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ABSTRACT

This work is concerned with a general analysis of wave interac-
tions in periodic structures and particularly periodic thin film
dielectric waveguides.

The electromagnetic wave propagation in an asymmetric dielec-
tric waveguide with a periodically perturbed surface is analyzed in
terms of a Floquet mode solution. First order approximate analytical
expressions for the space harmonics are obtained. The solution is
used to analyze various applications: (1) phase matched second har-
monic generation in periodically perturbed optical waveguides;

(2) grating couplers and thin film filters; (3) Bragg reflection de-
vices; (4) the calculation of the traveling wave interaction imped-
ance for solid state and vacuum tube optical traveling wave amplifiers
which utilize periodic dielectric waveguides. Some of these applica-
tions are of interest in the field of integrated optics.

A special emphasis is put on the analysis of traveling wave
interaction between electrons and electromagnetic waves in various
operation regimes. Interactions with a finite temperature electron
beam at the collision-dominated, collisionless, and quantum regimes
are analyzed in detail assuming a one-dimensional model and Tongi-
tudinal coupling.

The analysis is used to examine the possibility of solid state
traveling wave devices (amplifiers, modulators), and some monolithic
structures of these devices are suggested, designed to operate at the

submillimeter-far infrared frequency regime. The estimates of
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attainable traveling wave interaction gain are quite low (on the order
of a few inverse centimeters). However, the possibility of attaining
net gain with different materials, structures and operation condition
is not ruled out.

The developed model is used to discuss the possibility and
the theoretical limitations of high frequency (optical) operation of
vacuum electron beam tube; and the relation to other electron-
electromagnetic wave interaction effects (Smith-Purcell and Cerenkov
radiation and the free electron laser) are pointed out. Finally, the
case where the periodic structure is the natural crystal lattice is
briefly discussed. The longitudinal component of optical space har-
monics in the crystal is calculated and found to be of the order of
magnitude of the macroscopic wave, and some comments are made on the
possibility of coherent bremsstrahlung and distributed feedback

lasers in single crystals.
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CHAPTER 1
INTRODUCTION

Propagation of waves in periodic structure is a long standing
physics research subject which aroused the interest of many distinguished
physicists and has been investigated from different aspects through
the last century [e.g. Lord Rayleigh, 1887, Brillouin 1946, Pierce
1950, 1974].

The periodically reviving interest in this problem results from
the existence of few general phenomena in wave interaction in periodic
structures, which are characteristic of the periodic structure and
independent of the kinds of interacting waves. With the advancement of
technology different kinds of waves in new kinds of structures and
operation regimes are constantly found to exhibit these phenomena.

Some of the most important common characteristics of wave
propagation in periodic structures are Bragg reflection, forbidden
bands and the existence of space harmonics (wave components which can
propagate with phase velocities very different from that in the
uniform medium). These phenomena occur to electromagnetic waves in
the microwave regime, optical regime or x-ray regime. They occur
with acoustic waves, electron waves and plasma waves. They may be
observed in natural occurring periodic structures - like the crystal
lattice - as well as artificial periodic structures like periodic
waveguides and optical gratings.

Many physical phenomena may be described as the result of
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interaction between two, three or more waves. Suppose we have two

traveling plane waves
i(w t-qqr)
1 s

1(m2t-ger) (1-1)

Az(r,t) Az(gg,mz)e
Using very general terms to describe a vast class of phenomena, we

may say that the "coupling strength" or the "interaction rate" between
the two waves will be proportional to the time-space overlap of the two

field waves (assuming the coupling mechanism is uniform in space and

- i[(wy-w,)t - (g4-95)r]
time) A]A;”e 174 179 AFae (1-2)
This overlap integral will be maximal when
(U-I = Uu'l2 (I*B)
9 = 9 (1-4)

These conditions can be referred to as temporal and spatial "phase
matching" and are equivalent to the familiar conditions of energy
conservation and momentum conversation.

We may clarify this concept a little more by considering a
familiar example - quantum mechanical radiative transition of an electron.
This example (which will be broadly discussed later in Chapter VI)
can be described as a three wave interaction. Instead of (I-2) the
transition rate will be proportional to a term like

* * -(")t‘("’
A]A2A3 f[ 91[ U172 S ga)rjdardt (1-5)
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where w, Eglfﬁ, Wy 552/‘5, F.] and EZ are the energies of the
electron in the initial and final states respectively, and wy is the

radiation frequency. The phase matching condition

Wy = wy - wg =0 (I-6)

9“9 =93 =0 (1-7)

are equivalent to the familiar energy and momentum conservation con-
ditions respectively £, - g, = fwgs Py - pp =gy, where p; = Mgy,
By = hge are the electron momenta at the initial and final states res-

pectively and 93 is the propagation vector of the radiation.

The significance of periodic structures in supporting different
wave interactions which can be described in the above mentioned manner,
can now be appreciated. The mode solutions of a field wave
equation in a spatially periodic medium is given according to the Floquet
(or Bloch) theorem by

i(wt-g.r)
Alr,t) = ] Agla.ule i

(1-8)

9 =4+6 (1-9)

where G are the vectors of the reciprocal lattice of the periodic
structure. (In the one dimgnsiona] periodicity case |G| = m 2w/L,
m=0,t1,+2,... and L is the period.) We call the elements of the sum
in Eq. (1-8 space harmonics and the zero order space harmonic & = 0
the fundamental.

Since each wave in a periodic structure has an infinite number

of space harmonics with different momenta, momentum conservation
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condition (or spatial phase matching) can occur between waves which are
normally unmatched in an homogeneous medium, and hence the interaction
between them can be largely increased. This phase matching can occur
between modes of the same kind of wave (ordinary Bragg reflection can
be described this way) as well as interaction between different kinds
of waves (1ike electron- photon interaction in periodic structure which
will be discussed in Chapters VI, VII ). Deliberate phase matching is
possible in artificial periodic structures where the periodicity L
can be chosen in advance so that the lattice momentum |G| = m %1
will provide spatial phase matching between particular waves of interest.

In the present work I intend to present some interactions in
periodic structures with special emphasis on interactions between
electron and electromagnetic waves in different physical regimes.

In Chapter II I present a Floquet mode approximate solution
of electromagnetic wave propagation in a periodic dielectric waveguide
and in particular, thin film dielectric waveguide with a periodically
perturbed surface (Fig. 1). This last structure is of particular
interest to Caltech's Quantum Electronics research group, which has
recently demonstrated its fabrication with a new state of the art
period as short as 10008 and with lengths of the order of centimeter
[Garvin1973]. This structure is also fitting for integration in
future monolithic integrated optics circuits which is one of this group's
research objectives. The third chapter presents analyses of several

applications of this structure utilizing the results of Chapter II.

Inclusive analysis of the interaction between electrons and
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electromagnetic waves in periodic semiconductor structures is given in
Chapters IV to VI. A classical collision dominated regime is analyzed
in Chapter IV, Chapter V presents classical analysis in the collision-
less kinetic regime, and in Chapter VI we present a quantum mechanical
extension of the theory. The three different treatments are then
discussed in Chapter VII, showing their mutual consistency and their
consistency and relation with conventional traveling wave interaction

analysis and related effects 1ike Smith-Purcell radiation, Cerenkov

radiation, free electron laser, coherent bremstrahlung in the crystal
lattice, superlattice effects and the distributed feedback single

crystal x-ray laser.
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CHAPTER II
ANALYSIS OF ELECTROMAGNETIC MODES
IN PERIODIC THIN FILM DIELECTRIC WAVEGUIDES

1. Introduction

Wave equations and particularly the Maxwell equations were
previously solved in the crystal lattice and in stratified media in some

operational regimes by several authors [e.g. Brillouin 1946, Tamir 1964,

Elachi 1971, 1972]. However, the problem of periodic thin film
dielectric wavequide is different from the case of stratified media,
because of the need to match boundary conditions transversely to

the periodicity direction, which complicates the mathematical solution.

Following the recent interest in propagation of 1ight waves in
periodic thin film dielectric waveguide (with particular reference
to application in integrated optics) several analyses of some parti-
cular cases of this problem were recently presented. These analyses
were usually based on computer calculation and solve particular cases
(symmetric waveguide, Bragg reflection regime, leaky waveguides)
[Dabby 1972, Sakuda 1973, Peng 1973, 1974].

It is our goal in this chapter to present an approximate
analytic solution for electromagnetic wave propagation in a periodic wave-
guide and in particular in a structure 1ike that in Fig. 1. The analytic
approximate expressions that we will derive in this chapter for the
space harmonics of the electromagnetic wave will be used in Chapter III
to evaluate different applications in different regimes with convenience

and.transparency that are not achievable by a computer calculation.
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The structure which is under investigation (Fig. 1) is an
asymmetric dielectric waveguide with a thin periodically perturbed
surface layer. The importance of this case is that it corresponds to
practically producible periodic thin film waveguides. The structure
is composed of a substrate, waveguide, and superstrate layers (for
example, GaAlAs, GaAs and air correspondingly), and a surface perturba-
tion layer that can be introduced, for instance, by surface corrugation.
The realization of similar structures was recently demonstrated by our
research group [Garvin 1973, Nakamura 1973, 1974, Yen 1973]. The
shortest periods available so far are of the order of ]OOOK and
achievement of periods of the order of several hundred Angstroms are
anticipated [Bjorklund 1974]. Hence this structure has the advantages
of ease of production, compatibility with future monolithic integrated
optics layout, and also as an a]ternati&e way to achieve long super-
lattice structures and related effects (discussed later in Chapter VII,
Appendix R).

Our model of a periodically perturbed thin film waveguide is
described schematically in Fig. 1 . The periodic perturbation is
accounted for by an effective layer of thickness a, whose index of
refraction varies along the propagation direction z (see Fig. 1)

according to

2 2 2 2m
* N, cos [~z (I1-1)

This layer represents, as an example, a corrugation of a dielectric
waveguide or any other periodic perturbation of the index of refraction

of a dielectric waveguide.
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Fig. 1 Dielectric waveguide with periodic perturbation layer of
sinusoidally varying dielectric constant.
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Fig. 2 Periodic waveguide with rectangular corrugation.
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In the case of rectangular corrugation of the thin film surface
with period L (see Fig. 2) nfo and nE] are the zero and first order

Fourier coefficients of the step function:

L
2 2 2 2
ng=ny+t (ng-na) El- (11-2)
2 2,2 2 . (L
Ny = ;-(ng—na)SIn T (II-3)

The higher Fourier components of the corrugation function can be treated
by methods similar to those presented below.
In the following we will consider in particular the case of a

symmetric corrugation (L] - %J so that:

2 2

2 _ g T Ny
n? - _92__ (11-4)
nE] = %'("S - ng) (I1-5)

In the present analysis the treatment is limited to two dimensional
waveguides and no variation in the y direction is assumed. The results
will be approximately valid for three dimensional guides and especially

those with a large transverse aspect ratio.

2. Derivation of the Mode Equations

TE Modes

From Maxwell's equations:

yxg=-iupn# (11-6)

Vx¥=1iuveg (11-7)

we obtain
v2§+ wzueg= 0 (11-8)
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Taking

2
eg = golnf, + n3; cos(ZL 2)] (11-9)

i = s,g,L,a refers to the different layers of Figs. 1,2
= .2
k™ = o e (I1-10)

The equation for &Ey in layer i is:

2 2
6y Y&, 212, 2
—4 Lk 03y + 05y cosEa)lg, =0 (11-11)

Because of the periodicity of the dielectric constant, {3y(x,z)

must possess the Floquet form

2 % -iBmz
$y = ] a(x)e (11-12)
M= =0
where:
_ 2m
By = By * M T (11-13)

When we substitute (II-12) into (II-11) and rearrange the order
of summation we get
< . 2m
-ig.z o -imt—2z
0 L " 2 2 2 1 2w _
e ] e [am+(n10k -Bm)am + 505k (am_1+am+1)] =0 (II-14)

m: -0

where the primes mean differentiation with respect to the argument x.

Due to the uniqueness theorem of the Fourier expansion

" 2 . 2 .2 ]y 2 22 B
ap + (niok -Bm)am + E'nilk (am—1 + am+]) =0 (I1-15)

This is an infinite set of equations which couples each space
harmonic to the next lower and higher harmonics. The last result may

be applied to the different layers i = s,g,L,a of the waveguide (see

Fig. 1). When we come to the periodic layer (0 < x < a), we have
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non-vanishing nE] . The other layers are homogenous and n§1 = 0.

The result is

a' - ofa =0 X < -t (11-16)
a' + h’a =0 0> x> -t (11-17)
at - 6% = - Fniki(a s +a L) a>x>0 (11-18)
o yiam =0 X > a (I1-19)
where we defined
of = g2 - nZk? (11-20)
he = ngkz - g2 (11-21)
62 = g - nfok2 (11-22)
Yo = g2 - n2k? (11-23)

In addition to equations (II-16:19) the field solutions need
satisfy the continuity conditions of gy and 1% = (i/wy) a&i/ax, From
(II-12) we get

. . 2T F . 2m
iz -im— 2z -iB z -im &— z
e © ¥ am(x')e L~ e © ) am(x+)e L (11-24)
m m
2 . 2T . .2’
-ip _z -im — z 18 .2 -im — z
e © ) a&(x')e L s 0 ) aﬁ(x+)e L (11-25)
m m

Applying (I1-24,25) at the interfaces x = -t,0,a and equating

separately the corresponding Fourier coefficients results in
- +
am(-t ) = am(-t ) (11-26)

a (07) (11-27)

n
=i
—~~
o
+
S

(11-28)

n
[s7]
=
1]
+
—

a(a”)
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al(-t7) = aﬁ(-t+) (11-29)
a'(07) = aé(0+) (11-30)
at(a”) = ar(a’) (11-31)

The set of equations (II-16) to (II-19) together with the
boundary conditions (II-26) to (II-31) and the appropriate conditions
for the behavior at x = £ =« constitute a well defined problem. Had we
allowed, instead of (II-1), a periodic layer with additional Fourier
components, the derivation would be similar except that additional
higher and lower space harmonics would appear on the right hand side of

Eq. (II-18).

TM Modes

The equation for the magnetic field which is derived from the
Maxwell equations (II-6,7) is
Ve#+ (Vlog ) x (VxH#) + P uel =0 (I1-32)

Assuming that in a given layer the dielectric constant e varies

only with z, we obtain for the y component :

2 2

., K d log e, 9

__§X.+ g - L. —E§-+ W’ U e.ﬁ; =0 (I1-33)
ax 9z dz 9z L

Because of the periodicity,}{V must have the Floquet form:
-iB 2z
" m g

Ky = 1 ap(xe (11-34)

As in the case of the TE mode we use only the first order Fourier

expansion to describe the periodic terms. In particular:



1%
d log €,
i o 2nm . 2m
me— S ) (11-35)

The first order Fourier coefficient 9,1 is calculated in
Appendix II-B for the two cases of exact sinusoidally varying dielectric
constant and symmetric rectangular corrugation. Eqs. (II-34), (II-35)

and (II-9) are substituted in (II-33), and the summation order is

rearranged to give:

2m

0 " 2 2 2 1 2 2
am+(n1'ok 'Bm)am * §{nilk “Bn- If'gil)am-l *

: . 2m
-iB z -im 7
e J e 2 L

m

1; 2 2 2m -
+ (05K 48y T 947081 = 0 (11-36)
By the uniqueness of the Fourier expansion it follows that

” 2 oo 2 132 .2 2m T 2 ,2 2T .
ap + (g k=g )ay + 5(n5 k-8, 1 = 95108, + 21K 4By 951304170

(11-37)

As before, the last equation applies to all the layers in Fig. 1

with n?l #0, 9i7 # 0 only for the layer L (0 < x < a):

0 - S " -
ar - oa = 0 X < -t (I1-38)
n 2 —_ - -
ap + hmam =0 0> x> -t (I11-39)
. R 3 2n Yy 2 2 21 _
an~Ondn = = 2{0 1K By T 90037 200 K48 T 91y )8 (11740)
a>x>0
a"-yza =0 X > a (I1-41)
m 'm°m

where Oy hm’ 8m> Yp» Bp are given by equations (II-20) to (II-23) and
Eq. (II-13).
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The boundary conditions for the space harmonics are somewhat
more complicated than in the case of the TE modes. The continuity of
j{; results in an equation similar to Eq. (II-24) which similarly

involves continuity of the space harmonics am(x).

a (-t7) = a (-t) (11-42)
a,(07) = a (0") (11-43)
a (a”) = a (a') (11-44)

The continuity of ﬁ; = (-1/we) aﬁglax, however, takes the form
- +
1 3@("‘ ) 1 3f€y(x )

e(x~) % - e(x™) X

(11-45)
In particular at x = 0 we have:
2 . 2 2 iy VPpE +y "8 Z
[nL0 0 cos([j-z)] % am(O e = g % am(O e (11-46)

As in previous cases, rearranging terms and using the uniqueness property,

results in
2 n2
| __l | i~ | i
(0 ) = —-5—a (0 ) + 5 [am_1(0 ) + am+1(0 )] (I1-47)
n 2n
g g
and in a similar way:
2 n2
aa’) = == apla L Eﬁ% [a! (@) +a' 1(a")] (11-48)
and : B .
2
VO P RN (11-49)
(-t = 3= a(-t") :
s

Again we have a well defined mathematical problem consisting of

a set of equations (11-38) to (II-41), boundary conditions (I1-42) to
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(11-44), (1I-47) to (II-49) and appropriate boundary conditions at
x = + «, A simultaneous solution of this set for all m gives the values
of the different space harmonics a, which, taken together, constitute
the TM mode.

As pointed out in the TE mode case, it is possible also in the
TM mode case to allow for second order (and higher) Fourier components.
This will add terms to the right hand side of equations (I11-40,47,48).
However, observe that in the special case when £ has only one Fourier
component and is described accurately by equation (II-9), the derivation
for the T.E. mode is exact, but for the TM mode the derivation is still

approximate since -dloge/dz possesses higher order Fourier components.

3. First Order Solution

TE Modes

The exact solution of the set of equations presented in Section
2 is rather complicated. However, it was found that a first order
approximation leads to relatively simple and useful analytical
expressions.

In the first order approximation we neglect higher order spatial
harmonics relative to lower order ones. Furthermore, we assume that
the zero order harmonic is much larger than the other harmonics and is
approximately equal to the undisturbed waveguide solution (a = 0),
which is derived in Appendix II-A. Analyzing in particular the
example of m = 1, the second term on the right hand side of Eq. (I1-18)-
(a2), will be neglected relative to the first term-(ao), and this first

term will be approximated by the third of equations (II-A4):
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a (x) = Fe Y% x>0

Equations (II-16) to (II-19) in this case become a simple

(I1-50)

inhomogeneous set of ordinary differential equations for a](x), and

its solution is:

q](x+t)
ay = A1e X <
ay = B]cos(h]x) + C]sin(h1x) 0>
a; = Dycosh(8;x) + Eqsinh(6;x)- ;gﬁg?' X s
-Yq(x-a) L
a] = F]e X >
where
1 .2 .2
f = :?-nL-Ik

X > -t

x>0

(I1-51)
(I11-52)

(11-53)

(I11-54)

(I11-55)

When this solution is substituted in the boundary conditions (II-26+31)

the result is a set of algebraic linear inhomogeneous equations which

can be readily solved for the coefficients. To avoid complicated

expressions we give here only the first order Taylor approximation (in

terms of a) of the solution which is valid for

ﬁa,ﬁa << 1

_ 1 “Ee
Ay = 4 hifFea
By = %'[C551"(h1t) + hqcos(hyt)1f-F-a

C. = %—[u1cos(h1t) - hysin(hyt)1f-F-a
Fp = ¥

A= h](u1+Y])cos(h]t)v(h%-a1Y1)sin(h]t)

(11-56)
(11-57)
(11-58)
(I11-59)
(11-60)

(I1-61)

The vertical profile a](x) of the first order space harmonic for the
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case of long period L ( so that h, is real) is plotted in Fig. 3 and
compared to the zero order space harmonic profile ao(x).

The same procedure may be used for any order m, when for finding
am(x) we use instead of (II-50) the expression for am_](x) (if m > 0)
or am+](x) (if m < 0) as the driving term on the right hand side of
Eq. (II-18). So, every space harmonic can be evaluated in terms of the
lower ones which were calculated in the previous steps. The solution
described by Eqs. (II-57) to (II-61) is correct also for the -1
harmonic when the subscript 1 is replaced by -1. Similar expressions
arise for all other values of m. When a = 0 all the space harmonics
m # 0 vanish except for ao(x) which. equals the unperturbed waveguide

solution as would be expected.

TM Modes

In a manner similar to that of TE modes, we neglect in the TM
mode first order approximation higher order space harmonics relative
to lower order ones. Taking in particular m = 1, the second term (az)
on the right hand side 6f Eq. (II-40) is neglected relative to the first
term (ao), and ao(x) is approximated by the unperturbed waveguide
solution - Eq. (II-A 21).

a (x) = F e VX, X &0 (I1-62)

Eqs. (I1-38) to (II-41) can then be solved as before, and the

solution is again given by Eqs. (II-51) to (II-54), but f is now replaced

by:
2TT
f1=1 (f k2 + g, T B (11-63)

'IJ_
> "ML
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Fig. 3 Profile of the first order space harmonic (?1(X)) in

comparison to the fundamental harmonic (a_(x)) of the
fundamental TE mode of the periodic wavegu?de. Notice
the discontinuity in the derivative (the magnetic field)
at the perturbed surface! (In a case of a TM mode also
the electric field is discontinuous).
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In equations (II-47) and (II-48) we neglect aé relative to aé

and ai and then substitute equations (II-51) to (II-54) in the boundary

condition equations (II-42) to (II-44), (II-47) to (II-49).

resulting inhomogeneous set of linear algebraic equations is readily

solved and its first order approximation (in terms of a), which is

valid in the 1imit of (II-56), is:

(11-64)

1 [ n? 1 ny ne
_ LT _ [~ ) 5
L0 a LO
1| g AN A 1,
By = 1 fi+ 75 W\ ¥y + 3v) |&;sin(h 1t)+hjcos(hyt) *F-a (11-65)
n n :
L LO a LO

né nZ n
e o1f"s 1M [,
1T g itz 7 v Y1 —g—-y [aqcos(hyt)-hisin(h t)]-F-a  (II-66)
a

n2 n2 n2
1 e e L1 L1 .5
1782 (f1+Y an) "o hycos(hyt) +
LO a Na
2 2 2
n n n
v (f1+y?- L;)a] + L1y g sin(ht) > *F'a
n 2n 2n
LO a a
h (u1+y1)cos(h t) - (h]-a1Y])S1n(h t)
where né
G =3 o
n
L]
n2

(I11-67)

(I1-68)

(I1-69)

(I11-70)

The same results, Eqs. (II-65) to (II-71), apply also for the

harmonic m = -1 if all the subscripts 1 are substituted by -1, and

f_-| is:
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2 2
fq= K" - g1 T By) (11-71)

2
= (ng

M| —

1

Similar expressions result for all other values of m.

4. Higher Order Solution

Iterative Methods

We already mentioned in Section 3 that higher order harmonics
a_ can be calculated in terms of the Tower ones: a . (if m >0)

or (if m < 0). We may also point out that if y a, 6a << 1

An+1
the explicit expression of a, will be proportional to a|m|, so for
small values of a, the mth space harmonic is of |m|th order when
expanded in a.

By substituting our first order solutions back into the dif-
ferential equation as forcing terms, one gets higher order solutions,
and in principle the space harmonics may be completely evaluated in
terms of power expansion series by such an iterative procedure. For
example, if we already solved a_q and a, to the first order, we may
substitute them in the right hand side of Eq. (II-18) for the case m = 0
and so solve for the second order correction to a- Note that the
series expansion which is obtained in this way has only odd powers of
a for odd harmonics, and even powers of a for even harmonics. There-
fore, the first order correction to our first order solution of the
first harmonic is of third order!

Another kind of correction which should be considered is that
due to higher order Fourier terms of the periodic layer. If Eq. (II-1)

or (I1I-35) include second order Fourier components, then terms

proportional to a2 and Q40 will appear on the right hand side of
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Eqs. (II-18, 40, 47, 48). The contribution of the second order Fourier

component or any higher order Fourier component can then be calculated
independently and added to the first order result due to the linearity

of the inhomogeneous set of equations.

In the first order approximation the second order Fourier com-
ponent does not have a significant effect on the 1st harmonic, since
it couples it to the -1 harmonic and contributes a second order cor-
rection. It may, however, be significant for the 2nd harmonic (and
higher) since it couples it to the zero harmonic and thus contributes
a first order term, while the first Fourier component contributes only
second order term. Higher order Fourier coefficients may be important
in TM modes even in cases when their effect on the TE modes is insig-
nificant. This is because even if € has no higher Fourier coefficients

then the first one (Eq. II-1), —~g%£9§-may have them.

"Several Harmonics" Approximation

There are physical situations when the assumption used above,
that the zero order harmonic is much larger than all the other
harmonics,is not valid. If two space harmonics have propagation
parameters close to those of the unperturbed waveguide modes
(this happens, for example, when 50 = m/L because B-T = -m/L = -Bo,
is the propagation parameter of the same mode, propagating in the
opposite direction), then physical considerations indicate that they
both may possess comparable amplitudes. In other cases, the assumption
that 3 or more harmonics are significant will lead to more accurate
results when the first order approximation fails.

In fact we present in the following an exact solution of the TE

mode problem, in the case of purely sinusoidally perturbed layer (I1I-1),
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by solving formally the set of Eqs. (II-16) to (II-19) with the
boundary conditions (II-26) to (II-31), including any arbitrary number
of spatial harmonics. In practice, this solution may be applied by
truncation to a finite number of harmonics.

The infinite set of Eqs. (II-18) can be written in a matrix

form:

2

(Jd—d? +/V)d =0 (I1-72)
X
where
2

T 62 f

y = 1] Gi f (I1-73)
2

& is the unit matrix, andtgfis a column matrix whose elements are the
space harmoniQ§49m£§)(—w <m< ®),
Since ¥ is symmetric, it is possible to diagonalize it by an
orthogonal matrix T
TT = (11-74)
TyvT -\ (11-75)

where T denotes the transpose of the matrix, and j\, is a diagonal

matrix whose diagonal elements are:

= 2 00 i 0 -
A‘ﬁ = )\-i s (I1-76)

Hence A? are the eigenvalues of the matrix .

When we substitute in Eq. (II-72) the transformation

ol = TA (11-77)
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we get: (Jj—iz— +/\>‘J

Since this is a diagonal set it is readily solved for 5i’ the

]
o

(II-78)

components of .of

a; = Dicoskix + Eisinkix -®©<j < (I1-79)

then using (II-77):

a, = J=§meJ[D COSA;X*E ;sinA x] -t <x<0 (11-.80)

where ij are the elements of the matrix & .

For the other layers, as in Sectiah 1:

am(x+t)
3@ Al x < -t : (I11-81)
A = Bmcos(hmx) + Cmsin(hmx) 0>x> -t (11-82)
=Yy (x-2)
8, = B & X > a (I1-83

When this is substituted in boundary conditions (II-26) to (II-31),

one gets after short manipulation:

-[o_sin(h nt)+h cos(h t)]Z AT E. =0

m 3 Jmi-j
. (11-84)
§[Ymcos(Aja)-ljs1n(Aja)]ijDj+§[yms1n(lja)+ljcos(xja)JijEj =0

hm[amcos(hmt)~hmsin(hmt)]§ TmJ j

(- @ <m < ) (11-85)

To satisfy the infinite set of Eqs. (II-84,85) the deter-
minant of the coefficients of the unknown Dj’ Ej must be equated to
zero. This equation gives the dispersion relation of By VS- w.
When the dispersion equation is solved, all the coefficients Am, Bm,
Cm, Dm, Em, Fm may be obtained up to a multiplicative constant, which



-24-

may be determined by a normalization condition or by fixing Co.

In practice, the procedure just discussed may be used to obtain
an approximate solution in which m spans a finite number of integral
values. Note, that if the dielectric constant of the perturbed layer
(Eq. II-1) has additional Fourier component, its only effect will be
to add additional symmetric diagonal rows to the matrix (Eq. 1I-73).
A similar procedure may also be used in the case of TM modes. This
involves a slightly more complicated derivation and will not be

considered further here.

5. Adiabatic Approximation

For very large periods of the spatial perturbation, (A << L),
a simple approximation can be applied which leads to explicit expres-
sions for all the space harmonics. We will shortly describe this
approximation, previously presented in [Somekh 1972].

In the Timit L >> X\ the solution must approach that of the
unperturbed waveguide, but with a z-modulated amplitude envelope.

Taking for instance the TE mode case the field can be written in the

form of E, = kP(z)aP (x)e~1PZ (11-86)

h TE mode in the

where ap(x) is the normalized solution of the pt
unperturbed dielectric waveguide (Appendix II-A) and KP(z) is the
excitation amplitude of mode p.

We regard the periodic layer as a small perturbation Anz(x,z)
to the unperturbed case, then by substitution of (II-86) into equation
(I1-8) and by making use of the orthogonality of the unperturbed
waveguide modes and the normalization (II-A14) obtain [Somekh 1972,

Marcuse 1969]:
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oo

p
- 2ip = P 7 KP j |aP(x) |2an? (x, z)dx (11-87)

52KP
5z

where it was assumed that the waveguide carries only the mode p.

When Eq. (II-1) is used we receive for An2:

2 _(.2 g . .2 2n
an" = |njg - o+ nL]cos(L z) 0<x<a

(I11-88)
0 otherwise

For the case L >> X we can neglect the first term in (II-87). If we

also assume a -~ 0, the solution of (II-87) is

Iap(O)l2 Lqal s1n( z)
(I1-89)

2
-i |aP(0)|? (nLO n?)az -i
e

KP(2) = KP(0)e o E

Using a familiar expansion in terms of Bessel functions for

the last exponential in (I1I1-89) and substituting back in Eq. (II-86)

2m
we get -i(B_+m =)z
E,=aP(x) ] ce ©° b (11-90)
y e
where
C, = KP(0)dp (M) (11-91)
k2 p
M =g |a (0)|%n?,La (11-92)
B, = B+ -1£i |ap(0)|2(n2 - n)a (I11-93)
0 - 2wy LO a
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and Jm is the m order Bessel function.*

We thus find that the amplitude of the m space harmonic is
proportional to the mth order Bessel function, and for a large
argument M it is possible for the higher order space harmonics to
have higher amplitude than the zero space harmonic. On the other
hand, when a tends to zero all the space harmonics except the zero
order become vanishingly small. For M << 1 we have in particular for
a well confined mode (when g n ngk and h N n/t) and symmetrical

rectangular corrugation (Eq. II-5):

C J, (M)

1_ 71 . M ] Lia
TCTT G B C 128 (11-94)
Co Jo M 2 4Trng t3

In deriving the last expression we substituted a(0) = F

1

i
<=
)

£
™I|E

which results from Eqs. (II-A4, A9, A15).
Note that in this approximation all the harmonics have the same

x profile.

*

The periodic spatial modulation considered here is analogous to that
of temporal phase modulation of a carrier wave. In the Timit L >> )
we can write instead of (II-86)

oPlcVexpl-4 fe (2}dz]
where
2m

% 98 en
B(z) ~'B, + 55 acos [~z
where t is the height of the guiding layer (See Fig. 1). Substituting
the second equation in the first will also give a result in the form
of (1I-89).
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6. Discussion on the Approximations

The first order approximation and the adiabatic approximation
provide explicit expressions for the space harmonics, and therefore
they are in many cases more useful than the more accurate numerical
solution. However, one has to be aware of the 1imits in which these
approximations are valid.

In the first order approximation we neglected higher order
space harmonics relative to lower ones. This assumption must be
checked after getting the explicit solution. From the solution for
the first order harmonic (Eqs. I1I-57 to II-61 for the TE mode or
Eqs. 11-g4 to I1-68 for the TM mode) we note that it will cease
being negligible relative to the zero harmonic whenever the determinant
A which appears in the denominator approaches zero.

Comparing Eq. (II-61) to Eq. (II-A8) and Eq. (II-68) to Eq.
(II-p25) one observes that A vanishes whenever the propagation
parameters of the first spzce harmonic h], 015 Y7» 81 satisfy the
dispersion relation of the unperturbed waveguide. There are two
cases when this can happen:

| 1) When L » = then B; ~ B and consequently (using Eqs. I1-20 =
23) ap > % Yy T Ys h] -+ h.

2) When :
=pgP . gP (11-95)

e
=

where Bp and Bp are the propagation parameters of two separate modes

]
of the unperturbed waveguide, so that B? = Bp (see Eq. II-13) and

consequently a? =of, Y? = Yp s h? = hP . Note that this will

i
always be the case whenever gP = - T, because then gP =+ [



T
corresponds to a waveguide mode, and condition (II-95) is satisfied.

In a similar way, the first order approximation fails whenever:

i E_Tr = gP _gP (11-96)

It is obvious that the first order approximation fails in cases
(1) and (2),because the neglect of all space harmonics relative to the
zero order one is not justified. In case (2), whenever
Eq. (II-95) is exactly or approximately satisfied, it is physically
obvious that the space harmonic ay is as significant as ags and in the
more general case of Eq. (II-96), the space harmonic a is as
significant as a . It is expected that in these cases a "two harmonics"
approximation based on the results of Section 4 will provide a
satisfactory solution.

The first order approximation fails in case (1), because
for longer periods L, more and more space harmonics become significant
relative to the zero order one. For large values of L the adiabatic
approximation gives that the m space harmonic amplitude becomes
proportional to Jm(M) (Eqs. II-91, 92) which for arguments M > 1 is
not negligible except for high order harmonics which satisfy m > M.

For L large enough to allow the adiabatic approximation but not
that large to fail the first order approximation, one would expect
the two methods to agree. For the adiabatic approximation to hold,
the x profile of the space harmonics mu;} be close to the zero one,

in particular h.I o Using Eqs. (II-21), (II-A6) the condition to

i
satisfy this requirement is:

2n . 2 .
= BO << h0 (11-97)
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which for a well confined mode can be expressed by:

t2
L >> 4ng = (II-98)

In this condition it is also possible to expand the results of the
first order approximation Eqs. (II-57) to (II-61) to first order in
2n/L. When this is done in particular for symmetrical rectangular
corrugation, one gets from Eqs. (II-57, 61, A15) a result identical
to Eq. (II-94), which indicates agreement between the two methods.
Equation (II-94) is valid of course only as long as the ratio C1/C0
is small compared to unity, which makes the condition for L:

3

t
L << 4nng =0 (11-99)

Comparing conditions (II-98) and (II-99) indicates the domain in
which both the adiabatic and first order approximations are valid and
agree with each other. We may mention that in many useful cases
condition (II-97) or (II-98) is not satisfied and the adiabatic
approximation canﬁot be used. In general, the first order approxima-
tion will be valid in these cases. However, if the first order
approximation is not satisfactory enough, higher order approximation
with 3, 5 or more harmonics can be used in the way described in
Section 4.

It is difficult to find for the general case a simple criterion
for the validity of the first order approximation. In general one has
to solve explicitly for the space harmonics and then check if the
assumptions about their negligibility hold. For small enough

perturbation depth the approximation will be valid.
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Finally we would like to point out that in general, the different

space harmonics in periodically perturbed dielectric waveguides,
have different transverse profiles am(x) (see Fig. 3 for example).
This is what makes this problem much more difficult than the simple
problem of periodic stratified media. Except for special cases when
simple approximations are justified, it is hard to solve practical

structures Tike Fig. 1 with less complexity.
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Appendix II-A: Solution for Unperturbed Wavegquide

TE Modes
For asymmetric unperturbed waveguide (see Fig. 1 with a = 0),

the TE mode nonvanishing field components are:

g, = a(x)e” 162 (11-A1)
i Efi B -iBz
ﬁ; = < g e Mo a(x)e (I1-A2)
. @ . .
?C - ;_u. é = JUSE al(x)e-TBZ (II-A3)

Solution of Maxwell equations (Eqs. 1I-6,7) with the appropriate

boundary conditions gives:

a(x) = A ea(X+t) %X < =k

a(x) = B cos(hx) + C sin(hx) st < x<0 (11-A4)

a(x) = F e ¥ x>0

o? = g% - n2k? (11-A5)

h? = ngkz - g2 (11-A6)

v = gt - ngk2 (I1-A7)
tan(ht) = D%Ii&l (I11-A8)

h™=-ya
FuB e %‘C (I11-A9)
A = -[2 cos(nt) + sin(ht)]-C (11-A10)

and C may be determined by power normalization requirement :

o0 [ee]

[[a2tax = [ 1g1%ax = 2 E

-0

(II-A11)
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which gives

_ /2 . [amep (11-A12)
¢=/t g
eff W
e = Yo’ (bs L]
— 1:2— = (I11-A13)

In many cases it is convenient to normalize the power of the

mode to a unit power per unit width of the waveguide

zﬁ—uf I, 1%dx = 1 watt/cm (I1-A14)

¢ = ﬁz %P- (I1-A15)
eff

To denote the degree of excitation of the normalized mode we

in this case

should relate to it an excitation amplitude K, so that the total field

is _
Ey Kg; (II-A16)

Using the normalization (II-A14) it turns out that the total power in
the excited mode is
2
p = wK” (watt) (11-A17)

where w is the width of the waveguide.

TM Modes

The nonvanishing field components of the TM modes are:

J?; = a(x)r—z'iBz (I1-A18)
E}
E = _l(i= B a(x)e” 1Pz (11-A19)
X we 92 ﬂrm
. 3 "
o e il i -1pz s
EZ WE X Wwe a (x)e (II AZO)
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where:
a(x) = A ea(x+t) X < =t
a(x) = B cos(hx) + C sin(hx) -t <x<0
a(x) = F e™ "X X 0
o2 = g2 - n22
s
h? = n2k2 . g2
g9
2 _ .2 2.2
Y =B -nak
tan(ht) = Dé9§§l
2 h™ -ary
n
a = —%-a
s
= 2
Y = n' Y
Na
F=g=-N¢
Y
A:

- g—cos ht + sin ht]C
3

and C may be determined by normalization requirement:

o«

1 i . 1 2 2
[n a® o) fn—z— 14, ()| dx=_‘°z_g

00 -00

= |

which results in :

.. > waeo P
V terf W
2

-2,.2 2.2 2
+h t +h o +h 1
tefs XTZ_[“?+:I'2‘"Z' T*':{”?'T}
ng Y +h n_y o +h n.o

where:

1

1
Y a

(I1-A21)

(I1-A22)
(I1-A23)
(I1-A24)

(I1-A25)

(I1-A26)

(11-A27)

(11-A28)

(11-R29)

(II-A30)

(I1-A31)

(11-A32)

When the mode power is normalized to unit power per unit width of the

waveguide
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P _ 1 2.
= g; f = ]f(;] dx = 1 watt/cm

2 R2we 3
VEerry B

and the total field is

o
]

(II-A33)

(I11-A34)

(11-A35)

where K is the mode excitation amplitude. The power in the mode is then

P = wk? (watt)

(I1-A36)
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Appendix II-B: Fourier Coefficient of the Logarithmic Derivative

of the Dielectric Constant

L dlog e

The first order Fourier coefficient (g]) of ~ == T is
given by ki
9 = - %— f (%F %—) sin(%ﬂ-z)dz (I1-B1)
-L/2
When € is given by Eq. (II-9) we obtain from Eq. (II-B1)
2 2
gg=2—% (1-f1 -—= (11-B2)
n3 N

For the case of symmetrical rectangular corrugation, e is
described by step functions. Describing the step function as the Timit

of some continuous function allows evaluation of the integral (II-B1).

The result is n2
m na
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Appendix II-C: Computation of the Propagation Parameters of a TE Mode

in_an Asymmetric Dielectric Wavequide

Program 3: This program calculates the propagation parameters and
profile parameters of a TE mode using the equations in Appendix II-A.
The following notations in the program (left) correspond to different

notations in the text:

Input:

A - Ny L+ t/A

B ng K-+ kt = 2nt/A
S =+ ns

Part 1:

Calculates propgation parameters for all modes and does part 2:

H -+ ht Q(H) » at
B(H) -~ Bt T > teff/t
P(H) - vyt

Part 2:

Calculates profile coefficients for all modes:
C~+Cvi
V > B/t
E+ A/t
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*USE FILE 1
HOGEH «

*RECALL ITEM 3
DONE «

*

*
*TYPE ALL

1.10 TYPE GsAs5sLsK.

1.101 LINE.

1«11 LET BC(H)=SQRTC((G*K)12=-H*H).

1.12 LET Q(H)=SWURT((G*G=5%5)*K12=H*H) .

1413 LET PCHIY=5unl((G*xG~A*A)*Kr2=H*H) .

Lelét LET FCXpYsZ)=53INCX)/COSCA)I=-XeC(Y+Z)/(X*K=Y*Z )
1.15 SET H=.01.

1.151 SEI N=0.

1.16 SEI N=N+1l.

1.17 SET I=1.

1.171 SET H=r+.001.

1.172 SET C=.1.

1.18 SET J=H+C.

1.181 SEI M=SGN(F(H,Q(H)»PC(H))) .

1182 SEl R=SGN(F(J,QC(J)»PCJ)))s

119 TO SIEP 1.24 IF M+H=0.

1.20 SET I=I+1l.

1.21 TO STEP 127 IF I=30«.

1.22 SET H=J.

1.23 TO STEP l.18.

1.24 TO STEP 1.261 IF 1J=H!<=.001.

1.25 SET C=(J-H)s2.

1.26 TO SIEP 1.18.

1.261 T0 SIEP 117 IF 'F(JydCJ)»POI))=F(H,WC(H)»PC(H))I>1 W
1.27 SET 1=Cl+1/PC(H)+1/QCH) ) *(PC(H)12=H*H)/P(H)12.
1428 TYPE NsJsHsBCHI s PCHY s WCH)» T2 Cr I FUJ W) p PCUI)»FCHIRCHISPIH) ) o
1.281 LINE.

1.282 LINE.

1.283 DO PAdl 2.

129 TO pPARI 6 IF N=10.

1.30 TO STEP le«16.

2.1 SET C=5Wal(2/0).
2.2 SET U==H*C/P(H).
2.3 SET E==(H/P(HY*COS(H)+ SINCH))*C.
2«4 TYPE H,CsVsE-.

2.5 LINE.

2+6 LINE .«

2.7 LINE.

2.8 LINE.

3.1 SEl K=6.283185%L.
3.2 SET G=3.5.

3.3 SET A=1l.

3.4 SET 5=3.

3.5 DO PAHL 1.

3.6 DO PAnl 2.

1 DO PART 1.
2 DO PART 2.

6«1 TYPE N«

BCH): SQRTIC(G*K)12=-H*H)

F(X:sYsZ): SINCXI/COSCXI=XKe(Y+Z) /7 CARK=Y*Z)
PCHY: SARTC(G*G-A*xA)*K12=-H*H)
QCHY: SUnl((G*G=5%«5)*«Kt2=-H*H)
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The following is a calculation of modes propagation parameters
(ash,y,B) and profile parameters (A,B,C,F,teff) for the following

input parameters:

ng = 3.5 hy = 1 ng = 3 L=t/A = .566 (2 modes)
ng = 3.525 n, = 1 ng = 3.025 L=1.132 (4 modes)
ng = 3.5 n, = 1 g = 3.2 L = .566 (1 mode)

ng = 3.525 B = 1 ng = 3.325 L = 7,132 (3 modes)
(L = .566 and L = 1.132 correspond to particular case of interest

where the wavelength is A = 10.6u and A = 5.3y correspondingly, and

the waveguide thickness is t = 6u).



