where the
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waves are evanescent. We want to study the case that the evanescent
layer between the hybrid layers is relatively thin to see if tunneling
of the cones takes place. We will see how the cones transform as the
hybrid layer is approached from the evanescent or propagating side and
their structure and trajectory. We will study how the enerqy flows in
and out of the hybrid layer and across the evanescent reaion from the
resonance cone picture. We want to see how mode conversion depends on
damping, inhomogeneities, and size of the evanescent region. Finally,
we want to see how the energy is absorbed by the plasma along the reson-
ance cones.
In Chapter II, we consider the structure of the warm plasma

resonance cones in the geometry of our model for homogeneous or mildly
inhomogeneous plasmas for the middle branch of the cone for frequencies

not too close to the lower hybrid or plasma frequency turning points.

With insights obtained from this case, we attack the harder problem of
t he case that lower hybrid layers exist in the inhomogeneous plasma in
Chapter III. This will give us information on the cone structure and
trajectories near the lower hybrid layer and evanescent region. In
Chapter IV we study the damping of the cones, and the power flow and
energy absorption along the cones by developing an energy conservation
theorem for quasistatic fields. The results are summarized in Chapter

V.
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CHAPTER II: RESONANCE CONE STRUCTURE FOR HOMOGENEOUS PLASMA

2.1 Model and Approximations

Our first objective will be to determine the structure of the middle
branch of the warm plasma resonance cones for our bounded slab plasma
with the gap source (Fig. 1.8) for a homogeneous plasma or for a weakly
inhomogeneous plasma in which there are no turning points. The density
is assumed to drop suddenly to zero at the boundaries. It is well
known that such a model supports guided wave modes for the same frequency
ranges that cold plasma resonance cones exist, the nature of which is
determined by the plasma dielectric properties, including thermal

effects. R. Gou]d28

has shown that the fields produced by the source in
such a geometry in cold plasma theory can be looked on as a sum of
multiply-reflected singular resonance cones as well as the usual super-
position of guided modes. In this chapter we will use and extend this
concept to warm plasmas and study the detailed properties of the warm
plasma resonance cones in this geometry.29

We will work with frequencies such that

ugh(x) << o® << Wl (x) (2.1)

everywhere in the plasma, where Wy is given by Eq. (1.10), to avoid
complications in the problem introduced by proximity to the turning
points (the effect of the lower hybrid turning point will be studied
extensively in the next chapter). For this range of frequencies, the

thermal terms of the dielectric tensor components Ky and K| are much
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smaller than the cold plasma parts so that appropriate expansions
may be made. More precisely, these approximations are [see Egs.

(1.16,18)]:

-
kT v w
1 - wﬁ/wz >> %-—3——21—29 (2.2a)
w
2 ,%. 7 .72 3.2 VY “Ei Vg ?se
1 = wpi/w + wpe/wce >> ?'kx w4 + 4w4 (2.2b)
ce

which are assumed to be valid if our small temperature approximation

ki vglw2 << 1 s valid, for frequencies in the range

2 g 2
3m£h(x) < w < wpe(x)/z
2 271/2
A8 Yy
i.e., for cold plasma cone angles ec =~ tan e in the
w =W
range P
2me 1/2

We will also assume that the imaginary parts of Ky and K; are small
compared with their real parts, i.e., that damping is small. The gen-
eral criterion for this approximation is that the damping length of
the waves that we are studying is much longer than the wavelength.

2.2 Equation for Potential

We are characterizing the plasma by a warm plasma dielectric
tensor expanded to first order in the thermal terms ki vs/w2 and
ki vi/m2 given by Egs.(1.16) and (1.18). We want the form of
Poisson's equation for the warm plasma for ¢(x,z). Such an equation

can be obtained by use of a nonlocal dielectric tensor,
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?Rx,z.~i %;a-i %E) which is an operator Fourier transform of the usual

k-space representation, obtained by replacing ka by =i 5%-as discussed
o

in Chapter I. (Thermal effects make the dielectric tenso} in F-space

nonlocal). Thus the equation we want is of the form

{5 [KL(x-1 $)30+ 2= [Ky(x,-1 2=) =The(x,2) = 0 (2.5a)
Letting
s ik_z dk
oxi2) = [ Blxky) e P oE (2.6)

we obtain [see Eq. (1.21)]:

(3e thyp0) + 3 Te00) ) - k2 Kytxak,)) dlxaky) = 0 (2.50)
where 510 is the cold plasma part of Ky . For the homogeneous plasma
Ky and 510 are independent of x, and the &10 and g s1ip outside the
partials. '

The dispersion relation obtained from Poisson's equation is

4 2 2 -
ka 4 K.LO kx - kZ Ku(x,kz) = 0 (2.7)

This equation has a large and a small root ki. The large root is an
ion thermal (acoustic) mode, and is not generally coupled for the
condition we are presently considering. The correct inclusion of this
mode would require an extra boundary condition. (This point will be
discussed in more detail in Chapter III, where we include this mode.)

Thus, in this chapter we will ignore the ion thermal mode and consider
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only the small k (X-mode) root.

Write the value of kx for the X-mode in the form

k, = *a(k,) [k, (2.8)

where o is complex with the inclusion of damping. In the cold, colli-

sionless plasma case
a > (KK '/% = [tan 6 17!

For the warm plasma we want an expansion of o to first order in the ther-
mal (and damping) terms in order to get an expression for ¢(x,z). The ion
cyclotron harmonic damping is ordinarily negligible for the electron

frequency range given in Eq. (2.1) and will be neglected. To first order

in thermal and imaginary terms

b o172 ol ve Wl » 2 2 v2m2 1/2
o= (1- ) -‘E' - k [—'——'E-'*(—g—?—) =22)]
w 4m4
. ce
mzw 5 2o
1/7(—5—5) exp (-0®/K2v2) + - wm(—P—r)]
kaE “‘-'J'Ih
A 5 s (2.9)
) 1/2
5T
w
2 2

Here the assumptions z—kz 2 2 /w << w /m - 1 and ?- (-~J1q-+
2 2 w

Ve “pe 2 .2 .

"—H-E_ = mhh/w were utilized, and the thermal terms in the

4wce
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imaginary part of a were neglected, since they are second order. Split
o into its real and imaginary parts: o = ar+ iai' Then, upon further

expansion of as We obtain

=D+ Ekg (2.10)
where 7 5 (2.112)
w. -w \I/2 IR
D = (_B__.z_.) = [tan @ ]']
kb ’
2 wZ 4
3[“’pe et (_%'*2#) mp1v1 ® _E:I__)]
“1h
E =
0 U X Y ’ b
A’ (wp -w (w w'iih) h (2.11b)
and
2, W 3 ) - )
-/ W (E———)'exp( w /k i [% - ( J
. ¥ zve EE wlh
e 2 2.1/2 .2 2 41/2 '
(mp - w ("~ w—ihl (2.12)
A solution to Eq. (2.8) which fits the boundary condition
#(x=a) = 0 and is causal (produces proper exponential decay away from

the source for a; < 0) is

» o exp(-ialk,|x) - exp[ia|k_|(x-2a)]
¢(x,k,) = ¢(0,kz)( — e i ) (2.13)

1 - exp(-2ialk,|a)
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2.3 Guided Wave Solutions

We may obtain the potential as a sum of guided modes by utilizing
the poles of $(x,kz) in doing the inverse Fourier transform. These are

given by

kz u(kz)a = nm (2.14)

where n is any non-negative integer. Thus the poles are the roots of
an algebraic equation which can be found approximately as the roots of
a cubic equation by utilizing our first order expansion of a and

ignoring the imaginary parts:
2y .
|kz| (D + Ekz) = nm (2,15)

This equation admits only two real roots for each value of n. The pres-
ence of a nonzero imaginary component of o puts the roots in the complex
plane. Since oy < 0, then Im kZ > 0 for Re kz > 0 and Im kz < 0 for

Re kz < 0. Denote the two poles for each value of n by kZ = Skn.

where the real part of kn is slightly less than its cold plasma value

Re kn = nn/D, and € = *1, Since we must close the contour for the
Fourier transform of &(x.kz) in Im kz <0 for z < 0, and in Im kz >0
for z > 0, then we pick up the poles kZ = kn for z > 0 and kz = -kn

for z < 0 (see Fig. 2.1).

o . ik_z
d(x,2) =i ) Res[¢(x.kz)e 27 (2.16)
n=0

kz=(sgn z)kn

Evaluating the residues gives
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Imk

Close for z < O

Re k,

Close for z> 0O

Fig. 2.1 Poles of $(x.kz) and contours for inverse Fourier transform
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3 ik |z|

o ¢(O,kn) sin(nmx/a) e i

) (2.17)
n=0 a(kn) + kn a‘(kn)

d(x,2)

for the gap source E(O,kn) = 1, and the denominator is given approximately
by D + 3EKZ.
The presence of damping causes the waves to decay in the z direction

through an imaginary component of k_ given by (for oy << ar)

nm ai(kn)
Im kn B (2.18)

ar(kn)
Thus the higher the order n of the mode, the faster it damps away as it
propagates away from the source. For small z, i.e., for near fields,we
must consider a very large number of modes, but for sufficiently large
z, i.e., in the very far field, all but the lowest order modes have de-
cayed away to negligible amplitude. Thus the guided mode solution is
the most useful for determining the field in the far field region, but
is not as useful in the near field, where the quasistatic approximation
is best. Finally, it should be noted that each of the guided modes are
nonlocal, i.e., they are nonzero over a very large region, except for
the sufficiently large n modes that die away very rapidly in z. This
will be contrasted with the local nature of the resonance cones in the

next section.

2.4 Resonance Cone Solutions and Properties

To get the form of the resonance cones we must expand the denomin-

ator of ¢(x,z) before Fourier transforming it:
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[1- exp(-Zia[kz|a)]'1 = Eb exp(-21u]kz|n) (2.19)
n=

This converges since a; < 0. Then

d(x,2) = nEO J $(0.kz)exp(ikzz){exp(—iqlkzlx) —exp[1a|kzl(x-2a)]}
- 0

0
dk ) .
X exp(-Zinalkzla) ?EE - J ¢(0,kz) exp(ikzz) (2.20)

dk
X {exp[—ialkzl(x-Za)] - eXp(iulkzlx)}EXP(—2n1a|kzla)—g%

It should be noted that the upper and lower limits of the integrals in
Eq. (2.20) lie outside the range of kZ for which our electrostatic and
small thermal velocity approximations are valid, so the integral forms
are valid only when the kZ lying outside this range make a negligible
contribution to the total integral. (This point will be examined in
more detail later.)

For a point gap excitation the second boundary condition is of

the form ¢(x=0,z) = &(z). Then, 3(0,kz) = 1 and

¢(X,Z) LS
n

e~ 8

Z ; Z : ef[6z + eala-x) + (2n+1)aa] (2.21)
where

r dk, (2.22)
f(g) = I exp[-ikzg(kz)] =
0
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We want to evaluate the integral f(£) for g(kz) = 6§z + eala-x)

+ (2n+1)naa. Assume a = o as a first approximation, since oy << o

r r

from previous assumptions. This will give us the undamped solution.
We will include the effects of o by a perturbation on the undamped
solution to take the effect of Landau and collisional damping into
account. We may thus write £ = Eo + 1&1 where Eo and £1 are the real

and imaginary parts of £, and £==€0 is the first approximation. Then

Eo(kz) = un(GZ.X9E) 3 V"(X.E) kg

(2.23)
where
un(Gz.x,e) = §z + [(2n+14e)a - ex] D
(2.24)
vn(x,e) = [(2n+1+e) - ex] E
We have
P 3. 9K,
dx2)=-F 3 1 ¢ J expl-1(uk * vpky) 1 = (2.25)
n=0 e=%1 &= 0
From the Airy integral for'msz4
Ai(n) = L [ os(vn + v3) dv
Sl B i Bils (2.26a)
0
Gi(n) = L °°;in(vn + v3) dv
= L (2.26b)

we obtain
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£
z) = - — F
das n=0 ezﬂazﬂ (3v,)'/° (3vn)”3] ' (2.27)

where F(£) = Ai(g) - iGi(g). This is the form of the potential, neg-

lecting damping. The corresponding field components are

=_ﬁ= v Se Et Hn \]
R S egﬂazﬂ[(svn)m ((3vn)'73/ e

(2.28b)

There are several observations that can be made from the form of
the potential in Eq. (2.27). First, as Te + 0, then E - 0 so My 0

for all n, and

-1/3 L)
3v Ai + & (2.29a)
(3v,) (—-173(3\)") ) (u,)

A3 ir o 19)
(3v,) G1(z§;;317§9 TR (2.29b)

Thus

=%
#(x,2) » -] zae[ﬁ§;'+ S(Un)]

n &, (2.30)
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and we recover the cold bounded plasma resonance cones given by
Gou'ld.28 In this 1imit it is easy to identify each term with a
given n, €, and § with an individual member of the multiply-
reflected resonance cones which in cold plasma theory is singular
for un(ﬁz,x,e) = 0. The cones in z > 0 have § = -1, and those in
z < 0 have § = +1. The cones reflected off the x = a boundary have
€ = +1, and the ones originating from or reflected off the x = 0
boundary have € = -1 (see Fig. 2.2).

The effect of the temperature is the shifting of the maximum of
the potential of a given cone (which is no longer singular) to a
smaller angle and the appearance of an interference structure (second-
ary maxima) inside the cone as was first noted by Fisher and Gou]d.2
This is illustrated by the graph of the magnitude of the "cone
function" F(g) in Fig. 2.3. The graph can be considered to be a
cross-sectional cut of the cone, e.g., the cone field structure as a
function of z for a fixed x, where £ = 0 is the position of the cold
plasma cone trajectory, with the warm plasma cone maximum at
£ = -1.83 and subsequent maxima at ¢ = -5.4, -7.9, -+-. The warm
plasma cone structure is caused by interference between the cold
plasma cone and a warm plasma wave, as can be seen by taking the
asymptotic limit of Eq. 2.27 (valid for very small Te away from the

cold plasma cone line). For un/(3vn)]/3 >> 1,25

b {-i 1 ¢ (2.31a)
Sl ! EEmn 2-/17(3\Jn)1/4u:‘/4 exp( 3(3v.) / )]

n=0 e=¢1 &=x1
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Fig. 2.2 Surfaces of singularity (dotted lines) of the cold plasma
resonance cones, labeled by the cone which is singular
there in cold plasma theory. ec is the cone angle.
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1/3

and for un/(Svn) e =
3/2
v -2i(~u )
= 1 n ™
¢v-7 % € + ex #
n=0 e=+1 §=21 THy /F(—un)]/A(an)]/4 p[3(3vn)1/12 ¥

(2.31b)

The first term of the potential for each multiply-reflected cone
(each value of n, €, and 8§ in the sum) goes like u;] (i.e., Coulomb-

like) and may be identified with the cold plasma wave cone. The second

-1/4
n

produces the interference structure. The thermal wave is propagating

term goes like u and may be identified with the thermal wave which
on the My < 0 side of the cold plasma cone line, and evanescent on the
B, 0 side. The thermal wave contribution to ¢ falls off much more
slowly with My than the cold plasma contribution for My < 0, giving
rise to a long tail on the cone and a considerable broadening of the
cone from the cold plasma case. When asymptotic forms are valid, the
primary contribution to each cone in the sum comes from kz lying close

to the saddle point of the integral in Eq. (2.22).

-u. 1/2
= W |
kZ =+ [3V (2.32)
and the magnitude of this saddle point increases the distance from the
cold plasma cone line Py = 0. This explains why as we go from the
primary maximum to the higher order secondary maxima for My < 0, the
narrower the peaks or spatial oscillations become; these peaks are

caused by successively higher values of kz.
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The width of the peaks and spatial oscillations associated with
each cone spreads out in a uniform fashion away from the source, while

-1/3

their amplitude correspondingly decreases as (3vn) Let

Az = Z - zc(x,s,e) (2.33)

be the vertical distance from the cold plasma cone (a function of z for
a given x) for a given cone labelled by n, §, and £, where z, is the
value of z at which the cold plasma cone singularity occurs for the

given x and given cone. Also, let

[(2n+1+e)a-ex] (2.34)

which acts like a total vertical distance from the source for the given
cone (i.e., is x for the cone coming directly from the source, 2a-x
for the first cone reflected off the x=a boundary, 2at+x for the cone

reflected off the x=0 boundary, etc.) Then the argument of F is

un/(3vn)]/3 = =64z 737 v Az x;]/B T;1/3 (2.35)
[3%, (€ )E]

Thus we see that for a given peak [fixed un/(3un)]/3] the width of the
peak and its distance from the cold plasma cone line increases as the
cube root of the vertical distance from the source and of the tempera-
ture. This shows that the cones spread out away from the source, and
become wide and more nonlocal as the temperature is increased. The
corresponding angular shift of the maximum of the potential due to

thermal effects goes like
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-2/3 +1/3
2O ~ AZ/X, v X e (2.36)

for A8 << 1 (valid everywhere except very near the source). We see then
that not only does the angular shift increase with temperature, but it
decreases with effective vertical distance from the source, i.e., the
trajectory of the cone maxima becomes more and more parallel to the cor-
responding cold plasma cone line as it moves away from the source.

We can similarly analyze the primary (saddle point) kz contribu-
tions along the By < 0 side of the cones in terms of the above introduced

parameters. From Eq.(2.32)

172
_ AZ -1/3 -1/3
k, = * [—3xne] PRILS (2.37)

Thus we see that for a peak in the asymptotic region of the cone, not
only does the primary set of kz making up that peak increase with the
square root of the distance of the peak from the cold plasma cone line
for a given x, but it decreases as the cube root of the effective vertical
distance of the cone from the source, as well as the temperature. This
explains the spreading of the cones from the source and their increase in
width with increase in temperature.

The solution for an unbounded plasma is obtained by letting a » =.
(This gives us the solution for a half-space plasma with a conductor at
Xx = 0.) Then only the n = 0, ¢ = - 1 terms survive. Thus, the form of
the potential for the unbounded case is the same as the n,e = - 1 term
of the potential for the bounded case for 2n < x < 2n+1, and the same as
the negative of the n,e = +1 term of the bounded case potential for

2n+1 < x < 2n+2. The individual terms in ¢(x,z) therefore correspond to
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perfect repeated multiple reflection of the unbounded form of the poten-
tial with the conducting boundaries acting as mirrors. That is, the
reasonance cones reflect off the boundaries, changing sign upon each
reflection, and each (reflected) cone with a given (n,e,8) has the same
shape (up to a -1 factor) as a successive segment of the corresponding
unbounded cone (see Fig. 2.4). However, in the unbounded case, more
than one term in the sum may contribute to the potential at a given point
in space, hence, there is interference between nearby reflected cones
because of the nonlocality (spreading away from the source). Thus, the
effect of boundaries is to produce interference between the cone coming
into a boundary and the one reflected off of that boundary. Indeed,
adjacent cones come together (interfere perfectly) at the boundary to
give ¢ = 0 there (the boundary condition produces the reflected cone),
so interference is most important near the boundary. The higher Te the
greater the width of the region near the boundary in which interference
of adjacent cones is important, and the greater the importance of inter-
ference. Also, the higher the driving frequency, w, the larger the cold
plasma cone angle 0cs and hence the greater the importance of interference.
The cones are localized structures, particularly near the source,
although they spread out and become less localized as they move away
from the source. Thus in the region relatively near the source (the
near field), where the fields are largest and where the quasistatic
approximation is best, only a very few (two or three) cone terms con-
tribute to the total field (the few multiply-reflected cones that
interfere with each other at that point), with this number increasing

as we go to the far field. This is in contrast to the guided mode form
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of the fields, in which a very large number of modes contribute to the
field in the near-field, but a smaller number in the far-field. Thus
the two views are complementary, with the resonance cone form being the
most useful for the near field region, which is of most interest, but
with the guided waveform being of possibly greater use for the far field.
The low order guided modes are nonlocal, with the higher order modes
becoming increasingly localized, due to damping, whereas the low order
resonance cones are localized, with the higher order modes becoming
increasingly delocalized due to spreading of the cones. (As shall be
seen in the next section, damping has the effect of increasing the
locality of the cones, with severity increasing with cone order, but this
is more than offset by the cone spreading in most circumstances.)

As seen in Eq. (2.20), the cones in the z > 0 half of the plane
are produced by the kz > 0 components from the source, while the z < 0
cones are produced by the kz < 0 components. However, it is clear from
the form of $(x,kz) in Eq. (2.13) that the x component of the phase velo-
city is always opposite to that of the direction of decay of the wave,
which is the x-component of the group velocity vg or of the direction of
cone propagation. Thus the wave is "backward" along x, but is forward
along z. This causes the group velocity ¢g

be perpendicular along the resonance cones in cold plasma theory. Indeed

and the phase velocity 3p to

the cold plasma forms for the phase and group velocity directions for the

cones in our model are

~

Vg N 62 - e;/D
(2.38)

A~

vp v k- 8z + eDx
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where § = -1 for the z > 0 cones and +1 for the z < 0 cones, ¢ = -1 for
the cones coming from the x = 0 boundary and +1 for the cones coming from
the x = a boundary, and D is related to the cone angle by Eq. (2.11a)
(see Fig. 2.5). The effect of finite temperature is to replace D by

D + Eki, which will give the phase velocity of a given kz component and
the group velocity of a narrow spectrum of waves centered around that
component. (The latter is well defined only in the asymptotic region of
the cone, where the local cone field is produced by a narrow spectrum of
kz centered around the saddle point.) Thus thermal effects cause the
phase velocity to be a function of k,, so that the phase velocity angle

increases with kz (i.e., v_ is greater and lies increasingly more along

P
X with increasing kz). This results in constructive and destructive
interference between the various kZ components and produces the inter-

ference structure inside the cone.

