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ABSTRACT

The lateral migration of neutrally buoyant rigid
spheres in two-dimensional unidirectional flows was studied
thcoretically. The cases of both inertia-induced migration
in a Newtonian fluid and normal stress-induced migration
in a second-order fluid were considered. Analytical
results for the lateral velocities were obtained, and the
equilibrium positions and trajectories of the spheres
compared favorably with the experimental data available
in the literature. The effective viscosity was obtained
for a dilute suspension of spheres which were simultaneous-
ly undergoing inertia-induced migration and translational
Brownian motion in a plane Poiseuille flow. The migration
of spheres suspended in a second-order fluid inside a -
screw extruder was also considered.

The creeping motion of neutrally buoyant concentri-
cally located Newtonian drops through a circular tube was
studied experimentally for drops which have an undeformed
radius comparable to that of the tube. Both a Newtonian
and a viscoelastic suspending fluid were used in order to
determine the influence of viscoelasticity. The extra
pressure drop due to the presence of the suspended drops,
the shape and velocity of the drops, and the streamlines

of the flow were obtained for various viscosity ratios,



total flow rates, and drop sizes. The results were com-

pared with existing theoretical and experimental data.
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Chapter 1

INTRODUCTION

Studies involving multiphase systems undergoing bulk
motion have encompassed broad lines of disciplines in
science and engineering. Multiphase flow, in this context,
refers to the relative motion of discrete particles
(either solid or fluid phases) in a suspending fluid
medium and to the flow of interstitial fluid, or fluids,
through a matrix of solid materials. The former includes
particles moving through a stagnant fluid (e.g. sedimen-
tation), fluid flowing through 'stationary' particles
(e.g. fluidized beds), and particles undergoing trans-
lational and rotational motion in a flowing medium
(e.g. shearing motion of a suspension). The latter
refers to flow through porous media or packed beds.
Studies on these systems include various transport
processes of momentum, heat and mass, chemical kinetics,
and electric charge and ionic transfer.

Flowing multiphase systems are found in many indus-
trial processes such as polymer processing in the plastic
industry, fluidized beds, pulp and paper making, magnetic
tape manufacture, separation processes in metallurgy, and
pollution abatement. Also in nature, there occur flowing

multiphase systems such as aerosols in the atmosphere,
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sediments in water, the flow through porous media, and
biological fluids. Discussions of many natural and
technological processes involving multiphase systems may
be found in the texts by Happel § Brenner (1973) and Soo
(1967). Understanding the fundamental principles of
the flow of these systems is useful for their description,
in optimization and design in industry, and the innovation
and systematic development of new products and processes.

The investigations of various processes occurring
in multiphase systems have followed two methods of approach:
(i) treating the detailed physical and chemical processes
on the scale of one or few particles and then trying to
extend the results to the entire system as a whole, and
(ii) modifying the continuum mechanics of single-phase
systems on a macroscopic scale in such a manner as to
account for the presence of the particles. In this
dissertation, the dynamics and kinematics of two types of
two-phase systems (i.e. suspensions) are studied on the
microscopic scale to provide a fundamental understanding
of the fluid mechanics of such systems, and some of these
results are extended to macroscopic properties.

It is now worthwhile to point out several usages of
the dynamics and kinematics of the flow fields of suspen-
sions. In many instances, the flow fields govern the

behavior of other transport processes such as the forced
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convection of heat and mass, and chemical reactions that
are occurring in the system. Of course, if the flow fields
are coupled with other processes, the solutions to these
problems have to be solved simultaneously. Also, the
rheological propefties of the suspension on a macroscopic
scale can be derived (at least in principle) from the

flow fields and the spatial, orientation and shape
distributions of suspended particles. This last appli-
cation is often called "microrheology'", a terminology
first used by Goldsmith § Mason (1966) who reviewed the
dynamics and kinematics of flow fields and particles on
the microscopic scale. Recent developments on the
extension of the microscopic details to macroscopic
variables are summarized by Brenner (1970) and Batchelor
(1974). Naturally, the rheological properties of a
multiphase system can be studied from a continuum approach
also. However, this latter approach suffers the disadvan-
tage that there exist many unknown material coefficients
which are sometimes difficult or impossible to obtain.

In addition, no insight is obtained as to which constitu-
tive model is applicable to a given suspension. On the
other hand, microrheology is able to provide a detailed
relationship between microstructure and bulk properties.
Unfortunately, every system will have to be treated

separately (at least at the present stage of development)
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and many complicated systems may not have tractable
solutions. Attempts to relate the constitutive equations
derived from the microrheological and the continuum
approaches appear to be a worthwhile endeavor (see
Barthés-Biesel § Acrivos (1973)).

To obtain the flow fields on the microscopic scale
in the absence of other transport or chemical processes
(or if these processes are uncoupled from momentum
transfer), the solutions to the momentum and mass
conservation equations are required. The nonlinear
features of these differential equations and the required
boundary conditions often render the problems formidable.
The nonlinearity may arise from three sources. First of
all, the momentum equation has a nonlinear term arising
from the inertia of the fluid. Secondly, if the fluid is
non-Newtonian in nature, the viscous stresses in the
momentum equation become nonlinear. Finally, if any
boundary is nonrigid such that the shape of the boundary
is part of the solution, the problem is also nonlinear.
If the nonlinearity is small, analytical results can often
be obtained either by neglecting the nonlinear terms
completely or by using perturbation methods to obtain
higher order corrections to the linear solutions. If the
nonlinearity is large, experimental results are necessary.

Often, the nonlinear effects are most interesting, such as
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in the problems treated in this dissertation. Chapter II
deals theoretically with the inertia-induced lateral
migration of a neutrally buoyant rigid sphere in a
Newtonian fluid. Chapter III considers analytically the
lateral migration of a neutrally buoyant rigid sphere

suspended in a non-Newtonian second-order fluid. Chapter

IV involves experimental studies of the motion of liquid

drops suspended in both Newtonian and viscoelastic fluids

in a tube and suffering large deformation.
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Chapter II

INERTIAL MIGRATION OF RIGID SPHERES
IN TWO-DIMENSIONAL UNIDIRECTIONAL FLOWS

The nonlinear inertial term in the momentum equation
can cause several interesting effects in the motion of
suspended particles. Neutrally buoyant spherical particles
suspended in a Newtonian fluid undergoing unidirectional
flow can migrate across streamlines under the influence
of inertia and the bounding walls. This chapter theoreti-
cally studies such a phenomenon. The text of Chapter II
consists of an article (coauthor, Dr. L. G. Leal) which
has appeared in print in the Journal of Fluid Mechanics.
Some of the details omitted in the text for brevity are

given in Appendix A.
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J. Fluid Mech. (1974), vol. 65, part 2, pp. 365400 365
Printed in Great Britain

Inertial migration of rigid spheres in two-dimensional
unidirectional flows

By B. P. HO AnD L. G. LEAL

Chemical Engineering, California Institute of Technology, Pasadena
(Received 4 September 1973)

The familiar Segré—Silberberg effect of inertia-induced lateral migration of a
neutrally buoyant rigid sphere in a Newtonian fluid is studied theoretically for
simple shear flow and for two-dimensional Poiseuille flow. Tt is shown that the
spheres reach a stable lateral equilibrium position independent of the initial
position of release. For simple shear flow, this position is midway between the
walls, whereas for Poiseuille flow, it is 0-6 of the channel half-width from the
centre-line. Particle trajectories are calculated in both cases and compared with
available experimental data. Implications for the measurement of the rheological
properties of a dilute suspension of spheres are discussed.

1. Introduction

The phenomenon of inertia-induced cross-stream migration of small suspended
particles in flowing suspensions has occupied a central position in the rheology
and mechanics of such materials since the classical investigations of Segré &
Silberberg (1962a, b, 1963). Though there had been occasional prior reports in the
literature of non-uniform concentration distributions of particles in pipe flow
(cf. Starkey 1956), these authors provided the first conclusive demonstration
that neutrally buoyant rigid spheres in Poiseuille flow could, under appropriate
circumstances, migrate across streamlines. More surprising than the existence
of migration, however, was Segré & Silberberg’s observation that the spheres
eventually attained an equilibrium position at approximately 0-6 of the tube
radius from the tube centre-line.

Following Segré & Silberberg, many subsequent experimental studies have
been reported in which either the bulk flow configuration or the particle properties
differed from those of the original work. Many of these are summarized in two
excellent review articles, one by Goldsmith & Mason (1966) and the other by
Brenner (1966). More recent investigations have been reported by Tachibana
(1973) and Halow & Wills (19704, b). These various studies show that the general
behaviour for rigid spheres depends strongly on the specific bulk flow geometry
and on whether or not the particle is neutrally buoyant. For Couette flow,
neutrally buoyant rigid spheres migrate to the centre-line, while for both two-
and three-dimensional Poiseuille flow, the sphere ultimately attains an equi-
librium position which is approximately 609, of the way from the centre-line
to the vessel walls. On the other hand, a non-neutrally buoyant sphere subjected
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to Poiseuille flow through a vertical flow channel is found to migrate towards
the walls if its velocity is greater than the undisturbed fluid velocity evaluated
at the same point, but towards the centre-line if the particle velocity lags behind
the undisturbed fluid velocity.

In the present paper, we consider the case of a neutrally buoyant rigid sphere
suspended in a Newtonian fluid which is undergoing either simple shear flow
or a two-dimensional Poiseuille flow between two infinite plane boundaries.
Many previous investigations have attempted to provide a theoretical descrip-
tion of the migration phenomenon. Experimentally, it has been recognized for
some time that a neutrally buoyant rigid sphere suspended in a laminar uni-
directional flow will rotate and translate without crossing the undisturbed stream-
lines, provided that the appropriate particle Reynolds number is sufficiently
small. Indeed, Bretherton (1962) has shown theoretically that, if the inertia
terms of the equations of motion are completely neglected, no lateral foree can
exist for a body of revolution in a unidirectional flow. Theoretical treatment of
the migration problem thus requires inclusion of inertia effects. All investigators
to date have used asymptotic expansions for small but non-zero values of the
Reynolds number as a means of estimating the inertial contribution to the
lateral mnotion of the particle. The two best known studies are those of Rubinow
& Keller (1961) and Saffman (1965). Rubinow & Keller (1961) considered the
case of a rigid sphere which is simultaneously spinning with an angular velocity
Q. and translating (in a perpendicular dircetion) at a velocity U, through an
unbounded stationary fluid at small (but non-zero) Reynolds number. The
lateral force resulting in this ease is

F, = ma%p, R, x U,, (1.1)

in which py is the fluid density and a is the radius of the spherical particle.
Saffman (1965) considered the case of a uniform shear flow (with shear rate %)
of an unbounded fluid of viscosity u,. The sphere was assumed to rotate with
an angular velocity €, parallel to the vorticity vector of the undisturbed shear
flow, and to translate with a velocity V relative to the local undisturbed velocity
of the suspending fluid. The magnitude of the lateral force for this ‘slip-shear’

B Fy, = 6-46p, Va*(B*py/po)t, (1.2)

which differs radically from that predicted by the ‘slip-spin’ mechanism of
tubinow & Keller (1961). In particular, the magnitude of the lateral force given
by (1.2) is completely independent of the rate of rotation of the particle. The
direction of the force (1.2) is such that a sphere lagging behind the local undis-
turbed fluid would migrate in the direction of the larger, undisturbed velocity,
while a sphere leading the undisturbed flow would migrate in the opposite
direction. Although a number of attempts have been made to use the theories
of Rubinow & Keller (1961) and of Saffman (1965) to explain or correlate ex-
perimental observations of lateral migration, neither furnishes a satisfactory
fundamental explanation of the phenomenon for the motion of neutrally buoyant
particles in tubes or other bounded flow systems. Cox & Brenner (19G8) were
the first to consider the complete three-dimensional Poiscuille problem taking
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account of the presence of the walls and the non-uniformity of the shear. These
authors used the method of matched asymptotic expansions with two small
parameters, the Reynolds number and the ratio a/R, of the sphere radius to the
tube radius, to solve for the inertia-induced force and torque on the sphere.
Unfortunately, however, the solution is not given in explicit form, but rather
involves a number of very complex integral functions. As a result, no definite
conclusions can be reached regarding the direction of the lateral force, its precise
magnitude at any given radial position or even the presence or absence of an
equilibrium position corresponding to the original observation of Segré &
Silberberg.

‘Two-dimensional Poiseuille flow was previously studied experimentally and
theoretically by Repetti & Leonard (1966), who attempted to explain the
observed phenomenon of intermediate equilibrium positions by means of the
Rubinow—Keller slip-spin theory. Most recently, Tachibana (1973) reported ex-
perimental results for two- and three-dimensional Poisecuille flow and concluded
that the equilibrium positions are identical for both cases. Couctte flow was
investigated, both experimentally and theoretically, by Halow & Wills (1970a, b).
The experimental work of these authors included a determination of equilibrium
positions, as well as detailed measurements of the particle trajectories, prior
to reaching equilibrium. The theory proposed was based upon the solution of
Saffman (1965) and was represented as providing agreement with the particle
trajectories. However, this agreement must be considered fortuitous since it
was only achieved after multiplying Saffinan’s original (corrected) lift force by
an empirical factor of 5. Our present analysis is closely similar to that of Cox &
Brenner (1968). Specifically, we use the method of reflexions (equivalent to the
formal expansion in a/R,) to obtain the necessary solutions of the fluid motion.
The lateral force on and velocity of the sphere are evaluated from these solutions
using the genernlizcd reciprocal theorem of Lorentz. By restricting our attention
to two-dimensional flows between plane boundaries, we have been able to
evaluate the magnitude and direction of the lateral force. In the next section of
the paper, we outline the general method of solution and derive the necessary
governing equations. The third section outlines the solution for ereeping motion
of a sphere suspended in a general quadratic bulk flow between two plane walls
when the sphere is located at an arbitrary position between them (though not
too close to either wall). The fourth section considers the related problem of the
creeping motion of a sphere normal to two parallel walls when the sphere is
again located at an arbitrary position between them. In the fifth section, we
use these two solutions and the generalized reciprocal theorem to calculate the
lateral force on the particle for both the simple shear and two-dimensional
Poiseuille flow configurations. Finally, in the last two sections we provide
trajectory calculations for a sphere and consider the steady-state concentration
distribution for various bulk flow rates in the presence of translational Brownian
motion. The trajectory calculations are compared with available experimental
data in the Couette and two-dimensional Poiseuille systems. The non-uniform
concentration distributions lead to an apparent non-Newtonian viscosity be-
haviour for two-dimensional Poiseuille flow, the behaviour depending on the
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specific apparatus. Thisresult is discussed inlight of current theories of suspension
rheology and of the related experimental data of Segré & Silberberg (1963) for
apparent viscosities in tube flow of a dilute suspension of rigid spheres.

2. The basic equations

We consider a neutrally buoyant rigid sphere of radius a freely suspended in
an incompressible Newtonian fluid which is confined between two parallel
infinite plane walls separated by a distance d. The suspending fluid is assumed to
be undergoing either a simple shear flow or a two-dimensional Poiseuille flow.
We denote the fluid viscosity by s, and its density by p,. The basic flow geometry
and remaining physical variables for the problem are depicted in figure 1. Of
particular importance is d;, the distance from the stationary wall in shear flow
or from the bottom wall in two-dimensional Poiseuille flow to the centre of the
particle. Also, as indicated, we employ co-ordinate axes fixed with respect to the
particle for the basic analysis, with 2* in the direction of the undisturbed velocity,
y* in the direction of the undisturbed vorticity and z* in the cross-stream direc-
tion. The origin of the co-ordinate system is coincident with the centre of the
particle, hence, the walls in this system are located at 2* = —d, and 2* = d —d,,
respectively. We assume that the sphere is translating at a velocity U and
rotating with an angular velocity QF. As we have noted in the introduction,
there can be no lateral (z) component to Uy in the absence of inertial effects in
the disturbance flow induced by the particle. The prime objective of the present
work is the calculation of the first inertia-induced contribution to the z com-
ponent Ugk. In the following analysis, all variables will be non-dimensionalized
with respect to the characteristic length scale @ and an as yet unspecified velocity
scale V¥. Variables with the superscript * are dimensional and all others non-
dimensional, except for the obvious dimensional length scales a, d and d,. The
Reynolds number is then defined as Re = p, V¥ a/u,.

We begin the detailed analysis with the full dimensionless governing equa-
tions and boundary conditions for the velocity and pressure fields U and P
expressed in the particle-fixed co-ordinates indicated previously:

VEU-VP = Re(U.VU), V.U=0,

U=Q,xr on r=1,

U=V,-U
U—-V as r— oo

(2.1)

. on the walls,

Here, V represents the dimensionless undisturbed bulk flow while V,, is the
dimensionless velocity of the walls. The undisturbed flow (V, Q) is measured
relative to the particle-fixed co-ordinate system described earlier. In order to
consider the simple shear and two-dimensional Poiseuille flows simultaneously,
the undisturbed velocity and pressure fields will thus be expressed in the general
form V=(atfztyte,~U, Q=2 (2.2)
where a, £ and y in simple shear flow are given by

a="VFs pf=Vux y=0, (2.3)
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Ficure 1. The physical system for (a) siimple shear flow and
(b) two-dimensional Poiseuille flow.

and in two-dimensional Poiseuille flow take the form

& = 4Vnaxs(1—8), £ = AVnax(1—-28)k, vy = —4Vgaxk® (2.4)
In the above s = d,/d and x = a/d, with d, defined in figure 1. Both ¥, and Vyax
are non-dimensionalized with respect to V.

The solution of (2.1) is aided by introducing the disturbance velocity and
pressure fields v = U—V and ¢ = P—@. Since the undisturbed fields V and @
themselves satisfy the equations and boundary condition

ViV-V@ =0, V.V=0, }
V=V,—-U, on the walls
for all values of the mean (bulk flow) Reynolds number,{ it is straightforward
to obtain the governing differential equations and boundary conditions for the

disturbance fields:
Viv—Vg = Re(v.Vv+v.VV+V.Vv),

=0
v=Q xr—-V on r=1, (2.6)
v=0 on thewalls,

(2.5)

v—>0 as r-—>oo.

1+ The nertia terms vanish identically for the unidirectional flows considered here.

24 FLM 65
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In addition, since the disturbance flow is generated by the shear field acting on
the sphere, it is clear that the appropriate characteristic velocity VJ} defining
the Reynolds number in (2.1) and (2.6) is the shear velocity V3(a/d) for simple
shear flow and V. (a/d) for two-dimensional Poiseuille flow.{ Thus, the appro-
priate Reynolds number for the disturbance flow (v,q) is Re = p, Vi rxa/p, for
simple shear flow and Re = p, V¥, ka/u, for two-dimensional Poiscuille flow.
The present paper is concerned with the solution of (2.6) in the double limit
Re — 0 with « fixed, followed by x — 0. We shall soon see that it is necessary to
have Re < «x* for the present method of solution. It is also worthwhile to note
that the Reynolds number for the bulk flow (V,Q), say Re = p, V¥d/u, for the
simple shear flow, is Re = Rex~2. Thus, the condition Re < &? also implies that
Re < 1.

Following the approach of Cox & Brenner (1968), we thus proceed by
postulating the existence of an asymptotic expansion for v, ¢, U, and £, of

the form v=v04Revilt | q=q9+Reqg®+...,
U,=U®+RUM+.., 9 = 9;0’+Reszgv+...,} (2:7)
in which the individual terms (v®, ¢©) and (v, ¢) satisfy the equations
V0 —Vg© = 0, V.v® =0,
VO = QO xr— (a+fz+7y2%) e, + U on r=1, (2.8)
vi® = 0 on the walls,
vi® -0 as r—>o0
and Vv — Vgl = vi0) VvO 4 0 VV + V. VvO,
V.v =0,
vl = QU x4+ UM on r=1, (2.9)

vid = 0 on the walls,
vil 50 as r-—oco.

The condition for large r in (2.9) requires justification since it is well known
that, to solve the Navier-Stokes equations by perturbation expansion, an outer
expansion is generally required and a matching of the inner and outer expansions
is necessary to obtain higher-order corrections. In the present case, however,
Cox & Brenner (1968) have shown that the first term in the outer expansion is
of smaller order than the Reynolds number to the first power, so that *matching’
for Rev® is accomplished by simple application of the natural boundary con-
dition, namely vV —= 0 as r — co. Alternatively, it may be verified from the
solution for (v(® ¢") that the ratio of inertia to viscous terms is Rex~1(r*/a).
Hence, close to and within the walls r* = O(d), the Stokes solution, provides
a uniformly valid first approximation provided that Re < 2 In any case, it
is clear that the outer expansion in fZe is not required to obtain the lateral velocity
to O(fte).

+ However, if the sphere is not neutrally buoyant, so that an appreciable slip velocity

is introduced, thoe dominant disturbance may be generated by this slip veloeity and the
appropriate characteristic veloeity for the Reynolds number would be the slip velocity.
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The particle satisfies the usual equations of rigid-particle dynamics with no
external force and torque. Because of the O(Re) migration, the particle does
suffer translational and angular accelerations, but these are O(Re?). Hence, there
is no net hydrodynamic force or torque on the particle at O(1) and O(Re), and
this fact is used to calculate U, and , to O(Re). The zeroth-order terms U
and {0 are the translational and angular velocity of the sphere in the absence
of inertia and can be written as

U = UPe,, QO =0le,. (2.10)

The first-order correction, taking inertia into account, contributes the additional
translational and angular velocities UM and Q. At present,we are interested
in calculating the lateral migration velocity U, which is the z component of UV,
Clearly, U could be determined by solving for v leaving U} and £ un-
specified and then applying the conditions of zero net external force and torque
on the freely suspended particle; however, it can be shown that a complete
solution for v® is not necessary for this purpose. Instead, a version of the well-
known reciprocal theorem of Lorentz which we shall outline in the next paragraph
can be employed; this allows the migration velocity to be expressed in terms of
a certain volume integral over the total fluid volume. Careful application of the
reciprocal theorem also provides a proof of the fact that the lateral velocity
calculated in the manner outlined above produces results identical to those of
the approach outlined by Cox & Brenner (1968), in which one, in effect, first
calculates the force required to prevent migration.