DO PART 1

XLZ2 XTCwpa

(N A I I

BC(H)
P(H)
QACH)

¥
1

FCJs QCI)s PCJIY)
F(H, QCH)Y, PC(H) )

m<Oox

B(H?
PCH)
QH)
) 4
C
I

FCJ, @CJ)> PCJY)
F(H, QCH), PCH))

m<ax

=309~

3.5
1
3
« 5660377 36
3.55651981

1

2. 5245

2.52371875
12. 1893006
11.6589115

5.89402677

1+ 19660987

T.8125%10t(=4)

13
+ 001269312

=2.06237T%101(-4)

2.5237 1875
1.29282192
-« 2798 47 644
=-.520829058

2
4,96790625
4.967 1825
11.4138457
10.8456002
4.0541802
1.05803525

T+8125%101(=-4)

&
«01120533
-« 00522429

4.967125

1. 37488043

-+ 62967 49 68
1. 17184106



*SET G=3. 585
#SET 5=3.025
*SET L=6/5.3
*D0O STEP 3.1
*D0O PART 1

ACwpa@
[ ]

B(H)
PCH)
QCH)
T
Cc
I =
F(J, QCJI»PCJ)) =
F(H, QCH)» P(H)) =

m< Q&
L |

BCH)
PCH)D
QCH)
T
c
I =
F(J, QCJI)» PCJ)) =
F(H; QCH); PC(H)) =

m<ai
nan

B(H)
PCH)
QCH)
T
c
I =
FCJs QCJ)sPCJY) =
F(H, QCHI» P(H)) =

=40

3. 525

1

3. 0285

1. 13207 547
T+11303961

1

2.80575

2.8049687 5
24.91607 47
23.8791844
12.5631152

1. 10600142

78125101 (C=-4)
17

9.5248 1%101(=-4)
=3.0723%10t(=5)

2.8049687 5
1. 3447 3638
- 157959479
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CHAPTER III
ANALYSIS FOR PERIODIC THIN FILM WAVEGUIDE APPLICATIONS

1. Introduction

In the previous chapter we presented an approximate solution for
the space harmonics of periodically perturbed waveguide electromagnetic
modes. In this chapter we utilize this solution in the analysis of a
number of potential applications of the structure, including second har-
monic generation in thin films, grating coupler, traveling wave amplifier
and Bragg reflection devices.

A1l of the above-mentioned applications involve interaction be-
tween two or more waves. As discussed in Chapter I, the periodic pertur-
bation helps to phase match the waves or to keep momentum conservation of
the interaction with the aid of the "grating momentum." In practice we
can describe the interaction as being carried through one of the electro-
magnetic wave space harmonics am(x) (Eq. II-12) whose propagation con-
stant B (Eq. II-13) is made (by appropriate choice of m and L) to match
the other interacting waves.

It is clear that the strength of the interaction in each case de-
depends on the profile and the relative power of the phase-matched space
harmonics through which the interaction is carried out. These can be
found out from Eqs. (II-51) to (II-61) for the TE mode first order space
harmonic and Eqs. (II-64) to (II-70) for the TM mode first order space
harmonic. Before embarking on a detailed analysis we can learn a good

deal about the profile and character of the electromagnetic wave by an
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examination of these equations and Eqs. (II-13,20-23). The schematic

description of the harmonics profile is given in Fig. 4 for the differ-
ent cases. It can be understood from general consideration in con-
Jjunction with the corresponding momentum charts. It is the apparent
advantage of the solution we presented in Chapter II that the space
harmonics for all the cases described in Fig. 4 can be given by the same
expressions which were derived from this solution (II-51-61,64-70). The
only difference between the cases is the different size of the period L
which changes the character of the solution.

The condition for the confinement of the fundamental harmonic (or

the unperturbed waveguide mode) is

nk < B < nk (II1-1)

since only then h_, a, v, (Eqs. 11-20,21,23) are real, and the profile
decays exponentially in the bounding media x > 0 and x < -t (Fig.
4a).

The condition for any space harmonic to be confined to the wave-
guide is that its transverse profile will decay into the substrate and
superstrate (am,ym are real). Assuming n_ > N, » we deduce from

s
(11-20,23)

8] > n_k (111-2)
(see Fig. 4e, for example).

In case

nak < |B.| < Nk (I11-3)



Fig. 4

|

Momentum charts and transverse profiles of different space
harmonics.

The fundamental space harmonic (or the unperturbed waveguide
mode). The condition for confinement (sine-cosine solutions
in the wavequide and exponential decay in the substrate and

superstrate) is nk < B, < ngk.

The -1 order space harmonic in the case when n_k < §_;<n_k.
In this case a_, is imaginary (II-20) and the 8pace

harmonic lTeaks to the substrate. This case is useful for sub-
strate grating 1ight coupler (Sect. 4). Notice also that the
solution inside the waveguide is more oscillatory than that
of the fundamental space harmonic.

The -1 order space harmonic in the case 0 < B_; <n_k . Both
a_, and y_, are imaginary (I1-20,23) and there is leakage to
bolh substrate and superstrate (air). This can be used for
coupling to air,

The -1 order space harmonic in the case -nck < B_] <0, It
radiates to the substrate only, and only to one direction
(other space harmonics are confined, satisfying Eq. I1I-2).
Useful as a highly directional backward substrate coupler.

The first and -1 space harmonics in the case ngk < B.1 By
<n_k . In this case both harmonics are confined (notice
though”that a_; gets more oscillatory and a; less oscilla-

tory). This case is useful for phase matching in second har-
monic generation (Sect. 2).

The first order space harmonic in the case gy »> ngk . In
this case the profile is very different from a (x)7 It is
exponentially decaying from the perturbed surface. This case
is useful in traveling wave interaction (Sect. 3).

The -1 order harmonic in the case B_y = -Bo_+» This case cor-
responds to Bragg reflection (Sect. g). The profile of
a_j(x) s equal to the fundamental ay(x) . But the propaga-
tion direction is opposite.
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the space harmonic will radiate to the substrate (Fig. 4b) since Oy
in Eq. (II-20) is imaginary.
When

|8yl < n,k (II1-4)

radiation to both substrate and air will occur, (Fig. 4c) since both
Oy and Y, are imaginary. Obviously these cases are appropriate for
application of 1ight coupling from the wavequide to radiation modes.
Note that the profile of any space harmonic will differ more
from the profile of the zero harmonic the bigger is m %F relative to

R In particular, when

0 '

= Nk (I111-5)

I8l > ng

then hm is imaginary and am(x) inside the guide is described by a
sum of hyperbolic sine and cosine instead of trigonometric sine and
cosine. In the limit IBml >> ngk the profile will look exponentially

decaying to both sides of the perturbed surface (see Fig. 4f).

2. Second Harmonic Generation

It is well known that nonlinearity of the material dielectric
constant may lead to three-photon interactions in which (as a special
example) two photons of frequency w can combine to a photon of fre-
quency 2w . However, due to material dispersion, and in thin films
also due to waveguide dispersion, we generally have for any given elec-
tromagnetic mode

g2¥ 5 2g¥ (111-6)



-48-
and because of the phase mismatch (or the nonconservation of momentum)

the efficiency of the interaction is rather poor. Since birefringence
phase matching cannot be used in optically isotropic material, many
materials with high nonlinear coefficients like GaAs are not phase
matchable in the bulk and are not used for second harmonic generation.
Furthermore, second harmonic generation in thin film dielectric
waveguide seems an attractive possibility for many reasons, particularly
because it makes it possible to achieve high power density without dif-
fraction, which increases the conversion efficiency. This application
is still retarded mainly because of the problem of phase matching.
Somekh and Yariv [1972] suggested phase matching by introducing

in the waveguide a perturbation of period L (Fig. 1) which satisfies

%; . ng - 26Y (111-7)

In that paper the authors actually calculated the effective nonlinear
optical coefficient deff using an adiabatic approximation (see Chapter
II, Sect. 5) which is valid for long perturbation period L so that

(Eq. 11-97)

2T 2
206 << b (111-8)

The evaluation of the amplitudes of the space harmonics in the first or-
der approximation which we did in Chapter II allows us to calculate

d for the more general case, to be used in practical cases when con-

eff
dition (III-8) is not satisfied.
At the present time we will analyze in detail the case of TE

modes. The same treatment can be easily extended to the TM case. We
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denote the degree of excitation of a mode by premultiplying the normal-

ized mode field (II-12) by a z dependent constant K“(z)

-ig®
x,2) = K(2) Ja (e M (111-9)
n
2w
=18
Ezw(x,z) = sz(z) ¥ aﬁw(x) e R (I11-10)
n

Since the assumed mode normalization (II-A14,A15) corresponds to a power
of 1 watt/cm in the fundamental space harmonic (the contribution of the
other harmonics is neglected), the field (III-9) corresponds to a power
PY = w|K“(2)|? watts (Eq. II-A17).

We solve here the problem only in the nondepleted pump approxima-
tion, therefore K" 1is assumed independent of 2z , and sz(z) satisfies

the initial condition
2w -
K(0) = 0 (ITI-11)
Since in the first order approximation the power of the mode is
predominantly carried by the zero harmonic which is approximated by the

normalized mode of the unperturbed waveguide, we get that the power car-

ried by each of the waves is

PP = w|K®|2 (111-12)

p2W(7) = w|KkZ¥(z)|? (111-13)

where w 1is the waveguide width.

The nonlinear coefficient d is defined by [Yariv 1971]
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p2(x,z) = d- [E%x,2)1° (111-14)

2w

where p is the 2w frequency induced polarization. Hence, by sub-

stituting Eqs. (III-14), (III-9) and (III-10) into the equation

dp2® ? 2w, 2
LA —_ [E (p2%)* dx (111-15)

we get:

2w W w)z

2w -i(B-B -B
dp 2 2 g
—CIJ—)-Z 2L = wd Im[K“(2)*(K¥)* §J e ™ T

n,%,m

0
. [ an(x) af(x) aiw(x) dx ] (IT1-16)

If L is chosen to satisfy Eq. (III-7), then all the terms in Eq.
(II1-16) that satisfy

n+g-m = 1 (111-17)

are phase matched. The main significant synchronous terms are the three
first-order triplets: (n,2,m) = (1,0,0), (0,1,0), (0,0,-1). The wave
vector chart of these three terms is plotted in Fig. 5,describing the
two possible ways to balance the momentum conservation equation. Keeping
only the three major synchronous terms, substitution of Eqs. (III-12,13)
into Eq. (III-16) gives

P2 () w?/? ¥ deffpm{ p2(2)1Y/2  (111-18)

7 (w2977 g8

where
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(a) Bo = B

;

(b)

Fig. 5. Forward scheme for phase matching in second harmonic genera-
tion.

a. Zero and first order space harmonics of the fundamental fre-
quency phase-matched to the zero order space harmonic of the
doubled frequency.

b. Zero order space harmonics of two fundamental frequency photons,
phase-matched to the -1 harmonic of the doubled frequency wave.
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Backward scheme for phase matching in second harmonic genera-

tion.

. Zero order space harmonics of two fundamental frequency pho-

tons, phase matched to the first space harmonic of the
doubled frequency wave propagating backward.

b. Zero order and -1 order space harmonics of two fundamental
frequency photons, phase matched to zero order space harmonic
of the doubled frequency wave propagating backward.
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0
=d v/t ’2 I aﬁ(x) a?(x) aﬁw(x)dx

0
+ J[a‘(’;‘(x)]z a_z_‘.‘l“'(x)dx‘ (/2—5;) %;E (111-19)

The solution of Eq. (III-18) gives the expression for the conver-

sion efficiency

2w 4w5 3 d2 22 w
P U?.) - 1'lO eff P_ (111_20)
pw Bzm (Bw)Z wt

In the special case of well confined modes, Eq. (III-20) turns

into the familiar expression [Yariv 1971, Somekh 1973]

2 2 2
pr(g) ) 2w deff '3 Mo

3/2 p¥
w B 2 2w ( '
P™(2) (n™)% n

_) R
EO wt

(I11-21)

To evaluate the effective nonlinear coefficient doss (Eq. III-19)
we may substitute the expressions for ao(x), a](x), a_l(x) from Egs.
(I1-51) to (II-61). The result involves integration of products of trig-
onometric (or hyperbolic) functions (a scheme for computer calculation of

d is presented in Appendix III-A).

eff
As an example we calculated a second harmonic generation of a

fundamental wave at A = 10.6 , assuming a GaAs epitaxial film (Fig. 2)with
t = 6y, ng(uﬂ = 3.5, ns(w) = 3.3 , using the computer program listed in

Appendix III-A., The bulk dispersion in this wavelength [Boyd 1970] and
2T 2w ZBw -

the waveguide dispersion require mismatch compensation: o B

|

0.078 um~' (L = 80 um). Using this data, Eq. (III-19) yields: d f¢= d/15.

e
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This value is higher than the value calculated by Somekh [1972] in the
adiabatic approximation (d = deff/ZS). The reason is that the adiabat-
ic approximation is hardly valid in this case since Eq. (III-8) is
barely satisfied. With input power density Pw/wt =10 megawatt/cmz,
one gets 10% conversion after length of 2 = 4.3 cm.

We may indicate that reduction in the conversion efficiency may
arise from radiation loss due to light out coupling through high order
negative m harmonics which do not satisfy the confinement condition
(ITI-2). This loss may be calculated in the way described in Section
4, Since the amplitude of higher harmonics is generally small, this
loss is believed to be rather low. However, radiation loss can be com-
pletely avoided if the backward matching scheme is used (Fig. 6). In
this scheme the fundamental components of the w and the 2w waves

move in opposite directions, so that Eq. (III-7) can be written as:

?g = Isﬁ“’l + 2|8 (I11-22)

Considering Eq. (III-1), this results in

2m
e 4 nsk (I11-23)

which lets Eq. (III-2) be satisfied for all m 1in both frequencies w
and 2w. The expressions for second harmonic generations which were
deried above are valid for the case of backward matching as well as for

forward matching.
It turns out that technological Timitations are the main factor

in the device design and in choosing the operation scheme. In practice,
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perfect phase matching can only be approached, AB = Bzw - P8V -
2n/L # 0 , because of some inaccuracy in determination of g " BZm
or L . If the coherence length
Ec = mw/AB (I11-24)

is short enough (QC < 2) then the maximum attainable second harmonic
power generation is determined by 2C and not by 2 .* In this sense
the process of phase matching can be viewed as increasing the coherence
length from its natural value 2 = w/(gzw - 28%) to a longer value,
L™ w/(Bzm- 28%- 2n/L), which tends to an infinite value as the phase
matching accuracy increases.

The dominant contribution for phase mismatch is inaccuracy in de-
termination of the perturbation period L . (The thin film thickness
t may be measured accurately before determination of the periodicity.
Also, inaccuracy in t has little effect when the modes are well con-

fined). So, in order to increase the coherence length (decrease the

mismatch AB) relative to their natural value by a factor of ten--from

*Nhen AB # 0, Eq. (III-21) does not apply. Instead, the second har-

monic power generated in a distance 2% is proportional to PZw 2

o sin
(ABR/2) /(AB)Z. Thus the second harmonic power oscillates as a
function of length between zero and some low maximal value which is

attained when & = 2. = /AR (see illustration in Fig. 14a and a
broader discussion in Yariv [1971].) Hence, for fixed coupling coef-
ficient and input, the maximum attainable gain is proportional to

EE (or inversely proportional to (AB)Z) as long as an interaction
length & = Ec can be practically realized, and as long as the unde-
pleted pump assumption holds. However, if & << Le then the sine

function can be expanded to first order,resulting again in Eq. (III-21).
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e

%

40 um (with no phase matching at all, L = «») to a value of

0.4 mm,the periodic perturbation must be introduced within 10%
accuracy,when the forward matching scheme is used. Introducing per-
turbation of L = 80+8 um can be easily done by conventional mask-
ing techniques. On the other hand, if we consider backward phase
matching then for the above example, using Eq. (I1I-22), we get

L =0.765 um . In order to get in this case elongation of the coher-
ence length (decrease in the mismatch AB) by a factor of 10, the
periodicity must be determined within an accuracy of 0.1%, which is a
difficult task, even if the grating fabrication is done by holographic
method. It is therefore because of this technological Timitation that

backward phase matching may be difficult to realize.

3. Traveling Wave Amplifier

When charged particles happen to move in higher velocity than an
electromagnetic wave which propagates in the same medium, then under the
appropriate conditions, transfer of energy from the particle beam to
the electromagnetic field may occur. This principle is the basis of
phenomena such as the Cerenkov [e.g., Jackson 1962] and the Smi th
Purcell radiation [Smith 1953], and of traveling wave amplifiers and
oscillators [Pierce 1950] in which accelerated electron beam interacts
with a slow electromagnetic wave component which is generated by a
periodic waveguide. The period and the electron velocities used in com-
mon traveling wave tubes allow for microwave frequency amplification and

generation.
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The ability to produce dielectric waveguides with very short
period perturbation (less than 1 p) makes it interesting to consider
the traveling wave interaction in new operational regimes. Since very
short periods provide appreciable slowing down of the electromagnetic
wave, it may be possible to amplify higher frequency waves (visible or
IR 1ight) or alternatively to use lower velocity charged particle cur-
rent (1ike drifting carriers current in solids). The first possibility
(see Fig. 7) was investigated in Yariv [1973A], and the second one will
be discussed in Chapters [ytoyr (see Fig. 8).

Assume that the slow wave component which participates in the in-
teraction is the first order harmonic a; or the -1 harmonic a_q -
Their propagation parameters are Bﬂ = Bo * %1 . The charged particle
drift velocity is v_ . The condition for energy transfer into the

0
electromagnetic wave is

2n

Vo > Vpps1 = /Byt (111-25)
which can be rearranged to:
B
%.;. %.i .E°_ (I11-26)
0

Using Eq. (III-1) and assuming Vo << €, it is possible to write this

condition approximately as:

I’_L > £ (111-27)

Equation (III-26) or (III-27) allows calculating in a very simple way
the wavelengths in which one expects amplification in beth mentioned

applications.
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Fig. 7 Schematic diagram of an optical traveling wave oscillator
using a corrugated dielectric thin-film waveguide.
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Fig. 8 (a) Monolithic solid-state traveling-wave amplifier
with conducting layer beneath the periodic corrugation.
(b) Monolithic solid-state traveling-wave amplifier
with conducting layer on top of the periodic corrugation.
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Consider the case of the vacuum beam optical traveling wave oscil-
lator (Fig. 7) with L = 1u . Assume that the electron beam is ac-
celerated to a tenth the speed of light, then Eq. (III-27) predicts

amplification range:

A A 10 um

On the other hand, in the solid state travelinag wave amplifier
(Fig. 8), we want to use drifting carriers for the charged particle
beam. Achievable carrier drift velocity may be as high as e I 2 x]O7
cm/sec. When this is substituted in Eq. (III-27) with L = 1y we find
that the wavelengths which may be amplified in this device are of the

order:

A & 1.5 mm
We may indicate that higher order harmonics may allow proportionally
shorter wavelengths in both applications, however their interaction
efficiency will also be reduced, and this case will not be considered
here. Using shorter corrugation periods [Yen 1973, Bjorklund 1974], the
wavelength may be reduced by another order of magnitude.

Let us discuss the traveling wave interaction in more detail. It
may be described as a coupled wave problem, where the electromagnetic
wave couples to a space-charge wave of the beam. The electromagnetic
wave spatially modulates the flowing charged particle plasma and, in
turn, the space charge wave induces electromagnetic field into the wave-
guide structure. The detailed calculation of this process [Pierce 1950,

Gould 1955] requires the knowledge of a parameter of the slow wave
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structure. This parameter, called the interaction impedance, is a
measure of the coupling between the space charge wave and the electro-
magnetic wave, and is given by
K, = Tl (111-28)
1 EE?::’
where E1 is the electric field of the slow space harmonic (the first
order one in this case) at the point where the interaction with the
charged carrier beam takes place, and P is the total power carried by
the electromagnetic wave.

We are interested in finding expressions for the interaction imped-
ance in order to use it in the following chapters, as well as in other
published works [Yariv 1973A, 1974A, Gover 1974A, 1974B].

In order to find E1 and the interaction impedance, we can use
the expression for the first order space harmonic of the TM wave which
was calculated in Chapter II (longitudinal space charge modulation will
be performed by the z field component only E1 = E21 , for this reason
we have to use the TM mode).

For large values of 2w/L which are to be used in the presently
discussed applications, the parameter h1 (II-21) becomes imaginary. We
then define

o . 2 2 e
Xy = 1h1 = (B1 - ng k®)

(I11-29)
Substituting this instead of h] and taking the 1imit

Xt >> 1 (111-30)
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gs. (II-51, 52, 54, 64-68) turn in this limit into:

Xy %
a1(x) = Bje % = 10 (111-31)
=Xy X
a](x) = Fie x>0 (I11-32)
2 2
R D A R T
n 1 7 H;Z'Yo ¥ “ag 1
By = 2 a K Foa (I11-33)
n n
L
° 2 * X
n
a
2
. B ( nEO )
2 f, + Ny Y
n? 1 ?";E; 0''o ":Ef 1
F, = - %] " K Fa (111-34)
L
2t
na
where
nZ.k% + g, &% B,) (111-35)
2{ T

2 2
“Le* "L 9
also for the -1 harmonic when the subscript 1 is substituted by -1 and

are defined by Eqs. (II-1,35). The same equations apply
fo= & (nlK 8,) (I11-36)
<1~ By 91TT

The transverse profile corresponding to this solution is illustrated in

Fig. 4f.

We further use the equations:

E, (07) = — =% F K (111-37)
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Ez+](0 ) = - e H
+ we_ n
0o a
2
o naho Zwao
0] 2 t B
ng YO\/ eff
P = wk?
(see Appendix II-A). In the limit
2m
> k
ey
we have:
& - 27
X1 %Y1 T

and substitution of Eqgs.

this limit:
n4 h2 a2
K EBT o B = el (98,
+1 Eq 2nL0(ng + na) Y Boktare
n hg 2
(0)/ 442 vl (9
1 2nLO g g ¥ na) Yo Bokteffw

(I11-33) to (III-42) in Eq.

(I11-38)

(I11-39)

(I11-40)

(I11-41)

(I11-42)

(I11-28) gives in

-

g o
L1 LO
n n Yo

a 9 (111-43)

B 2
%0 )2

By t -——1—— "

"a (111-44)

Equation (I1I-43) gives the interaction impedance with an electron stream

moving outside of the waveguide next to the perturbed surface, and Eq.

(I11-44) is for interaction with electron stream flowing inside the wave-

guide next to the surface.

In the case of an electron beam optical oscillator [Yariv 1973A]

the electromagnetic wave interacts with an accelerated electron beam flow-

ing outside of the waveguide next to the surface (see Fig. 7).

From Egs.

(111-32) and (I11-42) we deduce that the space harmonic decays
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exponentially away from the surface (Fig. 4f), hence effective inter-

action occurs only with a beam focused down to L/27 thickness.
Equation (III-43) indicates also that interaction impedance is bigger
for the -1 harmonic than for the +1 harmonic, consequently oscillators
and amplifiers of this type should be better designed for "backward
wave" coupling.

In the application of solid state traveling wave amplifiers
[Gover 1974A, Yariv 1974A] the electromagnetic wave interacts with car-
rier currents flowing in a thin conducting layer located in the wave-
guide right beneath the perturbed surface (see Fig. 8a). The conducting
layer thickness must be of order L/27m 1in order to get effective in-
teraction. Equation (III-44) which gives the interaction impedance for
this case indicates that forward wave amplification is advantageous.

Another way to produce the solid state amplifier is to deposit a
thin conducting layer of thickness L/2r on top of the perturbed sur-
face (see Fig. 8b). If the layer is thick enough so that the mode
penetration through layer Ny is negligible, then we can still use
Eq. (III-43) with ng instead of n_ . However, when d = L/2m <<
T/YO s then our treatment up to this point does not rigorously describe
this case, because an additional layer with index of refraction Ny
(which may be quite high) replaces the medium n, above the perturba-
tion layer, However, with some simplified assumptions we may suggest
a rough approximation for this case. The assumption is that the first and
-1 harmonics, having short range of penetration, sense only g above
the waveguide surface and for their calculation Ny is used instead of

Nas but for the zero harmonic calculation the thin layer ny is neglected
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Fig. 9 Normalized interaction impedance (Eqs. I1I-B5:B7) for
interaction with the fundamental even TM mode in a sym-

metric waveguide ng=3.5, na=n5=1.
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and medium n, only is assumed to be for x > 0 . The resulting

interaction impedance is in this approximation

2 2
. [ n? h2 a? "o,
Ky (07} = 3'24(za+ 2)2 2;kt (9185 + 5= =3~7,)
0 2n; (N n Y w ng n
L0 g d o o eff d g (
9 (111-45)

where g]’"f(?"f] are calculated from (II-4,5,B3) with Ny instead
of N, » but ho,Bo,Yo,teff are calculated with the assumption
d = 0. For this case apparently the backward interaction is stronger,
Equation (III-45) is based on rough approximations and it is hard to
estimate its validity for quantitative indication of the interaction
impedance. We will use it further only for qualitative discussion.
A more rigorous approximate calculation of the interaction impedance
in the case of Fig. 8b (in special operation condition) is presented
later in Appendix IV-A.

We use Eq. (I1I-43) to calculate interaction impedance for a
particular example in which the thin waveguiding layer is GaAs -ng =
3.5 and the periodic perturbation is introduced by "symmetric" cor-

rugation of the surface (L1 = L/2 in Fig. 2):

2 _ 1 2 2h
nio = 2-(ng + na) = 6.6 (II1-46)
2 Bl By )
Mg = = (ng na) T2 (111-47)
n2

A numerical calculation of Eqs. (II1-43,44) was carried out

(see Appendix III-B) and the resulting normalized interaction
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impedances (Eqs. III-B5-B7) are displayed in Fig. 9. The electromag-
netic mode that was used in the example which is illustrated in Fig.
9 is the first order even TM mode in a symmetric waveguide (ng = 3.5,
N, =n, = 1)

From Fig. 9 it seems that all first order mode interaction
impedances attain their maxima about t/X = 1/7 . For backward wave

interaction on top of the corrugation (Fig. 7), the choice of param-

eters t/) = 0.1433 results in the highest value of K_1(0+). At this

condition
K .(07) = 0.573 [E- >
-1 = e €5 AW
(111-49)
— 2
i b_oa_
Kep(07) 0.0539‘/60 .

For example, for possible operation conditions a = Tp, X = 10y,
t = 1.43u , we get wK_](0+) = 2.16 x 10752 cm. For forward wave
interaction beneath the corrugation (Fig. 8a), the choice t/)\ =

0.1448 results in the highest value of K1(0'). At this condition
- L az
K,(07) = 0.272 /% o

2
=8 a
K_q(07) = 0.230 /g- =

)
For example, for possible operation conditions a = 1y, A =

1.5 mm, t = 0.22 mm we get from (III-50): WK](O') = 6.84 x 10”69 cm.
The expressions calculated in this section are used in Chapters

IV, V and in Refs. [Yariv 1973A, Gover 1974A, 1974B].



-68-

4. Grating Coupler and Thin Film Filters

In this section we discuss another application of periodically
perturbed thin films: coupling of 1ight between radiation and guided
modes. As discussed previously, in the introduction to this chapter,
coupling of light out of the waveguide will be performed through har-
monic m whenever Eq. (III-3) or (III-4) is satisfied. We get sub-
strate coupling for the case of Eq. (III-3) and air and substrate
coupling for Eq. (III-4). If Bm < 0, the coupling is called back-
ward coupling, since light coupled out propagates in opposite direction
to the fundamental guided wave (see Figs. 4b to 4d).

Coupling of light out of the waveguide is due to all the space
harmonics that satisfy Eq. (III-3) or (III-4), but we will analyze
only the -1 harmonic which couples the dominant part of the power. In
most applications we will also prefer having only one harmonic coupl-
ing in order to be able to collect the coupled Tight in one direction.
The condition for a single harmonic coupling is satisfaction of Eq.

(IT1I-2) for m = -2 . Using the definition (II-13) we get

%’."_ > JZ (B, + ngk) (I11I-51)

This is certainly satisfied when we have -1 backward coupling for

which

.ZETI. > 8, (111-52)

Best directionality of light coupling (i.e., light is coupled out only

to one direction) is achieved for -1 substrate backcoupling for which
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B, + ngk > &L > B+ nk (I11-53)
In this case light is coupled out only through the -1 order space har-
monic which is leaking only to the substrate (Fig. 4d).
Besides being used for power coupling in optical dielectric wave-
guides, grating couplers may be used as transmission filters for guided
light [Dabby 1973]. To get a high pass filter which transmits at

W > Wy choose the period L1 so that

%.:L = B,(w) - nk, (I11-54)

For frequencies w < w; we then have
By ® By =p—<nk (II1-55)

Hence a_y (Eq. 11-20) becomes imaginary and the light mode in frequency
w loses power through the -1 harmonic (see Fig. 10). In fact frequen-
cies higher than wy also lose some power through higher order negative
harmonics, but this power loss is significantly smaller than the -1 har-
monic loss. So, for sufficiently long grating couplers it is possible
to achieve considerable filtering of the frequencies w < wy -

To get low pass filter [Dabby 1973] which transmits w < wy » the

periodicity L2 must be chosen to satisfy:

% = Bolwy) + nck, (111-56)

then for frequencies w > Wy s
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1841 = IBO-%I < nk (111-57)

then Eq. (III-20) becomes imaginary for m = -1 and we have power loss
at high frequencies w > Wy (Fig. 11).

Band pass transmission filter can be devised by incorporating two
gratings with periods that satisfy Eq. (III-54) and (III-56) on the
thin film surface. The two gratings can be put successively, or in the
same place. In designing a filter 1ike this, one has to be aware of
having a reflection stop band inside the pass band Wy < W< w . This
stop band occurs for Bo = %- (see discussion in the next section). By
choosing w, to fall in or above the reflection stop band, one can de-
sign a narrow single transmission band (see Fig. 12).

We may mention that the stop band itself can also be used as a
very narrow bandpass filter when the reflected 1ight is used. This ap-
plication is discussed in the next section.

In order to calculate coupling efficiency we are going to use the
expression for the -1 harmonic amplitude derived in Chapter II. In
using this expression we make the approximation that over few periods
only a small portion of the power is coupled out, hence the mode ampli-
tude stays approximately constant. The next step will be to assume ex-
ponential decay of the mode amplitude where the decay constant is deter-
mined from the power loss rate calculated in the first step. For brevity
we henceforth develop the expression for coupling efficiency only for TE
mode -1 substrate coupling (either forward or backward). One can easily
calculate the appropriate expressions for the other cases by following

the same procedure and using for the case of the TM mode the expression
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High pass filter. The condition for leakage via the

-1 space harmonic (Eq. III-55) is satisfied only for

w < wq. For w > w, the -1 harmonic is confined and there
is Ie;kage only th;ough -2 harmonic or higher negative
orders.

Low pass filter. The condition for leakage via the -1
space harmonic (Eq. II1-57) is satisfied only for w > Wy
For w < w, the -1 harmonic is confined and the light is
transmittgd (except at the stop band).
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Fig. 12 Band-pass filter application of grating couplers. The
period L, grating filters out by radiation loss frequencies
W < Wy. The period L, grating filters out by radiation
loss "frequencies w > &, , and also provides filtering by
Bragg reflection in a “thin reflection band. Light is
transmitted without attenuation in the band Wy < W< W,
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derived in Chapter II.
For -1 order substrate coupling n_k <|B_]| <nk , hence a_,

in Eq. (II-20) is imaginary and we may define real positive q_q ¢

ay = 19y = i/ng K - 8% (111-58)

Equation (II-51) then changes into
iq_y(x+t)
a_qy(x) = A_je x < -t (I11-59)
while Eqs. (II-52) and (II-54) do not change. A1l the coefficients A_].
B_1, C_1. F_1 calculated in Chapter II become complex. In particular

(11-57,61) and (III-58) result in

7 02y koh_qa
A, = *F
-1 - Z - :
h_](1q_1+ Y_1)cos h_it - (h_]- 1q_ly_])s1nh_]t

(I111-60)

To find out the power flow into the substrate along a distance
A%, integrate the x component of the Poynting vector in a plane parallel

to the waveguide plane which is located in the substrate x < -t (see

Fig. 1).
AL | B gy
ApOUt _ W % dr = -f b ;
POY® = 3 Re E M dz 57 Ref| Ey o= dz  (111-61)

where the segment A2 1is short enough to neglect the decay of the mode
power within its length, but long enough to include several periods of

the periodic structure. We substitute in (III-61) a normalized mode
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with excitation amplitude K (only the fundamental and -1 space har-

monics are kept):

-18_2 —18_12

= K(a (x) e % +a_(x)e ) (111-62)

EY
and carry the integration over an integral number of periods, then Eq.

(III-61) yields only one nonvanishing term:

2
A

out _ 2 9yl

- wu

AP a = P o=l a 2 e (111-63)
1 0 2m‘u -1

where we used Eq. (III-59) for a_l(x). The minus sign in Eq. (II1I-63)
indicates flow of power to the -x direction. P0 = wK2 is (in the zero
order approximation) the total power carried by the mode with excitation
amplitude K (II-A14-A17). AP??t is the amount of power coupled to the
substrate by the -1 harmonic within the length A%.

For a Tong segment A% , we can no longer assume that the power
P0 in the right hand side of Eq. (III-63) is constant. We assume that

the differential decrease in the mode power AP0 is equal to the power

coupled out to the substrate within the short segment AL
- ap, = AP%Y (111-64)

Substituting (III-63) in (III-64) we can write the result as a

differential equation for P0
dp, = P 5= |A_4[° de (I111-65)

whose solution is

=
P(2) = P_(0)e (I111-66)
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where (using (I1I-65,60,I1A9,A15))

4 4.2

= q"] IA |2 = 1 nL.]k hO
Ny = & 15 - ;;'1?1;“‘
0’0o “eff
2 @

q_1h_] a

H?V](chosh_]t - h_1sinh_]t)2 + q?l(h_]cosh_1+ y_1sinh_

For 2mw/L big enough so that

2 2 2 2
h_] _ ng k = B_-I -
2 "]

1
R
a;y g kT -8

is a good approximation, this expression can be simplified to

4
;"L kzhg(ni K> - sf1)1/2 a®
Ny~ 72

2
Ny = Ma Bo¥o teff

The direction in which the coupled light is emitted is:

2 2 1/2
(nS k = B_z_'l)
B

tan g =

2
it

(I11-67)

(I11-68

(111-69)

For the special case of well confined mode and with the periodic

perturbation being introduced by "symmetric" corrugation (Eq. II-5) we

can reduce to a very simple working formula:

1 an0 2 (111-70)
n-.I—ZF;F an ;3- -
We calculate an example with
n =35 |, n = 3.3 , t/x = .566 , L/t =1.2
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Equation (III-70) leads to

i a2 1
gy = B6x (R §

For XA = 10.6um(t = 6um) and a/t = .05

ny = 35.9 cn’)

so that corrugation of the waveguide surface in a length of £ = 280u
is required to couple out 1/e of the power in the mode. The angle
at which the 1ight will be coupled into the substrate is calculated

from Eq. (III-69)
tang = 1.47 6 = 56°

The simple formulas derived above were found to agree closely with

computer calculated coupling efficiencies [Ogawa 1973].

5. Bragg Reflection Devices

When the periodicity L 1is chosen so that:

2 _
m = 260 (I11-71)

then the propagation parameters of harmonic B correspond to a mode

of the unperturbed waveguide propagating in the negative direction:

B 2T _ &
Boy @ By %M pemi= By (111-72)

Since both harmonics a, and a_, are resonant in the waveguide,

they will have the same weight in the perturbed structure eigenmodes,

and generation of one of them will necessarily involve generation of
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the other with opposite phase velocity (see Fig. 4g). This property
may be used in different applications which require reflection or feed-
back, Tike distributed mirrors, transmission stop band filters (which
may be used as reflection band pass filters) and distributed feedback
lasers,

We will calculate the structure eigenmodes and the stop band for
the example of a TE mode. We cannot in this case use the first order
approximation, and will resort to two-harmonic approximation (see

Chapter II, Section 4).

18,2 -1B_42
E(x,2) = a(x) e +a_,(x) e (I111-73)
where right in the Bragg condition
By =By = - (111-74)

Following the derivation in Section 4, Chapter II , we indicate

that a (x) and a_;(x) in the periodic layer satisfy the differential

equation:
¢ a4
(F—=+¥V)(, )= 0 (111-75)
dx 0
where
{ s f
o - (111-76)
\ f 52
2 _ 2 _ 2 _ ,m2 B o0 .
§¢ =8y =6,= (D - nLok (111-77)
1 9 .9
i I11-78
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The solution of Eq. (III-75) in the region 0 < x < a (see Fig.

1) is

g el ]
2y = — (B,cos ApX * Cpsin Apx + Bgcos Apx + Cpsin Apx) (I11-79)

N _ " o
o, = ( BAcos ApX CAs1n AAx + BBcos ABx + CBS1n ABx) (111-80)

where Ai. lg are the eigenvalues of ¥~

Aﬁ = &2 - f (111-81)
Ag = 2+ f (111-82)

The solution of the space harmonics in the other (uniform) layers

is given by (II1-81-83)

am(x) = A eam(X+t) X < -t
am(x) = Bmcos hmx + Cms1n hmx -t <x<0
-y X
a (x) =F e L x>0 (111-83)

By properly matching the boundary conditions (see Section 4,
Chapter II) one derives a set of homogeneous equations which may be

reduced into

(acos ht =~ hsin ht) By - (cos ht+ %sin ht)kBCB, = 0 (I11-84)

(y cos Aga - Agsin ABa)BB+ (v sin Aga+ Agcos ABa)CB =0 (I11-85)

and another identical set in which A vreplaces B .
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Fig. 13 Brillouin dispersion diagram for periodically perturbed
waveguide. The broken line is the unperturbed guide dis-
persion curve. The perturbation opens a stop band Ak and
shifts its center from ko to kc.
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h? = hp = h2y = a2 K2 - (D)2 (111-86)
¥zl - ¥2, = (B? - ng K2 (111-87)
of = of = oy = (P - n2 (111-88)

For a nonvanishing solution of Eqs. (III-84),(III-85), the deter-

minant of the coefficients must vanish:

(o cos ht ~hsin ht) (y sin Aga + Agcos ABa)

+ AB(cos ht+% sin ht) (y cos Agd -;\Bsin ABa) =0 (III-89)
Equivalent equation results also for the other eigenvalue A

(o cos ht - h sin ht) (y sin Ap@ * Apcos )\Aa)
+ AA(cos ht + %ﬁin ht) () cos Apd -AAsin AAa) =0 (III-90)

Equations (III-89), (III-90) are the dispersion equations for the fre-

quency w at B = tE-. Equation (III-89) corresponds to the lower

branch of the dispersion curve-curve B, and Eq. (II1-90) to the upper
branch-curve A (see Fig. 13). When the periodic perturbation layer
vanishes, a = 0 , both Eqs. (III-89) and (III-90) reduce to the dis-

persion relation of the unperturbed waveguide (compare to Eq. II-A8).

1(0) (4(0)y L(0))cos p(0)y _ (p(0)%. (0).(0))

sin (@t = 0 (111-91)
For a # 0 we may provide an approximate solution of Egs.

(I11-89) and (III-90) by assuming that the thin layer "a" shifts the
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frequency w or the vacuum propagation constant k = w/c by a small

amount Ak

k = k, + Ak (111-92)

where k0 = 2? is the solution of Eq. (III-91) and k is the solution
of Eq. (III-89) or (III-90). Then we expand all the parameters, h1. Y1
aps Aps Ag to first order in Ak using Eqs. (III-77,78,81,82,86-88),
and substitute in Eq. (III-89) or (III-90). The zero order parts (Ak =0)
of both equations turn out to be identically zero when Eq. (III-91) is

used, while the first order parts result in:

Ak Aw
A,B A,B
= 2= = p, pd (I11-93)
K, 5, A,B
where
AU n(0)”
Pp = v 1 | i (111-94)
ng - ng B(E+7)+ngkot
2 2 2 2
" “zng - (ngg-ny) h(0) (111-95)
B ;2 Zr+ D+l ¢
g a oY g o

2
Bwp - Duwg &h h(0)7,
m 72 2T

0 0 nq - £k

(I11-96)

] 2 2
—-) +
+ Y) ng ko t

and the stop band center by
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W Awpt Aw "o "a (0)2

“o “o nZ - n° 82(l+l)+ n? K% t
g a oy g o

The analysis gave expressions for both the gap separation and a
constant down shift of the dispersion curve (see Fig. 13). The two ef-
fects may be comparable in magnitude, and the shift effect may be signi-
ficant in design of some devices.

For the "symmetrically corrugated" layer (Eqs. II-4,5) and well

confined mode (héo) = nmn/t, %—+%— <<t , B = ngk), Eqs. (ITI-96) and
(III-97) simplify into:
2
2 A-a
g_w_ = D 5 __03 (111-98)
0 2mm t
g
2
w_ - W 2 \a
C 0 n 0
S S P v (I11-99)
“o 8ng {

where n 1is the order of the mode.

The perturbation analysis resulted,in addition to the expression
for the band gap,an expression for the shift in the dispersion curve
(see Fig. 13). This shift is caused by the "DC part" (nEO) of the per-
turbation layer (Eqs. II-1,4). This term has exactly the effect of add-
ing an effective dielectric layer nﬁ - nfo = (ng + n§)/2 of thickness
a . The effect of such a lTayeris to increase the propagation constant

2
by 48, = %2—%‘:% (see Appendix III-C, and use Eq. I1I-C8). To find the
g

effect of this layer on w(B8) , one should use the relation
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2 n
. _ _ oW - 9B _ _ mn_ )a apg . g
RIRHL G, = B ™ 1 B BT T S i

(III-99) gets confirmed by the independent analysis of Appendix III-C.

Consequently we point out that in designing a Bragg reflector
for a specific frequency (given laser) one has to be aware of the fact
that Wy s defined by Bo(wo) = /L (where Bo(w) is the propagation
constant of the waveguide without the perturbation layer, see Fig. 1,
a=0), is not the center of the Bragg reflected frequency band, but it
is rather We s defined by Bn(wc) + Aﬁn(wc) = /L (see Fig. 13). Equa-
tion (III-99) or in more general cases, Eqs. (III-97) or (III-C13), can
be used to find We Notice that the shift We~W, is of the order of
magnitude of the bandgap Aw .

The use of Eqs. (II1I-98,99) is demonstrated through the following
example: n=1, Ao = 10.6u, ng = 3.5, n, = 1, t=6u, a=0.3uy, L =1.5u.
One gets from Eq. (I11-98) Aw/w, =2 x 107> or A\ = 215R. From Eq.
(111-99) one gets (uw_-uw )/w, = 1.6 x 1077 or w_ = 10.616u.

The use of a Bragg reflector as a narrow band reflection filter
has been demonstrated experimentally [Schmidt 1974] with Tight in the
visible region. Fractional bandwidth Aw/w = 3 x 107> was achieved
there.

We have to point out that expression (III-98) is different from
the corresponding expression which was derived by coupled mode technique

by Sto11 [1973],
nz - n2
oo Zm o323’ (111-100)
n
g

The reason for the difference is the use of different approximate

assumptions. Although both Eqs. (III-98) and (III-100) were derived for
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the case of well confined modes, it was assumed in deriving Eq.

(I11-98) that the perturbation layer, a , is thin enough so that

the field variation across it is negligible and assumed constant,

and first order expansion of the parameters in terms of "a" is valid.
On the other hand, in deriving Eq. (III-100) the field was assumed

to vanish at the surface and vary appreciably (linearly) across the
perturbation layer 0 < x < a . Indeed, when one repeats the coupled
mode analysis, avoiding the last assumption, one gets for a well con-

fined mode [Yariv 1973B]

2 2 2
g Mo =N 3(xr_/a) 3(x_/a)
B-F 2@ 0 =yt ) (11-100)
ng Zw(ng ~ M) 4 (ng -ny)
In the 1imit:
A >> w(ng - ng 1/2a (111-102)

this expression reduces to Eq. (III-98), and in the opposite limit it
reduces to Eq. (III-100), which indicates the 1imits of validity of
each of these approximations. We also realize that at thick enough
perturbation layer "a", the first order (in terms of a) solution of
Eqs. (II11-89,90) stops being valid and higher order solution is re-
quired. Condition (III-102) may be too restrictive when the mode is
not well confined (the variation of the field across the perturbation
layer is then smaller), hence Eqs. (III-96,97) may have somewhat
larger scope of validity than indicated by inequality (III-102).
Finally, a few words may be in order concerning the two differ-

ent approaches in solving Bragg reflection thin film devices. The
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coupled mode approach solves the problem in terms of two (contradirec-
tional) modes of the unperturbed (homogeneous) waveguide which are
coupled by the periodic perturbation. This approach was first intro-
duced by Kogelnik and Shank [1972], solving for the distributed feed-
back laser in a one-dimensional model. Following D. Marcuse's coupled
mode analysis of perturbed dielectric slab waveqguide [Marcuse 1969],
A. Yariv et al. showed how to extend the one-dimensional coupled mode
approach to the basically three-dimensional problem of Bragg-coupled
dielectric-wavequide modes, and how to apply it to specific devices
like Bragg reflectors and filters [Stoll 1973, Yariv 1973B] and oscil-
lators [Yariv 1974B].