2.5 Damping of the Resonance Cones

We now include Landau and collisional damping. Go back to the
integral in Eq. (2.21). We have (k. ) = go(kz) + igi(kz) where £,(k,) =

ai[(2n+]+a)a - ex] was previously neglected. The integral
w© dkz
f(go) = J-O exp[-1kzgo(kz)] —5, Mmay be solved by saddle point integra-

tion, and if we so solved it we would get an asymptotic form of the exact
solution f(go) « Ai(go) - 161(50). Thus, treating the ay term as a per-

turbation,
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dk
£(E) = Lexp[-ikzg(kz)] —Z = exp{k [(2n+1+e)a - exla; (k )}

(2.39)

o -]

dk
X I explik &(k,)] —§% = exp{ko[(2n+1+s)a - ex]ai(ko)} F(Ey)s
0

where kK is the appropriate saddle point of f(& ). Since k€ (k) =

1
u, k + v kz » then 0 =% [3v P £ . Since a; < 0, we must ;hoose the
plus sign in the saddle point because the negative sign violates causal-

ity. We thus obtain

#(x,z) = f ; g ; ?(3 ';}73 F[ un1/3]exp[-rn(6,g)] (2.40)

n=0 e,8=% Vi (an)
where
[ ]1/2 [(2n+1+ 2
e)a - ex] 5 -3 0? 32 5% i
r (8,e) = on 3 g 0 N exp(3v_w"/u vo)
n (mﬁ _— )1/2 ( 2 )1/2 P unvez n n-e
.4

This form of the damping is quantitatively correct only when the asymp-
totic form of F 1is valid, i.e., for argument [un/(an)1/3| - B
However, for smaller arguments it should give a qualitative indication

of the nature of the damping.
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One interesting observation is that the Landau damping factor is
exponentially decaying away from the source for by % 0 (inside the cone),
but introduces a spatially-dependent phase for by 0 (outside the cone).
This phase does not influence the magnitude of the potential at points
where only one cone contributes significantly to it, but at points where
two or more cones are interfering this phase is important in determining
the way the two contributions add, hence may have an influence on the
potential.

For a given cone the damping exponent goes like

1/2

§z + x D
n 122 X 2
Irn(S,G)l m(_W) Xn'\-' |AZ| Xn

(2.42)

This means, for example, that the parts of the thermal interference
structure inside a given cone which are the farthest from the cold plasma
cone 1ine are the most highly damped, and thus become negligible the
fastest as one goes away from the source. Damping thus reduces the
importance of interference between nearby cones. It is to be noted that
the higher Te is, the greater the Landau damping contribution to Fiie but
the less the collisional damping contribution.

There is a clear reason for the increase in the damping with the
distance from the cold plasma cold line. As already pointed out, the
primary kZ contributing to the cone structure at a given point on the
cone is the saddle point value given by Eq. (2.37), and the magnitude of
this increases with the distance from the cold plasma cold line. But
the higher the kz’ the greater the damping of that component because of

its greater interaction with the particles. Hence the observed nature
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of the damping.

It can be seen from Eq. (2.31) that the thermal wave contribution
to a given cone falls off much more slowly with increasing distance
|un| from the cold plasma cone line than the cold plasma cone contribu-
tion, for Wy < 0. Thus the thermal wave gives rise to a long slowly
dying tail, which is spatially oscillatory due to its interference with
the residual cold plasma contribution. This long tail will interfere
with nearby cones, and the saddle point kZ making up this thermal tail
increases with the distance |un| from the cold plasma cone line. If
finite sources are used, the amplitude with which each kZ component is
excited will tend to fall off with increasing kz’ so there will be an
eventual cutoff and elimination of the higher kz's excited by the source.
Thus a finite source will tend to cause the thermal tail of the cone to
have a more rapid falloff with My than (-un)']/4; and thus cut off the
tail at some large Mpo although it would also be expected to broaden and
flatten the cold plasma contribution to the cone structure. A Gaussian

source spectrum
2
30,k = fE e (2.432)

will be assumed as a typical finite source. This is for a Gaussian

source in real space

2
4(0,2) = —— @2 /o

(2.43b)
Yo

With this Gaussian form of the source, the very large kz components that
violate the small thermal velocity approximation are suppressed. The

cone field function for the source in the expansion of ¢(x,z) as a sum
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of cones in Eqs. (2.21-25) is

- dk
] : 3 2 z
f(un+vnkz) ,;/ exp[-1(unkz+vnkz) - or.kz] 5 (2.44)
0
; ; 1/2
In the asymptotic region of the cone, for o << (3unvn) , we have

a<<(3 e )]/2
o(x,z) "n ZZ exp[ ]F[(2n+1+e)a ex] (2.45)
>>(3 )1/3 n e,

where the asymptotic form of F is valid. Thus we see that out away from
the cold plasma cone line Hy ® 0, the effect of a # 0 is to cause an
exponential decay of the cone field with increasing distance from the
cold plasma cone line compared to the point source case. The source will
also broaden the cold plasma cone contribution near My = 0, as it does

for the Te = 0 case, but in the u_ > u2/3vn region the finite source

n
effect on the thermal tail dominates over its effect on the cold plasma
cone contribution, so that the finite source cone has a more rapid
falloff in the thermal tail. A narrower cone structure results from the
finite source effects if a is sufficiently small.

In Fig. 2.6 the form of ¢ is shown for w = wpe/4, or cone angle

o

B, = 14.5 , and thermal velocity Yo ™ .005 aw. The source is the finite
Gaussian profile discussed above, and Landau damping is included, but

v =0. Only the z > 0 portion is shown, since ¢ is symmetrical about

z = 0. There are four cones present in the region shown, and these are
labeled. The thermal interference structure associated with each cone

is sometimes visible, particularly so for the (n=0, e=-1, 6=-1) cone

becomes more pronounced in the region near the (n=0, e=1, §=-1) cone, and
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modulates the main peak of that cone. This can be interpreted as follows.
The interference structure of the e= -1 cone is caused by an interference
between the cold plasma and thermal waves of that cone, but at a large
distance u  from the cone line, the cold plasma contribution mluol'1 has
become rather small compared to the thermal contribution %|un|-1/4, S0

the interference structure dies down for large |uo|. But, near the region
of the € = 1 cone, the thermal wave of the ¢ = -1 cone interferes with the
cold plasma wave of the € = 1 cone, and the interference structure
immediately becomes more pronounced.

The interference structure between two adjacent cones takes on a
different character when the two come together near the boundary, and the
individual cones making up the field there cannot be distinguished. The
interference structures are shown in the graph for each adjacent pair.
Figures 2.7-8 show the cone structure for higher temperatures and larger
cone angles. In those graphs the interference between nearby cones is
greater, and the individual resonance cones harder to distinguish or
identify. A conclusion that might be drawn is that for quite large tem-
peratures and cone angles the resonance cone picture is no Tonger as
useful for interpreting the structure of the potential in this geometry,
although it is still quite useful as a method for calculating that
potential. Typical low density plasma parameters which might apply to
the graphs are w = 200 MHZ and a = 10 cm. Then Fig. 2.6 would correspond
to T, = 1.1 eV, and Fig. 2.7 to T, = 4.4 eV.

For higher driving frequency w, the graphs would correspond to
much higher temperatures. For smaller w/wpe, the cone angle is smaller

and interference is less, and as w approaches w the interference becomes

eh?
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almost nonexistent (except on the boundary). Also, the high frequency
spatial oscillations (for large z and small x in the graphs) will be more
subdued or suppressed for larger finite sources (for which our point
source solution acts as a Green's function), so the interference will not
be as pronounced for finite sources as is indicated by the point source

solution.

2.6 Analysis of Assumptions

A few words are in order on the validity of the electrostatic and
small thermal velocity approximations. The criterion for the validity of

the former may be written

2
R
2 > _2“’L1_.L|___
c”(1-Ky/K))
where
2 2_2 2. 23 ¢8 2
K Kygl o -wlh)ma:[(: -zgh).(wp-m iy (2, /2
— L
c“(1-Ky/K)) ¢ (wp-wyp)

so both approximations are valid for kz in the range
Z. 2 2 2 erne
(w -wgh)/c << kZ << w /ve (2.46)

The very large kz are severely Landau damped, and kZ greater than
kmax ~ 1/L, where L represents the characteristic size of the source, are
never excited in a real plasma. These facts help assure that our approxi-
mations are valid in an actual plasma. But the 1imits on the integral

1:/3
Flu /(3v,)

our form of the potential is only valid if the kZ outside the range in

] in (2.27) are for kZ outside the range given by (2.42), so
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(2.42) make a negligible contribution to the total integral. More
precisely, there must be some kmin(”n’“n) 2 3(m2-wih)1/2/c and some
. 1/3
kmax(“n’vn) < w/3v, such that for the integral F[un/(3vn) 1,
k . o« e ] o0
min 1/3
.[ << J. and << . In the case that ]un/(3un) |>> 1 (away from
0 0 k 0

max
the corresponding cold plasma resonance cone lines), so that ¢ takes the
form in Eq. (2.3i), and the damping is correctly given in (2.41), the
major contribution to the integral comes from the saddle points kz =

+ (—pn/3vn)1/2. We thus have a criterion for where in r-space the
approximation is satisfied in that case for the (n,e,8) term:

-l 2 |6z + [(2n+1+e)a - ex]D] 2,2
(W -ugp)/e” << rm i vea - oxIE - << @ Ve

(2.47)

For a given point (x,z), this criterion has to be satisfied only for the
cone terms (n,e,8) which make a significant contribution to the net
potential at (x,z), so normally at most two or three terms are involved.

Expressed in terms of cone parameters and using E ~ 3w V2/4w3 for the

pe'e
higher frequency range of the cone branch (mz >> wih), the criterion
becomes
2,2 pzw 2,2
w /¢t << ——5— << /ve (2.48)
2mpevexn

This form shows clearly that the quasistatic approximation is best in the
near field (small xn) and breaks down first far away from the source,
while the small thermal velocity approximation becomes better as one

moves away from the source (to large xn), and is least good very near the
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source. Also, for a given x the quasistatic approximation breaks down
first very near the cold plasma cone line (Az = 0), i.e., near the first
maximum, whereas the small thermal velocity approximation breaks down
first far away from this line (i.e., for the higher order maxima).

We can also study the validity conditions with respect to a given

maximum of the resonance cone structure, i.e., for fixed

¢ = /(3v )3 = az/(3x E)'/3 (2.49)

in Fig. 2.3. In terms of this

2
ik Lo < w2 (2.50)

(awpevgx“)2/3

The quasistatic approximation breaks down first for the primary
peak (z = 1.8), so the condition for the validity of the approximation

for that peak becomes

3 2
X, << ¢ /wpeve (2.51)
For example, for the extreme case | “pe = 2w and o .05 aw with a =

10 cm, w = 27 X 108 rad/sec, the right hand side is about 1.2 x 104 a.

That means that the quasistatic approximation is good for the resonance
cones for a few hundred reflections, i.e., is very good.

The small thermal velocity approximation for a given peak becomes

53/2 << prexn/ve (2.52)

This breaks down in our graphs after the first few maxima very close to
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the x=0 boundary for the cone coming directly from the source, so the
high frequency spatial oscillations produced by that cone in that region
do not give quantitatively correct fields there. For finite sources this
high frequency spatial structure, produced by the high kz components from
the source are more subdued or nonexistent, so the fields produced in that
region are more like slowly varying spatial averages of the calculated
fields shown. An important point is that our solution is a valid Green's
function for the fields produced by any finite source which excites only
those kZ that are within the range of Eq. (2.47) everywhere that we are
interested in the fields, because the kz components in the Green's func-
tion solution outside of this range are suppressed in the integration of
the Green's function over the source. A final point is that a better
approximation to the cone fields can be made by modifying the calculated
fields outside the range in Eq. (2.48). For those parts of the cone for
which the primary k, [given by Eq. (2.32)] satisfies Eq. (2.48), the form
of the field is reasonably accurate. For those parts of the cone created
by kz outside of this range, a finite source is assumed of sufficient
size so that these kz are not excited, and the thermal term in the
asymptotic form, Eq. (2.31), is neglected, since that is the term arising
from the high kz components and producing the local spatial oscillations,

and only the cold plasma Coulomb-1ike term ¢ ~ p;] is retained.

2.7 Inhomogeneous Plasma

Having studied the solution for a homogeneous plasma, we are
interested in seeing how this is modified by the presence of weak inhomo-

geneities. Assume the inhomogeneities to be perpendicular to §0 and in
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the x direction, since that is the case of interest in most plasmas. Now,
whe = mpe(x), woi wpi(x) and Ky and EL and then the functions of x.

We seek a solution of Poisson's equation, Eq. (2.8) in this case.
In the WKB approximation, solutions which fit the boundary condition at

x = a are of the form

a(0)K,(0) 1/4
FEILNEI] (gxp[-ilkzln(x)] —exp{-i[kz[[zn(a)un(x)]})

1 = exp[-21|kz| n(a)]

$(X.kz) = $(x=0akz).

(2.53)

where n(x) =| a(x')dx'. Then, we may expand the denominator as before.

O

Letting g(x

S

X X
= IO D(x')dx"' and q(x) = J E(x')dx' we straightforwardly
0

obtain the solution for a point gap excitation:

o(xy2) = — [EE(O) . “)2][&32- w?h(o)] )]/4
[wg(x) - W*1[wf- W, (x)]
°° (2.54)
: = F[M /(3n )1/3
"ZO €a6§11 ISE;ST7§' M,7(3N) 7]

where Mn(az,x,e) = 6z + (2n+l1+e)g(a) - ea(x) and Nn(dz,x,e) = (2n+1+¢e)q(a) -
eq(x). The cold plasma cone lines satisfy M, = 0, so we see inhomogenei-
ties cause a bending of the cold plasma cone 1ines and of the maxima of

the warm plasma cones. They also cause a spatial modulation of the field
amplitudes.

The WKB approximation assumes dkx/dx << kg where kx is the wave



57

number in the x direction. From the electrostatic dispersion relation,

2 2\1/2
Ky\1/2 w_(x)-w
u) i
kx = (— rTn kZ = —%2—‘ k (2.55a)

4

The criterion for the validity of the WKB approximation then becomes

AT
wd(w: )
— e 2[(mg-w2)3(w2-mih)]]/2 K, (2.55b)

The WKB solution breaks down for strong inhomogeneities, for very small
k, components and as w > mp(x) or w -+ mzh(x)' [By our assumptions

2 2
wgh(x) < w

< wi(x) for all x.] These two frequencies are turning points:
the plasma frequency cutoff and the low hybrid resonance, respectively.

In the case w = mlh(x) for some x, i.e., for a Tower hybrid layer present, Re
KJSx) -+ 0 1in our approximation and thermal terms become dominant in Kl:
and mode conversion of the resonance cones may take place. The WKB
approximation breaks down near the plasma frequency because the perpen-
dicular wavelength becomes as large as the order of the scale length of
the density variation, but breaks down near the lower hybrid resonance
because the perpendicular wavenumber becomes very large so rapidly as the
lower hybrid layer is approached. It is to be noted that the WKB approxi-
mation breaks down for kZ near 0, so that since we integrate over kz in
this region when taking the inverse Fourier transform, the validity of

the solution depends upon the contribution to the integral from this
region being negligible compared with the total integral. This should be
all right for gentle density gradients whenever the quasistatic approxi-

mation is valid, except near the turning points.
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The damping factor associated with each cone for the inhomogeneous

case is just a generalization of that for the homogeneous case and is

M 172
I (8se) = (g9  [(2n+1+e)n,(a) = en,(x)] (2.56)
n
where
- X
n;(x) = £°‘1(X')d>c‘ e (;;ﬂ)vz
n
g -3 3/2 2 o' F .
- [:JF mp(~a;;;20 exp (3N w™/M v,) £ {[wp(x.)__wZJT/Z[wZ_ wﬁh(x.)ll/z}-l dx*
el ATl L T 2 o 2 2 '
g T(“’p(" M= wpp(x') - up (") ] +oTap (x ))dx'] (2.57)
2N ) -7 Lt (x0T

In Fig. 2.9, the cold plasma cone trajectories are shown for the
inhomogeneous plasma, which illustrates that the large cone angle in the
low density region near the boundary and the smaller cone angle near the
center of the plasma cause the cones to bend in accordance with the local
density. The shift in the cone maximum given by Eq. (2.36) due to thermal
effects will similarly be controlled by the local density, and this will

control the trajectory of the peaks of the warm plasma cones.
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CHAPTER III: RESONANCE CONES IN INHOMOGENEOUS PLASMA WITH LOWER HYBRID
LAYER

3.1 Lower Hybrid Density Model

We now want to investigate the resonance cone structure in our
slab plasma model for an inhomogeneous plasma when the low frequency
bound of - the middle branch of the cones, i.e. the lower hybrid fre-
quency turning point, is present in the plasma. This turning point
will modify our cone structure because of the possibility of mode con-
version at the hybrid layer, and because of the presence of a region
where the waves are evanescent on the high density side of the hybrid
layer. What happens to the cones and how their energy is absorbed are
important questions to lower hybrid heating that we want to answer.

The density profile is taken to be symmetric about x=a/2, with
density increasing from the source boundary at x=0 t0 x=a/2, and de-
creasing from x=a/2 to x=a. Our problem will be formulated and solved
for the more general caée of a nonsymmetric density profile, then spec-
cialized to the symmetric case. The range of frequencies in the plasma
will be taken as Wi § mpi(¥)<wpe(x)<4m where w

te ci
jon and electron cyclotron frequencies, and wp1 and w

and w are the
ce

& the ion and

2
ce °

p
electron plasma frequencies. We will also take wc12<<m2<<w

It
is assumed that there are lower hybrid layers present, i.e. values of
x for which the source frequency @ is equal to the local hybrid fre-
quency wzh(x). We will let the lower hybrid layer nearest the source
be at X=Xpqs SO that there is a mirror layer at X=Xpo= a=Xp because

symmetry, and m=w2h(xh1)=mzh(xh2)‘ We will consider propagation of
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the extraordinary mode from the source, which is evanescent on the high
density side of the hybrid layer, for m<w2h(x). Thus the wave will be
evanescent in the region betwcen the hybrid layers, and we will be con-
cerned with the case that this evanescent region is quite small compared
to a. (See Fig. 3.1.)

We will calculate the quasistatic fields in this model including
first order thermal effects. This will give four wave modes everywhere:
the extraordinary wave (which will sometimes be called the cold plasma
wave, since it is present in a cold plasma), and the ion thermal (Bern-
stein) wave (which will sometimes be called the warm plasma wave, since
it arises purely from thermal effects), each of which may have compon-
ents propagating in the direction of increasing x and the direction of
decreasing x.

There are three natural regions introduced into the plasma by the
hybrid layers: the two regions between the boundaries and the hybrid
layers where the waves are propagating, and the region between the hy-
brid layers where the waves are evanescent. In each of these regions,
the fields away from the lower hybrid layers can be obtained in the WKB
form for a mildly inhomogeneous plasma, but these break down very near
the lower hybrid layers, where a different approach to the solution must
be made. Thus to aid in obtaining the fields in this model, we will
further subdivide the three regions into regions where the WKB soiutions
are valid, and hybrid layer regions where they are not. This gives seven
regions as shown in Fig. 3.1. Region I is the region near x=0 where

the waves are propagating and WKB solutions are valid. Regions II and

III are on either side of the hybrid layer X=Xp 1 where WKB forms are
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not valid except at the edge, where the solutions in these regions con-
nect onto the WKB solutions. Region II is on the low density propa-
gating side of X=X 1s and region III on the high density evanescent
side. Similarly, regions V and VI are the high density evanescent

side and the low density propagating side of X=X respectively. We
may have a region inside the evanescent region where KB solutions

are valid, and this we call region IV. Region IV will not be present
in most cases of interest where the evanescent layer is thin so that
tunnelling through that layer is important. Finally, region VII will
be the region near the x=a boundary where the WKB solution is valid.

In cold plasma theory, the cones can exist, i.e., the fields are
singular in regions I and II between x=0 and X=Xp 1 since Ky K <0
there. In regions III, IV and V between X=Xy and x=x, Ky KL >0
and the cones do not exist in cold plasma theory. In regions VI and VII,
Ky Kl <0 again, so in principle, cold plasma resonance cone singularities
could exist, but will not be present because of the intervening evan-
escent layer between the regions and the source. However, if the evan-
escent layer is thin, conelike fields exist in these regions as well as
in the evanescent regions. (These facts begin to illustrate the 1imi-
tations of cold plasma criteria for the existence of resonance cones.)