Suppose that t is the stress tensor corresponding to the velocity and pressure
fields v and ¢® and f is the inhomogeneous part of the governing equation for

M), g0 at i
(vD, g, that is D = — gW] 4 Yy 4 (V)T (2.11)
f = v VyvO4v0 VV 4V, VVO, (2.12)
where I is the idemfactor and the superscript 7' stands for the transpose of the

dyadic; then we can write
V.t _f = 0, (2.13)

or in summation notation ™)i—fi=0. (2.14)
Now let us define a new velocity field (u, p) according to the equations
VZu-Vp =0, V.u=0,
a=e; on =1,
: (2.15)
u=0 on thewalls,
u—-0 as r— o,
which is the velocity field for a sphere translating with unit velocity perpendicular
to the walls in a quiescent fluid. Denoting the corresponding stress tensor as t,

we can write V.t=0, or ! - (2.16)

iji
Equations (2.14) and (2.16) then lead trivially to the equations

(T;}.): -fi)wy =0, '.‘j.il’ﬂ'” = 0. (2.17a, b)

24-2
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On subtracting (2.17b) from (2.17a) and integrating over the entire fluid volume,

f (15—t o)AV =f fiwdV,
Fr Vy

and rearranging, we obtain

2 m M ;_1)
(1, W) =7 —— — (lﬂv, )+£ij dV = fiwdV.
dx; o, vy

Use of the dlvcrgence theorem on the first and third terms yields

0
(T;})a:' tj,"’”’)dv ff,u,dV (2.18)
Vy

Here n denotes the unit vector pointing from the walls and particle surface into
the surrounding fluid. By use of the definitions of 7§}’ and ¢ and the equation of
continuity, the integrand in the second integral can be shown to be identically
zero. Hence, applying the boundary conditions

—fA ny (1 wy—t; o) dA —

vl —=u =0 on the walls,

vil»0, u—>0 as r-—»>co
and o = (UP);+ € i(QP)yy w3 =8, on r=1
we obtain

f nirg’dA—(Uﬂ”)jJ nit;dA — ejmk(QL”)mf rengty;dA :~f iy dV. (2.19)
4 4 vy

The first term on the left-hand side is the z component of the force on the sphere
due to the velocity field (v, ¢™). Since the sphere is neutrally buoyant and
freely suspended, we require this force to be identically zero, i.e.

f n7ddA =0,
4

The integral in the second term is nothing more than the hydrodynamic force
on the sphere due to (u, p), i.e. the force on a sphere which translates between
and normal to two infinite plane boundaries in a quiescent fluid, while the integral
in the third term is the corresponding torque due to (u, p). The latter is clearly
zero in view of the symmetries of the problem (2.15), while we shall show in §4
that the former is of the form

f nl;;dA = —6a[1 4+ O(x)]4,;.
i

Tt thus follows that the migration velocity Ul is given by

1
UL = —— | fiudV. (2.20)
= 6w J -
i
The function f can be determined completely once the zeroth-order solution
v is available, and the solution of (2.15)is straightforward. Hence, the reciprocal
theorem, in the form (2.20), offers a considerably simplified scheme for calculating
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the lateral migration velocity, especially when compared with the alternative
calculation of the full first-order velocity field vV,

It is significant that the same result for the migration velocity UL can also
be obtained to the present level of approximation by a ‘two-step’ procedure in
which one first calculates the force on the sphere with Ul = 0. In this case,

(2.19) becomes
f n7dA = — | fiydV.
A Vi
Thus, the inertia-induced force is given by
F, =—Re| fiudV. (2.21)
¥y

Clearly, upon adding the hydrodynamic drag associated with lateral motion
— 61+ O(k)] Re UL

and equating the sum to zero, the expression (2.20) is again obtained. The direct
approach represented by the original development leading to (2.20) and the
Cox & Brenner (1968) approach involving an intermediate calculation of #}
thus produce identical results to the present order of approzimation. In view of
the historical development of the problem, we shall adopt the latter, two-step
calculation.

In the following two sections, we consider solutions of the problems (2.8)
and (2.15) for v and u which are necessary for evaluation of (2.21).

3. Solution for (v©,4¢?)

Here we consider the creeping motion of a rigid sphere which is translating
with a velocity UY e, and rotating with an angular velocity Q9 e, in either
simple shear or two-dimensional Poiseuille flow between two parallel plane
boundaries. As we have seen, the corresponding velocity field (v, ¢) is required
to evaluate F,, using the reciprocal theorem, equation (2.21).

The solution is found by means of the iterative method of reflexions in which
the complete solution (v, g©©) is constructed as a sum of terms which alternately
satisfy boundary conditions on the sphere surface and on the walls. A detailed
description is given in Happel & Brenner (1973, chap. 7). The procedure actually
produces a sequence of terms of increasing order in « ( = a/d) which is convergent
for x small, provided that the sphere is not too close to the walls. Expressing the
velocity and pressure fields in the form

V0 = v{°’+v‘2°‘+v§°'+...,} (3.1)
0 =g+ +¢" +...,
the method of reflexions is defined by the sequence of problems
Vi =Vgi® =0, V.vi%=0,
VO = QW e, xr—(a+ Bz +y2i—US)e, on 7=1, (3:2)

vi >0 as r—>o0;
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Vv — Vg =0, V.vi? =0,
2 92 2 (3.3)
vi® = —vi® on the walls;
Vv Vg =0, V.v{® =0
v = —v® on r=1, (3.4)

vi®» -0 as 7 oo.

The quantities Q) and U} are as yet unknowns, which we shall shortly evaluate
by equating the net force and torque acting on the sphere owing to v¥ identically
to zero. The field (v{¥, ¢i”) satisfies the boundary condition on the sphere surface,
but in doing so generates non-zero terms at the walls. The second term (v, ¢i”)
cancels these terms at the wall, but in the process generates a non-zero con-
tribution at the sphere surface which must be cancelled by the third term

(vi?, ¢i), and so on to higher orders.
The solution for (vi?,¢{”) is found by using the general solution of Lamb.

The result is

0)
v V= (71(10),0(10)’“}(10)),

A x* I\ 1 o=
w == (1) - () -6k

V() s - 5] ()

G 1322 522 175z22x%\ 1 5x2 b5z2 3bz2%\ 1
_._1(1 +0_T'_)?_.:_;+3H1(1_ = 9 + d. 1)_ (3.5a)

’.2 T2 7-4 7;2 TE 7.4 ’.5 >
w0 — _*h ("”/) +3B, ’“J 30, (“—3{,5) — 150, 2 g X
T o s o T

)
G' z2 @
(13_~—) _ 15H, ( F) % (3.5b)

10 r??
A, (zx @ 3D 528\ # 2x N

u,flmz_le(_ﬁ)w T HE (r ) +3E, ( Z)ﬁ—SFlr—s
G 5z 722\ zx

10 (23——) 75 -1 H ( 7) ;;' » (3.06)

where
A= HUZ ), Bis A0 e, G @10
Dim—h Feeolh Bm G ey, M= dor
The solution for (v{?, ¢) is found by requiring v{ = —v{® on the walls. Since

the walls are a distance of order £~ from the sphere, it is convenient to introduce
outer variables defined by
(3.7)

=gz, Y =ry, 2=rz (" =xr).

Tt is then necessary to re-express the field (v, ¢©) in a form appropriate to the
region near the walls. This is accomplished by introducing the relationship

1 oY e i dEdy
F_Q_TTf—mf—mekp{‘LQ_lAl} Qg ’ (38)
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where Q = }(&x" +9y’), A = 1" and £* = £2+ 92, so that the velocity field v{”
can be expressed in integral form as
1 @ @ . 2

i = )_f f exp {1(!—]/‘\[}[gl+§—._,_(gz+]/\|g:,)] dEdy, (3.9a)
o0 = f f exp{iQ—|A|} gy +|A] J_,] rlEfq, (3.90)

I R : i§ 2
Wy =5 exp{iQ—|A[}[g, +gs+ s+ |A| 5] F 5 dEdy,  (3.9¢)

27 ) ) ¢ 12|

¥ K2 D\ =z’ 4,
where glz—:jZAl—I(Cl )Izl (F—F) g (3.10a)
e o (B F+136,)¢ e Epge 3.10b
s = ZZ + + ) + | ﬂl —E 15 ( * )
. 2 3

B e "G‘E. (3.10¢)

2T T

In view of the expressions (3.9), the field v may be assumed to have the following
form, which satisfies the Stokes and continuity equations:

VO — (), 20, u.(m)
1 = —J f exp (1Q2) [exp(—u/\)[gd g,(g5+ /\ge)]
+exp(A>[gﬁg—h(gs—f\ys)]}dgdv. (3.11a)

v-‘f’—ﬁf f exp (12) {exp (= A) [g5 + Agel +exp (A) [gs — ’\ga]}C'n’id?].
(3.11b)

A')n

w-‘i”—~f f exp (iQ) {exp (= A)[gy+ g5 + g6+ Age]
—GXP(A)[91+93+09“/\99]}1§d§d71- (3.11¢)

Here, 94,95, ...,9¢ are unknown functions of £ and » which are evaluated by
applying the boundary conditions vi® + vi? = Oon thewallsz’ = —sandz’ = 1 —s.
In the interest of brevity, the detailed results are not presented here (see Ho
1974); however, results to lowest order in « will appear in §5. For our present
purposes, it is sufficient to note that g,,g;,...,9, depend on & and # only in
the combination £ [ = (§2+9?%)%] and that they can be expressed in terms of gy, g,

and g;.

In order to solve for (v;“’,qf,"’) it is necessary to evaluate vi in the vicinity of
the sphere where ' and " are of order . This is achieved by expanding the
integrand for small values of '2+ 2. The results are

w® = ML+ 1) =L+ T, - L)z +..., (3.12a)
v =0+ ..., (3.12b)

wi® = —Ix(L+ L+ L)xe+..., (3.12¢)
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where I f “ gt - f " tosran e,
1, =f0 1-gds I = [ 1ee- a0, (3.13)

ke f "1 .

With v{? expressed in this form, v{? too can be found easily using Lamb’s general
solution. The resultisidentical to (3.5) with 4,, By, ..., H,replaced by A4, By, ..., Hy,
where

Ay =3(h+11), B;=HL+11),

Cy=—3x(3L,—1), D,=ix(3L+1), (3.14)

Ey= 3L+ L), F, G, Hy=higher order in «.

This process of satisfying boundary conditions on the sphere and on the walls
can be repeated to yield corrections of higher order in «. For the present purposes,
it suffices to stop at v{”.

The hydrodynamic force and torque (dimensionless) acting on the body can
be calculated using the formulae (see Happel & Brenner 1973, p. 308)

F,=am(A+Ay+...), T,=87(C,+Cs+...), (3.15a, b)

for which the coefficients 4,, 45, C| and C; are previously listed in (3.6) and (3.14).
It is obvious that, since (v(?, p®) corresponds to Stokes flow, the force and torque
on the sphere are in the z direction and y direction, respectively. It is most
convenient to re-express the coefficients 4, and Cyin terms of 4, €', and D, i.e.

A; = 3L +3) =cd, K  +kC,K;+k*D, Kp+..., (3.16a)
Cy=—-4x(3L,— L) =«?A, L, +3C, Lo+ x*Dy Ly +.... (3.160)

Thus, substituting for 4,, ¢} and D, from (3.6), the force and torque may be
written as

F l4mr = —3(UQ —a— 3%y ) (1 + kK ) — k¥ Q0 — 3 ) Ko — 38 Kp+ ...,
(3.17a)

T,[8m = —(Q — If') (1 +K3Lc) — I U —a — Yxty') L — 348 Ly ...
(3.17b)

The coefficients K ;, K., Kp, L4, L, and Ly are integrals over { which are of
order % and are dependent only on the parameter s. In addition, 8° = [k = 0(1)
and y’ = y[«k% = O(1). Equations (3.17a) and (3.17b) may be used to calculate
the force and torque acting on a sphere which is translating and rotating at a
known specified rate in either Couette or two-dimensional Poiseuille flow.
Alternatively, the force and torque may be specified and (3.17a) and (3.17b)
used to determine the corresponding translational and rotational velocities UL%
and Q).
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Present theory, Halow & Wills,

s - Ko el 1/(1—9)*— 1]s?) Wakiya
0-10 — 30-834 —30-864 —
0-20 —7-199 —7-324 =
0-25 —4-315 — 4444 —4:315
0-30 =21 —2:835 ==
0-40 —1-018 —1:085 =
0-50 0-0 0-0 —_—

TaBre 1. The slip velocity U,[V,x* of a neutrally buoyant sphere freely suspended in
a simple shear flow bounded between two walls, K p(s) = — K p(1 —s).

The specific case of primary interest in the present context is F, = T, = 0,
corresponding to a freely suspended neutrally buoyant particle. In this case,
it can be shown from (3.17a) and (3.175) that

U2 —a = ity —2°B'Kp, (3.18a)
QO _4xp’ = —$x18'Ly,. (3.18b)

Thus, the sphere rotates with the vorticity of the fluid to within a small correc-
tion O(x*). In two-dimensional Poiseuille flow

=4V . s(1—38), B =4V . (1—2s), v =—4V_ ...

max

Hence, the slip velocity U, = U —a becomes
U, = — §Vpax K2 — % Vnax K31 — 28) K + O(x). (3.19)

This expression is consistent with the similar result given in Happel & Brenner
(1973, chap. 3) for motion through a circular tube, and predicts that a small sphere
(i.e. k <€ 1) will lag behind the surrounding fluid for all positions s. In simple shear
flow

a=Vs pg'=V, =0,
so that U, = =22V *K, + O(x?). (3.20)

We have numerically evaluated K, for various values of s and the results are
listed in table 1. It is evident that the sphere leads the fluid for s > 0-5 und lags
behind it for s < 0-5. We note also the expected symmetry in Kj,:

Kp(8) = — Kp(1—3).

These results for simple shear flow may be compared with the similar calculation
of Wakiya (1956), who solved the same problem but evaluated U, only for
s = 0-25 and 0-75. As indicated in table 1, our calculated values are essentially
identical to his at those values of s. More recently, Halow & Wills (1970a) used
an ad hoc method in which the contributions of the two individual walls were
summed to estimate the force acting on a sphere between two plane walls. The
resulting formula for F, is

F,
6

1 1 1

1
=—(Ug?:)—a){1+l—acl€|:;+i—_—8]]—-iéqukz[;:,—(l_—‘ﬂz] (32')
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(@) (b)
~ A A & N
Present Present
theory, Halow & Wills, theory,

s K4 Pellfs+1/(1—=s)] Faxen L, Faxen Wakiya
0-10 5-709 6-250 — 0-236 —— —_
0-20 3-073 3-516 — 0-286 — —
0-25 2611 3-000 2:610 0-270 0-267 0-270
0-30 2-338 2-679 — 0-235 —_ —
0-40 2:076 2-344 — 0-129 —_— —
0-50 2-008 2-250 —_ 0-0 _ —

TaBLE 2. (a) Additional hydrodynamic resistance on a sphere translating parallel to two
infinite plane walls, K 4(s) = K 4(1—s); and (b) the induced angular velocity,

LA(S) = —[1,1(1—8)

The corresponding values for U, [V,,«® are also listed in table 1 for the case in
which F, = T}, = 0. Sufficiently near the walls, s < 0-15 or s > 0-85, both theories
reduce, in effect, to the motion of a sphere near a single plane wall and agreement
between them is expected. Surprisingly, however, the simple addition of the two
single-wall corrections gives results which compare quite well with our present
‘exact’ results for all values of s.

Although not required in the present context, it is also of general interest to
use (3.17a) and (3.17b) to calculate the force and torque on a sphere which is
translating in the x direction and/or rotating in the y direction between two
infinite plane walls in a quiescent fluid. In these circumstances, since

a=ﬂ’=7’=0,

F, = —6nUQ(1 +xK ;) —4nx*QY) K, (3.22a)
T, = — 87Q0(1 + K3Lg) — 127k U9 L . (3.22b)

In particular, a freely rotating sphere which is rising (or settling) through a
quiescent fluid will experience the usual Stokes drag force modified by the
additional term K ,, and in addition will undergo an induced rotation at a rate

QY = — UYL, (3.23)

The coefficients K , and L are listed in table 2 for various values of 5. The values
of the term corresponding to K ,, i.e. %[1/s+ 1/(1—s)], from the approximate
method, equation (3.21), are also listed in the same table. Wakiya (1956) and
Faxen (see Happel & Brenner 1973, chap. 7) also reported the coefficients K
and L, for s = 0:25 and 0-75 (see table 2).

4. Solution for (u,p)

We now consider the creeping motion of a rigid sphere which is translating
in a quiescent fluid between two parallel plane boundaries in the direction
perpendicular to them. This velocity field (u,p) is required in the integral
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expression (2.21) for the lateral force. The method of solution is identical to

that of the preceding section, hence only the results will be given. We express
(u, p)as u=u+u,+u+...,
(4.1)

P=pr+PatpPst....
The solution u, satisfying the boundary condition on the sphere, i.e. u; = e,

atr=1,1s
! Uy = (g, vy, 10,),

A, zx 2 A, yz yz
'1L1=—-?1T—3+3I)’1r—5, v1=—_—3!?_—3+3B,'){—5, (4.2a, b)
A z)\ 1 3z 1
ivl=—~§}(l+}—2);—31(l— 72 Fls (426)
and 4, =-3, B =-1. (4.3)

Using (3.8), an integral form for u, can be obtained in terms of the outer variables
a’,y’,z and r':

uy = %TJ‘:O fjn exp{iQ—|A]} [|Z'|f1+-§f2:| %’% dEdy, (4.4a)
= %fl Jt: exp{iQ—|Al} [lz’lfl +§f2] % ﬁ dEdy, (4.4b)
W = :)_ﬂlffm J‘_‘”m exp {iQ— I’\]}[fl +f2+ |A|f1] dg(lyh (4.4¢)
where fi=«d,[4L, f,=—-}3B, L (4.5a, b)

Again, u, is assumed to have the form u, = (u,, v,, w,), with

w=go| [ exptio{exp (- a) [t 2] +exp i) |- 34 5 agan,
(4.6a)

1= = . , 2 . 2 i
n=g 7 expa@exp(-n)|efit h] +expr) [Zfs—zfs]}gtii?;)
wi= g [ [ exp GO exp (~ AV fat ik A

+exp (A) [fs+fs— Afsl}dEdy. (4.6¢)

The coefficients fj, fy, f5 and f; are found by satisfying the boundary condition
u, +u, = 0 on the walls 2’ = —s and 2" = 1 —s. As before, the detailed results
are omitted (see Ho 1974) while the expressions to the lowest order in « are
givenin §5. Again, f, f;, fs and f; are found to be dependent on . Near the sphere
u, can be simplified to the form

Uy, = — 3o+ O(k3), vy, = — oy +0(k3), (4.7a, b)
wy = — (J) +J,) + kJyz + O(k3), (4.7¢)

whee  a= [ whrsade 5= [T wnesac,
0 0 (4.8)

= f “ -0



o P8 -

380 B. P. Ho and L. G. Leal
8 K4 sLfs+ L/(1—3)]
0-1 11-2 12:50
0-2 565 7-03
0-25 4-560 6:000
0-3 3-864 5357
0-4 3117 4-G88
05 2:902 4-500

Tasre 3. Additional hydrodynamic resistance on a sphere translating
perpendicular to two infinite plane walls, K 4(3) = K 4(1—8).

Hence, the solution u, satisfying the boundary condition u,+u, = 0onr = 11is
the same as (4.2) with A, and B, replaced by 4, and B, where

Ay = =3 +dy), By=—HJ+Jy). (4.9)

This completes the solution to the order of approximation required for our
purposes.

As in the previous case, the force acting on the particle can be calculated from
the coefficients 4, and 4, for any given imposed velocity. The torque is identically
zero. The general form for the force is

F, = 4m(A, + Az +...). (4.10)

Hence, substituting for 4, and 4, from (4.3) and (4.9), and noting that
Ay = -3 +Jy) =«d, K +&°B, K, (4.11)
we obtain F[6m = —(1+&K ), (4.12)

where the coefficient K , is an integral over  which is O(1) in k, and is a function of
the single parameter s. Thus, to a first approximation we obtain the usual Stokes
force, with a correction O(«) due to the presence of the walls. The coefficient K ,
is listed as a function of s in table 3. So far as we are aware, the only directly
comparable results for two walls are from the study of Halow & Wills (1970a),
who approximated the drag force as the sum of two single-wall calculations. This
approach yields
F, 1

L _[1+gx(§+m)], (4.13)

which is to be compared with (4.12). We have listed the correction term from
(4.13) in a form comparable with the coefficient K , in table 3. Unlike the previous
example, where the ad hoc method of Halow & Wills produces reasonably accurate
results, the comparison in this case is very poor with the values of the exact
calculation being as much as 50 %, lower than the values from (4.13). As one would
expect, the greatest differences occur near the centre of the gap, where the
influences of the walls are comparable. When the particle is close to one wall,
the influence of the other is apparently weak and the one-wall approximation is
adequate.
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5. The lateral force

To calculate the lateral force, the volume integral (2.21) must be evaluated
using the velocity fields v and u of the preceding two sections, i.e. we require

B e —Ref U [V, VvO 4 v TV 4 V. VvO[dV,
Vr

where V; is the fluid volume outside the sphere and bounded between the walls:
={rlr>21,r <00,y <, —8fcx <z<(1-3)«}.

Motivated by the fact that the lower limit of integration is O(1) while the upper
limit is O(1/k), we divide the region of integration into two domains V] and ¥,

such that 17 - {!'“ r < AKx—l} (51)
V= {r|Axx-! < r < 00, —sfk < z < (1—s8)/x}, (5:2)

where 0 < ¥ < 1 and A is a constant of order «°. Hence
F,l=—ReJ< u.de—Ref u.fdV. (5.3)
V Vi

Let us now investigate the magnitude of the first integral in (5.3). The solutions
of the previous two sections and the general form (2.2) of the undisturbed flow
field give the following orders of magnitude in x and the radial position r:
u=u+u;+uy+...,
u, ~ O(1/r)+O(1/r?),
u, ~ O(k)+O(x%) + ..., (5.4a)

~o()+o( )+0( )+o("2)+ .