The approach taken in the present work is based on solving the
problem in terms of the eigenmodes of the periodically perturbed wave-
guide which are Floquet-Bloch modes. To simplify the solution we trun-
cated the Floquet mode series and left only two terms: zero and -1
order space harmonics (Eq. III-73) which are in resonance with the un-
perturbed waveguide modes. This makes the two approaches completely
equivalent.

Claims made by S. Wang in several publications that the trun-
cated Floquet-modes can bring additional results which are not evolving
from the coupled modes approach was shown by Yariv and Gover to be un-
founded [Yariv 1975, see there references to S. Wangl. The two ap-
proaches are equally valid, and fail at the same point when the pertur-
bation is strong enough. At this failure point it is invalid to neglect

higher order space harmonics (in one case) or the other unperturbed
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waveguide modes (in the other case). In this case it might be more
convenient to use the Floquet mode approach, basically following the
procedure presented in Sect. 4 of Chapter II and solving the set of
equations (II-85) truncated at some high integer. This must be usually
done by numerical computation [Dabby 1972, Sakuda 1973, Peng 1974]. We
should point out that the elaborate three-dimensional analysis of Sect.
4, Chapter II cannot be substituted in this case by a one-dimensional
Floquet mode approximation (as used by S, Wang), since the transverse
profile of the higher space harmonics is very different from that of
the two fundamental space harmonics.

By matching boundary conditions at the ends of the Bragg reflec-
tion device and by introducing complex index of reflection at some of
the layers, one can extend the analysis of this section to calculate
different parameters of Bragg reflectors, filters and distributed feed-
back lasers. However, as mentioned above, one should not expect results
which are different from the coupled mode formalism. This is well pre-

sented in closed form in Sto11 [1973] and Yariv [1973B,1974B].

6. Analysis of General Coupling between Floquet Modes

The problems discussed in the previous sections involve different
examples of coupling between waves in a periodic dielectric waveguide.
We intend, in this section, to generalize the analysis of wave interac-
tion in a periodic structure (using the Floquet-Bloch formalism approach)
so that the analysis can be applied to any additional problems of wave

coupling in periodic waveguides.
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Before embarking on the detailed analysis, we review some of
the general qualitative results of coupled-mode theory of wave interac-
tions in dielectric waveqguides [Marcuse 1969, Kogelnik 1972, Yariv
1973B, Stoll 1973]. These are descendants of Pierce's coupled mode
formalism [Pierce 1954, Louisell 1960].

A detailed and unified coupled-mode formalism for waves in a
dielectric waveguide is presented in Yariv [1973B]. Following this
reference, some features of the coupled mode interaction (in the case
of two waves) are illustrated in Fig., 14a,b. When the waves are not
spatially phase matched (which means that there is a difference in
their propagation constants AB= BA- BB # 0), then there is recurrent
power transfer between the two waves with small amplitude and short
oscillation period (or short coherence length; the coherence length
defined by Eq. (III-24) Qc = /AR , is the distance between adjacent
minima and maxima in the power oscillation--see Fig. 14a), When the waves
are nearly phase matched and codirectional, the amplitude of power oscil-
lation and the coherence length both increase. It is possible to get
full power transfer from one wave to the other when the waves are ex-
actly phase matched (see Fig. 14a). The period of power oscillation
then is maximum and is determined by the coupling coefficient.

The case of contradirectional phase matched coupling is described
in Fig. 14b. In this case there is no power oscillation, and full power
transfer is approached when the coupling length (&) tends to infinity.

Let us now discuss wave coupling in periodic dielectric waveguides.

There are two different approaches to this problem, and to avoid
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O

units of |K‘g,.(0)|2

Kal? and |KB|2 in

Fig. 14a The variation of the mode power in the case of codirectional
coupling for phase-matched (broken 1ine) and unmatched
(continuous Tine) operation.

[KA(0)]2

K22

-

|KB(Z)'2-

77T T >z
/ perturbatio
/// region

revrrrrrrE2INLLIY

z=0 z=4

Fig. 14b The transfer of power from an incident forward wave K,(z)
to a reflected wave KB(z) in the case of contradirectional
coupling.
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confusion we will briefly clarify their differences. In the usual
approach [Yariv 1973B] the eigenmodes of the system, between which
coupling takes place, are the eigenmodes of the waveguide without
periodic perturbation (uniform waveguide). The periodic perturbation
itself is viewed as the couplina perturbation which couples the modes
of the uniform waveguide. For example: one TE mode can be coupled
to another TE mode by a periodic perturbation of the linear dielectric
constant. If the perturbation period L satisfies 2u/L = BA- BB,
full conversion  between wedes A and B can be attained
[Marcuse 1969]. Coupling of a TE mode to a TM mode cannot happen unless
an anisotropic perturbation in the dielectric constant is introduced
(e.g., by the electrooptic effect or the magnetooptic effect). If we
apply a uniform anisotropic perturbation, then coupling from TE to TM
modes is possible, but full conversion will not be attained because the
two modes are usually not phase matched (i.e., they have different
propagation constant). This can be avoided if the anisotropic pertur-
bation can be made periodic [Yariv 1973B, Tien 1972, Somekh 1972].
Alternatively, it is possible to add to the uniform anisotropic pertur-
bation a periodic perturbation of the linear dielectric constant. In
this case the coupling between the TE and TM mode will be considered to
occur through two perturbations--the uniform anisotropic perturbation
and the periodic perturbation.

In most of the present work a different approach is used. The

eigenmodes between which coupling takes place are the Floguet-Bloch

eigenmodes (and not the uniform waveguide modes). Thus different modes

can be phase matched through their space harmonics (i.e., they may have
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space harmonics with the same g), but by definition, they are not
coupled to each other until another perturbation is introduced (1ike

a uniform anisotropic perturbation in the case of electrooptic coupl-
ing). This was the approach used in the analysis of second harmonic
generation and traveling wave interaction in a periodically perturbed
dielectric wavequide (Sects. 2 and 3, respectively.) In this sense,
the calculation of grating couplers (Sect. 4) and Bragg reflection
(Sect. 5) are not coupled mode problems (since no perturbation in addi-
tion to the periodic perturbation is present). They can be viewed as
an evaluation of the amplitude of the space harmonic amplitudes and

the dispersion relation of the Floquet eigenmodes in special operation
regimes.

In the following we present in a generalized form a coupled-mode
treatment of Floquet eigenmodes. We specialize the treatment to the
case of two-wave coupling and exact phase matching (extension to more
general cases is straightforward). We pursue this analysis to the point
where standard coupled mode equations are derived (III-118). Once this
is done, one may proceed to solve these equations as in the standard
coupled mode problem, and the interested reader is referred to Yariv
[1973B], Louisell [1960].

As a preliminary step we proceed by proving an orthogonality
theorem for Floquet-Bloch modes in a periodic dielectric waveguide.

A Floquet mode A in a structure with a period L can be written
as: A

-’B
..E.A(xsz) “w 0 u,(x,2z) (111-103)
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where

EA(X,Z+L) = EA(X'Z) (I11-104)

We show that this mode is orthogonal to any other mode

jéB(x,z) of the periodic waveguide if

B A 2m
Bo - 60 # n i (II1-105)

oo

(1] asapee EteszrEytneat =[]t

- 00

-i(Bg - Bg)z &
(2,2} “uplx.z)
Ua Ug

w (ML (gA g8y,
=3 [ dz e ° 0 [I dxdy ux(x,z)-ug(x,2)
|| s mL -0

and using Eq. (III-104),

; A B L N B oo
o -im(B8 - B )L -1(B, -B_ )z
=[) e % ][I dz e W f dxdy u*(x.z)u (x,2)
m= -e A =2
0 == (I111-106)
B A 2N, &
LB, = 8, #'ngl) =0

Contrary to homogeneous waveguides where translation symmetry
results in an orthogonality of the modes' transverse profiles, in the
periodic waveguide the mode profiles are not orthogonal and the or-
thogonality involves a three-dimensional integration. Independently
of the overlap of the mode profiles, modes with unmatched propagation
constants (Eq. III-105) are orthogonal because the first factor in

Eq. (III-106) is proportional to a delta function 6(82-—8ﬁ -n %;J.
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However, when the perturbation is small, also the mode profiles will

be nearly orthogonal, which means that also the last coefficient in

Eq. (III-106) is close to zero. Modes may be orthogonal even if they

A
0

system; for example, a TE mode is (vectorially) orthogonal to any TM

are phase matched (Bg -B. =n %;J because of other symmetries in the

mode even if they are phase matched.
We proceed to derive the coupled mode equation. From Maxwell

equations ( II-6,7) we get the wave equation for the electric field
YxVxE-dueE = 0 (111-107)

where e = e(r) is periodic with z .

The Floquet modes E;p(x.z) are solutions of the homogeneous
equation (III-107). We now introduce a perturbation to the system
which causes coupling of the modes (for example an electrooptic or
electromagnetic coefficient in the case of TE to TM mode coupling).

The perturbation introduces polarization

Epe,.t(x.?.) = -errt(") E(x,2) (111-108)

which drives the wave equation:

Vx¥VxE-~- mzueg_ = wzu Epert (I11-109)

If the perturbation is small the solution of Eq. (III-109) can

be written in terms of the eigenmodes

E = E Kp(Z) _Zp(x.Z) (111-110)

where Kp(z) are slowly varying coefficients of the normalized modes
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We substitute Eq. (III-110) and (III-108) in (III-109) and get

after some mathematical manipulation:
) ke(2) (B €08, + k(D Gz E - &,x7x B -8, 1- &) -

2
. gy g AL - _Ep . (I111-111)

The z component of the first term is identically zero, the other
components are neglected because we assume K&(z) to vary with z

much slower than the eigenmodes. We get:

] k() Lylxe2) = P § K (DX pepg(X) £ (x,2) (111-112)
P

where

tp %’Z—_Ep-é\zxzx_ga-é\zz_-ip=
- i xvx_gp+ (e a V).Ep'e (__ép) (III-113)

We assume that two modes which are excited in the waveguide

—
m

jgh(x,z) and ggB(x.z) are nearly phase matched through an nth order

space harmonic

B A 2m |
0o~ By = NT (I11-114)

8 0

We now multiply Eq. (III-112) by Z} and };g in turn, and integrate
over all space. Since Lp(x.z) satisfies Eqs.(I11-103,104) the or-
thogonality theorem (Eq. III-106) can be extended to say that zzﬁ and
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ﬁiB are orthogonal to any Lp (p # A,B) which is not phase matched
to mode A or B (III-105). The result of the integration is
i o

Ka(2) J dz IJ dxdy &ix(x,z) Ly(x,2) =
0

-—CO

-i(ag) z &
- —mzu KB(z) e 1 n [
0

dz ei(AB)"Z ” dxdy 5; (x,2)

-0

}‘gpert(x) éB(x.z) (III1-115)

(28), = Bg - B‘g = i -2["1 (I11-116)

In deriving (III-115) we had to assume that KA(Z), KA(z) and

-i(AB) z
e " have negligible variation over one period L so that pulling

them out of the integral is justified (for the last term this
can be expressed as |2w/(AB)nl >> L). Also we assumed that ng is
orthogonal to LB and Z;B is orthogonal to LA’ and that the sus-
ceptibility Epert does not couple the modes to themselves. The last
two assumptions may not be satisfied in some cases, however, the ex-
tension to this case is straightforward, resulting in somewhat more
comp]icated.coupled wave equations (two terms are added to both sides
of Eq. III-115).

The integrals on the left and right hand sides of Eq. (III-115)
are constants (z independent). Hence, with the above assumptions and

approximations, and in the special case of exact phase matching,

- B A 2 . g
(88), = By~ Bg~BA= 2 0 (I11-117)
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Equation (III-115) and the corresponding equation for KB can

be written in the form of the standard coupled mode equations

KA(Z) = Kpp KB(z)

(I11-118)
Ké(z) = Kpp KB(z)
where
L o0
_mzu J dz ff dxdyj;;(x.z),é(x)ng(x,z)
0 o8
“AB ~ T = (I111-119)
J dz ” dxdyEK(x,z) * La(x,2)
0 -C0

and kpa s given by exchanging A and B in Eq. (I11-119).
We first proceed to develop the denominator of Eq. (III-119).
We use Eq. (III-113) and the identity

-6, (ExTxE*) - E*(E, -V E+ B e, (V- E)

(I11-120)

B (_%’_* x_g_xaz)

to substitute the integrand:

o

T ” dzdxdy & x-L, = j ﬁ dzdxdy[ - EK-(EZx _v_xéA) + EK-(@Z . E)E_A
0 == 0 e

L e
= [ [[ azexavie (Bxxux By) - 83 Epxux ER) - HEL * EpxE))]
5 e

(I11-121)
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The third term can be shown to vanish:

L o
I ” dzdxdy E(Ez x—iA xéz) - @Sdsﬁ(éﬁxﬁ“ xéz) = 0 (111_122)

0 -

S is the surface which surrounds the volume of integration, n is the
unit normal vector to the surface. The integral of (III-122) vanishes
at the surfaces x = t = because Z,(x = + =,z) = 0. It vanishes at
the surfaces y = + = because QA is independent of y and the normal
vectors at these two surfaces are opposite. It vanishes at the
surfaces z = 0,L because-ﬁa(x,z—L) = e“iBOLﬁiA(x,z=0) (Eqs. III-103,
104) so that the integrand in Eq. (III-120) is the same on these two
surfaces, and the integral vanishes because the normals are opposite
on these two surfaces.

We substitute in Eq. (III-121) the magnetic field from Maxwell

equation (II-6)

oo

L e

£ ” dzdxdy EK'LA = -jwu T ” dzdxdy az-(_é"’ix K+ é\x KK)
i bl

I oo
= -4iwy J dz JI dxdy Re S, = -4iwulP, (111-123)
0 )

Here Sz is the z component of the Poynting vector and PA is

the total average z directed power carried by the mode A defined as:
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Py " JL-J dz ” dxdy Re S, (I11-124)
0 —oo
Notice that the z component of the Poynting power is in general
dependent on z . The definition (III-124) associates with the Floquet
mode an average power flow in the z direction which is the significant
physical quantity in this problem. It reduces to the conventional power
definition of a waveqguide mode when the periodic perturbation vanishes.
An alternative form for (III-124) results when we substitute the Floquet

expansion of the mode:

_'B
EA(X.Z) = %EA (x)e ™ (111-125)

m

- 21 o .
where g = By ¥ M T o and a similar equation for }%A(x,z). When the
integration over 2z 1is performed in (III-124), the mixed harmonic terms

vanish and we get:

Py = dxdy Re S (111-126)
pT LI e sy,

where

_ 1
SzAm =7 [EAm(X) X;fﬁ\m(X)Jz (111-127)

Hence, the average z directed power of the mode defined by Eq. (III-124)
is also the sum of the powers carried by the individual space harmonics.

We now go back to the expression for the coupling coefficient (Eq.
II1-119) and substitute in it the result (III-123). Let us assume that
the modes are power normalized (|PA|/w = ] watt per cm waveguide width,

see Appendix II-A). In fact, if the perturbation is small, and most of
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the power is carried by the fundamental harmonic, the normalization is

given by Eq. (II-A14) for a TE mode or by Eq. (II-A33) for a TM mode.
Assuming the mode propagates in the positive (+z) direction so that its

power is positive PA/w = +1 watt/cm, we get

L -
Kag = - %E £ dz J dx !éﬁ(x,z) errt(x) ng(x,z) (ITI-128)

An alternative expression for the coupling coefficient is achieved
using Eqs. (III-103,104). Assuming BE - Bg = %; (the phase matching
condition (III-117) satisfied in first order, n=1) we get

L : 2 e
iw =1 -[Ez *
Kpg = - E['£ dz e f dx EA(x,z) 5pert(x) EB(X-Z) (111-129)

Still a third form results when we substitute the Floquet expansion of

the modes (III-125):

cap =D [ ax i () Xoors) Eg (0 (111-130)

m

=00

which means that the coupling coefficient is proportional to the amount
of overlap (through the susceptibility) of the space harmonics of mode
A with the correspondingly phase matched (one order smaller) space har-

monics of mode B. If we keep only terms up to first order we get:

.

o JI_J dx[jiﬁo(x) zpert(x)~§;l1(X)*'EEK](X) Epert(x)fgao(x)]

(111-131)

Assuming X is a Hermitian matrix, and taking the Hermitian

=pert
conjugate of Eq. (III-130) results in



Kng = -KEA (I11-132)

The solution of the coupled mode equations (III-118) is now

straightforward., If KB(O) =0, we get

KA(Z) = KA(O) cos Kz (I11-133)
<*pB
Kg(z) = - s Ky (0) sin kz (I11-134)
AB
where
K = |KAB| (II1-135)

which means that at phase matched codirectional coupling a complete

power exchange between modes can take place at z = mn/2¢ (Fig. 13a).
Notice that if one of the coupled modes has negative power

(B. < 0), then in the normalization step (Eq. III-123) we have to

0
normalize the mode average power to -1 watt per cm waveguide width in-

stead of 1 watt. This leads to
KEA (I11-136)

yielding hyperbolic solutions of the coupled mode equations (III-118).

In this case we have phase matched contradirectional coupling (backward

wave interaction) in which one wave decays in its propagation, and the
other wave grows (possibly from zero) in the opposite direction (see
Fig. 13b).

When the assumption (A5%= 0 (III-117) is not made, and a slight
mismatch is assumed, then in deriving (III-118) from (III-115) the two

-i(aB) 2
coupled equations (III-118) get extra oscillatory terms e " and
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ei(AB)nZ respectively. This case leads to the oscillatory solution
in Fig. l4a. For further discussion of the solutions of the standard
coupled mode equations, the interested reader is referred to [Yariv 1973,
Pierce 1954, Louisell 1960, Watkins 1958].

Finally we discuss the 1imits of the approximations used to de-
rive the coupled mode equations. The first coefficient in Eq. (III-106)
tends to the Timit of a delta function at points BE -Bﬂ =n %; when
the structure is infinite (-» < m < =), When the structure is finite
the summation is over the total number of periods N = 2/L where 2 is
the length of the structure. In this case, the coefficient is still a
function with maxima at points BE - Bg =n %ﬂ but the peaks have finite
width, A8 = g = 7/% .

In order for the orthogonality condition (Eq. III-106) to hold,
the separation between unmatched modes p and p' (which satisfy Eq.

III-105) should be
8P - 8P - n Y << a8 = /e (111-137)

In deriving Eq. (III-115) we had to assume that Kp(z) changes
slowly in order to be able to use the orthogonality condition (Eq.
III-106). We can now specify this requirement more quantitatively. The
summation in Eq. (III-106) should be performed only on so many periods
N within which K(z) does not change appreciably, which means that in

Eq. (III-137) we must substitute & by m/k (if u/k < 2):

|6 - B’(’,'-n l « « (111-138)
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We should mention that it is possible to extend the analysis
of this section to coupling of three or more waves. In this case,
instead of doublets of phase matched space harmonics (Eqs. I1I-130,131)
we get triplets of phase matched space harmonics. This is implicitly
expressed in the previously derived equations (III-17,19). Those
equations refer to the problem of phase matched second harmonic gen-
eration which is a special case of three-wave coupling.

In concluding this section we want to indicate an interesting
by-product of the present analysis. We will show that it is consistent
with the Pierce equation for the electric field induced in a slow wave
periodic structure by a space charge current ("the circuit equation"

[Pierce 1950])
%84k
£y = 1 53 Iy (ITI-139)
By - B
where K1, the interaction impedance is given by Eq. (III-28), 81 is
the propagation constant of the electromagnetic wave first order space
harmonic in the absence of interaction, and B 1is the propagation
constant of the external space charge current 11(1) = Ile'iBZ and
of the induced field at the location of the (zero thickness) electron

current (8 = 81)1

E(2) = E o182 (111-140)

Substitution of Eq. (III-28) into {(III-139) gives
8| £5,(0]7

2600 (8))°- 8°2p, !

where we specify here to a particular mode éiA, jzA](O) is the field

E, = i (ITI-141)
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of the electromagnetic mode first order space harmbnic (in the absence
of interaction) at point x = 0 where the electron current passes.
PA is the total power of the mode, which is power normalized
(Eqs. II-A30,A31).
On the other hand, in the present section we used a slightly

different approach. An external current distribution

iRz

J1(xsz) = dqy(x) e” (I11-142)
or the corresponding polarization
S ’
Popert =~ @i (111-143)

induces, through Eq. (III-109), the eigenmodes of the periodic wave-
guides. If for a particular mode jéA' B? =~ B , this mode will be

predominantly excited and will grow with amplitude KA(z)

E(x,2) = Ky(2) §,(x:2) (111-144)

In particular, the synchronous space harmonic field will vary as
. A

i -ig,2
E; (x,2) = K;(2) EA](x,z) = Ky(2) _§A1(x)e " (111-145)

To find KA(z) we solve Eq. (III-109) in the same manner as be-
fore, using (III-143) instead of (III-108). An expression similar to

(ITI-115) is readily attained

oo

E
KA(Z) L dz f[ dxdy é;;(x,z)‘LA(x.z) = iwy e

-co

-i(AB)]z

L. . o
x J dz eﬂAB)}z [J dxdy’é%i(x,z) -j{x,z) (I11-146)
0

-0
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where we assumed in (III-116) n = 1 (phase matching through first

order space harmonic)

_ A 2m _ _ A
(68)1 =g -8 = Gy N B B] (I11-147)
Using (III-123) and substituting in the right hand side of
(ITI-146) the Floquet expansion (III-125) and the definitions (III-

142,147), we get the result,that only the term with the first order
-8, 2
space harmonic £, (x) e 1" does not vanish in the z integration,
T
and Eq. (III-146) yields

-1(AB)1z ©
Ki(z) = - E-7ﬁi;*-— j dix ;;K%x) - 3(x) (111-148)
i(8] - 8)z

K,(z) FeE dx &* (x) * j(x) (111-149)
G 4PA(B§-B) Im E;"’"1 .

Now substituting in (III-145) we find

(e 2]

j dx 3551(x) 'jfx)

Q0

-ipz

Est5a2] = 1 ] (x) e

B w,(6h - 8) E, y
(I11-150)

or

0o

- i * . X
E;(x) = W ém(x)-f dx EA]Ix) 31(x) (III-151)

oo

Assuming By = B this can be written as

o«

2
Eyfx) = § — ABZ g ix j§A1(x) J dx i;i](x)- i{x)
A (I11-152)

-
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This result is a generalization of Pierce's equation (III-141)

to the case of finite width and general transverse profile of the cur-
rent. It includes transverse field as well as longitudinal field
coupling. In the 1imit where the current is a zero thickness sheet at

x = 0, and

J dx £x(x) - 5, (x) =§ ;1(0) I (111-153)
4 1

Equation (III-152) is identical to (III-141),

The confirmation of the Pierce equation (III-139) is of consid-
erable interest to us, since it will be used extensively throughout
this work. It is striking that the one-dimensional simple model and trans-
mission 1ine analogy originally used by Pierce [1950] provided expres-
sions which agree well with a three-dimensional rigorous solution of the
Maxwell equation.

A similar derivation of Floquet electromagnetic mode coupling to
space charge wave can be found in a previous work of Barybin and

Ter-Martirosian [1969].
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Appendix III-A : Computation of Space Harmonics in a Periodic

Asymmetric Dijelectric Waveguide and the Effective Nonlinear

Coefficient for Second Harmonic Generation

In the following definitions the left-hand side corresponds

to notations used in the text while the right-hand side corresponds

to notations used in the program.

Input

w 2w

ng ~ G(1) ng G(3)
n? > Q(1) nZ%> Q(3)
K%t > K(1) K29t » K(3)
8%t » B(1) 624t » B(3)

w
teff/t + T(1)

2w
teff/t - T(3)

These parameters can be calculated for any asymmetric waveguide using

program 3 (Append. II-C). A TE mode is assumed.

Part 4:

This part calculates the propagation and profile parameters

of the four space harmonics that are involved in the phase matched

second harmonic generation (Eq. III-19):

cosh(th) -i sinh(th)
an(X) = By + Cy -t<x<0
cos(th)j sin(th)
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Oty ( X+1)
a(x) = A e N X < -t
_'Y X
an(x)=FNeN x> 0
where
N =1 for m=20 frequency w
N =2 for m=1 frequency w
N =3 for m=20 frequency 2w
N =4 for m= -1 frequency 2w
hNt = /Inz kz- Bﬁ| t -+ H(N)
YNt = P(N)
aNt + A(N)

(These parameters are defined in Eqs. 11-20,21,23).

w
Ch [z /E = /Zt; S c(1) =*/TUT2
eff
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w ,Bw w [
BO zw—u/'-t--* V(1) AO m vE > E(1)
w w Y 1

1 V2wp fak fa’t

2w /BHw N 20 /BEN

B0 m vt V(3) AO m VO E(3)
B20 /8- 1 y(4) 2o [B__ 1, ga)
ok Ry, WRE o e

(These parameters are defined in Eqs. (II-55-61) and (II-A9 A10,A12-
A15).

The program goes through different schemes in the two different
cases of trigonometric or hyperbolic solution inside the wavequide. It

indicates a hyperbolic solution by typing O(N) (negative)

2 2 2
ng k™ - By ~» 0(N)
The program types the space harmonics propagation and profile param-

eters and the wave number mismatch AR = Bzm - 2g¥ = 2n/L .

Part 5:
This part calculates terms in the overlap integrals of the differ-

ent space harmonic profiles,

U(1,I,M,N) sin[H (I)ulsin[H (M)ulsin[H (N)uldu} c(I) C(M) C(N)

{

cos[ H(I)ulcos[ H (M)uJcos[ H (N)uldu} V(I) V(M) V(N)

1]

{

u(2,I1,M,N)

1]
1
e s =
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0
U3, TLMN) = { [ sin[H (I)ulcos[ H-(M)ulcos[ H (N)uldu} c(1) V(M) V(N)
4
0
U(4,I,M,N) = { j cos[ H(I)ulsin[H (M)ulsin[ H(N)uldu} V(I) C(M) C(N)
o1
5
U(5,1,M,N) = { f elA(T) +AMM) + AN I(x+t) 403 E(1) E(M) E(N)
.
U(6,1,M,N) = U(T,I,M,N) +U(2,1,M,N) + U(3,1,M,N) + U(3,M,N,1) +
+ U(3,N,I,M) + U(4,I,M,N) + U(4,M,N,I) + U(4,N,I,M) +
+ U(5,1,M,N)
Part 6:

This part calculates the effective nonlinear coefficient. It

types the two relevant overlap integrals

0
. 2 1 g 2 gew
U(6,1,2,3) = [ f 2, (x) aj(x) aom(X)dXJwT'an (déggq) Ton

-00

7 2.2 1 g )2 [g
U(G.]n-lsq') 2 J [ao(X)] a_](x)dx ‘/E a fz 2(1)1.[) 4(.01.1
w

-00

and the parameter D

D = 2U(6,1,2,3) + 4U(6,1,1,4)

from which the effective nonlinear coefficient deff may be found:

d = dta wa

eff
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Parts 8,9
These parts calculate the profiles of the four space harmonics

which are involved in the interaction; evaluates and types them for

points: x/t = -2,-1.9,-1.8,--+,0.

W(1)

n

w Bw
ao(x) m \/{'

W(2) = a(x) f? ‘
] %o ¢ o/

u3) = o200 oo A

H(4) = a29(x) fm ]
fr,a7t

The parts also calculate at the same time (by step summation)

the overlap integrals:

0 O
B w W _2w 1 g% g
Y(10) = [“L a, ay a, dx] 2 fw ( Y /IEE
0 .
2 w
B w2 _2w 1 g 8
v = L[ @2 2% ax - (iju) a
-2 w

from which one can calculate

D = Y(10) + 4Y(11)

as a check to the calculation of parts 5,6.
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LIST PROGRAM 4

2nd Harmonic Generation

4.01 LET R(X)=(EXP(X)+EXP(=X))/24

4. 02 LET S(X)=(EXP({)-EXP(=-X))/2.

4.1 SET L=B(3)-2%B(1).

4s 11 SET H(2)=K(1).

4. 12 SET G(2)=G(1).

4. 13 SET QC(2)=QC1).

4. 14 SET B(2)=BC(1)+1,.

4.15 SET K(4)=K(3).

4.16 SET G(4)=GC3).

44 17 SET QC4)=QC3).

44 18 SET B(4)=B(3)=L.

4. 19 SET N=1.

44191 SET O(N)I=CRIN)I«K(N)I)ITt 2=-B(N)1 2.

4. 192 TO STEP 4.20 IF 0O(N)»>0.

42 193 SET H(N)=SQRT(=-0C(N)).

4. 194 TYPE OCND),H(N).

4. 195 LINE.

4. 1951 LINE.

4. 196 TO STEP 4.21.

4 20 SET HC(N)=SQRTC((GI(N)I*K(N) )t 2=-BI(N)I12).

4. 21 SET ACN)=SQRT(BIN)T2-K(N)Tt2%Q(N) 1 2).

4. 22 SET P(N)=SQRT(B(N)t2-K(N)>12).

4. 23 SET N=N+1l.

4. 24 TO STEP 4.191 IF Nes=d.

4.3 SET N=1.

4.31 SET C(N)=SQRT(2/T(N)Y).

4. 32 SET V(N)I==H(N)/P(N)I*C(N).

4. 33 SET E(N)==(HN) /P(N)®COSCHIN)II+SINCHIN))»)I»*C(N) .

4+ 34 SET N=N+2.

4.35 TO STEP 4.31 [F N=3.

4.4 SET N=2.

4,401 TO STEP 4.462 [IF 0(N)<O.

4. 41 SET E(9)=H(NI®CAINI+PINII*COSCHND) I=CHIND)I T 2=ACN I P(N) I SINCHIN) ).
4. 42 SET VINI=CAMI*SINCHINI I+HINI*COSCHINI ) I*U(N=1)/E(9).
4443 SET CCNI=CA(N)I*COSCHIN)I I=-HINI*SINCHIN) ) I*UN=1)/E(9).
4. 46 SET E(N)=H(NI*U(N=-1)/E(9).

4. 461 TO STEP 4.47 .

de 462 SET E(I)=H(NI®(AINI+PINII®H(H(NI I+ CHIN)I T 2+ ACNI «*P(N) I« 5(H(N) )«
4 463 SET C(NI=CAMN)I*R(HN)II+HINI*SC(HINI I I*VIN-1)/E(9).
4o 464 SET V(NI=CAMN) «SCHNDI I +HNI *R(H(ND) ) I *U(N=1)/E(9).
4« 465 DO STEP 4.46.

4. 47 SET N=N+2.

4. 48 TO STEP 4.401 IF N=4.

4.5 SET N=1.

4. 51 TYPE G(N), QNI KNI BINIHINY, PCN) 5 ACN DY CEND 5 VNI E(ND .
4.52 LINE.

4. 53 SET N=N+1.

4¢ 54 TO STEP 4.51 IF N<=4.

4¢55 TYPE Lo TC1)5TC3).

4456 LINE.

44 51 LINE.

4. 59 LINFE.



5101 SET I=1l. =111-

5102 SET M=1.

5¢ 103 SET N=1.

Se 12 SET ZC1,IMsNI=HCI)+H(MI=HIN) .

Se 13 SET Z(2, I,sMsNI=H(MI+H(NI=H(I).

Se 14 SET Z(3,1,MsNI=HCII+HI(NI=H(M).

Se 15 SET Z(d,IMeNI=HCI)+HMI+H (N .

S« 151 SET J=1l.

S5¢16 SET X(J)=(1-COSCZCJ [ MsNIII/ZCTs [sMaND

Se 17 SET Y(J)=SINCZCJs IaMaNDII/ZZC T 1aMaND @

S« 171 SET J=sJ+l.

5.172 TO STEP 5.16 [F Je<=4.

5¢ 18 SET UC1sI,MasNI==1/74%C(XCII+XCRI+XCI)=XC(4)I)*CCII*C(MI*CIND»
Se 19 SET UCE, ToM )= 174 (Y CII+Y(2I+YCI+YCAIIRVUCTIRVIMI*UIND) .
520 SET UC3,1sMoN)==1/4%(XC4)=XC2)+XC1I+XC3)IRCCI IR VIMIRUIND -
521 SET UC4s I sMaNI=1/74%(YCI+Y (1))=Y CAI=Y(2) )+ UCT I *CCM)I)*CCN) .
S« 22 SET UCS, 1-M>N)=1/CACI)+ACMI+AMND I *ECTI ) *E(M)®E(N) .

5. 25 SET N=N+1.

526 TO STEP 5«12 IF N<=4.

5. 27 SET M=M+1l.

528 TO STEP 5.103 IF M<=4.

5« 29 SET I=l#+1l.

530 TO STEP 5.102 IF I<=4.

5« 301 SET J=1a

5. 31 SET I=1.

5.32 SET M=2.

5« 33 SET N=3.

S5 34 SET UGG IoMaNI=UC Lo ToMeNDI+UCE IoMaNI+UCE, [oMaNI*UCIMaNS T )
535 SET U6 T,MNI=UCE, [MaNI+UCT N ToMI+UCA, ToMaNI+UCAMN,T )
5¢36 SET UGB [aMeNI=UCHE ToMaNI+UCAIN ToMI+UCS5: [2MaND) e

5. 37 SET M=1l.

5. 38 SET N=d.

5¢ 39 SET JaJ+l.

S« 40 TO STEP 5.34 IF J=2.

6.1 SET D=2%UC6, 1,2, 3)+4%1)(6, 151, 4).
6+ 2 TYPE UCE, 1,2, 3)5UC6s 15 154)5De

T«1 DO PART 4.
1«2 DO PART 5.
T+«3 DO PART 6.

3.01 SET N=1.

B.1 TO STEP R.14 IF D(N)<D.

8.11 SET Z(10)=CO5¢(XC10)).

B.12 SET ZC11)=SINCXC10)).

B.13 TO STEP 8.16.

B. 14 SET ZC10)=R(XC10)).

.15 SET Z(11)=5(XC(10)).

Be16 TO STEP 8.20 IF XC10)>=1.0.

J« 17 SET WNI=EMN)I*EXP(ANI*(XC(10)+1)).
B« 18 TN STEP B.22¢

3. 20 SET WCNI=EMI %7 C10)+CCNI*ZC11).

8. 22 SET NeN+l.

3.221 TO STEP HB.1 IF N<=4.

3,23 SET YC1O)=YC(1O)+WC1I*WC2)«W(3)*0e 10
B.24 SET YC11)=YCLl1)+WC1) 1 2«WC4I*Dela
B+25 TYPE WCL)aW(2), WD), W), rC10)5YC11)e
B«21 LINE .«

B.23 LINE.

9«1 DO PART 4.

9.2 SET Y(10)=0.

9.3 SET Y(11)=0.

9.4 DO PART B FOR X(10)==2¢.1)0.0.
9«5 TYPE 2#Y(10)+4%¥(11).
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*D0 PART §
OC(N) = =6. 406068
H(N) = 2.53102114
GC(N) = 3.5
QI(N) = 3.3
K(N) = 3.55651981
B(N) = 12.2252764
H(N) = 2.34325031
P(N) = 11.6965187
A(N) = 3.42221989
CIN) = 1.22979312
VIN) = - +246373573
E(N) = =.70883523
GIN)Y = 3.5
Q(N) = 3.3
K(N) = 3.55651981
B(N) = 12.7025302
H(N) = 2.53102114
P(N) = 12.194484
ACN) = 4.85885573
C(N) = ~-.0167864274
VIN) = ~+0167195898
E(N) = ~9.13214633*10(~-4)
G(N) = 3.525
QACN)Y = 3.325
K(N) = 711303961
B(N) = 24.9278066
H(N) = 2.69871914
PIN) = 23.8914254
A(N) = T«B7607256
CI(N)Y = 1.31652513
VIN) = -« 148711578
E(N) = =.429815935
GI(N) = 3.525
Q(N) = 3.325
K(N) = 711303961
B(N) = 24.4505528
H(N) = 5.55419616
P(N) = 23.3930374
A(N) = 6.20213745
C(N) = -.0266232037
VIN) = =3.59543437%101(=-5)
E(N) = ~-.0177609594
L = 4772538
TC1) = 1.32240925

T(3) = 115390934
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Appendix III-B Computation of the Propagation Parameters of TM

Modes in a Symmetric Waveguide and the Interaction Impedance

We calculate the TM mode parameters of a symmetric dielectric
waveguide. This is used in order to calculate the interaction imped-
ance of such a waveguide with periodic perturbation on its surface.

The dispersion relations of a TM mode in an asymmetric waveguide
were derived in Appendix II-A., For symmetric waveguides they can be
solved and the different propagation parameters can all be written as

a function of the normalized propagation parameter ht . For even

modes:
1/2
ht a 2:ht
kt = '“21“—12—T72'[1 + tan” (57) ] (II1-B1
(ng - na) ;g Z )
2
n_(ht) n 2 ht.o1/2
Bt = (n2 a 172 [1+ ;g.tan )] (111-B2)
a g
2
) na(ht) t
. ot tané%—) (111-B3)
g

The equations for the odd modes are the same with the only change

tan(ht/2) - -ctan(ht/2). The effective mode width toee CaN then be
found from equation (II-A32).

feff . (T2 + ()% (1, ()2 + ()% 2 (Eii-8408

¢ FF  wh G ()F nly
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When these parameters are found the interaction impedance can be

evaluated using Eqs. (I11-43,44).

The propagation parameters yt, kt, gt, teff/t and the normalized
interaction impedances Ei1(0+), ki1(0') were computed by computer and
hand calculator as a function of (ht) for different values of Ngs Ny
For ng = 3.5, n, =1 the results are plotted in Figs. 15 to 18 and 9
as function of kt (or t/A). The normalized interaction impedance

(Ei](o*)) defined by:

R, (0%)

1]

N 2
Ki](O‘)///1§;- J§§3 (111-B5)

is given for these values of parameters by:
2
6 (ht)
(v t)%(kt)2(B_t) (t_ . o/t)
0 0 eff

Keq(07) = 6.9125 x 107 [(8,t)+29.747(y, t)1?

(IT1-B6)
2
(hyt)

K,(0%) = 1.0373x 1073 —{(8,t) ¥2.4283(y, )]

(v £)°(kt)?(8 t)(t. ../t)
Yo o eff (111-B7)

The curves corresponding to these expressions are plotted in Fig. 9.
The 1isting of the computer calculation of kt, Bt, yt and teff/t
is also given in the end of the appendix.
The following notations in the text (left) correspond to notations

in the program (right).

->
ht - h teff/t t
I'lg g
Rt >~ b n - a

Yt =>p
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Fig. 15 Dispersion relation-TM 1st

order mode (yt).
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Fig. 16 Dispersion relation-TM 1st order mode (Bt).



-117-

t/ X
0.2 05 1.0 1,5 2.0 2.5
! T | T T 1

ht

i (I S ] S N S S RS ) SN
2 34 56 7 8 9101121341516 17 18

Fig. 17 Dispersion relation—IM 1st order mode (ht).
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Fig. 18 The effective width (tef‘r‘/t) of TM 1st order.
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" = dg—ina o = PO ———
l.5 Setl p=jrgecrasa.

» l.0 Set La(l/qvg+{jaJ*n:n}/lpap*rﬁtUaZ/J/&,h)t(ptp+h-hj4pup.
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Appendix III-C: Coupled Mode Formulation and the Effect of a Pertur-

bation in the Transverse Structure of the Waveguide

Coupled mode analysis is a very useful tool in analyzing electro-
magnetic wave propagation in dielectric waveguides [Marcuse 1969,1972,
1973,1974; Yariv 1973B; Stol1 1974]. Some basic formulas which result
from this theory will be presented in the present appendix for future
reference and they will be subsequently used to derive a simple expres-
sion for the change in a mode propagation parameter due to a slight
change in the transverse structure of the waveguide.

We wish to start from a general formula which can be reduced to
different cases (TE,TM modes). The discontinuity of the normal
electric field at the waveguide boundaries imposes some mathematical
difficulty which may lead to inaccurate formulas in the case of TM
modes [Stoll 1974]. We will use the carefully derived formulas from
Marcuse [1978].

The problem in question is the coupling between the eigenmodes
{jgh(x,y)} of a general cross section dielectric waveguide due to the
introduction of a small perturbation to the dielectric constant

(n2 ks n2+ Anz).

The field of the perturbed waveguide can be given in
terms of the unperturbed modes:
-iB 2z
E = ] k(2 En(x.y) e " (111-C1)
n
where Kn(z) is a slowly varying function. After some development of

Maxwell equations assuming a solution (III-C1), a set of coupled mode

equations is obtained for the coefficients Kn(z) [Marcuse 1974]



dK i(B_-B )z
n - n m
i Eﬂ“nm" m€ (I11-C2)
where
WE_ ¢r B B 2
- 0 2 . n"m n C
“nm = TP ” [ Epy - Bpyt TR, BT 2o Fnz EnzJixdy  (111-C3)

where in our notation (which is somewhat different from that of Marcuse
[1974]),Pn. the power of mode n, is a real number which can assume neg-

ative values (when Bn < 0), éi is the transverse component of the

nt
mode sg is the longitudinal component,and B 1is real(positive or

nz n

negative),
In the case of a slab waveguide the modes jgn are either TE or TM

modes. For TE modes éiwz =0 and jgnt = é%y éy , then Eq. (III-C3)
simplifies to

00

We
_ _ 0 2
o = T ” mn? gx B dxdy (111-C4)

=00

2

For the TM mode there is not much simplification. When An~ << n2 then

to first order in the perturbation:

WE £ BB
B 0 2 * n-m * o
“nm T TP _ ” i [gnygmy ¥ T8.B, Fnz Emz]dXdy {TL1-C5)

-0

. Anz(x). viz. there

We now want to specify to the case where An
is only a change in the transverse dependence of the dielectric wave-
guide. We solve Eq. (III-C2) with the initial condition Cm(O) = Gmn‘

Equation (III-C2) can be approximated by
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dKn )

oz © “nn*n (I11-C6)

which indicates "coupling" of the mode with itself because of the
perturbation. This allows us to find the change in the propagation
parameter of the mode due to a slight change in the transverse struc-

ture of the waveguide. The solution of (III-C6) is
KnnZ
K,(z) = K (0) e (IT1-C7)

The field can approximately be written as
-iB z (¢, -iB_)z
Elz) « K. lz) ién(x) e " =k/(0) ;;n(x) e " T (111-c8)

which means that the effect of the perturbation is to change the prop-

agation constant of the mode Bn by

ABn = iKnn (111-C9)
for a TE mode we have
we_ ¢
_ 0 2 2 8
18, = 75 [ an1E 17 axay (111-C10)

and for T™M (and TE) modes

we %
At g Jf an?| £, |? dxdy (111-C11)
n

These equations are useful in many problems of interest.
Let us find for instance the effect of adding a thin uniform

dielectric layer Ny of thickness "a" on top of an asymmetric
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dielectric slab waveguide. The eigenmodes of the (unperturbed) wave-
guide are derived in Appendix II-A. We specify to TE modes and to
simplify the integration we assume a thin enough perturbation layer
so that anix) does not change considerably through its thickness.

So
(nﬁ - nz)k2 aw

- a 2
R TR 1€ ny (0] (111-C12)

AB

Using Eqs. (II-A4, A9, A15) and assuming that the modes are power

normalized (II-A14,Pn/w==1 watt) we obtain

h,

0) = a (0 £ RO (I11-C13

Eny(0) = 2,(0) = A /teff / o )
2

(nﬁ - nz) k h2
A, = > 2 (I11-C14)
n Enbeff,

This derivation is equivalent to the adiabatic approximation of Chap-

ter II, Sect. 5 (Eq. II-93).
In the case of well confined modes this equation can be written

more explicitly. Substituting hn =nr/t, B, =nk, T

n g
2 2,1/2
(n_ -n k, t =t , we get
g a effn
2 2
2 n5-n
- m d a_ la r
My =2 2T 7 .3 (111-C15)
g ng - Ny t

As a particular case, the effect of increasing the thickness of the

waveguide by "a" (nd % ng) is found to be

- Tn" Aa =
AB, zﬁ;-;g (111-C16)
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CHAPTER IV

MONOLITHIC SOLID STATE TRAVELING WAVE AMPLIFIER
IN THE COLLISION DOMINATED REGIME

1. Introduction and Description of the Device

The application of periodic structures in traveling wave
amplification was discussed briefly in Section 3 of Chapter III. We
mentioned there the possibility of travelling wave interaction with
drifting carriers in semiconductors, suggested new structures for the
embodiment of this interaction (Fig. 8), and calculated the interaction
impedance of those structures.