The method of finding the fields will be to obtain the form of
the solutions in each region and then find the coefficients of the lin-
ear independent solutions by connection to adjacent regions and use of
the boundary conditions. There are two kinds of connections to be
done: connections across the lower hybrid turning points at Xh1 and

X2 and connections between the WKB regions and the hybrid resonance
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regions.

Energy is coupled into the plasma at the source at x=z=0. To
excite the extraordinary mode in the plasma we require the perpendi-
cular component of the wave at the source to have its electric field
vector perpendicular to the background magnetic, since the tangential
component of the electric field is continuous across the boundary at
x=0. Since we are thinking primarily of a waveguide source, this
means that we want to use the TM mode of the guide. The TE mode couples
to the ordinary (electromagnetic) mode in the plasma, which does not
experience a resonance at the lTower hybrid frequency. For optimum coup-
1ing to the plasma, the source impedance should be matched to that
of the plasma in the low density region, since that minimized the power
that is reflected back into the guide from the boundary.

In the low density region near the source the large kz's are
evanescent for a small distance if the plasma frequengy falls below
thetisource frequency. If the plasma density is zero at x=0, the dis-

persion relation of the electromagnetic wave there is

ki + ki = /el (3.1)

and the kz§w/c components are evanescent. Since we are solving for

the fields in the quasistatic approximation, which gives the dispersion

relation in the zero density region

2
X

2

k, + kz =0

our solutions will give evanescent waves for all kz, which is incorrect
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for the small kz. but will give the correct decay rate for kz>>ulc.
Since the decay introduced in the waves in this region is quite small, the
inaccuracy for small kz will have a negligible effect on our results.

We want to solve Poisson”’s equation for the potential (which is

valid in the quasistatic approximation) in kz space, which takes the

form
2 ¢ ~
v [kl_(x,h,) ba, 'k’)]-&: Kl &g) pbz) =0 2
where
¢ “jbo ‘g“&) ih? Jb, (3.3
yEB) = e yRz) € —EF_ -3)

The form of K; as an operator in x, which is obtained by appropriate
replacement of the kx's in the k-space form of Kl.by partials in x, as

in Eq. (1.21), 1is

2
KL (1) =-- kl.ot‘x) —" [ﬁ(l) 91] (3.4a)
where
Wo (Y)  Wosly)
kJ.o(7‘>: | — J:J—,_ + Z:e'l + 3 I Ky (1) (3.4b)
and

_3 T Vvitwia vet we@
ﬁCx)-—i-[—‘—L— 4 e (3.4c)

wk tuc;}

is the thermal coefficient in EL . As pointed out in Chapter I, the

correct position of g(x) with respect to the operators is a nontrivial
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thing to determine, but the solution for % is quite insensitive to
that position because the B'(x) terms in Poisson's equation are not

very important.

The equation for the potential is now
2 : 2~
[)3“3 e T Q,ﬁ’(x) %—;3 + K169 A7 (3.5)
~
& 7 kl;(1)% ""Vk;. K“ (1)‘&})]¢ (1J‘L?) ‘.:0

It will be useful to split off the first order thermal corrections to

K| as was done for Ky:
Tt i

Ky (X, 4eg) = Ko Oy % _’Xeﬁﬁ—wﬁ it
The first and third order terms in the potential equation arise from
the inhomogeneities of the plasma, with the third order term being the
thermal correction to the first order term. The third order term is
Omaxlz) compared with the first order term, where £ is the scale
length of the density gradient. and Ax is the wavelength associated with
the x direction. We are assuming gentle density inhomogeneities every-
where, so A§<%  except for a thin region near the plasma frequency
layer, and the third order term is negligible compared to the first or-
der term. This term arises from the effect of the pressure gradient
associated with the gentle inhomogeneity of the background density on
the wave field.

We will present solutions in each of the seven regions, with co-

(1)

efficients aj ., in the form
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(1) _ ¢ (1), (1)
3 -3§]aj 63 (3.7)

Here i numbers the region and runs from one to seven, and j numbers the

particular solution in the region. Thus 3(1) is the general solution

in region I, and $§1) is the jth

particular solution in that region.
The convention that we will adopt for the j indices is summarized in

the following table:

3 Type of Mode Sign of vgx Sign of vpx
1 Extraordinary + -

2 Bernstein - -

3 Extraordinary -

4 Bernstein + +

Table 1. Labelling of modes and their group and
phase velocity directions

3.2 Dispersion Relation near the Lower Hybrid

Before obtaining the solutions to the potential equation, a
review of the dispersion relation is in order, since it illustrates the
coalescing of the modes necessary for mode conversion. We will con-
sider the dispersion relation in a WKB sense, so that the wave number is
a function of the local density, and ignore the effect of inhomogeneities
on the dispersion relation. This breaks down near the cutoffs and
resonances but illustrates all of the essential features. Fourier

transforming Eq. (3.5) without the inhomogenecus terms gives

D('f.w) i Bk: = K_L‘Uk)z( - kiK“(kz) =0 (3.8)



~-78-
The roots are 1/2
1/2N

2 2

k = 4+ KJ.O 5 [ KJ.O + 4BK“ kZ ] J

" o (3.9a)

Far from the hybrid layer, KLOZ >> 43K“k22, and the roots are

widely separated:

3
Nio L 3 W i v X k
kx = k1'2 =~ + Ikz‘ [' RIB- - T _ge e | z| 72 (3.9b)
0 (' Klo ¥10)
1/2
3
,—'Kno K3
K, 0 il
L "o
K 1/2 q1/2 5
" _ 10 B
k =k =+ {-—~—] + s k K (3.9¢c)
X 3,4 } 2B 2K103_ z NOI

k. ¥ 10 (3.10)
z 2 I72

If one assumes an approximately linear density profile in the thin layer

near the lower hybrid, as we will do to obtain the solutions there, so

that
v
Re KJO(X) = y(x - xh) (3.11)
n'(x,) ) o .
where vy = wE then for a fixed kz it is seen that mode conversion

(coalescing of the roots) takes place not at the hybrid layer but at

2|k2| (_BKN)]/Z

Y

X = Xp % (3.12)

This shows that the higher the kz, the further the distance from x = X

at which that particular component of the incoming mode converts into
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the outgoing mode.
The dispersion relation, kx2 as a function of x, is shown in Fig.
3.2 across the plasma cross section. Between the coalescence of the

roots on each side of the hybrid layers, i.e., for

1/2 1/2
21k -BK 21k -BK
Xp = | Z|Y( 8Ky <X <Xt l ZIY( 8Ky

(3.13)

kx2 is complex and the roots are complex and conjugate (partially propa-

gating and partially decaying waves). The conjugate solutions connect
the propagating solutions on one side of the hybrid layer to the evane-
scent solutions on the other side of the hybrid layer, and were studied
by Moore and Oakes.]s

3.3 WKB Solutions

For slowly varying densities it is valid to use WKB solutions in

certain regions of the plasma. Such solutions are valid forzg
dk_(x)
d: << kxz(x) (3.14)

From the electrostatic dispersion relation, we may rewrite this criter-

ion as

2
dlw_“(x)]
* —b <2 [(mp2 . d) o = m£h2”1/2| K, | (3.15)

for the x-mode. This is not valid near w = wzh(xh)’ i.e., near the
lower hybrid layers x = Xn1 and x = X2 and we must use special solu-
tions in those regions. This is also invalid near the plasma frequency
region w = mp(x) in the low density regions near the edge of the plasma
if the density fallsoff sufficiently so that such layers exist, but it

will not be important for this problem to write the explicit solutions
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region of conjugate
roots

<———— propagating

X

evanescent ey

Fig. 3.2. Dispersion relation near the lower hybrid showing the
long and short wavelength modes, and their points of
confluence Xg and Xq+ Xp is the lower hybrid layer.



in those regions.
For the ion thermal mode the WKB criterion may be written
4 [wpiz(x)] << (0? - u,, 23/ ;’:—; (3.16)
Then WKB form for this mode also breaks down near the Tower hybrid
layer ”zh(x) z u.

There are four solutions to Eq. (3.4): the two extraordinary
modes and the two ion Bernstein modes, corresponding to propagation in
the x or the -x directions. For the x-mode, the second order term and
the KHO part of the zeroth order term are the most important, whereas
the fourth order term and the thermal terms in K“ are the first order
thermal correction terms to the basic cold plasma x-mode. However, for
the ion Bernstein mode, the fourth order and the second order terms are
the most important, and the zeroth order term is a correction for a
finite component for propagation in the z-direction. [See the value of

kx for the two modes, Eq. (3.9)].

The general form for the WKB solutions can be obtained, for ex-

ample, from Bellan and Porkolab.lg but these must be extended slightly

by using the expansion for kx in Eq. (3.9) in the © e factor in
each Tinear independent solution, adding in damping terms for the four
types of damping, and specializer to each region. A discussion of a
quick way to obtain these forms from the power flux is given in Appendix
B.

In region I, the WKB solutions to Eq. (3.4) takes the form,
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3 (x, k,) =8p{a0x) ekl 91X) 4 o (1) 172 g(y)

. _ | _ (3.17)
X e"hl(x) aa(l)A(x) e1|kZ|g1(x) + a4(])|kz|]/28(x) e1h1(x)%
where
. 3(0.k,) (
- 3.18
O {0+ Ty« 2, 40, Uy 1172 g(0) )
1/2
K (0)K (0
A(x) = et b (3.19a)
Klp(x)ﬁln(x)
-K i (0)K 1 (0)8(x)
B(x) =|—© d‘)’ (3.19b)
Kig ™" (x)
1/2
1 - Kylx*)
g.l(x) =f et (3.20a)
0 Km(x )
is the phase of the x-mode, and
x Klo(x') 1/2
hl(x) =f —B'(—)?;)— dx' (3.20b)

0

is the phase of the ion thermal mode. These are the WKB forms ignoring
the thermal corrections to the X-mode and the finite k, corrections to
the ion Bernstein mode. However, we must include these effects to get
the correct (nonsingular) fields in our final result. We can do this

by adding their contributions to the phases of each mode:
2
g;(x) = 91(x) + |k, | ay(x)
2 (3.21)
h](X) = h](x) + lkzl p-l(x)

where
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30 Vo 3 vetwpdxY
g AT SO,

and .
X @) \a g
0= Kyl ‘%3(—,5% dx il

ih](x)

It should be noted that the Bernstein mode e travels in the ; dir-

-1h1(x) in the -; direction, while the x-mode is a backward

wave (i.e., the x component of the group velocity is opposite in sign

(x) is

ection and e

to the same component of the phase velocity), so that ei'kzlgl
travelling in the -x direction and e'i'kz|gl(x) in the x direction.
That those are indeed the correct directions of the group velocity can
be seen by writing out the imaginary parts of 9, and h.I which arise
from damping, and seeing the direction in which each of these modes
decays, which is the group velocity direction. For a small imaginary

part of K; and KL compared to their real part, these are given by

T (X k"]‘& e }
m f}, ) = 9.5 {" - Im k;_o (..\("okio)/i ‘“ (3.23a)

~y (0 Tm Ky 48
Tm b, = ‘/"Sa [;K_L:‘;V" (3.23b)

wher Im Ky and Im K are both positive and given in Egs. (1. 16) and (1.19),

In region IV, the waves are evanescent and ﬁ' and K, are of the
same sign, so the fields could not be singular here even for a cold col-

lisionless plasma. The solution then takes the form

é ) (1, b,) = CS i “).A(*D e—l&.l Gt) o
.r‘,cﬂ B e~ A0 + a(ﬁ?}luotallyil52f¥)-f(14 BRe H }
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where

‘( ) = A K“(X') dx ' (3 25 )
X -x WTT X 424
h1

is the exponent of the X-mode and

1/2
-K
H(x) f [ ‘L(x )] dx' (3.25b)

is the exponent of the Bernstein mode. The higher order corrections to

the exponents are obtained by making the replacement

o) = . G + kgl o

aty) = W + Mgl 2tx) ke

where

LA Lx g K ) Va3 Ve wpe (1) A "
Q(x) /zjo«(\ﬂ(x)[_l:_s_(—J] +W'*[-Km‘l<1o]'ka‘ (3.27a)

and
-p Y
20) = /a,S Ky & () Ksu“\ol‘! (3.27b)

The imaginary parts are given by

X Y ,
L3 7'7(73:%.] [kua“‘ - Twm Ky '
——2} d
1;,,{ Ko x) Tm K+ [ Ko ) Ig,u')] } ¥ (3.28a)

Tm Hb)= /j" Tw Ky, u
W - p) k)] “'

In region VII, the wave is propagating again and K" K < 0. Al-

(3.28b)

though singular cones could in principle exist in this region if a cold,
collisionless plasma is assumed, they will not be present in this model

even under such assumptions because the source is on the other side of
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the evanescent layer, and the cones are made nonsingular upon passing
through the evanescent layer. The solution takes a form similar to that

of region I.

(% . (X, %5) = 550 {O,‘ A e“i’m*! 320 (3.29)
+ a9 1,12 B etk 4 oD Al e tHRE 4200

+a{® |4,1% Bay e* =0}

The higher order corrections are given by

9200 = $a0) + [ q,.0)

R, )= b, o)+ lﬁzgllfaﬁ‘) e
where
% 3
e DALY 3y ( !
%3(1) ijhigﬁ(xj [—}—(EH')] ‘+.._._ _T%,LK"_I'K_&D]‘/’} J-'x (3.31a)
X
Pa ) = %.5 K,,(X‘)[ﬁu) e (3.31b)
A2 lo“)

The imaginary parts of the phases which are involved with damping are

T 9300 -1 (* (T-Kuo
" /‘Jmﬂ % 1/” Kot i} 5320

y 4 i
Im h,) = ’/15 Iwm Kio &) dy'’
Xz, (-ﬁ k_Lo ) y"

(3.32b)
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3.4 Resonance Region Solutions

Near the hybrid layers, Re K} —>0, and the fourth-order term in
Eq. (3.4) becomes all important in preventing the differential equation
from becoming singular since the second-order term has such a small co-
efficient. We will be primarily concerned with the asymptotic forms of
the solution in these regions, so we will solve the differential equa-
tion by saddle point methods.

We assume the density to be approximately l1inear in the small
region about the hybrid layers. We will define the inverse scale length

of the density gradient at the hybrid layers to be

n'(x.,) 0t (%53
3 h’o_ h2
Rl e () . Xo) (3.33)

where the equality of the two forms comes from the symmetry of the den-
sity profiles. The real part of Klo(x) goes to zero at the hybrid

resonances. Near x = Xp1 We have

Kip(¥) ¥y (x = x1) + 0L = %)% (3.34)
and near x = xh2
Kig() ¥y (x5 - x) +OL(x - xhz)z] (3.35)
Define
uy = (v/8)'/3 (X = %)
(3.36)
uz 55 (7/6)1/3 (x = xhz)

Then we may rewrite the differential equation, Eq. (3.4) in the form
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[Qull‘ +(u+ig) o + Qu“P/L] $(u) =0 (3.37)

where u is u, near X= h1and u, near X-Xhz, and
(w-nw,,
gy 2 A S e )
€ =(y>g) + = 3 n
w3 Why kol M=-p0 (3.38a)

y
__(L)5 e
M= (j*) b, Kotk (3.38b)
. v ‘/l

(Here u includes the thermal terms in K ) kxO = kz ['FHO/Klﬂ]
when ¢ appears in the X-mode, and kxo ¥ [Kln(x)/ﬁ(xﬂllz when it appears
in the ion thermal mode [it acts 1ike an operator on $(u)].

The theory of mode conversion near the lower hybrid has been in-
vestigated by several researchers by doing a linearization as in Eqgs.
(3.34), obtaining an equation similar to Eq. (3.37), and investigating

12

asymptotic solutions to it. T. Stix © first considered the problem and

predicted that an incoming "cold" (X-mode) wave would convert into an
outgoing "hot" (ion thermal) wave. Similarly, Moore and Oakes]6 in-
vestigated the asymptotic solutions to the same equation, including ion
damping effects [e # 0 in Eq. (3.37)]. The form of the solutions between
the point of confluence of the mode on each side of the hybrid layer
studied and an estimate of mode conversion efficiency was made. These
calculations were done for a single fixed kz for the incoming wave.

For sources that currently appear to be most useful for lower
hybrid heating experiments, a whole spectrum of kz is excited, and it

was shown that for such sources the waves may come into the lower hybrid

concentrated along cones.5 It was shown by a numerical solution by
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M. Simonutti 18that the whole cone undergoes mode conversion. This was
confirmed by Bellan and Porko1ab19 who found the resonance cone fields
for some finite sources. They pointed out that the au$ term, arising
from plasma inhomogeneities is an important term previously neglected.
This term changes the rate of swelling of the fields near the hybrid
layer.

The results of the above work are not adequate for our purposes.
These analyses were for the single case of an X-mode incoming into the
hybrid layer, which is physically the most interesting case. However,
we have four modes in each region, either one of which may come into a
given hybrid layer from either the propagating or evanescent side and
undergo mode coupling and conversion. Thus we want the complete set of
connections across the hybrid layer, which we will apply to each hybrid
layer in our model. We also want to consider the detailed nature of all
types of damping on the modes., Moore and Oakes]6 considered the effect
of an € 70 on mode conversion efficiency of the incoming mode, and
Bellan and Por‘kolab]9 considered the effects of collisional damping on
the incoming mode, but there has been no complete study of the effect
of both the collisional and collisionless forms of damping on both the
incoming and outgoing modes. We will review the method of solution by
transforming Eq. (3.37) to reduce it to a solvable first order equation
and using saddle point integration.

We will be concerned with the case | ¢|<<|u|, so will drop ¢ in
Eq. (3.37), and include it as a perturbation to the € = 0 solution later
by lumping its effect into a slowly varying amplitude factor of the

Laplace transform.
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The Laplace transform form of $ is

¢ (u) =f y(s) e*¥ ds (3.39a)

r
where y(s) is the Laplace transform of ¢(u). By substituting Eq. (3.39a)

into Eq. (3.27) and integrating by parts twice, we obtain a first order

differential equation for y(s), which is readily solved to give

- u/s

/3
y(s) - Al € - (3.39b)

As a solution to the Laplace transform of Eq. (3.37) with ¢ = 0, A is
a constant, but we allow A to be a slowly varying function of s as it
will be for the inclusion of the following small effects:

1. Damping, with ¢ # 0 and Im p # 0.

2. The third order term m(728)1/38u $ in Eq. (3.37)

3. The inclusion of the nonlinear ponderomotive force, which
might be expected to be an important correction to Kl as u »~ 0. The
study of these effects will be deferred to later.

Our integral expression to evaluate is

3
B = f A s mwerus s (g
T

We want the asymptotic forms of this integral for |u|>>2 Yu , which we
will do by deforming the contours I over the saddle points of the inte-
grand. The condition that the "surface terms" in the integration by

parts to obtain y(s) disappear is that y(s)eisu goes to zero at the end-
points of the contour. There are four linearly independent solutions to
Eq. (3.39), which will be obtained by choosing four linearly independent

contours T over which to evaluate the integrals, with endpoints such that
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the integrand goes to zero. Each contour will be deformed over a single
saddle point, so that the contribution from the integration over each
saddle point will give a linearly independent solution.

The four saddle points of Eq. (3.39) are given by

- 1/2 N 1/2
51,2 = 4 [- u + u/u] 53,4 = 4 [-p/u] (3.40)

The saddle points lie on the real axis in the S-plane for u < 0 (evanes-
cent side of the hybrid layer), and on the imaginary axis for u > 0

(propagating side of the hybrid layer). Saddle points 51 and s, are

2
much further from the origin, and give rise to the ion thermal mode
solutions, while S3 and Sa give rise to the extraordinary modes. The
paths of steepest descent near these saddle points are found by expand-
ing the exponent f(s) = 53/3 - u/s + us in the integrand about each sad-
dle point So and choosing the directions that make this integrand de-

crease the most rapidly:

]
f7 (s, )
£(s) ¥ f(s)) + ——2 (s - s )%+ OT(s - 51 (3.41)
and require f"(so) (s = sD)2 = - ¢ for t real and > 0 for s on the path

of steepest descent. This gives the angles for the paths across the sad-

dle points summarized in the following table:

Saddle Point Arg (s - so)
h 5 - w/4 | 3u/4
Sy -3n/4 /4

S3 -3n/4 w/4

Sa - n/4 3n/4

Table 2. Paths of steepest descent angles at saddle points.
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The endpoints must 1ie in regions for which Re f(s) + - «=. As
|sl -+ @, 53/3 becomes the leading term in f(s), so the endpoint regions
then are
n/6 <arg s < 7
5v/6 <arg s < In/6 (3.42a)
3n/2 <arg s < 11v/6 ,
whereas as| s‘ + 0, - u/s dominates and an endpoint may lie along

- n/2 <arg s < /2 . (3.42b)

The Tinearly independent contours we choose are shown in the s-

plane in Figs. 3.3 and 3.4 with the saddle points for Iui > 2/4 indi-
~ cated and the endpoint regions shaded. We have a different set of

contours for u > 0 (Fig. 3.3) than for u < 0 (Fig. 3.4) because the
saddle points are different. There is a pole at the origin, which makes
it possible to choose a contour which both begins and ends there. We
label the contours for u > 0 by Ii’ and u < 0 by Ji’ where i runs 1 to
4. By seeing how the I's deform into the J's, one may obtain the con-
nection between the u > 0 region and the u < 0 region.