VO = yi® 4 v 4 v® 4

w~o(5)+0(5)+0(5)+o(5 )+o(’f)+o(§)+...,

VO ~ O(K3) + O(K4r) + .., (5.4b)
vg°)~o("s)+o( )+o("‘)+o("‘)
' V ~ O(xr) + O(x%r?). (5.4¢)
It follows, therefore, that the integrand behaves as ,
1 1 1 : I
R T 1 (i = b
u.f~x 0(r3’r5' 7)J,K:'o( G 50 20 )+ (5.5)

It can be shown that the volume integral over a spherical shell (i.e. 1 < r < Akx1)

of the first term in (5.5) is identically zero. Thus, the dominant term derives from

the term of order x3/r? in the integrand and the magnitude of the integral over

Vis

J. u.fd¥V = O(xx+2). (5.6)
Vl
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Now let us investigate the second integral in (5.3). Here, in estimating the
magnitudes of the various velocity fields, it is convenient to use the outer
variables 2/, %', 2’ and r’. It is then easily shown that

u, ~ 0(x), u, ~ O(), uy~ O(x?), (5.7)
VO ~ O(K%), VO ~ O(x3), v ~ O(xY), (5.8)
V ~ 0(1). (5.9)

Hence, neglecting terms O(x®) and smaller, the second volume integral of (5.3)
can be written as

R wgaV ——Rex[ (uru). o+ ). 9V
Ve Va

+V.V(VO +v?)]dV +0(x%), (5.10)

where the velocities are expressed in outer variables and ¥, is the volume element

defined by AR & 7

and ' <o, Yy <o, -—-8<£2'<(1-3). (5.11)

Now, the dominant term in the integrand of (5.10), as " — 0, is O(x*/7'?), hence
if the lower limit »" = AxX were replaced by ' = 0, an error would be introduced
which would be of the same order of magnitude as the contribution from ¥,
ie. K—ZIO(K‘/r’z) dr’® = O(k*x). But the volume integral over ¥, is of order «2,
hence to a first approximation, it is permissible to put »* = 0 as the lower limit
and neglect the integral over V] entirely. We note that the resultant expression
for F;, equation (5.10), involves only u, and uyof u, v{® and v§’ of vi?, and a single
term of V. Let us rewrite these various velocity fields (in termns of outer variables
x',y’, 2" and 7’). First, u is given by u = u, +u,, with

ul = (ull vl:ivl)n

uy = k322 [4r%+ O(K3), v = k3y'2'[4r'"+ O(x%), (5.12a, b)
M= "%(H:—:);lﬁo(x”). (5.12¢)
PR U, = (U, ¥y, W,),
= ":Tf o AN [exp (= A) (Afy+f)+exp (A) (Afs—fo)1 §dL, (5.134)
iy = —%:f: J(W)[exp(—A) (Afs+f,) +exp (A) (Afs—fe)l £ dE, (5.13b)

Wy = —J-:Jo( W)lexp (—A) (fs+fi+ Af;) +exp(A) (fs +fs— Af;)1LdE,  (5.13¢)
where

fa= BR[BAL (= D) (E— D)+ (1=5) 8y =P+ sllyt—(1-5) (] + OY), (5.14a)

So =(=3x/16A8) [(1 —5)* %, — (1 — 28) £ — 5%yt +8(1—5) £3] + O(£), (5.14b)

fs = (3x/8AL) [(¢,— 1) (6 — 1)+ 88, — Lt + (1 — ) Lty £ — sL%] + O(x3), (5.14c)

fo = (= 3x[16AL) [s°C%, + (1 —28) {2 — (1 — )2 82, + s(1 — 8) §%] + O(x®) (5.144d)
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and
pPEi=a+y% t=expl, ¢ =expsl, la=exp[(1—s)¢], A= (t—1)2-¢%,

W = 1&p" and the .J (W) are Bessel functions of the first kind of order n.
Second, v is given by v = v{® + v{? with

0 0 0
V{O) = (u(l ),'Ui )rw(l ))J

3k2D, (2'z'?\ kA N1 k02 -

ap = 2 I(T'—s)‘-_gl(”ﬁ)?-_r%" (5.15a)
32D, (2'y'z"\ «kd, (*'y

w = 3 1(%)_ )1(r_?1) (5.15b)
32D, (z'2x"\ kA, (2’x\ Kk2Ci2’

wp = 21 (W) = (7?) +27, (5.15¢)

with D) = —38'«x, 4, = —}(UR —a—1y'x®) and C, = — (QY — 14’x). Hence, from
(3.18), it follows, for a freely suspended neutrally buoyant sphere, that

A, = 33K, and C,=$8'K Ly,

so that, in (5.15), the term involving D, is O(x?), the term involving 4, is O(x*)
and the term involving C, is O(x®):

5303 (2'a"?  HkIB'K '\ 1 5«88'Lyz’'

o _ D SOl sy jial

uo = -2 (Tts)_ . (1+ 'a)r' sl (5.16a)
B3 (x'y'z\ Bk K (27y

S f( 4 )_ [f, D(_r;’/a), (5.16b)
538’ (2’2’ 5KAB'Kp (2’2’  5k88'Lpa’

o — _ - D D =

wy e (—-—?_,E ) Sl (r“’) +t—3m - (5.16¢)

The velocity field v§” is given by
v = (o, o, ),
= [ " {100 exp (— A) 20+ 9+ Agy) + oxp (A) 20+ 64~ Age)]

12'2—y'2
—5 k(W) lexp(=A) (@5+ Aga) +exp () (0~ Agn)]| &, (5.17a)

o= - S W) [exp (= A) 05+ Age) +exp (A) (g — Ag)IEdt,  (5:170)
w = —L g-,‘ﬁ( W)[exp(—A)(gs+95+9s+ Ags) —exXP(A) (g; + g5 + g5 — Agy) 1 £dE.
(5.17¢)
Here, g,(£), ¢5(£), ---,g4(§) are expressible in terms of g,, g, and g,, which are given

by ’ ’ '

’ _ x4, kD2 «*Cyz
9= 2L - 8|2'| 4|2'| P (18
_ k4, _ x4, «2D,z’

gs = iz =y ga—Tg—slT,J-f'.... (5.18b, ¢)

.
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For a neutrally buoyant particle, the term involving D, is O(x3), the term in-
volving 4, is O(x*) and the term involving C| is O(«x%); then it can be shown that
to the lowest order in &

530" (ty+ 1
o=~ _,f (f_l)+0(h"), (5.19a)

SR [ty L+ (1—8)L 1
9= 18 { =1 A
X [{ta+ 1) (t— 1)— 21— 8) Ly (1+8) G — 25Ltat — (1 —8) ]

¢ [(1—s8)2t,+ 28(1 —8) tol + 2+ 82,12 — (1 —3)2 Lt —s(1 — ) gzz]]+0(:c'),

TAR=T1)
(5.195)
g = (K3 [24A) [(ty+ 1) (E— 1) — (1 — 8) &y — & — sLlal + (1 — 5) L] + O(xY), (5.19¢)
g, = 5'3? : (';j 11) +O(xY), (5.19d)

P _5:";/9' {ﬁiﬁ#g-% [(y+ 1) (E— 1) — 2588, — (2 — 8) L&t — 2(1 — 8) Lty b — 8]

_.A(tg—il) [s%, + 2s(1 —s) ¢, t + 12+ (1 —8)2¢t, 12— 828 —s(1 —-3)§t2]} + 0(xY),

(5.'196)
g9 = (=53 [24A) [(8,+ 1) (¢ — 1) — 88ty — & — (1 —8) &, t + 5]+ O(xY).  (5.19f)
Finally, the undisturbed velocity field V is

V = (2" +y'2"%) e, +O(x?). (5.20)

It may now be seen from (5.15) and (5.16) that the dominant term in the ex-
pression (5.10) for neutrally buoyant particlesis due to the stresslet (D, determined
by the bulk rate of strain) and its reflexion off the walls. The Stokeslet contribution
(4,, originating from the lag velocity) and the couplet contribution (C}, originating
from the rotation slip) are of one and three orders of magnitude smaller in «,
and hence may be neglected for this case. From this, one can conclude that the
lateral force originates from the shear field acting on the sphere rather than the
presence of a wall-induced lag velocity or slip-spin. On the other hand, it should
be pointed out that for the special case of a non-rotating sphere, where €, = }«xf’,
the stresslet and couplet terms are of same order of magnitude: Similarly, if
the lag velocity were significantly larger, as might be the case for a non-neutrally
buoyant sphere, the contribution of the Stokeslet term might generate a lateral
force of comparable or even larger magnitude than that determined here.
Indeed, it is clear from (5.15) and (5.16) that a suitable criterion for neglect of
the contribution to the lateral force induced by the body force (for a vertical

flow channel) is
[«*D,| > |kd,| or |4,| <&*f". (5.21)
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An explicit requirement for the case where 7}, = 0 follows immediately from
(3.17a) and (8.17b), which yield

Ay = (Ff4m + 3634 K p) (1+ 0(x)).
That is, we require | F[4m| <€ x2B". (5.22)
When the body force is gravity, (5.22) becomes (in dimensional quantities)
a?|py—pol g < po Vi, (5.23)

in which g is the gravitational acceleration, p, is the density of the particle, p,
is the density of the suspending fluid and V3 is the dimensional mean flow rate,
being equal to } V' for simple shear flow and V¥ | for two-dimensional Poiseuille
flow.

We have used the various estimates (5.12)-(5.20) to evaluate the expression
(5.10), leading to the lateral force F;. As indicated previously, the lower limit
for the radial variable 7’ in ¥, was 0 and the contribution from V] was neglected
completely. The volume integrations over V, were carried out analytically,
however the various integrations with respect to { were determined numerically
for various values of s. The general form found for F is

Fp, = * Re[3"G(s) + "Y' Go(s)], (5.24)

with the convention that a positive force is in the direction of increasing s while
a negative force is in the opposite direction. The functions ¢Z(s) and (Z,(s), which
are independent of the detailed undisturbed flow, were evaluated numerically
for various values of s and are listed in table 4. Tt is found that

Gy(s) = =Gy (1—3), Gyfs) = Gy(1—3), (5.25)

and ((s) is positive for 0 < s < 0-5 whereas (7,(s) is always positive. The general
expression (5.24) for the lateral force is applicable to all undisturbed flow fields
of the form a + 8’2"+ 'z

A careful examination of (5.24) indicates the following general behaviour of
the individual terms. The first term, which is the interaction of the disturbance
stresslet and its wall correction with the bulk shear (hence proportional to £2),
in all cases produces an inward force which tends to cause migration toward the
centre-lines = 0-5. The second term, which is the interaction between the Stresslet
and the curvature of the bulk velocity profile (hence proportional to fy), tends
to cause migration in the direction of increasing (absolute) shear rate. For every
example of two-dimensional shear flow «+ 8’2’ +y'2’? involving either moving
walls, an imposed pressure gradient or a combination of these, the region of
largest shear is near one (or both) of the walls.

Reverting to dimensional variables and substituting for g’ = V = 2V, and
v’ = 0 in (5.24), the lateral force for simple shear flow is thus

FL = po V32 a*c*[4Gy(s)], (5.26)

which is plotted in figure 2. Hence, for this case, the lateral force is in the positive-z

direction for 0 < 8 < 0-5 and in the negative-z direction for 0-5 < s < 1-0. Thus,

a stable equilibrium position for the sphere in a simple shear flow between two
25 FLM 65
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8 G4, Gla s G,y (28
0-50 00 1-072 0-25 0-885 0711
0-49 00419 1-070 0-24 0-907 0653
0-48 00837 1-068 0-23 0-927 0-654
047 0-1254 1-066 0:22 0-945 0:-625
0-46 0-1669 1-:062 0-21 0-960 0:396
0:45 0-2080 1:056 0:20 0-973 0-5606
0-44 0-2489 1-:050 0-19 0-982 0:-5306
0-43 0-2894 1-042 0-18 0-988 0-506
0-42 0-3293 1-033 0-17 0-990 0-477
0-41 0-36G88 1-023 0-16 0-988 0-448
0-40 0-4077 1-012 0-15 0981 U-420
0-39 0-4459 1-000 0-14 0-971 0-393
0-38 0-4834 0-987 0-13 0-957 0-368
0-37 0-520 0-972 0-12 0-943 0-345
0-36 0-556 0-956 011 0-931 0-324
0-35 0-591 0-940 0-10 0-927 0-306
0-34 0-626 0:-922 0-09 0-940 0-292
0-33 0-G59 0-902 0-08 0-982 0-282
0-32 0-691 0-882 0-07 1-07 0-278
0-31 0723 0-86G1 0-06 1-23 0-250
0-30 0:753 0-838 0-05 1-50 0-291
0:29 0-782 0-815 0-04 1-93 0-315
028 0-810 0-790 0-03 2-58 0-354
0-27 0-836G 0:7G5 0-02 3-59 0-414
0-26 0-861 0:738 0-01 533 0-505

TasLe 4. Values of G, and y; Gy(s) = —G,(1 —3), G.(s) = G.(1—3s).

plane wallsis the centre-lines = 0-5, where G,(s) = 0. This value agrees reasonably
well with the experimental observations of Halow & Wills (1970«, b), who found
a stable equilibrium position between s = 0-5 and 0-55 in a concentric-cylinder
Couette flow. In the next section, we shall show that the slight apparent dis-
crepancy in these two results is due to the curvature of the Couette flow stream-
lines.

For the case of two-dimensional Poiseuille flow, where g = 41 (1 —2s) and

¥ = — 4., the dimensional expression for the lateral force is

FT = po VE2a®k3[36(1 — 25)2 G, (s) — 36(1 — 25) Gy(s)], (5.27)

m

which is also plotted in figure 2. Clearly the portion £'¢/,(s) of the force which
involves the square of the shear rate tends to push the sphere to the centre,
while the term g'y'Gy(s), which involves the product of the shear rate and its
rate of change, is negative for 0 < s < 0-5 and the positive for 0-5 < s < 1, thus
opposing the effect of the first term. There are three positions where the force F,
is zero: the centre-line (s = 0-5), which is unstable to slight perturbations, and
8 = 0-2 and 0-8, which are stable equilibrium points. Unfortunately, the only
available experiments for two-dimensional Poiseuille flow, those of Repetti &
Leonard (1966) and of Tachibana (1973), are somewhat inconclusive with regard
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Ficure 2. Lateral force F}[p, V% a** as a function of lateral position.
, simple shear flow; — — —, two-dimensional Poiseuillo flow.

to the equilibrium position. In Repetti & Leonard’s experiments, the particles
were never quite neutrally buoyant. Rewriting the criterion (5.23), we require
: |Ps—Pol < 20 Viuld?g.

Using the maximum viscosity and velocity estimates of 10¢P and 2cm/s,
1o Vk|d*g ~ 1078 for Repetti & Leonard’s experimental set-up. On the other hand,
the density differences were never measured more accurately than to within
+ 10-4. The fact that the particles were never really neutrally buoyant may
explain why Repetti & Leonard were unable to obtain reliable and conclusive
results for the equilibrium position with their ‘neutrally buoyant’ spheres. The
equilibrium positions reported by Tachibana (1973) also exhibit a great deal
of scatter. However, Tachibana presented sphere trajectories only for two cases

with equilibrium positions of s = 0-2 and 0-8, which, for reasons that are not

clear from his paper, he apparently felt to be the most reliable.

These equilibrium values agree perfectly with the present theoretical pre-
dictions.

25-2

387
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Finally, it is interesting to note that the predicted equilibrium positions for
two-dimensional Poiseuille flow are precisely equivalent to the value measured
in a circular tube by Segré & Silberberg (1962, b). In addition, the form (5.27)
for £} in this case is essentially the same as Segré & Silberbere’s empirical estimate
(ef. the discussion by Brenner 1966, p. 381).

6. Particle trajectories

It is of interest to use the result for the force to calculate the trajectories of
the sphere. In particular, the calculated sphere trajectories can be compared
with available experimental results reported in the literature. The lateral velocity
has been found to be given in dimensional form by '

Fy _poVid

(n* _ A 3 s

ellg"™ = Gmuga  Gmp, =0, (613

in which G(s) is given by 1(8) = 4G (s) (6.2a)
for simple shear flow and by

G(s) = 36[(1 —23)2 @, (s) — (1 — 25) Go(s)] (6.2b)

for two-dimensional Poiseuille flow. The sphere trajectories can be expressed in
terms of the lateral position of the particle either as a function of time or as
a function of axial position in the flow channel. Since the lateral velocity U™

can be expressed as
ds Vied
(5 1L TSR el L ol R 30
Re U ddt* e K3 (s) (6.3)
and the axial velocity as
UQ* = ddz'[dt* = a+O(x?), (6.4)

the trajectory equation may be expressed either as

67y

Wi 0

W= o TeaE (6.5)
6

or equivalently dr’ = Fﬁ%‘% /s. (6.6)

For the time trajectory, we have for both simple shear and two-dimensional
Poiseuille flow

(377 * ds
o STl [ (.
SN o) Tk e
and for the axial-position trajectory in the simple shear flow case
(x=Vis=2VZks),
oo 12mpu, ss’ds’
we have x' -z = el Rerek (6.8)
while in the two-dimensional Poiseuille flow case
(= 4V k. 8(l—38) = 6V % s(1—s)),
v B6mpy, [B8'(1-=8")
x'—xy = s V,:(IK:‘J‘,. ae) ds'. (6.9)
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Ficure 3. Particle trajectory for simple shear flow: lateral position vs.
(a) time and (b) axial position.
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Freure 4. Particle trajectory for two-dimensional Poiseuille flow: lateral position vs.
(a) time and (b) axial position.
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Froure 5. A comparison of experimental particle trajectories (Tachibana) in two-
dimensional Poiseuille flow with the present theory: (O, experimental (Tachibana);
, present theory. In (a), the lateral position g is plotted vs. 8x[(p, V’: dfps) 3]; and
in (b) the lateral position s is plotted vs. x” with pV, dlu, = 32-1 and ¥ = 0-0795.

For simple shear flow, the particle trajectories (6.7) and (6.8) are plotted in
figures 3(a) and (b) with s, taken to be 0-01 and 0-99. The time trajectory is
symmetric about s = 0-5 while the axial-position trajectory is not. For two-
dimensional Poiseuille flow, (6.7) and (6.9) are plotted in figures 4 (a) and (b).
Since in this case both time and axial-position trajectories are symmetric about
s = 0-5, only s, = 0-01 and 0-49 are considered. The main feature of interest for
Poiseuille flow, which we shall discuss at greater length in the following section,
is the skewness of the trajectories in the sense that spheres near the wall clearly
migrate more rapidly than those near the centre for a given average flow rate
Vo in a given fluid. This feature reflects the larger lateral force associated with
the region nearest the wall.

For the reasons discussed in the previous section, the trajectories of Repetti &
Leonard (1966) cannot be compared with our present theory. The only available
experimental results are those of Tachibana (1973) and Halow & Wills (1970a, b).

Tachibana (1973) studied the migration of neutrally buoyant rigid spheres in
two- and three-dimensional Poisecuille flow. Particle trajectories giving lateral vs.
axial position were measured for the two cases cited carlier in which the equi-
librium positions were s = 0-2 and s = 0-8. These trajectories are reproduced in
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figures 5(a) and (b) together with corresponding trajectories predicted by the
present theory. The agreement between observation and theory is remarkably
good.

Halow & Wills’ experimental investigation of sphere migration was carried
out in a Couette flow system in which the inner cylinder was rotated and the
outer cylinder was held fixed. For gap widths small comparcd with the cylinder
radius the flow may be approximated as a simple shear flow. Extensive results
are given in the thesis of Halow (1968) and our comparison is drawn from this
source. As we have indicated earlier, Halow (1968) found the equilibrium position
to be close to the centre-line between the two walls, but also somewhat closer
to the inner moving wall, corresponding to a value of s between 0-5 and 0-55
in our present nomenclature. We believe that the slight discrepancy between
these values and the predicted value of 0-5 is due to the fact that the Couette
flow in Halow’s apparatus corresponds only approximately to a simple shear
flow. In fact, the ratio 2d/(r,+r,) has values of 0-1, 0-17, 0-22 and 0-3 in his
experiments, where r; and r, are the inner and outer eylinder radii. The case
corresponding to the value 0-1 is the nearest to simple shear flow, however, in
this case the shear rates are too large to be compared with the present small-
inertia expansion. The case 0-17 has sufficiently small shear rates; however,
the flow is slichtly different from a simple shearing flow.

In order to provide a detailed comparison with the data of Halow (1968),
we therefore modify the analysis which is presented in the previous sections for
simple shear flow to include the effects of curvature in the velocity distribution.
Hence, instead of assuming simple shear flow, let us write an exact expression
for the tangential undisturbed velocity field with co-ordinate axes fixed at the

centre of the particle:
% _ p* z_* ry(ra+7)
V*= ¥ (8+d) [r__(r2+rl) . (6.10)

Here, V¥ is the tangential velocity of the inner wall, s is the non-dimensional
lateral position of the sphere measured from the outer wall, z* is the lateral
position measured from the sphere centre and r (dimensional) is the radial
position measured from the centre of the coaxial cylinders. Thus, the factor
ry(rg+7)[r(ry+7,) provides a correction of the simple shear flow profile for the
Couette geometry. Provided that 2d/(r, +r,) is small, we can write

rra+7)  ra(ry—ry) B __f
r(ra+ry) ' ry(rat+7y) (l ) (6-10)
or
3 ft _rz(rg—rl) _ ro(rg—ry)z*
p= el (8+ d) [1 ry(reg+71) (=e)+ "1("'2'*"'1)‘1]

_ralre—n) ] t[ _ralrp—m) o o] 2*
V:"&[1 7'1(7‘2‘*"'1)(1 =¥l "1(72+"1)(1 28)]7{

e [’2(72—71)] (%*)a, (6.12)

r(rat+ry)
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FIoUure 6. A comparison of the lateral force for simple shear flow with that for
Couette flow. — — —, simple shear flow; , Couette flow with R = 0-1.

The deviation of the Couette flow profile from simple shear flow depends on the
parameter B = ry(r,—r,)[ri(rp+7;). We can express the tangential velocity in
dimensionless form as
V=a+p2+y2%
where
a=V,s[1-R(1—s)], B =V[1-R(1-2s)], v =V,R. (6.13a,b,c)

Hence, our general result (5.24) can be used to calculate the force

L= Rex®[B2G(s) + 7' Gy(s)).

We have plotted the result for the force with the parameter R = 0-1 (corre-
sponding to the case of 2d/(r, +7,) = 0-17) in figure 6. Also shown is the force for
simple shearing flow. The equilibrium position is seen to be shifted to s = 0-53.
The corresponding sphere trajectory, in the form of lateral position vs. time, is
plotted in figure 7. On the same figure are the experimental results of Halow
(1968) for the corresponding case in which the gap width d is 9-48 mm and
R = 0-101. Again reasonable agreement between theory and experiment is found.
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Ficure 7. A comparison of experimental particle trajectories (Halow) in Couette flow
with the present theory (solid line). In the results of Halow, d = 9-48 ram, r, = 60 mm,
ry = 8l mm and R = 0-101. The following points and numbers correspond to different
sphere radii reported in the thesis of Halow: O, 5, 6 (@ = 0-8495 mm); (O, 11, 12
(@ = 0-8495mun); M, 15, 16 (a = 0-636 mm); A, 19 (@ = 0:735 mm); [], 20(e = 0-537mm);
¥, 25, 26 (@ = 0:296 mm); @, 27, 28 (@ = 0-296 mm).

7. Flow of a suspension of rigid spherical particles which undergo
translational Brownian motion

As a specific application of the results of the preceding sections, we consider
the motion of a dilute suspension cf rigid spheres which are simultaneously
undergoing inertia-induced lateral migration and translational Brownian motion.

Of course, the preceding results have been derived for a single sphere in
a given bulk flow, and it is necessary to investigate the circumstances in which
the lateral force calculated for that case is applicable to a particle in a suspension
of many particles. We have seen that the role of the wallsis critical in the migration
phenomenon and acts essentially by modifying the inertial behaviour of the
flow. In addition, the walls also cause the sphere to have translational and rota-
tional velocities different from those of the surrounding fluid, but the lateral
force induced by this difference is smaller by O(«x). If we now consider two spheres
present in the bulk flow, it is clear that the modification of the inertianl behaviour
of the fluid would not be changed significantly from the single-sphere case
because the second sphere constitutes the addition, in effect, of a boundary
infinitesimally small compared with the infinitely unbounded walls. In addition,
each sphere would also translate and rotate in creeping motion at different
velocities as compared with a single sphere. This difference is of order (a/d) (a/l)?
for translational motion and (a/d) (a/l)® for rotational motion, I being the inter-
particle distance (see Wakiya, Darabaner & Mason 1967; Batchelor & Green
1972). However, we have previously shown that the lateral force will not be
affected unless the translational and angular velocities of the sphere are changed
to order (a/d)*and a/d respectively [cf. (5.15)]. Hence, the conditions for neglecting
two-particle inertial migration compared with the single-particle/wall migration

are (afl)* € afd, (afl)® < 1. (7.1a, b)
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Tor a dilute suspension of concentration @ (~ a®/3), the condition (7.15) is
automatically satisfied and (7.1a) becomes

b2 < «2. (7.2

In addition to two-particle inertial migration, it is possible that three-particle
interactions may causc migration even at zero Reynolds number since the
collision process is not reversible. Since three-particle interactions have a prob-
ability of occurrence O(M?), a conservative condition for the neglect of this effect
relative to wall-induced single-particle inertial migration is ®* < &% Re, or since

Re < K2,
D2 < k1 (7.3)

Hence, if the conditions (7.2) and/or (7.3) are satisfied, it may be assumed that
the lateral force on a particle in a suspension is equal to that on a single sphere

immersed in the fluid.
Here, we consider the concentration distributions, flow behaviour and

effective viscosity of a suspension of uniformly sized rigid spheres undergoing
lateral migration with simultaneous Brownian translation in simple shear ﬁm:
and two-dimensional Poiscuille flow. The concentration distribution is established
as the result of a competition between the lateral migration force, which tends
to cause the particles to crowd to a preferred position, and Brownian motion,
which tends to cause a uniform dispersion across the channel. For our present
purposes, we consider only the simple situation of steady bulk flow in which the
concentration distribution has achieved its final, steady-state configuration.