The possibility of solid state travelling wave interaction was
discussed by several authors. A simple closed analysis of this inter-
action was first introduced by L. Solymar and E. A. Ash [1966]. This
was a one-dimensional model coupled mode analysis based on earlier
analyses of vacuum traveling wave tubes (TWT) presented by Pierce
[1950]. Frther elaboration of the analysis (three-dimensional) was
presented by Masao Sumi [1966, 1967], who has also first demonstrated
experimental evidence of this kind of interaction using n type InSb
semiconductors [1968]. B. Zotter [1968] presented critical analysis
of Sumi's derivations. Another demonstration of the effect in InSb
and Ge at 4.2°K was presented by Freeman et al. [1973]. Further
elaborations and different approaches are presented in Refs. [Nadan
1967, Hines 1969, Ettenberg 1970, Meyer 1970]. A related work is also
that of Swanenburg, who analyzed [1973] and observed [1972] negative
conductance in an interdigital electrode structure on a semiconductor

surface.
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In most of the proposals to date, the solid state amplifier is

considered as a straightforward extension of the conventional travel-
ling-wave tube amplifier, where a current conducting semiconductor is
placed in close proximity to an external slow-wave circuit (helix or
metallic meander line, electrically insulated from the semiconductor.)
A different structure (Fig. 8) which was proposed before by Gover and
Yariv [1974] is discussed here. This structure has the current and
“the external circuit" integrated together in one monolithic semi-
conductor crystal. The external circuit in this case is really an
integral part of the structure, consisting of a periodic perturbation of
the dielectric constant (e.g., corrugation). The current conducting
layer is placed right next to (or even at the same place as) the periodic
layer. It can be introduced by diffusion or ion implantation (Fig. 8a)
or epitaxial growth [Nakamura 1974] (Fig. 8b). The electromagnetic wave
is guided in a dielectric waveguide and no external cavity is required.
At very high frequency operation (millimeter waves, far infrared)
where short (submicron) period of the periodic structure is essential,
the present structures seem to be much more feasible for fabrication than
the previous proposals, and in addition provide closer coupling between
the current and the electromagnetic wave. Common use of semiconductor
techniques, epitaxial growth, doping, 1ithography, and waveguiding
indicates that these structures have also the advantage of compatibility
with electronic and possibly future optical integrated circuits.

The design considerations of any of the structures of Fig. 8 can
be aided by the understanding of wave propagation in periodic dielectric

waveguides that we achieved in Chapters II and III. The field of the
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first or -1 order space harmonic (which carries the interaction) is

given by

at](0+)e'(2"/L)x x> 0

a,q(x) = (1v-1)

a,(07)e(2WL)x x< 0

where ai](0+) = F,y » a,,(07) = B, (see Eqs. II1-31¢36,42). Hence,
effective interaction can occur only in a layer of distance L/27

above or below the perturbation layer. For this reason and also to
avoid undesirable heating, the conduction layer is confined in both
structures (Fig. 8a,b) to thickness d = L/2r . As follows from

the computer numerical calculation (Appendix III-B) for structures made
of semiconductor with ng = 3,5, maximum interaction impedance is ex-
pected when the thickness of the waveguide is about one-seventh of the
operating wavelength t = /7 (see Fig. 9). This should be a
preferable choice in the structure design.

In the following sections we present a one-dimensional coupled
mode analysis of solid state travelling wave interaction in the colli-
sion dominated regime. This analysis proceeds along the same lines as
presented by Solimar and Ash [1966] and previously by Pierce [1950]
(without collisions and diffusion), However we add here (in Sections 4
and 5) the (non-negligible) effect of interaction with the asynchronous

space harmonics, and we also apply (in Section 6) the analysis to a

different structure (Fig. 8) whose interaction impedance was calculated

in Section 3 of Chapter III.

2. The Dispersion Equation

The 1ine of analysis is as follows : The z-component of a slow

wave field component E (z) = Ec ei(“t'ﬁz) modulates the drifting carriers
1
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and generates a carriers' plasma wave. The plasma wave in turn induces

electromagnetic wave in the corrugated waveguide. Calculating each of
the processes separately and substituting them self-consistently re-
sults in the dispersion characteristic for the combined excitation
travelling in the structure. The imaginary part of the propagation
parameter £ gives the expected gain.

From any linear plasma response theory it results that an exter-

nal harmonic field E_ will induce a plasma current J, = J](B.w)
. 1 1
2 et Wt=BZ) \osen i proportional to the Togal Fiald E, :
S 1
Jz] - 1wxp(8,w)E21 (1v-2)

Xp is the plasma susceptibility to be found later. Ez is the local
1
field which is experienced by the plasma:

= E + E -
Ez] cz, Pz, (1v-3)

where Epz is the plasma space charge field given by Poisson equation
1

(rationalized M.K.S. units system is used throughout the derivation):

= 18

Z-l €

"
P ew"]

m |—

_1BE =

V-4
pz, Xp E; ( )

1

where we also used the continuity equation SJZ = wpy to derive Eq.

(IV-4). We hence obtain 1



z P (Iv-5)

Ep =1+ xp/.E (Iv-ﬁ)

where € 1is the dielectric constant of the semiconductor apart from the
free carrier plasma contribution.
Equations (IV-2,5,6) give:
E *
Z 1+ x /e = (1v-7)
p
This last result represents the Tinear plasma response to an external
field Ecz]' It includes as a special case the plasma dispersion rela-
tion €p = 1+ xp(B,uﬂ/e = 0 . This follows from requiring that J,
1

be finite with zero external field E_ =0 inEq. (Iv-7), which can

occur only when the denominator 1 + xp/e vanishes.

In order to complete the coupled mode analysis we need an expres-

sion for the electric field Ecz1 which would be induced in the structure
(circuit) by an impressed current Jz1. We use the heuristic Pierce
expression (Eq. III-139):

8%k,
E =i J (Iv-8)
€z ge-g zq
1
where S = wd 1is the interaction cross section area, d is the

thickness of the conducting layer, and w is the width of the waveguide.
81 = Bo + 2n/L is the propagation constant of the first order space

harmonic in the absence of charge carriers (real number). Ky is the
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interaction impedance which is characteristic of the electromagnetic
mode (Eq. III-128).
The dispersion equation of the coupled modes is obtained by im-

posing self-consistency on Eqs. (IV-7,8). This yields:

2

K;SB- B w ¥ (Bsw)

1 2 . (1v-9)
BB 1+ xp(Bswl/e

When the coupling vanishes (KT= 0), the dispersion relation gives
the four independent eigenmodes of the system, the electromagnetic
waves B = 181 and two plasma space charge waves which are the solutions
of Ep(g.m) = 0 . For small coupling, Eq. (IV-9) still has four solu-
tions which are slightly different from the uncoupled modes. We can
solve for the "electromagnetic-like" mode, using first order expansion
of B: B =B+ B (B] is the propagation constant of the electromag-
netic component with no coupling). Assuming Ep(B,w) does not have a

root near B =B] we get

X (B'I !"JJ)
AB = Lk sezm ; (Iv-10)
A (e (Sl I - Xp(81,w)/g
In particular:
Imy
Img = ImAg = % K{SEjw P
|1+ Xp/€| (1v-11)

This results in an exponential intensity gain constant of g = 2 Img.

3. First Order Space Harmonic Interaction with Plasma Which is Described

by the Macroscopic Equations

The analysis of Section 2 is very general in the sense that it does

not impose any limitations on the plasma model as long as the linear relation
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(IV-2) holds. In the present chapter we use the standard macroscopic

(moment ) description of the plasma, in which it is described by its
first three velocity moments (carriers density n, average drift
velocity v, and thermal velocity vy or temperature T). The assumption
is that in the collision dominated regime collisions are frequent
enough to relax the carriers to a steady state distribution keeping the
temperature of the plasma a meaningful parameter [Steele 1969, Stix
1972].
The velocity field v(z,t) of negative charge carriers is governed

by the force equation (collisions included)

doviz,t) =N +y - D 0 v (IV-12)

where D 1is the carrier diffusion coefficient, T is the collision re-
laxation time, and m the effective mass of the carrier.

The parameters E, v, and n can be broken into dc and small sig-

nal ac (harmonic) parts:

E(z,t) = E, + Eqe! (WE-B2) (1v-13)
v(z,t) = ¥, * v]ei(“t'ez) (1v-14)
n(z,t) = ng + nlei(wt"sz) (IV-15)

where ]E]| << |E0|,|v]| << |v0|,|n1] << |n0|. When these are sub-

stituted in Eq. (IV-12) and the dc and ac parts are separated we get:
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_ eT
vo o - m— EQ (IV"]B)
. 1] _ e D
(lw - 18v, + vy = = =By + 1 Aot B (1V-17)

The current density separates into two terms

_ _ i(wt-Bz) _ i(wt-pz)
J = -env = -en v - e(n,v; + v )e = J tdqe (1v-18)

o
I

» BNV (1v-19)

0

The dc equations (IV-16,19) constitute Ohm's law:

3o = 9E, (1v-21)
e2n T

_ 0
gy W (1v-22)

To find the ac susceptibility (IV-2) we use the continuity

equation

ad. an
il (1v-23)
which has an ac part:
=_.@__. -
nq = J] (IV-24)

Equations (IV-17,20,24) are then solved for J,, in terms of Ey s

1!
resulting in:

il
ie n01/m

xp(s,w) = (1v-25)

(Bvy-w) + 1[DB°-7(Bv,-w)°]
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We use the following definitions and identities: The plasma frequency

noe2 e
wp L (1v-26)

Thermal velocity is defined by:

kT
I " (1v-27)

The Einstein relation is assumed to connect the diffusion coefficient D

and the mobility u (v0 = 3E )z

B o= (1v-28)

which, using (IV-16) can be written as

kBTT
) e (1v-29)
or
2
D= vqt (1v-30)
so we can write (IV-25) in the form
) inET
X (Bsw & =
P (Bvg-w) + 1t[vaB°~(Bv,-u)?]
= io
- 5 (1v-31)

3 2 2
(B -w) + itlvyB7-(Bv -w)"]
and consequently the plasma dielectric constant response (IV-6) is

(8vy-0) + itlve° + ud = (Bvg=w)’]

ep(Bsw) = 22 B
p (B -w) + it[vie” - (B, -w)“] (1v-32)
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Egs. (IV-31,32) can now be directly substituted in Egs. (IV-9,
10) to result in the coupled modes dispersion equation and its first
order solution respectively. But before doing this, it is interesting
to check our results at some familiar limits. In the Timit 1 » =«

Eq. (IV-32) reduces into

VTB # (BV 'm)
which is the dielectric constant of collisionless drifting plasma
including diffusion effect. When Vp = Vg = 0 we get the familiar
expression 2
w,
ep(Baw) = 1 - ~{§ (Iv-34)

w

An interesting 1imit to check is the case of the conventional
traveling wave tube amplifier. In this case 1 = =, Vp = 0 (zero
temperature) and ¥y N %T # 0. We show in Appendix IV-A that in this
case our results reduce to the conventional traveling wave equation
(IV-A3,A8).

Coming back to our results in the general case (t # », T # 0),
we realize that Ep(B,w) (Eq. IV-32) does not have real roots. Hence
ep(S],w) # 0 and we usually may use the first order solution of the
dispersion equation (IV-10). Directly substituting (IV-31,32) in
(IV-10) we get

io

1 2 0
AB = » K,SBS5w (1v-35)
2T (yvgmw) +it [VEEGHE - (ByVg-u)°]

and particularly
B1vo -w
(Byvg-w)® + Vi8S + uf -

Img = %—K1obSB%w 5 (1V-36)

(8vg-0)°]
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This can be written as

ImB = (1v-37)
“ 810 # ADGS-F - BEFF

where BV "

5y = 10 - - (1V-38)

phl
or when Bo << 81 s 2m/La
v
_ ‘o A

Sy w== (1v-39)

A = ur (1v-40)

B = [(vTB1/w)2 + (wp/w)2]]/2 (1v-41)
and

Qp = SByKyo, = wde Ko, (1v-42)

When the conducting layer thickness is d = L/27m = 1/875 (see Fig. 8) it

can be simplified to
Q] = WK]GO (IV-43)

The curve describing the gain dependence on drift velocity [Eq.
(IV-37)] is shown in Fig. 19. It is a typical S-shaped curve which
turns from negative (attenuation) to positive (gain) at the beam-
electromagnetic wave synchronism point S] = 1 providing gain at the
Cerenkov condition (I11-25,27).

Such an S shaped curve is typical %o coupled wave problems with
dissipation present [Barybin 1974]. When there is no dissipation an
exact phase matching condition of the interacting waves zan be found

and the first order solution (IV-10) is not valid.
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Fig. 19 Gain curve of the traveling wave amplifier in conditions
T#0 T # «. Describes the gain vs. drift velocity Yo
(for fixed A).
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At a fixed frequency w, the gain as given by Eq. (IV-37) reaches

its extreme at
2a%82_1 + [(2A%8%-1)2 + 12n%%71/2

S, -1=t% (I1v-44)
™ 6A°
The parameter AZB2 = Tz(ws + v%Bﬁ) is independent of frequency.
22

For cases when 2A"B® >> 1, Eq. (IV-44) simplifies into

[wl + (vr8,)21/2
S.I -1=8B-= (Iv-45)
m w
and the maximum exponential gain constant is
98
gy = 2(Img); = ——— = QB — (1v-46)
]m 1 B 11 T[(V 8 )2 % m2]1/2
"1 p
For the case when 2A2B% <« 1, Eq. (IV-44) gives
2 2 2
T 0(veB4)° + wi]
s, - 1=A8° = 1 P (1v-47)
m wT
and from Eq. (III-37)
Q.8
171 Wt
g, = (Iv-48)
o F PLlvs)? + Wl

4. Backward Wave Interaction

The analysis of the interaction of drifting carriers with the
electromagnetic wave via the -1 space harmonic is similar to the analysis
of the first order space harmonic. However, since the -1 harmonic
(with By < 0) has opposite phase and group velocities, unlike the
first order space harmonic, there is some physical difference between
the two cases. The first is a backward wave interaction, and the second
a forward wave interaction. Using Pierce's analysis, [ Pierce 1950, p. 158]
leads in the case of a -1 order space harmonic to an expression

similar to Eq. (IV-8) with an opposite sign:



8% _K ;S
ECZ = =i o JZ (IV-49)
-1 8 -8 -]
where |E_1|2
Ky =—— (1v-50)
28_]|P|

where K_] is defined positive. This relation can also be obtained
from our analysis in the end of Section 6 of Chapter III ( which is
correct for backward wave as well as forward wave) considering the
fact that the mode power PA is negative for wave with negative group
velocity.

Correspondingly we get for the case of interaction with the -1
order space harmonic instead of (IV-37):

S1- 1

(5_y-1)%+A%[(s_;-1)1-B1°

Q_48
(Img)_y = - —5—

(1v-51)

where S_y, A, B, Q_; are given by Egs. (IvV-38, 40-42) with -1 sub-

stituting the index 1. In the present convention B] >> 30 > 0, hence

B_y = -|8y] < 0. In this case we can write
B v v v
S,=—2 =-0_-.202 (1V-52)
B » ph-1
Q_-I = WdB_'IK_-Ioo = 'WK_]UO (IV-53)
B <Y
S_1 = 'l 2 s positive only for negative electron velocities. The

gain dependence on drift velocity is again given by the curve of Fig.
9. Gain starts when S_] > 1 which means negative drift velocity ¥,
which exceeds the negative phase velocity Voh-1 = w/B_q of the -1
harmonic. Note that negative (ImB)_] corresponds to gain, since

B_] < 0.
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The condition of maximum gain is given again by Eq. (IV-44)
and the maximum gain is given by Eqs. (IV-46) or (IV-48) (where.Q]
is replaced by |Q_1|).
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5. Interaction of an Electromagnetic Mode via More than One Space

Harmonic

The model of interaction via a single space harmonic may be too
simplified for high temperature electron beam and low gain. An elec-
tromagnetic wave which is propagating in the periodic waveguide consists
of an infinite number of space harmonics. Each of these (even if they
are not synchronous with the current) modulates to some extent the
drifting carriers with a different space charge wave. Each of the space
charge waves interacts back with all of the space harmonics and through
them amplifies or attenuates the total electromagnetic mode.

We will assume a model in which all the space harmonics except
the main three: -1,0,1 , are neglected. Significant resonant interac-
tion will take place only between a given space charge wave and its
parent space harmonic. Our assumption is that the three interaction
mechanisms may be treated independently, and the total gain of the
electromagnetic mode will be given by the sum of the gains or attenuations
due to the three coupling interactions.

The contribution of the interaction with the zero (fundamental)
harmonic is always negative and should be related to the familiar free
carrier loss. We can try to use the analysis of Section 3 to describe
this interaction, substituting the subscript 0 instead of 1. The
variable S0 = Bovo/w is very small, of the order of 10'3 (notice
c/ng < w/BO <cand v, {2 x 107cm/sec),hence we may assumeS0 = 0.

Substituting these into Eq. (IV-37) we get

QB
(Ing)g = - 35— 77 — p -5
2 1+ w01 - (vgB /w)® - (mp/u) ]
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Q, = wds K o, (1v-55)

Since vy << c/ng < w/lg, » the diffusion term (VTBO/w)2 is negligible,

and we obtain

QOBO 1

(ImB)O = 2

2 2 25 2ye
1+ wT (1-mp/w ) (1V-56)

Following Eq.(III-28), the fundamental interaction impedance may be

defined as
2
E, |
f o
0 Zng (1v-57)

We assume a power normalized TM mode (II-A33 ) so that P/w = 1 watt/cm
and E, = 532(0) (the structure of Fig. 8 or Fig. 20 is assumed here).

0
Then Egs. (IV-55-57) result in

:
= w2T2(1_w§/w2)2 (1v-58)

(1mg), = - 9 |¢ (0)|2

These expressions for (Imﬁ)0 are formally very close to the standard equa-
tion for free carrier loss except for the spurious term wg/wz . This

term results from the use of the Poisson equation during

the derivation. Equation (IV-58) cannot account for the total free carrier
losses, since it results from a one-dimensional model with longitudinal
field (EZ) only, while for the case of the fundamental space harmonic the
transverse field (Ex) is non-negligible. These points are broadly discussed

and accounted for in Appendix IV-B .
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The fundamental space harmonic travels with about the speed of

light in the medium and can never be synchronous with the carriers,
therefore, it will always contribute attenuation to the traveling wave
interaction of the mode. The first or -1 order space harmonics can

be synchronous with the drifting carriers for correspondingly positive
or negative drift velocities. The synchronous component will contri-
bute gain to the total interaction, but then necessarily the other

two components contribute loss.
Suppose we choose operation conditions with positive drift

velocity, SO that a synchronous interaction via the first order harmonic
takes place; then interaction with the -1 harmonic is asynchronous and

lossy. FromEq. (IV-52) it is apparent that for a fixed drift velocity

(1V-59)

If the conditions are such that the first order harmonic interaction

is on the maximum gain condition $1 = Sy (pqs. IV-44,45,47), then to

find the -1 harmonic contribution we should substitute S_; = -§, =~ in
Eq. (IV-51). This results in
1+ 8§
(Img) Lol n (1v-60)
m = s
i 2 (s )%+ AL (s, )% - BEY°
m m
where
S] - (IvV-61)
m

Since B_; <0 this positive (Im 8)_1 corresponds to attenuation.
For the case when the -1 harmonic is synchronous and on maximum

gain condition, an equation similar to (IV-60) holds for (Img); with
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the subscript -1 substituted by 1 and the sign reversed (indicating

loss contribution).
6. Discussion and I1lustrative Examples

Until this point the discussion was quite general and did nat
specify the analysis to a particular structure (except for Eq. (IV-58)
which is the fundamental free carrier loss in the specific structure
in Fig. 20). At this point we direct our discussion to specific ex-
amples and calculate the interaction parameters for the structure in
Fig. 8a, whose interaction impedances were calculated in Sec. 3 of

Chapter III (Eq . III-44):

" n8 h2 2 21 2O 2
) a O + L L )
01(0) e ST 7 777 26 it 9 =T & Yo/  (1V-62)
0" g'g Na Yo eff a

To calculate the interaction impedance of the fundamental harmonic

we use Eqs. (ITI-A20, A21, A31)

520) . 'ih0 F ZmEo
weong tofs Bo (IV-63)

and Eq. (IV-57)

b2 ___}f)__
Ko =48 g ksgteffw (Iv-64)
Eq. (IV-58) is then explicitly given by
1 g ! i}
(1mg), =Vﬁ§; od T Yt 17 -2 (1-65)
dw;";w‘r (hot)2 1

ST o7

2 (K0P (8t) (tgpe/t) 1+ WPt (1-up/u®)?
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The maximum value of KT was numerically computed in Appendix III-B
for the first order mode in a symmetric waveguide ng = 3.5 . ™ 1, and

was found to be (Eq. III-50)

2
2 a_ /u_ -
K;(07) = 0.272 va/;; (1V-66)

This maximum is attained at choice of parameters t/A = 0.1448. The mode param-
eters at this point were found to be: ht = 2.783, kt = 0.91, Bt = 1.549,

¥t = 1,2535; teff/t = 0.1474. At this point the -1 interaction impedance is
given by

2
™) = S e P -
K_(07) = 0.23 & e (1v-67)

The interaction impedances increase proportionally to the square of
the corrugation depth-—-a2 » S0 it is advantageous to use deep corrugation.
However, technological difficulties are 1ikely to 1imit the corrugation
depth to something less than the period 1ength*. We will choose in the fol-

lowing examples:
a=% (1V-68)

*A recent publication [Kendall 1975] reports application of preferential
etch on Si wafers, achieving etch ratio of 1:400. Further develop-
ment of such techniques for different semiconductors may allow
fabrication of devices with large corrugation depth compared to the
period length. Some approximations that we used during the present

work will not apply to these structures.
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Let us consider two illustrative examples:

Example 1:
A = 100um (w= 1.88 x 10'3pad/sec) , T = 1.33 x 10" ¥sec,
- 13 _ 7 _ 7
mp = 1.6 x 10 “rad/sec, Ny 2 x 10°em/sec, vy = 1 x 10" cm/sec,
L = 600R

When GaAs is used as the dielectric material (effective electron mass
m= 0.08 me), the indicated tﬂp, vy are achieved (Eqs. IV-26,27) with
n, = 7.9 x 10%m™ and T = 53°.

The conditions of this example are in the regime where Eq.(IV-48)

applies (2A%B%<< 1). Equations (IV-48), (IV-43), and (IV-66) are used to

calculate the maximum first order gain contribution: g9y = 0.733 cm'].

The -1 order contribution is calculated from Eqs. (IV-60,52,53,67):

1 1

g_y = -0.11 cm” ' and the o order contribution (Eq. IV-65) is g,= -0.45 cm .

The resultant gain is

=g, +g.q+g, =017 an (1V-69)
ExamE1e 25
X =100mm T =1.7 x 10" 3sec, wy = 1.3 x 10" 3rad/sec,
vy T 2 X 107cm/sec, vr = T % 107cm/sec, L = 280R

For GaAs, the indicated w »Vp are achieved with e & 4,8 x 10wcrr1'3

p
and T = 53°K.

In this example we are in the regime of Eq. (IV-46) (2A282>> 1)
At maximum gain conditions we get g, = 1.015 cm'], 9.4 = 4.3 x 107 3cm™!
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1, resulting in:

and g, = -0.142 cm

1 (1V-70)

g=9y +9g_q+g,=0.8 cm
It should be pointed out that the equations derived above indicate
a higher gain for a longer relaxation time 1, but at the collisionless
regime wt >>1 the applicability of the macroscopic equation analysis
is doubtful. This regime, which requires different theoretical methods,
will be treated separately in the following chapters.

Higher plasma frequency (viz., higher free carrier concentration)
increases the gain due to the first order harmonic interaction. On the
other hand it also increases the loss due to the interaction of the zero
and -1 harmonics. In addition, skin penetration depth may become small
enough to 1imit harmfully the field penetration into the conducting
layer,

Appropriate choice of a semiconductor (possibly InSb) and the
temperature, which may allow higher drift velocities and lTower thermal
velocities may appreciably increase the gain. However, in high
mobility semiconductors, the small effective mass may require extremely
low temperature in order to achieve sufficiently lTow thermal velocities.

In conclusion,we demonstrated in this chapter that a new approach
to solid state traveling wave amplifiers based on existing and still
developing techniques of semiconductor surface corrugation and thin film
waveguiding may possibly provide new amplification and oscillation de-
vices in the interesting regime of submillimeter and far infrared waves.

However, the gain predicted in the illustrative examples is quite low,
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and in practice will be masked'by different loss mechanisms like
phonon absorption and some free carrier absorption from unintentional
impurities doping in the non-conductive portions of the waveguide. Also,
the structural and physical parameters assumed in the examples are
hard to realize in practice. Hence, it should be indicated that the
structure of Fig. 8a and the material and parameter choice in this
chapter are probably not satisfactory enough to produce an efficient
amplifier. There is room for improvement in design parameters and
in the structure. The structure of Fig. 8b or "superlattice"
structures (discussed later in Appendix V-A) may be found more
efficient.

The framework of traveling wave interaction analysis which we
developed in this chapter will serve us in investigating the traveling
wave interaction in different regimes (collisionless and quantum
regimes) in the following chapters. The one-dimensional model makes
it' possible to employ a simple analysis that does not mask the main
physical mechanism. It proved to be general enough to allow us to
include in the analysis also interaction with nonsynchronous space
harmonics. However, the underlying assumption of transversely uniform
electric fields is certainly not satisfied in the structure that we
analyzed (Fig. 8a). This model is much more rigorously applicable to
structures like the ones discussed in Appendix V-A (Figs. 28,29)
where there is small transverse field variation.

Evidence for gain in solid state traveling wave amplifiers was
presented in [Sumi 1968]. Even though different structure and

frequency regime were used in that experiment, one should expect
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similar quaiitative behavior. We note, however, that some important
details of the experimental results differ from the basic theory.
Higher gain was observed at the backward wave operation mode, also
instead of "S" shaped gain curve (Figure 19) gain increased in some
of the samples starting with zero applied field. We conclude that
the question of the experimental observation of amplification in a

circuit-solid state plasma interaction is still open.
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Appendix IV-A: The Traveling Wave Dispersion Equation in the Limit

T=o T=10

In the Tlimit 1o vy = 0 (T = 0) we would expect that Egs.
(Iv-9, 31, 32) will reduce into the conventional dispersion equation

of vacuum electron beam traveling wave tube. Substituting t = «

vy = 0 in (IV-31-33) one gets
2
w
Kpliis) = - ety (IV-AT)
(Bvo-w)
mZ
ep(Bsw) = 1 - P (IV-A2)
(8v,-w)

When this is substituted in the general traveling wave dispersion
equation (IV-9) one gets the conventional traveling wave tube equation

(compare [Gewartowski 1965, p. 361], [Hutter 1960, p. 328]).

2250
o EK]SB18 wwp/vo - (1V-A3)
2 w2
(8% -89) (L 8- i ]

This equation can be cast in terms of parameters customary in

traveling wave tube theory. Define C, 6, b, Q by

B = (1+iCs) (1V-A4)
0
gy =y (1 +Cb) (IV-A5)
v
K52
3. ENP S (I1V-A6)
2v
0
2
v
q = “5 sz —2s (IV-A7)
4w C 2eKqw

Assuming near synchronism condition g % B] p m/vo, we get by substitution

in (IV-A3)



=15}~
(is - b) (6% + 4Qc) = 1 (IV-A8)

which is the conventional normalized dispersion equation [Pierce
1950, Yariv 1958]. This is a third order algebraic equation which
often must be solved accurately (see [Pierce 1950]) and first order

solution is not employed.
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Appendix IV-B: TM Mode Interaction with Free Carriers

In Section 5 we extended the traveling wave interaction analysis
to the zero (fundamental) space harmonic. The result (Eq. IV-58) is
formally close to what is usually assumed for free carriers loss. To
understand the relation better we will calculate the free carriers loss
of a TM mode in a dielectric waveguide with a thin doped layer
(Fig. 20) using a standard approach. This structure is the same as

Fig. 8 with the corrugation neglected and T

"
We start from Maxwell equations:
VxE=-iwH (Iv-B1)
VxH= iweE +J (1V-B2)

where there is nonvanishing current J only in the conducting layer. Even if
the electrons in the conducting layer are drifting, they can be considered
stationary relative to the phase velocity of the electromagnetic mode

(v0 << c¢) hence we get instead of (IV-17,20) simpler expressions:

g% e (IV-B3)
ay & i
& me"TY (1V-B4)

TR 1 i
A A VA E (IV-B5)

2
ecn_t

5 0 1 _ 1 o s 1

d =5 Tt £~ % Tfar £ ° &% THur & (IV-B6)

When this is substituted in Eq.(IV-B2) we can rewrite it as

i I
¢ % M = Huek (Iv7)

where we defined in the layer d (Fig. 20) a complex dielectric constant

£ which includes the carriers contribution
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Fig. 20 A symmetric dielectric waveguide with thin conductive
layer (corresponds to the structures of Fig. 8 with
vanishing corrugation height).
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woT
- _ p 1 _ - L .
e=(1-1i - ThT)E =g, ¥ Tey (1v-B8)
2.2
~ weT
€. 2 (1 = —Prle (1v-B9)
1 w7
2
w.T
= 1 s
R o B ® pRESRE
+wT

This can readily be used to obtain the classical plane wave free carriers

losses formula [Moss 1962]:
3 @

2(Im E/e)n ¢ = “5_1% = __.EP____2_2_=

R
]

(1v-B11)

1
We proceed to derive the free carrier attenuation for a TM
mode in the dielectric waveguide (Fig. 20). The conducting layer d
can be considered as a perturbation to the unperturbed waveguide (where

wy = 0). Hence we may use Eq. (III-C11) to find the change AB in the propa-

gation parameter due to the perturbation Ae

A = %J ac || 2dx (1V-B12)

In deriving (IV-B12) from (III-C11),we performed the integration over y:
J dy = w, assumed that the mode &. is power normalized as in Appendix
II-A (P/w = 1 watt) and substituted Ae = EOAnZ.

In the present problem Ae = £-e in the conductive layer and Ae = 0

elsewhere, hence the imaginary part of (IV-ng) is
WE »
" ) 2 1v-B13)
(1mag) = (1n8)y = 1 [ [B1%x (
-d

If the conductive layer d is thin enough so that the field varia-
tion across it is negligible, the integrand in Eq. (IV-BI3) can be

substituted by its value at x = 0°. With the use of (IV-B10) one obtains
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w_Ted
(08), * - 2y 1E07)1* -
= - 2 U (012 + [,(0)1%) — LB

T+uPr?

There are striking similarities and dissimilarities between Eq.
(IV-B13)and the corresponding expression that was derived in Section §
for the free carrier attenuation of the fundamental harmonic of a TM
mode (Eq. IV-58). The two equations have similar coefficients. Eq.
(IV-B14) contains in addition to the term |§”z(0)]2 also a term
with the x component of the electric field |E;x(0')|2. On the other
hand Eq. (IV-58) contains a factor (1 - wglwz) which is absent in Eq.
(1V-B14).

The absence of the term |¢;x(0")|2 in Eq. (IV-58) is an expected
result from the approximation of a one dimensional model in the analysis
of the traveling wave interaction where transverse field components are
ignored. On the other hand it seems that the presence of the factor
(1 - mg/mz) inr(IV-SB) indicates an interaction mechanism that is
possibly omitted in the standard derivation of free carriers loss.

It is suggested that the usual separation of the electromagnetic
wave into noninteracting rotational and longitudinal waves does not
hold in the case of TM electromagnetic wave in a plasma loaded waveguide.
It should be expected that in this case there will be coupling between
the rotational wave and the Tongitudinal space charge plasma wave.

This coupling is included in the traveling wave interaction analysis,
and the coefficient (1 - mpzjmz) results there from the use of Poisson
equation (IV-4). This coefficient is missing from Eq. (IV-B14) because
the coupling process between the rotational and longitudinal wave is

missing in the standard analysis.
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The coupling between the rotational and longitudinal componénts
in the case of a TM wave, traveling in a bounded structure which
contains plasma, is an interesting effect, which may be detected in
waveguiding experiments in plasma loaded waveguides or in ATR
(attenuated total reflection) experiments [Kaplan 1974]. However we
will avoid further investigation of this problem in the present work
in order to not be carried away from the main research subject. It is
suggested that the use of Eq. (IV-58) for the z field component loss
contribution and Eq. (IV-B14) with é% = 0 for the x field component
loss contribution, would be a reasonable estimate for the free
carrier loss of the TM wave. In many cases the x component of the
electric field may be considerably smaller than the z component and
therefore its contribution will be negligible. In the present situa-

tion (Fig. 20), we find from Eqs. (II-A19:A21,A28) that

il 11 B 2
1£,(07) % = () E,(0) (IV-B15)
gy

for the choice of parameters used in Section 6 it is

“\12_ 10-2 2 '
[§,(07)[%= 107 |g(0)] (1v-B16)
so that the contribution of the x component is negligible and the use
of Eq. (IV-58) or (IV-65) is a good approximation.
Finally we estimate the free carriers effect on the real part of

the dielectric constant. From Eq. (IV-B9)
2.2
woT

Ae = ET‘-E = - TE—Z——Z— £ (IV-B17)
wT

This contribution may be appreciable at low frequency w. Moreover, if

there is appreciable reduction in e,the field penetration into the
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conducting layer will be considerably reduced. In the simplified
model that we used in Chapter IV this contribution was usually neg-
lected in order to keep the analysis clear. In the examples used
in Section 5 the change in the dielectric constant can be estimated

as
A€ = _0.07

for example 1 and

= - 0.44

mlb

for example 2.
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CHAPTER V

TRAVELING WAVE INTERACTION IN THE COLLISIONLESS REGIME

1. Introduction

As Landau [1946] first demonstrated, plasma waves in a finite
temperature plasma have features due to collective particle behavior
which cannot be obtained from the macroscopic kinetic equation.

Landau showed that the interaction of a plasma wave with particles
traveling with velocities near its phase velocity could lead to
damping of the wave even if the plasma is collisioniess (relaxation
time T » «).

The goal of this chapter is to analyze the traveling wave inter-
action mechanism in the Landau regime, viz. wt >> 1. We should say in
advance that the problem we consider here is different from the problem
treated by Landau not only because the plasma is drifting, but also
because of the existence of a slow wave structure which supports an
electromagnetic mode whose field, acting on the plasma, is referred to
as the external electric field. In the original Landau problem, by
comparison, no external field exists in the plasma and the field
solution there is the self-consistent solution of the plasma medium.
Indeed it is possible to show that by itself, even when drifting (but
with single peak in the velocity distribution function), a plasma does
not give rise to unstable piasma waves [Stix 1972, Chapter 7].

In the two f:miliar traveling wave interaction problems - the
conventional traveling wave tube problem [Pierce 1950] and the solid
state traveling wave interaction in the collision dominated regime

(Chapter IV), the charged particles are usually described by the moment
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equations. This approach is valid for different reasons in the two

systems. The TWT electron beam is nearly monochromatic; for such a
beam, the Boltzmann equation reduces immediately to the moment equations.
Even though the carriers in the solid state amplifier Have a finite
temperature, collisions are frequent enough that the effects discussed
by Landau for a collisionless plasma are unimportant and the moment
equations are again a good approximation.

If the frequency w is sufficiently high, the drifting carriers in
the solid state amplifier may be considered as a finite temperature,
collisionless plasma (wr >> 1). The existing analysis of traveling
wave interactions is not applicable to this case, since the moment
equations used in it cannot correctly describe the Landau waves that
propagate in a collisionless plasma. We intend, therefore, in this
chapter, to extend the analysis of traveling wave interaction to this
regime, employing the Boltzmann equation to describe the drifting
plasma. This is an elaboration of a recent examination of this problem
by Gover, Burrell and Yariv [1974].

A proper analysis of the solid state traveling wave interaction
at high frequency is of special interest, since the availability of

periodic structures with very short periods may allow amplification at
frequencies in the collisionless regime. Such an analysis is also useful

to describe the traveling wave interaction of a vacuum electron beam
with wide thermal spread such that the Boltzmann equation describing the

beam cannot be reduced to the moment equations.
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2. The Plasma Response in the Collisionless Regime

We will use the derivation of the coupled mode dispersion equation
presented in Section 2 of Chapter IV. However we use the Boltzmann
equation to describe the plasma response. The linearized one dimensional

Boltzmann equation is

(%f +u %Edf](z,u,t) = £ E(z,t) %E.fo(u) (V-1)

Here u is the z component of the particle velocity. The zero and first
order velocity distribution functions f0 and f], respectively, are
calculated from the three dimensional distribution functions by inte-
grating over the transverse velocities. E(z,t) is the longitudinal (z)
local field at point z.

We may solve Eq. (V-1) by substituting harmonic time dependence
et 7o avoid the difficulties pointed out by Landau [1946] we

need to define the z coordinate transformation carefully. We define a

"rotated" Laplace transform of a function h(z) (z>0) by:

h(g) = f dz h(z)e'®? (v-2)
0

This transform is properly defined for values of 8 with an
imaginary part large enough to ensure the convergence of the integral.

Therefore the inverse transform must be defined by:

h(z) = 5 f de h(g)e™'F? (z > 0) (V-3)
c

where the contour of integration C (shown in Fig. 21a) is parallel to
the real axis at Img large enough to contain all the poles in the lower

half plane.
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Fig. 21 Integration contours of the inverse transform (v-3).
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As we will see later there will be a pole on the real g axis so
that the integration contour cannot pass completely on the real axis
but as in Fig. 21b. So the function is defined at the singularity by
its analytical continuation from the lower half plane. An alternative
way to define h(B) properly is to translate the argument by an
infinitesimal quantity g - g+in'. This will shift the pole below the

real axis allowing integration along the real axis (Fig. 21c)

00

h(z) = 1im %;f dgh(g+in')e” 182 (V-4)
n'-0 "= _2

The integral is thus properly defined by an integration path passing
above the pole.

Using this convention we get from the transform of Eq. (V-1)

(fw-iButn'u)fq(B,u) = & E(B)Fy(u) (V-5)
or £ (u)
: u

£,(8:0) * & v TE T T EVB) (V-6)

where n = n'u/B will be later set to the limit zero*.

The current induced in the plasma is then found to be:

2 C je? i u fé(u)
JZ(B) B =g du u f](B:U) .= .F—ﬂ'ﬁ_f du m E(B) =
—0.3 2 [+ 5] f'(u) -
_ _ietw 0 (v-7)
- _;gf f du T E(B)

o0

We have used the identities y7(uta) = 1-a/(uta) and J dufy(u) = 0

to put the integral in Eq. (V-7) in its present form. That fo(u)

*

An a]@erngtivg presentation of the term in is made by adding an infinitesimal
negat1vg imaginary part to the frequency w - w - in'. This corresponds

to turning on disturbance in the far past (adiabatic turning on). n can
also be presented as a vanishing collision term.
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should vanish as |u| » = is necessary for any reasonable distribution
function. The integral in Eq. (V-7) would have been undefined if n = 0.
Comparing Eq. (V-7) with the definition of the susceptibility

(Eq. IV-2) we find

z v £' (u)
= e 0 S
xp(B,m) 5 = ;EZ-J s e (v-8)

0

We can now go back to the coupled mode analysis of the traveling
wave interaction (Sect. 2 of Chap. IV) and readily use Eq. (V-8) in
(IV-9) to get the coupled mode dispersion equation, or in (IV-11) to
get the gain of the electromagnetic wave. However, before doing this
we will pause for some further development of our result.

First we show that Eqs. (IV-5-7) can be derived directly from
the Poisson equation

~1RE (8) = - = J du f,(R,u) (v-9)

Using (V-6) in Eq. (V-9) and consequently using (V-8) we get

oo

_ o o8 f'(u)
-'IBEP(B) ™ = ;—:Ié"j G-w/_b‘O;_i—ﬁ E(B)
X
E,(8) = - £ E(8) (v-10)
where (IV-3)
E(8) = E,(B) + E(B) (v-11)

E(B) is the local field. Ep(B) is the plasma space charge field and EC(B)
is the external induced field (rotational field). From (V-10) and

(V-11) we get
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epE(s) = E.(B) (v-12)

€p =1+ Xp/E (v-13)
Notice that we did not have to use the continuity equation which is
implicit in the Boltzmann equation and only the Poisson equation (V-9)
was used in addition to the Boltzmann equation.

To cast our result in a slightly more universal form, we define

the following moments of the unperturbed distribution function: the

carrier number density

N, = f . (u)du (Y-8}
the drift (average) velocity
_ 1 (v-15)
Vo T n_ f ' fo(u)du
0-00
and the temperature T and thermal velocity Vih
kBT = mv%h/Z = %l(-)- J(u_uo)zfo(u)du (v-16)

-0

Notice that the definition of thermal velocity Vin is different from
v (Eq. IV-27), their relation is vy, = v2 vy. Also we define a

normalized distribution function g(x)

n u=-v
f(u) = \—,5; 9(—;—;&) =172
The function g is defined so that its zero, first and second moments are
1, 0 and 1/2 respectively.

Using these definitions we proceed to define the plasma dispersion

function



oo

G(z) = J gé%l dx Imz < 0 (v-18)

This definition disagrees with the usual convention in plasma physics,

where Imgz > 0 is usually taken.

Combining these definitiorswith (V-8),(V-13), (V-7) and (V-12)

we find 2
kD
Xp (Ba) = - 5 ¢ 7 o) (v-19)
where 2 1/2
noe w
kp = (ek_T> : 25 (V-20)
B th
is the Debye wavenumber and
. & w/B - Vo - 1n 2-215,
v
th

and primes denote differentiation with respect to the argument.

2
1 ko,
plB0) = 1 -7 5 6'(2) (v-22)
2
k
1 D A
: k% 5 EE—G (z)
J,(B)= -iwze— G'(z)E(R) = -iew 2 E.(8) (v-23)
B 1% ..
1 - 5 - 6'(L)
2 BZ

Eq. (V-22) is consistent with similar expressions for the plasma

dielectric constant in [Steele 1969, p. 124].
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3. Solution of the Dispersion Equation

When the derived expression for the susceptibility (V-19) is
substituted in the general coupled mode dispersion equation (IV-9)

and its first order solution (IV-10,11) we find

j I

By=-B k
1 -I - ] D Gl( )
E'gf &
G'(zq)
AR = -~ a E—TB_-ITNT (v-25)
where (o) P )
w/B,=v
Zy = ___Vl__ﬁl_ (V-26)
th
= 2
a = 7 ewkpK,S (v-27)

and where we have finally taken the Timit n - 0+.

Because B, is real we may write the real and imaginary parts of

B as
ImG'(?;-l)

Img = -a |—(——-'-"5-|"2" (V-ZB)

. B - .

Gl8yo0 2
Res = B, - —2—— [Re6'(z;) - 3 = |6 (zy)|? (v-29)

18,0850 %

As a consequence of taking n - 0+

G'(zqy) = (p) J%_—%l dx - img'(z) (V-30)

where (p) denotes principal value and the minus sign results in
since we define the function at (<) from its values at Img < 0 (Eq.

v-18).
From Eqs. (V-28) and (V-30) we see that the imaginary part of g
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Fig. 22 A plot of g(x) (the function is not necessarily symmetric
as in the picture). In this case g'(gq) > 0 for gy <0
or v, > w/B1 5
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(and consequently the gain) is proportional to the derivative of the

normalized zero order distribution function g'(c1). Hence the system
can support growing waves (Img > 0) when this derivative is positive

(see Fig. 22).
g'(ﬁl) >0 (v-31)

This gain criterion is different from (III-25). Only when g'(0) =
g"(0) <« 0 (which is the case when the maximum of the distribution
function occurs at the drift velocity vo). The gain condition can
be written as gy < 0 or (see V-26)
v, > w/B, (v-32)
which is identical with the Cerenkov condition(III-25).
Two Timits of Eq. (V-28) are of interest. If k2/g5 << 1 then

€p 1 (Eq. V-22) and

Img = -a IlTlG'(E-I) = omg'(g_[) (V-33)

This corresponds to the 1imit of low electron density where the plasma
has a negligible polarization effect and the local field E(8) is
approximately equal to the externally applied field Ec(B)‘ On the other
hand if k%/ﬁ% % 1 we may be able to satisfy the condition

2
k
Ref(Byow) = 1 - 5 —J ReG' (z,) = 0 (V-34)
8
1
which yields (using V-28,22,30)
gt 4
B
=de o ] (V-35)

Img = -4a —-TT——T
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Physically, Eqs. (V-34,35) mean that maximum gain results when

B] comes as close as possible to satisfying

ep(Bysw) = 0 (V-36)

which implies a good phase match between the electromagnetic wave
(B],w) and the collective plasma excitation (which is the exact solution
of Eq. V-36). As Landau [1946] showed, no nonzero real g can satisfy the
plasma wave dispersion relation (V-36) exactly, but the gain increases
the closer B] comes to satisfying it.