Each contour T, having been deformed over a single saddle point
So? gives

S A 53‘/3~}‘/s-+us is_,u[__;m- "/9» AGJ€¥LS')(3.43)
r

- S f:"(fh) S

The form this takes to lowest order for the various paths is sum-

marized in the following table:
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r ‘[: ef(s) gi Mode Direction of '\79
I ’ Extraordinar Ingoi to
P T y | Ingoing
{/(uJ exp[ilu(/uu) Z 4 %] hybrid layer
I, 'Ll-:% eXPY%} u%,_, ﬁrrl;f_\ Bernstein Outgoing
\ 1 .
13 L}.m)-/"" EJF [’_21 [/Ju) /3-_ jI'-F] Extraordinary | Outgoing
I w 3/4 exPYv%}_ u3/1_* /}_‘:Fb_] Bernstein Ingoing
=Y Uy
J > e {-Qlf u) Extraordinary | Decaying awa
L ( /ll. U) JKP ﬂ ] fromy;;gri: 4
3 layer
J2 1(_ u)—% ‘-’"P [—%L—-u)’é‘] Bernstein Decaying
Jg "t.(*-/uu)"l/"l' e_xP [Q(__,/uu) l/z] Extraordinary | Growing
=
Iy (= u) 7+ exrr%(—u)%] Bernstein Growing

Table 3. Linearly independent asymptotic solutions

obtained by integrating over contours r.

These are the forms of_/; ef(s) gi including only the leading order term

in the exponential. We must include = the next order terms to get the

correct cone fields, as we did in the WKB regions. There are also damp-

ing corrections, not shown, which were lumped into A(s). These may be

included by letting
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Re s

hot decaying

co!g_ .......

“cold

growing

u<oO

Same as Fig. 3.3, for u <0

Fig. 3.4
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2 )2 —>20uw)% + o) 33V Wpe f__'/‘u'/z
o e { B 5 (y) faz.

"R R H o f () 14 ()]

Y u¥e 2% u?a 4 :z,}u"/uig wh (3.44b)

where € is given by Eq. (3.38). These extra terms will be left impli-
cit in the forms given in the table.

The paths for u > 0 may be expressed as linear combinations of
the u < 0 paths. Each path has been assigned a direction as indicated

by the arrows in Figs. 3.3-4. Then

A

i ™ 0g = dy * g (3.45)
I; = d) + 3,

Ip = dy

Let us write the solutions on the u > 0 side as

$u) =% a; I, (3.46a)
i

and on the u < 0 side as

(3.46b)

Thus Eq. (3.46) gives the connection between the sets of coefficients

ai and bi



2y = = by = b, by = a; + a,
a, =b b, = a

2 2 2 2 (3.47)
33 = b1 + b2 + b3 b3 =ay -3,

This set of relations shows how the waves transform at the hybrid layer.
The interpretation is summarized in Fig. 3.5 in four independent cases
(solutions) which cover all possible cases.

The first case is the well known mode conversion solution con-
sidered by Stix and several subsequent authors. The other three cases may
also be important in our model, hence were also obtained.

It should be noted that the problem of mode conversion at the
lower hybrid is quite similar to that of the upper hybrid mode conversion
problem considered by a number of authors. The upper hybrid case has a
propagation X-mode on the high density side of the hybrid layer which
converts “zh(x) = w at the hybrid Tayer into an ion Bernstein mode
propagating into the low density side of the hybrid layer or vice versa.
The differential equation describing it differs principally from that of
Eq. (3.37) in that u and pu have a different sign, although there are other
minor differences. This problem was examined by Kuehl, O'Brien and
Stewar't,31 by Tang 32and by Gorman 3% among others. Also Buchsbaum and
Hasegawa34 examined the problem in connection with resources set up be-
tween the hybrid layer and the boundary.

We apply these results specifically to each of the hybrid layers
X = X1 and x = X2 Near x = Xn1 the Uy >0 side is region II and up < 0

is region III. Near X = Xphos the u, < 0 side is region V and the u, > 0
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(D Incoming cold propagating mode
Gl fixed G4=b3=b4=0

amplitude = g,

@) Incoming hot propagating mode

a4 fixed a, =bz=by =0
a4 Hot
Cold Cold
-04 -04
P side E side

® Incoming cold evanescent mode
by fixed bsg =a,=04=0

Hot Cold~bs

_l)3
bs b3
Hot -bs
P side E side
@ Incoming hot evanescent mode
bg fixed ba=a;%04°0
Hot / ba

Cold

P side E side

Fig. 3.5 Summary of possible mode conversion processes as four
linearly independent cases (solutions)
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side is region VI. We may then translate the connection of the a; i
and b 's may be translated into the connection between the a(z)'s and
the a(?)'s, and between the a(s)'s and the a(s)' . (It should be noted
that the convention for the i's above is not always the same as that

adopted for our solutions in each region in Table 1.)

a3 = 52 a‘;’ a(8) = 4(8) 4 5(8) 4 4(5)
a3 < (2 a(8) < 4(8) _a(8) _ 4(5)
23 < (2 _ (@) a8 2 o(8) o6 (3.48)
W) 2@ 4 (), @, 2 L6 )

We will define a set of transfer matrices ﬁ(J) which connect the co-

efficients in adjacent regions by

{1 -3 o, (9) 4 (9) (3.49)

Thus we have found two of these matrices

s n d
1 01 0 1T 0 1 1.1
ﬁz = 01 0 O ﬁ(S) < [hB A=) ) (3.50)
11 0D -5 05 -
1 ¥ 1 1 0 0 0 1
3 4 s
The solution in region II is of the form -
Va,
() o '-lu( u,) (2)
¢ 0 = g A [aP N e
2 p 2
| (3.51)

X -QLQJU)&] +~u 3/4'[(1“‘)
+ oP e” Fuk ]}
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In reg10n 11T,

4, ) = &, SL( ) /nr[ @) -’.Ll“)‘ub
5 ata) Qt/w.)/ﬂ'] +( uy':’/‘* (3.52)
X [a;me‘% (u% a%? i /2]}

In region V,

E)Bm(u) qﬁ,,i};uz) Tt [aﬂ) 1‘/4“)4 (3) a(,uug)éj (3.53)
+u)y H 0P Bk am %c—u.) 1}

In region VI,
~ ) _l/ ‘2( y )yz
(P“’) (W = 4?,,3()»1:,) t [af‘)e vIp a..
+ W 2 )'/z YT W __:1__3»_ u3/2- (3.54)
a;" 8 Uy, ]'HJ:, [Qz
Loy, 3
¥ o eFuie]]

3.5 Connections Between WKB and Hybrid Layer Solutions

We will expand the WKB solutions near the hybrid layers x = Xn1
and x = Xn2 and match them to the asymptotic hybrid layer solutions.
This will give us the transfer matrices which relate the coefficients
in each of the two regions. We will do the connections between regions
I and II as an example, then summarize the transfer matrices which are
the result of the connections between the rest of the regions.

Expand g](x) and hl(x) near x = X:
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1 1” N /
G = g, (W)~ [kt /Y] o | L =072 d
= c}lk'!w‘) “&[‘Knokikl)ly']/aa (:7.]“ —’x) ,/2,

(3.55)
Jl ) = A (Fwd)— (Vﬁ)/‘?’g'xhl Oy, —* )/'1 J.l
=, (w75 () 0%
Similarly expanding A(x) and B(x):
o 1 t/l’n ]
AQR) = K“o(O) klo(d) (%1~ —
Tm=X) (3.56)
= k“a(hl) Y E

B('x) = r"l'(nafﬁ)kloto)ﬁ('ﬂu) -
IE (=27

One can see that when Eqs. (3.55) and (3.56) are substituted into Eq.

(3.17) for 3(1)(x,kz). one gets the same functional form at Eq. (3,51) for

&‘ii) (x.kz), where u]3/2 = (7/3)1/2 (xh] - x)3/2 and

) () V2 = iy | /Y (3 -0 2y

Thus the two solutions overlap in a common region, and we have the re-

lation between the coefficients:




where

The connection

a(z) = e

a(g) = Ce

o
]
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i1k, |9y (xpq) a(})
a(g) = ceihy(xpq) a(;) (3.57)
a(g) ; iCeilkZ[g](xhl) a(;)
ihy (xy) a(;)
N 1/4 (3.58)
(=) ["no(o) KJ.O(O)]

between the other regions is similar, and gives the

rest of the set of transfer matrices we are seeking. We will introduce

a shorthand notation for the exponentials that arise in the coefficients

and the transfer matrices that are summarized, along with the physical

importance of the quantities, in the following table:

Symbol Definition Physical Significance
U |kZ;g1(xh]) Phase of cold wave from 0 to x,,
'l h1(xh]) Phase of warm wave from 0 to Xp1
p IkziG(th) Exponent of cold wave from Xpy O X0
Q H(xhz) Exponent of warm wave from x, . to x ,
W ]kzlgz(th) Phase of cold wave from Xn1 to Xp2
Y hz(xhz) Phase of warm wave from Xpq o X5
Table 4. Definition of symbols for phase and exponent factors.

The set of transfer matrices obtained by the WKB to hybrid lay-

er solutions connections are [recall the definition in Eq. (48)]:
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% -
el 0 0
ey 0 ie’V 0 0
fl c : (3.58a)
0 0 je! 0
0 0 0 ei"J
B 0 0 0
_ 0 ., | 0 0
a3 o ¢! (3.58b)
0 0 i 0
0 0 0 -
e’ 0 & o
_ ]
al4) - ¢ ° ¢ . " ’ (3.58¢)
0 0 ie 0
0 0 0 ieQJ
E 0 0 g |
o 0 i 0 0
al6) = ¢! (3.58d)
0 0 i 0
0 0 0 g

These matrices, when combined with the boundary conditions, give a suf-

ficient set of equations to solve for the coefficients.
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3.6 Calculation of Coefficients

To aid in the calculation of the coefficients, we will use two
approximations which should be valid for almost all cases of interest.
These approximations involve the ion thermal mode in the evanescent layer
and near the boundary. First, the ion thermal mode in the evanescent
lTayer decays much more rapidly than the X-mode, so that in the asymptotic

region u >> 2¥Q1 we have

i 3/2 1/2
- -u)- _2(-uu)
u-3/4 . 3(

-1/4 " (3.60)

<< (uu)
i.e., the magnitude of the ion thermal mode is negligible compared to the
X-mode. In fact, the size of this mode is on the order of the error in
the use of the saddle point method to get the asymptotic form of the X-
mode in the evanescent layer, as can be seen from the contours for those
two modes in Fig. 3.4. J] can be deformed in addition to the deformation
over saddle point S shown, into the path shown in Fig. 8. The latter
deformation picks up contributions from both s, and s,. Since either
deformation gives an approximate form of the asymptotic X-mode solution
and since the two forms differ by the contribution of saddle point Sos
which is just equal to the ion thermal mode and much less than the con-
tribution from saddle point S1» then there is an ambiguity or error in
the asymptotic form of the X-mode which is on the order of the asymptotic
ion thermal mode magnitude. Thus, we will neglect the decaying ion
thermal mode compared to the decaying X-mode in the evanescent region.
Secondly, the amplitude of the ion thermal modes near the boundary
should be very small compared to the X-mode amplitude. This is because a

source designed to couple to an X-mode will couple very inefficiently to
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the ion thermal mode, so that there is no substantial excitation of this
mode by the source. Thus, the mode can only be excited when the X-mode
couples to it near the lower hybrid layer. But the excited outgoing mode
thus produced is very highly damped, decaying away over a very short dis-
tance, so that for a hybrid layer deep in the center of the plasma, this
mode will have died away to a very small amplitude by the time it reaches
the boundaries. (The damping of this mode will be studied later.)

To see why these facts are so, consider first the coupling at the
source. For a given Ez(x,kz), the value of Ex(x,kz) of the jon thermal

mode is given by [see Eq. (3.17)]

Ki(x) /2
- il b (3.61a)
Ex(x,kz) = T‘rzr —Brﬂ‘] Ez(x,kz) >> Ez(x,kz)
whereas for the X-mode this is
-K" 1/2
Ex(x.kz) - —R:L— EZ(X,kz) (3.6]b)

Thus if the source is in the vacuum, 8(x) - 0 and if the ijon thermal mode
is to exist, it must have EZ(O,kZ) = 0 in order for Ex(o,kz) to be finite,
and the source cannot excite this mode at all. In fact, this mode has

A =0 in the vacuum, so no source can couple to it there. Even if the
source is in a low non-zero density region, the amount of this mode
excited will be very small, since E, is so much larger than Ez at the
source for this mode, while the field produced by the source will have
EXWEZ, which is the case for X-mode, and Dx and Ez are continuous at the
source.

Next, consider the ion thermal mode coming out of the x = Xn
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lower hybrid layer. The decay factor of the wave may be given by el

where

1

1

Im K (x') dx'
r'(x) = Im [h](xh])-h(x)] =

[B(xl )Klo(xl)

172 (3.62)
X

[from Eq. (3.20)]. Im Elfx,kz) is given by Eq. (1.19), and includes con-
tribution from ion collisional and ion cyclotron damping. The latter
gets quite large as the ion thermal mode propagates away from the lower
hybrid layer. Consider for simplicity only ion collisional damping, so

ImK, ,= vmsi(x)/wa. Let

10

3 v? wsi(x) vg wge(x) Sl v? gi(x)

cull dhenns matdai 2 b X

ce
where o, is a constant of order one. Then

X ; i X ‘

_— Jh vuhgﬁx ;_dx _— Ih v ;x , - (3.63)
e gla- pf(X')] ¥ Mpix' e wpi(x')]

Evaluating this, for example, for a linear density profile for x = 0 gives

AV
r(0) v —n

(3.64)
Yy

and r(0) >> 1, i.e., the ion thermal wave has virtually all decayed away
by the time it reaches the boundary, if Xp >> vi/v. This is satisfied in
typical collisional plasmas, for example, if v = 0.lw. For less colli-
sional plasmas, cyclotron damping, which gives an important contribution
to the decay of this wave, will be responsible for much of the absorption.

The approximations on the ion thermal mode at the boundary means
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the boundary conditions only effect the X-mode, and so the usual boundary

conditions of electromagnetic theory are sufficient to determine the fields.
(If the ion thermal mode were important at the boundary, then we would need
one more boundary condition in addition to the electromagnetic ones.) Thus

the boundary conditions on 3(x,kz) are

6(0,k,) = 1
(7 e-ilkzlgz(a)+ L eilkzlgz(a) (3.65)
$(a|kz) = ] (]) 3
1+ a
3
SO
a3(7) . ,31(7) o-21W 3%

The relation between the coefficients in region I and those of

region VII is

7 _ 7(6) g(5) g(4) 5(3) g(2) (1) (1) (3.67)

The product matrix

T - 7(6) 7(5) F(4) 7(3) g(2) 5(1) (3.68)

is given in Table 5. It should be noted that many cancellations in the
matrix multiplication cause this matrix to reduce down to a relatively
simple form. This illustrates the usefulness and efficiency of the co-

efficient transfer matrices in solving for the coefficients.



-e'iU( +e +eQ) -e'iv(e—+e0) (e +eQ) jelV*Q
e'iU(eP+eQ) IV(e Qe +eQ) -jelUt0 jelV*Q

1e—iU(e-P+eQ) -iV+Q _1eiU(eQ+e-P) eiV+Q

—ie-1U+Q -iV+Q e'iU+Q _eiV+Q
Table 5. The product matrix T given by Eq. (3.68).

Our assumption about the ion thermal mode near the boundary and in

in evanescent layer can be summarized as

e conP < 1
let™V| << 1 (3.69)
]e+'iY| << 1

where it is the large imaginary part of V and Y that give the last two

relations. We want relations between a(]) and a(7), which take the form
I T Rt
1 a]
(1)
a 0
(1) = 2 ~ ) (3.70)
a3(1) _61(7)3-21N
"0 2,7
[ B B }
(1) (7)

The terms a and a, , which represent the ion thermal mode reflected

off of the boundaries and which were assumed to be small, are set to 0

because their inclusion would give rise to terms in the Egs. (3.67) con-
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necting 5{1) and 5(7) which are (eZiV) and (eZiY) smaller than the other
terms in these equations, and thus are ignorable by Eq. (3.69).

The solution to the set of linear equations obtained by substituting
Eq. (3.70) into (3.67) after neglecting terms that are negligible according
to Eq. (3.69) are

B, (1 o o0

a1 = e V(14ie2iMyp

a7 = _qem1U-Ppp (3.71)
2, 1) o emib-2idyg

(7). e iU-P(14ie-21Wy p

where

D=1 =e2P+ie2W (3.72)

We can summarize the seven sets of coefficients obtained from Egs. (3.49 ,

(3.50), and (3.59) for the transfer matrices.

D

i(v-u)
;(1) - p) ~e (3.73a)
ie-ZiU-ZP(]+1e-21N)

0
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- a
1/4 De-iU
~2) _ (lkzl)llz Kno(0)Ky (0)] iU
° Y D
ieuiU-ZP(]+ 13-21w)
~ 0
- -
B -
e-iU
_e-iU
1/4 _
_3(3) _ (Ikz|)1/2 [Kﬂﬂ(z)ﬁlfo)} _e-ZP(] + 1e-21w)e~1u
Y
eP(1 + je-2iVy
- "
-1 i
Al mi 1
x
3{4) .y 5 _e-ZP(] + ie'21w)
P + je2i¥)

(3.73b)

(3.73c)

(3.73d)
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]F-1e'p |
1/4
k Kno (0)Ky o(0)] _
5 _ (!-(Z|)”2 [Kyo( ISIBO ie0 B
-1e'p(1+ ie'21w)
I e“P(1+1e'2“")_
S6), %2172 [go)kg0)1'/* e "'°P . (3.73f)
Y D ZEcT
Le-P(1 He-ziw)‘-
-p
- (3.73g)
—-(7)__ e-'“J n 0
D _o-P - 2iW
1P (1 + 1e-2iM

Using this set of coefficients in the expressions for ¢ in each region, we
have the solutions in kz-space. By doing the Fourier transform into con-
figuration space, we will have the desired solution as a function of x and

Z.
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B Expansion into Resonance Cone Form

To expand in the resonance cone form when doing the Fourier trans-
form, note that the denominator of the solution in each region can be

found by looking at the factor common to each solution

PRI N P 1 D _ (3.74)
¢ 0 [a] * 33 ] [] +e-2p(] +1'e-2{u5_(1+ 19—21w)]

The D factor here cancels the same in the denominator of the coefficients,

so that the denominator of 3 just becomes for all regions

T~ [+ e 4121 + je21Hy] (3.75)

Now, to get ¢ in the form of a sum of guided wave modes, we would utilize
the poles in ¢, which are the solutions of a set of transcendental equa-
tions, and can only be found numerically. However, one can get the
solutions analytically in a more physically useful form by expanding the
denominator
- fo (1) e 2P (1 4 21Uy (4 4 o-21Wyn
n=

(3.76)

-2iU

+ 19-21“- e'ZiU'Zi'N) + O(e"4p)

2P

As we shall see, the e ©° terms give rise to cones which have tunnelled

through the evanescent layer twice, and in general the e"2nP

terms involve
cones which have tunnelled 2n times. These factors ensure very rapid con-
vergence of the sum in Eq. (3.76), and as indicated we will presently
ignore all terms for n > 2, since they are negligible for all but very

thin evanescent layers.
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It is interesting to note that for values of kz such that

U= lkzlg1(xh]) = - n/2 + 2nm
(3.77a)

=
|

= |kz|92(a) = - n/2 + 2nw

where n is any positive integer, the denominator in Eq. (3.75) is one,
so that there is no tunnelling of the wave component with that |kZ|. Under
our symmetric density profile assumption g](xh]) = gz(a), so that both
forms express the same condition. Similarly, there are values of |kz|

for which the tunnelling is maximum, namely

U=W= 2nn (3.77b)

The latter is the case of optimum impedance matching at the hybrid layer,
while the former represents optimum impedance mismatch. The conditions
given in Eq. (3.77) are fulfilled only if the imaginary part of 9, and 9ps
containing the damping is neglected. The presence of damping in those
quantities means there is no perfect matching or mismatch, and that some
small portion of the wave tunnels through for all kZ , but if one is
working with a source that excites a single kz, that kz may be chosen for
maximum or minimum tunnelling by choosing the real part of 9, and 9, to
satisfy either Eq. (3.77a) or (3.77b) as is appropriate.

