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ABSTRACT 

Detailed pulsed neutron measurements have been performed 

in graphite assemblies ranging in size from 30.48 em x 38.10 em 

x 38. 10 em to 91.44 em x 66.67 em x 66.67 em. Results of the 

measurement have been compared to a modeled theoretical compu-

tation. 

In the first set of experiments, we measured the effective 

decay constant of the neutron population in ten graphite stacks as 

a function of time after the source burst. We found the decay to 

be non-exponential in the six smallest assemblies, while in three 

larger assemblies the decay was exponential over a significant 

portion of the total measuring interval. The decay in the largest 

stack was exponential over the entire ten millisecond measuring 

interval. The non-exponential decay mode occurredwhen the ef£ec-

6 -1 tive decay constant exceeded 1 00 sec • 

In a second set of experiments, we measured the spatial 

dependence of the neutron population in four graphite stacks as a 

function of time after the source pulse. By doing an harmonic 

analysis of the spatial shape of the neutron distribution, we were 

able to compute the effective decay constants of the first two spatial 

modes. In addition, we were able to compute the time dependent 

effective wave number of neutron distribution in the stacks. 

Finally, we used a Laplace transform technique and a 

simple modeled scattering kernel to solve a diffusion equation for 
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the time and ene r gy dependence of the neutron distribution in the 

graphite stacks. Comparison of thes e theoretical results with the 

results of the first set of experiments indicated that more exact 

theoretical analysis would be required to adequately de scribe the 

experiments. 

The implications of our experimental results for the theory 

of pulsed neutron experiments in polycrystalline media are discussed 

in the last chapter. 
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I. INTRODUCTION 

A. Pulsed Neutron Experiments 

Pulsed neutron experiments are a broad class of experiments 

in applied n eutron physics which consist of three basic elements: 

(1) a strong neutron source of finite duration and regular r epetition 

rate, (2) a medium with which the neutrons can interact, and (3) 

collection of data related to the neutron field and its interaction 

with the medium. One must describe the energy, spatial, and time 

distribution of the source, the nature of the medium, and the type 

of information (data) the experiment i s designed to acquire in 

order to clas s ify a pulsed neutron experiment. Pulsed neutron 

sources are usually of the high energy type ( > 1 MEV) produced 

by reactions in an accelerator or of the thermal ( < 1 EV) type 

produc e d by a chopped beam of neutrons from a reactor. Materials 

are classified according to their fission, scattering, and absorption 

properties. Data acquisition may be classified as to whether 

spatial and/or energy distributions are measured in addition to 

the time response of the neutron population. 

W e shall .be concerned with pulsed neutron experiments 

performed on such neutron moderators as water, beryllium, 

beryllium oxide, and in particular, graphi te. When a burst of high 

energy neutrons collides with a neutron moderating material, the 

ene r gy is degraded from several MEV to a few EV in a time which 

is short relative to the measuring tim es of most experiments on 
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these materials. Upon reaching this energy range, the population 

experiences a process known as thermalization, in which the 

neutrons exchange ene rgy with the moderator atoms as the 

average energy of the neutron population approaches that of the 

m o derator atoms. Measurement of the time constant T with which 

the average neutron energy approaches an asymptotic value after 

the pulse injection is a common type of pulsed neutron experiment 

designed to study the thermalizati on process. 

The thermalized neutron population attenuates by parasitic 

absorption and, in a finite system, by escape through the system 

boundaries. The decrease in neutron populai:ion can be described 

-At . f h as an exponential decay -e during at least a port1on o t e mea-

suring times for many moderator systems. The most common 

type of pulsed neutron experiment i s to measure the asymptotic 

decay constant A associated with neutron populations in various 

sizes of a single mode rator. Rather than to classify a particular 

system by its geometry and dimensions, it is conve nient to specify 

a single parameter, the geometric buckling B
2

• whose pr escription 

(see equation I-13) is defined for such regular geometries as 

slabs, spheres, and right- circular cylinders. The decay constant 

A increases monotonically with B 2 . B ecaus e the dispersion curve 

2 
A.(B ) can be relate d to important quantities in reactor physics 

calculations, as we shall demonstrate in section B, considerable 

research effort has been put into pulsed neutron experiments since 

von Dardel(l, 
2

• 
3

) published his original papers more than seventeen 
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years ago. 