Eq. (V-28) can be regarded as gain (or attenuation) due to single

electron interaction since collective phencmena are not involved. On

the other hand Eq. (V-35) describes gain (or attenuation) due to phase
matched interaction of the electromagnetic wave with the collective
plasma excitation. For this reason, we will call this case

electromagnetic wave-plasma wave coupling. This will be further discussed

also in the next chapter in the framework of the quantum mechanical
analysis.

If the denominator in Eq. (V-35) can be made very small, one
wonders whether our first order approximation to the dispersion relation,
Eq. (IV-10), is valid. To check it, let us extend the solution for AR
to second order, by expanding in Eq. (IV-9) 82-g% and ep(Bre) =
1+ Xp(B,uﬂle-uafirst order about 8 = £;. We obtain

2
A(g—B) + B(ig-fi) +C=0 (V-37)
1 1

where

. d
A = B d&y Xp(31 Jw)/€ (v-38)
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B E EP(BT’M) =1+ xp(81,w)/a (V-39)

1 3

{55}
11

In the present case the collisionless plasma susceptibility is
given by (V-19), so the parameters A, B, C can be written in terms of

the plasma dispersion function G'(%)

B R e G"(C1) (v-41)

B=1-5— G'(z)) (v-42)
6' () (v-43)

The solution to Eq. (V-37) is

58 _ -B t (B%-aac)!/?

4 2A (v-44)

1§ 2

s
4|AC| << |Bj (V-45)

which corresponds to poor plasma-electromagnetic wave phase matching

(B#0) or small interaction impedance, Eq. (V-44) reduces to

AB _ (V-46)

c
g, B

which is exactly the first order approximation (IV-10) or (specifically)

(v-25). Consequently (V-45) is the criterion for the validity of the
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first order approximation. If the matching between the electromagnetic

wave and the plasma wave is good (B % 0), and the interaction

impedance is large enough, we will be in the regime
4|ac| >> [B|? (v-49)

where the amplifying solution to Eq. (V-44) reduces to

1/2
AB _ C
E;'- i(xﬁ (v-50)

It is of interest to check our derivation to find out if in the
proper limit it reduces to that of the conventional traveling wave
tube. In this case the electron beam is assumed to have no thermal
velocity spread (vth = 0) so that the normalized distribution function
(V=17) reduces to

g(x) = &(x) (v-51)
Used in (V-18) we get
G'(z) = ]—2— z #0 (v-52)
g
which in Egs. (V-19,22) results in
2
w
X, (Bsw) = ¢ —E— )
g (Bvo-w)2 (v-53)
w2
e (Bow) = 1 - —P—5 (v-54)
P (Svo-w)

This result is identical with Eqs. (IV-A1,A2) and was shown in
Appendix IV-A to lead to the conventional vacuum electron beam
traveling wave equation (IV-A3 or IV-A8).

Eq. (V-24) is thus a generalization of the conventional traveling
wave equation (IV-A3,A8) covering situations where the electron beam
is not monoenergetic and can have some velocity distribution. If the

wavenumber of the slow electromagnetic wave Bq is quite different
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from any of the plasma waves, Eq. (V-24) can be reduced into a first
order algebraic equation for AR (V-25). When 81 is close to one

of the plasma wave solutions, a second order algebraic equation
results in(Eq. V-37). In the case that both plasma wave solutions are
close to each other also the second order approximation fails (this

is not likely to happen in the examples analyzed in this work).

In this case the full transcendental equation (V-24) should be solved.
This equation reduces into a third order algebraic equation in AB

(Eqs. IV-A3,A8) for a monoenergetic beam (Eq. V-51).
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4. Discussion and Examples of Amplification

The present discussion of traveling wave interaction was kept
up to this point general, so it could describe different systems. We
now apply the analysis in the case of solid state traveling wave
interaction. It is of particular interest to estimate the performance
of such a structure in the gain regime where it may function as a
submillimeter frequency amplifier and oscillator. This will be done
in the present section. Operation at the attenuation regime is also
of interest, providing tools for investigation of plasma waves and the
carriers distribution function in solids. This will be discussed in
the next section.

In order to estimate the amount of gain available from the solid
state traveling wave amplifier, we need to know the velocity distri-
bution function of the drifting carriers. We will use a drifting
Maxwellian as a preliminary crude model of the distribution function.
The real distribution function of drifting carriers in the solid is
much more complicated than that, and not unambiguously measured. How-
ever, drifting Maxwellian is commonly used as a first order approxima-
tion with some experimental justification [Mooradian 1970].

Consequently we take

2
g(x) = n" /%X (V-55)

and the dispersion function (V-18) is then

T -x
6lz) = w172 J & dx Im < 0 (V-56)

-0
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The tabulated plasma function Z(z) which is defined by Fried and
Conte [1971], has Img > 0 in its definition. For real z we have
G(z) = Z*(c) (or Re G(z) = ReZ(z), ImG(z) = -ImZ(z)). The function
G'(z) is plotted in Fig. 23. A computer calculation of Z'(z) is listed
in Appendix VI-B.

The function ImG'(z) shown in Fig. 23 is an S shaped curve like
Fig. 19 (of course with a different functional dependence). It shows
that the present(51c1) can support gain (Img>0) whenever gy < 0
(Eq. V-28). The Maxwellian, of course, is a symmetric function and
satisfies g'(0) = 0; thus the gain condition &y < 0 is equivalent
in this case to the condition Vo > w/81 (Eq. V-32).

In Tables24, 25 we present a few examples of solid state
traveling wave amplifiers. The structures which are considered are
shown in Figs. 8, 28, 29 and are discussed in Appendix V-A. In Table 24
we present examples in the regime k%/s? << 1 where Eq. (V-33) applies.
From Fig. 23 we see that ImG'(z) attains minimum value at Ly = -0.65,
ImG(-0.65) = -1.5. We choose

2
kp _ 1 oL v, w/By
i 7 £ = 1.8, 1 =12
B th th

resulting z, = “/(B1Vth)- Vo/Vgp = -0-65. The calculated gain is
given in Table 24 for two different dielectrics and three different
structures along with some of the physical conditions necessary to

attain that gain. For this calculation we assumed

w = 1.88 x 10'3 rad/sec (A = 100u)
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Table 24, Example of Gain k%/3$ << 1

Parameter Ge GaAs Unit
rn/me 0.55 0.06 e
Vs 1.2 % 107 2 X 107 cm/sec
o 6.49 x 10° 1.08 x 107 cm/sec
B, 2.41 x 10° 1.45 x 108 em™)
Kp 1.21 x 106 7.25 x 10° ™!
ap 5.54 x 1012 5.54 x 1012 pad/sec
N, 6.51 x 10'° 9.47 x 10'° em™>
T 77 31 oK
L 260 433.6 A
Fig. Ba
(d= 178,)
g 0.16 0.27 en” )
Fig. 28
(g=555,
!'IL-I/RLO el 0-]) —1
g 8 8 cm
figéogs
n§1/nfo=o.1) :
g 4.1 4.1 cm”




Table 25. Example of Gain at Plasma-EM Wave Phase Matching Condition

-177=

Parameter Ge GaAs Unit
m/me 0.55 0.08 | @ e----
¥5 J.2 % 107 2 % 107 cm/sec
Ve 3.43 x 10° 5.71 x 10° cm/sec
By 1.1 x 107 6.6 x 10° it |
Ky 3.24 x 107 1.94 x 107 e )
ay 2.52 x 10'% 7.85 x 1013 rad/sec
N, 1.3 x 1019 1.9 x 10'8 anr
T 21.3 8.6 oK
L 57.2 95.2 R

Fig. 8b

(d=1/6;.

t;]OU,

2 _
npy/nip= 0.3 18.6 31.1 em™)

o 655 8
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and used for the calculation of the interaction impedance Eqs. (III-50),

(V-A31) and V-A34).

In Table 25 we present an example in the regime k%/s? - |
where increased interaction can be achieved due to phase matched
coupling of the electromagnetic and plasma waves (Eqs. V-34, 35).
We choose z; = -2.5 which gives low value ImG'(-2.5)=-1.71 x 107°.
Also we get ReG'(-2.5) = 0.231. The ratio B%/kg is chosen to satisfy
the real part of the phase matching condition (Eq. V-34).

B?/kg = %-ReG'(c]) = 0.1154

We also choose a=L/2, volvth = 3.5, “/(Bivth) = 1 (so that by ™ w/(81vth) -
Vol Vap: = -2.5). In this example we operate in the regime w < wy
(see discussion in Appendix V-A) hence we cannot use structure like

in Figs. 28,29 which do not transmit the electromagnetic wave. We
calculate the gain for the structure in Fig. 8b using Eq. (V-A16) to
obtain the interaction impedance K1(0+). The .alculated gain is shown

in Table 25 along with some of the physical conditions necessary to

attain that gain. The frequency assumed was

w = 3.77 x 10'° rad/sec (A = 50)
The choice of the parameter "EI/nEO = 0.3 would seem unpractical if one
considers that the change between the dielectric constants of the different
semiconductors used in heteroepitaxy is quite small. However, as was
mentioned in Appendix V-A, a big change in dielectric constant can
result if the epitaxially grown layer in Fig. 8b contains high density
of free carriers so that w < Wy In this case it is even possible to

get "EI/"EO = 1, so that our choice is rather conservative. The choice
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of effective thickness d = 1/81 = L/2m is dictated by the decay length

of the first order space harmonic. However if structures 1like those in Fig.
30 could be produced with thick periodic layer, interaction will take
place across the whole thickness of the periodic layer, allowing
considerably higher gain than that presented in Table 25.

In both examples considered the gain was calculated only from
the contribution of the synchronous first order space harmonic. The
nonsynchronous -1 order space harmonic contributes negligible attenua-

tion. In our collisionless model 1t = =,and hence no free carriers loss
due to the fundamental space harmonic is contributed. Of course

loss due to collisionless traveling wave interaction (Landau damping)
is negligible at the velocity of the fundamental space harmonic.

The physical conditions required in the two examples (especially
the second one) are quite difficult. Finite collision relaxation time
1T would affect the calculation (its effect is briefly discussed in
Section 6). It is also not clear if drifting carriers distribution
functions with high ratio vo/vth can be achieved in semiconductors

(see discussion in Chapter VII Section 5 ).

5. Attenuation and the Traveling Wave Modulator

The traveling wave interaction in the solid can be applied in
studying solid state plasma waves and the carrier velocity distribution
function. In this case we may be interested in interaction also in the
attenuation regime.

If one can measure AR experimentally, then the derivative of
the normalized distribution function g'(;1) can be found from Eqs.
(V-25,30). However, since Re AR may be difficult to measure,

especially in a solid, a series of measurements of Im AR for various
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wsB, k. could furnish enough information to obtain g‘(c]) from

D
Eq. (V-28) alone. If it is possible to work in parameter ranges where
Eqs. (V-33) or (V-35) hold, then evaluation of g'(gl) is straight-
forward when Im AB is known. It follows that it may be possible to
measure directly the velocity distribution function of drifting
carriers in some regimes. Such a method will measure the distribution
of the velocities z components rather than the distribution of electron
energies. Thus it may be complementary to other existing methods which
measure velocity distribution [Mooradian 1970, Jantsch 1973].

Attaining attenuation, particularly with phase matching of the
electromagnetic and the plasma waves (Eqs. V-34-36) is much easier than
attaining amplification at similar conditions. The reason is that in
order to get good phase matching we need |ImG'(c])| + 0. This is
possible for ];]] >> 1 which means operation at the tail of the distri-

bution function (see Fig. 22). Physically, we know that at the tail
of the distribution function the Landau damping of the plasma wave is
diminishing and this is why it can match better an unattenuated electro-
magnetic wave. To get Gy = (m/81-v0)vth>>1 is possible with high frequency,
Tow B, (Tong period) and low velocity Ve (even zero or negative

velocity) and the contrary is when we want to get gy << 1. As we see

from Fig. 22 the derivative of the distribution function is negative

in the first case (corresponding to attenuation)and positive in the

second case (corresponding to amplification).
In Table 26 we present an example of attenuation under conditions

of phase matching between the electromagnetic wave and the plasma wave.
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As in the previous section, we assume for the distribution function
a drifting Maxwellian (Eq. V-55) and use the plasma dispersion function
(V-56). We choose the special case Vg = 0 (no DC voltage is applied).
Choice of Gy = m/(B]vth)=2.3 gives low value ImG'(2.3) = 4.11 x 10—2.
Also we find Re6'(2.3) = 0.2913. The ratio 85/k§ is chosen to satisfy

the real part of the phase matching condition (Eq. V-34)
83/k2 = ] Re@'(g;) = 0.1456

We calculate the gain in the structures of Figs. 8a, 28, 29,
using Egs. (III-50), (V-A31) and (V-A34) to calculate the interaction
impedances. The frequency of operation is chosen to be

13

w=5.04 x 10 rad/sec

Since the frequency is quite close to the plasma frequency a
free carrier plasma correction to the dielectric constant was considered.
Consequently using n = 2.07 for the average index of the waveguides in
Figs. 28,29. In calculating the total attenuation we notice that both
the first and -1 order harmonics contribute attenuations which add up.

The results of the calculations indicate considerable attenua-
tion due to the phase matched interaction of the electromagnetic wave
via the -1 and first order space harmonicé. This attenuation may be
superimposed on free carrier attenuation of the fundamental harmonic.
However, unlike the fundamental free carriers attenuation the
traveling wave attenuation occurs only at the phase matching condition
(Eq. V-34). Hence it can be detected as a strong dip in the stfucture
transmission when some parameter (like Vo Or w) is scanned about the

phase matching condition (V-34).



Table 26.

at Plasma-EM Wave Phase Matching Condition

Example of Attenuation

Parameter Ge GaAs Unit
m/m, 0.55 0.08 e
v0 0 0 cm/sec
Ve 1.39 x 10 3.64 x 107 cm/sec
B 1.58 x 10 6.02 x 10° i
kp 4.13 x 10° 1.58 x 10° em™!
w, 4.06 x 10 4.06 x 1013 rad/sec
n, 4 x 108 6.7 x 1017 cm™
T 350 350 o
L 398 1044 R

Fig. 8a
(d=1/8y) 1
g9 66. 36 174 em”
94 56.11 147.13 cm”!
g=gy*9_; 122.47 321.13 e
Fig. 28
(%=30°
n ]/nE0=0.'I "
n_= 2.07) .
g =29, 142.6 142.6 cm”
Fig. 29
(¢=90°
2 ;2 _
nL'I/nLO"'O-] E]
n =2.07) .
493.8 493.8 o
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Let us check the sensitivity of the attenuation to changes from
the phase matching condition. Assume that ty >> 1 and that the phase
matching condition (V-34) is satisfied for Gy Then using éV-EB)

15D [ngt (¢ )12
g(z,4z) Im6* (z,+AC) z'gf‘ 1

lg(C]” =a kz 2 k4
[1 ;——-[2]- ReG'(i;]+Acﬂ + —D4- [ImG' (c]+m;)] o Im6*(z,)
substituting 1/2 kD/B] = 1/ReG'(z;)
|9(zy*an)| ImG' (z)ImG " (zq+4z) (V-57)
1902001 [Re6! (zy+ac) - ReG'(z)1% + [Im6* (zy+ac)]°
Expand G'(c]+A;) about Zq
ReG'(c]+A;) = ReG'(gl) + ReG"(g])Ac (v-58)
Ima' (gy*+ag) = ImG'(zq) + ImG"(zq)Ag (v-59)

The first order term in the expansion of ImG'(g1+Ag) is negligible

relative to the zero order term for

AL << 1 (v-60)

Substitution in (V-57) results in this 1imit in a Lorentzian function

dependence aletaed] 1
+
i . (v-61)
!Q(C-ﬂ1 1+ (Aﬁfﬁ)
where
InG' (z7) (V-62)

&= ReG"(C15
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196+ A8/ 1g(6))|

| .| joulf .}
~35-25-5 0 5 25 38 AL

Fig. 27 Lorentzian function describing the relative attenuation as
a function of deviation from the plasma-electromagnetic wave
phase matching condition Az(=-av /v, or Aw/(B1Vin)) -
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The function G“(c1) can be expressed in terms of the tabulated functions

G (c]) and G'(g1) by differentiating the identity [Fried and Conte 1971]

GI

-2(1 + zG) (v-63)

which yields

G" = -2(G + zG') (v-64)

A standard Lorentzian (Eq. V-61) is plotted in Fig. 27 as a function of
the deviation from phase matching Az. If the change is caused by

changing the drift velocity (see’ V-26) then
Ag = - =2 (V-65)

If it is caused by changing the frequency then

Aw (v-66)
B1Veh
The Lorentzian width & (Eq. V-62) can be made very small for

AC =

Zq >> 1 since ImG'(c1) decays strongly like a Gaussian, while ReG“(g1)
decays asymptotically only like 1/;?. In the example considered in

this section Zy = 2.3 which corresponds to

§ = 0.12
A change of 100% in the exponential gain constant (0.4343 g1 db change

in attenuation) is brought about by Az = 6/3 = 0.04. Using the parameters
of Table 26 we find that this corresponds to a driving current with
drift velocity

Avg = ¥, 5.56 x 105cm/sec (Ge) ¥y = 1.46 x 106cm/sec (GaAs)
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or to changing the frequency by

A8 o 0,017
w

The sensitivity of this effect to small changes should make its
experimental observation easier. Also notice that the physical condi-
tions required in Table 26 are much more convenient than those required
in the previous examples.

From the device application point of view the sensitive control
on the transmission at high values of the parameter Zye Tooks attractive
for use in modulation devices in the far infrared regime. Such a device
may operate by changing the voltage across it so that the drift velocity
of the carriers changes,and the device transmission changes. Contrary
to modulators based on free carrier absorption by injected carriers
[Moss 1962, Deb 1966, Benoit 1970] which are limited in speed by the
minority carriers lifetime, this device is a majority carriers device

and hence may operate as a high speed modulator.

6. The Effect of Collisions

In this chapter we presented traveling wave analysis in the
collisionless regime (t>~) only. A more general approach would include

a collision term in the Boltzmann equation (V-1)

_l+u_]-%E__().= (__1_) (V-67)

(afllat) ] is the rate at which the number of particles in the class

col
of particles with velocity u changes due to collisions. Collisions can
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occur due to two particles interaction as well as interaction with
impurities, phonons and other excitations.
The collision rate function (afT/at)c011 is usually very
complicated. However it is quite customary to assume that it is
independent of velocity and can be described by a phenomenological

collision relaxation time parameter T [Pines 196]]

of
My _.h (v-68)
ot Teol &

T in semiconductors is in the order of magnitude of 10']3;—10']2 sec

at room temperature. The difficulty in this approximation is that it
does not conserve particles. When we integrate (V-67) with (V-68) used,
we get a contradiction to the continuity equation- We get that the
total number of particles reduces in a rate corresponding to the colli-
sion relaxation time i. The reason for this discrepancy is that the
approximation (V-68) does not take into account the fact that particles,
which are scattered from one class of velocities, will populate other
classes and will not be scattered out of the system. A formal
correction of this discrepancy was suggested by Bhatnagar et. al. [1954]
(see also [Steele 1969, p. 123] ).The limited validity of these
approximations is sometimes not too disturbing especially if the
collision term is small, or when we deal with effects in which only
a particular class of particle velocities participate.

Taking advantage of the simplicity of expression (V-68) we can
use this approximation to extend our analysis and include collisions

effect. When (V-68) is substituted in (V-67) and we apply Laplace and
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Fourier transforms as in Section2 we get instead of (V-5)

; ; 1
(1w - 18u + D)f(8,u) = = E(B)F!(u) (V-69)

Instead of the infinitesimal n'u = gn in Eq. (V-5) we get a finite
1/t. We can simply extend our derivation to this case by substituting

everywhere

"

1
ey (v-70)

Hence z is automatically complex (V-21) and has nonvanishing negative

imaginary part
w/B - v
L= 0 - -i ] (V-?])
Vth TBVth

Imz < 0 (V-72)

There is now no conceptual difficulty in the integration of Eq. (V-8)

or (V-18) since there is no singularity along the line of integration.
Egs. (V-28,29) still apply the way they are, but the imaginary

and real parts of G'(c]) are not given by Eq. (V-30) but instead we

get from (V-18)

ﬁ'(c)=T ‘(x) 4] dutalails] leql/m
1 J g I;j;i;f:?;?}z x—1nfg X (x—c? 2+(c%)2 dx (V-73)
where i M/B] s
L (v-74)
a T813’th (V-75)

The effect of the collisions on ImG'(gl) is such that instead

of being proportional to g'(g1) it is proportional to its convolution
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?, and of half

with a standard normalized Lorentzian centered at x = ¢
width Ig%l = 1/(181vth). The "smearing" effect of the convolution will
not hurt very much in operation at the regime where Eq. (V-33) applies,
and for small enough values of [c%l there will be only a moderate
reduction in ImG‘(c]). The case of phase matched plasma electromagnetic
wave interaction (Eqs. V-34-36) is much more sensitive to the presence
of collisions. In this case the gain (or attenuation) is inversely
proportional to the imaginary part of G'(g1) (Eq. V-35), which with the
absence of collisions goes c<trongly to zero for &> 1. The convolution
in (V-73) will cause ImG'(c1) to go to zero more slowly, thus resulting
in lower gain or attenuation. The peak of the phase matched interaction
gets wider then as well as lower (Eq. V-62), and so the attenuation due
to a phase matched plasma-electromagnetic wave coupling is Tless
sensitive to deviations from the phase matching condition (Eq. V-34),

and the efficiency of the effect as a modulation process is reduced.

The criterion for ignoring collision effect is c% << | oy

( )z——Tvth >>1 (V-76)
wT UJ/B-I

This is somewhat different from the customary criterion wt >> 1 and
indicates that this condition is harder to meet at high values of ¢,.
At the limit c% + 0 the Lorentzian function in Eq. (V-73) turns into
a Dirac delta function G(x-gﬁ) , and the whole expression reduces into
Eq. (Vv-30).

For a specific distribution function g(x), the function G'(ET)
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is explicitly defined by Eq. (V-73). For the case of Maxwellian

distribution (Eq. V-55) the integrals in the expression do not
reduce into immediate integrals and the real and imaginary part
of the plasma dispersion function must be computed numerically.
For numerical computation of G'(z) in the complex field, a
continued fraction iteration scheme presented previously by
Burrell [1974] provides better convergence and accuracy than the

numerical integration of Eq. (V-73) (see also Appendix VI-B).
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Appendix V-A. Discussion on Interaction Impedances of Periodic

Semiconductor Structures

The main purpose of the present work is to investigate different
wave interaction mechanisms in periodic structures and to analyze them
in different regimes and at different applications. Of particular
interest is the traveling wave interaction between electrons and electro-
magnetic waves which is investigated here in different operation regimes.

Although the investigation of the interaction mechanisms is the
primary goal, we try also to suggest some possible structures where the
interaction can take place. In order to be able to estimate the
interaction strength in the different regimes we must have in each case
an estimate of the structure interaction impedance (Eq. III-28).
Unfortunately the calculation of the interaction impedance and its
optimization is often a very tedious and lengthy electromagnetic problem
which we would Tike to avoid in the present work, as long as we can get
at least a rough estimate of this parameter so that we can estimate the
strength of the interaction.

In Chapter III we calculated the interaction 1mpedance of a
suggested slow wave structure (Fig. 8), utilizing the solution of the
electromagnetic wave in a similar structure (Fig. 2) which was presented
in Chapter II. Although the calculation is approximate and has Timited
validity when the corrugation depth a is large, it served satisfactorily
in the estimation of the traveling wave interaction in the collision
dominated regime (Chapter IV). However at the interaction regime which

is investigated in the present chapter we have interest in operation
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conditions in which the suggested structure is not efficient, or that
the assumptions used to calculate the interaction impedance are not
satisfied. In addition, some of the structural parameters which are
required (1ike the corrugation period) become difficult to realize
technologically.

A severe violation of the assumptions used in calculating the
interaction impedance of the structure in Fig. 8a (Appendix III-B,
Fig. 9) takes place when

wp > w (v-A1)

since under this condition the free carriers effect on the real part of

the dielectric constant in the conducting layer is not negligible.
In the collisionless limit (wr >> 1) the real part of the dielectric

constant (Eq. IV-B9) is:
2
= ( - Jg)e (V-A2)

which is a negative number at condition (V-Al1). However, in calculating

the interaction impedance we assumed that the dielectric constant in the

waveguide is € = ngeo, and that the fundamental space harmonic is equal

to the solution of the three layer homogeneous waveguide (Fig. 2, a = 0).
The discrepancy at operating condition (V-A1) is a pertinent

concern in this work. As it was noted in Section 3, appreciable gain

can be achieved when phase matched photon-plasmon coupling is attained.

A necessary condition to attain this coupling is kD >> By If we

also expect gain the Cerenkov  condition (Eq. V-32) should be

satisfied Vo > m/B]. Using the definition k= V2 mp/vth (Eq. V-20)

this means



wp >> V2 = w | (V-A3)

Since it is hard to get the drift velocity Vo appreciably larger than
the thermal velocity, it means that usually when we want to get
plasmon-photon coupling, we must operate at the troublesome regime
(v-A1).

If one wants to calculate the interaction impedance in this case
correctly then the éolution of a four layer unperturbed waveguide
(Fig. 8a with a = 0) must be found first, where the layers have relative

dielectric constants as follows :

substrate - n

Qa N

waveguide - n

collisionless plasma layer (thickness d) -

. 2
R _ L ( w ) 2
evz k= (1--Rnl <o
L ™ & u)2 g (V-A4)

o N

superstrate - n
and then the analysis of Chapter II should be repeated, in order to
find the amplitudes of the space harmonics in this waveguide.

This calculation will not be attempted in the present work. We
may see though without elaborate calculation that the effect of the
plasma layer is to cause strong decay of the electromagnetic mode inside
the layer. From Maxwell equations, an expression similar to (II-A24)
is readily attained for the transverse decay parameter in the plasma

layer :

e =gl - efk? = g2 R (V-AS5)
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If wy >> © then from (V-A4) :

2
Ry . 2%
e | = "g;[% (V-A6)
w w :
~ P = P e
n s = ngk ng = (V-A7)
and
n >> ngk > BsY, h (V—AS)

The effect will be that the mode will have suppressed amplitude at the
corrugated surface of the waveguide (Fig. 8a) and will "sense" less the
periodic corrugation. On the other hand, the first order Fourier

coefficient is in this case
2 2

npp = 2 2+ |ef)) (V-A9)
instead of Eq. (II-5). This is working towards increasing the amplitude
of the first order space harmonic, and since the plasma layer can be
very thin, the mode does not decay significantly through the plasma
layer. Thus the final result may even be some improvement of the
interaction impedance.

The Structure in Fig. 8b

With some approximative assumptions it may be possible to
readily find the interaction impedance of the structure in Fig. 8b in
the regime (V-A1) and to use it for the demonstration of examples in
this regime.
To simp]i%y tﬁe calculation, we will assume that the thickness d
of the epitaxial layer is large enough so that the mode does not penetrate

at all into the air medium. In this case we can apply the previous
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derivation of Ktl(0+) (Eq. I1I-43) and just use EE (Eq. V-A4) instead

of ng for the relative dielectric constant of the superstrate. In

this case we have instead of (II-A7):

2 e R.2 _ .2 Ri.2
Y" = 8" - k" =B" + |g|k" n
wz LlJ2
2 2 2 2 Z '
+ - e -
B ng;gk B ng;% (V-A10)
If mp >> w then

w

Lkl - ngk>B,Y,h (V-A11)
and

i

Y=ngg (V-A12)

Using Eq. (V-A11) we can neglect the first term 918, inside the

parentheses of Eq. (III-43) and thus avoid the difficulty resulting from

the fact that 9 (Appendix II-B) is not well defined for eE < 0.

We obtain
2.2 2 .2
h~a n
+ 2 0 L1
K,,(07) = —/E ( ) y-A13)
£l ng €0 Boklerf nEO (

Under the present conditions the mode does not penetrate appreciably
into the substrate and the superstrate which behave almost 1like metal
reflectors (with skin effect field penetration). Assuming that the
field is limited to the waveguide core we get (following Appendix
I1-A)

_ 2
¥ = t/ng

eff
and

h0 = ngk sin ¢ (V-A14)
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By = ngk cos ¢ (V-A15)

where ¢ is the "zigzag angle" of the mode propagation. Eq. (V-A13)

can then be written as

2 .2 sn2 ¥

K (0+) - a” sins/ L1 (V-A16)
+1 n_Je_. tw cosé 2

gt o "Lo

where

2 _2,2 Ry _2 ,2 R
Ly = wingmep) = 5 (ngtle ]) (V-A17)
2 1,2 B 1,2 (R
o =7 (ngte)) = 3 (ng-leg ) (V-A18)

and when |EE[ >> ng we may get (nf1/n50)2 % )5

The Structure in Fig. 28.

The structure in Fig. 28 is an elementary example of
periodic dielectric waveguide and easy to solve. By

calculating its interaction impedance we can get another estimate of

available and reasonable values for the interaction impedance in periodic

semiconductor waveguide structures. Since the model is simpler we can
proceed with  fewer approximations and get a reliable estimate.
This structure has few other advantages. It provides an example
of a case where the traveling wave interaction analysis of Section
2, Chapter IV holds as a good approximation. Since the periodic
perturbation of the wave is distributed across the waveguide cross
section, the tranverse profile of the space harmonics is moderately

varying and the one dimensional model of Chapter IV holds well. In
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Fig. 28 A structure for solid state traveling wave amplifier with
"bulk modulation" of the dielectric constant.
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addition, this structure is expected to be more efficient, since
interaction can take place all across the waveguide (and not in a narrow
conducting layer as in Fig. 8).

The fabrication of this structure is difficult to accomplish

with today's technological state of the art. The techniques of

semiconductor corrugation and epitaxial growth [Garvin 1973,

Nakamura 1974] could be used for this purpose if the technique of

deep preferential etching [Kendall 1975] would be further developed.
The development of the technique for superlattice growth by molecular
beam epitaxy [Blakeslee 19708, Alferov 1971, Woodall 1972, Chang 1973]
may lend itself to the production of such structures with periods as
short as 1008 which cannot be achieved today with the other techniques
and the structures of Fig. 8.

We will calculate the interaction impedance of this structure
starting from first principles. To do this we have to solve first the
electromagnetic wave propagation problem in the structure of Fig. 28,
and inpartiaular to find the amplitude of the first and -1 order space
harmonics. Let us further simplify the problem, assuming that the
modes are well confined and can be described by two plane waves
“"zigzagging" along the waveguide by multiple reflection from the
boundaries. The problem will then be equivalent to the problem of
single plane wave traveling into a transversely unbound periodic
stratified media. The angle that the propagation parameter of the
plane wave q forms with the periodicity direction z, is equal to the

“mode zigzag angle" ¢.
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In the periodic medium the electromagnetic field has a Floquet

form .
t-
Elr) = ] E_me1(w o) (v-A19)
m

where

e (m= 0,1, t2,...) (V-A20)

2m
L z

Gn =G * 1
where L is the period, e, is a unit vector in the z direction, and

lgg| = 19 =ngk=ng < (V-A21)

The first order Fourier expansion of the relative dielectric
R _

constant € = e/so is
R _ R R 2m
e (z) = €, t €7 COS [ 2 (v-A22)

where (compare Eqs. II-1-5)

R_ .2
R .o 2
e = ney (V-A24)

The longitudinal field component can be calculated from the

Poisson equation
v-[e(z)E(r)] =0 (V-A25)

By substituting Eqs. (V-A19, A22) in (V-A25) and using the ortho-

gonality of the Fourier expansion we get

R
0

Gofn * 7 111 = O (v-A26)




=-200-
We substitute in turn m = 1 and m = -1 in Eq. (V-A26) and assume

that higher order space harmonics are negligible |g+]-§+g<< IS*]'EOI'
Also we assume that 2m/L >> |gO| so that

97 = B,y = (g,y°€,)e, (V-A27)
is in the z direction. Then we get from (V-A26 )

£ (v-A28)

2.3
EZ!] —-2_ Z0

m m
o'~

The electromagnetic mode power which is carried through a cross
section S perpendicular to e, is approximated by the power of the zero

order space harmonic (which is approximately a plane wave)

n
P=5d [ cos ¢ s (V-A29)
0

Eqs. (V-A28, A29) and the relation

E,0= Eg sin ¢ (V-A30)

can now be substituted in the expression for the interaction impedance

(I11-28), resulting in 2

R

2 i E

:l_’JJ_ 1_si Q(l) 3

I<i.| s e, s =y 3 (V-A31)
g 0 SBT EO

There is striking similarity between Equations (V-A31) and
(v-A16). In fact this similarity is even more apparent if we recall

that the corrugation depth a is limited to (IV-68)

a=5el (V-A32)
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If this is used in Eq. (V-A16) together with the identities of Egs.
(V-A23, A24) and S =wt we get

(o* 2ﬂ2 L 1 si ZQ E? i
K . (0% = fu_ (_) (V-A33)
+1]

ng Veq 58? cos¢ EE

which is different from Eq.(V—A31)onTy by a numerical factor (2w2).
This striking similarity between the expressions for the inter-

action impedance of very different structures 1is encouraging to

believe that in spite of some crude approximations used through some of

the derivations, the derived expressions have a physically sound

dependence on parameters, which results from simple general considerations.
Thus they can give numerical values which are reasonably representative

of practical structures.

The Structure in Fig. 29

The technique of superlattice epitaxial growth by MBE (Molecular
Beam Epitaxy) [Chang 1973, Dingle 1974] may make possible fabrication
of periodic structures with periods in the order of 50-100% [Esaki
1975] which is not presently attainable by other techniques. However
fabrication of structures like those in Fig. 28 with a reasonable length is
still unpractical with MBE techniques. A different version of this
structure - Fig. 29 - is much more compatible with the MBE growth
technique.

In this structure the periodicity and current flow direction is
perpendicular to the electromagnetic mode propagation direction {2):
Transverse traveling wave interaction is a mode of operation which is
known also in conventional TWT amplifiers [Dunn 1956]. We would expect

such a device to provide for more efficient interaction since the
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Fig. 29 A "superlattice" embodiment of solid state traveling wave
amplifier.
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electromagnetic field may have a larger component along the current
flow direction.

The interaction in the structure of Fig. 29 can be analyzed by
an entirely different approach from that of Section 2 Chapter IV.
Since it is invariant to translation in the z direction, conventional
waveguide coupled mode technique can be used to calculate the gain.
However, in order to get just a reasonable estimate of the interaction
impedance of this structure we can view the mode propagation in the
structure as a zigzag propagation of a plane wave, and we assume that

traversing this structure is equivalent to traversing multiple times a

short segment of the structure in Fig. 28 whose Tlength is t. (t is

the waveguide width in Fig. 29.) So the gain of a structure like that in
Fig. 29 whose length is & equals the gain of the structure in Fig. 28
with length t.2/(t.tan¢) = &/tan¢, where 2/(t-tan¢) is approximately

the number of ray reflections from the waveguide boundaries. We

conclude that the interaction impedance of the structure can be given

by Eq. (V-A31) multiplied by a factor 1/tan¢
R.2

_ 1 1 ; B
o e S‘"¢('R) (V-A34)
g o 381 €
Notice that in order to conform with Fig. 28 the angle ¢ in

Fig. 29 was chosen as the angle between the ray propagation direction

and the periodicity or current flow direction (and not the z direction Yis
S in Eq. (V-A34) is the cross section of the current (normal to the x
orientation). It cancels out when the gain is calculated. An inherent
assumption in the recent derivation was that the gain due to interaction

of synchronous -1 order space harmonic is equal to that due to synchro-

nous first order space harmonic. This is a justified assumption
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since |B_1| = By and K; = K_; in Eq. (V-A31).

Other Structures

The structures of Figs. 28, 29 may provide for more

efficient interaction and they may be producible at short periods, but

contrary to the structures in Fig. 8, they cannot operate (with gain)

at the regime (V-Al) since at frequencies below the plasma frequency the
electromagnetic wave will not penetrate at all into the waveguide. At
this regime a combination of these two kinds of structures is proposed.
For example, Fig. 30 shows a combination of the structure of Fig. 28 and

a homogeneous dielectric waveguide. Thg periodic layer is doped by

impurities to the extent that the plasma frequency exceeds the electro-
magnetic wave frequency (V-A1). Then the wave will propagate mostly
in. the undoped layer and will interact with the electrons through the
skin effect evanescent tail. The thickness of the periodic layer is
chosen to be approximately the decay depth of the mode in the plasma
(see Eq. V-A12).

This structure is different from that of Fig. 8b in principle
and in practice. In the structures of Fig. 8 we assumed that the
periodic layer is very thin, and the interaction takes place out of the
periodic layer in the evanescent tail of the space harmonic which decays
at distance L/2r from the corrugated surface. Conversely, in the
structure of Fig. 30 the interaction takes place in the periodic layer

itself. This layer is then as thick as the mode penetration depth and
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+V
52

)

Fig. 30 A solid state traveling wave amplifier structure. The mode
propagates mainly in the waveguide core (n_), and the inter-

action takes place in the periodic layer Ywhose thickness (d)
is about the skin effect penetration of the mode.
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may be much thicker than L/2w, thus providing more efficient interaction.
We will not attempt at present to calculate the interaction
impedance of this structure.
The expressions that were derived for the interaction impedance
of some of the periodic structures proposed here, allow rough estimate
of the range of values to be expected, and will be used in the text

for demonstrative examples.
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CHAPTER VI

INTRABAND RADIATIVE TRANSITIONS IN PERIODIC
STRUCTURES (TW INTERACTION IN THE QUANTUM REGIME)

1. Introduction

As indicated by the title of this chapter the familiar
traveling wave interaction can be described in the quantum mechanical
Timit in quite different terms.

In the quantum mechanical 1limit the traveling wave interaction
can be described as a stimulated radiative transition of a free
electron. The transition involves photon emission (and consequently
electromagnetic wave amplification) if the electron transition is from
a high to a lower energy state, and it involves photon absorption (and
consequently attenuation) if the transition is from a low energy state
to a higher one.

As discussed in Chapter I, this process can be viewed as a
three wave interaction involving the electron wave functions in the
initial and final states and the electromagnetic wave. As we concluded
there from quite general considerations (Eqs. I-5-7) the transition
rate (essentially the Fermi golden rule) is appreciable only if energy

and momentum are conserved during the transition

- = (VI-1)
Pry = By ™™
ki ~ke=4q (Vi-2)

We can show in a short derivation that in the case of free
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£y hck

B

Fig. 31

Schematic intraband radiative transition in one dimension.
The dots represent electron density. The oblique straight
line is the dispersion function of a plane electromagnetic
wave fiw = hck. Notice that the propagation parameter k of
a plane wave is too small to account for the momentum change
involved in the electronic transition.
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electrons, simultaneous satisfaction of both conditions is not possible.
Assume by way of contrast, that both conditions (VI-1,2) are satisfied.
If fk is a continuous function of k with a continuous derivative, then a
math;ﬁatical lemma assures the existence of a vectorial argument k*,

such that |k*| is bigger than the smaller of |k;|, |k¢| and smaller than
the bigger of |54L|5f|, and

551' ) }%‘_f ) Eﬁ‘?K_ +(ky-ke) (VI-3)
k=k*

Substituting (VI-1) and (VI-2) and using the definition of the electron

group velocity:

y =5 UE (v1-4)
we get
W= Vex - g (VI-5)

and consequently
> w e

el Bvgr =5 (V1-6)
where ¢ is the speed of light and n is the refraction index of the medium.
A situation 1ike (VI-6) where the group velocity of the electron
exceeds the speed of light is not possible in vacuum where n = 1.
Excluding the case of very high energy (relativistic) electrons where
inequality (VI-6) can exist inside matter (Cerenkov effect), we conclude

that both Eqs. (VI-1,2) cannot be simultaneously satisfied.
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This argument can be applied to free carriers in the conduction
band (for electrons) or in the valence band (for holes). Intraband
radiative transition cannot normally take place in a uniform medium,
excluding of course, higher order transitions, which involve participa-
tion of additional waves like another photon or a phonon.

As was suggested in Chapter I, such intraband transitions are

possible in an artificial periodic structure, where the "lattice
momentum” of the structure is designed to provide the missing momentum
needed to balance Eq. (VI-2), and makes the interaction possible.
More specifically, the electromagnetic wave in the periodic structure
assumes the Floquet form (I-8,9) Wwhich 1in the case of one dimensional

periodicity in the z direction Jeads to

—_—
E(r) = I§m(><,y)e1(ul n?) (VI-7)
m
2
Bn = Bt m L—“ (VI-8)

One of the space harmonics (say m = 1) may have a large enough propagation
constant B, to balance the momentum equation (VI-2) and to allow an
induced radiative transition at frequency w. This process is
illustrated schematically in Fig. 31.

In some of the periodic semiconductor structures discussed (Figs.
28-30), also the electron wave will have a Floquet-Bloch waveform, so
that momentum conserving transitions can be possible involving the

fundamental harmonic of the electromagnetic wave and higher space
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harmonics of the initial or final electron waves*(compare this to the

three waves interaction discussed in Section 2 of Chapter III in rela-
tion to nonlinear optical interaction). The analysis of traveling wave
interaction through this mechanism is not attempted in the present work.
We will assume that the periodic perturbation affects predominantly

the electromagnetic wave. Indeed it ié possible to have only the first
mechanism present even in structures where the electrons pass through

the periodic structure (like in Figs. 28-30). If the superlattice is
produced by epitaxial growth of two alternating dielectric semiconductors
we may get modulation of the dielectric constant. If the impurity doping
level of the different layers is kept uniform, then the conduction band
will "look" flat to an electron which traverses the device, and it will
not be affected by the periodicity.

In the next sections we will present a more detailed analysis of
the traveling wave interaction in the quantum mechanical regime, and
get an estimate of the gain attainable by this process. The results, which
were presented in the present section using general considerations, will
follow explicitly from the analysis.

The one-dimensional analysis of traveling wave interaction
presented in Section 2 of Chapter IV will be used here, but the
expression for the plasma susceptibility which is used in that analysis
will :be derived quantum mechanically. We will study the interaction

assuming a drifting Maxwellian, degenerate semiconductor (zero

*An alternative way to explain this mechanism is to present it as
direct radiative transitions between extended Brillouin diagram
minibands produced by the artificial periodic structure (superlattice).
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temperature 1imit) and in presence of collisions. The effect of phase

matched plasmon-photon coupling will be further discussed and some

illustrative examples presented.

2. The Plasma Susceptibility

The quantum mechanical derivation of the free carrier plasma
susceptibility was presented previously by several authors [Lindhard
1954]. We will basically follow the self-consistent field approach
of Ehrenreich and Cohen [1959] or its extension to carriers in the
crystal lattice [Adler 1962, Wiser 1963]. An MKS units system is used.