With the expansion in Eq. (3.76) one can evaluate the inverse
Fourier transform to get the solutions of ¢ as a sum of resonance cones.
We need first to discuss the resonance cone forms and to introduce a more

convenient notation before writing out these solutions. The X-mode cones



=113~

cones take the form

0o ™ [3q(x)171/3 F{ z2 2 AN } (3.78)
[3q(x)1'/3

where F(z) = Ai(z) - iGi(z) is a combination of the homogeneous and in-
homogeneous Airy functions, and q(x) represents the thermal correction
to g(x). The upper sign gives the z > 0 cones, and the lower sign the

z < 0 cone. The integral form of F(z) is18

v3
dV

F(z) = %L e (3.79)

A graph of |F(z)| is shown in Fia. 3.7, which illustrates the cross sec-
tion of the X-mode resonance cone for a warm plasma. The argument of F
is zero for +z = Re g(x), which describes the curve along which the cone
is singular in cold plasma theory, i.e., when gq(x) - 0.

Similarly, the ion thermal cone takes the form

ilh(x,)-h(x)] - ilg(x,) ¥21%/8 s(x)

e
Ba™ 2[2mi s(x)]/2
x D i_i.:_g_(..x_h.)_ (3.80)
-1/2 i s(x

where X, is the hybrid layer from which the ion thermal cone originates,
g(xh) is the phase of the X-mode cone producing it, s(x) is the thermal
correction to h(xh) - h(x), and D_lla(g) is the Whittaker's function
equal to the parabolic cylinder function normally denoted U(O,c).20’24

The parabolic cylinder functions are defined by the integral form



. ) 8 1 | 1 | 1 1 1 | N 1
-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0
_ (=1 g, (x)
m [3q,x)]/®

Fig. 3.7 Cross-sectional structure of the X-mode cone (as in
Fig. 2.3)
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2
u(a,z) e-‘; 8 e - 52 a_]? d (3.81)
sG) = o e S S 4
r(a+'2') 0

A graph of D_]lz(z) is shown in Fig. 3.8 which illustrates the cross
section of the cone structure of the thermal cone. The structure of

20 (We are obtain-

this cone was first obtained by K. Ko and H. Kuehl.
ing a more general form; as we will see, evanescent layers and damping
will cause the argument of the Whittaker's function to be complex, and
this more general form will describe all the ion thermal cones, and not
just the one coming from direct mode conversion of the source wave.)
The argument of this function is zero along z = Re g(xh), which de-
scribes the 1ine along which the cone is singular in the lowest order
("cold plasma") theory, i.e., for p(x) = 0. In that 1imit the cone

moves along a constant z, or perpendicular to the magnetic field.

Combine the z > 0 cone and the z < 0 cone into a single term by

#Lz,90, %(x)] = T_'Scﬁ,m]"'/a
il = ‘3igo } :g:Léifll_..
F[ (3g 001 é} +k [ > qt1>]/3]

Dz, g9w,sm) = [Wi,sm]%’

{ e~ [z - 7 (X)) /@5(‘0] D-y, '_ﬂ_“)
) 21.5(1)

2 [z+g] {3s5@® | ;_r--t 5
e ' 2:.5?51)

(3.82)
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Fig. 3.8 Cross-sectional structure of the ion thermal conezo
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Since there is practically no overlap of the z < 0 and z > 0 cones, we

may take the ?'s and the ¥'s to be equal to the z < 0 cones in z < 0,
and the z > 0 cones in z > 0. Note that q(x) is completely determined
when g(x) is specified, so that the q's will normally be suppressed,
since they are already implicitly known.

With this notation we can write ¢(x,z) in its resonance cone form.
The regions whose solutions are of most interest are regions I and VII.

To first order these are:
¢ (x,2) = L‘%‘l ‘?[z,gu)] +13[z,-g9,0

+ 29 (An) - 23 H (%)l - F12,-9,0 42300
+ zgq(a) - Qiﬂ(xha)'] -1 ‘}[gﬁ,Cx)-fg,?,(?(H) (3.83)

")) + F [z, 9,0)+2g,0) +2320
- A4 ﬂ('ﬂh;)]]

- Ba et [AGW —MJ]{ B (2,9 ), - 0]
P

- 512, 9,021 X (%na),, p ) rf(ﬁﬂ
~ 1 B2, 39,0m) ~ 23 Y(%pa) » P) =]

-3 PIZ, 9,00+ 295@ -2 80,), P ) -pd]

18Tz, 39,00, 429,00~ 2 D), bk, )~
& & o
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(1)
¢,z = - Ag) { 4 [2)92(a)+9,(’11.,\—iﬂ(‘11.2)]

FFLZ -9, 1 4, (X2 9@ =3 T (%,,)]
+9£m@.&&73;ﬂﬁxh,)+'--} 13,84)
3 B(;) erzﬂu;(')() {BEZ‘, 3,(’)(1.;)-5-):“1'!3);40200]

+1d1z,920,) 129, @ B, o, )]

Y 8Tormw trroliny 3, (Mpa) 4+ -}

The solution in region I contains terms representing cones coming
directly from the source and terms with —ZiSKxhz) in the argument which
represent cones that have tunnelled through the central evanescent layer
to the other side, been reflected and tunnelled back. Higher order
terms involve four or more tunnellings through the evanescent layer and
were neglected. The solution in region VII contains the cones that

have tunnelled directly through from the source side, and cones involving
three or more tunnellings, which are ignored.

We can give a physical interpretation to each cone term that ap-
pears in ¢(1) and ¢(7),which will be done with the aid of a schematic
diagram scheme. We will use lines to indicate propagating cones and
dots to indicate "scattering points", i.e., the boundaries and lower
hybrid layers at which the waves can reflect or transform. The symbols

to be used in the diagrams are summarized in the following table:
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Symbo1 Meaning
o - . . :
/ X-mode cone with Vg 1n x-direction
\ X-mode cone with Tf; in -x direction
- Ion thermal cone with Tr; in x direction
\\J Ion thermal cone with ‘\}; in -x direction
~
s @ The source, used to indicate origin of all the cones
0O The x = 0 boundary "scattering point"
Xh1 %] The x = X1 layer
Xh2 & The x = Xp2 layer
a g The x = a boundary
Table 6. Symbols to be used in the schematic diagrams for the resonance

cones.
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As an example, consider the diagram
a -

-~
”

Ui 1
Kl Ak,

-3
This represents a warm plasma cone which travelled from the source all
of the way to the x= a boundary in the X-mode, reflected at the x = a
boundary back to the x = X2 hybrid layer, and mode converted into an
ion thermal cone propagating back toward the x = a boundary.

Each cone term in the ¢'s can be represented by a diagram in the
way just introduced. We thus summarize the solutions ¢I and ¢VII in
terms of the interpretative diagrams identifying the physical origin
of each cone term, These are given in Tables 6 and 7. It should be
noticed that these solutions can be almost trivially generalized to in-
clude other cones that we have neglected by our approximations, by
just writing out the diagrams that would appear according to the trans-
formation rules at the hybrid Tayer given in Fig. 3.5. Thus, for
example, the ion thermal mode that tunnels through the evanescent layer
would give rise to extra X-mode cones in regions I and VII, and we
could write down the functional form that each one of these cone terms
contributes to ¢(]) and ¢(7). Similarly, if we assumed simple perfect
reflection of the ion thermal cone at the boundary, we could write down

the cone terms resulting from this reflection.
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X-MODE CONES

ION THERMAL CONES

9‘[2.91(:{)]_‘

il

DLz,97(xp1)5p(xp1)-p(x)]

Xh
f*
b

FLz,97(x)+297(xpq)-216(x;5) ]

Xh2
Xhi Xhi
S 0

S
D[2,397 (x471)-216(xp1) »Pj (xp)-p7(x) ]
Xh2 ‘
Xk Xn - @%hi
N
S 0 i

F[z,91(x)+2g7(x )+ 295(2) ~21€(xp,)

a
Xh2 *h2
Xhi Xhi
S 0

F[7,-97(x)+2g7 (xp1)-21¢(xp2)]

Xh2
f:yg/%ga:?l
s

F[z,-g7(x)+2g7 (xp1)+29,(a)-214(xy,5)

1 9[z,91(xp7)+2g2(2a)-219(xp2 )

p](xlﬂ) As D-| (X)]

a
X X
) h2 hi W Fos
hi hi xh' xhl
A |
Table 7. Diagrammatic representation of the cone terms whose sum gives

¢(1 (x,2) to first order
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X-MODE CONES

ION_THERMAL NES

F[2,95(x)+g;(x1)-16(x5)]

9[2.91 (th )’1g(xh2)rp2()()]

/

Xh2gT

Xhi

S

DLz,97(x1)+29,(a)-16(xp5 ) 4P, (x)]

Table 8 Diagrammatic representation of the cone terms whose sum gives

¢(7 (x,z) to lowest order
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3. Discussion and I1lustration of Resonance Cone Solutions

To study and illustrate the cone solutions, we want to first iden-
tify the "cold plasma" or singular cone trajectories. This may be done
by ignoring the first order thermal corrections to the phase of the
waves in kz space. This gives an idealized (non-physical) approxima-
tion to the physical (finite) fields which is useful for very low tem-

peratures. This may be done by letting

q(x) + 0 py(x) 0
Qix) » 0 ®(x) + 0
g(x) + 0 py(x) > 0 (3.85)

This is 1ike a zero temperature limit of the cones, but not rigorously
so, since in a rigorous 1imit the ion thermal mode is not present; in
the zero temperature limit its wavelength A * 0.

In this Timit, the general form of the X mode cones becomes

Flz,900+an, o )] -

2
Z2-90) -an; Y GA,)
2
T Z g+ Y (xsa)

(3.86)

where n is a negative integer, and g(x) some combination of the g,'s and

gz's. Similarly, the general form of the ion thermal cone becomes
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Blz, F0R) -+ (K25) 51)] —> { z;;:;(*)_;zni (1 42)

2

Z19(%4)+2n. Y (X12)

(3.87)

where x, 1is the point (Tower hybrid layer) of origin of the cone.
It is important to notice that when either n # 0 or Im g # 0, then

the argument of the ¥'s and @'s are complex, so the cones are no longer
singular, even in this cold plasma 1imit. The case Im g # 0 is clear:
damping will limit the field amplitude of the cones to finite values
even when thermal effects are ignored, and cause the cone field profile
to assume a Lorentzian shape [see Fig, 3.9]. The case n # 0 means that the
cone is one that has tunnelled through the central evanescent layer at
least once, so the passing of the cone through the evanescent layer has
an effect on limiting the cone field very much like damping; a Lorentzian
profile for the cone fields is produced. This fact is related to the
criterion for the existence of resonance cones in cold, collisionless
plasma theory: the resonance cones exist, i.e., the singularities eccur
in the fields from a point source in cold collisionless plasmas when
K"(x) Ki< 0, and not when K“(x) K| > 0. In the evanescent layer
K"ﬁl_> 0, and so the singular cones do not exist. However, the cones
which have tunnelled through the evanescent layer are not singular in
the propagating regions where K“Kj_< 0, either. However, in the physically
meaningful sense, the fields are sharply peaked when the evanescent layer

is thin, just as they are otherwise when the damping, source size and
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temperature is small, and hence it is still meaningful to call them
resonance cones; the criterion KH%L < 0 has only limited usefulness as
a criterion for the existence of the cones.

The limiting forms (2.85-2.86) immediately give the "cold plasma”
cone trajectories of the cones contributing to ¢(x,z), i.e., the trajec-
tories of the cone maxima. They are z = Re *g(x) for the form of the
cone in Eq. (2.85), and z = Re tg(xh) in Eq. (2.86). The latter ion ther-
mal cone trajectories are perpendicular to Eo' These cone trajectories
are shown in Fig. 3.10, which is a generalization of Figs.2.1 and 2.9,
which show the cold plasma cone trajectories in a homogeneous plasma.

The "cold plasma" cone trajectories illustrate some important
points about how the cones move from the source and throughout the plasma
model, but we now want more detail about the structure of the finite tem-
perature cones and their features as they propagate through the plasma
regions. We will concentrate on the z > 0 cones, since the cone structure
for z < 0 is just a mirror image of the z > 0 structure by symmetry.
First, when q(x) # 0 and p(x) # 0, there is the well-known thermal inter-

ference structure near the cold plasma cone lines that is exhibited in

the structure of the Airy function combination F and the Whittaker's func-

tion D_]/2 which represent the cone field amplitudes as shown in Figs.
3.7-3.8.

A study of the functional form of the cone coming directly from the
source shows the thermal structure of the cone is on the right-hand side
with respect to the group velocity of the cone as it goes into the first
hybrid layer, as it comes out of that layer as an ion thermal cone, and

as it comes out after tunnelling at the second hybrid layer as either the
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X-mode cone or converted into the ion thermal cone. Similarly, the ther-
mal structure of the cone as it moves in the evanescent layer is on the
right-hand side with respect to the direction of decay of the cone (see
Fig. 3.11). Once the cone has reflected off the boundary, the thermal
structure of it and of all cones produced by mode conversion from it
are on the left side of the cone with respect to its direction of motion.
Each subsequent reflection again changes the side of the thermal struc-
ture, i.e., changes the "parity" of the cone structure.

The cone from the source comes in from the boundary initially per-
pendicular to the magnetic field, but turns and approaches the lower
hybrid layer almost along the field, i.e., at a very small cone angle

given by
m[wz 1/2

- uf (0]
tanac 8. N

(3.88)
¢ wpe(X)

As the cone comes in from the boundary, for a given x the width of the
cone structure in the z direction goes as [3q(x)]]/3. i.e., the cone
spreads out in the x direction as q(x)1/3. However, as the cone ap-
proaches the lower hybrid, so that the cones move almost along z, it is
more useful to look at the cross sectional structure along x for a given
z. It is seen that near the hybrid layer the cone structure does not ap-
preciably widen as it moves asymptotically into the layer.

Near the lower hybrid layer the incoming cone bifurcates into an
ion thermal cone which comes out almost perpendicular to Eo’ and another
X-mode cone which continues into the evanescent layer, also almost per-

pendicular to Eo‘ The cone coming out on the propagating side spreads
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]]/2. but as we will see later, it also decays

out Tike [p(x,q) - p(x)
away very rapidly due to damping. The cone that goes into the evanes-
cent layer decays away until it reaches the second hybrid layer, where-
upon it bifurcates into an X-mode cone which propagates out almost
parallel to the field, and an ion thermal cone (by mode conversion),
which propagates out almost perpendicular to the field, each of which
continues to spread out in the manner appropriate for the X mode and ion
thermal cone: the former as [qz(x)]u3 and latter as [pz(x)]]/Z. These
features are illustrated in Fig. 3.11,

It will be instructive to examine the nature of the decay of the

X-mode in the evanescent layer. The functional form of the z > 0 cone

field in that region is
4) ~ F Z—j,f’h}-iﬂ(’ﬂ)
¢ 13[4, ) +1G0)

Now QO(x) << q1(xh]) since the evanescent layer is taken to be moderately

]}[13 = F(f) (3.89)
thin, and we may expand the denominator

_'{? : .
[‘3«“1.,) +17 (’l)] = [Cl. (11‘,)]”[3._ 14 (3.90)
¥ . 3-—%——W T

Thus the effect of the cone propagating a distance x - X1 into the evan-

escent layer is to add an imaginary part to the cone potential argument

~ ) (%) )
Ini= [3?,(1)] ;ﬂ(x) T —%’a;) [2 "ﬁﬂ“tﬂ (3.91)
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Let us examine the asymptotic region of the cone, |z| >> 1 or
|-z + g1(ﬁ”)|>> [3q](x)]]/3, with Im g <<Re . For z < g](xh1). where

the maximum and cone interference structure is

~h :
F@~ S0 ep a0k amyl) - 2 oo

Let ¢ = Cr + 1C1- Then

™ «sz,) -% i 1 («J’k)l/’“ (3.93)

The leading term in F(z) then decays as

(+)
¢°M exp 4{11(1)[%—3,1)]4+%:) % g‘m.)} (3.90)
[3 7,1 aﬂ,l)]/l

This form clearly shows that the parts of the thermal interference struc-

ture that are farthest from the cold plasma cone trajectory z = 91(xh1)
decay away the most rapidly as x increases. This form of the decay rate
is not valid for the primary maximum of the cone, but is useful for the

second and higher maximum.

Plots of the decay of the cone in the evanescent layer are shown
in Figs. 3.12 and 3.13, which illustrate the cone structure as a function
of . for various fixed ;. As seen from the diagrams, the whole cone

decays but the widths of the maxima are virtually unchanged for the thin
layer considered.
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It is seen that the amplitude of the primary maximum decreases
least with the decrease in amplitude of the secondary maxima, increas-
ing in severity with their distance from this primary maximum. Thus,
since the effect of the evanescent layer is to make the secondary
maxima less important relative to the primary hax1mum. the cone is as
a result a more localized structure than before entering the evanescent
layer, It should be noted on the other side of the cold plasma cone
trajectory, where the exponential dying tail of the cone is, that there
is some decay there also, but this is less than the decay of the maxima
on the oscillatory side, and decreases in severity with the distance
from the cold plasma cone trajectory, so that in the asymptotic Timit
there is no decay, but only a phase change as we concluded by asymptotic
analysis.

The above analysis of the cone structure produced by the evanes-
cent waves was for a thin 1ayer(?(xh2) << q1(xh1), but we can deduce
what happens for thicker layers. Our asymptotic analysis showed that
evanescence produces a rapid decay of the thermal contribution to the
cone structure except very near the cold plasma cone Tine. This causes
the secondary maxima of the cone (caused by the thermal wave) to rapidly
disappear, leaving only the main peak. This peak moves closer to the
cold plasma cone line, as seen in Fig. 3.12, and comes increasingly from
the cold plasma contribution. But the cold plasma contribution is
broadened and decreased in amplitude by the evanescent layer, and when
(?(xhz) becomes significant compared to q1(xh2), which occurs after most

of the secondary maxima have decayed away, the main peak broadens signif-

icantly, and the whole cone rapidly spreads out.
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CHAPTER IV. DAMPING, ENERGY FLOW AND ABSORPTION

Having obtained the general structure of the resonance cones in
the bounded slab plasma model, we want to study some features of the
energy flow and of the damping and corresponding energy absorption along
the cones of interest for plasma heating. Having obtained the potential
everywhere as a sum of resonance cones of similar structure, we can con-
centrate on a single cone structure for each of the X-mode and ion
thermal waves, and straightforwardedly generalize to all cones. The
particular cones we will concentrate on are those coming directly from
the source on the x < X side of the hybrid layer, because those are
the largest amplitude, hence the most important.

Usually it will be more convenient to work with the damping and
eneray flow for a single Fourier E-component of the wave . However, for
each cone, kx is a fixed function of kz. and in the asymptotic region of
" the cone structure only a narrow spectrum of kz centered around the
saddle point value contributes to the local cone field. Thus from a
determination of the damping associated with each k-component, we can
determine to a good approximation the damping that arises locally on
each part of the cone. Also, these facts will allow us to derive a
superposition theorem for the energy flow of individual f-components to

get energy flow locally on the cone.

4.1 Damping of the Cones

The effect of Landau, cyclotron, and collisional damping on the

cones is implicitly contained in the cone potential solutions that we
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have obtained in the form of a small imaginary component of the phases
(the g's and the h's) of the waves, which we have ignored until now.
We will concentrate on the damping of the primary cone from the source
in region I that goes into the first hybrid layer, and on the converted
ion thermal cone coming out of that layer, since those are the primary
cones and the results are easily generalized.

The form of the damping correction to the plasma wave phase is
given in Eq. (3.23). If we let r and i indicate the real and imaginary

parts, the wave in region I takes the form

$(x k) q’[K" (0) EL(O) ]1/4 e[ilkZ[g1r(x)_ |kz|g11(x)'+i|kzl3 q](x)]
K, Ky (x) EL(XT
(4.1a)

for the X-mode and

K|y (0) Ky(0) B(x)]1/4 Ly (x) = hyo(x) = [k, |2 py(x)]
e

K, 3(x)

-‘S(xskz) "”:
4

(4.1b)

for the ion thermal wave. (There is also a damping factor in the coeffi-
cient of the latter, which comes from the X-mode wave which has con-
verted to the ion thermal wave.) Both of the damping exponents are a
function of kz, the latter through the cyclotron harmonic contribution.
There are also "second order" contributions to the damping from the

imaginary contributions to q1(x) and p](x). These are normally
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considerably smaller than the "first order" damping, but the "second
order" contributions to the ion thermal mode include electron Landau
damping, which might be important when the“first order*contributions of
ion collisional and ion cyclotron harmonic damping are small. Thus, we
will include that particular "second order" contribution.