Two other types of pulsed neutron experiments are consider-

ably less common. One is the measurement of the decay of the 

neutron field as a function of position in the moderator. The other 

is measurement of the neutron energy distribution as a function 

of time after the pulse. These two types of experiments are more 

rich in information, and correspondingly more difficult to perform, 

than the other two types. As one might expect, the existing data 

are roughly inversely proportional to the difficulty of the experiment . 

B. Theory of Pulsed Neutron Experiments 

The theoretical framework for the analysis of the pulsed 

neutron experiments is the Boltzmann equation for neutrons, (
4

) 

t ) = / v 1 L: ( v 1 ... v ) n ( r, v 1 , t) d 3 v 1 + S ( r, v, t) 
s-- - --

(I- 1) 

which describes the neutron population in the moderator at times 

after the source burst. The neutron distribution function n(E_, ~· t) 

is the probable neutron density in d
3

r around E.• with velocity d
3

v 

about~· at time t. The total macroscopic neutron cross section 

of the moderator is represented by L:T(v). S(E_, ~· t) is the neutron 

source distribution function, usually set equal to zero for t > 0. 

The quantity L:s(~'--:::::) is the differential scattering cross section 

for neutrons scattering from d
3

v• about v' to d
3

v about v. The 
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appropriate boundary condition for the pulsed s ource problem is 

that neutrons escaping the physical boundaries of the mode rator 

do not return. If !R is a unit normal vector pointing out of the 

mucl c r :1 t n r <J. t R ''" Lne surface, then 

n(R, ~· t) = 0 if ::: • !:,R < 0 (I-2) 

Obtaining the differ e ntial scattering eros s section from the 

gen eral theory of scattering of particles is almost as difficult as 

solving equation I- 1 for n(E_. ~· t). Although presentation of the 

complete f ormalism for cons truction of the scattering kernel 

(diffe rential scattering cross section) would principally serve to 

distract us from the real problem, a few words on the general 

prope rties of scattering kerne ls and on the form of r. (v'- v ) for 
s - -

polycrystalline mate rials are in order. To facilitate the discussion, 

we introduce the neutron energy E and a unit v ector n s uch that 

v = vn. 

The principle of detailed bal ance, borr o w ed from the theory 

of statistical mechanics, holds for the scattering kernel. A neutron 

gas , in thermal equilibrium with a surr ounding , non- absorbing, 

infinite, homogeneous medium at uniform t emperature T, assumes 

an energy d i stribut ion proportional to a Maxwe llian energy distribu-

tion M(E) given by 

M(E) E = =z e 
T 

-E/T 
(I-3) 
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The principle of detailed balance may then be stated as( 
4

) 

M(E ' )I: (E'- E,0'-0) = M(E)I: (E-E ', 0-01
}. 

s - - s - -
(I-4) 

To construct a scattering kerne l , one considers a system 

of atoms, whose nuclei have very short range (point) nuclear 

potentials, scattering neutron waves of various energies. In the 

thermal energy range the chemical binding between scattering 

centers, which is the same order of magnitude as the neutron 

energy, is responsibl e for space-time corre lation between the 

scattering particl es. This correlation results in coherent 

scattering in which the scattered neutron waves interfere. There 

is also an incoherent contribution to the scattering cross section. 

The nature of the chemical binding determines the allowable energy 

exchange processes while the nuclear potential determines the 

amplitude of the scattering cross section. The scattering kernel 

is usually decomposed into an elastic o(E'-E ) term and an 

inelastic term(S). Each term is composed of a coherent and an 

incoherent part. In practice, one assumes that the scattering 

depends only on the angle between~~ and~. although the assumption 

is not valid for graphite which is composed of highly anisotropic 

crystallites. If one defines J.L = 0' · 0 , 
0 - -

the total macroscopic 

differential scattering eros s section may be written as 

Because of the regular ordering of the nuclei in crystals, 

the coherent, elastic scattering term has a relatively significant 
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amplitude for neutrons with wave lengths not exceeding twice the 

maximum spacing between adjacent planes (corresponding to 

energies above the Bragg energy). One must appeal to the 

language and the results of solid state physics in order to compute 

the necessary cross sections for polycrystalline moderators such 

as graphite. Williarns(
4

) gives the results for the coherent, 

elastic differential cross section averaged over all crystal 

orientations as 

, lT k<~ z(k) -ZW D(k) k 2 
}: ~ h(E -E, s..t )=~ h ~ L) -,.:--e o ( 1-~4 -s,.L )(E-E ') 

e11, co o co "*..~:..o v 0 k;io K "t..~:..o o 

(I-5) 

where k is the amplitude of a reciprocal lattice vector, W D(k) 

is the DeBye - Waller factor, Z(k) is a reciprocal lattice weighting 

factor. V is the volume of a unit cell in the lattice, and the units 
0 

are such that n and the neutron mass are set equal to one. The 

elastic, incoherent cross section remains finite below the Bragg 

energy EB and has the simpler form 

"t""· -2W 
L (E'-E ) - L..lnc D r.(E E') 
et,inc •s-Lo -"""4if""e u - (I-6) 

where the scattering has been assumed to be isotropic. 