The governing equation for the steady-state probability density function ®(s)
for concentration can be written as

d[D(Uf.+ Re U¥))[ds = 0. (7.4)

* se »ffecti : :
Here U}, represents the effective lateral velocity due to the action of Brownian
diffusion in the presence of a concentration gradient, i.e.

€ T \ 1dD
OUY = — (m) T \ (7.5)

where AT [6mpuga is the translational Brownian diffusion coefficient, with k as
the Boltzmann constant and 7' the absolute temperature. The velocity in the
z direction induced by inertia is

Re UY, = F}(s)[6mpqa. (7.6)
It should be noted that cach of (7.5) and (7.6) is only a first approximation in «.
The solution of (7.4) with (7.5) and (7.6) is simply

(I) (D d ’F‘ ’ ’ 2 d o ol W ’ ”
(8) = D, exp o 4 L(s")ds ]/L’:-o exp [I»_T_L T(s")ds ]da , (1.7)
where ®,, is the mean concentration
1
o, = f O(s') ds’
0
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Ficure 8. Concentration distribution ®(s)/® , for various K in (a) simple shear flow and
(b) two-dimensional Poiseuille flow.

and the lower limit of the integral of F¥(s’) is taken to be } for convenience.
Substituting the general form for #7, i.e.

F7(s) = py VE2a®2G(s),

and defining the parameter K = p, V*2a'/dkT, the concentration distribution
function may thus be expressed as

P(s) = D, exp[Kf:G’(s’)ds’]/J‘:_:oexp[I(f:.G(s')ds'] ds". (7.8)

The function ®(s) is plotted with K as a parameter in figures 8(a) and (b). Since
the distributions are symmetric about s = 0-5, only half of the channel width is
considered. Clearly K ~ 10 is inertia controlled whereas K ~ 0-01 is diffusion
controlled, these cases corresponding, respectively, to sharply peaked and nearly
uniform concentration distributions.

Provided that (7.2) and/or (7.3) are satisfied even at the most concentrated region,
the local effective viscosity at any position s may be calculated using the classical

formula of Einstein 2(8) = pig1 +3D(s)]. (7.9)
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There is an additional correction term due to the presence of inertia. For example,
in an unbounded system, Lin, Peery & Schowalter (1970) have shown that the
correction is O(Re?). For simall Reynolds number, we can neglect this correction
and consider only the corrcction due to a non-uniform particle distribution.
Since P depends upon s, so does g, and the velocity profiles for the suspension
as a whole will differ slightly (by O(®,)) from their simple form for a fluid of
constant viscosity. This change may then be reflected in the relationship be-
tween the pressure drop and flow rate (AP/L versus @) for the Poiseuille flow,
and in the relationship between the applied force Fjj and wall velocity V}, for
simple shear flow. Hence, an investigator measuring AP/L and Q, or F} and V}
as a viscometric measurement for an assumed purely viscous fluid of uniform
viscosity would be led to conclude the existence of non-Newtonian behaviour
since ®(s) changes as a function of the flow rate. The equations for a steady-state
unidirectional velocity field in the case of spatially varying local viscosity are

simply !
%[ﬂ(&)%]:O; u=0 at 4=0; u=FL at s=1, (7.10)
for simple shear flow, and
‘%[y(s) gg] = (A—Llf) d* w=0 on thewalls, (7.11)

for two-dimensional Poiseuille flow. By solving these equations, the modified
velocity profiles can be shown to be

.z#;) =3 +f—: [s‘l’m—‘r D(s) t!s’] (7.12)
w - 0

for simple shear flow and
6 1
) o [1—(1—25)7 4o {3[1 - 2s)=]f (1—25')2 B(s")ds’

2 0

Vm
— 4J.0 (1—2s") (D(s')da'} (7.13)

for two-dimensional Poiseuille flow. If ®@(s) = @, these expressions reduce to

u(s)/ Ve = s, (7.14)
u(s)/3Vey = 1—(1—2s)2, (7.15)

which are the appropriate velocity profiles for a fluid of constant viscosity.
Ior simple shear flow, the correction term, (7.14) subtracted from (7.12),

g[sd)m *fo' (D(a')ds’] (7.16)

is positive for 0 < & < 0-5 and negative for 0-5 < 8 < 1, and it is odd about
8 = 0-5. Thus, from (7.12), the suspension moves more rapidly near the fixed
wall and more slowly near the moving wall as compared with (7.14). For two-
dimensional Poiseuille flow, the correction term, (7.15) subtracted from (7.13),

g 3[1—(1— 23)=]f:(1 —28")2 D(s’')ds’ — 4fo' (1—2¢) ‘D(s')ds’] (7.17)
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Fiaure 9. Correction term in velocity profile for (a) simple shear flow, equation (7.16), and
(b) two-dimensional Poiseuille flow, equation (7.17).

is negative for 0-22 < s < 0-78 and positive for 0 < s < 0-22 and 0-78 < s < 1,
and is even about s = 0-5. Thus, the resulting motion (7.13) is more rapid near
the walls and slower near the centre as compared with (7.15). These correction
terms (7.16) and (7.17) are plotted in figures 9 (a) and (b) for various values of K.
We have also plotted the resulting velocity profiles corresponding to (7.12)
and (7.13) in figures 10 (z) and (b) for K = 2 and ®,, = 0-1. Although the present
small-®@ theory is not expected to hold at a value of ®,, as large as this, this
value does allow the predicted corrections to be discernible on the scale of the
bulk flow field. The most interesting feature evident in this figure is the flattening
of the velocity profile for the case of two-dimensional Poiscuille flow.

It is of greatest interest to calculate the apparent viscosity z,,,, which would
be measured by interpretating forcefwall velocity or pressure drop/flow rate
data as though the particle concentration was uniform, and the suspension
therefore Newtonian with a constant viscosity. For simple shear flow, this
apparent viscosity may be expressed as :

Magp = FLA[V3, (7.18)
where F¥ is the applied force (equal also to the force required to keep the
stationary wall fixed) and Vs the velocity of the moving wall. Similarly, for a two-
dimensional Poiseuille flow, the apparent viscosity is

Mapp = —15(AP[L)d%[Q, (7.19)
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where AP/L and @ are the measured pressure gradient and volumetric flow
rate. Using the velocity profiles (7.12) and (7.13), plus the expression (7.9) for
the effective local viscosity, we evaluate (7.18) and (7.19) to obtain the results

Happ = Hol1 +§P,, +O(D})] (7.20)
for simple shear flow and

51 ;
oo = o[ 143 [ 30(6") (1 = 252"+ 0(5 (7.21)

for two-dimensional Poiseuille flow. Thus the apparent effective viscosity will
be independent of the flow rate (shear rate) and equal to the Einstein value with
@ replaced by @, for simple shear flow, but distinctly flow-rate dependent
(‘non-Newtonian’) for two-dimensional Poiseuille flow. We have plotted the
expression (7.21) for x,,, as a function of the flow-rate parameter K in figure 11.
The deviation from the simple Newtonian value corresponding to a uniform
concentration distribution (K = 0) first decreases with K but then for K > ~0:5
increases monotonically towards the approximate asymptotic value

(l‘app_l‘o)/ﬂo = %(DM(I'OG).

Although this behaviour may appear unusual and at variance with the available
data of Segré & Silberberg (1963), it is easily understood on the basis of the
present theory. In a non-uniform shear flow, the contribution which a given
particle makes to the dissipation of energy (and hence to the effective viscosity)
depends on the square of the local velocity gradient. A particle near the wall,
for example, contributes a greater fraction of the overall rate of dissipation
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than does a particle which is near to the centre-line, where the local shear
rate is small. In addition, we have seen (cf. figure 2) that the lateral force is
greatest near the wall and least near the centre-line. Hence, as K is increased,
the migration of particles from the wall towards the ‘equilibrium’ position is
more effective than the migration from the region nearer the centre-line, and the
steady-state concentration distribution becomes skewed in favour of more par-
ticles in the centre and less near the walls (cf. figure 85). Thus, initially the
change in p,,, is towards lower values as the decrease in dissipation due to
migration away from the walls dominates the increase caused by outward
migration from the vicinity of the centre-line. For some intermediate value of X,
the effective viscosity begins to increase as the outward migration from the
centre becomes comparable with the inward migration from the walls. The
data of Segré & Silberberg (1963) show only a decrease in viscosity with in-
creasing flow rate. However, owing to the large particles used (a = 0-6 mm), the
values of K (~ 108) are well into the migration-dominated regime where ® is
not small near the equilibrium position and particle-particle interactions are
important.

This work was supported, in part, by grant 6489-AC7 from the Petroleum
Research FFund, administered by the American Chemical Society, and, in part,
by NSF grant GK-35468.
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APPENDIX A

(0),q(0))

In sections 3 and 4, the required solutions (V
and (ﬁ, p) were obtained by the method of reflexions. In
this appendix, we provide the detailed expressions which
were omitted from sections 3 and 4 in the interest of
brevity.

To obtain the solution to equation (3.3) for (;2(0),
qz(o)), the velocity field was expressed in terms of six
unknown functions 84> &5» 8g» 87, Bg and g9 (see equation
(3.11)) which were found by satisfying the boundary condi-

. * C0),> (D). Vo
tions on the walls, namely (v1 +v, )=0 at z'=-s and
z'=(l-s). The resulting expressions for 84> ---8g are

- +
t281 8
84 = T T -1 (A-1a)

_ | - S 1 - +
85 = -1 {(tzgl *gy J+z(tyg5 *85 )

+3(1-5)zgg +3[(1-s)a+sat-(t-Dlgg}  (a-1p)

o _ - - + +

g8 = T {2t,(t-1) (g, +g, )*2ct(g, +g, )
= - +

+(t-1) (t,g5 *g5 )*+stt(t,gs +g3 )

+(1-s)gt, (tyg5trgs )+ (L-s)e’tgs" )} ,  (A-le)



+ -
t;g; -8
__ 181 5 .
87 = - —t1 (A=1d)
_ 1 - T, | . -9,1 -
g T T-T {(tlgl *g, )+'2"(t1g3 +g3 )+2'5Cg3
sxlst+(1-s)ct-(t-11gg} (A-1e)
1 + + = -
gq —A-{Ztl('c-l)(g1 *g, )+2zt(g, +g, )
+ - -
Sn NN IME T g Ll BRSSO s T
5 + 2 =
*stty(tpgs +gg )+sttgs ) (A-1f)
where t=exp Z, t1=exp 8L, t2=exP (1-s)cz,
A=(t-1)2-c2t. (A-1g)

The superscripts + and - on g1s 8 and g3 imply evaluation
at z'=(l-s) and z'=-s respectively. These expressions for
gg» ---8g arTe exact to all orders of «k(of course provided
k<<l as required by the method by reflexions). In the
evaluation of the lateral force on a neutrally buoyant
rigid sphere, only terms to O(Ks) in B4 +--8g arTeE required.
These expressions to O(KS) have been given in (5.19)
already.

The solutions for (33(0)’ q (0)) are expressed in

3

terms of the functions of A3, BS’ C3, DS' ...H3 which are

defined in (3.14). As evident in this equation, A3, B,

..H, are definite integrals in the variable ¢ of the

3



expressions 84» 8g» ---8g- For convenience, we have also

expressed AS and C3 in terms of Al, C1 and D1 (cf. equation

(3.16)), and the six definite integrals (in the variable )

Kp» Koo Ky Ly Les

(A-1) and the definitions (3.14) and (3.13), we find the

Lpy- By direct substitution of equations

following expressions for these integrals:

K = - 37[10T(s)+5ncot(us)+107E ;RZ(Z)]

v [T ey e

+z { 1-Zst1-2(l-s)t2+3t-2(1-s)t1t

2 2 2 2
-Zstzt} -z { (1-s) ty+s t1+t-s t,t

2 - Cz
“(1-s)7t t } +L72s (L-s)tl+ gy

[(tyet)e-t(esl)ecel} dp (A-2a)

KC = - T%[ZT'(S)'NZCOSGCZ(WS)]
- I%-“ﬂ %-{(tz-tl)(t-l)-s;tz(t-l)
+(1-s)zt (t'l)';(tz'tl)

- (1-28)¢ t} dc (A-2b)

Ky = E%[GV'(s)-3w2cosec2(ﬂs)-Z(l-Zs)ch(S)]

5a j: {fre,-tp e-1)
+C {(1—25)(t1+t2+1)(t-1)+(t1-t2)(t+1)}



_47_

2

5 {sztl—(l-S)ztz-(l-S)ztlus2

tzt}]

3
*zr%rry[(tz'tl)t'(l-ZS)ct]} dg (A-2c)

LA = -T%{ZT'(S)-HZCOSECZ(HS)]
+T%‘ ﬂ %{(tl'tz)(t'1)+c{(t2't1)t
+st1(t-l)-(1-s)t2(t-1)}

+;2(1-25)t} ac (A-24d)

LC - -T%[T"(s)+n3cosec2(ﬂs) cot(ms)

w 2
-2z, (3)1+5 Jf e (CRRIPICED

-th} dz (A-2e)

LD = 3%[W"(s)+n3cosec2(ws) cot (mws)

o 2
'chz(S)]"'g']z-' .]I: g__{(t1+t2+2) (t'l)

—c{st1+(1—s)t2+2t+5t2t+(l-s)tlt}

*Czt} dc . (A-2£)

Here, ¥(s) is the Psi (or digamma) function and Y'(s),
¥'"(s) are the polygamma functions; mE=0.5772 is the Euler's
constant; and Cp,(2)=1.6449, T, (3)=1.2021 are the Riemann

Zeta functions*. Notice that some of the integrals that

* For definition and tabulation of these functions, see
Abramowitz, M. § Stegun, I.A., Handbook of
Mathematical Functions, Dover 1968.




appear in KA’ Kes ...Ly are integrated analytically and
some, which are left in their definite integral form, have
to be integrated numerically. Values for KD’ KA and LA
are tabulated in tables that appear in section 3.

Similarly, in section 4, GZ was expressed in terms of
four unknown functions fS’ f4, fS’ and f6' Upon application
of the boundary condition 31+52=0 on the walls z'=-s and

z'=1-s, these are found to be

f. = -%[(tz-l)(t-l)+;{(l-s)t2-t+st2t}

-(1-s)ePelf -, (e- D) gt £, (A-3a)

2
2
£, = 5xl(1-5)%t,-(1-25)t-st, tes (1-s)Ctlf,

+20(t,+1) (t-1)-g{ (1-s)t,+test,t})

+sc2t]f2 , (A-3b)
fo = -%[(tl-l)(t-1)+c{st1-t+(1-s)t1t}
-sg2t1f1-§[t1(t-1)-;t]f2 ) (A-3c)

£, = cz[szt +(1-2s)t-(1-s) 2t t+s(l-s)zt] £
28 1 1 EElty
+'zlg[(tl'*l)(t'l)-;{st1+t+(1-s)t1t}

+(1-s)gzt]f2 . (A-34d)

The expressions for f3, f4, fS and fﬁ to O(x) have been
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given in equation (5.14). Finally, the solutions for (33,

p3) were obtained in terms of A3 and B3. For convenience,

we have expressed A3 in terms of Al and B1 and two integrals

K, and KB (cf. (4.11)). The expressions for KA and Ky are

A

K, = 1% j~ {s t +(1 s) ty,-(1- s) tt

2
-S t2t+25(1-s)ct}-dc+§ J: K~{(t1+t2

-2)(t-1)+§{st1+(1-s)t2-2t+(l-s)t1t

+st2t}-;2t}dc : (A-4a)

© 2
Ky = I%'.ﬂ %—-{(t1+t2+2)(t-1)-c{st1

#(1-s)t +2t+(1-s)t, t+st t}+z2t b dr
2 1t*st,

o 2
_%j; g—{(t1+t2)(t-1)-2ct}dc . (A-4b)

Values of KA are tabulated in table 3 of section 4.
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CHAPTER III

MIGRATION OF RIGID SPHERES IN A TWO-DIMENSIONAL
UNIDIRECTIONAL FLOW OF A SECOND-ORDER FLUID

The lateral migration of a neutrally buoyant rigid
sphere suspended in a second-order fluid is studied
theoretically for unidirectional two-dimensional flows.

The results demonstrate the existence of normal stress

induced migration whenever there is a lateral variation
of shear rate in the undisturbed flow. The migration
occurs in the direction of decreasing absolute shear rate,
which corresponds to the centerline for a plane Poiseuille
flow and to the outer cylinder wall for Couette flow.
The direction of migration agrees with existing experi-
mental data for a viscoelastic suspending fluid, and
qualitative agreement is found between the theoretically
predicted and experimentally measured sphere trajectories.
The text of Chapter III comprises an article (coauthor,
Dr. L. G. Leal) which is submitted to Journal of Fluid
Mechanics for publication. To provide a technological
application to the result of this chapter, the migration
of particles inside a screw extruder is considered in

Appendix B.



1 5 Introduction

Experimental and theoretical studies of suspensions have revealed two
distinct mechanisms by which suspended particles can produce flow-rate dependent
macroscopic behavior. First, when the concentration of particles is spatially
uniform, nonlinear macroscopic behavior can result if the individual particles
dgform or preferentially orient in a manner which depends on the magnitude of
the bulk velocity field. Macroscopic effects of this first type represent an
intrinsic property of the suspension, and are thus reflected in the characteristic
non-Newtonian form of the particle contribution to the bulk stress. Even when
the particle contributions to the bulk stress are linear, however, the measured
macroscopic variables in a particular viscometric experiment may still exhibit
a nonlinéar (flow-rate dependent) relationship. An example is the experi-
mental measurements of flow-rate versus pressure drop for a dilute suspension
of rigid spheres in a capillary viscometer by Segré and Silberberg (1963).

One cause for such behavior is the presence, under appropriate conditions, of
flow-induced lateral motion of the suspended particles. This motion tends

to produce a non-uniform concentration distribution that depends both on

the macroscopic flow rate and on the detailed geometry of the viscometer.

In a recent theoretical investigation, Ho & Leal (1974), we have considered
the problem of inertia-induced migration of rigid spherical particles in a
two-dimensional, quadratic, unidirectional shear flow (simple shear and plane
Poiseuille flow are two examples) of a Newtonian fluid. The present commu-—
nication is concerned with migration induced in similar circumstances as a
result of non-Newtonian properties in the ambient suspending fluid.

The phenomenon of lateral migration in non-Newtonian liquids has been

studied experimentally by Mason and co-workers (Karnis & Mason, 1966; Gauthier,



Goldsmith & Mason, 1971la,b) and by Highgate & Whorlow (1968, 1969). Mason's
studies have demonstrated that the magnitude and even the direction of
migration depends critically on the detailed rheological characteristics of
the suspending fluid. Two distinct sets of results were obtained, ome for
purely viscous fluids (labelled pseudoplastic by Mason) which show a strong
shear thinning of wviscosity, but only very weak normal stress or relaxation
(recoil) phenomena, and the other for fully viscoelastic fluids (labelled
elasticoviscous by Mason). In the latter case, which was studied by Karnis

& Mason (1966) for Poiseuille and Couette flows, rigid spherical particles
were found to migrate in the direction of minimum shear rate, i.e. toward

the centerline in Poiseuille flow and toward the outer cylinder wall in Couette
flow. On the other hand, when the suspending fluid is purely viscous, Gauthier,
Goldsmith & Mason (1971a,'l971b) have shown that migration of rigid spheres
occurs in the opposite sense, i.e. toward the wall in Poiseuille flow and
toward the inner cylinder in Couette flow. Detailed particle trajectories
were measured in each case. Unfortunately, however, the available rheological
data ave both incomplete and of questionable accuracy (cf. Bartram, 1973), so
that the main value of these studies is qualitative. Related migration
phenomena in viscoelastic fluids were also reported by Highgate & Whorlow
(1968, 1969) who studied Couette flow and the viscometrically interesting

cone and plate geometry. In the latter case, relatively rapid radial
migration was observed which completely depleted the gap of the viscometer of
suspended spheres after several minutes. The case of Couette flow was found,
in the experiment of Highgate & Whorlow (1968, 1969), to exhibit an axially
directed migration (i.e. at right angles to the cross-gap migration of Mason,

et. al.) which again eventually depleted the gap of particles (although on a



relatively longer time scale compared with the cone and plate case).

To date, no proper theoretical analysis has been reported for any of these
phenomena, though it was suggested both by Highgate & Whorlow (1968, 1969)
and Karnis & Mason (1966) that a.qualitatively relevant explanation could be
obtained in the viscoelastic case by simply taking account of the net force
produced on a sphere by the gradients of normal stress in the undisturbed
flow. It is, however, clear that such an "explanation" is entirely irrele-
vant to the observed phenomena. First of all, in the unidirecticnal flows
under consideration, any gradients in the deviatoric normal stress components
must be balanced by gradients in the pressure so that the net lateral force
on any fluid element (and hence on the sphere) in the undisturbed flow is
precisely zero. Second, no account has been taken of the disturbance flow
(and associated normal stresses) which is induced by the particle and is of

at least comparable magnitude to the undisturbed motiomns in its vicinity-.

We consider here a complete theoretical analysis for the cases of plane
Polseuille and Couette flow of a second-order fluid. It is, of course, well-
known that the second-order fluid model is only relevant for very slow and
thus nearly Newtonian flows. In particular, deviations of the stress compo-
nents from their Newtonian values are of only infinitesimal magnitude, and
are confined in unidirectional shear flows of the type we consider here to
the first and second normal stress differences. In: spite of these limitatioms,
we feel that the analysis is of fundamental interest and»at least qualita-
tively applicable to problems of Practical inte;esc. Our reasons for this

th

optimism are several-fold. First is the fact that the n~ order fluid

expansibn, of which the second-order fluid includes the first two terms, is



the common slow-flow limit of most other models of viscoelastic fluid
behavior. Thus, in spite of uncertainties which persist in the formulation
of general viscoelastic fluid models, the nth order fluid "models" are
almost certainly relevant for flows which have a characteristic time scale
which exceeds the intrinsic relaxation time of the material. Secondly, since
the shear-dependence of the viscosity only comes into the nth order fluid
expansion at third order, the second-order model provides a rational basis for
separating the effects of normal stress induced particle migration, from that
induced in the purely-viscous case by gradients of the shear viscosity. 1In
spite of the fact that the normal stress induced migration is necessarily
restricted in magnitude by the nature of the second-order fluid model, there
is no contribution at all from the dominant first-order (Newtonian) terms. Hence,
under appropriate circumstances the small instantaneous effect can produce a
major accumulative change in the particle motion. Finally, we would call atten-
tion to the recent calculation by one of us (Leal, 1974) of orbit drift for long
slender particles in simple shear flow of a second-order fluid. This work
has provided one example, which is closely related to the present work, of a
case where the second-order fluid model gives quantitative comparison with
experimental data, even outside the range of bulk shear rates where the model
is strictly applicable. Good comparison was accomplished in the orbit drift
case by simply using measured values of the rheological parameters at the
relevant bulk shear rate rather than the zero-shear values for which the
model is-strictly relevant. We suggest, thereforé. that the qualitative
physics of the normal stress effects

may not be too badly represented by the second-order fluid approxi-

mation over a reasonably wide range of shear rates.