From the form of the damping of the waves as a function of kz’ it
is difficult to determine the exact form of the damping on the resonance
cone fields, which encompass the whole kz spectrum, but in the asymptotic
regions of the cones only a narrow spectrum of kz centered around the
saddle point contributes locally to the cone field, and the local damping
of the cone may be said to be governed by the saddle point value of kz.
More precisely, let

-P(x,kz)

o(x:k,) = d (x.k,) e (4.2)

where $o(x.kz) is the undamped field obtained by ignoring damping, and
r(x,kz) is the damping exponent. Thus, since the exponential factor is
slowly varying in kz compared with ¢o'

-r(x,k ) r _ ik,z dk
o J¢o(x.kz) e ¥ o= (4.3)

#(x,z) ~ e

when the integral may be approximated by its asymptotic form by inte-
grating over the saddle point ko. The saddle point for the two modes
we are studying may be found from the integral forms of the Airy func-
tions and the Whittaker's function which characterize the cone fields

in Eqs. (3.79, 3.81). For the X-mode the appropriate saddle point is
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- zZ = 91r(X) 1/2 =5
kg ™ _—357T§7_—] (4.4a)
and for the ion thermal mode
1% " 9y (%py)
%o ~ ?'[ P (X! =Py (X) 44k

The form of the damping exponent for the cone potential is

X reky g (x')q 172 ‘
I‘(x,ko) = k0/2 l) [W] Im K_LX ’kO)

Im K" (x',ko)
3 . e

for the X-mode and

Tl [ Im Ky (x',k )
1 S vy
I'(x,k. ) =

Skl = {[e(x') K o0 )1772

X

K

+ |kz|2[-§£)—]”2 Im Ky (x'.ko)}dx'

) (4.6)
for the ion thermal mode. The latter includes the "second order" elec-
tron damping through the imaginary part of K" » and the forms show that
the electron damping of the ion thermal cone is negligible compared with
the ion damping when

k,|%8
Im K_L>> ——-K—-— Im K“ (4.7)

which is generally true in the x << Xn1 region except for very low ion



-139-

collision frequency and for w not near any of the ion cyclotron har-
monics. The forms of the imaginary parts of K|

(1.16-1.18)]

and K, are [see Egs.

vewze(x') wze(x')m —wszg vg
z e '
(w-nw_;)?
v 2 (x") 2w2 (x) w s g
Im Kp(x') = 1 pi § B -2 ) e KzVY (4.8b)
L k k3 v4 n
Wyt 14

The form of kx that enters the latter equation is

kx = kZ[W] (4.93)
for the X-mode, and
(x)]1/2
K, = [%‘%ﬂ’] (4.9b)

for the ion thermal mode.

It is seen that for the X-mode the parts of the cone that are
farthest from the cold plasma cone line [z = g]r(x)] in the z > g]r(x)
region (where the oscillating spatial structure of the cone is) are the
most severely damped: T increases monotonically with z - gir(x). For
$ & g1r(x) (where the exponential tail of the cone is), I' becomes
imaginary, so damping merely introduces a spatially dependent phase fac-
tor which increases with the distance z - g1r(x) from the cold plasma

cone trajectory. This is very similar to the nature of the decay of
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that cone in the evanescent layer. These asymptotic forms are strictly

valid for
z = gy (%) >> [3q,(x)1"3

This form of I' goes to zero as z ~+ g1r(x), i.e., outside the region of
its validity, and thus predicts no damping along the cone line. A more
accurate numerical evaluation of the effect of damping on the cone
field similar to what was done in Chapter 3 for the cone in the evanes-
cent layer shows the damping rate decreases monotonically as

z + glr(x), but does not go to zero there. Thus the saddle point damp-
ing prediction is too low near the cone line. The behavior of the cone
damping arises from the fact that the damping of the individual kZ com-
ponents increases with increasing kz.

For the ion thermal mode, the dependence of I on kZ = k_, and

0
hence on z, comes only in Im K" and Im KL . This means that the colli-
sional contribution. to the damping of this mode is independent of k0
and thus of the position in z on the cone structures, so that it gives
rise to a uniform decay of the whole cone structure, unlike its effect
on the X-mode cone, The collisional and Landau contribution increases
with kz = ko‘ and hence is more severe the areater the distance

z - g1(xh]) from the "cold plasma" cone line z = g]r(xh]). Thus when
collisional damping is the predominant damping mechanism, the whole cone
structure decays approximately uniformly in the -x direction, unlike the
X-mode cone. If ion cyclotron harmonic and/or Landau damping is the

predominant mechanism(s), so that the higher kz are more highly damped,

the "high kz" secondary maxima decay at a higher rate than the primary
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maximum, similar to that of the X-mode cone. For cases for which both
collisional and collisionless damping are important, the mean peak may
be predominantly collisionally damped, because it is made up of the
smaller kZ components for which collisionless damping is small, whereas
the higher order maxima, which are made up of increasingly higher kZ
components, may be dominated by collisionless damping.

We now want to investigate the damping rates of these modes, par-
ticularly that of the ion thermal mode which is responsible for most of
the absorption of the wave for more specific cases, since the incoming
wave is usually not severely damped. Let us consider the damping of
the ion thermal wave near the lower hybrid layer, since that is where
most of the energy absorption might be expected to take place. Near

that layer we can assume a linear density profile for a thin region
w v wpi(x) " mzh(x) (4.10)

We will neglect the small electron thermal part of (x'):

2 2

vy W . (x) 3v

B(x) = 3 ——Rb— n = (4.11)
w

—-ts N

Ena

Divide the damping exponent up into a collisional part Tc' a harmonic

part T\, and a Landau part Tyt

P » B Ty # rl (4.12)

The collisional part includes ion collisional damping and a less impor-

tant electron collisional damping component:
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X
h1 '
r = _____J_____ {“1 dx

(Xpy=x")

2

2 2 X
& K, Ve B(xh1) Qpe(xhl) Jh1 dx' ]
Ll X (xh]-x')

(4.13)

To get the electron collisional damping part, as well as the ion cyclo-

tron harmonic and the electron Landau damping parts, we must use the

mode conversion point x X, as the upper 1imit of the integral rather
than the hybrid layer x = X1 since using the latter will give a diver-
gent integral. The mode conversion point is the correct point from
which to integrate, since that is where the ion thermal wave starts and
thus the point from which it is damped. (Since Xn1 = Xg €< Xpp T X» We
have normally used Xpq as the upper 1imit of our integrals rather than
Xys @s that gives a negligible error if it does not produce a divergent
integral.)

The mode conversion point x = x_ is given by Eq. (3.12) and is a

function of kz. Hence

1/2
2k (-8Ki1g)

Xo = *h1 T Y
(4.14)
m. k. v.
. _ i "o'i
= Xpy = 2 mm, Ty

where kz = ko is the saddle point value of ¢° of the ion thermal cone
given by Eq. (4.4). Note that now x, is a function of the position at

which we are measuring the damping because it is a function of those kz
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that produce the field at that position.

The collisional damping exponent now becomes

2 2

3k~ v v, m
r_ 1 2“1(*h1‘x’]/2 »0. 8 2
By v yu© mg

1/2 -1/2
[(TL Gm) = (xpy=x) /] (4.15)

The second term in the electron collisional damping is small compared

with the first because we are in the region where xh]- xo << xh]- X

Note that by using X1 s the upper 1imit of the ion collisional inte-

gral rather than x_, we neglected a term of order (xh1- xo)]/z, which

0
is small by the same token. The ion cyclotron harmonic and Landau
damping contributions to the damping may similarly be calculated using

x = x_ as the upper limit of their integrals:

0
3 (w—nl, . H*
r1 o Eg!JJca e -—:E;I———$“L
h 2 uJ-‘,leo.vii :%?j 112.63 s Vit
x 2 '
X 0 w* LX) /
51 ex? [ 78 Y (X~Ani) d‘[
(X =y, )2
(w-uw,)*
— chl Z n e 2 Vz
2 w37&,/3(x,,,)

X { exp [ w2Bhn) ] _ o] wWBCW) }
) P l):] (4.16)

Vit Y (X=X, vy (67
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[y = I Wil (h) }*’[ﬁch,)]'/; - :,‘JL:.‘ )' Ko e
ko ve® y® = X (‘XM"“‘)%

m, o w?vy 2me wY /" -/ }

P"e‘gp'wds )’%&' -§;;; ) ¥ (xh

2z

X e—m“

e

(4.17)

The second term in the curly brackets in both Fh and FR is small com-
pared with the first term, especially so for harmonic damping, in our
region X1~ X > Xp1= Xge The significance of this for the Landau
damping for given kZ components is that when the smaller terms are
neglected, their contribution to I' no longer depends on x, so that most
of the damping that will take place on this mode has already taken

place by the time the wave has reached the asymptotic region. Thus the
damping rate by this mechanism is very high near the lower hybrid layer
and falls off very rapidly as the ion thermal wave moves away from that
layer. This can be seen from the general form of the damping rate

dr'/dx obtained from Egqs. (4.6) and (4.8):

%
M —/4 [ g Ky, ) /[“"u“’_ Ay wy B7)
w3 uJJ% Cx)k<iizlcx)vq'

w2 g /ey, 0 V.2 — (=K, )2
- } /kJ.O b Z—n'i.c _‘E}?;‘_)—] (4.13)
n
) 7 /ol oo -
-+ unglj [ (1) ] 2l VoW oﬂ)+2 '-”PE(I)UJ e_:;_vi

1 w? 3 #
: %3 Ve
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The ion collisional and the electron (collisional and Landau) damping
contributions fall off as the wave moves away from the mode conversion
point because of the K 0 factor in the denominator and the factor pro-
portional to density in the numerator in those terms. However, the ion
collisional damping rate falls off much more slowly than the electron
damping rates, while the ion cyclotron harmonic damping rate increases
rapidly as the wave moves away from the hybrid layer. Thus we would
expect that both electron and ion damping are important damping mechan-
isms near the hybrid layer, with perhaps the electron damping even
dominating, but as the wave moves away from the hybrid layer, the elec-
tron damping falls off rapidly and the ion damping dominates and, in
particular, when w is sufficiently close to a cyclotron harmonic, ion
cyclotron harmonic damping will become the dominant mechanism. It should
be noted that the reason ion cyclotron harmonic damping can be an impor-
tant mechanism is that the wave maintains a finite kZ component, i.e.,
propagates obliquely to the magnetic field (although, as will be discussed
in the next section, the group velocity component along £ is large com-
pared with that along z, so that the wave propagates almost perpendicular
to the field), since, as is well known, there is no ion cyclotron harmonic
damping for ion Bernstein modes traveling perpendicular to Eo'

The total damping exponent, after neglecting the small terms in

rc. Fh and Fg is

Jz_lf'-'_‘-’a SL ¥ (1h|"7)z'+ ?‘vs(ﬂ }1‘;_)‘/2}

W™\ Y bmg

I

rl
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(4.19)

. (WSV' &v,_g-__)'/z o~ WIS
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ve ¥ 3
¢ k., 3 m;

Certain features of the dependence of the damping on plasma parameters
are evident from this form. For given kZ components excited by the
source, as the density gradient y at the hybrid Tayer decreases, the

ion collisional and the electron collisional and Landau damping increase
while that of ion cyclotron harmonic damping decreases, with the elec-
tron damping increasing in importance relative to both types of ion
damping. Thus by increasing y, we increase the proportion of the absorbed
wave that goes to the ions over that which goes to the electrons, and in
particular we increase the importance of cyclotron harmonic damping
relative to all other types of damping. As the ion temperature in-
creases, the ion cyclotron harmonic damping and both types of electron

damping increase, while that of ion collisional damping decreases.

The above observations about the nature of the damping of the ion
thermal wave were made for fixed kz = ko' However, for studying the

damping of the cone as a whole, it is more useful to see how a given
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peak decays, or how a part of the cone a given distance from the cold
plasma line decays. Consider the form of k0 in the region of assumed
linear density profile:

X

B(X ) 1/2 0 1
p(x)-p(x)=‘[ “‘] Ky Cxicq ) d
h1 Z 'YE 0 h i (- x')3/2

(4.20)

m,v m_1/2
= AT ] {( Y P el x)']/z}
w;3/2 my kovi 5m1 h1

Again, the second term is small compared with the first, so

n z - 9y,{%)
0 Prxh]) = p(x)

becomes constant for fixed z as x decreases, and rapidly just becomes

proportional to the distance z - g]r(xh]) from the cold plasma cone

1ine. (It should be noted that k0 does not actually go to zero at the
point of mode conversion, as this might suggest; there is another
higher order correction like Ikz|3 q1(x) to the phase of $(x.kz) which
we have ignored in the asymptotic region, but which would become as
important as the Ikzl2 p(x) very near the hybrid layer.) This means
that our conclusions for fixed kz = ko also hold approximately true for
fixed distance z = g1r(xh1) from the cold plasma cone line, indeed for

fixed z, with the knowledge that the fixed distance from the cone line
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is proportional to fixed kz. Another conclusion that can be drawn from
this form of ko is that the width of the peaks and spatial oscillations
of the ion thermal cone approaches a constant as the cone propagates to
smaller x; they do not continue to spread out as they did coming into
the hybrid layer (on the X-mode cone), and for a short distance after
mode conversion.

Finally, some observations are in order on the damping rate of

the cone coming into the hybrid layer. From Eq. (4.5) this is

fili — -jzo Lupgtx)
A 2 jl w2 [~Ky,0) ) a. [_" "’er‘( Vn)

__ujijdyvgzj] + ~K, ] . 0
' 2 (

& Y Wio/A2Kye v.2 )‘l
Y [~Kio Y2 wKio/h Ky v, 0
Kyo € Z e kv }

which is to be compared with that of the ion thermal cone damping rate

in Eq. (4.18). This mode starts out in the low density region of the
plasma near the plasma:layer (where K“c)(x) v 0), with virtually no

ion damping; only electron collisional and Landau damping is present,

and this is strong near the plasma layer. The electron damping rate
falls off somewhat as the immediate vicinity of the plasma layer is left,

then all types of damping increase in importance as the wave moves into
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the plasma interior, with the ion damping increasing at a faster
rate than the electron damping. As the mode conversion point is
approached [so that K o(x) becomes very small], the ion damping in-
creases in importance very rapidly relative to the electron damping,
with the relative importance of ion cyclotron harmonic damping in-
creasing the most rapidly. This ion damping may rapidly become the
dominant mechanism on this mode near the hybrid layer, although both
electron and ion damping will probably be important in this region.
As previously discussed, the ion damping will continue to increase
in importance relative to the electron damping after mode conversion,
so that at some point ion damping begins to dominate, and all subse-
quent absorption goes primarily to the ions.

A1l forms of the damping given by Eq. (4.22) increase with the
distance z-g]r(x) from the cone line, so the higher order maxima
decay away the most rapidly. This differential of damping rates for
the various peaks is greater for collisionless damping than for
collisional damping, and the former is ordinarily quite small on
this mode except for the very high kZ components. Thus, the main
peak of this mode will typically be primarily damped by electron
collisions, except near the hybrid layer, where ion collisions become
important, but some Landau damping may be important for the higher
order peaks.

Certain aspects of the damping of the resonance cones have

19 considered

been considered previously. P. Bellan and M. Porkolab
collisional damping of the incoming mode, and concluded that this may

become quite large near the hybrid layer for typical collisional
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plasmas. Our analysis suggests that collisional damping is the most
important mechanism for this mode, but that collisionless damping may
also be important for the secondary peaks if the source excites these.
Also, the collisional as well as Landau damping is ordinarily rather
small far away from the lower hybrid layer, and only gets large near
the lower hybrid layer. Even near the hybrid layer, it is primarily
the secondary peaks that are strongly damped, so that the main peak
should be weakly damped enough to undergo mode conversion. These con-
clusions are important extensions of Bellan and Porkolab's study.

There has been no previous analytic investigation of the damping

of the outgoing cone, but M. Simonutt1.2] 20

and K. Ho and H. Kuehl1™ have
done some numerical investigation of that damping. M. Simonutti con-
sidered only collisionless absorption and concluded that cyclotron har-
monic damping was small on the incoming mode, but may become important on
the outgoing mode. Our analysis confirms this conclusion and further
implies that ion cyclotron damping will become the predominant mechanism
of the outoing mode if it is not totally absorbed near the lower hybrid
layer. Another important conclusion of our analysis is that ion colli-
sional damping is important for this mode near the hybrid layer, and
gives rise to a uniform decay of the cone. K. Ho and H. Kuehl concluded
that ion cyclotron harmonic damping causes a rapid decay of the outgoing
cone. Our analysis confirms this and shows that damping is largest on

the secondary peaks of the cone.
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4.2 Energy Conservation Theorem for Quasistatic Fields

In order to study the eneragy flow, we need an energy conserva-
tion theorem for quasistatic fields. There are Poynting-type energy
conservation theorems for electromagnetic waves in plasmas in the plasma
1iterature,3 but when the quasistatic approximation is used, there
is an ambiguity in the proper form of’?rto use in the power flux vec-
tor EXH in the theorem. This is because the VXE Maxwell equation gives
H=o0, implying zero power flux in the cold plasma 1imit, whereas the
vXH Maxwell equation gives an H # 0. The latter equation turns out
to give a good estimate for the power flux, but it will be instructive
to develop energy theorems from first principles, which will resolve the
ambiguity and confirm the correct form of H to use in the power flux.

There are two forms of the conservation theorem that we will
develop, both of which wil}-be:useful since they are somewhat complemen=
tary. The first will be from the fluid equations. This has the advan-
tage that a Fourier transformation of the fluid quantities is unneces-
sary, but has shortcomings since it does not include Landau and cyclo-
tron harmonic damping, as fluid theory does not predict those damping
mechanisms. We will then develop the theorem in terms of the warm
plasma dielectric tensor. This form has the advantage of including
collisionless damping and only having one undetermined quantity in it (the
wave potential), but can be derived for only a single Fourier k compon-
ent. For the latter case, the fields will be taken to have an ei(k'r—“t)

(plane wave) dependence.
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We will.ignore for simplicity the energy flow associated with
zero-order drifts, such as the diamagnetic drift arising from the pres-
sure due to the background density inhomogeneity. This is valid for
sufficiently gentle density inhomogeneities. These may be included
if necessary in the fluid form of the conservation theorem, but not in
the warn plasma dielectric tensor form. This is because the latter,
which is obtained in Eispace. assumes sufficiently slowing varying inhomo-
geneities so that the dispersion relation is satisfied in the WKB sense,
with the wavenumbers being a function of the local density.

Let us start with Poisson's equation
2. -
-V = p/eg (4.22)

and the continuity equation

%Pt- +v9.3=0 (4.23)

Taking the time derivative of Poisson"s equation, substituting it into

the continuity equation, and multiplying by * gives

o* Ve T gy ) = 0 sAReR)
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Transforming this with the vector identity ¢V-K = v-(¢K) - ;-V¢. we
may put this into the form

B (L (912) + v+ (6% - e o* 2 = oo d (4.25)
As it stands, this is a conservation equation for the electric field
energy. The first term is the time rate of change of the energy den-
sity of the electrostatic field. The second term is the power flux
associated with the field, which includes contributions from the dis-
placement current and from the regular currents induced in the plasma
by the field. On the right hand side is an E‘ﬁ’ power sink term, which
represents the energy transferred from the field to the particles in
the plasma.

Equation (4.25) is not yet adequate for finding the wave energy,
since the wave energy is made up of both electric field energy and
energy of the coherent (wavelike) motion of the plasma particle. Thus
we must divide the Eﬁﬁ’partic1e energy term up into a coherent particle
motion part associated with the wave and an incoherent part associated
with the irreversible transfer of energy from the wave to the particles
by damping mechanisms. To do this we utilize the fluid equations of
motion with a phenomenological collision frequency v assumed to repre-

sent collisional damping:
-> - -+ =y 3 - 26
Nn (Be+ V- OV, = N (E + T xB) - YK TN, - Nngy, v, (4.26)

for particle species a, where Na is the density of species «. Lineariz-

ing, there is no zero-order velocity of the particles if we ignore
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drifts and macroscopically average the Larmor orbit motion of the par-

ticles, and we obtain

> -+

my Vg yxTa n, » = Vs Ve (4.27)
foagiimpp s = VR, ¥
(s 4 oa o

where Ny is the background plasma density, and n, is the perturbed density

>

associated with the wave of species a. Thus the time average J+E power is

(4.28)
We may transform the second term by
- > -+
V. -,y -(nava) - BN ¥, (4.29)
and the linearized continuity equation for o
an
o S (4.30)
-~y +n0V . 0

-
With the resulting form of J-E. we may rewrite the Eq. (4.5 in the form

au * B (4.31)
-5——{"" V - S - PR N

where

U = U.+U,+U
. K L (4.32)
is the energy density of the wave, with

{
Ug = 22 |vas]2 (4.33a)

the electrostatic field energy density,

+2
o " Vo (4.33b)
Ug = E _—
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the particle kinetic energy density,
2
) YK Ta nu

Up = g = (4.33c)

e -+ >
S=S.+Sp+ S; (4.34)

S =4*3 (4.35a)

the flux produced by regular currents

§D = e ¢* i%ﬂ (4.35b)

the flux of displacement currents

- S -
St = g K T h, v (4.35¢c)

the flux of the pressure oscillations; and

Rp = =iyl By ¥, Y 04, 36)

is the "heating" of the particles produced by collisional damping of
the wave.