The inelastic scattering term is generated by treating 

the scatterers ·as a system of quantized, harmonic, lattice 

vibrations (phonons). Since multiple phonon exchanges are possible, 
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the inelastic scattering term is quite complicated and is usually 

handled in some approximate fashion. One technique is to expand 

h . . . h " h h th t t th t e term 1n a power ser1es 1n w 1c t e n- erm represen s e 

contribution from n-phonon exchange processes. The other common 

technique, used for heavy crystals, is to expand the inelastic 

kernel in powers of 1/ A, where A is the nucleus to neutron mass 

ratio. If the inelastic term is assumed to be totally incoherent, 

the mass expansion yields to order 1/A, (4 ) 

+oo 

I 
-oo 

f(W)6(E-E 1 - W) d 

u:J..e(JlT -1) W 
(I-7) 

where ~b is the bound atom scattering cross section, K is 

the magnitude of the neutron momentum transfer, and f( w) is the 

phonon frequency distribution. 

The complicated structure of the scattering integral has 

been partially responsible for the failure of equation I-1 to yield 

an exact solution. The gradient term ~· V n (E, ~· t) together with 

the exact boundary condition I-2 also makes the solution difficult. 

Consequently, approximate equations have been used to obtain the 

neutron distribution function. The approximations fall into two 

logical categories: ( 1) the energy dependence is neglected and the 

monoenergetic Boltzmann equation is studied for the exact spatial 

dependence, or (2) the spatial dependence is approximated and the 

thermalization process is studied. 
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Figure I-1. Theoretical values of the microscopic cross sections 

of graphite in the thermal energy range. (S9) 
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Since pulsed neutron experiments are de signed principally 

to study the thermalization process, one would not expect the 

monoenergetic Boltzmann {transporQ equation, 

to yield much information about the time dependence of transient 

neutron populations. lnforma tion from the solution to I-8 can be 

helpful in modeling the spatial dependence for the energy dependent 

problem. For this purpose, the steady state {constant source) 

solution is often adequate. Solutions for the spatial distributions 

are usually decomposed into two parts, an asymptotic solution 

which holds for most of the interior region of the moderator, and a 

transient solution which is most evident near the surface . The 

asymptotic solution can be extrapolated to zero at some point 

out side the moderator. The distance between the surface of the 

moderator and the point where the asymptotic solution extrapolates 

to zero is called the extrapolation length Z • The concept of the 
0 

extrapolated endpoint comes from the famous Milne problem, (6 ) 

the steady state, half- space version of equation I-8. Computations 

of Z
0 

for finite geometries, such as that of Erdmann and Shapiro{7) 

slabs of water, indicate that Z is a weak function of system size. 
0 

One-speed transport theory indicates that Z increases as the system 
0 

dimensions shrink. However, there is a competing effect due to 

distortion of the neutron energy distribution, {8 ) so that the exact 
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behavior of Z (B2 ) is not monotonic. 
0 

For the analysis of pulsed neutron experiments, it is 

usually more instructive to relax the conditions for detailed 

knowledge of the spatial distribution and to emphasize the energy-

time behavior of the neutron field. The energy dependent diffusion 

equation, (4 ) 

[
8
8 -vD(E)v2 +v'E (E)+v'E (E)]n(r,E,t) • 
t a 8 -

00 

f dE'v"E (E'-E)n(r, E 1
, t}+ S(r. E, t} 

0 8 - -T 

(1-9) 

is a reasonable representation in many physical situations and is 

the usual basis for analysis of the raw data from the experiments. 

D(E) is the diffusion coefficient(9) for neutrons of e nergy E. 