The detailed analysis required for the present problem follows rather
closely that reported in our earlier study, Ho & Leal (1974), of inertia-
induced migration in a Newtonian fluid. Thus, we concentrate our discussion
primarily on those features which are unique to the non-lNewtonian problem,

and refer the reader to our earlier paper for other details of the calculation,

2. The Basic Equations

We consider a neutrally buoyant rigid sphere of radius a freely suspended
in an incompressible second-order fluid which is confined between two parallel
plane walls separated by a distance d. The suspending fluid is assumed to be
undergoing a steady unidirectional, two-dimensional bulk flow which we denote
as Vi. The fluid dens;ty will be denoted by B and the zero-shear viscosity
by Hoe All quantities will be nondimensionalized by the characteristic length
a, and a characteristic velocity Ba where B is an average shear rate for the
bulk flow. Later, in order to make the calculation tractable, we will restrict
our analysis to small particles for which a<<d. Finally, for convenience, we

will use convected cartesian coordinates with an origin which is coincident

with the center of the sphere. The equations of motion may thus be expressed

in the form
301
.. - = 0 .
Re 5E + Ujui,j Tij,j' Uj,j = (2.1a,b)

where the stress tensor Tij’ for a second order fluid is

+ Aeg A (2.1c)

T Wij ¥ M0 utkg 122y 15°

= - +
1 Psij A



where
= + ;3 2.
5oy = Vgt Y (2.1d)
A = 35(1)1 + U A + A U, + A U, (2.1e)
(2)1j3 at k(1)ij,k (L)ik k,j (Lkj k,1° J
A(l)ij is the rate of strain tensor and A(Z)ij is the second Rivlin-Ericksen

tensor. The relevant dimensionless parameters are the Reynolds number
- e
= on-N t 2 =
Re = pOBa /uo, and the non Lew.on an parameters A = ¢38/u° and & ¢2/¢3 in
which ¢2 and ¢3 are related to the magnitude of the normal stress components
in shear flow (see (2.7)). Available experimental evidence indicates that

A>0Qand € :—0.5 in most polymeric solutions and melts, these values corres-

1
ponding to a positive first normal stress difference and a negative second
normal stress difference in simple shear flow. The case el‘=-0.5 corresponds
to the so-called Weissenberg fluid in which the second normal stress difference
is exactly zero.

The dimensionless parameter A is a measure of the intrinsic relaxation
time for the suspending fluid relative to the dynamic scale F’l. In the
present work we consider A to be small so that the constitutive relationship
(2.1c) differs only slightly from that of a Newtonian fluid. In additionm,

we assume that the fluid motion is also dynamically slow so that inertial

effects may be neglected. More precisely, we require

Re << A << 1, ) (2.2a)

so that the Newtonian creeping motion velocity and pressure fields are
modified by nonlinear effects associated with nonzero values of A rather
than dynamic inertial effects associated with nonzero values of the Reynolds

number. The first inequality (i.e, Re << 1) is satisfied provided



2
¢3 >> poa = (2-2b)

Thus, for a given fluid, the neglect of dynamic inertia compared to non-
Newtonian effects is justified for sufficiently small particles.

We consider the undisturbed bulk flow to be steady, unidirectional and
two—dimensional. Special cases of this general type include plane Poiseuille
flow, simple shear flow, or any combination of these, Since V.,V = 0, the

j 1,3
equations of motion for the undisturbed flow are simply

Begey = 05 Vg g = 95 (2.3a,b)
in which
Hij =—Q51j * l‘:(l)i.j * )\E(l)ikE(l)kj + AElE(z)ij’ (2.3c)
and
Bayeg = Va5 ¥ V5,10 (2.3d)
(2.3e)

By = B e ¥ Bk, ¥ EksVi,1e

A solution to these equations, which encompasses both two-dimensional Poiseuille

and simple shear flow, is

v, = VGxi,
V=oa++ Bz + yzz - (Us)x’ ' (2.4)

Q = 2yx + 4y(Bz + Yzz) 1+ 2:1) A + comnstant,

where (U ) 1is the velocity of the sphere in the x direction. For a simple
5 X



shear flow, as depicted in Figure (la), the constants &, B and Y are
o = VWS’ B = va3 Y = 0, (2-5)

where Vw is velocity of the moving wall, s is the non—dimensionalized distance
across the gap width from the fixed wall, d is the gap width, and ¥k = a/d.

For a two-dimensional Poiseuille flow, as depicted in Figure (1b),

a =4 vﬁax s(1 - s),

B =4 vﬁax (1 - 2s)x , (2.6)

2
Y= —4 Vﬁax K™,
where Vmax is the maximum velocity at the mid-point between the walls. It
may be noted that, for a segond order fluid, the undisturbed velocity field is
unchanged from that of a Newtonian fluid having the same viscosity U» but

does produce a contribution to the isotropic pressure at order A. The first

and second normal stress differences are respectively given by

2.7)

For the analysis of equations (2.1), it is convenient to define a dis-
turbance velocity v, = U, - V., and pressure q = P — Q. Then assuming (2.2)

to hold, the steady state equations of motion satisfied by vy and q are



Tidg T Y iRania)
in which
gy T gy ey t ‘[e<1)1ke(1)kj * “(1>1i] i)
+ Aey [ecz)ij # ”(zuj:l ,
and
®wij " V1,3 T Vy,10
(2.8¢)

@13 -~ kEW13,k T Wik, ¥ S(Lki"k,1?
i T BB xS aEa)kse

"or13 T kCwsk T ek, 3 T SWkiVk,1

+

* Bk Y Ba)a"kad Yt Bk Vi,

Here e(l)ij and e(2)ij are respectively, the rate of strain tensor and the

second Rivlin-Ericksen tensor for acceleration of the disturbance flow v

while W and W(Z)ij are tensors arising from the interaction of the

(L)ij

disturbance flow vy and the bulk flow Vi. We seek solutions of (2.8) plus

associated boundary conditions, subject to the asymptotic restriction,

A << 1, Thus, we assume

Vi ™ vi(o) i lvi(l) + ..

q= q(o) R xq(.l) - (2.9)



Substituting (2.9) into (2.8) and equating equal powers of A, we obtain

governing equations for vi(o) and vi(l). For (vi(O), q(o)), we obtain
)] @
3.3 0 V55" %
(2.10)
0 _ _ (0 (0)
iy T T %y ey

which is the equation of motion of a Newtonian fluid and can be written in the

more familiar form:

with the appropriate boundary conditicus:
"1(0) Jij(nm))j x -V, onr=1,
vi‘” =0 - on the walls, (2.12)
vio) >0 as T + o,
- (n(“))j is the angular velocity of the sphere to O(l). For (vi(l),q(l)),
ve obtain
AT
) =W+ el + z{ (2.13)

(ﬂ), (0) (0) (0) (0) (0)
By T eax®kg Ty e (B t ”(2)13] ,



where Zig) contains only terms from Vi and v§0). We can also write (2.13) as
_oe CLY @ L 9 @) _
5y gy =eEn w9 L =0, (2.14)

The appropriate boundary conditions are

1 i i
vi : eijk(ng )}j:k + (U: )Ji on:- ¢ = Y.
vil) =0 on the walls . (2.15)
vil) + 0 as ¢ + >

Here (9;1)] and (Ugl)] are the angular and translational velocities of the
sphere at 0%1). All ofithe variables (ﬂ§0))1, (Qsl)} & (U:O)) , and (U:l))
are unknown, in general, and must be obtained as partiof the silution to th:
problem. Our present objective is to find the z component of [U:l)) which 1is
the lateral velocity of the sphere induced by the non-Newtonian behavior of
the suspending fluid.

The method employed is analogous to that developed in our earlier
evaluation of the inertia-induced lateral velocity in a Newtonian fluid
| (Ho & Leal, 1974). That is, by using the reciprocal theorem, we show that
(

the lateral velocity (Usl)] can be calculated without the explicit solution
z

of vil). A new velocity field (ui,p) is defined by

R I L

(2.16)

tyy = “Pyg * 21y,



U BLg T Yao

or in its more familiar form

i S U R

ui = 6zi onr =1,

(2.17)
u, = 0 on the walls,
w0 as T » =,

Combining (2.13a) and (2.16a) and integrating over the entire fluid volume, we

obtain

.[ [“g)j S "il)] v =0 (2.18)

Ve

which can be rearranged to give

a (@ . (D (1) M), -
f -ég[“ij uy tijvi dv- ﬂij ui,j - tijvi,j dv = 0, (2.19)
Ve Yy

Upon applying the divergence theorem to the first integral, and using the

definition of 'n'(l)

13 and tij in the second integral, (2.19) becomes

) (€8] (1) (1) 1)
..fnj [Wij ui._tijvi ]dA—'/- [—q Gij + e (113 ui,j
A Vf -

(1) (0)
E Ve




where nj is the outer unit normal for the surfaces. It is easily shown that
the integrand of the second integral is identically zero. Thus application

of boundary conditions on the first integral gives the simplified form

_ (6V) (1) 6§ -
JAnjwzj aa + (ug )iJA"jcij da + e, o (] l"[AxknjtijdA
I (0)
Lactar dW
v, iy "id

The first integral is the force on the sphere in the z direction due to v

(2.21)

(1)
i

and iIs assumed to be zero for a neutrally buoyant sphere since the acceleration
of the sphere yields a term of order Rex(Us):. The second integral is the force
on the sphere due to u, and 1is equal to -6m[l1 + 0(x) + 0(12)]621. The third
integral is the torque on the sphere due to uy and is identically zero due to

the symmetry of the problem (2.17). Since Zig) is symmetric, the integrand of

(0) _ 1 +(0) -

the fourth integral can be written as zij ui.j E:Zij aiJ where aij 3(1)11

=u, 3 + uj i is the rate of strain tensor for the velocity field u - Therefore
4 »

(2.21) becomes

@My .1 (0)
6m(u;"") 5 I Iy 2gd? - (2.22)
z Vf

We have shown, in the inertial migration case (Ho & Leal, 1974), that an equiva-
lent result may also be obtained for the O(Re) contribution to the lateral
migration velocity, if one first calculates the force which would be necessary
to keep the sphere from migrating and then calculates the migration velocity

by equating this force to the Stokes' drag for uniform translation with velocity
(Ugl)) through a quiescent fluid. Using identical arguments, the equivalence
of these two approaches may also be proven in the present case. Thus the force

on the sphere in the z direction which is equivalent to (2.22) is simply

1 (0)
FL = - E-Afv Eij aijdv . (2.23)
£



It may be noted that the integrand in (2.23) has a different form from

its counterpart in the inertial migration problem:

FL - - Re‘/‘;fuifidv
(2.24)
0) 0) (0)_(0)
where £, = ( \'4 + V. +
£°% Ve gt Nag T i
and from the more cumbersome force expression which was used by Leal (1974)
in a recent calculation of the motion of slender rod-like particles in a
second order fluid (see equation 29, Leal, 1974). In particular, (2.24) has

the nonhomogeneous term £, of the O(Re) equations of motion dotted directly

i
with ug, whereas the present form (2.23) involves the double dot product of
the nonhomogeneous part of the stress temsor at 0(A) (see (2.13)) with the

rate of strain tensor corresponding to ug . Leal (1974) has shown that if

aij were replaced in (2.23) by uy and Zig) with Eigzj in analogy with (2.24),
an additional integral of [385)2 +ele52; over the sphere surface would be

required to obtain F The difference between the forms (2.23) and (2.24)

L*
is thus introduced primarily as a matter of computational convenience. The
forms (2.23) and (2.24) may also be seen to arise as equivalent natural

choices if we consider the overall rate of work done on a fluid volume, In

dimensional terms, this quantity can be expressed as the sum of two terms

(see Batchelor, 1967, p. 152):

2
f [pvigi + 'Z_ﬂ:l.je(l)ij]dv (2.25)
v
£
avi
where 8y = 3¢ + v-,.v:l P and all other quantities have their usual meanings.
»



If the rate of work is nondimensionalized by szL (V and L are the charac-
teristic velocity and length respectively), the first integral of (2.25)

becomes (in dimensionless form)

Re j‘;f v,8,dv (2.26)

which is similar to (2.24). For a second order fluid (in which the dimen-
sionless stress is given by "1j = e(l)ij + Aoij), the second integral of (2.25)

has a non-Newtonian contribution given by (in dimensionless form)

1 .
iﬁ/;faije(l)ijdv (2.27)
which is similar to (2.23).

3. Evaluation of the Lateral Force

In order to evaluate the lateral force F_ using (2.23), the product

L
Zgg)aij must be integrated over the complete volume of fluid which is outside
the sphere and bounded between the two walls, Thus, in general, solutions of
(0)

(2.11), (2.12) and (2.17) for vy and u; are required throughout the complete
fluid domain. Although the derivation of these solutions would be extremely
difficult in the general case, approximate analytical results can be obtained
for small ﬁarticles, {.e. K8 % << 1, via the well-known method of reflectionmns.
Thus, we shall limit our subsequent analysis to k << 1, in addition to the
condition (2.2a) which was adopted earlier. The solutions for viO) and ug wvere

derived in our earlier analysis of the inertial migration problem, Ho & Leal

(1974), and in view of their length, we shall not repeat them here, but rather



concentrate our attention on the evaluation of the volume integral in (2.23).
It is convenient, as in the case of inertial migration, to divide the

volume of integration, Yf, into two parts, Vl and Vz, where

v, ={Fl1sr< WXy

(3.1)
& = -
v, = {?IA:X lgr< o, —-sKk < z< (L - 8)K 1} ¢
Here A is a constant of order k° and O<x<l. Hence
- (0) (0)
FL -3 {];121j aijdv + szij aijdv
' (3.2)

- %" Fpn + Fpp)e
In contrast to the previous case, Ho & Leal (1974), the dominant contribution
to (3.2) will be shown to arise from the integration over Vl, i.e. from the
region near the sphere. In order to demonstrate this fact we consider the
order of magnitude of each of the two integrals in (3.2).

Let us first examine the integral over Vl, i.e. FLl' In this region,
it can be shown by using the solutions for viO) and uy from Ho & Leal (1974)

that the integrand behaves like

(@, g2 % x_
Zij aij B [ Xl[rﬁ...] + EIXZ[KG"']



iO) and u

The functions Y "

1 and Yz depend on the undisturbed flow V and on v

for the motion of a sphere in an unbounded fluid domain. That is, the
reflection of this solution off the walls, and the subsequent higher order

corrections at the walls and at the sphere surface contribute to Xl and Xz

3

and the 0(:4) terms. Since Bz ~ :2 and By ~ k~, the 0(:4) terms may be

neglected for k << 1. Furthermore, the integral of Xl and Xz over the spherical

shell 1 £ r < Azx-l is identically zero. Thus,

1
_ 5 XT _(0)
Es ./1:-1 Igy aydv

rkax_l

: 1 i 1 1 4
= BY Yl [T!Ts—g' . '] i+ Ele [_j;'_ﬁ—!__s-~ - -J dv + 0 ('C ) - (3 .4)
el T ® r

Finally, denoting the indefinite integral of Y, + €.Y, as ?[l e 2 ,...;cl] and

==
1 12 5 r3 1_5
noting that the upper limit of (3.4) can be replaced by = with an error

of o(z3), we obtain

r::tn
1, 1 & 3
F_= Byvf—r——f—~,...,e ] + o(x™)
.1 5 r3 r5 1
r=1 (3.5)

= By[W1 + elyz] + o(x3).

Let us now turn to FLZ' In the region Vz, it is appropriate to use the
"outer" variable r' defined by r' = kr. Thus, transforming the integral

expression for FLz into this outer coordinate system, we obtain

r'=0(1)
-3 2(0)'

x 1] a’ijdv‘, (3.6)

F =K
L2 r'=Ak



where the superscript ' signifies the use of outer variables. Again using the

1
(07%,r = o0(x”). 1t thus

solutions of Ho & Leal (1974) it may be shown that zij ij

follows from (3.6) that F,. = o(x-).

L2
We thus see that the dominant 0(&3) contribution to the lateral force is

due entirely to FLl

velocity fields for the sphere in an infinite fluid domain, i.e.

which is itself dominated, for small k, by the disturbance

1 3
FL no—- EABY[Vl + 51?2] + o(x7). 3.7)

Unlike the inertial case, the reflection of the infinite domain solution off
the walls yields only higher order corrgcticns to PL' Thus in calculating
the lateral force to 0(x3) for a sphere not too close to a wall, the only
role played by the walls is in the establishment of the undisturbed profile,
V. In addition, it should be noted from (3.7) that the lateral force F is
proportional to By. Hence in the case of simple shear (y = 0) no lateral
migration should occur to 0(:3).

In order to obtain more quantitative results, the coefficients Tl and

WZ must be evaluated. From the definition of zij), these are simply

g w9 (0) _(0)
"1 f l:(l)ij * eyt (1)k:|"‘1j‘“’
(0) (0)
/;1[:(2)13 (2)1:| Rpydv-
Straightforward, though tediaus, evaluation of these terms gives

18 _ 1
y - 5 - E]"' (3.8a)



612
wz = - —3§-+ 3%}“’ (3.8b)

and the lateral force is

683 4941 3
F o= -HBYA{Eaﬁ - g _333] * ofk™) (3.9)

= —uﬁykN(el) + o(:3).

(0)
(D13

while in (3.8b), the first term is the contribution

In (3.8a), the first term is the contribution from W and the second term

o) .
is from e(l)ike(l)kj’
(0)

from “(g)ij and the second term is from eEg;iJ' It is of interest to note

that the contributions to FL of the extra non-Newtonian stress Eig)

with the interaction of the bulk flow and the disturbance flow (i.e. W

(0) ) are numerically dominant over the contributions associated with

(2)1ij
the disturbance velocity alone (i.e. egg;ikegg;kj and egg;ij).

associated

0)
(L)ij

and W
Also, we

may recall that the lateral force for a neutrally buoyant sphere with no
external torque in the inertial case stems from the stresslet contribution

to the far-field behavior of the disturbance flow. Here in the non-Newtonian
case, the lateral force depends on the disturbance velocity field close to

the sphere, and all of the velocity terms coming from Dl’ Ei» Fl' Gl' H1

and B, in the disturbance velocity vio) (see Section 3 of Ho & Leal, 1974)

p !
contribute to the same order of magnitude. The contributions from the
Stokeslet term Al and the couplet term Cl are asymptotically small and thus
neglected for a neutrally buoyant freely rotating particle. However, closer
examination of these terms is useful since it leads to criteria for neglect
of external body forces and couples, In order to neglect the contribution
(0)

from A;, it can be shown from v that we require



Y >> Al " (3.10a)

3
For a meutrally boayant sphere Al ~ Kk while y ~ nz. However, with an
external body force F acting on the sphere in the x direction, A, ~ [ij,and

thus the contribution from Ar can only be neglected 1if

y >> |Fx|. (3.10b)

If the body force is gravitational, then in dimensional quantities, (3.10b)

becomes
* -
Y* >> |p_-p _|g/u_, (3.11a)

which for the case of Poiseuille flow is

v s> o -p_|glu (3.11b)
max * s o o *

It is coincidental that the same criteria for neglect of body force contribu-
tions was also obtained for the inertial migration case (see (5.23) of
Ho & Leal, 1974). 1t can also be shown that in order to neglect the couplet

term Cl’ we require

B >> C (3.12)

1
For a freely rotating sphere, Cl a nh, and the condition is satisfied. On
the other hand, for a non-rotating sphere with ﬂsy =0, Cl is g/2 and hence
contributes to FL at the same order of magnitude as the rest of the terms
Dl' El, Fl""' Again, this is true in the inertial migration case, It thus
also follows that the present single particle migration result is applicable

for a suspension of spheres provided conditions (7.2) and (7.3) of Ho & Leal

(1974) are satisfied.



Finally, it may be noted that the approximate condition (2.2a) for
neglect of the inertial contribution to the lateral force compared to the
non-lewtonian contribution may now be improved by direct comparison of the
magnitudes of the predicted lateral force in each case. 1In the present theory,
we have shown that the lateral force due to the non-Newtonian effect is of
order AK3, while the analysis of Ho & Leal (1974) produced an inertial contri-

- 2 K = P . = _ :
bution of order Rex . 7Thus, a more accurate rorm of the condition (2.2a) is

x¢ >> Re | (3.13a)
or, in dimensional terms
¢3 >> poad. ) (3.13b)

The expression (3.9) for FL is the main result of the present analysis,
and 1is valid whenever the conditions (3.11), (3.12) and (3.13) are satisfied.
It shows that the direction and magnitude of the lateral migration depend on
the magnitude and sign of the normal stress parameters A and €. The majority
of available viscometric and theoretical studies (summarized in Leal, 1974)
support the conclusion that the first normal stress difference in simple shear
Eiow is positive, while the second normal stress difference is negative and
approximately 10 - 20Z of the first normal stress difference in magnitude.
Thus, referring to Eqs. (2.7), it may be seen that

A>0 and -0.6=¢, £ -0.5.

1

Expressing the lateral force as

FL - —BYG(X,el)



it follows that G(l,el) is strictly positive, so that particle migration is
always in the direction of least (absolute) shear rate., Thus the equilibrium
position of particles in Poiseuille flow is midway between the walls, and in
Couette flow is éﬁe outer cylinder (irrespective of which cylinders are
rotating or the direction of rotation). Although none of the available
experimental studies were carried out in a regime for which the second-order
fluid model is strictly applicable, these theoretical results are at least in
qualitative agreement with the observations of Karnis & Mason (1966) which
were made in strongly viscoelastic solutions. Since the only relevant non-
Newtonian characteristic of the second-order fluid is the existance of nonzero
normal-stress components, it may perhaps be inferred that the migration
phenomenon in a fully wviscoelastic fluid which exhibits both a shear-thinning
viscosity and nonzero normal stresses is dominated by the normal stress contri-
butions. A stronger statement could only be made after a more quantitative
comparison of particle trajectories with measurements in a fully characterized
fluid. In the following section, we provide the necessary theoretical results
for the trajectories, and show that they agree qualitatively with the available
trajectory measurements of Karnis & Mason (1966). Unfortunately, however, the
desired quantitative comparison could not be made with any certainty because
of a lack of quantitative rheological data for the test fluid.

Finally, an alternative, but completely equivalent expression, for PL may
be obtained which separates the contributions of the first and second normal

stress differences, ~2€ll and (l+Zel)A (cE. (2.7)),

= 683 4941 |, 683 3
FL —EBY[T-_OO (1 & 251)?« H [1—12—0 4 m (—ZEIA] + o(l( ). (3.14)

The two terms are of opposite sign since (1+2e1)A50 and -chl>0, meaning that



the two mormal stress contributions are in opposite directions. However, the

term in square brackets is dominated by the first normal stress difference

provided only el<0.

4. Particle Trajectories

In order to facilitate a more quantitative comparison between the present
theory and experiments, it is necessary to calculate the particle trajectories,
To achieve this, we use the (dimensional) equations for the lateral velocity

ds

W)y =% - ~4,8 ¥'a NCe) /61y, (4.1)

and for the axial velocity
* dx' *
o I d === (4.2)

to obtain the differential trajectory equations

* 6du°ds
dt = 3 (4.3a)

x X 2N
9,8 v a'N(ey)

6u*uods
. (4.3b)

dx! = = — 55—
2
¢3B Y a N(el) .