The Liouville equation for the electron density matrix p

is

in2-o = [#o] (VI-9)
where f('is the total single particle Hamiltonian of the free carriers,
including the electromagnetic field contribution. Electrons in the

conduction band of semiconductors are considered as free electrons

with effective mass m

?K - Jz-[; (p-eh) +ep (VI-10)
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*
Where E-L A(B)exp i(Bz-wt) is the electromagnetic vector potential.
The scalar potential is set ¢ = 0 by gauge choice. Neglecting second

order terms in A we get

40 = 0) +3((1) (VI-11)
j((ﬂ) =1 .
=1 § (VI-12)

#

- 5— (pA+Ap) (VI-13)

The eigenmodes of the unperturbed Hamiltonian are

k> = Lo TkE (VI-14)
Vv

satisfying
0

(0) s =
o' k> = f (k) |k> (VI-16)

2
. " N2

where fE is the electron energy in state k, &5 = k™ for free electrons,
p(O) and fo(k) are the density matrix and the quantum state occupation

number {or the statistical distribution function)in the unperturbed system.

*
This convention of time dependence was chosen in order to conform with
the usual convention in quantum mechanics. However in the rest of this
work we have assumed a time dependence exp(iwt), as customary 1in
electromagnetic theory. The use of previously derived resultsin this
context requires careful adaptation.
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The density matrix can also be separated into zero and first order parts

D i p(o) + p(]) (VI“17)
(1)

where p is the response to the perturbation A(r,t).

Substituting (VI-11,17) in (VI-9) we find that the perturbation
p(1)

satisfies
ih ._g;p(]) = [j{(])’p(o)] & [ﬂ(o),p(”] (VI-18)

Once this equation is solved it can be used to calculate the

current induced in the plasma

a(r,t) = - Tl a0 + o 05{ D r,0] (v1-19)
where

30 (r) = J G slrry) + slror )i (v1-20)
and

i((],‘), () = - & A(r,t)s(r-r,) (vi-21)

The detailed solution of this problem is presented in Appendix
VI-A. It results in the following expression for the Fourier component

of the current

en 2,2 f (k+8) - f_(k)
: | . ef LS
Uara) =1 52 Eaos) = 1 o0 L g v

(k + 3 B)[(k+ 5 B)-E(B,0)] (V1-22)
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and particularly the longitudinal-longitudinal component is

2 folkeg) - f (k)
> E ka%ﬁ)ﬂﬁn E,(B.w) (VI-23)

is in the z direction and we used

e
VB

JZ(B QUJ) L=

where g = Sez

E'= iwA (VI-24)

The plasma susceptibility X defined by (IV-2) cannot be deduced
by direct comparison to (VI-23) because of the different convention of
time dependence. Appropriate conversion of Eq. (VI-23) to the previous
convention is provided by taking the complex conjugate of Eq. (VI-23).

We then get

N‘N

xp(B sw)

{ folkrg) - Ty (k) (VI-25)

- Eag B

consistently with exp(iwt) time dependence convention as used in the
previous chapters.
Eq. (VI-25) is the conventional longitudinal susceptibility

of free electron gas [Lindhard 1954]. Substituting E > V/(Zn)3j d3k,

it can be represented in an integral form

(vi-26)

] e? [ 3, fo(Efﬁj q fo(E)

Xp(B,w) " z;;;g‘ 5 = Uﬁgﬂiugi)—iﬁnl
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3. The Gain in Traveling Wave Interaction

Expression (VI-26) can now be used in the dispersion equation of
the coupled electromagnetic-plasma waves (Eq. IV-9) with fo(g)
representing the distribution function of the drifting carriers. This
dispersion equation was solved in Chapter IV in a first order
approximation which resulted in the change in the propagation constant
of the traveling electromagnetic wave due to its interaction with the
plasma (Eq. IV-10). The imaginary part of this propagation constant
is (Eq. IV-11)

I
Iné = & K,Sg3 i . (VI-27)
1+ xp(ws8y)/e
Using (VI-26)
2
- 1 e f (k+g,) - f_(k) a
Rexp —— T(D)J B 0 8y 0 (VI-28)
(21‘[) B-l .ﬁ(JJ - k+6']- k
2
Irnxp - (zﬂ)3 gﬁ’f d3k[fo(5f§4) - fo(h)]‘s['hm - afk+e]'ii)] (vVi-29)
T" — — —
1

where we have finally taken the limit n' - 0+.

Expression (VI-29) vividly demonstrates the general principles
which were discussed in the introduction to this chapter and illustrated
by Fig. 31. Only transitions which conserve both energy and momentum

- = fiw 1-30
E,jb E,jﬁ (VI-30)
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contribute to the integral (VI-29). Since the gain of the electromagnetic
wave g = 2 ImB is proportional to Imxp (Eq. VI-27), we conclude that

only transitions between states which fulfill Eqs. (VI-30,31) contribute
to electromagnetic wave amplification (stimulated emission) or
attenuation (stimulated absorption). Whether the net result is gain or
attenuation depends on the difference in population between the higher
states Eb = ga + B, and the lower states k, (see Figs. 31,33). In an
equilibrium carrier distribution there will be more carriers at the lower
energy states, consequently leading to attenuation. Gain can be achieved
only if there is higher population at the higher energy states

Eb ul B4 than in the Tower states k., which can be achieved for

example by applying a dc field. For carriers in a solid such a

situation may be referred to as intraband population inversion.

~

Since g, = Bye, is in the z direction,
2
g _h 2 N 1 2
gb_fi] i = 7w (B*281k,) = ——— (k,*8,/2) (VI-32)

is independent of the transverse components kx’ ky and we can simplify
Eqs. (VI-26,28,29) by integrating transversely the three dimensional

distribution function fo(E)

3
(2m)

£0K,) = —2s fdkxdkyfo(g) (VI-33)
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Using (VI-32,33) in Eq. (VI-26) we get

(6 = -y o [ Tl Allg)
s zvﬁzﬁ?_m kz - ka + 9N z
_ 1 ém f Folky) f folky) dk
2 ﬁzﬁ? £ k kb+1n z 2 kz—ka+in z
where
n = m'/(ﬁB])
is infinitesimal, and
k = m.Ulj..__ E]_
a TTEH 2
B
_Mw -
LR Eo
L O
~ 2 = i
2m 2m

Instead of (VI-28,29) we get at the limit n -+ 0

2 f (k)
1 e™m 8z
Rex, = - 5= =5 % (p)f—y——_ dk_ -
P 2 4y B 2 KKy 2
_ 1 e2
Imxp =7 53 £, (k) ~ £,(k )]

LD

(p) k, =k z

T Of (k)
J"Z dk
— a

(Vi-34)

(vVI-35)

(VI-36)

(VI-37)

(VI-38)

(vi-39)

(vi-40)

Using (VI-27,40) we can write the condition for gain (population

inversion condition) as
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folky) > Fo(k,)

(VI-41)
In the 1imit
By << k, (Vi-42)
we have from (VI-36,37)
. mw_ (VI-43)
“a = k% i B,

If the one dimensional distribution function fo(kz) is such that
it has a single maximum at ko, where

- m (VI-44)
Ko® & Yo
then the gain condition Eq. (VI-41) is satisfied when
(VI-45)
ka,kb N ko
which using (VI-43,44) gives
o i
Yph1 T By < Vo (VI-46)

Thus we have proved that the conditions of energy and momentum
conservation (VI-30,31) lead to the equivalence of the quantum mechanical

gain condition (VI-41) and the classical Cerenkov condition (III-25,V-32).
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4. Nondegenerate Plasma

Let fo(kz) represent the one dimensional distribution function
of nondegenerate drifting carriers. Its zero, first and second order
moments define the density Nyo drift momentum ﬁko and thermal momentum

spread in the z direction ﬁkth:

- 1 3.
B & 3 IJI fo(g)d k = §ﬁ-[ fo(kz)dkz (VI-47)
(27) _
- 1 (VI-48)
ko N 2™, J kzfo(kz)dkz
2 T 2
Ken/ = g | (ko) hgi)ok, (V1-29)

Using the relation

=M VI-5
kz—ﬁu ( 0)

these definitions correspond to their classical counterparts Eqs. (V-14-16),

where
EEﬁ.fo(kz) = £, (u) (vi- 51)
K =TﬁV2 (VI-52)
0
MV i VEkaT £3)
Keh = ‘h (VI-

As in (V-17) we may define a normalized distribution function
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g(x) whose zero, first and second order moments are 1,

n
f (k) =21 > g(
o'z kth

kz'ko>
th

0 and 1/2

(VI-54)

We can thus define the plasma dispersion function consistently with

(v-18)

6e) = [ L1 o

-C0

Using these definitions, Eq.

3
k
n A
Xp(B‘I:w) ==

k, -k _-1in

A1}
no
rus o
o
=2
3%} o
o
=

In the 1Timitn > 0

n|—

Rexp(Bim) e

mXp(Bsw) = '%‘

e —3 Re[G(zy)-6(z,)]

3
_§
1
k3
2 In[G(zp)-6(z,)] =
:

(Im < 0)

wzmz
meE—%

pr—

LS

(VI-34) can be written as

1
2% 53 [6(ey) - 6(c,)]

[a(z,)-9(z,)]

(VI-55)

(VI-56)

(Vi-57)

(VI-58)

(VI-59)

(VI-60)

(VI-61)

(vi-62)

(Vi-63)
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We can thus express Eq. (VI-27) in terms of the dispersion function G(c)

Im[G(z,) - G(z.)] g(z) - alz.)
Img = -9 > 2a = 79 b g‘;a (VI-64)
;K
ep(Byaw) = 1 - gg’% [6(z,) - 6(c)] (VI-65)
1 kg 1 wf m° (VI-66)
Bza—ew~B—K1S=~2-ew—2—-LK.IS . )
1 L

Let us consider the case where the distribution function is a

shifted Maxwellian

2 e 2
n -(k-ko)“/k
f(k) = (2m)° —2— e & (V1-67)
(Vrkyp)
th
where 50 = koéz' The one dimensional distribution function (Eq. VI-33)
is
22
n -(k,-k,)“/k
folk,) = on—2—e 2 F (VI-68)
kep |

and the normalized distribution function (VI-54) is

2
1 -X
(x) = —e (VI-69)
g v

Thus the definition of the plasma dispersion function G(z) (VI-55) is

jdentical with (V-56). For real ¢

o 2
(p) f i-x; dx (VI-70)

ReG(z) = 1—
v

-c0
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Fig. 32 The plasma dispersion function G(z) for a Maxwellian dis-
tribution and real argument t.
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2
ImG(z) = - v/ e™® (VI-71)

These functions are plotted in Fig. 32 and tabulated in Appendix VI-B.

We see from Fig. 32 that ImG(gb) - ImG(ga) < 0 (which according
to W1-64) means conditions of gain) only if (cb+ga)/2 > O.
Using definitions (VI-60 ,61 ,36,37)we find that this condition is equivalent
to the classical Cerenkov condition (VI-46) even if we are not in the
classical limit (VI-42). This is always true when the distribution
function is symmetric as is the case with a Maxwellian.

In conclusion of this section it is in order to indicate that all
the expressions in this section reduce to their classical counter-

parts in Chapter V in the limit (VI-42). In this 1limit we may have

folk tBy ) = (k) = ik, )8, (VI-72)
6(zy) - 6(c,) = G'(gy) )
aey) - alzy) = ¢'(y) )
) - 9lgy) = 9'(z Ky b
where
LG B
'fl B'l 0 UJ/G'I - vo
C.l -] ;a o z;b:‘_* = (VI'75)
Kth Yth

For these approximations to be valid, B] must be small enough so that first
order Taylor expansion of these functions is valid. Focusing our interest
to the imaginary part of yx, it is enough to require
2! (k,)

an

Bq<< (VI-76)
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in order to neglect second order expansion of fo(kz)so that approxima-
tion (VI-72) will be valid. In terms of the normalized distribution

function (VI-74) this can be written as
2g'(zq)

R =
1 g”lc]j

In the case of a Maxwellian distribution (VI-69) the condition for

kth (VI-77)

reduction to the classical Tlimit (VI-77) can be written as
2|z,

—1 (VI-78)
[1-2¢5]

<<

By

This is in addition to condition (VI-42), which (using VI-43) can be

written as 5

B.I << w (VI-79)

=

5. Degenerate Plasma

If the density of carriers in the plasma is high enough and the
temperature is low enough, the plasma may become degenerate, i.e. the
effect of the Pauli exclusion principle will become appreciable enough
so that the carriers will have to be described by Fermi statistics
instead of Boltzmann statistics. Such a situation may be obtained in
most semiconductors even at room temperature [Fistul 1969].

The carriers distribution function of degenerate plasma in

equilibrium is given by the Fermi distribution function.

(VI-80)

2
f(k) = = kel
1+ e(si 1.1)/ B
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where we allowed for the possibility of two values of electron spin.
The Fermi level u is determined for a given carrier density n, by
Eq. (VI-A9) or its integral representation - the left hand side of
Eq (VI-47).
In the Timit of zero temperature T = 0, the Fermi distribution

(VI-80) reduces to the form

<
. Ikl = kg (VI-81)
f(k) =
LO k| > ke
where kF is defined by
HiokE
Sm o = M (vi- 82)

In an electron plasma in semiconductors, p is measured relative to
the bottom of the conduction band.

In a drifting degenerate plasma we will assume that the
distribution function is equal to the equilibrium function shifted by
k0 in the kz direction. Thus the drifting Fermi distribution function

will be

2
2 il 2 _83
~[k-ko)“-kE1/KE, (vI- 83)
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vhere 50 = koez and kth are defined by Eqs. (VI-52) and (VI-53)

respectively. The corresponding one dimensional distribution function

(VI-33) is

° 2
1 -
f(k)= ZTTJ _ . ) 7 e k dk -
A Y - [(k, -k, )e-kg1/KkE, i KZ/KE™ o
2 - BN
k -[(k,-k )° - kgl/k
= ?%ﬂ n {A + e zZ 0 F th} (VI—84)

where kp is the transverse component of k in cylindrical coordinates.
(See Fig. 33)

At zero temperature Eq. (VI-84) reduces into
1 2 2
F Eﬁ'[kF - (kz“ko) ] |kz"ko| < kg

e s (VI-85)
0 [kzkol > ke

Equation (VI-84) or (VI-85) can be used in (VI-34,39,40) in order to
calculate the susceptibility of the degenerate plasma.

We define a normalized function g(x) by

k_-k

n
- 0 zZ o ;
folky) = 21 g2 9l ) (VI- 86)

so that

J g(x)dx =1 (VI- 87)

and proceed to define the degenerate plasma dispersion function GF(g}.



-228-

Fig. 33 Three dimensional illustration of traveling wave interaction

in the quantum regime. The example in the picture is of a shifted-
Fermi-electron-plasma-distribution at T = 0. Transitions can take place
between occupied states in circle b (K. ) and empty states in the plane of
circle a (K; = Ky - 8), and vice versa. The different states in each
circle have different energy, but since the corresponding states

and K, have the same cylindrical component k,, the energy d1ffere_%e

between any two corresponding states Ky and E is fixed

2

w2
2 2 #e 2.2, 4% , 2 2. _
“k, ~Bp " (kb+k )= g (KAL) = e (i) "Fkb .

Since k, > k , transitions from states in circle b to plane a (as
indicatgd in%the plcture) correspond to the emission of a photon with
energy fiw = &? §fk The opposite transitions involve the absorption of

a photon with the same energy. If the circle b is larger than the circle
a (kg > (kp+ky)/2), there will be radiative transitions only from the part
of c1rc1e b which is not shadowed by circle a, and there will be no
transitions from a to b (transitions to an occupied state are forbidden

by the Pauli pr1nc1p1e Hence the net transition rate (and consequently
the optical gain) is roportéona1 to ths difference in the area of the two
circles ﬂ[k - (kp-k ) ﬁ - n[kf - (ky-kg)¢]l. If the area of the circle

b is sma]]er than c1rc1e a «kb+k )/2 > ko) then we get optical absorption
instead of gain.
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(vI-88)

(VI-89)

(VI-90)

(VI-91)

(vi-92)

i X
GF(g): [ 9&:%— dx Img < 0
The plasma susceptibility (Eq. VI-34) can then be written as
3
1 Kg
xp(B]sw) ol & _§'[GF(§b) - GF(ga)]
B
£ kb - ko - in
b kF
" ka - ko - in
£a k
22 F
3 2w
kg = —5—
h Kg

where kb’ka are defined in Eqs. (VI-36,37).

In the Timit n 0"

_ kp = Ko
&b ke
_ ka B k0
Ea kF
3
k
1
k
tmg, = - & EB—E (6 (£,) - 6(5,)]
1

where for real £ the real and imaginary part separation is

6eie) = ()[LE ax - 1w gle)

(VI-93)

(VI-94)

(VI-95)

(VI-96)

(vi-97)
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These expressions are identical with (VI-56-63) except that kth is
substituted by kF‘ kA by kG, and ¢z by &£.
For the zero temperature distribution (Eq. VI-85), these

expressions are explicitly given in terms of tabulated analytic functions
3

30 -x3) PR
g(x) = (VI-98)

0 [x] > 1

g
Ny = g;f (vi-99)
For real £
ReGp(€) = - %[@ + % (€2-1)en —}-;EU (V1-100)
(-3 (- € €] < 1

ImGe (£) = (VI-101)

|
f__wA_
o
o
v
-

The real and imaginary parts of the susceptibility is found by substi-
tuting (VI-100,101) in (VI-9596). The results are consistent with similar
expressions which result in different plasma response problems, for
example [Pines, 1964, p. 144, Spector 1965].

The traveling wave gain (or attenuation) is found by substitu-

tion in the first order solution of the dispersion equation (VI-27)

Im[GF(Eb)"GF(Ea)] g(gb)'g(ga)
o e gy
|Ep(B];w)] |Lp(B]sw)|

Img = - (VI-102)



3
k
-q1.176
€ (8y.0) =1 - 3 E? [6e(g,) - Gglg,)] (V1-103)
I -
=1 Bks=L :
< = e kS =2 Ewﬁgg;;; KyS (Vi-104)

For convenience ReGF(E) and ImGF(ﬁ) are plotted for real argument &
in Fig. 34. Notice the similarity between Figs. 34 and 32. Gain is
attained when ImGF(Eb) < ImGF(Ea) (or g(Eb) > g(€a)). In Fig. 34
ImG(£) vanishes for |E| > 1 so that the plasma dielectric function
(VI-103) can be purely real if |€a|,|£b| > 1. This can be understood
as an elimination of the Landau damping because the distribution
function does not have any "tail."

When Ea,Eb <1 (gain) or & Eb > 1 (attenuation), exact phase

a’
matching of the plasma and electromagnetic waves can be achieved

Ep(B],w) =0 (Vi-105)

In this case the first order solution of the dispersion equation
(VI-102) is not valid any more, and we should resort to the second
order solution (see Eqs. V-37-40, 44-50). In the present case, using

VI-95,96 and a:suming gp(B],w) n 0

3
A=3+ s [GL(E,.) “a G ( )kb] (VI-106)
" ATE o3 R T Pl
1

B = ap(m,B]) =0 (vi-107)
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Fig. 34 The plasma dispersion function GF(g) for Fermi electron gas
(T =0).
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K
C = B—_I' [GF(gb) = GF(EB)] (vi-108)

when ep(B],m) = 0 condition (V-49) is satisfied and the gain is (V-50)

Ine = g, {%. (VI-109)

6. The Effect of Collisions

The effect of collisions on the plasma susceptibility function
and the traveling wave interaction was briefly discussed previously in
section 6 of Chapter V in reference to the Boltzmann equation solution.
Similarly to (V-67,68), a simple relaxation time approximation is fre-
quently used in solving for the density matrix Liouville equation

(VI-9 or VI-18)
(1)

iR g_tp(l) =M (074 [3((0),0(1)]_111 E—  (vI-110)
which can be written (using e 1Y harmonic dependence) as
o+ 1 Dol = (1,007, [4((0),, (1) (V-111)

Eq. (VI-111) is identical to (VI-Al1) except that instead of the
infinitesimal parameter n' we have a finite 1/t. Hence with the sub-

stitutions
nt =1 (V1-112)

or (see VI-35)
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= m__ ., __m
n = ’ﬁB] n ﬁg;;‘ (VI-113)

Keeping 1/t finite throughout the derivation, the previously derived
formulas can still be used.

Similar solution of plasma response problems with collisions is
customary [Lindhard 1954, Tsu 1967, Kliewer 1969]. Kliewer [1969]
also pointed out the limited validity of the simple relaxation time
approximation, especially when longitudinal fields are present, and
suggested some heuristic corrections to the Lindhard solution. Never-
theless we will use the simple relaxation time approximation in order
to get an indication on the effect of collisions.

'In our approximation the plasma susceptibility is still given by
Egs. (VI-56-59) for the nondegenerate plasma case, and Eqs. (VI-89-92)

for the degenerate case, where n is substituted from Eq.(VI-113)

We define
Sy b " Cg,b + c;,b (VI-114)
R ka’bk_ o (VI-115)
, th
Gy = - ﬁEEE%T?_ = - V;%ET? (VI-116)
€ b " Ez,b £ Eé’b (VI-117)
R - fab Ko (VI-118)



fa,b T T ARy T VBT | (VI-11%)

Ve = (VI-120)

The plasma dispersion function G(z) can then be written as

n R P I
= X=z - d |z |/m _
G(z) JQ(X)(X-;R)ZH;I)Z dx mf g(x) (T dx (VI-121)

and similarly for GF(g). |
For the nondegenerate plasma case we find that ImB is stil given
by the left hand side of Eq. (VI-64), but instead of the right hand

side, we have

r I T I
Img = i3 g(x)%ﬂ dx- [g(x) —&5—1—@1—7 d
o (87000 ) o vl o e

(VI-122)
where (VI-121) is used in calculating ep(B],w) (Eq. VI-65). An
identical expression results for the degenerate case from Eqs. (VI-102-
104) with ¢ substituted by &€ and ¢ by «.

The physical meaning of Eq. (VI-122) is that the conservation

of energy and momentum conditions (VI-30,31) are relaxed by the

presence of collisions. Instead of transitions occurring only between

states with kz=kb and kz=ka (Eqs. VI-36,37 , see Figs. 31,33 for illustra-

tion) there is finite (l.orentzian weighted) probability for transitions
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between states with kz around kb and states with kz around ka. These
transitions do not conserve energy and momentum. This effect is thus
completely analogous to line broadening of atomic or molecular radiative
transitions, which is brought about by the finite lifetimes of the
quantum levels involved in the transitions. Also in that case the
lineshape of the level is a Lorentzian.

The collisions have a harmful effect, mainly on the imaginary
part of the dispersion function ImG. Instead of the curves of Figs.
32,34 which decay strongly to zero as |z| >> 1 |g| > 1, we get Tlower
and wider curves which decay slowly to zero as |z|, |g] >> 1 (see
Fig.3%,37). This makes it difficult to achieve plasmon-photon phase

matching, i.e.

|e

p(Bpsw)| =0 (VI-123)

since even if the real part of ep(B],m) (VI-65 or VI-103) vanishes,
the imaginary part stays finite. Thus the traveling wave gain or
attenuation (Eq. VI-122) cannot be made high by reducing the
denominator ]Ep(81,w)]2.

The plasma dispersion function G(z) for a Maxwellian distribution
(VI-69) and complex argument was computed numerically as a function

R for few values of |gI|. Instead of numerical integration of

of ¢
Eq. (VI-121) better convergence and accuracy was obtained using a
continued fraction iteration scheme [Burrell 1974] for direct
computation of G(z) in the complex field. A computer listing of the
computed functions for parameter values [cI| = 0, 0.01, 0.066,

0.2 is given in Appendix VI-A. The functions ImG(cR) and ReG(gR)



Fig. 35 The imaginary part of the plasma dispersion function G(z)
for a Maxwellian distribution, plotted as a function of R
for collision parameter values |z!|
|zl = ]/(VthBTT) = 0.2,
zero rapidly

= 0 (no collisions) and
Notice that ImG does not decay to
at |z"| >> 0 when collisions are present.
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Fig. 36 The real part of the plasma dispersion function G(z) for
Maxwellian distribution plotted as a function of z" for
collision parameter values |zl| = 0 (no collisions) and

. ;
[zt = 1/ (vyBy7) = 0.2.
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are plotted in Figs. 35, 36 for parameter values chl = 0,0.2. The
difference between the curves illustrates the effect of the
collisions.
In the case of T = 0 degenerate plasma the dispersion function
GF(c) (VI-88,98) can be presented explicitly in terms of analytical

functions also for complex &

ReGe (£) = - %{25R+[(5R)2-(&:1)2-112n Sl vetle fargte-1)s  (y1onzay
arg(g+1)]
_3 I R, I 4 R\2 .I:2
ImGe (€) 4{2|a | +2e"|e el - [ER)2-(g)-1] (VE-125)
[arg(E-1)-arg(&+1)]
where
£ = R o el (VI-126)

I
1
arg(g-1)-arg(e+1) = tan™! (Tyij)-tan'] (l%—L) - wn(gR) (VI-127)

€741 £ -1
f e =1
n(g)= R (VI-128)
0 g7 > 1

and the tan'1 function is defined to accept values in the region
-m/2 < tan'](x) < /2.

The mathematical derivation of these formulae is given in
Appendix VI-C. An example with IEI| = 0.2 is plotted in Figs. 37, 38
together with the curves for |€I| = 0 in order to illustrate the
effect of the collisions.

In the limit ]c1| > 0 the Lorentzian function in (VI-121)
reduces into a Dirac delta function G(X-CR). Consequently Eq. (VI-121)
reduces into the collisionless expression (VI-70,71) and similarly for

the degenerate plasma dispersion function. To neglect collisions we



-241-

Fig. 37 The imaginary part of the plasma dispersion function Gg (&)
for B Fermi sphere distribution (T = 0), plotted as a function
of ™ for collision parameter values ]gtl = 0 (no collisions)
and |£I| = 1/(vggyt) = 0.2. The main effect of the collisions
is that ImG der Aot decay rapidly to zero at |g"| > 1.
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Fig. 38 The real part of the plasma dispersion function G-(%)
for Fermi sphﬁr‘e distribution (T = 0), plotted ag 2
function of £" for co]lision parameter values |£'| = 0
(no collisions) and |g*| = 1/(VF$]T) = 0.2.
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must require

ICII << 1 |gI] << 1 (VI-129)
or
Vih
((.IJT) -(G/—B;')- >> ] (VI-IBO)

for nondegenerate plasma and

v
(o.rr) '(ﬁ >> ] (VI-]31)

for degenerate plasma. These are somewhat different from the conven-

tional criterion wr >> 1.

7. Discussion and Examples

The quantum mechanical analysis presented in this chapter
provides a physical insight into the process of traveling wave
interaction. We understand that the electromagnetic wave amplification
is caused by stimulated radiative transitions of free electrons
between states which conserve energy and momentum (Eqs. VI-30,31).
The energy lost during an electron transition from a high to a lower
state is transferred to an emitted photon. The momentum lost in this
transition is transferred to the photon through one of its wave space
harmonics. Thus, the traveling wave amplifier may be regarded as a
free electron laser cr maser.

Two independent effects are important:

i) Population inversion. This is the sitaution when there

are more electrons in the higher energy states than in the lower
energy states (Eq. VI-41), where we refer only to states which are

connected by energy and momentum conservation (Fig. 31). In this case
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there is higher probability for radiative electron transition

emitting a photon than radiative transition which involves absorption
of a photon, and thus the result is electromagnetic gain. In

equilibrium population normally the Tower energy states are

more highly populated and thus the system exhibits electromagnetic
attenuation.

We showed in Sections 3 and 4 that the population inversion
condition (VI-41 ) is equivalent to the classical Cerenkov condition
(VI-46) when the distribution function is symmetric, viz. population
inversion is attained when the electrons average velocity exceeds
the phase velocity of the space harmonic which participates in the
interaction.

In terms of the normaljzed function (see Figs.32,34) the gain
condition (or population inversion condition) is that B t Ty < 0
or Eb + Ed < 0 so that Eqs. (VI-64) and (VI-102) respectively get
positive value. Since the functions ImG(z), and ImGF(g) have their
minimum at the zero argument point and Ty > Lgo Eb > Ea’ a sufficient

condition for gain(population inversion)is

Gyoly <10 (VI-132)

or
EpsEy < O (VI-133)

ii) Plasmon- photon phase matched coupling. This is the

situation when the propagation parameter and frequency of the electro-
magnetic space harmonic satisfy the plasma dispersion equation (VI-105)
ep(81,w) = 0. When this happens, the electromagnetic wave is

temporally and spatially phase matched to the plasma wave of the
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system through one of the space harmonics, and there is strong
interaction between the two waves.

When the plasmon-photon phase matching condition is closely
satisfied, the electromagnetic gain (VI-64 or VI-102) gets very high
since the denominator tends to vanish. Indeed in this case
condition (V-45) may not be satisfied and the first order solution of
the coupled modes dispersion equation (IV-10,11) fails. We thus have to
resort to the second order solution (V-44) or (V-50).

In order to satisfy the phase matching condition (VI-105), both
the real and imaginary parts of EP(B1,m) must vanish. For the

Maxwellian distribution case (VI-65) these conditions can be explicitly

written as 3
' k
Reeg = 1 = %‘gﬁg [ReG(zy) - ReG(z,)] = 0 (VI-134)
1
3
tne, = } By [ImG(zy,) - ImG(z )] = 0 (VI-135)
w7 a3 % ta

1
where ReG(z), ImG(z) are plotted in Fig. 32. For the T = 0 Fermi

distribution case (VI-103) these conditiens are

3
k
Ree, = 1 - %—Efg-[ReGr(ab) - ReG.(£,)] = 0 (VI-136)
3
k
imep, = %_Egg [ImG (&) - ImGe(£,)] = O (VI-137)

1
where ReGF(g), ImGF(g) are plotted in Fig. 34.

From Figs. 32, 34 we see that |ReG(z)| < 1 |ReGF(g)| < 1.8.

Hence, a necessary condition for satisfying (VI-134, 136) is
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kA > 31 (VI-138)

6> 3] (VI-139)
Thus the presently defined parameters kA, kG (Eqs. VI-59,92) are
useful in stating a necessary condition for plasmon-photon phase
matching in nondegenerate (VI-138) and degenerate (VI-139) plasma.
Another condition for the vanishing of the real part of € (Egs.
VI-134,136) is that both Za%p (or ga,gb) will have the same sign,
otherwise ReG(z,) - ReG(gy) < 0 (or ReGr (& )-ReG(£.) < 0) and Egs.
(VI-134,136) cannot be satisfied.

In order to get also the imaginary part of ep(B],w) to vanish
(Eqs. VI-135,137) we must require also |ca|,];b] >> 1 (see Fig. 32)
or |ga|,|gb| > 1 (see Fig. 34). Furthermore, CaSh (or £_,&)
must have the same sign in order that also the real part of Ep(B1’w)
will vanish. Thus we may have plasmon-photon phase matching either
when

Laelp << 1 (VI-140)

£a28p < 1 (Vi-141)

in which situation also population inversion and gain are attained

(see Eqs. VI-132, 133), or when

Tastp >> | (VI-142)

EaEp > 1 (vi-143)

in which case the coupling involves attenuation of the electromagnetic

wave.
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Notice that in the limits (VI-140, 142 also the (positive) value

of ReG(cb) - RGG(Ca)diminishes (see Fig. 32) even though not as fast
as the imaginary part. Hence, in order to satisfy (VI-134)
we must have

kA >> By (VI-144)

instead of (VI-138).

In the case of the zero temperature Fermi distribution, there is
exact vanishing of the imginary part of ep(B1 »w) Eq. VI-137) for
|ga|.[gb| > 1 and a strong inequality is not needed. The gain in this
case should be calculated from a second order solution of the dispersion
equation which is explicitly given for this case by Eqs.(VI-106-109)

In practice, the presence of collisions will cause Imﬁr(g) to be
finite for |£] > 1 even at T = 0 (see Fig. 37). Hence, also in the
case of T = 0 distribution with collisions we may have to require

instead of Eqs. (VI-141, 143, 139)
| lalgpl >> 1 (VI-145)

kg >> By (VI-146)

so that the plasmon-photon phase matching condition may be attained.
In the classical limit (Eqs. VI-78, 79), the functions dif-

ference in Eqs. (VI-134, 135) may be substituted by a derivative,

resulting in k 2
1-4 597 ReG'(zy) = 0 (VI-147)
1
2
1 %
'2- 8—2' IITIG'(Q-l) =0 (VI-]48)
1

where
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By 'S = o T T

1 kth Vin b a
2
kzg_lf_A__
D kth

(VI-149)

(VI-150)

From Fig. 23 we see that necessary conditions to get plasmon-

photon phase matching in the classical regime (Eqs. VI-147, 148) are

|;]| >> 1

kp >> By

(VI-151)

(VI-152)

which are the classical counterpart of Eqs. (VI-140, 142 144).

In a similar way we may also find the classical analogue of

Eqs. (VI-136, 137) in the limit

resulting in

where

B
—k—] <<
F
2
Ree, = 1 - %-EE%-REG'(E1) =0
1
1K
Ime, = 7 EE% ImG'(£1) = O
1
mo/(By)  w/B,
3 ke - v Yo% G
3
K2 = Eﬁ
FT % ke

(VI-153)

(VI-154)

(VI-155)

(VI-156)

(VI-157)

where kFT is the Fermi-Thomas wave number [Pines 1964] defined by

(compare V-20):'
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2 1/2
n_e w
= (9 = P (vI-158)
kFT - (EkBTF ¥ E /E_VF

The "classical" counterpart of conditions (VI-145, 146) is thus

]51]>> 1 (VI-159)

To illustrate the traveling wave interaction in the quantum
regime we present in Table 39 an example of nondegenerate solid state
traveling wave amplification in the gain regime but without plasmon-
photon phase matching. It is relatively easy to satisfy Eq. (VI-132)
in a semiconductor structure by drifting through the device a current
so that v, > w/gy. It is much harder to meet condition (VI-140)

for plasmon-photon phase matched amplification, since this requires

ko >> kth OF ¥V, >> Vps
From the parameters values listed in Table 39 and Eq. (VI-59)

we find
kA/B1 = 0.657 < 1

so that plasmon-photon phase matching is not possible (VI-138).

We get

b 0
o 0.8417

-1.3616
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Table 39: An example of traveling wave gain (kA/B] < 1)

parameter value unit
w 3.5 % 10]3 rad/sec
n 8 x 1016 cm-3
0
I 50 °K
L 300 R
13
wp 1.6 x 10 rad/sec
kn 1.375 x 10° an”]
Ky 1.4 x 108 em ]
5 =]
kth 9.5 x 10 cm
By 2.1 x 10° cm !
K 1.06 x 10° en”)
d
ky 2.2 x 10° em”)
Fig. 28 (¢ = 65°
2 2 _ -1
nL]/ng =0.1) g . 2.1 cm
Fig. 29 (¢ = 90°
nf]“‘g2 =0.1) g 1 en”!
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so that ImG(g,) < ImG(ca) and net gain is obtained (Eq. VI-64). The
real and imaginary part of G(z) are found from the computer listing
in Appendix VI-B (CI = 0) , then the gain is calculated using Egs.
(VI-64-66). For the calculation of the interaction impedance of the
structures in Figs. 28, 29 we used Eqgs. (V-A31, A34).

The material considered in this example is GaAs, and so we use an
effective electron mass m/me = 0.08 and an index of refraction n = 3.1
(including the free carrier contribution Eq. V-A2). The listed value
of k0 corresponds to drift velocity L 2 X 107cm/sec calculated from
Eq. (VI-52). Eq. (VI-53) is used to find the thermal wave number Kin
for the given temperature. Some useful equations for the calculation of
some parameters are listed below (all parameters are assumed to have

€.g.S. units).

n
w = 5.637 x 10 — (VI-161)
P € m/m
e
- 5 [m_ o
Kep = 477 x 107 [5-T (VI-162)
-1 n0
ky = 1.4475 x 10 ;ﬁ—1' (V-163)
n, \I/3
ky = L1.51<———7E———> (V-164)
R e
e — T
m

In the present example collisions were neglected. We find for
the assumed parameters that the thermal velocity is Wik ' 138 % 107cm/sec.

Assuming t = 10712 sec, we find from Eq. (VI-116)

1l = —L— = 0.035 << 1

VihP1T
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so that the neglect of collisions is justified (Eq. VI-130). It is
not justified of course for the fundamental space harmonic, which
contributes background loss far exceeding the attained gain.

Examples of phase matched plasmon-photon coupling with gain or
with attenuation are presented in the classical regime in Chapter V
Sections 4,5. In most practical cases of plasmon-photon phase
matching, the classical Timit can be taken.

Operation in the degenerate regime can easily be attained in
semiconductor structures with high carrier concentration and Tow
temperature. A criterion for nondegeneracy is presented in Appendix
VI-D (Eq. VI-D7)

m
no(ﬁ;-T) <4 x 10 (VI-165)

where n and T are expressed in units of [cm"3] and [°K] respectively.

In the example presented in Table 39, assuming m/rne = 0.08 we get

i -3/2
no(@ T) =10

so that condition (VI-165) is violated and the semiconductor is

16

slightly degenerate. This slight degeneracy is not expected though
to change appreciably the numerical results presented there.

In the previous sections we derived explicit expressions for
the plasma dispersion functions of the nondegenerate Maxwell distri-
bution and the degenerate (T = 0) Fermi distribution with and without
collisions. Previously derived expressions can be used to compute
numerically the plaéma dispersion function of the Fermi distribution
with T # 0. This further elaboration is not attempted in the present

work, and we also will not analyze examples in the degenerate regime.



-253-

Some comments about this case still may be in order.

In a degenerate semiconductor in which the carriers are
introduced by impurity doping, the impurity level cannot be ignored.
The impurity levels will be only partially ionized, and in order to
find the concentration of free carriers in the conduction band n,
for a given donor  concentration N and donor level é%i’ we have to
solve a transcendental equation which results from the neutrality
condition [Fistul 1969]. Indeed a zero temperature Fermi distribution
like the one we analyzed in section 5 (Fig. 33) cannot be achieved at
all at equilibrium by impurity doping, since at zero temperature all
the carriers will populate the impurity levels. Distribution which
is close to the Fermi sphere distribution may be attained at finite
temperatures corresponding to thermal energy kBT large enough to ionize
the impurity level appreciably but still smaller than the Fermi energy.
When a strong dc field is applied (for operation in the gain regime)
the problem of carriers "freezing" in the impurity levels does not
arise since the impurity levelswill get strongly ionized by the
mechanism of impact ionization [Conwell 1967]. The difficulty of
"carriers freezing" may be completely avoided if the carriers are
introduced by injection instead of impurity doping or if an
appropriate semimetal can be used instead of a semiconductor.

As a theoretical model for the analysis of traveling wave

amplification with drifting carriers at T = 0, we used a shifted
Fermi distribution model (Fig. 33) to describe the carriers.

This assumption is commonly used also in other semiconductor

plasma response problems [Paranjape 1963, Spector 1965] ,
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however it lacks experimental justification.

It is apparent that operation in the gain regime, especially
when also photon-plasmon phase matching is desired (VI-140,141), is
much easier to attain at Tow temperatures when the plasma is
degenerate. The comparison of Figs. 32, 34 indicates that vanishing
of Imep(sl.w) is much easier to attain at Tow temperatures. Further-
more, the collision relaxation time 1 is considerably larger because
of the scarcity of phonon collision events. Thus the imaginary part
of £ (VI-119) can get reduced, which again helps to attain vanishing
of Imap(B],w) and increase in gain. Though phonon scattering is
considerably reduced at low temperature, impurities scattering may
limit appreciable increase in the relaxation time t. This is
especially destructive when we wish to use high doping levels (this
problem is avoided, of course, if the carriers are not introduced by
impurity doping). It is worth noting, however, that the cross section
of impurity scattering reduces with the applied electric field to the
power 1 to 1.5 [Conwell 1967], thus longer collision relaxation time

can be attained for the drifting carriers.
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Appendix VI-A: Derivation of the Quantum Mechanical Plasma Response

to Longitudinal Field

We first solve Eq. (VI-18) for p(]). The perturbation is

~iwttn't

assumed to have e time dependence where n' - 0+ is the adiabatic

turning on parameter (see discussion in Chapter V, Section 2)

A general matrix element k+q, q is found
[harthn' - €, )] <kea | k> =

- 5 [f(k) - f(kra)] <kra|Ap + pA|k>

f (k+q) - f_(k)
1 ~ K
<£+9_|p( )|£> = g_m'ﬁm ?EHQ'EI()S'”"”I <k+q|AptpA| k> (VI-A2)

where we made use of Eqs. (VI-13,15,16). Substituting

A(r,t) = A(g,w)ei(ﬁ'i'“t) (VI-A3)

yields
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f _(k+q) - f_(k) .
e o-— 0= 5 -
on Fu-Bp o Bg) * " (2nk+hB)<k+qle ™= > k>A(8,t) =

<5?9Jp(])(:,t)|5?

9__1_‘_ fo (__k_‘i'ﬂ) - 'FO(E) (k '|_ )
m m-(gk+g-Fk) + fn* = 2 == q.8

In order to evaluate the induced current (Eq. VI-19) we need to
first find the matrix elements of J(O’ (r) (Eq. VI-20), J(])(r)
£q. (v1-21) and o(®) (Eq. VI-16).

i (k+q) -
<E|J§,g)(£)||_<,+ﬂ>= %-V— J"”e"'i'f_e[:—:j_e G(L-Le)+6(r )— e1 ik 43 re =

19" (26K + hg) = 1o e 4E (k + & q) (VI-A5)

2 mw © mV

<£JJ£;)(£;t)|£fg? =S JJJ e-iﬁsrea( -

= - & 9T A(r,t) (VI-A6)
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kealo(@ ko = £,,08, o (VI-A7)

Eqs. (VI-A4-A7) are then substituted in (VI-19), yielding

Urst) = -e ] [k Ikea> wealeV e+
k.q '
re kIS () lkrg> el 1Ko =
2
_ePn, 22 o Flkr®) - £k
i A T e g
(k+ > DLk 7 BAlr,0)] (VI-Ag)

where we used for the particle density Ny the relation

ka (k) (VI-A9

Eq. (VI-A8) results in Eq. (VI-22) when (VI-24) is substituted
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2

en 2,2 £ (kt) - F,(K)

. . e%h olkt8 olk

J(r,t) = -1 —2£(r,t) +i & - X
r =\ P & - Bg B *

(k + 3 B)L(k + 5 B)-E(r,t)] (VI-A10)

To get the Tongitudinal-longitudinal response (VI-23) we substitute
E = E,B/B and multiply (VI-A10) by e, = B/B

Sl B e2h? E fo(k+8) - fof@l )
4m2VL082 k Tw-@&'_g—ﬁ&) + 1fin

£ mw z

x [(2k+g)-81°E, (VI-AT1)

Using the relation

2 2 _2m
(2k+g) -8 = (k+B)™ - K " oZ @rep B (VI-A12)
we get
2
2 & s : e2ﬁ2 2m ~
i el T e R

hw )
[T‘“"E’msﬁ) +in’ "] [(2k+B)-BIE, =

2
en,

2 =

. 2ﬁ2 2 2

2
y i w g ezﬁ 2m

= | E. =1 —3=—= X
e [T‘“J'EEE‘EQ + 1hn ] R

E[fo(é’yg) - £, &)1 (2k 8 + 62)E, (VI-A13)
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Note that

When these are used in (VI-A13) we get cancellation of the first and

third terms, resulting in

&2 fo(k+8)-f (k)

J, = iw vqg—r E (VIi-A14)

which we use in the text as Eq. (VI-23).