This fluid form of the energy conservation theorem contains the
unknown perturbed quantities n.s Va, and ¢ associated with the wave; we
could solve the fluid equations to get Ny and 7a in terms of ¢, and
thus U, S, and PR in terms of ¢. But we should be able to get these

energy-related quantities in terms of ¢ and plasma parameters solely
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through a knowledge of the warm plasma dielectric tensor (which is

derived from the Boltzmann-Vlasov and other equations). We will derive
a conservation theorem in terms of ?(E.m) and ¢(k,w) which is comple-
mentary to our fluid form, in which quantities are a function of r and
t. This approach will give us collisionless damping contributions to
PR which arise from microscopic processes and are not present in fluid
theory.

The method that we will use is that used by Stix for transverse
waves.3 Basically, the approach is to form a quantity from the fields, a
dielectric tensor, and dispersion relation that has the units of energy
density and has a known value (such as zero). Then, consider a small
change in plasma parameters and evaluate the change in this quantity.
The changes can be identified with power flux, dissipation, etc. to get
a conservation equation.

Let the dielectric tensor (a function of K) be written in the
form

R(k,w) = R, + R, (4.37)

where Rh is the Hermitian (loss-free) part, and ?; is the anti-Hermitian
(loss or damping) part. (This will facilitate the separation of wave
energy from the energy of dissipation).

Consider now a loss-free plasma which satisfies the quasistatic

- .
dispersion relation. Poisson's equation may be written, using E = -ik¢

Gp = 0 (4.38)

where
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£ W -
Ti.f . (4.39)
G is Hermitian, since the plasma is loss free, so the adjoint Poisson

equation may be written
6T = Go* = 0 (4.40)

Now consider a small perturbation of w, ?, and the plasma parameters,
which may introduce losses, etc. Denoting the gquantities of the new

state by primes, Poisson's equation here takes the form
Gl¢l = 0 (4.41)

where G is no longer necessarily Hermitian, since losses may now be

present., The linearized relation of G' to the old G is

a6 3G

G' = 6+ Swil+ 8k — + 66 (4.42)
ak

aw

where GSw, 5?. GE are assumed small. Use this form in Eq. (4.41) and

take ¢*(4.41) - 4'(4.40) to get

G

o* K - {Gw 224 8k
ok

+ &G} - K ¢' (4.43)

Now we can replace ¢' = ¢ + 8¢ by 4 in this equation, since this is
just neglecting a nonlinear term. We can write G in the form

EUJ_..
Tk'ﬁf

5 N (4.44)
- f.gf k- (LR~ (o%,)T1+ 68, + (k)11 - &
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The first term is anti-Hermitian and represents the losses introduced
by our change in plasma parameters . The second term is Hermitian and

gives rise to reactive energy terms, which time average to zero. Then
2 — : =, —> e =
2191t § 2. [ 2 (w k)| S+ whe[2k,

(4.45)

2K, + “’Ja Sk ko + veackive ) = 0
+3L ﬂL S& terms }

This is a Fourier transformed version of Eq. (4.31), so we immediately

can identify the energy density, flux and dissipation terms in E-space:
' —: ==y
e B 272 [3
U=-E219" L[ (uk) -4

S =—w‘£o|¢1 [ _’L""F'i, Z‘QQ_L%'Z] (4.46)

F%a o S;LD —, I cJE? 2

; 191

This new form of the enerqy conservation theorem for quasistatic
waves is quite similar to Stix's form for transverse waves. The differ-
ence comes in that the Poynting's vector flux ExH of Stix is replaced
by the "quasistatic" power flux [ Kh|¢|2. We can recover the latter
result (approximately) if we replace the ﬁ in E X ﬁ by the solution of
the ¥ x H Maxwell equation, but not from the H in the VX E Maxwel1l
equation.

We may compare this "kinetic" form of the energy conservation equa-

tion with the fluid form if we assume a single Fourier component in the
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fluid equations. Then we may compare and equate terms. To facilitate

this, divide ?h up into a cold plasma part and a thermal part:

K, =% +% (4.47)
Then
U = S oMV _ -g, B2 7 2K
-—— o "'"-a _— -
Ry e (R |

i = "'._E{Eg 2 - = =
S e Mlzg-fl—j*‘kr'i] (4.48)

with UE and SD having the same form as before.

The above set of equations summarizes the relation between the
kinetic and dielectric tensor form of the energy conservation theorems,
and by dividing up the dielectric tensor into its contributions from

2

species a , we have an expression for the fluid quantities Va "
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naza. ni for each species o in terms of ¢ and the dielectric tensor.
We can straightforwardly obtain these quantities for the form of the
linearized warm plasma dielectric tensor we used to obtain the forms of

¢ in our model. These are

i S z
mz: "ve)z' b2, E,
W; w't

= o) Den- () e

e e Lw? o A (4.49)
"= ”';w) {D;" B3+ Ea?}

e = (;e.—w) [Ex'i\-i-E,:?L]

A solution of the fluid equations under the approximation in our model
for each ¥ and N, will confirm these relations.

For our purposes, it is more useful to use the kinetic (dielectric
tensor) form of the conservation theorem to obtain the power flow and
dissipation along the resonance cones, but we would like to get expres-
sions for these as a function of ¥, rather than of f, in order to see
how these quantities vary along the cone structure. This can be done
with the aid of the fluid energy equation. For example, we may write

the power flux in the form (in k-space):
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S(k) = &k) |e(k)|? (4.50a)

where a(f) may be identified in Eq. (4.46). However, from the fluid

equation, the real space form of S(r) in Eq. (4.34) is
§(;) = ¢*(r) jtot(;) + flux of thermal oscillations (4.50b)

where jtot is the sum of the real and displacement currents. Writing

P
Jtot(?) in its Fourier transform form

3 5 i 3 .+-+
Jiot(r) = g0 J[K - k o(k) e’k T g% (4.51)

Now it is easy to see from our derivation of S(k) from the dispersion

relation that when we include the flux due to thermal effects that the
-

appropriate form of 3(r) is

+ -
.

) = o*(F) f A oK) ek T o3% (4.52)

Now ¢(E) is proportional to a(kx-kxo), where kxo is the appropriate kx
from the dispersion relation for the particular mode of interest and is

a function of kz. Upon doing the kx integration, we may then do the
integration of kz by considering a(kz) to be slowly varying and utilizing

the familiar saddle point method to get
> -+ -
3P = alkmk) [6(P)]2 (4.53)

where ko is the saddle point value of kz that creates the asymptotic form

of ¢. This expression is valid as long as a does not vary greatly over
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the range of k, that makes a significant contribution to o(7).
Equation (4.53) is a superposition theorem for the power flow

in real space. A similar derivation gives a similar result for the

dissipated power PR.
As a final note on these conservation theorems, Eo. (4.46) gives

a value for the group velocity of the waves if the plasma is virtually

loss free:
= kﬂ. o —> —
s Aw -wL KL"" L] L Se. F So +-S->r
s — —'; — —

(4.54)

This is well defined only for a narrow wavepacket centered around I. In
our model, the source excites the whole spectrum of kz. and hence a
spectrum of E is present. However, in the asymptotic regions of the
cone structure, only a narrow spectrum of kZ centered around the saddle
point contribute to the field, so that a well-defined Vq exists in those

regions, and Eq. (4.50) may be used to determine it.
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4.3 Energy Flow and Absorption along the Cones

We want to apply the energy conservation equations just derived
for quasistatic fields to study the direction and concentration of energy
flow along the cone and the (irreversible) absorption of that energy by
damping mechanisms.

The expression for the power flux that we obtained (in E-space) in
terms of the dielectric tensor is given in Eq. (4.46) by

el =

o A . - 2] =
S = ~ue[]% {k - R+ %_gi.[k - % - k1) (4.55)

where again ?; represents the cold plasma part of the dielectric tensor,
and ?} is the thermal part. The dielectric tensor we are using is, of

course, given by Eq. (1.11). Thus

2 2 v

> > 4 3 3 Ye Ve k;

Kk e R} ck=-k B-5-% 'IL':?T"““
(4,56)

> = ~ ~

k « K = kxﬁly + sz“ z

SO
S = —ue ]¢|2{k (Kjn = 2k2 B) X
0 x* Lo X
(4.57)
K. ve ol
+

k,(Kjjo- _z—ir&) z}

Now the cone is made up of a whole spectrum of kz, so that this form of

the power flux in i—space gives rise to a well-defined power flux in
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;—space only when a narrow spectrum of kz contributes to the local cone
field, which is true in the asymptotic region of the cones, where a
narrow spectrum of kz centered around the saddle point is the primary
contribution to the local cone field. In that case we may obtain an ap-

proximate form for $ in ;-space by using the saddle point value kz = ko

and of course the form of kx appropriate for the particular cone we are
considering.
When the losses and inhomogeneities in the plasma are small, then

the group velocity direction is the same as that of the power flux S,

seen from Eq. (4.54). Thus the group velocity angle © is given by

2
v S k. (Kyn - 2kZ 8)
tan 6 = B~ X = x" 10 s (4.58)
gz z k, v, w

In the limit of zero temperature, Y ¥ 0, this just becomes the cold
plasma resonance cone angle. In that Timit, the cold plasma X-mode

cone angle is, using kx from Eq. (3.9) ,
Kio(x) e
tan 0 =[-———— (4.59a)
Kuo(x

while for the ion thermal mode,

3 1/2
tan 6 [—T———&o(x) ] (4.59b)
an o = - —— ® ]

Bkz K"O(X) Va"’ 0

In the strict limit va r 0, the ion thermal cone does not exist, as the
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wavelength and damping length goes to zero, but if we let R
where €q is a very small value, then a resonance cone for the ion ther-
mal mode exists with cone angle 6 = n/2 which is very highly damped
when w >> wy, (x). Of course as w ~ wﬁh(x)' then K 5 > 0 and 6 ~ 0,
which is to be expected because at the point of mode conversion vg must
be parallel to the field, since that is where the incoming cone turns

around to propagate back out of the hybrid layer.

For the X-mode the warm plasma group velocity angle is

i I
Ki,— (Ky% 4B % l(ue;-)/:l (klf*'fﬂﬂ!;ma ke

tan 8 =
;} L; (kuo"g'ézzye‘zg{;) (4.60)
w

Since K 0—»0 is our propagating region, we see that © is everywhere
decreased to a smaller value from its value for a cold plasma by thermal
effects. In cold plasma theory the cone starts out at 6 = /2 at the
plasma frequency layer w = wpe(x) near the boundary. However, for the
warm plasma every narrow kz-packet along the warm plasma resonance cone
starts out at angle

2

tan 6 o o gk (4.61)
K, ve“perky- KzVe

which is large, since kzve << w, S0 6 is slightly smaller than m/2, with
the deviation from n/2 increasing with electron temperature and with kz.
From our discussion about the saddle point value of increasing the

distance from the cold plasma cone line, this means not only is the
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main peak shifted from the 6 = w/2 of the cold plasma cone to a smaller
angle, but the second peak is shifted to an even smaller angle, the
third peak is smaller than that, etc. This explains from the standpoint
of group velocity why the resonance cone structure spreads out as it
moves away from the source.

As the cone moves far away from the plasma layer, but before it
reaches the lower hybrid layer, i.e., for mpe(x) >> @ >> wzh(x)‘ the

cone angle is given by

| 2 ', n P,
o 0.2 [ Kes 02 115K 20
aphi 1 (- - 3Ky cud)

(4.62)

Thus the group velocity angle decreases as the density increases, with
the second thermal factor causing 6 to decrease with kZ as before. Thus
the peaks of the cone structure move increasingly along the magnetic
field and continue to spread out as they move into the plasma. The cone

peaks move into the hybrid region w < Bth(x) at an angle

tan 6 v 9 ““&%ET'“ 1/14 ((4.63)

e

The peaks become parallel to the field, i.e., 8 -~ 0 at the mode conver-
sion point where k% = -4gk’ Ky which is a function of k,, with the
higher the kZ the greater the distance from the lower hybrid layer

X = Xpqs j.e., the lower the density at which mode conversion of that

component occurs. This means the highest order peaks of the cone undergo
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mode conversion first at the lowest density, with the main peak under-
going conversion at the highest density nearest the hybrid layer.
Indeed, each of the kz components undergoes mode conversion onto the
ion thermal mode at different positions, and the net result of the
whole spectrum of such kZ is a mode conversion of the cone structure,
with the oscillatory structure of the X-mode cone connecting onto a
similar oscillatory structure of a mode of a completely different char-

acter.

For the ion thermal cone, the aroup velocity angle is agiven by

TR 2
ot Lt gt 12) (ad vopaiia)™
o 2
2ph; (Kuo" 3):2\:3:),& ,) (4.64)

taw 62

This angle starts out at 8 = 0 (parallel to the magnetic field) at the
mode conversion point Kio = —4Bk§ K|j and becomes negative for a smaller
density than the mode conversion density, because the group velocity of
the wave has turned around and is now pointing away from the hybrid
layer (vgx is now negative while vgz is still positive). As the cone
moves out of the hybrid region where w > BmQh(x),

3

tan 0 = = PR (4.65)

2
kz/g “he kzvewpiwpe

Thus in this region the magnitude of tan © is much greater than one, so
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6 is rather large and somewhat less than m/2, with the angle decreasing
in magnitude as k, increases for a given x. This is to be expected,
since the higher kz components undergo conversion at a lower density, and
thus have had less distance to "turn around" from a group velocity paral-
lel to the field to one perpendicular to it. Thus for a given x, the
higher order peaks are aligned more along the field than the primary
peak. As the cone moves toward lower density (smaller x) the cone
angle continues to increase and asymptotically approaches -n/2, with the
smallest kz components approaching it the most rapidly. Thus the whole
ion thermal cone structure comes out of the hybrid layer almost perpen-
dicular to the field.

In Fig. 4.1 the group velocity angle eo is shown as a function of
mzh(x)/w‘ It is seen that as the incoming wave gets far away from the
plasma frequency layer, all of the kz components move at the same small
angle., Thus the whole cone goes into the hybrid layer with a well-defined
group velocity angle. After mode conversion, all of the kz for a given
x travel at a slightly different angle, but as the outgoing wave gets far
away from the hybrid layer, the whole cone again moves in a well-defined
group-velocity angle eo = /2.

We would also like to evaluate the magnitude as well as the direc-
tion of the power flux. This is well defined in the asymptotic region
of the cone, where we can use the superposition theorem given by Eq.
(4.49). The form of a(E) from the dielectric tensor used in our model

is
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For the incoming mode, the components of k at the saddle points are

(4.66)

PR k k1 /2
2~ Ko = { E;;;?;3517§'} 5 [-KITJ Ikzl (4.67)

so we obtain

!
o z—g,x) )2‘ z-9,0y o
S (X)= l"gfl - (*Egéﬁt;zi75 '?iéﬂTES_' ¥

(4.68)

- R g_["‘kﬂoklo]l)a ’;"f' kuog}

where we have neglected the small thermal terms in the curly brackets
(valid in region away from the hybrid layer), and |F(c)|2 = Aiz(z;)-t-Giz(c).
This form shows that the maxima in power flow occur at the field maxima
and the minima at the minima of the field. If we consider the power flow

for fixed x, it is proportional to

IS(F)| ~ e IF(t;)I2 (4.69)

where z = [z-g1(x)]/[3q1(x)]1/3. Then the relative power flow along the
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maxima and minima are summarized in the following table:

z IF2)| Y2|F(2)|% ~S(F)
First maximum 1.83 .60 .486
Second maximum 5.47 - 425 .422
Third maximum 7.82 375 .394
First minimum 4.10 32 .210
Second minimum 6.83 .30 237
Third minimum 9.05 .29 .253

Table 9, Field magnitudes and power flow magnitudes compared for
the maxima and minima on the cones

The table shows that the power flow density along the peaks falls off
slowly with increasing order of the maxima, much more slowly than the
square of the potential falls off with peak order. We also see, some-
what surprisingly, that the power flux along the minima of the cone in-
creases with increasing order of the minima, or increasing distance

from the cold plasma cone line. Thus the power flow density smooths out
with increasing distance from the cold plasma cone line, since the dis-

parity between the local maximum and minimum of power flux decreases.

For the outgoing ion thermal mode we have for kx and the saddle

point value of kz,
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We thus obtain

2
> 5\ _ LUSO 1 vZ’ |(1Lb).l
SU) = Tpmy—foal DA[erfrx4¢)—¢t1)
5 3._ K\‘}(}) y"’ &\ + [?‘gm('“z)] kloh) %\

p ‘.L(fm,)—fuﬂ (4.71)

The component along X is large compared with the z component near the

(4.70)

cold plasma cone line except for x near the hybrid layer, but the 2z
component increases with distance from the cold plasma cone line,
while the X component does not, for given x. Also for given x, the
power flow density is proportional to the square of the potential.
Thus the power flux at the maxima (and minima) of the potential falls
of f approximately as the square of the potential (ignoring the small
E—component), with the magnitude of this flux density in general in-
creasing as x decreases (as the cone moves to lower density); the X
component of flux increases with decreasing x, while the z component
decreases with decreasing x, for a given point on the cone, i.e., for

fixed
z = gy(xpq)

i (4.72)
VZ Tplx) -p(x)17%
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The approximate relative magnitude of the power flux along the

maxima and minima of the ion thermal cones is summarized in the follow-

ing table:
:3/2 il -
z 1D_q /(i7" 72) % ~ s(r)
First Maximum 1.55 3.06
Second Maximum 4.0 1.49
Third Maximum H. 15 1.2
Fourth Maximum 6.2 0.05
First Minimum 35 .05
Second Minimum 4.6 .04
Third Minimum b, 85 .04
Fourth Minimum 6.9 .04

Table 10. Relative power flux density along maxima and minima of ion
thermal resonance cones

We see that the power flux density along the peaks of the cone falls
off rather rapidly with increasing order of the peak, while the power
flux along the valleys stays approximately constant. This is in con-
trast to the power flow magnitudes deduced along the peaks and valleys
of the X-mode cone, in that the ion thermal cone has a greater portion
of the power flow concentrated near the mean peak than the X-mode cone.
It should be noted that the calculated power flow along the

cones is for a point source, which is a reasonable approximation for a

very small source. But we can see how these calculations are modified
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for a finite source from the previous analysis (Chapter II) which we made
for finite sources. For a finite source the thermal wave is more sub-
dued and the secondary maxima are of smaller amplitude, while the main
peak itself is broadened. This would mean that more energy flow is con-
centrated along the main peak, but this main peak energy flow will be
spread out to an extent determined by the source size.

The energy flow along the maxima and minima of the cone that has
tunnelled through a thin evanescent layer is summarized in Table 11.
This shows that the power flux magnitude along the tunnelled cone maxima
fall off more rapidly with the order of the maxima than it did for the
source cone. This means more power is concentrated along the main peak,

although the main peak will be spread out.

. IF() (-2 F(@)| ~ (R
First Maximum -1.83 2.6 3.51
Second Maximum -5.47 0.9 2:10
Third Maximum -7.82 0.6 1.68
First Minimum -4.10 0.2 .40
Second Minimum -6.82 0.2 .51
Third Minimum -9.05 0,2 .60

Table 11, Relative field and power flow along cones that tunnelled
through evanescent layer of.g(xhz) = [3q1(xh])]]/3

-5
The power absorption in k-space was found to be
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We can make an argument quite similar to the one we did for the power
flux, that we can get an expression for PR(?) in real space (in the

asymptotic region of the cone potential) by replacing ¢(E) by the real
space ¢(r), and evaluating the coefficient ki Im KJ~+ ki Im Kil at the
appropriate kx for the mode and at the saddle point value kz = ko(x.z)

of the potential. Thus for the X-mode the power absorption density is

PelF) S %Y lF‘ﬂPg % wgt @ K0hs”

[9,n]72 3 Kol
’+ ?l“‘n w k_w ‘) (4.74)
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with k0 given by Eq. (4.67), and for the ion thermal mode

o () = S ) D—}g_(ig/z .f’)lz %Vg wp?t?\) Vw_(x)__

1 [f”‘ﬂ:) ..4};(1)] wg“ﬁ W (4.75)
4 Wt L %) T (_‘};“*_3_1 Ve Bo
whot vt \ ki, (¥ 2»1" we Fur s s

pe("b)w Yl
+ 20 e~ Tt
B, Ved
with k0 given by Eq. (4.79). These forms can be compared with the
damping rates of the cone potential dIr/dx given in Eq. (4.22) and (4.18),
and confirms from the standpoint of energy absorption many of the con-
clusions drawn from a study of the damping. We see that the term in
the braces in both forms of PR(?) are directly proportional to the cor-
responding dr'/dx, which gives rise to such properties deduced as the
fact that on the X-mode the relative portion of the absorbed energy
that goes into the ions over that to the electrons continuously in-
creases as the mode goes in, and that this continues to increase after
mode conversion and as the ion thermal mode comes out, so that at some
point ion damping begins to totally dominate over electron damping.
By comparing the equations for PR(?) and dI'/dx, we see the re-

lation
P(x);fowlp—'/zfigéf)lz k_,;-:’u\)'/’L ol (x,2)
R m )8‘10 d+ (4.76)

for the ion thermal mode, and
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(4.77)

) 2 !
'Pp‘ (J?) = & W “:w)i “k\lagh) 2 '&a 0”16)‘93‘)
2 Laqul% [ K, Tx

for the X-mode. It should be noted that for each cone, dI'/dx increases
in severity with the distance from the cold plasma cone (usually at a
more rapid rate for the X-mode cones than for the ion thermal cone),
while the square of the potential at the peaks steadily decreases with
distance. Thus the product of these two quantities, which gives PR(?)
will have a maximum value at or near some peak, and this peak will not

necessarily be the primary peak.
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CHAPTER V: SUMMARY AND CONCLUSIONS

The structure of the quasistatic warm plasma resonance cones
excited by a point gap source (which yields the Green's function for
finite aap-type sources) in an inhomoaeneous maanetized bounded slab
plasma was calculated and elucidated in this thesis. First, we
obtained the structure of the multiply-reflected warm plasma reso-
nance cones for a homogeneous or slightly inhomogeneous slab plasma
with no turning points in._order to study the basic structure and
properties of resonance cones in the model that we chose (because
it has many of the features of bounded plasmas created in the labora-
tory) and to contrast it with the guided wave description of the
fields of that model. We then generalized this to the case that
two (symmetric) lower hybrid resonance turning points exist in the
inhomogeneous plasma, which is a case of interest to lower hybrid
heating, and deduced the manner in which mode conversion of the cones
occurs, the structure of the resonance cones in our model for this
case, and properties of the cones such as damping and energy flow
along them.