* * k%
Here x'=xx, t 1is the dimensional time, and a , 8 , vy are the dimensional forms

of a,B and Yy, respectively. Upon integration, (4.3a) and (4.3b) become

6u d 8
t*-t*o — _."2__ f _;._'13'_*_ , (4.4a)
943 N(g,) J, B (s")y (s')



and

6u s L '
Tl L__f SN (4.4b)
¢3a2N(el) s=s, B (s")y (s")

Equaticn (4.4a) gives the lateral position s as a function of time, while

(4.4b) gives lateral position as a function of axial position in the flow

domain, Let us first consider the case of plane Poiseuille flow for which
*

a = 4V;axs(l-s),

* *
B = 4Vmax(1-28)/d, (4.5)

i * 2
Yy = —kvmax/d =

In this case, (4.4a) and (4.4b) give

16 v 2 k34 Nee)
[1-2s pax T3 VLT A &
=T ] -« "3y ad (e -t) (4.6a)
o o
* 3

8V K ¢, N(e )

2 2 1, [1-2s ) max '3 ‘°1
(B —50) = (B-SO) = 'iln[l_zsoj 3poa (x'_x‘;). (4.65)

These trajectory equations are plotted in Figures (2a) and (2b). So far as

we are aware, no experiments have been reported on migration in two-dimensional
Poiseuille flow of a non-Newtonian fluid. Ho;ever, the predicted results do

agree qualitatively with the trajectories measured in three-dimensional Poiseuille
flow by Karnis & Mason (1966) as may be seen by comparing their Figure (4a)

with our Figure (2b). Although quantitative agreement would not be expected,

it is encouraging that substitution of the experimental parameters into



Equation (4.6b) with the assumption g = -0.55, does yield reasonable agreement
with the experiments for the order of magnitude of the axial distance
traveled between an initial lateral position, 8= 0.24, and a final position

s. = 0.43. It should, however, be emphasized that no measurements were made

£
of the second normal stress coefficient (requiring us to assume € = -0.55;

see the estimate of e, in Section 3), that the other rheological data was not

i
measured by Karnis & Mason (1966), but rather adapted from Brodnyan, Gaskins
& Philippoff (1957), and that the fluid used in the experiments was sufficiently
non-Newtonian that the bulk velocity profile differed substantially from the
assumed parabolic shape. For these reasons, we have not attempted any more
detailed comparison, nor have we carried out the theory for the three-dimensional
case in spite of the fact that the analysis is an obvious and straightforward
extension of the present work.

The only other experimental observations which are relevant to the
present theory are for Couette flow, also reported by Karnis & Mason (1966) .
The present theory shows that in simple shear flow, where y = 0, there is no
lateral migration to 0((3). However, in Couette flow, the small curvature of
the velocity profile causes 7y to be nonzero and thus yields lateral migration.
I; can be shown that in all cases, where one or both cylinders are rotating
either in the same or opposite sense, the shear rate always has a minimum
absolute value at the outer cylinder wall, which is thus the expected direction
of migration according to the present theoty. However, due to detailed
differences in the bulk velocity profiles for different combinations of
cylinder rotation, the magnitude of the migration velocity will differ from case to
case. Both of these features (i.e. outward migration and a dependence of the
magnitude on the sense and magnitude of rotation of the individual cylinders)

were observed by Karnis & Mason (1966) who studied the two simplest cases in



which (1) the inner cylinder was rotated holding the outer stationarykand

(2) the outer cylinder was rotated holding the inner stationary. For simpli-
city, we shall confine our present discussion to these two limiting cases, which
we shall refer to as case 1 and case 2, respectively. We denote the radii of
the inner and outer cylinders as T and Tys and the gap width as d = (r2 - rl).

A dimensionless measure of the degree of profile curvature 1Is (case 1)

tz(rz—rl)
R1 = rl(r1+r2) s

and (case 2)

rl(rz-rl)
R, = T, )

Provided Rl << 1 and R2 << 1, we can approximate the (dimensional) undisturbed

velocity profile in the general form (2.4)
* X * * %
V(z)=a +8z +yz 4.7

in which z* is the axis perpendicular to the walls and directed towards the
rotating cylinder. For case 1, the outer stationary cylinder is thus repre-
sented by s = 0 and the inner rotating cylinder by s = 1. For case 2, the
outer cylinder is s = 1 and the inner cylinder,.s = 0. The coefficients a*,
3*, and Y* in each case aregiven in Table (1). The approximation inherent in
(4.7) takes into account the changing shear rate across the gap but neglects
the curvature of walls. Given (4.7), the migration velocities and time
trajectories are easily obtained by substituting B* and Y* into the general

expressions (4.1) and (4.4a). The results are (case 1)



% K3V:2¢3N(El)
(Us)z = - -——zﬁc;;“—*- Ry [l“Rl(l—ZS)]. (4.8a)
* 2 2
v x“¢.N(g,) 1-R. (1-2s)
%[_:] ;3; L (e = - 2 snl l(1-23 y| ¢ (4.8b)
o R1 Rl o

and (case 2)

3

*2
% K Vw ¢3N(el)
(B} = = G R, [1 + R,(1-29)1, (4.9a)
*2 2 -
v x $.N(g,) 1+ R, (1-2s)
_;__: 3u ; (:*_t:) o _li gnl.———1+ %1-23 5| - (4.9b)
o R2 R2 o

The trajectories, (4.8b) and (4.9b) are plotted in Figure (3) for Rl = 0,138
and R2 = 0,0884, the values used in Karnis & Mason's experiments, Again)
qualitative agreement is found between the theory and experiment for x = 0.012,
the smallest value used by Karnis and Mason. However, the rate of migration
which was measured seems to increase too slowly with x when compared to the
present theoretical result. One possible explanation for this is that the
larger value used, k = 0,056, is simply too large for the present theory to

be applicable, This speculation is, in fact, supported by the trajectory data
(Figure(8)of Karnis & Mason, 1966) which shows a definite wall effect over
almost the whole span in the latter case. .It may also be noted that the exper-
imental values of Rl and R2 are fairly large for the approximate linearization
of the flow geometry to be accurate, Finally, all of the same difficulties with

regard to the existence of reliable rheological data are present here that were

previously noted in the Poiseuille flow case.
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Table Captions:

* * *
Table 1. The coefficients a , B and y for Couette flow. Case l: Outer
cylinder stationary and inner cylinder rotating; Case 2: Outer

cylinder rotating and inner cylinder statiomary.

Figure Captions:

Figure 1: The physical system for (a) simple shear flow and (b) two-

dimensional Poiseuille flow.

Figure 2: Particle trajectory for two-dimensional Poiseuille flow:

lateral position vs. (a) time and (b) axial position.

Figure 3: Particle trajectory for Couette flow with R, = 0.138 and

1

R, = 0.0884., Case 1l: Outer cylinder stationary and inmer

cylinder rotating; Case 2: Outer cylinder rotating and

inner cylinder stationary.
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APPENDIX B

.. Introduction

In a recent study (Ho § Leal, 1974), hereafter denoted
as I, we have theoretically calculated trajectories and
final equilibrium positions for neutrally buoyant rigid
spheres which migrate laterally across a unidirectional
flow of a second-order fluid. The result of lateral
migration in a suspension of such particles is a spatially
non-uniform concentration distribution. For most technolo-
gical applications involving composite materials made up
of particles (e.g. filler) suspended in polymeric solutions
or melts, such concentration anomalies will have an adverse
effect on the bulk properties of the finished product.

In the present note, we adapt the analysis of I to consider
migration of neutrally buoyant rigid, spherical particles
in a second-order fluid which is flowing through a screw
extruder.

We recognize, of course, that the second-order fluid
limit of the general simple-fluid constitutive model does
not provide a full description of the rheological proper-
ties of polymeric solutions or melts. Indeed, for a
simple steady shear flow the only viscoelastic charac-
teristics exhibited by the second-order fluid are nonzero

normal stress differences whose magnitude varies quadrati-
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cally with shear rate. The shear-thinning of viscosity is
only partially included at the third-order fluid level.
Nevertheless, we are hopeful that the analysis presented
here will produce at least qualitative insight into the
behavior to be expected in a real extrusion process invol-
ving particles in a polymer melt. Support for this optimism
is based, in part, on the fact that our theoretical results
in I were shown to agree qualitatively, and even semi-
quantitatively with available experimental results for
polymer solutions up to 4% by weight which exhibit both
large normal stresses and strong shear-thinning phenomena.

The analysis is similar in many respects to that in I,
and we shall use much of the same nomenclature as well as
the main results for the lateral migration velocity in our
present work.

2 The basic undisturbed flow in the extruder

A longitudinal cross-section of a typical screw
extruder is shown in figure 1. As indicated, the barrel of
the extruder is a stationary cylindrical tube, inside which
the screw rotates at a rate which we shall characterize by
Uc’ the tangential velocity at the screw base in the azimu-
thal direction. Thus, choosing the x and y axes (rectangu-
lar coordinates) to be parallel and perpendicular, respec-
tively, to the screw flight, the velocity of the screw base

in the x direction (down-channel) is Uccos¢, while that in
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the y direction (cross-channel) is simply chin¢. Here, ¢
is the flight angle, as defined in figure 1. In the
following analysis, which is relevant for a single suspended
particle whose radius a is much less than the channel depth
d, the origin for the z coordinate direction is taken co-
incident with the center of the particle (i.e. z=0 is the
normal center-plane for the particle) and z is positive in
the direction of the screw base. The distance across the
gap measured from the barrel and nondimensionalized with
respect to d will be denoted by s; s=0 at the barrel and s=1
at the screw base. All other distances are nondimensionali-
zed with respect to the particle radius a, while velocities
are nondimensionalized with respect to the characteristic
velocity Ba, where B is some average shear rate.

In order to analyze the basic, undisturbed flow in the
extruder, we use the usual simplifying assumptions as out-
lined, for example, by Bernhardt (1959, Chapter 4). These
are: (i) a small depth-to-width ratio (d/w) in the flow
channel, (ii) negligible channel edge effects, i.e. neglec-
ting the presence of the screw flights, (iii) no leakage
flow through the clearance between the barrel surface and
the screw flights, and finally (iv) isothermal conditions.
Among these assumptions, the last is the most restrictive
in practice. If (i) is satisfied, the curvature of the
channel around the screw axis can be ignored and the screw

channel can figuratively be unrolled and laid out flat for
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purposes of the present discussion. The bulk undisturbed
velocity profile (relative to a coordinate system fixed with
respect to the screw barrel) inside the channel and away
from the flight surfaces can be written approximately as the
sum of down-channel and cross-channel components,

v, = V(z)axi+7(z)cy. (B-1)

i
We will identify quantities related to the down-channel flow
with a single overbar, and those related to the cross-
channel flow by double overbars.

The down-channel component V(z) is composed of two
distinct parts: first, the motion induced by the x
component of the velocity of the screw base, Uccos¢, and
second, that induced by the imposed pressure gradient in
the x direction. If the pressure is denoted by Q, the
pressure gradient is given by 3Q/3x (=2y), which is a
positive quantity for a reverse pressure drop as is usually

observed in screw extruders, and

V(z) = U_(cos ¢)s+U_(cos ¢)KZ-YK-ZS(1-S)

-y L (1-25) zeyz2. (B-2)

Here k denotes that ratio a/d of particle radius to channel
depth d, and is assumed to be small. The volume flow rate

in the x direction due to the flow induced by the motion
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of the screw is 1/2Uccés ¢, while that due to the reverse
pressure gradient is -1/6K-2Y. The minus sign in the

last term indicates backflow for y>0. It is usual practice
to define a quantity A as the absolute value of the ratio

of volume flow rates,
- =2
A = x “y/3U_cos ¢. (B-3)

The form of the velocity profile in the x direction depends
upon A. When A=0 there is no pressure gradient and the

flow reduces to a simple shear flow as shown in figure Z2a.
For 0<A<1/3, there is a reverse pressure gradient, but it

is not sufficiently strong to produce any backflow. A
typical velocity profile in this case is shown in figure 2b.
Finally, for 1/3<A<l, backflow occurs between s=0 and
s=(3A-1)/3A (see figure 2c), with the 1limit A=1 corres-
ponding to the case of zero net flow in the x direction.

An alternative form for V(z), which incorporates A is

V(z) = Uccos¢[s+nz-3As(1-s)-3A(1-25)xz
+3Ac%2%7] . (B-4)

The undisturbed down-channel flow is of the general type

analyzed by us in I, namely



V(z) = G+Bz+yz’ (B-5)

QI
n

with Uccos¢[s-3As(1-s)]
g = KUccos¢[1-3A(l-Zs)] (B-6)
Y = KZUCCOS¢[3A] = ¥y.

For the cross-channel flow, the undisturbed velocity
profile depends only on the velocity of the screw (inde-

pendent of A), and is given by the general form

7(2) = chin¢[s+Kz-35(l-s)-S(l-Zs)xz

+3k2z2] (B-7)

A typical profile is plotted in figure 3. Again, the un-
disturbed bulk flow is of the general quadratic type

analyzed in I,

7(2) = §4§z+?z ; (B-8)

where a = chin¢[s-35(1-s)]
B = KU_sin¢[1-3(1-2s)] (B-9)
= - SKZUcSin¢
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. 18 The lateral force on the sphere

We have shown in I that the lateral force on the
sphere can be calculated for a quadratic unidirectional flow
knowing only the disturbance creeping motion induced by the
sphere in a Newtonian suspending fluid, plus a second,
'complementary' Stokes solution. We consider a neutrally
buoyant rigid sphere of radius a freely suspended between
the screw barrel and the screw base at a distance s from the
barrel. We denote the disturbance flow to zeroth order in
A(=¢38/uo, see I for the definition of these quantities) as
vi(O), which is the Newtonian solution. In view of the
linearity of the governing Stoke's problem, it is permissa-

ble and convenient to denote the individual disturbance

)
= (0)

while that corresponding to 7Iz)ﬁyi is denoted as Vi

motions induced by a sphere in V(z)ﬁxi alone as Vi
The overall solution is simply the sum of the two parts,

(0) _ 5 (00,3 (0) | )
Vs vy vt (B-10)
Let us now recall, from equation (2.13) of I, the
expression for the 'extra stress' to order A due to the
viscoelastic property of the suspending second-order fluid,

i.e.
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ij T f()ik C(kj T T(1)ij
(0) . (0) -
_ (0) (0)
Since the expression for Zij is not linear in v, y We

obviously cannot write 2(0) as the sum of the 'extra

ij
stresses' generated by the down channel and cross channel
flows separately. Indeed, substitution of (B-10) and the
definitions of eggg, WE?%, egg% and WEg% (see equation
(2.8c) of I) into equation (B-11) yields

(0) -(0) =(0) A(0)

Zij = Zij +Zij *Zij » (B-12)
where the first two terms on the right hand side are simply
the 'extra stresses' associated with the sphere suspended in
VGxi and 76yi separately (see I). The last term in (B-12),
A (0)

) , arises due to the nonlinearity of equation (B-11) and
ij

is given (after suppressing superscripts (0)), by

Lij = Byik® (ki @)ik® (ki V(1) ij

+€i[é(2)ij+ﬁ(2)ij]’ (B-13)

where Weyyig ™ l_3_(1)iké(1)1<j"=e(1)11<E(1)1<j
*Enik® kit ik ke
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A o - _

We23i5 = Ve®yig, k"% (1) ikVk,
*8 19k VK, 1" VKB (1)1] K
+é(1)ikvk,j+é(1)kj?k,i
+vkE(1)ij,k+E(1)ika,j
*E x5V, i VkE (1) 15,k
+E(1)ik§k,j+ﬁ(1)kj;k,i’

~

®(2)ij T Vk®@)ij,k"®1)ik'k,j

* )kiVk,i k¢ (1)ij ,k

*2(1)ik"k, i (1)kj VK, i. (B-14)
Now, we have shown in I, by use of the reciprocal

theorem, that the lateral force on a sphere to O(A) is

(cf. equation (2.23) of I)

(0)
. |
F = 'Tk.l; {ij a;j dv
= (0) =(0) A(0)
1
= -7AJ/. [Zij +Eij +Zij ]aij dv. (B-15)

Vi

The integral of the first two terms is identical to that

in (2.23) of I, with the appropriate velocity fields Vi(o),

Vi and 51(0), ﬁi' Thus, upon integration we obtain (cf.

(3.9) of I)



1 5(0) S

=52 A Zij a;5 dv = -mByAN(e;),

1 f =(0) _ z=

-5 ' Zij a;5 dv = -mBYAN(g ). (B-16)

A(0)
A little effort, using the definitions of Zij

(B-13) and (B-14), shows that the last integral of (B-15)

in equations

is identically zero. Thus, the total lateral force on a

sphere suspended in a screw extruder is simply

Fp = -mA (BY+BY)N(e )40 (k") (3-17)

= -SNAKSUgN(el){Acosz¢[1-3A(1-Zs)]

+sin®¢[1-3(1-2s)]}

3.2
= 3WAK UCN(el)G(s),

- (683 _ 4941
where N(t—:l) = (3-0—-0- 31—53-0-].
The lateral velocity of the sphere can be obtained by using

Stokes equation:

_ 1
USZ - -z-XIC

3u§u(sl)c(s). (B-18)

Here positive values of the force and velocity represent
migration towards the screw base (s=1.0) and negative values
represent migration towards the barrel (s=0). Rheological

data for polymeric solutions and melts indicate that AN(el)
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is positive (see I). The direction of migration thus
depends on the function G(s), which is plotted in Figure 4
for various values of A and a typical value for ¢ of 30°.

4. Particle trajectories

In order to see the practical implications of the
lateral migration force FL’ it is necessary to consider the
resultant trajectories for a typical sphere. The velocity
of the sphere is most conveniently written as the sum of

X, y and z components:

US = sti+Usyj+Uszk (B-19)
st = Uccos¢[1-3A(1-s)]s
where Usy = chin¢[1-3(1-s)]s
1, 3.2
Usz = fAK UCN(El)G(s).

In order to calculate trajectories, it is assumed that the
velocity of the sphere in the x and y directions equal to
the undisturbed velocity of the fluid. On the other hand,
the velocity in the z direction is the lateral migration
velocity, equation (B-18). The residence time of a typical
sphere inside the extruder can be calculated knowing the
mean undisturbed fluid velocity in the x direction. From

the values of US and Usz’ the particle position on a

y
cross-sectional plane of the channel can be obtained. In
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this section, we consider only the particle path on the
y-z plane of the channel. It will be shown that all
particles eventually end up at the position s=2/3.

Let us write the velocities Usy and USz in dimensional

quantities,

STE Y162 T P _ ;

sy = o = U(sing)s(3s-2) (B-20)
u” fo,u

= ¢

U, = dj—iT = ZE(u—qu)N(el)KZG(S)_ (B-21)

Here ? (=y*/w) is the channel position in the y direction,
nondimensionalized by the channel width w. Thus the cross-
sectional area of the channel is bounded by walls at s=0
(barrel), s=1 (screw base), and y=0, §=1 (screw flights).
From the expression U:y (also see figure 3), the sphere is
seen to move towards §=1 for 2/3<s<1 and to move towards
?=0 for 0<s<2/3. At the walls ?;0 and ?=1, we simply
assume that the particles turn the corner following a
streamline which is determined in such a manner that fluid
mass is conserved. In another words, if the particle
approaches §=0 on a streamline (say s=0) corresponding to
a total mass flux measured across a plane which extends
from s=0 to the wall s=0, then we assume that it leaves
?=0 traveling in the opposite direction on a streamline

(say s=0%*) which bounds a region of equal mass flux
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measured across a plane which extends from s=o0* to the

other wall s=1. The same is true for a particle approaching
the wall §=1. Then it is easy to show that (see McKelvey,
1962 p. 320)

go~G2 = (g*)°-(ad)°. (B-22)

The sphere trajectory is obtained from equations (B-20) and
(B-21), together with the assumption that the spheres turn
around at the walls ?=0 and ?=1 according to equation
(B-22). Thus, combining the equations (B-20) and (B-21),

we obtain

a3 - (d/w)sing (gé%gizl) ds (B-23)
1(¢3%\ 2
ATt

S

- (d/w% sin¢ (; 3s-2 ) ds .

Upon integration this becomes

. s
o (d/W)smgf 2 s(3s-2) 4 i
Yo<¥ = s . (B-24)
27y g s, ST
) ($3Ye 2 .
The quantity E(=T(ﬁ—a~ N(el)n ) is proportional to the rate
o

of migration. Thus, large values of £ correspond to rapid
migration, and the particle trajectory will clearly depend

on the value of £. We present a typical trajectory in
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figure 5 for {&/W)SIN® - 399, ¢=30°, and A=0.5. The paths
in figure 5 are simply drawn as straight lines to show the
trajectory qualitatively. Thus the actual trajectory is
slightly different from that given in figure 5 especially
at the screw flights §=0 and ?51. As indicated, the
trajectory of the particle is a closed spiral, tending to-
ward an equilibrium position s=2/3. The latter occurs
because the rate of lateral migration is greater for
s>2/3, where the particle travels from left to right in
figure 5, than for s<2/3 where the particle travels from
right to left. Although the details differ, the same
effect is found for all values of Lﬂiﬂ%ﬁi&i' ¢ and A. In
the regime from s=0 to the position where the migration
velocity is zero, the direction of migration is reversed,
but a little thought shows that a particle in this regime
will migrate downward as it moves from right to left, thus
eventually again ending up on the spiral path leading to
equilibrium at s=2/3.

It is worth noting that particles close to barrel
and the screw (i.e. s=0 and s=1) have the largest residence
time in the extruder. The position s=2/3 corresponds to
minimum residence time (see McKelvey 1962, p. 322). Thus
we arrive at the conclusion that, due to normal stress
induced migration, spheres suspended inside a screw extru-
der have a tendency to drift towards the position s=2/3

where the residence time in the extruder is minimum.
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FIGURE CAPTIONS

Schematic diagram of longitudinal cross-section

of a screw extruder.

Velocity profile of down channel flow for various

values of A.
Velocity profile of cross channel flow.

Lateral force function G(s) as a function of
lateral position for ¢$=30° and various values
of A.

Sphere trajectory in the y-z plane for

(d/w)sin¢/=Z=100, A=0.5 and ¢=30°.
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CHAPTER IV

THE CREEPING MOTION OF LIQUID DROPS
THROUGH A CIRCULAR TUBE OF COMPARABLE DIAMETER

The problems in the previous two chapters are
concerned with particles whose dimensions are small com-
pared with the wall dimension, whereas this chapter con-
siders particles of comparable dimension as the containing
walls. The creeping motion of neutrally bouyant Newtonian
drops through a circular tube is studied experimentally
for drops which have an undeformed radius comparable in
size to that of the tube. Both a Newtonian and a
viscoelastic suspending fluid were used in the experiments
to determine the influence of viscoelasticity. The extra
pressure drops due to the presence of the suspended drops,
the shape and velocity of the drops, and the streamlines
of the flow are reported for various viscosity ratios,
total flow rates, and drop sizes. The text of Chapter IV
is an article prepared for publication (coauthor, Dr. L. G.
Leal). The photographs of the drop shapes omitted in the

text are given in Appendix C.
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| Introduction

The experimental study reported in this paper is
concerned with the creeping motion of neutrally buoyant
drops of a Newtonian fluid through a straight, circular
tube when the diameters of the undeformed drop and the
tube are of similar magnitude. Both Newtonian and visco-
elastic suspending fluids have been considered in the
present work. Much of the earliest interest in these
problems arose because of the suggested analogy in the
Newtonian case between the drop motion and the motion of
erythrocytes in the capillaries. Although subsequent work
on erythrocyte motion has now largely eliminated this
motivation for investigation, the motion of a drop or
train of drops through tubes of constant or variable
cross-sectional area remains of considerable technological
importance in its own right. One specific example, where
the case of a viscoelastic suspending fluid is of special
significance, is the motion of o0il droplets in a porous
matrix during secondary (oil) recovery processes which use
polymeric 'pusher' fluids - e.g. micelle or polymer
flooding (see Savins (1969)).