-260-

Appendix VI-B: The Plasma Dispersion Function G(z) for Complex

Argument

The computation is based on continued fraction iteration scheme
for the function Z'(z) [Burrell 1974, p. 126]. Subroutine G(z,zprime)
calculates Z'(z) in the first complex quadrant. Subroutine convert (zin’
z,,t)» evaluates Z'(z) at any point in the complex plane and calculates the

function Z(z), using the identity [Fried and Conte 1971]
ZE) = w2 () « & (VI-B1)
2T 3

Z(z) is the conventional plasma dispersion function for
Maxwellian velocity distribution [Fried and Conte 1971] which is usually

-jwt

defined in plasma physics for e harmonic time dependence. Its defini-

tion is identical to that of G(r) (Eqs. VI-55,69), but for Imz > 0. The

relation between Z(z) and the function used in the present work G(z) is

6lz) =2°(2) (VI-B2)

Calculated values of ReZ, ImZ, ReZ', ImZ' are listed for parameter values

ETA

Iz'| = 0, 0.01, 0.066, 0.2

0, 0.1, 0.2 ... §.3

Y
n
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SUBHOUTINKE GIZ+ZPHRINE)

INTECER oM

COMFLEX Z+IFPRIME

DOURLY FHECISION AtZO).BI20)

REAL X +Y o XZ90Y2s ke lMoKZZ+122+DsTo k

DATA A/=1+%72454D+00y 2.1903H9D=01y =1.92978D~-01+~1.94566566D-01

de=leteueCub=-01p=1-%030U0YD=U]4=1.096796D=01,=1.605391D=-01,

&
&
A&

o e on

&=

&

=1.4£48560-011~1.4168620-01, 7.8%2d10D=03y 3.586354D-01,
=1e431093D=01y 45079200 -00s=2.635%%1D~01y 5.255400D=01,
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482400 N~U0Zy H+540440D=02+~=1.728404D=02s 1.182689D~01,

BeUBOUZOD=0Gy 192106820 =019~5.804200D~03s 1.2215%9D-01y
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E=bEALIZ)

T=ALKAGH 2}
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Appendix VI-C: The Zero Temperature Plasma Dispersion Function

for Complex Argument

In order to obtain an explicit expression for Gg(£) we may
either integrate Eq. (VI-121) with (VI-98) for g(x),or directly
evaluate Gp(€) from its definition in the complex half plane Img < 0
(VI-88). We will use the second method. The mathematical steps are
straightforward but care should be taken in the definition of the
logarithmic function which is a multivalued function in the complex

field. For a function 2nZ we will choose the branch cut as

Imz = 0 -o < Rez < 0 (VI-C1)

so that argz receives values in the principal branch

- < argz < T (VI-C2)

The direct integration of (VI-88) with (VI-98) results in

6p(e) = - ¥ [26 + (6°-1)en £ Img < 0 (VI-C3)

Breaking GF(E)into its real and imaginary parts results in

ReGe (£)= - 7 28"+ [(sM)2-(eh)2-12un|E1] + 26R|€! | [arg(e-1)-arg(e+1) 1}
(vi-c4)
3 I =1 Ry2 ,.1,2
Im6e(£)= 7 {2|¢ |+25R[51|2n|§:r[ - [(g7)%-|g"|“-1][arg(E-1)-arg(&+1) ]}
(vi-c5)
Defining the function tan'](x) in the section - %—c X < g-,
bearing in mind that Img = - |EI| < 0, we get as a result of the

branch cut (VI-C1)
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(vi-cs)

n
—_—

arg(g-1)

arg(&+1) (VI-C7)

R4y

I
tan'l (flé;l)-ﬂ gR € o

or

I I
arg(g-1)-arg(g+1) = tan'] ey tan'] J-—Fz—-l---wm(gR) (VI-C8)
£R+] gR_]

where

R
R) _ 1 g7 < 1

n(g
(VI-C9)

0 1eR)> 1
At the limit |£I| + 0 Eq. (VI-C8) reduces to —wn(gR) and Egs.
(vI-C4,C5) reduce into (VI-100,101).
An HP25 program for calculating the real and imaginary parts of
GF(g)(Eqs. VI-C4,C5) is Tlisted below. The examples, |gI| =0,
|gI| = 0.2 are plotted for comparison on the same axes in Figs.

o/ 385
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HP25 Program to calculate ImG.-(£) for complex argument

Preliminary

g rad

Store 0 to 5
Program

00 10
01 RCL3 11
02 ENTER 12
03 x 13
04 RCL1 14
05 + 15
06 RCL4 16
07 ENTER 17
08 x 18
09 RCL1 19

-+

7
n
RCLO
2

X
ST06
X
RCL2

Storage

0
1
2

20 x
21 RCL6
22 *
23 RCLO
24 RCL4
25 =
26 tan”
27 RCLO
28 RCL3
29 =+

1

et 3
Il2

NN

|&

38 RCL3
39 RCL4

gf-1

£
75

40 x

41 RCL1
42 -

43 x

44 -

45 RCL5
46 x

47 GT0 O
48 Ry

49 GTO 38

HP25 Program to calculate ReGF(g) for complex arqument

Preliminary

g rad

store 0 to 5

Program

00
01
02
03
04
05
06
07
08
09

RCL3 -

ENTER
X
RCL1
+
RCL4
ENTER
X
RCL1

10
11
12
13
14
15
16
17
18
19

an
RCL3
RCL4

RCL1

-

Storage
0 [g1| 3
1 €2 4
2 R 5
20 RCLZ 30 RCL3
2] 2 31 +
22 X 32 tan”)
23 STO06 33 -
24 + 34 RCL3
25 RCLO 35 x 20
26 RCLA 36 GTO 48
27 = 37 R+
28 tan~) 38 T
29 RCLO 39 -

gt
R
-.75

40 RCLO
41 x

42 RCL6
43 x

44 +

45 RCL5
46 x

47 GTO 00
48 Ry

49 GTO 40
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Appendix VI-D: Degeneracy Criterion

The number of electrons in the conduction band of a semiconductor

is given by [Fistul 1969, Sze 1969]

n_ =N 2
(0] C‘/T?

F1/2 (}I:—BT-) (VI-D1)

where u is the Fermi energy level measured in reference to the conduc-

tion band bottom. N _ is the effective density of states in the

c
conduction band 2nkaT 3/
NC = 2 h2 ) (VIi-D2)
and FI/Z(ETJ is the Fermi-Dirac integral
vx__dx (VI-D5)

Fq,0—=) =
]/2 EBT £ 1+ EXD(X— }]i_BT)

This function is tabulated in [Fistul 1969].
We define a criterion for degeneracy as the condition when the
Fermi level exceeds the bottom of the conduction band (p > 0). To be

in the nondegenerate regime we must satisfy

2
n, < Nc-;% F1/2(0) (vI-D6)
which when numerically computed, results in the condition
-3/2
n (MT)  <4x10'° (VI-D7)
0 I'I‘Ie

where o and T are expressed in units of [cm'3] and [°K] respectively.
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Chapter VII
DISCUSSION ON WAVE INTERACTIONS IN PERIODIC STRUCTURES

1. Introduction

In the present chapter we present in further detail some conclu-
sions which result from our generalized treatment of traveling wave
“interaction. We also discuss some other effects and topics which have
relevance to the present investigation and give reference to some other
investigations which are related to this work.

The implication of our generalized analysis to traveling wave in-
teraction with vacuum accelerated electron beams is discussed in the
second section, and the limits of the conventional traveling wave inter-
action analysis are indicated. In the third section we discuss briefly
the Smith-Purcell radiation and the Cerenkov radiation and their rela-
tion to the present traveling wave analysis.

The implication of the present theory to the case when the
periodic structure is the crystal lattice is discussed in Section 4.

We calculate the amplitude of optical space harmonics in the crystal
lattice, and discuss the single crystal distributed feedback X-ray
laser and the possibility of traveling wave interaction in the crystal
lattice.

The possibility of a solid state traveling waQe amplifier is dis-
cussed in Section 5. Previous research is reviewed, and the design
considerations and limitations are indicated. Finally, the limitations

of the present theory and of the models used are pointed out in Section

6.
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2. Traveling Wave Interaction with Vacuum Accelerated Electron Beam

of Finite Temperature

The most obvious example of a finite temperature electron beam
is the solid state plasma, therefore in the extensions of the conven-
tional theory of traveling wave interaction we refer mostly to this
example. However, even a vacuum tube accelerated electron beam has a
finite velocity distribution width, and it will be of interest to in-
vestigate the theoretical limits of the conventional theory in this
case.

In this section we will summarize the results of our traveling
wave interaction theory in the different operational regimes, show the
consistency of the different expressions, their implication to the case
of vacuum electron beams and their reduction to the conventional travel-
ing wave interaction theory [Pierce 1950].

It is apparent that even in the conventional traveling wave tube
there are operating regimes which cannot be explained by the convention-
al (macroscopic plasma equations) theory. If the electromagnetic wave
component moves synchronously with the electron beam or within its velo-

city spread width, the beam will not "look" monochromatic to the wave.

The kinetic (Boltzmann) plasma theory or even quantum theory may be then
necessary to explain the interaction. Fortunately, as we will see later,
at the optimal operation conditions (maximum gain) the wave is slightly
out of synchronism with the electron beam. This slight out of synchron-
ism condition is usually enough to make the beam "look" practically
monoenergetic, and the extended theories reduce into the conventional one

for most practical cases of conventional traveling wave tube amplifiers.
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The constant interest in extending the operating frequency of
vacuum traveling wave devices [e.g., Mizuno 1973, Yariv 1973A]
raises the need to examine and define the limits of the conventional
theory and provide appropriate extensions. Yariv and Armstrong [1973A]
recently suggested a possible backward wave oscillator operating at
the optical frequency regime (A = 10 um) utilizing a periodic dielec-
tric waveguide structure (Fig. 7). Operation at this high frequency
may be close to the 1imits where conventional theory ceases to apply
and the extended theory should be used. This Timit will be defined
in more detail in the following.

There are a few other known physical effects which involve in-
teraction of radiation and electron beams in slow wave structures and
have apparent relation to the conventional traveling wave interaction.
One of them is the Smith-Purcell radiation effect [Smith 1953] dis-
cussed in the next section, which operates in the visible light regime.
Another related subject is the idea of "free electron laser" [Madey
1971, Elias 1975] which operates at optical wavelength A = 10 um. Yet
a third intriguing possibility is the interaction of an electron beam
with an electromagnetic beam, utilizing the natural periodicity of the
crystal lattice (discussed later in Section 4). A1l these problems
call for extension of the traveling wave theory to high frequencies and
to short periodicities.

The theory extensions which were presented in the previous chap-
ters make it easier to discuss the relation of these effects to the

conventional traveling wave interaction.
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Before proceeding, it may be in order at this point to discuss
briefly the characteristics of the vacuum electron beam velocity dis-
tribution. This is done in more detail in Appendix VII-A. A typical
distribution function of a vacuum tube diode is plotted in Fig. 41,
following the model of Poritsky [1953] (see Eq. VII-A8). The velocity
distribution is quite different from a Gaussian distribution. It has
an abrupt step on its slow side and a Gaussian tail on its fast side.
Nevertheless we can still talk about the beam average velocity and
temperature defined in terms of the distribution function moments
(v-15,16).

It is important to notice that the beam's longitudinal temper-
ature, which is an important parameter in the theory, reduces consider-

ably with its acceleration (VII-A5,A7),

2
o S
Vth T 7 (VII-1)
0
kg T 5T
T = T Ev-: 2.156 x 10 T (VII'Z)
or
kg T5 a4y 0%
T=pe —=8.425x10" ——p (VII-3)
vy (VO/C)

where in (VII-2,3) the units are [T] = °K, [V] = volt

A typical vacuum tube electron beam has an initial temperature
which is about the temperature of the cathode electron emitter. A
reasonable estimate is T, = 1500°K. If accelerated to V = 6 kV, its

3o

temperature becomes T = 8 x 1077°K. The thermal velocity of this
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Fig. 41

The longitudinal velocity distribution of an electron beam
in a vacuum tube diode (the dotted area). The velocity
distribution at the potential minimum (near the cathode)

includes also the area under the broken line. The parameter
n is defined in Appendix VII-A.
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beam is Wiy ™ 4.9 x 104cm/sec which is exceedingly low relative

to the beam velocity v = 4,55 x 109cm/sec (vth/v0 = 1.06 x 10-5).

We thus see that the beam's longitudinal temperature is many orde;s

of magnitude smaller than the cathode temperature. In practice the

beam may be thermalized by different effects like nonuniformity of

the accelerating field, electron optics aberrations, noise, etc.
Also, the density of the electron plasma reduces with the ac-

celeration (VII-A3)

n. = LS (VII-4)

0 EVO

For example, a high current tube (I/S = 1000A/cm2) operating at 6 KeV
energy (v0 = 4,55 x 1090m/sec) has electron density n, = 1.37 x 10'%
en™> calculated from (VII-4).

It is interesting to notice that the parameters ky (Eq. V-20)
and kA (Eq. VI-59) are independent of the electron acceleration,
since both B and Vih (Eqs. VII-1,4) have the same dependence on
Vs ! Thus effects and criteria which depend on these parameters do
not change by accelerating the beam, and are solely determined by the
current density and the initial temperature of the beam.*

The temperature decrease of a relativistic electron beam is
much stronger than that of (VII-1-3). Instead,we get Eqs. (VII-A18-

A21). Pantell [1968] quotes as "reasonable" characteristics for

}A1so the parameter kG can be shown to be independent of Vo3 but to
show this, some modification of the analysis leading to Eq. (VI-92)
must be made, in order to take into account the anisotropy of the
electron beam plasma.
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carefully filtered electron beams from high current accelerators in

the low megavolt range A Z] & = 10'4, Ny = 108cm™3. The first param-
eter gives for a 5 MeV beam (using VII-A19-A21) Vip = 30000 cm/sec,
T=3x 10'3°K. On the other hand, Piestrup [1972] suggests a value

of 8E/E < 1073 as a typical value for a 2 MeV, 600 amp electron
gun. This corresponds to Vip < 19 % 106cm/5ec and T < 12°K.

The discussion up to this point gave us some indication about
the characteristics of typical electron beams, although it should be
understood that a variety of instruments with different characteristics
exist. We can now proceed in summarizing the extended theory of travel-
ing wave interaction and its relation to interactions with electron
beams.

Our basic model, stated in Section 2 of Chapter IV, consists of
one-dimensional (longitudinal) coupling between a slow electromagnetic
wave component, which is excited by a plasma a-c current according to
Pierce's equation (IV-8), and a plasma current which is induced in the
plasma by the electromagnetic component according to a general linear
plasma response law, including lTocal field effect (Iy-7). The result

of the coupling is the traveling wave dispersion equation (IV-9)

S 88%  x(8.0)

g°- By 1+ x(Biw)/e

=1 (ViI-5)

where xp(B,w), the plasma susceptibility, was calculated according to
different plasma models in different operating regimes (Chapters IV to

VI).
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Finite Temperature Plasma in the Collision Regime

Using the macroscopic plasma equations, we derived in Chapter IV

an expression for the plasma susceptibility (IV-31):

: 2
iew

xp(B.w) = (VII-6)

A >
(Bvg-w) + itlvy B~ (Bv, -w)"]
This expression was used in Chapter IV to obtain the dispersion equation
(VII-5) of the traveling wave excitation.
In the 1imit 17 > o, T =0 = VT we showed in Appendix IV-A
that Eq. (VII-6) reduces into

2
)
X * _—_-il—TT_ (VII-7)
(Bv,-w)
2
e (Byw) =1+ x /e=1- c (vIiI-8)
P P (Bvy- w)

When substituted into Eq. (VII-5), this results in the conventional
traveling wave tube dispersion equation (IV-A3)

2 2. 2
K:S B85 wS/v
e e p~o . ] (VII-9)
)

w
(82-8) (8 - £92- (2)?]
o]

or its reduced form (see IV-A8),
In a vacuum accelerated electron beam collisions are usually neg-

ligible. The main collision mechanism is electron-electron scattering.

The reduction to the collisionless finite temperature limit is thus
justified. In some related effects like the Cerenkov radiation, the
electrons propagate in matter. Obviously collisions are severe in that

case and cannot be neglected.
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Kinetic (Boltzmann equation) description of the plasma

In the finite temperature collisionless regime we derived in

Chapter V the drifting plasma susceptibility and dielectric constant

(v-19,22)
1 k%
(Byw) = - 5 € G'(z) (VII-10)
XD . 8'2'
2
1 %p
Ep(Bsw) =1 - Q'EZ'G'(C) (VII-11)

We showed in Chapter V that when (VII-10) applies, the electromagnetic-
like solution (B = 61) of the dispersion equation (VII-5) exhibits

gain when (assuming a symmetric distribution function)

m/BI- v

r. = oL < @ (VII-12)

] Vth

and attenuation, when

g 2 0 (VII-13)
It was also shown that when

kn >> B (VII-14)

D

it is possible to find operating conditions where the electromagnetic-
like solution of the dispersion equation (VII-5) nearly satisfies the

plasma dispersion equation

sp(B,w) = 0 (VII-15)
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Then strong interaction occurs with the plasma wave, which can result
in strong gain in case (VII-12), or strong attenuation (the "Kompfner
dip") in case (VII-13).

We showed in Section 3 of Chapter V that Eq. (VII-5) with (VII-
10,11) reduces into Eq. (VII-9) in the 1imit of monoenergetic electron
beam g(x) = 8(x). We will now assume that the electron beam has a
finite longitudinal velocity spread and show in this case the conditions
for reduction to the conventional theory.

In the 1imit
lz| >> 1 (VII-16)

we can asymptotically expand the function G(Z)

R’

(VII-17)

=

G(z)

(VII-18)

1t

-

G'(z)

This expansion is a good approximation for large enough values of ¢ so
that g(x) =0 for |x| > |z] . In this case, the contribution of
the pole to the integral (V-18) is negligible and one can neglect x rel-
ative to z in the denominator. Equation (VII-17) is then obtained

straightforwardly using the normalization of g(x).

Using (VII-18) and (V-21), Eqs. (VII-10,11) can be written as

2 vZh mZ
1 D 1 b _P
X (Bsw) = - 5 € = -¢ (VII-19)
P 2767 (B -t (Bvgm w)

-
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2
w
e (Bow) = 1 = Py (VII-20)
P (B~ w)
where we used the identity
2 2
2 n,e o
ks = CAnk 2 -g}- (VII-21)
Vth

Equations (VII-19,20) are identical with (VII-7,8) and therefore, as
before, reduce (VII-5) to the conventional expression (VII-9).
It is apparent now that Equations (VII-19,20) do not apply

universally for any operation conditions w, B, v_. because they were

0
derived with the assumption (VII-16). Since ¢ = (w/B - vo)/vth i T

means that Equations (VII-19,20,9) do not apply when

lw/B = vl £ vy (VII-22)

which means that the phase velocity of the excitation is synchronous
with the beam velocity within its thermal spread.

We may show, however, that for operational conditions where
the electromagnetic wave is phase matched to the plasma wave (which
is the case of most practical interest, since then the interaction is
the strongest) the expansion condition (VII-16) is always satisfied
and hence the conventional equation (VII-9) applies. Indeed, when 8

satisfies Equations (VII-15,20) we get

B= B ¢ (VII-23)

0

°< I_UE
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hence

K
EQ (VII-24)

IN/B - VOI _ LUp/B } .l_.
Vth Vth /2

lz| =

Since we assumed that phase matching to the plasma wave is
attained, the necessary condition (VII-14) must have been satisfied
(it is always satisfied in traveling wave tubes). Substituting
(VII-14) in (VII-24) we find that (VII-16) is automatically satis-
fied and the use of Equations (VII-9,19,20,23) is thus a posteriori
satisfied near the operation condition (VII-23).

A discussion on the transition from a monoenergetic beam case
to the finite temperature case in relation to the double stream amp-

lifier can be found in [0'Neil 1968].

Quantum mechanical description of the plasma

In Chapter VI we have treated the plasma response problem using
a quantum mechanical model. We received in the case of nondegenerate
plasma (the degenerate case is not relevant to the present discussion)
the following expressions for the plasma susceptibility and dielectric

function (VI-56)

3
k
Xo(Bsw) = = 3 EE%‘ [6(z,) - 6(z,)] (VI1-25)
3
(Bsw) = 1 - 1 A (G(z,) - 6(z,)] (V1I-26)
Ep s W = 2";'3_ Cb Ka

where ¢, ., k, are defined by (VI-57-59,36,37).
The traveling wave dispersion equation in this regime results

from substituting (VII-25) in (VII-5). We concluded that the solution
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for the electromagnetic-like mode exhibits gain in the population

inversion condition

g9(zy) > alz,) (VII-27)

where q(x) 1is the normalized distribution function (VI-54). In the

case of a symmetric g(x) this condition can be written as
1 _
e+ gy) =4, <0 (VII-28)

which is equivalent to (VII-12) or the classical Cerenkov condition
(VI-46). We also concluded that strong coupling can occur when con-
ditions for phase matched photon-plasmon interaction are obtained,
viz., Eq. (VII-15) is closely satisfied with ap(B,w) given by (VII-26).
This was broadly discussed in Section 7 of Chapter VI, where we
indicated that conditions for phase matched photon-plasmon coupling

are (VI-140, 142, 144, 164).

1/3

n
By << ky = 21,51 (=) (VII-29)
oI

[zl slzgl >> 1 (VII-30)

where Za and Ch have the same sign (if negative, gain is obtained;
if positive, we get attenuation.)

The units in (VII-29) are all c.g.s. For example when Ry ™
1.37 x 10 2™, T =8 x107%K, we get k, = 5.32 x 10%m” ', which
means that condition (VII-29) does not forbid collective interaction
(photon-plasmon phase matching) down to optical grating period lengths

2n/ﬁ1 >> 0,15 um.
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The reduction of the quantum mechanical expressions to the
classical kinetic theory was discussed in Sections 4 and 7 of Chapter
VI. The classical regime is obtained by replacing the functions'
difference G(cb) - G(ca) by the derivative, evaluated at Ly =g, =
Th (compare (VII-25,26) to VII-10,11), Necessary conditions for this

reduction are (VI-42)
B, << k. =k, =D Uu (VII-31)
1 a b ﬁ'E]

which can be written in the form

g «< B o (VII-32)
Also (VI-77)
29" (z)
1
B < |"§“TETT| “th S

which in the case of Maxwellian distribution can be written as (VI-78)

8 kil k (VII-34)
L — -
1 1 - 2C?| th
where
w/By -V
1 0
1 Vih

We can see from (VII-33,34) that the quantum mechanical regime can
be obtained with vacuum accelerated electron beams under practical situ-
ations. In the discussion above we found that the thermal velocity of

a 6 KevV, Ti = 1500°K electron beam in a diode tube is Ven = 4.95 x
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1D4cm/sec. This corresponds to kth =4,3 x 104cm_1. From criterion
(VII-34), assuming a Gaussian distribution and lc]l >> 1 we get that

the condition for reduction to the classical limit is
4 -
8] << 4,17 x 107cm /Cl or 2Tr/61 >> gy X 1.5 um

We thus find that under the above conditions the quantum regime applies
to periodic structures with periods in the micron range. Certainly
quantum effects will dominate in interactions involving shorter periods
(1ike the crystal lattice) or beams with smaller thermal spread (higher
acceleration).

The actual electron distribution function is quite different from
a Gaussian and therefore, the more general criterion (VII-33) should be
used, Examining Fig. 41 we realize that strong quantum effect may be
obtained if the slow electromagnetic wave component is synchronous with
the step-1ike slow edge of the velocity distribution. In this case
the difference g(cb) - g(aa) cannot be substituted by a differential,
or using condition (VII-33) we note that g'(c]) is so large at this
point that the inequality is not satisfied even at quite small values of
kth(or long periods of the periodic structure.)

We showed that under the appropriate conditions the quantum
mechanical theory reduces into the classical kinetic (Boltzmann equa-
tion) theory. We also showed that the latter can be reduced to the
conventional traveling wave tube dispersion equation (VII-9). It thus
follows that the quantum mechanical derivation is consistent with the
conventional traveling wave theory. It is, however, of interest to

examine directly how and under what conditions the quantum mechanical
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analysis reduces to the conventional traveling wave tube expressions.
Substituting (VII-25) into (VII-5), one gets the quantum mech-
anical expression of the traveling wave interaction dispersion equa-

tion
-28,0[G(5)) - 6(Z,)]

3
k
(82-82){1 - ;-E%‘- [6(z,) - 6(z,)]}

= ] (VII-36)

where 6 is given by Equation (VI-66).

In order to reduce (VII-36) to the conventional expression
(VII-9), we would like to use the asymptotic expansion (VII-17) of
G(;a) and G(cb) . However, if Bl/kth is large enough, it is pos-
sible to get.a situation where the expansion condition (VII-16) is
satisfied for only one of Lt Cp If, for example, only

];al << 1 we get a "mixed" expression

G(zy) + /g,

S
k
(6%- 6%) {1 - ;.gg [6(cy) + 1/2,1}
1

We may have a situation where both Ty and Ca satisfy (VII-16)

1 (VII-37)

-2818

even if they are quite different from each other (large value of

Iz lalzpl >> 1 (VII-38)
1/q - 1/C

28,0 b 2 =1 (VII-39)
1 3

(6%-89) {1+ 5 E% /g~ 1/2,1)
1
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After substituting Ca9%h and 6 (Egs. VI-60,61,36,37,66) in
(VII-39) we get

2 22
EK]S 818 W mpfvo

- = 1 (VII-40)
7
2 2 w2 Mgt 2 Y
= B= —)°“- =
(87-B7)L( "o) (2"“’0) J%Vo]

Equation (VII-40) is almost identical to (VII-9) except for an
extra "quantum mechanical" term (ﬁ82/2mv0)2 in the denominator.
Equation (VII-40), 1ike (VII-9), can also be reduced into Pierce's
third order normalized equation (IV-A8) (assuming B = B]).

The condition for neglecting the quantum mechanical effect is that

the term ('th/vao)2 will be negligible relative to the classical

term wﬁ/vg . This can be written in one of the forms
2
B -
é;B << ﬁwp (VII-42)
2 2 [Mo _ 4
B" wrp= -5(;—- =2,73 x 10 /r‘fg (VII-43)

where 8 and n = are expressed in (VII-43) in units [cm'1] and

[cm"3] respectively.

For ng = 1012cm'3 criterion (VII-43) gives B << 3.12 x 10

8 . -3 4

5

cm'] (or 27/R >> 0.2 um). For B = 10

(2n/8 >> 2um).

cm ~, B << 3.12 x 10

Charge continuity limit

In the 1imit when the wavelength of the collective oscillation
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is smaller than the average distance between the electrons, the space

charge analysis of the traveling wave tube which is based on hydro-
dynamic modeling of the plasma charge fails. To get traveling wave
interaction with isotropic electron plasma we must require that the
bunching period be longer than the average spacing between electrons*
2n/By > %, = n0'1/3 (VII-44)
for the example Ny ™ 1.37 x 10]2, Ti = 1500°K, V = 6 KV we get aa = 0.9%um.
So, under these conditions, interaction with space charge waves can
take place down to bunching periods in the micron range. It seems
that in practice the charge continuity condition is the strongest
limitation for obtaining traveling wave interaction with space charge
waves (electromagnetic-plasma wave phase matching) at short wavelengths.
It should be noticed that the analysis in Chapters V and VI
started from a single electron interaction, and the only place where
violation of Eq. (VII-44) is disrupting is where we used the Poisson
equation and assumed an average modulated space charge (Eq. IV-4).
When condition (VII-44) is violated, we may say that the electrons are
so diluted that the local field in the plasma EZ ,» is equal to the
external field E_, (see Eq. IV-3). Thus the Poisson equation should
not be used in this case. The result is that in Eq. (IV-7), and con-
sequept]y in (VII-5), one should replace € =1+ xp/s by 1 . With

this modification, the analysis in this work still holds even beyond

;%his condition can be shown to be equivalent with the requirement
that the electron bunching energy is larger than the Coulomb repul-
sion energy of individual electrons (I am indebted to Dr. A. Rose for
pointing out this fact to me.)
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the regime (VII-44). However, in this case only the single electron
interaction is obtained, and collective interaction (electromagnetic-
plasma wave phase matched interaction) cannot be obtained. In con-
trast, the conventional traveling wave interaction fails when condi-
tion (VII-44) is violated, since it is based on a space charge wave

analysis.

The optical traveling wave oscillator

Is there a theoretical limitation to operation of traveling
wave amplifiers at optical frequencies? Does space charge wave anal-
ysis still apply then?

As an example we may examine the optical traveling wave oscil-
lator suggested by Yariv and Armstrong [1973A]. This device which
operates in the infrared regime (X = 10)) utilizes a periodically
corrugated dielectric waveguide to guide the electromagnetic wave.

The structure, operating as a backward wave oscillator, is shown in
Fig. 7 and its interaction impedance K_](O+) was derived and calcu-
lated in Chapter Il (Eqs. III-43, 49, Fig. 9, Appendix III-B).

The analysis in [Yariv 1973A] is based on the conventional
theory of space charge wave interaction, using a coupled mode formal-
ism. For parameter values a = 1y, A = 10u, t = 1.43uy, L = 0.8y,

V=2.5KV, I/S = 1000A/cm2, we get from Eq. (III-49)

wK_{0+) = 2.16 x 1032 cm

for which [Yariv 1973A] would predict a start oscillation condition

at device length £ = 154 um.
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The parameter values of some commercial or laboratory
demonstrated devices are listed in Table 42 (after[Mizuno 19751%).
Some additional beam parameters which were discussed in the present
chapter are also listed, providing practical case parameter values
for the investigation of the conventional theory 1limits,

For wavelength X = T0um and vo/c = 1/10 [Yariv 1973A] we have
.. BX & Ao~
IB_]]- = =6 x 10"cm

2n/|By| = 107%cm

Comparison of these values with the examples of parameter
values listed in Table 42 indicates that the conditions for collective
interaction (VII-14) or (VII-29) and the charge continuity condition
(VII-44) may be practically satisfied. Hence the theoretical
limitations are avoided, and a space charge wave analysis, as presented
in [Yariv 1973A], can still apply at these conditions (ZTr/B1 = Tum).
There may be, though, some practical difficulties in implementing the
structure of Fig. 7 to operate at these conditions.

The condition (VII-44) is getting difficult to satisfy with
practical electron tubes and a period range of 21T/81 A Tum or Tess.

At this regime only single electron interaction can take place and the
extended analysis (Chapters V, VI) should be used. Notice also that

1

for B, &% 6 x 10%em” » Table 42 indicates By A kth; hence, in conditions

*Mizuno and Ono [1975] overlooked the effect of reduction in the electron
beam longitudinal velocity spread (VII-A-3) which led them to overly
pessimistic predictions. This was corrected here in Table 42.
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Table 42. The Beam Parameters of Some TWT Devices
Backward-Waye
Ledatron Reflex Klystron Oscillator Unit
(SWM) (Philips) (Thomson-CSF)

£ 210 120 300 GHz
A 1.43 2.5 1 o
1/5 30 300 1000 A/cm?
v 10 2.5 6 KV
v, 5.84 x 10° 2.95 x 10° 4.55 x 10°  cm/sec
ko 5.04 x 10° 2.55 x 10° 3.93x10° o™
0, 3.2 x 10'° 6.36 x 101! 1.37 x 102 cm™3
o 1 x 1010 4.5 x 10'° 6.6 x 10'0  rad/sec
T 5 x 1073 2 x 1072 8.24 x 1073 °k
Vep 3.9 x 10 7.8 x 10 5 x 10 cm/sec
Ken 3.36 x 10° 6.72 x 10 4.31 x 10 !
A 1.65 x 10° 3.55 x 10° 5.32 x 10°  cm!
K 3.66 x 10° 8.16 x 10° 1.87 x 10° o’
L, 3.14 x 1074 1.16 x 1074 9 x 107° cm
By~ & 2.25 x 10° 2.56 x 10° 4.14 x 102 o

° 2.78 x 1072 2.46 x 1072 1.52 x 102 cm
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of single particle interaction, quantum mechanical behavior (Chapter
VI) may be observed.

At short enough wavelength when the space charge waye analysis
can no longer apply, the optical traveling wave oscillator can still
work on the mechanism of single electron interaction discussed in

Chapters V, VI, and its gain is given by Eqs. (V-28, 33) or (VI-64).
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3. Relativistic Beam Interaction, Smith-Purcell and Cerenkov Radiation

and the Free Electron Laser

In 1953 it was discovered by S. J. Smith and E. M. Purcell that
when an energetic electron beam travels in close proximity to an
optical grating, light is emitted from the grating in the visible
region [Smith 1953]. The Cerenkov radiation is an electromagnetic
radiation at different frequency regimes (from microwave to U.V.),
which is observed when an energetic electron beam passes through matter
at a speed faster than the speed of the electromagnetic radiation in
the same medium (see for example [Jackson 1962]). The analysis of
electron-electromagnetic wave interaction in periodic structures, which
was presented in this work is obviously related to these effects. This
relation will be briefly discussed in the present section; however, we
should first examine the effect of special relativity on our previously
derived results.

In the relativistic regime the quantum mechanical analysis of
traveling wave interaction should be modified, and instead of the
Schradinger equation one should use the Dirac equation to describe the
electron wave [Heitler 1936], or if spin can be ignored the Klein-
Gordon equation 2

2 1 2 .
VY -5 —5¥ =—51V (VII-45)
o~ at h
can be used [Marcuse 1970].

It is not intended in the present work to pursue this extension.
In addition, at high values of v/c the neglect of coupling through
transverse field components, which is done in our one dimensional

model, may not be justified. This is especially true in the case of
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Cerenkov radiation (see for example [Piestrup 1972, Rose 1966A, p. 135]

for three dimensional analysis). In spite of these differences, we
would still expect that some of the conclusions which resulted from

the analysis of Chapter VI are correct also in the relativistic

regime. In particular, the conditions of energy and momentum conserva-

tion during the electronic transition should be satisfied
&51' -5£ = (VII-46)

= g (VII-47)

The only difference is that Ek is given by the relativistic expression

Ek = J@c)z +(m0c:2)2 (VII-48)

instead of the usual parabolic relation. The transition process is
still illustrated by Fig. 31 but the parabolic energy curve plotted
there should be substituted by the curve of the function (VII-48).
Also in the present case there is a much smaller energy spread of the
beam than what is presented in the figure and most electrons populate
the states around Ky

In the Timit

lal << kil = kgl (V11-49)

the energy difference in Eq. (VII-46) can be replaced by a differential

€. -8B =vfiq=Tu (VII-50)

or
v *eg =@ (VI1-51)



where

]
Vi =‘ﬁ'255;k* (VII-52)

is the group velocity at k*, such that Iﬁf[ < |5f| < |kj| (assuming

|kel < |ks]). Hence

v I> el # 7T (VI1-53)
1 Eﬁ is the peak of the electron distribution, and we define
Y S Vo then the electronic transition involves photon emission and

=i
Eq. (VII-53) is the Cerenkov condition (VI-46).

(VII-54)
Yo 7 Vph q

As we showed in section 1 of Chapter VI, condition (VII-54)

cannot be satisfied in free space where

E—- C (VII-55)

It can be satisfied, however, in a periodic structure, where due to

the lattice momentum G we may have for space harmonic G

w
VII-56)
TT9G<° (
where N

9 =g, *+ G (VI1-57)
which in the case of one dimensional (z direction) periodicity can be
written as B

9 =9 * M Eﬁ-ez (VII-58)

where m is an integer. Eq. (VII-54) may be satisfied also in the case

when the light passes in a material with index of refraction n > 1,

so that
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w

) s (VII-59)

Thus we conclude that the traveling wave interaction of an
electron with a slow electromagnetic wave space harmonic, which was
analyzed in the present work, is equivalent to the Cerenkov radiation
effect. In the Cerenkov effect the material with index of refraction
n > 1 functions as "the slow wave structure" instead of the periodic
structure, and instead of interacting only with one wave component
(space harmonic) as in the latter case, the interaction is with the
whole wave.

Usually the energetic electron beam used in the Cerenkov effect
is too dilute to support space charge waves in the wavelength of the
radiation (except possibly at the long wavelength region of radio or
microwave wavelengths). This makes it similar to the traveling wave
amplifier operating at the single particle interaction regime (off
the photon-plasmon phase matching condition). The traveling wave tube
amplifier in its normal operation point exhibits collective interaction
(phase matched electromagnetic-plasma wave) in addition to satisfying
the Cerenkov condition (VII-54), and in this sense it is different from
the Cerenkov radiation effect. The statement made by D. Marcuse
[1970, p. 173], "It is perfectly legitimate to think of the radiation
emitted by the traveling wave tube as a stimulated emission of
Cerenkov radiation" and similar statements made by Ginzburg et al
[1965] and others, are very confusing. It is my opinion that these
statements are correct only within a broad sense of notations. It is

true that traveling wave interaction in a traveling wave tube can be
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viewed as a special case of stimulated Cerenkov radiation. However,
in its normal operation condition there is in the traveling wave tube
amplification of both space charge wave and rotational electromagnetic
wave, in addition to satisfying the Cerenkov condition (VII-54).

By contrast, in the conventional Cerenkov radiation no space charge
wave is involved. In a broad sense of notations [Ginzburg 1965],
amplification of space charge waves can be regarded as a "Cerenkov
effect" of space charge waves.

Usually Cerenkov radiation is a spontaneous effect. The emitted
radiation is carried away from the narrow beam and does not continue
to interact with it. A comprehensive discussion of Cerenkov radiation
at microwave frequencies is given in [Lashinsky 1961]. Several sugges-
tions of structures in which stimulated Cerenkov interaction can take
place are presented in this reference. Some structures incorporate
cavities for the microwave radiation; others confine the microwave
radiation in a dielectric waveguide so that it is propagating
collinearly with the electron beam, which also propagates in the
waveguide or very close to its surface. This latest possibility is
completely analogous to the optical traveling wave amplifier shown in
Fig. 7, again stressing the similarity between the two effects.

High power device for Cerenkov microwave generation which is
intensified by prebunching of the electron beam was reported by Coleman
and Enderby [1960]. This is, however, still a spontaneous radiation
device.

Piestrup [1972] analyzed and experimented with stimulated

Cerenkov radiation in the visible and UV frequency regime, using an
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optical resonator. His analysis consists of solving the kinetic
Boltzmann equation in a three dimensional model, obtaining dispersion

equations similar to the conventional traveling wave equation [Pierce

1950].

Let us discuss now the Smith-Purcell radiation effect and its
relation to the traveling wave interaction. Smith and Purcell inter-
preted their result by a simple classical physics argument. The
electron charges, traveling across the metallic optical grating, were
assumed to induce positive charge images which bounce up and down as
the electrons move across the grating rulings. The relation between
the beam velocity ¥y the period L, the wavelength X, and the direction

(6) of the radiation is

m\ = L(%a - cos®) (m=1,2,...) (VII-60)
(8]

and follows from a simple Huygens construction. This equation agreed
well with the experimental observation.
By eliminating v from (VII-60) we get

w w w

v = = e— -
o 2 2m 2 B
o cos6 + m— Bo +m T m

(VII-61)

v
ph.,

where Bo is the z component of the propagation parameter of a plane
wave propagating in angle 6 to the grating plane, and By can be viewed
as the propagation parameter of its m order space harmonic.

Equation (VII-61) means that there is exact velocity synchronism
between the electron beam and the m-th order electromagnetic wave

space harmonic. This is somewhat different from the ordinary Cerenkov
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or population inversion condition (VII-54) which requires inequality

V. >y (ViI-62)

0 phm

However, since condition (VII-49) is certainly satisfied in this
experiment, or rather

B << ke < Ky (VII-63)

it turns out that v is only slightly smaller than v, = v_ and

Phy, ks ]
i
slightly larger than Vi - Therefore in addition to the inequality

f
(VII-54) o

Wy E;—= vphm (VII-64)
we also have

v o= %—- =y (VII-65)

0 m Phy,

The slight amount by which vph = w/R
m
quantum effect which could not be detected in this experiment and

i is smaller than ¥ is a small
therefore the equality (VII-61) was measured instead of (VII-64,65 ).

We thus conclude that the Smith-Purcell radiation effect is
exactly a spontaneous traveling wave interaction of the kind discussed
in the previous chapter. As in that case we would expect that the
interaction would take place predominantly with a TM electromagnetic
wave. This was confirmed by Smith and Purcell who reported that the
Tight emitted was strongly polarized with the electric vector
perpendicular to the grating.

To check if the traveling wave interaction in the Smith Purcell
experiment could possibly include collective interaction (phase
matching to the space charge wave) let us examine in some more detail

the experimental conditions in which the effect was measured.
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The investigators used a small Van de Graaf generator and an

electron accelerator tube. A 5 microampere beam, focused electro-
statically and magnetically to a diameter of 0.15 mm, and diverging
less than 0.004 radian,was adjusted by deflection coils to pass over
the grating, just grazing its surface. The energies used were in the
range V = 309 ¢ 340 KV. The observed radiation was about A = 0.5um
for the first order (m = 1) line. The grating period was L = 1.67um.

From this information we find that the current density was

1/S = 2.8 x 1072 A/cm?
The beam velocity (using VII-A22)

Y = 235 x 1010cm/sec

and the electron density

ng = 7.4 x 108em™3

It is difficult to estimate the velocity spread (oy the
longitudinal temperature) of the beam. Using Pantell's estimate (see

discussion after Eq. VII-4) Ag/E = 1074, we get (using Eqs. VII-A18,

6_ -1

V-16 and VI-53) T = 11°K, k,, = 1.6 x 10°cm . Taking even a more

th
optimistic estimate:
T=1°

we get from Eqs. (VI-163,164, VII-44,65)

ky = 8.2 10%cm”]

kp = 3-9 10%cm”]

g = n_]/3 = 5.1 x 10—3 cm

o 0

B] .;.%"._:%1%—-—=1.6X]05cm-1
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and neither of conditions (VII-14), (VII-29) or (VII-44) is satisfied.
So the Smith-Purcell experiment could not involve collective inter-
action with space charge waves (phase matched plasma-electromagnetic
wave).
We thus conclude that the Smith-Purcell experiment was
essentially traveling wave interaction of the kind discussed in the

previous chapters, operating at the single electron interaction regime,

and could not involve interaction with space charge waves (plasma-
electromagnetic wave phase matching).

In the Smith-Purcell experiment, the generated light is
radiated away from the grating and does not continue to interact with
the electron beam, in contrast to the structures analyzed in the
previous chapters and the TWT amplifier. Indeed, if the emitted
radiation will be confined in a waveguide (for example, a structure
like Fig. 7 or an evacuated metallic corrugated waveguide), then much
stronger light generation and amplification will be demonstrated.

We may conclude that even in operation and frequency regions
where space charge waves do not exist (and conventional traveling wave
tube theory may not hold), gain can still be attained in traveling
wave amplifiers by the single electron interaction mechanism, which we

might call the Smith-Purcell mechanism.

The single electron (Smith-Purcell) interaction gain is simply
given by the first order solution of the dispersion equation (Eqs. V-28,
33) in the classical case, and Eq. (VI-64) in the quantum case.
Examination of these equations, assuming (III-49) for the interaction
impedance reveals that highest gain is attained when kD is still kept

to be of the order of magnitude of 81 (even though we may have kD < 61
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and are far from phase matching to the plasma wave). If this condition

is kept we find that the gain increases inversely with the radiation
wavelength, so that this mechanism is more efficient at short wave-
lengths. For a wavelength of A = 10u and vo/c = 1/10 [Yariv 1973A]
gain of the order of a few inverse centimeters was calculated. So even
in regimes where space charge waves do not exist, the optical TW
oscillator (Fig. 7) may operate as a "Smith-Purcell oscillator."

Most of the existent Titerature on Smith-Purcell radiation is
based on a classical model, solving the Maxwell equations with the
appropriate boundary conditions and a current source of a single
moving electron of fixed energy (see for example [Barnes 1966, Van
den Berg 1973A, 1973B, Lalor 1973]). Palocz and Oliner [Palocz 1962,
1964, 1965, 1967] solved this problem using a model of leaky space
charge waves and equivalent electrical networks. It is noteworthy that
the structures analyzed by them confined the electromagnetic wave to
propagate collinearly with the electron beam and they actually solved
the mutual electron-electromagnetic wave interaction self consistently,
In some of these references and some othersof interest ([Hessel 1964,
Bradshaw 1959]), space charge wave effects are also included
(our definition of the Smith-Purcell effect excludes interaction with

space charge waves).

Another interesting related effect of electron interaction with
electromagnetic wave in a periodic structure is the "free electron laser”
suggested by Madey et al.[1971, 1973] and recently demonstrated
experimentally [Elias 1975]. In this experiment a 20-30 MeV electron

beam was passed through a 5.2m long superconducting helix of period
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L = 3.2 cm. The electrons, passing through the center of the helix,
experienced a periodically varying transverse magnetic field with
period L = 3.2 cm. The workers observed both spontaneous and
stimulated radiative emission at wavelength X = 10um.

The effect was explained by Madey et al.using a model which
presents the interaction as a Compton Scattering of virtual photons,
which are the result of the periodic static magnetic field, when viewed
in the electron rest mass. This interesting point of view allowed the
use of well known equations of Compton Scattering for the calculation
of the electromagnetic gain obtained in this interaction.