In the general analysis of the warm plasma resonance cone struc-

ture in our model, we generalized a previous result by R. Gould
that the potential in a slab model can be found as a sum of multiply-

reflected resonance cone singularities to include warm plasma

effects, collisional and collisionless damping, and inhomogeneities in
the plasma. The potential was obtained as a sum of warm plasma
resonance cones, each of which has a similar cross-sectional structure

but a different size, amplitude, and position. This characteristic
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structure was seen to be a form that is well-known from previous
study of resonance cones in a warm plasma: an exponentially decaying
tail on the large angle side of the "cold plasma cone line" and an
oscillatory structure with a primary maximum and other secondary
(smaller amplitude) maxima on the small angle side. (Recall, e.a.,
Fig. 2.3.) Each cone potential was shown to be decomposable in the
asymptotic region into a cold plasma Coulomb-1ike cone and a thermal
wave which interfere to cause the oscillating structure.

An important new result was the revelation of an interference
between nearby multiply-reflected cones, which is most important
near the boundaries, and which arises because the warm plasma reso-
nance cones are of finite extent, so that their structures overlap.
This interference was seen to take on two different forms. When
the two cones are sufficiently separated and distinct, the inter-
ference takes on the form of a small high frequency modulation of
one of the cones by its neighbor. This was identified as the inter-
ference of the thermal wave (with a rapidly oscillating phase) of
one cone with the second (primarily with the cold plasma contribution
to that cone). However, when the cones come very close together, as
they do near the boundaries, the two individual cones no longer
are distinguishable, and the two cones toagether form a single inter-
ference pattern that is different than the structure of either cone.

It was shown that in general the resonance cones are relatively
localized structures near the source, but spread out and decrease in
amplitude as they propagate away from the source and undergo

multiple reflections from the boundary. (The cones reflect per-
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fectly off of the boundaries with a m phase shift in the cone field
for an infinitely conducting boundary, but undergo a loss of amplitude
and a different phase shift for reflection off of a finite conduc-
tivity surface.) Thus the higher order cones become increasingly

less localized and interference becomes greater, so individual reso-
nance cones become harder to distinguish, as several cones may con-
tribute to the field at a given point. Thus the resonance cone

point of view is not as useful far from the source. This was com-
pared with the complementary gquided wave form, in which an infinite
number of the (nonlocal) modes contribute to the fields near the source,
but damping causes the highest order modes to decay away rapidly from
the source, so that the far field is made up only of the lowest order
modes. A conclusion that was drawn was that the resonance cone form
is the most useful for the relatively near field solutlions, where the
electrostatic approximation is best, but that the guided mode form
may be more useful in the far field, where the electrostatic approxi-
mation begins to break down.

The quantitative dependence of the cone structure width and shift
in cone angle on position, cone order, and plasma temperature was
determined. The dependence on the last quantity was the same as
that found by ‘Fischer and Gou1d2 and others for a point charge source.
The dependence on the other quantities is a new result for our model,
and was expressed in a form that could be compared to previous results
through the use of an "effective vertical distance from the source".

An asymptotic analysis of the damping of the resonance cones for

the homogeneous case revealed that a decay of the fields is produced



-181-

on the "propagating side" of the cold plasma resonance cone line (i.-=.
on the small angle side, where the oscillatory structure is), with
the important conclusion that the rate of decay increases with the dis-
tance from the cold plasma cone line; thus the higher order maxima of
the cone decay away faster than the primary maximum. On the "evanes-
cent side" of the cone, damping merely introduces a phase change in
the potential. It was seen that Landau damping was quite small for
the frequencies far above the Tower hybrid considered, except for the
very high order peaks of the cone. Collisional damping was found to
decrease with increasing temperature, for fixed collision frequencies,
in contrast to Landau damping, which increases with increasing tempera-
ture.

Our warm plasma resonance cone picture was generalized to find
the potential for our model for an inhomogeneous plasma with lower
hybrid resonance layers present. It was found that the resonance cone
method is much more useful than the guided wave approach in this
case for several resons: the resonance cone form is easier to cal-
culate in analytic form; the hybrid layer in the plasma interior causes
the cones to be strung out along the background magnetic field
so that there is little overlap or interference between the individual
cones, and the field at a given point usually has significant con-
tribution only from a single cone; and, the presence of an evanes-
cent layer between the lower hybrid layers causes the higher order
cones to be significantly reduced in amplitude, so that only the lowest
order resonance cones need be considered, unlike the case of a

guided wave solution.
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An important result of this calculation was the demonstration that
the potential in our model with lower hybrid leyers present could
be solved as an infinite sum of multiply-reflected, multiply-tunnelled
warm plasma X-mode and ion thermal (mode converted) resonance cones,
the cross-section of the potential of each of which has a characteris-
tic structure which is qualitatively the same as that discussed above
for warm plasma resonance cones in general. The higher order cones,
which have undergone tunnelling through the evanescent layer, are
considerably reduced in amplitude, so that the effectively infinite
sum of cones can be quickly truncated at some low order. The potential
as a sum of resonance cones was summarized by a diagram scheme in
Tables 7-8.

An interesting new conclusion was that the cones maintain the
general structure characteristic of warm plasma resonance cones upon
tunnelling through the evanescent layer. if the layer is thin, i.e. the
cones may tunnel through the evanescent lzyer, and warm plasma "evan-
escent cones" may exist in this Jayer. The effect of the evanescent
layer was seen to be a decay in the cone amplitude, with the parts of
the cone structure that are the farthest from the cold plasma cone
line decaying the fastest. (The decay rate at a given point increases
with the distance from the cold plasma cone line.)Thus the secondary
peaks become more subdued relative to the main peak, and the main peak
is broadened and shifted closer to the cold plasma cone line.” This
is caused by the rapid decay of the thermal contribution to the cone in

that layer. For a thick enough layer the thermal wave. d2cays away and
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the secondary peaks disappear, while the main peak broadens and
eventually becomes so diffuse that the term resonance cone loses its
meaning.

Another new aspect of this work was the obtaining of the trans-
formation properties across back-to-back Tower hybrid layers. The
problem of mode conversion at the Tower hybrid has been treated before
by several investigators: Rabenstein35501ved the basic mathematical
problem involved, and Stixlz solved the physical problem of mode con-
version, which is an application of the mathematical solution of the
differential equation involved. Fig. 3.5 summarizes the linearly
independent mode cnnversion solutions, one of which is well-known, and
three of which are hard to find in the literature, although all four
can be obtained by finding appropriate linear combinations of the solu-
tions in Rabenstein. However, the obtaining of the transformation
properties across back-to-back hybrid layers is a new result. The
cone solutions we obtained are valid for any evanescent layer thick
enough so the conjugate regions do not overlap for the kZ that satisfy
our small thermal velocity approximation.

Mode conversion of the resonance cones has been discussed previous-

18 Bellan and Porkolabs, and Ko and Kuehlzo,

ly, e.g. by Simonutti,
who point out that the individual kz components undergoing mode conver-
sion recombine to form an outgoing cone. However, by combining the
structure of our solutions with the group velocity analysis, we can
give a picture as to why the whole cone undergoes conversion, i.e. why

the general cone structure is maintained.

The incoming cone approached the hybrid layer so that the various



-184-

maxima and minima of the cone approach parallel movement to the
magnetic field, so that the distance from the cold plasma cone line
on a perpendicular cross-section of the cone just becomes the
distance from the Tower hybrid layer. But we determined that the local
saddle point value of kZ on the cone increases with the distance
from the cold plasma cone line, and also that the higher the particu-
lar kz component of the wave, the further from the lower hybrid
at which that component undergoes mode conversion. Thus the whole
narrow spectrum of kz making up, say, a given peak on the cone, under-
goes conversion within a narrow region, and in general the peak as
a whole undergoes mode conversion, with the distance of the mode con-
version of the peak from the lower hybrid layer increasing with the
order of the peak. The highest order peaks convert first far away
from the hybrid layer, and the main peak converts last very near the
hybrid Tayer, and this causes the whole cone to turn around.

The form of the resonance cone fields that we obtained when
Tower hybrid layers are present in the plasma reveals various fgaturgs
about the way the cones itransform across the hybrid layers and evanes-
cent region, which is supplemented by the group velocity analysis. The
incoming X-mode cone moves into the layer almost parallel to the field,
and bifurcates into an ion thermal cone, which moves back out of the
hybrid layer on the propagating side, and X-mode and ion thermal
evanescent cones which move into the evanescent layer. The.ion thermal
cone on the propagating side is almost perpendicular to the field. The

"cold plasma cone line" for this cone does move perpendicular to BO,
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but the group velocity analysis shows the cone propagates almost
perpendicular to BO’ asymptotically approaching perpendicular as
it moves far away from the hybrid layer, with the main peak moving
the closest to perpendicular to B0 for a given x.

The X-mode cone that continues into the evanescent layer moves in
a perpendicular sense, i.e. with a cold plasma cone line perpendicular
to EB and decays away, with the higher order peaks decaying faster.
The basic cone nature is preserved if the layer is thin, and the cone
bifurcates at the second hybrid layer, producing both an X-mode
and an ion thermal cone propagating out of the hybrid layer on the
propagating side. They come out initially along EB. but the latter
rapidly turns to propagate almost perpendicular to Eb.

Some important conclusions about the damping of these resonance
cones were also reached by the inclusion of a small amount of ion
and electron collisional, electron Landau, and ion cyclotron harmonic
damping. One new result was that all forms of the damping on the incoming
X-mode cone increase with the distance from the cold plasma cone line,
(as noted above), while on the ion thermal cone all forms of damping
increase with the distance from the cold plasma cone line, except for
ion collisional damping, which was seen to cause a uniform decay over
the whole cone structure. It was also found that collisionless damping
is not very important on the incoming mode in most cases, except for the
higher order peaks of the cone and sometimes very near the hybrid layer,
where ion cyclotron harmonic damping may become important when the source
frequency is sufficiently close to a cyclotron harmonic. This confirms and

extends Simonutti's result obtained by numerical methods, that collisionless
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damping is usually not very strong on the incoming mode. Jur analysis
shows electron collisional damping to usually be the most important
mechanism far away from the hybrid Tlayer, with jon collisional
damping becoming important or dominating near the hybrid layer, for
typical collisional plasmas for this mode. The results are in general
agreement with the study of collisional damping on the incoming
mode made by Bellan and PorkoTab1g, who concluded that for typical
collisional plasmas the collisional damping may be sufficient to
absorb most of the energy of the incoming near the lower hybrid layer.
However,. our results suggest that for the small localized sources con-
sidered in this work, this is true only for the secondary peaks of the
cone, so that there may still be some of the main peak that reaches the
mode conversion point and converts to the outoing mode. On the outgoing mode
our analysis suggests that ion collisional damping is the most important
mechanism near the hybrid layer with cyclotron harmonic damping being
strong on the higher order peaks. Simonutti concluded from the numerical
computation .of collisionless damping that harmonic damping may be quite
important for this mode. Our results agree with this and further imply
that this becomes the dominant mechanism far away from the hybrid layer
if the mode propagaies that far before completely damping out.

Energy conservation theorems were derived for quasistatic fields
and used to analyze the energy flow and absorption along the cones.
The form of power absorption by the various damping mechanisms con-
firmed the conclusions we drew based on the form of the damping cal-

culated on the cone fields; a relation between the energy absorption
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rates and the damping rate was derived. For the X-mode cone it was
found that the power flow along the peaks falls off rather slowly
with increasing peak order, while that along the valleys unexpectedly
increases with the order or distance from the cold plasma cone line.
For the ion thermal cone, however, the power flow along the peaks
was seen to fall off more rapidly with peak order, while the power flow
along the valleys remains relatively constant, so that there is a
greater concentration of the power flow near the main peak for the jon
thermal cone than for the X-mode cone.

As a final note on the cone-potential structure, most experi-
ments studying the structure tend to see secondary maxima that are con-
siderably smaller than the main peak, although some experiments, such

as that of Gonfa'lone4

» see more pronounced secondary peaks. The
simple model of undamped cones from a point source predicts secondary
maxima that are only moderately smaller than the primary maxima,
although the theory predicts a faster falloff of the peak magnitude
for a charge source than for the gap source used here. However, three
mechanisms which would modify this prediction when included in the
model were studied: finite source size, damping, and the presence of
evanescent layers. A1l of these factors will subdue the secondary
maxima relative to the main peak, and it is probably primarily finite
source effects in combination with some small contributions from the

other two mechanisms that account for the experimentally observed

structure.
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Suggestions for Further Work

The most obvious area in which further work on this general
problem is needed is the experimental area. There have been experi-
ments measuring the X-mode resonance cones, and experiments in which
absorption of the incoming wave at the lower hybrid layer occurred,
sometimes but not always accompanied by measurable particle heating,
but there has not been any positive identification of mode conversion
as the heating or absorption mechanism or measurements of the ion
thermal cone coming out of the hybrid layer. The theory presented
in this work and by other researchers sugaests that observation of the ion
thermal cone should be possible (although probably only the main peak)
i plasmas with sufficiently lTow don collision frequency, and may
prove to.be useful in an experimental determination as to whether mode
conversion is an important process in lower hybrid heating, or whether
it is observable or dominated by other mechanism such as parametric
instabilities and nonlinear effects.

On the theoretical side, a useful extension of this work would
be to Took at the same problem with an inhomogeneous magnetic field,
the inclusion of which would more closely model a tokomak geometry.
(Periodic boundary conditions in the z direction would also be neces-
sary.) In that case the group velocity and resonance cone trajec-
tory is more complicated. In addition, with an inhomogeneous magnetic
field, there will most probably be a’layer between the lower hybrid
layer and the boundary where the source frequency w becomes equal
to some harmonic of the ion cyclotron frequency, and the ion thermal

mode may undergo mode conversion again at this layer onto a (higher’
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order) ion Bernstein mode, which turns around and propagates back
into the interior of the plasma. However, as this layer is approached,
ion cyclotron harmonic damping becomes great and the actual analytic
form of the damping very near this layer is not known, so that it is
not clear how much of this wave is absorbed by cyclotron damping
and how much by the second mode conversion process.

Other extensions of the present work include the inclusion of
parametric and nonlinear”ponderomotive force effects in our model,
which may be important for sufficiently large fields excited by the

source.
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APPENDIX A: TABLE OF NOTATION

“pa plasma frequency for species a (ions or electrons)
Weg cyclotron frequency for Speciés o

vm=(2sch/m0t)U2 thermal velocity for species o

¢(x,2) potential of wave field :

X(x.kz) Fourier transform of ¢ in z

'E dielectric tensor of plasma

K parallel component of dielectric tensor

EL perpendicular component of dielectric tensor

ec resonance cone angle

a(kz)[kz[ value of k, for X-mode for homogeneous plasma [eq. (2.11)]
D cold plasma part of ©

Eki thermal part of a

a$j) coefficient of the ith solution in region j

| kg 91(x) phase of the X-mode from x=0 to x [Eq. (3.20)]

h1(x) phase of ion thermal mode from 0 to x [Eq. (3.20)]
]kZ]g(x) exponent of X-mode from Xpq to X [Eq. (3.25)]
(%) exponent of ion thermal mode from x ., to x  [Eq. (3.25)]
lkzlgz(xh1) phase of X-mode from x,, to X  [Eq. (3.30)]

hz(x) phase of ion thermal mode from x,, to x [Eq. (3.30)]
lkzlzq](x) thermal corrections fo g](x) [Eq. (3.21)]

|kZ|2p1(x) thermal corrections to h](x)‘ [Eq. (3.21)]

]kz|%?(x) thermal corrections to ¢(x) [Eq. (3.27)]

|kZ|2(Kx) thermal corrections to.#(x) [Eq. (3.27)]

|kz|2q2(x) thermal corrections to gz(x) [Eq. 3.31)]
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|kz|2p2(x) thermal corrections to hz(x) [Eq. (3.31)]
H‘J) transfer matrix from region J-1 to J [Eq. (3. )]
Y inverse scale length of density gradient at the hybrid

layers [Eq. (3.33)]

A(x), B(x) slowly varying factors of the WKB forms of the X-mode
and ion thermal mode potential, respectively [Eq.(3.19)]

U= k,lg4(xy,)

V= h1(xh])

P = |kzlg(xh2)

Q =(x,)

W = |kz|92(a)

Y = hz(a)

F(z)=Ai(z)-iGi(z) Airy function combination occurring in X-mode cone
potential

up = (Y/B)]/B(xh1-x) rescaled variably near x=x., [Eq. (3.36)]

u, = (Y/B)]/B(x-xhz) rescaled variably near x=x., [Eq. (3.36)]

w= =6 3k K2 [Eq. (3.39)]

€ damping correction to u

F[z,9(x),q(x)] general form of X-mode cone field which combines a
z>0 cone with its mirror image z<0 cone [Eq. (3.82)]

!D[Z-g(xh).s(x)] ' general form of an ion thermal cone which ori-
ginates at X=Xp s combining a z>0 cone with its mirror
image [Eq. (3.82)]

UE'UK’UT energy density stored in the electrostatic field,
kinetic energy density , and energy density of pres-
sure waves, respectively [Eq. (4.48)]

U= UE+UK+UT total energy density, when energy is being discussed
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§C.§D.§T power flux vector for regular currents, displace-
ment currents, and pressure oscillations, res-
pectively [Eq. (4.48)]

§_=_$E+§D+§T tota1'pgwer ngx .

symmetric and antisymmetric parts of ¥

BoE
F(x.kz) damping exponent of $(x.kz)
rc'rh'rp contributions to ' from collisional, harmonic, and

Landau damping, respectively
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APPENDIX B: DERIVATION OF WKB SOLUTIONS

The WKB solutions to Poisson”s equation, Eq. (3.2), can be
obtained quite simply from the dispersion relation and the quasi-
static power flux associated with that equation by a method dis-
cussed by T. Stix3 for the "transport of amplitudes" of waves in
inhomogeneous media.

From the power flux vector ETV), given by Eq. (4.46), we
see |§| s proportional to /3;, where S  is the power flow in

the x-direction. Thus we may write E in the form

¥ixok,) = FLwR(x) VTS TRIT (B.1)
since ¥ is a function of x.
Now momentarily consider only a lossfree plasma. Then the
energy flow past each x=constant surface must remain the same be-

cause there is no accumulation of energy between surfaces. Then

between the points Xo and x

IS, (I =[S, (x,)] (B.2)
50
o =3 X
Bxok,) = flx,k(x)] Fixg k) = If[x,kif)] |eijxokx d. i
FLxysK(x,)] flx k(x,)] :

where we have introduced the WKB phase factor between x and Xo*

The latter form can be easily generalized to a lossy medium by

introducing a small imaginary part to kx; wﬁich gives a valid result

if Im kx <<Re kx'
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From Eq. (4.46), we have an expression for |f[x,k(x)]|:
g _ 341/2
[flx,k(x)]| = [kaleka ] (B.4)

The value of kx for the X-mode and ion thermal mode is given by
Eq. (3.9). Taking x0=0, we obtain the slowly varying coefficients
A(x) and B(x) in

Blxak ) = AGx). el /Ky dx (B.5a)
for the X-mode, and
$(x.kz) = A(x) el/ky dx (R.5b)

for the ion thermal mode. These are (with a slight change in a cons-

tant factor):

Ax) = [Xn(0) Ky(0) /%
;h(x) Ky (x)

B(x) = | kn(0) K1(0)a(x)
Ky (x)

1/4 (B.6)

The WKB solutions in all regions are thus determined by taking the

form of kx appropriate for each region that we desire it, from Eq. (3.9).
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