In the present experiments, we have determined the
change in the pressure drOp,AP+, which is required, in the
presence of the suspended drops, to produce a given total

volumetric flow rate Q; the drop shape; the velocity of
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the drops U relative to the average velocity V of the two-
phase system as a whole; and, finally, the streamline
patterns with respect to a frame of reference in which the
drops are stationary. The independent variables which
were varied for both the Newtonian and viscoelastic sus-
pending fluids are the total volumetric flow rate Q, the
volume of the suspended drops v, and the shear viscosity
ratio o of the suspended fluid My compared to that of the
suspending fluid, Mot For the case of a Newtonian system
in the absence of fluid inertia effects, the appropriate
characteristic pressure is simply uOV/RO, where Ro is the
radius of the tube. The extra pressure drop AP+, nondi -
mensionalized by ro/Ro, is then a function of (i) the
relative size of the drop as measured by the ratio (1) of
undeformed drop radius to tube radius, (ii) the relative
viscosity 0=ui/uo, and (iii) a deformation parameter
F=uOV/Y, where y is the interfacial tension between the
suspending fluid and the drop. When the suspending fluid
is viscoelastic, additional parameters are required which
measure the degree of elasticity.

So far as we are aware, no previous investigation has
considered the case of a viscoelastic suspending fluid.
However, there have been several prior experimental and
theoretical studies on the creeping motion of both drops

and solid particles through a circular tube when the
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suspending fluid is Newtonian. On the theoretical side,
the investigations which are most relevant to the present
work are those of Hetsroni, Haber § Wacholder (1970),
Brenner (1971), and Hyman § Skalak (1969, 1970). Hetsroni,
et.al. (1970) used the method of reflexions to solve for
the flow fields in and around a single undeformed drop
suspended in a Poiseuille flow. Their result for the
velocity of a neutrally buoyant concentrically located

spherical drop, which is valid for small values of A, is
% 4 2 3
U/V = 2-x 32 "+0(27). (1)

Since the drop is assumed spherical, the boundary condition
for the normal component of the stress is not satisfied.
However, upon substitution of the velocity fields for an
undeformed drop, this boundary condition gives a first
approximation to the deformed shape of the drop. The
result, obtained by Hetsroni, et.al. (1970), for the case

of a neutrally buoyant concentrically located drop is

r - ro[1+%L3°(5c0536-3c059)]+O(X3), (2)

where L3o = %%%%%%TPAZ .

which is valid provided o=0(1) and I'+0. Here r_is the
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radius of the undeformed drop, r is the radial variable
measured relative to the center of the drop, and 6 is

the polar angle measured counterclockwise from the axis of
the undisturbed velocity vector. It should be noted, that
the deviation from spherical shape is predicted to increase
linearly with T, and also to increase slightly, for
constant I', with increase of the viscosity ratio g.
Hetsroni, et.al. (1970) did not obtain results for the
extra pressure drop due to the presence of the drop. How-
ever, shortly thereafter, Brenner (1971) obtained this
result using the reciprocal theorem for low Reynolds
number flow. The result for a neutrally buoyant concen-
trically located spherical drop is

+
A Ry _ 16[(90+2)2-40]A5+0(A10)_ (3)

pOV 27 (0+1) (30+2)

It is significant, as Brenner has pointed out, that ap*
may be either positive or negative (i.e. it is predicted
that the overall pressure drop can be either increased or
decreased by the presence of the drop) depending on the
magnitude of 0. In addition, although equation (3) is
strictly valid only for A<<1l, the very small relative
error would appear to allow quite reasonable results for

values of ), as large as 0.3 - 0.4.
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For higher values of A, Hyman § Skalak (1969, 1970)
studied the case of an equally spaced train of neutrally
buoyant concentrically located drops including both de-
formed and undeformed shape. Although exact solutions of
the equations of motion were derived, these were in the
form of an infinite series of algebraic equations. Hence,
in order to obtain quantitative (numerical) results, it
was necessary to truncate the series and restrict the
parameters o, I' and particle spacing to specific values,
while keeping A< 0.8. For A> 0.8, the number of the
algebraic equations required for convergence became
excessive, even with the shape specified. Moreover the
actual deformation from a spherical shape became so large
for A>0.8 that many trials would have been required to
attain the correct equilibrium shape of the drop. Com-
parison of the results of Hyman § Skalak (1969) on the
velocity of a single undeformed drop with equation (1)
indicates agreement to three significant figures for
A<0.4 but increasing deviation for larger values of A,
presumably due to the neglect of higher order terms in A
in equation (1). At X=0.7, the velocities predicted by
equation (1) exceed the values calculated by Hyman §
Skalak (1969) by 3%. At A=0.8, the difference is 6%.
Likewise comparison of AP from Hyman § Skalak (1969) with

that predicted by Brenner's theory, equation (3), shows
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that the latter increasingly underpredicts the former with
increasing A. At A=0.5, the difference is 5%.

On the experimental side, Hochmuth § Sutera (1968,
1970) have investigated the case of solid hemispheres and
caps in a Newtonian suspending fluid, as a model for the
motion of blood erythrocytes through capillaries. In
addition, Prothero § Burton (1961, 1962a, b) have reported
a more or less qualitative investigation on a train of
gas bubbles in a Newtonian fluid as a model for blood flow
through capillaries. However, the only investigations of
direct relevance to the present paper are those of
Goldsmith § Mason (1963) and Bretherton (1961) who studied
the motion of very large (A>>1) suspended drops in slow
motion (I'<<l) where the drop and tube wall are separated
by only a thin layer of suspending fluid. The variables
measured in these studies were mainly the velocity of
the fluid drop relative to the average fluid velocity, and
the thickness of the thin layer of fluid separating bubble
and wall. The chief result of qualitative interest here
was the adoption of an apparent asymptotic behavior for
large A in which the velocity of the drop and thickness
of the thin layer of fluid becomes independent of A. No

+
measurements were made of AP .

The present investigation covers the range Anv1, for

intermediate values of T',and o varying from approximately
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0.2 to 2. Thus, for the Newtonian case, our results lie

between the available theory (A<nv0.8) and experiments

(A>>1). In addition, we provide an initial study of the

additional effects associated with a viscoelastic sus-

pending fluid. The range of A near unity is of considera-

ble interest since it is here that the maximum variations

of drop shape and wall effect on ap* may be expected.
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2. Apparatus and experimental techniques

(i) Experimental set-up

The experimental set-up is shown schematically in
figure 1. The test section, where all the data were
obtained, consisted of a horizontal, 120 cm. long,
precision bore glass tube of 1 cm. internal diameter (ZRO).
Two pressure taps were located 50 cm. apart, with the
furthest upstream tap being approximately 50 cm. from the
entrance to the 1 cm. tube. These pressure taps were con-
nected to a manometer which was conventional except for a
valve at the bottom which could be closed to allow the
pressure difference at the bottom of the two legs to be
measured and recorded using a differential pressure trans-
ducer. The method of obtaining AP" with this set-up will
be described later in this section. The 50 cm. section of
tube upstream of the first pressure tap, and the 20 cm.
section downstream of the second were intended to minimize
end effects. At its upstream end, the test section was
connected to a section of larger (1.4 cm. diameter) glass
tube into which the drops were manually injected using a
precision micrometer syringe (accurage to *0.001 ml.)
connected to a 17 gauge hypodermic needle. The larger
diameter tube was adopted in order to facilitate the
injection of the larger drops (A>1) after it was found
that the injection method inevitably brought the drops

into contact with the wall of the smaller 1 cm. tube
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where they became permanently affixed due to the wetting
properties of the drop liquid. Both the 1 and 1.4 cm.
glass tubes were enclosed within a long plexiglass
constant temperature bath.

The suspending fluid was pumped at a constant flow
rate using a variable speed Harvard Apparatus reciprocal
action infusion-withdrawal syringe pump. While one
syringe was supplying the suspending fluid into the test
section by injection, the other was being filled from a
reservoir by withdrawal thus allowing a continuous flow
to be maintained. A large storage section was connected
to the exit of these syringes and placed inside the
constant temperature bath to insure that the suspending
fluid was equilibrated at the bath temperature (25.0x0.5°C)
before entering the test section. Two thermocouples, one
at each pressure tap,were used to monitor the temperature
of the suspending fluid in the test section. The drops
were injected one by one with the pump completely turned
off. After a given volume of the drop fluid was injected,
the bulk fluid was pumped slowly so that the drop detached
from the hypodermic needle. The drops were found to
migrate to the concentric position as long as they were
neutrally buoyant, so that no special effort was made to
inject them onto the centraline of the tube. When trains

of several drops were considered, as was most often the
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case, the drops were injected as close as possible to
evenly spaced. However, as observed here, and also
predicted by Hyman § Skalak (1969, 1970), interactions
between the drops were negligible provided the distance
between centers was only slightly larger than the tube
diameter. As all of our data were taken with the spacing
at least this large, the precision of equal spacing was
not critical to the results,
(ii) Materials

For the Newtonian case, the suspending fluid
was 95.75% by weight glycerine in water. The percent
glycerine was monitored during the course of the
experiments using a hydrometer to measure the solution
density at 25.0°C (1.251 gm./c.c.). The viscosity was
measured using a Canon-Fenske capillary viscometer and
was consistently found to be within 2% of the published
literature value of 417 c.p. at 25°C. It is believed
that the small (2%) discrepancies can be attributed to
slight variations in the bath temperature for the visco-
meter which could not be controlled more accurately than
+0.1°C. It is well known that glycerine exhibits a
rather strong dependence of the viscosity on temperature.
For example, a 0.5°C change from 25°C produces a 5% change
in the viscosity. Indeed, when an attempt was made to

calibrate the experimental set-up of figure 1, by using
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measured flow-rate and pressure drop to determine the
viscosity, it was found that only approximately 5% agree-
ment with literature values could be obtained. This
discrepancy presumably reflects the accuracy of temperature
control which was *0.5°C in the test section.

The viscoelastic suspending fluid was a 0.5% by
weight solution of Dow Separan AP30 (an ionic polyacryl-
amide) in water. The viscosity and primary normal stress
difference for this material have previously been reported
as a function of shear rate by Leal, Skoog and Acrivos
(1971). Other properties, such as relaxation and retardation
times, or elongational viscosity which are required to
characterize the material behavior in a time-dependent
nonviscometric flow are also available in the literature
(Huppler, Ashare § Holmes, 1967a, b). However, since the
present experiments encompass only a single polymer concen-
tration, we will not consider the various viscoelastic
parameters further, with the exception of the shear visco-
Sitys Mg which can be compared directly with Newtonian
case. Since the viscosity of 0.5% Separan is strongly
shear-rate dependent and the flow through a tube (with or
without drops) has a nonuniform shear rate, there is some
arbitrariness in the precise value of u  to assign for a
particular flow rate. However, in view of the fact that

one of the major variables of interest is the additional
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pressure drop relative to that of the pure suspending
fluid, we have used the apparent viscosity of the visco-
elastic fluid at the wall shear-rate of the pure suspending
fluid which is appropriate for each volume flow rate.

Thus, in order to obtain the apparent viscosity as a
function of volume flow rate, the pressure drop across the
50 cm. test section (L) was measured for various flow

rates Q. For a unidirectional flow of any fluid, a simple
force balance shows that the wall shear stress T is

related to the pressure drop by

R
Ty " %(A—E) : (4)

Furthermore, it can be shown (see Coleman, Markovitz and
Noll (1966)) that the wall shear rate is given for any

fluid by

_ 3n+1l( 4

Bw = “4n (ﬂR 3) ’ (5)
o

where n is the slope of T, versus (4Q/ﬂR°3) on a log-log

plot. Although n may generally vary with flow rate, we

have found that n=0.450 provides a good approximation of

the viscosity (of 0.5% Separan) in the range of shear

rates characterizing the present experiments. Thus, for
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our present purposes, the relationship between uo=rw/Bw
and B can be represented by a power-law model. The
apparent viscosity, u0=1w/8w, for various flow rates is
tabulated in table 1, together with other pertinent
information on the conditions of our experiments.
Literature values obtained in a simple shear viscometer
are found to be slightly lower than the values obtained
by the present method, but the slope of M, versus B is
the same. Although no normal stress measurements were
made in the present study, we have also listed values of
the first normal stress difference at each Bw from the
work of Leal, Skoog and Acrivos (1971) in table 1.

The suspended drops consisted of a well-mixed
solution of silicone o0il (Dow Corning 200 fluid, a
dimethyl silioxane polymer) and carbon tetrachloride which
behaves as a Newtonian fluid in the range of shear rates
of the present experiments. The two liquids were mixed
in such a proportion that the density matched that of the
suspending fluid to within 0.001 gm./c.c. For the
viscoelastic system, a mixture of about 18 parts silicone
0il to 1 part carbon tetrachloride yielded a density of
1.000 gm./c.c. equal to that of the Separan AP 30/water
solution. For the Newtonian system, a mixture of about
12 parts silicone o0il to 10 parts carbon tetrachloride

gave a density of 1.251 gm./c.c. equal to that of the
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hydrolyzed glycerine. Four grades of silicone o0il having
different viscosities but equal density were used for the
Newtonian system and will be labeled as systems 1 through
4. Another four grades of silicone o0il were used for the
viscoelastic system and will be labeled as systems 5
through 8. The viscosity of the silicone oil-carbon
tetrachloride mixture was measured by a Canon-Fenske
capillary viscometer at 25.0°C. An appropriate dimension-
less parameter is the viscosity ratio c=ui/uo. The
viscosity of the glycerine is constant while that of the
Separan in water is flow-rate dependent. Consequently o
is also flow-rate dependent for the viscoelastic system.
The viscosity of the silicone oil-carbon tetrachloride
mixture (ui) and the viscosity ratios for the eight
systems are given in table 1 for the various flow rates
used in the experiments.

(iii) Conditions of the experiments

The experiments in each of the Newtonian and
viscoelastic case were thus carried out for four different
combinations of the suspending and drop fluids corres-
ponding to the systems 1 through 8. In addition, for each
system of fluids, we used four different volume flow rates,
and, at each flow rate, six different volumes v for the
suspended drops. The various flow rates are labeled as

a, b, ¢, and d, with a corresponding to the lowest flow
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rate. They were chosen so that the bulk Reynolds number
(Re=pVRo/uo) is small in every case. The values actually
attained for Re (maximum of 0.1) are listed in table 1.

The six different drop volumes v and corresponding A are

v (ml.) o2 3 .4 « D «6 ol
A .726 .831 .914 - 985 1.046 1.102

At low Reynolds number, the parameter which charac-
terizes the degree of drop deformation is the ratio
F=u67/¥ which is a measure of the relative importance of
the viscous stresses compared to the interfacial tension,
Y. The interfacial tension, measured using a DuNouy
platinum ring tensiometer, was found to be 22 dyne/cm. for
the glycerine-silicone oil+carbon tetrachloride interface,
while that of the Separan+water-silicone oil+carbon
tetrachloride interface was found to be 38 dyne/cm.
Although y was thus fixed by the choice of materials, the
parameter I' was actually varied by the choice of various
flow rates V (and u, for the viscoelastic case). In fact,
the primary reason for varying Q in the experiments was

to study the effects of the flow rate on drop deformation.
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(iv) Methods of measurement

Pressure measurements were made using a combina-
tion of a standard U-tube manometer, which was attached to
the pressure taps in the test section, and a differential,
variable-reluctance pressure transducer and indicator
system manufactured by Validyne Engineering Corporation.
In order to minimize transients and other anomalies
associated with the motion of the drops directly above the
pressure taps, they were located 50 cm. apart. This rather
large separation was designed not only to allow the drop or
train of drops to be completely contained between the two
taps, but also to insure adequate time in this 'enclosed'
configuration for the measured pressure difference to
attain a steady value. The major difficulty associated
with the wide separation of pressure taps was that the
overall pressure drop was quite large, considerably
exceeding the extra pressure drop AP* which was the main
pressure variable of interest. In order to achieve
reasonable accuracy for the small change AP+, we used the
combination of manometer and transducer as mentioned.

The manometer was allowed to come to equilibrium with the
suspending fluid alone moving through the test section

at the desired flow rate Q, and the valve at the bottom
of the manometer was then closed, thus effectively

separating the two legs. In this configuration, the
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pressure transducer, which had a full scale range of +*1
inch of water at 25°C, could be used to accurately

measure the differences in the pressure at the two taps

which arose because of the presence of the drops in

the test section, (i.e. ap* directly). Carbon
tetrachloride was chosen as the manometer fluid because
of its relatively low viscosity which produces a response
time for the transducer of less than 6 seconds. 1In order
to enhance the magnitude of the pressure signal, experi-
ments were generally run with 10 to 24 drops in a train.
The additional pressure drop aP* for one drop was then
obtained by dividing the total extra pressure drop by the
total number of drops. It had previously been predicted
by Hyman § Skalak (1969, 1970) for the Newtonian case
that the pressure drop per drop should be independent of
spacing for separation of centers by at least one tube
diameter. This was confirmed experimentally in the
present study for both the Newtonian and viscoelastic
fluid cases.

Photographs giving the drop shape and streamlines
were taken by cameras which were moved parallel to the
direction of motion of the drops. Those obtained for
determination of drop shape were photographed using a
35 mm. single lens reflex camera with diffused background

lighting, and ASA 400 Tri-X film (Kodak). The streamline
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pictures were taken using a Graflex camera fitted for

high speed Polaroid Type 57 (3000 ASA) film. A 300 watt
projector lamp was allowed to shine through a 0.01 inch
wide slit in a completely dark room. The slit was aligned
lengthwise parallel to the tube so that the cross-sectional
plane through the center of the tube was illuminated for
the pictures, which were taken in a horizontal direction.
The motion of the fluid was traced out by very small
suspended particles, which appear as streaks in the
pictures for exposure times of approximately 3 seconds.
Since the object (the suspended drop) was enclosed by a
curved surface(the circular tube), we found that it was
necessary to match the refractive index between the
suspending fluid and the fluid in the constant temperature
bath in order to minimize photographic distortions of the
drop shape. The matching was considered adequate when

the radii measured from the photograph of a spherical drop
were found to differ by less than 1.5% in any direction.
Water was used in the bath when the suspending fluid was
Separan-water. Aqueous sugar solution, 60% by weight
having a refractive index of 1.44,was used in the bath
when the suspending fluid was glycerine (refractive index

1.46).
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3 Experimental results

In the present study we have measured AP+, U and drop
shape for the eight different fluid systems listed in
table 1, each at four different flow rates and with six
drop sizes ranging from 0.7$AS1.1. The results are
presented and discussed in the following four sections.
Although the discussion is primarily focused on the
Newtonian case, comparison is also made, where appropriate,
between the Newtonian and viscoelastic systems. In order
to facilitate this comparison, the values of the internal
drop viscosity were chosen to provide similar values of
o for system 1 and 5, 2 and 6, 3 and 7, and 4 and 8. In
addition, the values of I' for the viscoelastic system
with volume flow rates b and d are very nearly the same
as the values for the flow rates a and b, respectively,
in the Newtonian system. The only experimental runs which
are directly comparable with any of the available theoret-
ical analyses are those for systems 2b and 2d which have

|

almost the same values of ' & (=10 and 4) and o (=1.0)

as were assumed in the analysis of Hyman § Skalak (1970).

(i) Drop shape

Photographs depicting drop shape were taken for
the full complement of fluid systems, flow rates and drop
volumes. For purposes of the present discussion, we

reproduce those for systems la, 1lb, 4a, 4b, 5b, 5d, 8b,
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and 8d in figure 2. The remainder may be found in Ho
(1975). The shapes differ with variations in the flow rate
V, the viscosity ratio ¢ and the drop size as measured by
! g

Let us first consider the variations in shape as A
is changed, holding V and ¢ constant. Obviously, in all
cases, the length of the drop (i.e. the maximum dimension
measured in the direction of the tube axis) increases with
A since the volume of the drop is increased, and the
streamwise extent is unconstrained. As A increases, the
maximum width (measured in the radial direction from the
tube axis) first increases, but then, constrained by the
wall, tends to become a constant for A21. That is, the
width of the layer of suspending fluid between the wall
and the drop is essentially independent of the drop
volume for A2 1.0. We will see, in a latter section,
that the drop velocity also becomes independent of the
drop volume as A is increased above 0.9. Both of these
features were also observed by Goldsmith § Mason (1963)
in their investigation of the motion of very large bubbles.

Next we consider variations in shape caused by
increase of the flow-rate V. It is evident, from figure
2, that drops of the same volume and same o, in both
Newtonian and viscoelastic suspending fluids, become more

elongated (in the direction of motion) as V increases.
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This increase in deformation with increased velocity is
both intuitively obvious, and in qualitative agreement with
the theoretical predictions of Hetsroni, et.al. (1970) and
Hyman & Skalak (1970).

Finally, we turn to the dependence of drop shape on
the viscosity ratio . For the Newtonian system, as o is
increased with A and V held constant, the drops become
more elongated - i.e. more viscous drops suffer a larger
deformation. Although opposite to the intuitive notion
that a more viscous drop should be less easily deformed,
this result is in agreement with the perturbation theories
of Hetsroni, et.al. (1970) (cf. equation (2)) and of Hyman
& Skalak (1970). It should be noted however that both the
theories and the present experiments are relevant only for
viscosity ratios o of order unity, and one cannot, there-
fore, extrapolate to the obvious contradiction that a rigid
sphere (g+=) is more deformable than a gas bubble (where
o+0). Also, the shape change associated with a change in
the viscosity ratio by a factor of ten 1is comparable in
magnitude to that induced by a change in velocity V of
only 30%. This more pronounced influence of T on the
shape, compared to o,is again substantiated qualitatively
by equation (2) from Hetsroni, et.al. (1970). For the
viscoelastic case, it is also clear from figure 2 that

the more viscous drops are more elongated for a given
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value of V and A. However, unlike the Newtonian case where
the general drop shape is qualitatively similar for all
values of o, the drops in the viscoelastic fluid are not
only more elongated with increase of o, but also become
increasingly pointed at the front and flattened at the
back when compared to drops of smaller o which exhibit a
maximum girth somewhere near the middle of the drop (see
figure 2).