The emission wavelength was found to be (for relativistic

electrons)

2 L2 BC
9 (VII-66)

s L 2 G i
A = E;i-[l + () mbcz
This condition can be shown to be equivalent to the conservation of
energy and momentum conditions in the 1imit (VII-49). In the 1imit of
small magnetic field (B % 0) the second term in (VII-66) is negligible
and we can show that Eq. (VII-66) can be deduced from (VII-65).
Substituting

By = L4 2L (VII-67)

as __._..o___..- = = -
A =L L 5 5 (VII-68)

which is identical to the first term of (VII-66), and we used Vo & C

in the relativistic TlTimit.

This interesting recent experiment is different from the

traveling wave interaction discussed previously in three points:
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(1) The periodicity affects only the electrons and not the electro-

magnetic wave. In this sense this effect can be described as "coherent
bremsstrahlung", while the previously discussed effects are "generalized
Cerenkov radiation" effects (where only the electromagnetic wave is
affected by a slow wave structure). (2) When the magnetic field is
strong enough, it affects the free electron trajectory, resulting in
the term proportional to Bzin (VII-66). (3) The electromagnetic wave
in this experiment is a TEM wave and the coupling of the electromagnetic
field to the electron beam is a transverse coup]ing*.

In spite of the differences, the free electron laser, like the
stimulated Smith-Purcell and Cerenkov radiation, can be described by
the framework of the traveling wave interaction model developed in the
previous chapters. Even though our model is quite simplified, it has
the advantage of being general, and reveals the connection between
the different effects. Thus, we can, for example, answer a question
which was left open by Madey et al.[Madey 1973, Kroll 1975] who wondered
at the fact that the calculated expression for gain in the "free
electron laser” does not reduce to the conventional expression of gain
in a traveling wave tube amplifier, and especially at the different
dependence on the electron density (or current density). The answer is
that the conventional traveling wave tube operates usually in the

collective interaction mode where the electromagnetic wave is coupled

*The transverse coupling of a TEM wave to a collinear electron beam can
be obtained if in Eq. (VI-10) we keep the second order of A, and use
the periodic magnetostatic field in the perturbation Hamiltonian.
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to the slow space charge wave or both space charge waves (see the
discussion in Section 2). On the other hand the "free electron laser"
is basically a single electron interaction device. In this regime,
the traveling wave model predicts that the gain is proportional to the
electron density (or current density) (v-28, 27, 20, VI-64, 66), in
agreement with Madey's expression for the free electron laser gain.

The traveling wave interaction model is capable of describing
many of the electron-electromagnetic wave interactions discussed,
However appropriate extensions of the model may be necessary in order
to calculate the expected gain in specific cases. The demonstrations
of the Smith-Purcell radiation effect, the "free electron laser" and-
other related works [Friedman 1973, Bartell 1965] give hope, that
amplification of electromagnetic wave by stimulated emission from
free electrons in periodic structures--in which the electromagnetic
wave is confined, and efficiently interacts with the electron beam--
will be further developed in the future. Thus possible new amplifiers
and oscillators in the visible and U.V. regimes may evolve [see also
Kroll 1975].

It is suggested that short period structures (gratings) which
affect the electromagnetic wave and confine it in a waveguide, so that
it efficiently interacts with the electron beam, are easier to produce
than short period periodic magnetic field structures. Thus shorter
wavelengths with lower electron energies may be attained in the first
structure, possibly also with stronger (longitudinal) coupling and
higher gain, compared to the low gain reported by Elias et al.[1975]

L]

for the free electron laser.



-309-

4, Wave Interactions in the Crystal Lattice

After extensive discussion on wave interactions in artificial
periodic structure, it is natural to wonder about the implications of
this theory in the case of the crystal lattice - nature's ready-made
periodic structure.

The theories of electron bands in the solid, electron and
x-ray diffraction in the crystal lattice and other waves interaction
with the crystal Tattice, are well developed. Nevertheless, new
concepts and effects, developed recently for interactions in artificial
periodic structures, provide a new outlook on different possible wave
interactions in the crystal lattice, Tike x-ray DFB lasers and traveling
wave interaction in the crystal lattice.

As pointed out by P. P. Ewald [1965], in spite of the extensive
research on x-ray diffraction in the lattice since its discovery by
von Laue in 1912, only at few points, novel features of x-ray optical
theory were introduced. The successful application of x-ray diffrac-
tion to the analysis of crystal structures, overshadowed any other
research on the basic features of x-ray diffraction in the crystal
lattice. For this application and others, the fairly primitive
"kinematic" theory of x-ray diffraction has been always used in the
same way originally conceived by Laue. The kinematic theory is based
on the assumption that a plane optical wave is passing through the

crystal essentially unmodified, causing each atom to radiate independently
according to the primary excitation by the plane wave; double and

triple scattering is neglected. In contrast the "dynamical" theory

of x-ray theory is based on the self consistent solution of the x-ray
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wave propagation in the crystal lattice and its oscillating atoms.

The use of the dynamical theory is important in order to
understand the wave propagation inside the crystal. Only by using a
dynamical theory it is possible to explain the "Borrman effect" which
consists of extraordinary high transmission of x-rays by perfect
crystals near the Bragg condition; the transmitted beams are also
characterized by a very narrow angular spread [Ewald 1965, Batterman
1964]. The Borrman effect explanation is based on recognizing that
the Bragg diffracted wave is important, near the Bragg condition, as
much as the primary impinging plane wave. Self consistent solution of
the primary and diffracted waves in the lattice results in a possible
mode of propagation in the crystal lattice, which has vanishing field
at the lattice atom sites where losses are high. In the one dimen-
sional case, the dynamical theory is equivalent to the coupled mode
theory of a thin film Bragg reflector [Yariv 1973B] or to the "two

harmonics" Floquet mode analysis (Chapter III, Section 6).

The X-ray DFB Laser

When gain is introduced into a Bragg reflector it can turn
into an oscillator [Yariv 1974B], where the Bragg reflection is the
oscillator's feedback mechanism. This is the principle of the optical
distributed feedback laser, originally suggested by Kogelnik et al.
[1972].

It was suggested by Yariy [1974C,1974D] that the idea of
distributed feedback (DFB) laser can be extended to the x-ray regime,

where a perfect crystal lattice is used as the feedback providing
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periodic structure. What is necessary is that the atoms in the crystal
will have an atomic transition in the x-ray regime, which can be
inverted, and which produces radiation of wavelength that satisfies the
Bragg condition. In the case of retro-Bragg coupling the interacting
waves are collinear, and the problem is completely analogous to the
conventional one dimensional DFB laser theory. In this case the Bragg

condition is

m%— d(h,k,2) (m=1,2,...) (VII-69)

where d(h,k,2) = 2n/|G(h,k,2)| 1is the spacing between adjacent |h,k,%|

11

lattice planes (see Fig, 43). The retro-reflection scheme was discussed
and analyzed in Yariv [1974D] from the point of view of optical index
modulation. The retro-reflection scheme is not only easier to manipulate
theoretically, but also is essential for attaining low threshold, ef-
ficient pumping and directionality of the laser beam.

This new promising approach to x-ray lasers did not yet get a
comprehensive theoretical analysis which will present self consistently
the active dynamical x-ray diffraction together with the quantum
mechanics of the electronic transitions. Besides the simple analysis
of Yariv [1974D], the DFB laser has been qualitatively examined from
the points of view of loss modulation [Fisher 1974A,B], laser structure
design [Spiller 1974, Yariv 1974E] and different host crystals [Elachi
1975, Farkas 1974]. First experimental observation of stimulated
emission at Bragg condition was reported by Das Gupta [1973A, 1973B].

The main expected obstacle in the practical realization of a

DFB x-ray laser is the problem of the laser pumping. There is
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extensive research on different approaches to x-ray Jaser pumping and

population inversion [e.g. Lax 1972, McCorkle 1972, Duguay 1973,
Freund 1974, Bohn 1974, Elton 1974]. It is sometimes claimed that the
high transmission loss of x-rays in high mass materials will require a
very high amount of pumping in order to overcome the losses in the x-ray
laser. It may happen though that in the case of the DFB x-ray laser
this problem is much less severe than usually considered. The major
loss mechanism in incoherent transmission of x-rays is photoexcitation
of electrons and conversion to longer wavelength rays. However, in the
case of a coherent standing wave in a single crystal DFB laser, losses
may be expected to decrease considerably, since the nodes of the standing
wave can adjust relative to the atom sites as in the Borrman effect.
It is encouraging to notice that the x-ray transmission in the Borrman
effect was measured in some cases to be eight orders of magnitude
higher from what is expected from simple "mass action"! [Ewald 1965]
For a full understanding and optimal design of a DFB x-ray
laser, the x-ray dynamic diffraction and the quantum mechanical
stimulated and spontaneous emission by the atomic electronic transi-
tions, should be solved self consistently. The atom is stimulated
to emit radiation by a particular standing wave and not by a general
plane wave as usually is assumed in the theory of stimulated emission.
An optimal situation would be such that the x-ray standing wave suffers
low loss (its nodes coincide with the atom sites) and at the same time
has good overlap with the electronic states which participate in the
transition (i.e. the amplitude of the electronic transition matrix

element, with the standing wave used in it has maximum value).
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A comprehensive analysis may result in some new results. For example,
it may be speculated that normally forbidden transitions (A = 0) may
be preferable for the lasing transition. Such a transition may be
stimulated by an x-ray standing wave with nodes in the atom sites which
keep the matrix element <f|A(r):p|i> nonvanishing. Even if the
transition rate of such a transition is smaller than a permitted
(A% = 1) transition, the advantage of Tow loss of the x-ray mode and
longer Tifetime of the excited level (which makes the pumping easier)
may be dominant factors. A more quantitative detailed quantum analysis
is necessary to get conclusive theoretical predictions. The point of
the present discussion was just to sfress the necessity of self
consistent analysis of the quantum mechanical transition problem and
the x-ray dynamic diffraction problem, and to suggest that favorable

results may result from such an approach.

Finally it is pointed out that the DFB approach is a natural solution
to the problem of very short lifetime of x-ray transitions. Estimates of

0"15 to ]0”]3 sec

inner shell levels lifetimes are in the range of 1
[Elton 1974, Das Gupta 1973A]. For self terminating amplified spontaneous
emission [Elton 1974] this corresponds to coherence length of (0.1-10)um.
For ultrashort pulses (10 ps) a coherence length of 1mm results. This
means that Fabry-Perot mirrors approach may require to set the mirrors
inconveniently close so that the transit time of the laser beam will not
exceed the gain duration time. In contrast, in the DFB x-ray laser the

resonator length can be considered to be in the range of a few unit cell

lengths, and the problem does not arise.
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Optical Space Harmonics_in_the Crystal Lattice

It is well known that electromagnetic waves in any frequency
regime have in the crystal lattice (1ike in any periodic structure)

the Floquet-Bloch form (I-8,9)*

E(r,t) = zgﬁ(g_o,m)eﬂgﬁ'r:m) (VII-70)

B=9,*+8& (VII-71)

where a single Fourier component of temporal frequency w is assumed
in (VII-70). Nevertheless, the crystal is usually viewed in the
optical frequency regime as a macroscopically uniform medium; so
that instead of (VII-70) a single plane wave is assumed with single
propagation constant which is determined by the average dielectric
constant of the crystal.

The direct observation of the electromagnetic wave space
harmonics is usually impossible, since they have low phase velocity
and short spatial oscillation period (of the order of the crystal
lattice constant). Only a very small fraction of a space harmonic
(G#0) can radiate out of the crystal and possibly be seen. This is
because of the smallness of the transverse component of the field of
any space harmonic (G#0), and because of the big difference between its
propagation constant |gG| and the vacuum propagation constant w/c,
which causes very high ;éf1ection at the crystal surface [Johnson

1975]. Detection of the optical space harmonics inside the crystal

5 i ic ti i(g-r-wt)
Here again we use the harmonic time-space dependence exp 1(q-r-wt)
which ?s customary in physics, instead of the e]ectr1ca1 engineering
convention exp i(wt-g-r) which was used in previous chapters.
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by means of parametric mixing with an x-ray wave was suggested by
Freund [1969] but it has not, to date, been measured experimentally.

Even though the individual space harmonics are hard to detect,
they certainly are not negligible and have an appreciable effect in
determining the macroscopic optical dielectric constant of crystals
via the local field effect [Adler 1962, Wiser 1963].

Due to a local field effect, the field at any point in the
crystal is affected by the field (and the consequent polarization) at
neighboring points. Thus, in a microscopic model, the field is a

solution of Maxwell equations with an "induced" source term :

vV x E = jwuH (ViI-72)
v x H = -1ue E + g'nd (VII-73)
— — 0— —
¥-E = oi"d/e0 (VII-74)
V-H=10 (VII-75)
where

aM(r,t) = -iu I x(r,r' WE(r',t)dr! (VII-76)
y

oi"d(g,t) = - i-y;gf"d = -f Er-xﬁglg',w)_jgf,t)d3r (VII-77)
m - —

v

where we assumed a single Fourier frequency component (w). The current
(or polarization) at each point is induced by the spatially distributed
field according to a nonlocal dependence (VII-76). The field in

turn is determined by the Maxwell equations (VII-72,73), which must be

solved self consistently with (VII-76). Only in the case of uniform
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medium

x(rsrtw) = x(r,w)§(r-r') (VII-78)

and the extended dependence (VII-76) reduces into a local one (IV-2)

a1 1) = ~iwx(r)E(r,t) | (VII-79)

Using the Floquet theorems, (VII-70,71) and

" . i r-wt
a"(r,t) = ) Jn (_qO,u.;)eﬂSiﬁﬁ o (VI1-80)

and Fourier transforming (VII-76,77), we get

Q%hd(go,w) = -iw él é@,g:(ﬁo’w)ﬁa'(ﬂo’w) (Vid-81)
. i(g.-r-uwt
o"(r,t) = ] pg" (qo,w)e](HG £t (V1I-82)
G =

g (9ge0) = ~iag ] x5 g1(85s0)Eg: (g550) (V11-83)

Xa G.(go,w) = X(QG,QG.,w) is the general susceptibility matrix element
(notice that each matrix element is by itself a 3 x 3 tensor). When

Eqs. (VII-72,70,80,81) are substituted in (VII-73) we get

ag X 9g X Egldge0) = i ] g 61 (90)Eg (ag0) (V11-84)

where £g 6! is the dielectric matrix element, defined by

ga.6'(9po0) = €L + Xggr (9550) (VII-85)
LR — =3
and I is the 3 x3 unit tensor.
The dielectric matrix elements can be derived in the RPA

approximation. Their Tongitudinal-longitudinal components are found
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to be [Adler 1962, Wiser 1963]

) ) 2 7B, (kg ) 1-f [, (k)]
(S8 ce ‘e =€ 8. .-
8,645 95 0 C8" VIagMTag T ¢ f,0¢ € (kta, )&, (k) Fiu tin

r
ko2><k,tle = T|ktq ,L'> (VII-86)

where 896 is a unit vector in the direction of g, |k,2> and & (k)
are the Bloch eigenstates and eigenvalues of the ;hperturbed crystal
Hamiltonian; % is the band index, and V is the crystal volume (compare
Eq. VII-86 to the ex pression for the free electron gas response VI-25).

In the optical frequency regime
|9, << |6] # 0 (VII-87)

Hence

6, = e (6 # 0) (Vi1-88)

Also it turns out then, that the dielectric matrix element tensor

£6.6 is approximately scalar [Johnson 1974], hence

(VII-89)

Once the matrix elements £5,6' are known, the self consistent
Floquet mode solution of the e]ect;gaégnetic wave in the crystal may
be rigorously found by solving the infinite set of equations (VII-84)
for the Floquet components gG. Even though this solution is almost
straightforward, it does not_;eem to have drawn interest from solid

state physicists who work in this field. Theywould calculate the

matrix elements mostly for the purpose of using them to obtain the
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macroscopic dielectric constant with the Tocal field effect:emacro =
1/[Eé1G,]OO [e.g. Van Vechten 1972, Louie 1975]. For this reason,
untia-;écent1y, the off-diagonal matrix elements _G,G' (G,G'#0,0)
were never reported. )

Only recently, Johnson [1974] has reported the calculated
values of the dielectric matrix elements EG,G' of the diamond crystal
at optical frequency (hw = 1.5 eV), and LoE};.et al [1975] reported
these values for silicon crystal. Johnson [1975] also presented an
approximate solution for the transverse components of the space
harmonics amplitudes légﬁ x Egl. He has found in the case of diamond

that these components are quite small relative to the fundamental har-

monic |E |. Our goal in the following short analysis is to find the

longitudinal components of the space harmonics EHG.EG' This follows
from a very simple derivation analogous to the one used to derive Eq.
(V-A28). It turns out that the Jongitudinal components of the space
harmonics, in contrast to the transverse components, have appreciable
magnitude relative to the fundamental harmonic.

The longitudinal components are found straightforwardly by
either substituting Eqs. (VII-70,82,83) in (VII-74), or simply by

~

scalar multiplication of (VII-84) by e_ resulting in

g
Y @, e otEey *0 (VII-90)
Gl G et Bl -
or using (VII-87-89)
ok - VII-91
E Egsgl(eg'gﬁl) = 0 ( )

Gl
Using the assumptions IEQ,QJ >> lEE,gffﬁJ and |E | >> |§§f0], we get

from (VII-91) an approximate expression for the longitudinal
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component (compare to V-A28)

.

- 8.0 @ . (VI1-92)

(eqEp) =
G =G Sg’g_ G =0

~

From Johnson's calculation for diamond [Johnson 1974] we have

for example €111,111 © 1.3858, €111,000 - -0.2469, and consequently

(e797°Eyqp) = 0.18(eyqq°Ep)

which shows that the longitudinal components of optical space harmonics

in the crystal lattice may be comparable in magnitude to the fundamental

space harmonic!

The components of optical space harmonics in the crystal
lattice have not been measured experimentally. They may pessibly be
measured using parametric mixing with x-rays, as suggested by Freund
[19€9], or by using traveling wave interaction with energetic charged
particles passing through the crystal. The latter suggestion is
particularly appropriate for detecting the longitudinal components of
the space harmonic, and may be favorable, because of the large size
of these components. Direct observation of space harmonics radiation
out of the crystal (“the optical Borrman effect") suggested by Johnson
[1975], seems to be a too small effect to be measurable (it also is
incapable of detecting the longitudinal components of the space

harmonics).
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Traveling Wave Interaction in the Crystal Lattice

The high amplitude of the Tongitudinal components of electro-
magnetic wave space harmonics in the crystal lattice may make possible
traveling wave interaction of the kind discussed in Chapter VI between
these space harmonics and charged particles (electrons) channeling
through the crystal lattice. In addition to this process one would
also expect a process in which radiative transitions occur via the
electron wave space harmonics (instead of the electromagnetic wave
space harmonics). This effect is sometimes called "coherent Brems-
strahlung" or "resonant radiation."

Coherent Bremsstrahlung was discussed by a number of workers
[Dyson 1955, Uberall 1956, Belyakov 1971] and was also demonstrated
experimentally [Walker 1970]. The contribution of the electromagnetic

wave space harmonics to the interaction was not taken into account in

these references.

The analysis of this section indicates that the magnitude of
the electromagnetic space harmonics is not negligible. Hence, I suggest
that in addition to the "Bremsstrahlung" mechanism discussed in the
mentioned references, there will be also a "traveling wave" mechanism
in the crystal. This mechanism and its contribution are described by
the analysis of Chapter VI (in the nonrelativistic limit).

Further examination of this effect as a possible source for
coherent radiation in the x-ray regime should be of appreciable
interest. I suggest that Zeolites (a family of crystals with naturally
occurring longitudinal channels [Smith 1963]), may be an excellent
candidate for such experiments. These crystals were originally

suggested by Elachi et al [1975] for use as DFB x-ray laser resonators.
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5. The Solid State Traveling Wave Amplifier

A substantial part of the analysis developed in this report
deals with the case of solid state traveling wave interaction (and
amplification). Therefore we discuss in this section the state of
the art of research in this field, and the difficulties and the
prospects of developing solid state traveling wave interaction devices.

A short review of previous work on the solid state traveling
wave amplifier was given in Section 1 of Chapter IV, In general,
previous analyses were based on classical models and on solution of a
macroscopic plasma equation similar to the conventional traveling wave
tube analysis [Pierce 1950]. Also, the structures which were proposed
and tried were basically similar to the conventional traveling wave
tube, composed of metallic helix or meander line, which operates as
an external slow wave circuit, electrically insulated from a semi-
conductor rod which is placed in close proximity to the circuit
[e.g., Solimar 1966, Sumi 1966, 1967, 1968, Ettenberg 1970, Freeman
1973]. Hines and Swanenburg suggested using insulated metallic mosaic
patterns [Hines 1969, 1971] and interdigital electrode structures
[Swanenburg 1972, 1973], in order to improve the coupling of the
electromagnetic wave to the drifting carriers. All these structures
are designed for radio or microwave operation and are not suitable at
higher frequencies.

Few workers have reported experimental observation of solid
state traveling wave amplification. Sumi and Suzuki [1968] reported
observation of amplifying traveling wave interaction in devices made

of InSb semiconductor and helix or meander line circuits operating



-323-

at 77°K. Freeman et al [1973] observed traveling wave amplification

in structures made of InSb or Ge semiconducturs and metallic meander Tline
circuits operating at 4°K. In both cases the measured effect was quite
small. A third worker [Swanenburg 1972] reported observation

of negative conductance and high frequency oscillation in a somewhat
different but related device (an interdigital electrode structure).

In the present work, the analysis and the devices examined were
oriented more towards high frequency operation (submillimeter, far
infrared). Instead of an external slow wave structure, monolithic
structures which incorporate the slow wave periodic circuit in the
semiconductor rod were suggested, so that closer coupling between the
electromagnetic wave and the drifting carriers can take place. One
kind of these devices (Fig. 8) consists of a semiconductor dielectric
waveguide with a periodically corrugated boundary [Gover 1974A, Yariv
1974A]. The other kind (Figs. 28-30) consists of superlattice struc-
tures [Gover 1975]. The interaction impedance of these structures was
calculated in Chapter III and in Appendix V-A.

Traveling wave interaction was analyzed in this work in three
different regimes--in the collision dominated regime where macroscopic
equations describe the plasma, in the kinetic classical regime where the
plasma behavior is describable by the Boltzmann equations, and in the
quantum regime. In all these regimes the theory was applied to various
examples of high frequency solid state traveling wave amplifiers of the
structures mentioned above.

In the analysis we distinguished between two possible modes of

operation, one which involves individual interaction with the drifting
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carriers, the other involves collective interaction with the

carriers space charge wave. Both mechanisms require satisfaction of

a population inversion condition (VI-41) or Cerenkov condition (VI-46)
in order to obtain gain. The collective mechanism, which is equivalent
to the regular operation mechanism in the conventional traveling wave
tube amplifier, is potentially capable of providing stronger gain, but
for this, a condition of a high ratio of drift to thermal velocity
spread must be satisfied by the drifting carriers. It is not clear if
such condition may ever be attained in semiconductor plasma.

Usually the drift velocity in semiconductors is smaller than
one thousandth of the speed of light. This means that the electro-
magnetic wave should be slowed down by about two orders of magnitude
compared to the conventional traveling wave amplifier. A priori, this
is likely to reduce the efficiency of the solid state traveling
wave interaction considerably compared to the TWT amplifier. On the
other hand, attainability of very high carrier density in semi-
conductors is an inherent advantage that the solid state amplifier
has over the conventional TWT amplifier. |

Considerations in optimizing the operation of the solid state
traveling wave amplifier were presented in Section 7 of Chapter VI.

It is found that lTow temperature operation is advantageous for achiev-
ing gain for many reasons. In the first place it results in longer
collision relaxation time t. This permits better phase matching of the
electromagnetic wave to the plasma wave, permitting higher gain in

the phase matched plasma-electromagnetic wave operational mode. Also,
in the single electron interaction mode higher maximum gain is

attained. At low carrier-temperature the velocity distribution tail
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diminishes until at T = 0 it vanishes for |v-v | > Ve (Figs. 33,34).
Thus Landau damping of the plasma wave is reduced, and better phase
matching and gain in the collective interaction operation mode can
be attained. At low temperatures it is sufficient to get v, only
slightly larger than Vin O Vg in order to attain phase matching to
slow space charge wave and amplification (providing collisions are
negligible). 1In addition, at Tow temperature the mobility of the
semiconductor (IV-16) increases appreciably so that high drift
velocities can be attained at lower voltages. This alsoc has the
advantage of reducing power dissipation. The desirability of Tow
temperatures dictates pulse operation in experimental investigation of
the effect.

The effect of carrier concentration on the traveling wave
interaction gain can be deduced from inspection of Eqs. (V-33,27,35).
Bearing in mind that kg is proportional to the carrier density Nys we
find that the gain increases proportionally to the carrier density in

the case of single electron interaction (V-23) as would be expected.

The dependence of the gain on the density N, is less obvious in the case
of phase matched plasma-electromagnetic wave coupling. This dependence
should be derived from (V-34,35), (V-50) or (IV-A3), depending on the
operating conditions; it is different in each case, but in general the
gain grows with Ny Higher carrier concentration also affects the net
gain of the device by increasing the attenuation due to traveling

wave interaction with nonsynchronous space harmonics of the electro-
magnetic wave, and free carrier absorption of the fundamental space

harmonic (due to the finite collision relaxation time t). Also, we
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notice that if the carriers are introduced by impurity doping, high
doping level will Tlimit the collision relaxation time T even at low
temperature, since impurity scattering mechanism will become dominant.
This, as we explained before, has a negative effect on the gain. This
difficulty is avoided if the carriers are introduced by injection.

In the choice of material for the solid state traveling wave
amplifier, the attainability of high drift velocity and low thermal
velocity spread should be a major criterion. Low band gap semiconductors
have lower effective mass and correspondingly higher mobility (IV-16),
so that higher drift velocity can be attained at low fields. On the
other hand, the thermal velocity is inversely proportional to the
square root of the effective mass m (V-16) which makes it harder to
attain low thermal velocity spread in low effective mass materials.

In general the drift velocity of drifting carriers in the solid
is limited to a little higher than ]chm/sec. The most stringent
1imiting factors are scattering of electrons by optical phonons (which
are present in any solid with more than one atom per unit cell) and
intervalley scattering in semiconductors with the appropriate band
structure. Comprehensive discussions of the different loss mechanisms
by which an electron loses its energy can be found in [Rose 1966A,1966B,
1967,1969,1972] and in [Conwell 1967]. The highest drift velocity
reported in semiconductors is Wy = 2 10 ]07cm/5ec measured in indium
ant imonide at 77°K [Glicksman 1963]. This makes this material a
favorite candidate for application in solid state traveling wave
amplifiers. In other semiconductors the maximum drift velocity was

measured to be in the range 1 x 107 to 3 x 107cm/sec. (See for
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example: GaAs [Ruch 1968, 1970], GaAlAs [Immorlica 1974], InP [Glover
1972, Hayes 1974], CdTe [Canali 1971A], Si [Canali 1971B, 1973, Haas
1973, Scharfetter 1969], Ge [Chang 1968, Ottaviani 1973]).

Another important parameter of the carrier distribution
function is the thermal velocity. Low thermal velocity spread is
desirable for attaining gain, particularly if phase matched plasma-
electromagnetic wave amplification is attempted. There is very little
experimental data on the thermal velocity spread of drifting electrons
or their detailed distribution function. Mooradian et al [1970]
measured the velocity distribution of drifting carriers in GaAs by
Raman scattering. At drift velocity Vi = 13 % 107cm/sec, the
distribution function fitted a shifted Gaussian with a carriers'
temperature of the order of 300°K to 400°K, far exceeding the lattice
temperature (40°K). By contrast, Southgate et al [1970A,1970B,1971]
measured the distribution function by measuring the shift in radiative
recombination photoluminescence. Their measurements fitted a shifted
Gaussian with a carriers' temperature of 77°K which was the same as the
lattice temperature.

It is difficult to estimate with the Timited experimental data
available the maximum attainable ratio of drift to thermal velocity
vo/vth. However it seems that a ratio Vo/vth appreciably
higher than unity may be hard to attain with any material even under
pulsed conditions. Glicksman and Hicinbothem [1963] estimated in their
experiment in InSb that they attained relatively high ratios of drift
to thermal velocity (0.7) and drift to transverse thermal velocity

(1.5) at 77°K.
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The estimates of attainable traveling wave interaction made in

this work are quite low. Relatively high gain may be attained in the
collective interaction operation mode (see Chapter V, Table 25).
However, the conditions for this case (thermal velocity smaller than
the drift velocity) may be unattainable. In the examples which were
presented in this work (predominantly in order to illustrate the
theory) we also ignored the fact that the semiconductors discussed may
have high background fundamental lattice and free carrier absorption
at the operation frequency, so that net gain may not be attained.

The estimates which result from the different examples which
were presented in this work do not rule out the possibility that a
practical solid state traveling wave amplifier or oscillator may be
produced in the future, and operate with net gain in the submillimeter
or infrared regime. It is apparent, however, that successive research
efforts should be made to find better operational conditions and
higher gains. Analytical research can provide a better estimate of
expected gain in the different regimes by assuming more general models,
three dimensional analysis and interaction through higher order
harmonics. Important new results and estimates may result from
considering traveling wave interaction through electron wave space
harmonics in superlattice structures (see discussion in Appendix VII-B).
Experimental and theoretical investigation of different materials
(possibly other than semiconductors), different ways to introduce the
carriers (possibly injection), different structures and operating
conditions, may make the embodiment of a practical device possible

in the future.
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Finally we should mention that there exists a similarity

between the analysis of solid state traveling wave interaction in the
different regimes and the acoustoelectric effect. In the acousto-
electric effect an acoustic wave interacts with the drifting electrons
instead of an electromagnetic space harmonic. The low velocity of the
acoustic wave makes it unnecessary to use a periodic slow wave structure.
The coupling of the acoustic waves to the drifting electrons may be
longitudinal or transverse, depending on the kind of acoustic wave and

the crystal. Noting the analogy between the traveling wave interaction
and the acoustoelectric effect may help in the investigation of each
case. A detailed discussion on the acoustoelectric effect can be

found in [Rose 1966A, 1966B, 1967, 1969, 1972]. As in the present
report, the acoustoelectric effect has been analyzed in the three different
regimes: using macroscopic plasma equations [e.g.White 1962,

Blotekjaer 1964, Barybin 1968]; using the Boltzmann kinetic equation
[e.g. Tsu 1965]; and using quantum mechanical model [e.g, Paranjape

1963, Spector 1965, Tsu 1967]. An original generalized quantum
mechanical discussion on amplification of any kind of negative enrgy

quanta in drifting plasma was presented by Musha [1963, 1964].
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6. Limitations of the Present Analysis of Traveling Wave Interaction

In concluding this chapter it is in order to point out some
of the limitations of the analyses presented in this work, and especially
in their application to the problem of the solid state traveling
wave amplifier.

Perhaps the most limiting assumption was the use of a one
dimensional model, assuming only longitudinal coupling and no trans-
verse variation of the field. In the case of solid state traveling
wave amplifier, this may have very limited validity in structures where
the periodic perturbation is on the surface of the device (Fig. 8).
However in c=vices where the periodic perturbation is distributed
throughout the bulk (Figs. 28, 29), these assumptions are quite valid.
The one dimensional model gave us a clear description of the traveling
wave interaction mechanism, allowing extension to different regimes,
and providing information on both the single particle and collective
interaction mechanisms. A1l this could have been lost in a more compli-
cated formulation, including transverse variation and transverse field
coupling. When the problem is analyzed in a three dimensional model
it is found that also some beam parameters, and particularly the plasma
frequency W are modified, because of the finite width of the carriers'
stream [e.g. Hutter 1960, p. 169]. Extension of the one dimensional
analysis in the case of classical macroscopic plasma equations is
given in [Sumi 167, Steele 1969].

The expressions for the interaction impedance of the various
structures, which were calculated in Chapter III and in Appendix V-A,

have limited validity. They are based on a first order approximate
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solution of Maxwell equations. In the case of the surface perturbed

structures (Fig. 8), the approximation fails at large corrugation depth.
In this case, higher order approximation or numerical solution for

the amplitude of the space harmonics is required, in order to

calculate the interaction impedance.

Another Timitation is the use of a drifting Gaussian
approximation to describe the carrier distribution in some of the
examples presented. This however is not a limitation of the analysis,
because any other known carrier distribution could be used in the
equations. In principle one can calculate numerically the theoretical
distribution function of drifting carriers and use it in the present
model. However, as we pointed out in the previous section, the Timited
experimental data on the drifting carriers distribution function
justifies in many cases the use of the Gaussian distribution approxima-
tion.

The extension of the analyses of Chapters V, VI to include
collisions may have limited validity when the collisions are very
frequent, a situation which, unfortunately, is often unavoidable in
practice. The use of a single, energy-independent collision relaxation
time 1, is then incorrect. To solve the problem exactly one would have
to include all the collision mechanisms in the model which will make
it very elaborate.

[f the carriers plasma is introduced into the semiconductor
by impurity doping, the impurity levels will have a negative effect
by scattering carriers and by "freezing" carriers at lTow temperatures.

In addition quantum transitions of excited electrons from conduction
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band states to impurity level states is a process which may also
compete with the intraband transition process. This effect was not
taken into account in the present (except for possibly including the
effect in t). This problem can be avoided if the carriers are
introduced by other ways (like injection).

In structures where the periodic structure is in the path of
the carriers (especially in the superlattice structures, Figs. 28-30),
the electron wave as well as the electromaanetic wave may be affected
by the periodicity and have an appreciable contribution to the
traveling wave interaction process. This effect is qualitatively dis-
cussed in Appendix VII-B, but was not quantitatively analyzed in this
work. MNotice that it is possible in principle to avoid an "electronic
contribution" even in superlattice structures. For example, in a
heterojunction superlattice struciure which is doped uniformly by
donors, the conduction band will be flat in space, and the electrons
will not "sense" the periodicity but the electromagnetic wave will.
However, in order to attain a stronger effect it may be preferable
to use conditions where the electronic wave is affected, and there is
then need for extension of the analysis of this work.

Finally there is the limitation of "pump depletion” or "gain
saturation." This is the situation when the gain and the power density
of the amplified vradiation is high enough to cause a reduction of the
population inversion of the electronic states between which transitions
taske place. This situation is not likely to be attained in the case of
solid state traveling wave interaction. For traveling wave interaction
with vacuum accelerated electrons, extension of the analysis to

include the pump depletion effect may be of interest.
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Appendix VII-A. The Distribution Function of the Vacuum Tube Electron

Beam

The electron beam in the classical traveling wave interaction
theory is usually considered monoenergetic. In order to investigate
the Timits of the classical theory we must have some estimate of the
electron beam velocity distribution.

The first three moments of the beam distribution can be
estimated by some simplified considerations (assume a non-relativistic

electron beam). The average velocity is found from the beam kinetic

V0=f? 2 \/2_:19—! (VIT-AT)

where E is the electron kinetic energy

energy

E =ev (VII-A2)

and V is the acceleration potential. The electron density is computed

from the given current density of the beam I/S.

n, = é% (VII-A3)
Thus the beam becomes more diluted the more it is accelerated.
Some care is required in calculating the Tongitudinal
temperature (which is the significant parameter in our model). A1l
electrons gain the same energy eV during the acceleration, therefore

the energy spread AE stays the same before and after acceleration.

This causcs the velocity spread to change during the acceleration

my AV = AE- (VII-A4)
Identifying Av as a thermal velocity spread Vin and AE; with the

initial thermal energy kpT. = m(vth)§/2 (Eq. V-16) we get
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Vih = 2 A (VII-A5)
2
- %.Ef%;li (VII-A6)
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Thus the Tongitudinal thermal velocity Vih and beam temperature T
reduce considerably as the beam is accelerated. This can be viewed as
cooling down of the plasma gas due to its expansion (reduction of no).

In practice the electron beam distribution can hardly be
considered a Gaussian distribution which is characterized by its first
three moments. A detailed analysis of the electron beam distribution
in a diode is given in [Poritsky 1953].

Assuming that the electrons emitted from the cathode obey a
Gaussian distribution with temperature Ti (about the cathode
temperature), and then noting that only electrons with some minimum
initial velocity leave the cathode without being repelled back, it is
found that the one dimensional (z direction) velocity distribution is

an abruptly starting function (see Fig. 41) given by

_ mu
e(V-V ) T
2n.e k TW (——EL——J1/2 e 0 u>u
i B'1 Z“kBTi T

fu) = 8)

0 u < u,

_ r2e 1/2 .

u, = [58(V-v, )] (VII-A9)

where V_ is the potential minimum near the cathode where the velocity

distribution is half a Gaussian with parameters 2n, and T, (see Fig. 41).
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Even though the velocity distribution is quite different from

a Gaussian it still may be useful to know the first three moments.

Using the distribution (VII-A8) and definitions (V-14-16) one obtains

2k=T.; -1
_ = B i e
Vo = U= (VII-A10)
© M1 - erf/m
n=n.e'(1-erf /o) E%— (VII-A11)
0
m 2 -m ;2 T2
T = 57— Ve = 7— (U5 - u%) =
2kB th kB
- 2/n_e™" 2¢=2N

1+ " | T; (VII-A12)
Ji(1-erf v/n) m(1-erf vn) !

where

e(V-V
N = -R_T_“ll (VII-A13)

B i

As would be expected, Eqs. (VII-A10-A12) reduce into (VII-Al,
A3,A7) in the limit n >> 1 (second order asymptotic expansion of
erf(v/n) must be used in (VII-A12)).

Finally, we will shortly present some equations for the

relativistic electron beam case. The electron beam energy is given by

g - Ymocz (VII-A14)

where
1
Y = (VII-A15)

vi1- (v/c)2

The beam velocity can be calculated from the acceleration potential

which is equal to the gain in kinetic energy

0 —3 - 2 = V- 2 | =
,]'E m,e2 = (v-1)mc” = eV (VII-A16)



-336-

Instead of (VII-A4) we now have

A5.= moc2 g%-Av = 73m0vAv (VII-A17)
or
2,2
m_c
V- —%_-95?= é °2-%- AE (VII-A18)
ve-1 & g -m,c 2
For a highly relativistic beam
22
m_c
by, (9 ) A& VII-AT9
v =g ( )

We thus get correspondingly to (VII-A5,A7)

2 2 3
1 vendi 1__(mo? ) (vo)2
TS Y3V/C c 2 th’i
k 2 k m.c
e 0 ) 718 (VII-A21)
2m0c Y Vv /c 2m0c @

(VII-AZ0)

Vih

The velocity spread and the tempe}ature of a relativistic
electron beam reduces very strongly with the acceleration, even more
so than in the nonrelativistic beam case. The carriers density "o is
calculated as in the nonrelativistic case (Eq. VII-A3).

A useful expression for the beam velocity can be readily derived

from (VII-A15)
2

%‘= g - Y-2 =v 1 - (T%g_) =

=\/; S — =\/1_ (T1V7§%§TE§732 (VII-A22)

]+eV/m0c

where V is measured in KV,
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Appendix VII-B: Superlattice Effects

In the solid state traveling wave structures suggested before
(Figs. 8, 28-30) the periodic "slow wave circuit" is a monolithically
integral part of the device and not only the electromagnetic wave but
also the electron wave may "feel" the periodicity. This is particularly
true for the superlattice structures (Figs. 28-30). This mechanism
may make, in the appropriate conditions, a major contribution to the
traveling wave interaction. However, its detailed analysis is not
attempted at present; only some qualitative observations will be made
in this Appendix, and related research on superlattice effects will
be listed.

The single electron traveling wave interaction process was
described in Chapter VI as a radiative electronic transition, in
which an energetic electron makes a quantum transition to a Tower energy
quantum state (in the case of amplification), and emits in the process
a photon. The conservation of momentum in this process is made possible
by the fact that the electromagnetic wave in a periodic structure has
components (space harmonics) with high momentum, e.g. By = Bo + 2n/L
(see Fig. 31).

We realize that if also the electron wave has space harmonics,
two more momentum conserving first order processes are possible:
(1) a process involving a first order space harmonic of the lower
electronic state wave function; (2) a process involving a -1 order space
harmonic of the higher electronic state wave function. These two
processes are schematically described in Fig. 43b,c. In addition an

infinite number of higher order transitions exist too.
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Fig. 43 The three first order processes of traveling wave inter-
action (intraband transitions in a superlattice). (a) is
the conventional process involving a first order space harmonic
of the electromagnetic wave (seeFig. 31). (b) and (c) involve
first order and -1 order space harmonics of the initial and final
electron wave respectively (see Fig. 44). Compare this scheme
to the scheme of nonlinear optical mixing processes (Fig. 5).
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Fig. 44 The Brillouin band diagram of a superlattice. The first
order transition processes (b) and (c) are explained

schematically in Fig. 43. Also a transition from the second
superlattice band to the first band is shown.
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In the broader sense, we view the traveling wave interaction

as a case of three wave interaction in a periodic structure. This
case is analogous to a nonlinear optics parametric interaction of
three optical waves, a particular case of which (second harmonic
generation) was discussed in Section 2 of Chapter III. Fig. 43
should be compared to Fig. 5, and Eq. (III-17) expresses the different
momentum conserving processes (which are, to first order, the three
processes shown in Figure 43).

A Brillouin diagram description of the two processes of Fig,
43 b,c is presented in Fig. 44. The effect of the periodicity is to
create mini-Brillouin zones associated with the superlattice. The
processes (b) and (c) of Fig. 43 can be interpreted as direct electronic
transitions between the superlattice mini-bands. Compare Fig. 44 to
Fig. 31 which describes only the process (a) of Fig. 43. A process
which involves transition between two adjacent superlattice bands is
also shown in Fig. 43. Such a process is analogous to the backward phase
matched nonlinear optical mixing scheme (Fig. 6).

The scheme of Fig. 44 can be viewed as a population inversion
scheme in an artificial semiconductor. It operates analogously to a
conventional semiconductor laser amplifier in the far infrared or
submillimeter wavelengths. The population inversion is provided by
simply applying a d-c field across the superlattice. Provided the
superlattice-forbidden gaps are small enough and the field is high
enough, the gaps will be surpassed by either of the effects of Zener
tunneling, avalanching, and impact ionization. Assuming that the
drifting carrier distribution is not modified strongly by the periodic

perturbation, we see from Fig. 44 that a necessary condition for this
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process to take place is
Ky > 1 (VII-B1)

1 (corresponding to Vs ® 2 X 107cm/sec in GaAs

6 -1

For k, = 1.4 x 108em
m=0.08m) this gives L > 225R. For ko= 6.74 x 10°cm™
(corresponding to Vo = 1.4 x 107cm/sec in Ge m = 0.55 me) this

gives L > 473,

In a broader sense, the scheme of Fig. 44 can describe also
situations in which the population inversion is introduced by other
means than drifting carriers by a d-c field (1like optical or
electrical carrier injection to higher superlattice bands). In this
case condition (VII-B1) is not required, and the analogy to the
conventional semiconductor laser or LED is even more complete.

We pointed out here how to extend the traveling wave analysis
to include the effect of the periodicity on the electrons in super-
lattice structures. At present we will not pursue this analysis.

The recently developed art of superlattice epitaxial growth by vapor
phase epitaxy [Blakeslee 1970A,B] and most recently computer controlled
molecular beam epitaxy [Chang 1973, Esaki 1974A, Dingle 1974], makes
this extension necessary,and may open a new direction for the
investigation of solid state traveling wave interaction devices.

Most of the research on superlattice effects (which evolved
only in the last few years) is based on a different approach from the
one presented here. The superlattice layers are usually assumed to
introduce deep potential wells for the electrons, which the electrons
populate at some distinct (in the periodicity direction) potential

well quantum level. Effects of negative resistance and electromagnetic
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wave amplification occur when an applied electric field tilts the
potential wells so that the first energy level of the potential well
overlaps the second energy level of the next potential well,so that
strong tunneling between the wells can take place and consequently
radiative transitjons [Kazarinov 1971, Tsu 1973, Esaki 1975B]. This
approach can be viewed as a "tightly bound electron" approximation,
while the approach presented above can be regarded as a "nearly free
electron" approximation, and is useful when the average energy of the
drifting electrons is high relative to the depth of the potential well.

In addition to the references mentioned before, further
research on superlattice effects was reported in the following references
[Esaki 1970, Lebwohl 1970, Dohler 1972A, 1972B, 1975, Dingle 1974,
Tsu 1975, Van der Ziel 1975].
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