It is also interesting to compare drops of same o
and I' for the Newtonian and viscoelastic systems. Thus,
as shown in figure 2, for the case of high o, on comparing

system la (0=2.04, P_1=13.3) with system 5b (c:t=2’.~.7,1‘-1

=1 1

=13.3)

and 1b (0=2.04, I' "=9.9) with 5d (0=4.9,I "=10.1), it may

be seen that the drops in the viscoelastic systems appear
more 'streamlined' than those in the Newtonian systems.
On the other hand, for the case of small g, on comparing

-1=13.3) with system 8b (0=0.13,

=1

system 4a (0=0.19, T

r-l

=13.3) and system 4b (0=0.19, ' "=9.9) with system 8d
(0=0.17,P_l=10.1), it is apparent that the drops in the
viscoelastic systems are bulged and appear less 'stream-
lined' in shape compared with those in the Newtonian
systems. It is also significant, that for all g, the
layers of suspending fluid between the drops and wall are
thicker in the viscoelastic systems than in the corres-

ponding Newtonian case.
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(ii) Streamlines

In order to obtain a more detailed view of the
dynamics of drop motion in tubes, a series of flow visuali-
zation studies were made, based upon streamline pictures
taken in the manner described in section 2. The camera
was mounted on a platform which was moved horizontally at
precisely the same speed as the drops, which thus appear
motionless in the pictures. Both Newtonian and viscoelastic
suspending fluids were used. However, except for obvious
changes resulting from the differences in drop shape, no
qualitative differences could be detected between these two
cases (see figure 3). In both, the fluid inside the drop
recirculates with no net motion since the photographs
were taken from a frame of reference which moved with the
drop velocity. The motion of the suspending fluid has
two distinct regimes. A central core of recirculating
fluid is found between two drops and centered about the
tube axis with a radius approximately the same as the
deformed drop radius. Since the entire central core
recirculates, there is no net motion of this core of
suspending fluid. That is, the average velocity inside
this "bolus'" is the same as the drop velocity U. For
this reason, the stagnation points in this core are
located at about the same radial distance from the axis

as the stagnation points inside the drop. Since U/V>1,
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fluid in the second regime, which is a shell between the
core and the tube wall, flows backwards relative to the
drops. These qualitative features are similar to the
observations of Goldsmith § Mason (1963) and Prothero §
Burton (1961). The work of Prothero § Burton (1961)

was intended to show that the bolus flow helps increase
the mass transfer from the bulk fluid to the walls.
Taylor (1960), who also reported a study on the motion of
large bubbles in tubes, predicted the existence of a
stagnation ring and stagnation vertex on the leading end
of a bubble. This seems to be in agreement with our
pictures since no motion of tracer particles is discernable
in this region. Finally, a 'recirculating' core of
suspending fluid is also found upstream and downstream of

the leading and trailing drops of a train, including

the case of a single drop.

(iii) Drop velocity

We now turn to the measured values of the drop
velocity relative to the average overall fluid velocity for
the system. Measurements were made for all combinations
of the viscosity ratio, drop size and volume flow-rate in
both the Newtonian and viscoelastic systems. The complete

set of results are tabulated in table 2. As expected (cf.
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equation (1)), the drop velocity exceeds V in every case,
generally falling between 30 to 60% faster. It is useful
to consider the variations in U/V with respect to V, A,
and o more closely.

We begin with the variation in U with A, holding V and
o fixed. 1In both the viscoelastic and Newtonian systems,
the increasing wall effect causes the drop velocity to
decrease with increasing A, until A20.9 when the velocity
becomes practically independent of A. As we have noted
previously, the latter observation is in agreement with
the results of Goldsmith § Mason (1963), and is presumably
a result of the independence of the drop cross-section on
A which was noted in the section 3(i). In order to compare
the present experimental results with the available theory,
we have plotted the quantity (U/v-2) in figure 4a as a
function of A for the four Newtonian systems at the lowest
flow rate (a) where deformation is least important. Also
shown are the theoretical predictions from the equation (1)
of Hetsroni, et.al. (1970) at the same viscosity ratios,
and the numerical results of Hyman § Skalak (1969) for o=1
and no shape deformation. The equation (1), which is
strictly valid only for A<<]1l, predicts too high values
for U/V at the moderate values of A which characterize the
experiments. On the other hand, agreement with the results

of Hyman § Skalak (1969) is quite good. Comparing results
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for the Newtonian and viscoelastic systems, it may be
noted that the rate of decrease of U/V with increase of A
is more rapid for the Newtonian case. As a consequence,
for comparable values of 0 and ', drops in the Newtonian
system move faster than in the viscoelastic system for
A$0.8, but slower for A20.9.

The relative drop velocity U/V increases with increas-
ing average fluid velocity for both the Newtonian and
viscoelastic cases. That is, more rapid relative drop
motion is associated with larger deformation. This trend
is in qualitative agreement with the available theoretical
results of Hyman § Skalak (1970), as may be seen in figure
4b, where we have plotted (U/V-2) versus A for the New-
tonian system 2, ¢g=0.93, at the four flow rates a - d, to-
gether with Hyman § Skalak's (1970) calculated values for
o=1, I 1=4 and 10, and A=0.5 and 0.7.

Finally, we turn to the variation in U/V with o,
holding A and V constant. The experimental results in both
the Newtonian and viscoelastic systems show that u/V in-
creases as 0 decreases. Unlike particle deformation, how-
ever, in which variations in 0 are relatively unimportant
compared to variations in V, the effect of 0 on U/V is com-
parable to the effect of V. As is obvious from figure 4a,
theory and experiment are in qualitative agreement with

regard to the dependence of U/V on O,
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(iv) Extra pressure drop ap”*

The quantity of most interest from the technolog-
jcal point of view 1is the change in the pressure drop
AP" due to the presence of suspended drops, relative to
that which would occur at the same volume flow rate with
the suspending fluid alone. The various experimental
results are summarized in figure 5 (Newtonian systems 1,
3, 4), figure 6 (viscoelastic systems 5, 7, 8), and
figure 7 (systems 2 and 6) where we have plotted the
dimensionless quantity (AP+Ro/uOV) as a function of A for
various combinations of o and flow rate. Also shown
along with the Newtonian systems are calculated values
for (AP+R0/MOV) taken from the small X theory for unde-
formed drops of Brenner (1971) (see equation (3)). Before
discussing these results in detail, it is useful to first
summarize the various physical phenomena which can affect
the magnitude and sign of the extra pressure drop.

These separate logically into three distinct
mechanisms: the simple exchange of suspending fluid with
drop fluid of different viscosity which, in principle,
would be active even if the flow field were unchanged;
the alteration of the flow field due to the presence of
the drop interface; and the alteration of drop shape,
leading to changes in the flow. Brenner's (1971) analysis

of an undeformed drop demonstrates the nature of the
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interaction of the first two mechanisms for a moderately
small drop (A<<1l). In particular, even when o0=1 so that
the first mechanism is not active, Brenner's solution

shows that the extra dissipation associated with modifi-
cation of the flow fields still gives AP*>0. Only when

0 is decreased to approximately 0.48 does the replacement
of more viscous with less viscous fluid overtake the effect
of altered flow to give APT=0. The effect of drop defor-
mation for these moderate values of A is to decrease AP
compared to its value in the undeformed state. Thus, any
of the features producing larger deformation (see section
3(i)) will produce also a tendancy toward lower APY. It
should be noted that, in many instances, the various
effects will be competing so that ap”* may either increase
or decrease depending on the relative importance of each.
For example, increase of V with constant ¢ and A was
previously seen to give increased deformation and thus by
the present argument, a decrease in ap*, However, increase
of o for V and A fixed also increases deformation, but at
the same time increases the average u in the system and
causes some alteration of the flow fields in and around

the drop. In view of the weak dependence of the shape on
0, it should be expected that the latter effects will
dominate, thus producing increased values of ap*, Finally,

it should be noted that as A is increased, the increased
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wall effect will tend to cause AP® to increase as A
small X (see equation (3)). However, as A is increased
near unity, the drop shape is constrained by the presence
of the walls, and, in fact, we have seen that the main
effect of increasing volume is to increase the length of
the drop with other geometric features remaining reasonably
unchanged. Indeed, for A>1, it might be expected that the
differential change in APY with change of A is approximate-
ly the change associated with an increase in length of an
annular flow region for two fluids of different viscosity.
This suggests, therefore, that for large A the main effect
on AP" is equivalent to simple replacement of one fluid
with another of different viscosity. Furthermore, it can
be anticipated that the change in APY with A in this
simplified regime will be in the direction of increasing
AP* with increase of A for g>1, and of decreasing AP* with

increase of A for o<1l. Thus, for intermediate A, we may

anticipate a transition in the value of o corresponding
to AP'=0, from ~0.48 to 1.

Let us now consider the detailed experimental results
in the light of these qualitative physical ideas.

a) Newtonian fluid systems

The most straightforward variations are

those for different values of o, holding the flow rate and
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drop size A fixed. The general trend is consistent with
theoretical expectations; for the two largest values of o,
the added pressure drop is always positive, while for the
smallest value (0=0.19) it is always negative. The inter-
mediate value (0=0.58) shows both positive and negative
values depending on the flow rate and on A. These results
may be compared qualitatively with the theoretical pre-
diction of Brenner (1971) that ap*=0 for 0=0.48, assuming
small A and no deformation. Although the experimental
results are complicated by the effects of particle defor-
mability and varying degrees of wall-effect for the larger
values of A, it is nevertheless clear from this comparison
that the main influence of varying o is, as anticipated
in the introduction to this section, simply the replacement
of fluid with drop fluid of different viscosity, which
of course also affects the flow fields. The third
mechanism, resulting from increased deformation with
increase of o, would actually tend to cause a smaller aP*
for a more viscous drop. However, it is obvious from the
experimental results that this change in deformation is
so small that its effect on AP’ is very much dominated by
the first two mechanisms.

Like the dependence on o, the dependence of APY on
flow rate is relatively straightforward. Indeed, for fixed

o and fixed A, (AP+RO/HOV) decreases with increase of flow
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rate in every case. That is, the behavior of pressure
drop is similar to that of a shear-thinning fluid. This
is perhaps more clearly illustrated in figure 8, where

we have plotted (AP+RO/uDV) as a function of the flow-rate
parameter FEro/Y for 0=2.04 and various values of A. As
we have suggested in the introduction to this section, the
dependence of AP* on flow rate (or T') is primarily a
reflection of the dependence of drop shape on T'. It is
evident from figure 8, which is typical of all four
Newtonian fluid systems, that the dependence of the addi-
tional pressure drop on V (or I') is not very significant
for small drop volumes (low values of A), but that the
change in AP" with flow rate becomes very prominent for
larger values of A(larger drops). This behavior is con-
sistent with the observations which we have reported of
drop shape. Thus, for small volumes, especially v=0.2 ml.
(A=0.726), the shape is not significantly altered as the
flow rate is changed, while for larger volumes, the change
in shape with flow rate is much more prominent.

Compared to the influences of ¢ and T on AP+, the
dependence on drop size (A) is more complicated. This is
because changes in the drop size are associated with
several competing mechanisms for change in AP+_

Assuming that the drops are either spherical or
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only slightly deformed, the two main influences

of increasing A are due to the increased volume of

the suspended drop and the increased wall effect
(effectively, the decrease of cross-sectional area of the
channel which is available for the suspending fluid). This
is indeed the case for values of A=0.7 where our results
are seen to behave similarly to the predictions of
Brenner (1971) which only includes these two mechanisms.
The experimental results for system 2 are plotted in
figure 7, together with the corresponding theoretical
results of Brenner (1971), and the results of Hyman §
Skalak (1969, 1970) for an undeformed drop with o=1.0

and A<0.8 and a deformable drop with o=1.0, r'l-4 and
F-1=10 at A=0.5 and 0.7. Given the slight differences in
¢ and ' between experiment and the Hyman-Skalak theory,
the comparison is quite satisfactory.

As X increases towards A=1l, the drops are increasingly
deformed from the spherical shape, and for cases with AP+>0,
the rate of increase of AP’ with respect to A is decreased.
Similarly, for the case of AP+<0, AP* decreases more
rapidly. This is the 'transition region' in our experi-
ments where the rate of change of APY with A begins to
deviate from the behavior predicted by equation (3).

The behavior for A>1 requires more careful considera-

tion. Although the drops are more deformed from a
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spherical shape for larger values of A, the main change,
as we have noted earlier, is an increase in length.
Specifically, the changes in geometry at the front and
back of the drop are relatively small and it is mainly
the region of 'constant' cross-sectional area which is
increased. Thus, the change is the detailed flow s
structure with increase of A21 is almost totally confined
to an increase in length of the annular flow-like region
at the middle of the drop. For a true annular flow of
two immiscible fluids, the pressure drop is increased
with increasing ¢>1 and decreased for o<l. We suggest
that the measured increments of AP’ with increase in

A>1 can be interpreted essentially as being due to an
increase in length of an (admittedly complicated) annular
flow-1like regime. This would imply, as suggested in the
introduction of this section, that AP* should increase
with increase of A for A21 and o>1, but decrease for o<l.
This qualitative idea is in complete agreement with the
experimental results for A1, Thus for system 2 (o<l1),
the extra pressure drop increases with respect to A for
AS1, but does decrease for A21 as expected. Similarly
for system 3 (0=0.58), the extra pressure drop, which is
initially positive and increasing for AS1l, reaches a maxi-
mum at 1, and then decreases to negative values for 1.

The same argument can be applied to systems 1 and 4 to
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explain the behavior of aP* for A21. In particular, we

have found that AP’ increases at a decreasing rate for
system 1 but at an increasing rate for system 4 in the
region AR1. Surprisingly, it appears that we can actually
estimate the increase (or decrease) in extra pressure drop
for a change in A by assuming that the increase in aP" is
due solely to an increase in the length of an annular core
of the suspended fluid. This increase (for o>1) or decrease

(0<1) of additional pressure drop can be shown to be

4

-8AL —Ig—g—' ’ (6)

S e

where AL is the increase in the length of the drop and B is
the radial distance of the interface measured from the tube
axis. Both quantities are nondimensionalized by the tube
radius Ro' An example is given for system 4 (see figure 5)
where this effect on AP’ is assumed to hold starting from
A=0.985 and values of AL and B are obtained from the drop
shape photographs.

(b) Viscoelastic fluid systems

Let us now consider the role of viscoelastir
city in contributing to the extra pressure drop. Qualita-
tively, a comparison of the results for systems 5 - 8 in
figures 5 and 7 with those for systems 1-- 4 in figures

6 and 7 shows surprisingly little difference when AP” is



- 140 -

nondimensionalized with respect to the characteristic
wall-shear viscosity for simple tube flow of the visco-
elastic fluid at the same flow rate. Indeed, nearly all
of the detailed discussion above for systems 1 - 4 may be
carried over to the viscoelastic case. The only major
exception is the magnitudes of (AP+RO/u6V) which appear
to be somewhat lower than for the Newtonian problem at
larger o, but somewhat larger (less negative) in the case
of low o.

This last point is illustrated in figure 9 where we
have compared results for equal values of the deformation
(flow rate) parameter F'1(=13.3) and approximately equal
pairs of o values from the Newtonian and from the corres-
ponding viscoelastic case. The extra pressure drop is
considerably lower for ¢=3.7 in the viscoelastic fluid,
than for 0=2.04 in a Newtonian fluid. Similar behavior is
observed for o=1, although the difference is less pro-
nounced. Finally, for ¢=0.15, the situation is reversed,
i.e. the viscoelastic fluid actually shows a larger value
of (AP+R0/uOV) than the Newtonian fluid. At present, we
can give no firm explanation for this phenomena. We would
simply recall that a substantial transition in the qualita-
tive shape was also observed (compared to the Newtonian
case) for the viscoelastic fluid as o was varied, and it

seems likely that the two features are connected. However,
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any simple minded argument based on the shape of the drops
without the consideration of the actual flow field and of
other properties (e.g. shear thinning, normal stresses,
extensional viscosity) of the viscoelastic fluid would

only be fortuitous, and of little fundamental value.
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4. Conclusion

We have presented results for the additional pressure
drop, the drop velocity, the drop shape and streamlines of
a train of neutrally buoyant drops suspended concentrically
in a cylindrical tube. Reasonable agreement was found on
comparing available theoretical and experimental reports
in literature with our present work on the limiting be-
havior of drop shape, U/V and AP’ at high and low values
of A and at certain data points. Also, we were able to
qualitatively explain the results for intermediate values
of A. This study also points out the differences observed
between the cases of a viscoelastic and Newtonian suspending
fluid. In particular, the use of a viscoelastic fluid
caused a substantial transition in the shape of the drops
(compared to the Newtonian case) as the viscosity of the
suspended drop was varied; and caused (AP+Ro/uAV) to be
reduced for high values of o (20.58) but increased for low
values of o as compared to the Newtonian case. It may be
noted, however, that in comparing the viscoelastic and
Newtonian systems, the former was characterized only by
an apparent viscosity at the wall shear rate which is
relevant for simple tube flow of the pure suspending fluid.
A systematic variation of the viscoelastic properties (and
also purely viscous properties, e.g. shear thinning) was

not attempted and probably such an attempt is necessary
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before any qualitative explanation on the role of visco-
elasticity can be achieved. Nevertheless the present
study on the role of viscoelasticity should be helpful in
understanding two-phase flow in porous media, transport
of two-phase fluids in tubes and the macroscopic modeling
of blood flow in capillaries and moreover, induce further

study on this area of research.
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Figure 3.
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FIGURE CAPTIONS

Schematic diagram of experimental set-up (not to
scale): (1) constant temperature bath

(2) micrometer syringe (3) bulk fluid storage
(4) test section (5) pressure hole (6) Thermo-
couple probe (7) camera and moving mechanism

(8) by-pass valve (9) pressure transducer

(10) transducer indicator and recorder

(11) thermocouple reading (12) withdrawal and
infusion pump (13) waste storage (14) storage
reservoir.

Drop shapes of systems la, 1b, 4a, 4b, 5b, 5d,
8b, and 8d.

Streamline pictures of system 1lb: a single drop
and the leading drop of a train; system 2d: a
train of drops; system 6b: a train of drops;
system 7b: a single drop and a train of drops.
Relative velocity of drops (U/V-2) versus drop
size. In (a): 0, system la; @ , system 2a;
¥, system 3a; B | system 4a; O , results of
Hyman § Skalak (1969) for undeformed drops and

ag=1; » equation (1) (Hetsroni, et.al. (1970))
for 0=2.04, 0.93, 0.58, and 0.19. In (b):

® , system 2a; qsystem 2b; & , system 2c;
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» , system 2d; results of Hyman § Skalak (1970)

for deformed drops, o=1 and for r-l-10 (<)
and 7 1l=4 { B3,

Figure 5. Dimensionless extra pressure drop, (AP+R°/uAV)
versus A for systems la, b, c, d; 3a, b, c, d;
4a, b, ¢, d;— — —, equation (3) (Brenner
{1971)) for @=2.04, 0.58; and 0.19;-===,
estimation of extra pressure drop by assuming
increase of A is equivalent to increase of an
annular core starting from A=0.985.

Figure 6. Dimensionless extra pressure drop, (AP+Ro/uOV)
versus A for systems 5a, b, c, d; 7a, b, c, d;
8a, b, ¢, d.

Figure 7. (AP+R0/uOV) versus A for systems 2a, b, c, d;
system 6a, b, ¢, d;~———, equation (3) for
0=0.93. Results of Hyman § Skalak (1969, 1970)
for o=1: O , undeformed drops; <, F-1=10 and

>, r'1=4 for deformed drops.

Figure 8. (AP+RO/uAV) versus P(=uAV/Y) for system 1.

Figure 9. A comparison of extra pressure drop between

Newtonian and viscoelastic systems for r-ta13. 3.
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TABLE CAPTIONS

Table 1. Conditions of experiments.
Table 2. Velocity of drops relative to the average flow

rate, (U/V).
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TABLE 2. RELATIVE VELOCITY OF DROPS (U/V)

System ¥ (ml:)
number 2 5 .4 s .6 5l
la 1.46 1.35 127 i (.0 4 .27 L2 7
1b 1.46 1 S 1.30 1.30 130 1.30
1 1.46 1.35 1.32 132 i 7 1.52
1d 1.47 1.39 1.39 1.39 1.39 1.39
2a 1.49 1..36 1.28 1,28 1.28 1,28
2b 1..51 1.38 .33 L..33 1,33 19,55
2c 1.52 139 1.36 1:36 l.36 1.36
2d L.53 1.45 1.45 1.45 1.45 1.45
3a | [ 1.37 1..29 1.29 1.29 L.29
3b 152 141 1235 1.35 1S L35
ac 1.54 142 1.39 1,39 139 1.39
3d 1.58 1.49 1.49 1.49 1.49 1.49
4a 1.56 1.47 1.39 1.39 1.39 139
4b .57 1.48 141 1.41 1.41 1.41
4c 1.59 1.50 1.48 1.48 1.48 1.48
4d 1.65 1.55 1./85 1.55 1.55 1.55
S5a 1.37 151 1.26 1.26 1.26 1.26
Sb 1.38 lwab 1.29 1.29 1.29 1.29
Sc 1.41 1.35 L..32 | W . 1.2 8 I 7.
5d L. 47 1.39 1.36 1.36 1.36 1.36
6a .. 57 1:31 1:26 126 1.26 1.26
6b 1.38 1.36 129 1.29 129 129
6c 1.42 1.38 1,32 | ) | Dy 152
6d 1. 47 L..39 1.36 1.36 1.36 1.36
7a 1.38 1::351 1,28 1.28 1.28 1.28
7b 1:38 1.36 1 .51 | B 1.31 1,31
1C 1.44 1.38 1.36 1.36 1.36 1.36
7d 1.49 1.39 1239 159 1.39 139
8a 1.40 1.33 1.32 1.32 1.32 1,32
8b 1.42 1.38 1.34 1.34 1.34 1..54
8c 1.47 140 g S 1 1.41 141 141

8d 1.51 k=43 1.43 1.43 1.43 1.43
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APPENDIX C

Photographs of the eight systems at all flow rates
and drop volumes were taken during the course of the
experiments. Only a limited number of pictures relevant
to depict the differences in shapes due to changes in ¢
and flow rate, and the differences between Newtonian and
viscoelastic systems were presented in section 3(i). The
rest of the pictures are given here in figures Cl1, C2, C3,

and C4.
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CHAPTER V

CONCLUSION

The lateral migration of a neutrally buoyant rigid
sphere in two-dimensional unidirectional flows was
investigated theoretically. In Chapter II, it was found
that the sphere influenced by small, but not negligible,
fluid inertia and by the presence of the bounding walls,
migrates across streamlines. A result for the lateral
velocity was obtained for a general unidirectional flow
between two parallel plane walls. A sphere in simple
shear migrates to the center midway between the walls,
whereas in plane Poiseuille flow, it migrates to distances
from both walls corresponding to 20% of the wall separation.
In Chapter III, the normal stress effect of a second-order
fluid was found to cause lateral migration even in the
absence of fluid inertia. Results for the lateral velocity
were obtained for a general two-dimensional unidirectional
flow. In contrast to the results of Chapter II, the
bounding walls do not affect the lateral migration and no
migration was found in the case of simple shear. By using
normal stress data for viscoelastic fluids, it was found
that a sphere migrates to the position of minimum shear

rate.
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The theoretical results were found to agree with the
experimental data reported in the literature. In addition,
the effective viscosity (in plane Poiseuille flow) of
a suspension of spheres under the influence of inertia-
induced migration and translational Brownian motion was
obtained. For the case of normal stress-induced migration,
the results were applied to spheres suspended in a screw
extruder.

In Chapter IV, experimental results on the extra
pressure drop, drop velocity and shape, and streamlines
were obtained for the motion of large neutrally buoyant
drops in a cylindrical tube. Both Newtonian and visco-
elastic suspending fluids were considered with distinct
differences in the drop shape and extra pressure drop
being found between the two cases.

It is hopeful that the fundamental knowledge provided

in this dissertation will be useful in future technological

applications.