'E (E) and 
a 

'E (E) are the total absorption and scattering eros s 
s 

sections, respectively. The usual boundary condition r e quires 

that the neutron density vanish at some extrapolated boundary of 

the system. For a slab of width 2a, this condition is 

= 0 • (I-10) 

The spatial distribution is easily obtained using this boundary 

condition. If we us e spatial eigenfunctions which are solutions to 

the Helmholtz equation, 

(I-11) 

the solution for n(E_,.E;,t) is then 
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n(:_ • E, t) = (I-12) 

2 
The lowest eigenvalue B 

1 
of the Helmholtz equation defines the 

buckling for the system. For the slab case 

2 

(I-13) 

If we define the scattering ope rator e such that 

00 

0 

/dE' v' "E (E' -E) f(E')- v ~ (E)f(E) 
s s d f(E) = 

(I-14) 

then we may write the equation for the energy-time distribution 

of the fundamental spatial mode as 

2 " 2 2 n(B • E, t) = On(B , E, t)+S(B • E, T). 

(I- 15) 

The form of the equation suggests that after sufficient waiting time, 

energy-time separability is a reasonable assumption. Hence, we 

try the ansatz 

- A t 
2 2 

n(B • E, t) = n(B • E)e 

in the homogeneous equation, leaving us with 

( 2 2 
-A +vD(E) B + v 'E (E) J n(B • E) = a 

A 2 
0 n(B • E) .. 

(I-16) 

(I-1 7) 
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It seems natural to identify the eigenvalue A with the experimen­

tally determined decay constant for a moderator of buckling B
2

• 

W e can obtain a perturbation s elution to equation I-17 

by expanding n(B2 , E) and A in powers of B
2

: 

and (I-18) 

A = 

The functions ~j (E) are eigenfunctions of the scattering operator 

for the infinite medium (B
2 

= 0) case. If the absorption cross 

sec tion varies as 1/v, as is often the ca se, the first term ~ (E) 
. 0 

will be the Maxwellian distributi on. (4 ) The names of the coefficients 

in the expansion of )., are chosen for historical reasons. 

Substituting the expansions into I-17 and equating equal 

powers of B
2 

yields the following se t of equations: 

[ - " )., +v:EaJ~(E)=0,0(E) a o o (I-19) 

J ¢ (E) " [ -D 
0 

+ vD(E) = o¢1 (E) (I- 2 0) 
0 

( -D +vD(E) 
0 

] _01 (E) -C¢ (E) = " o ¢
2

(E) . (I-21) 
0 

W e can integrate these equations over energy and obtain the values 

for A a• D
0

, and C. The ansatz I-16 explicitly asswnes an 

asymptotic energy distribution so that 
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00 

! " 0 ~(E) dE= 0 
0 

With the assumption of 1/v absorption, we have 

D = 
0 

c = 

A. = v :E a o ao' 

00 

f dE vD(E) M(E ) 
0 

00 

f dEM(E) 
0 

00 

f [vD(E) -D
0

] yf
1
(E)dE 

0 

00 

f dEM(E) 

0 

It is the relation of the experimental dispersion curve 

(I-22) 

(I-23) 

(I-24) 

(I-25) 

to the diffusion parame ters A.a, D
0

, and C that has spurred 

much of the pulsed neutron research. 

Although the above model is quite useful, it is difficult 

to make much headway with a gene ral, complicated scattering 

kernel . However, a similar model, the multi-group diffusion 

equations . 

[8~ - viDi v
2 

+ vi:Ei J ni (E.• t)"' fvj:Ej-inj(E.• t) • t > o, 

i, j z:: 1, 2, ••• N 
{I-26) 

can be solved even for very complicated scattering kernels, 

provided each energy g roup satisfies the same boundary condition. 

The time dependent spatial distribution for the i th group is 
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n . (r, t), "E. . is the averaged differential cross section for the 
1- J .... 1 

. f h .th h .th scatter1ng rom t e J- group to t e 1- group, "E. 
1 

is the 

l . f th . th d D . th average tota eros s sect1on or e 1- group, an . 1s e 
1 

average diffusion coefficient for the i!!!_ group. If E. 
1 

and E. 
1- 1 

are the energy boundaries for the i th group, then the average 

quantity f. is defined as 
1 

f~ = 
1 

E. 
1 

I W(E)f(E)dE 
E. 1 1-

i 
I W(E) dE 
E. 1 

1-

(I-27) 

where W{E) is some weighting function, often taken to be the 

Maxwellian energy distribution. 

There are always N e i genvalues for each spatial harmonic, 

hence the solution can be written as 

oo N ""'Ak"t 
n . (:J t) -= ~ .~ Aikje J Xk(r) , izrl, 2, ••• N • 

1 k=lJ=l -
(I-28) 

The lowest eigenvalue All can be identified with the experimental 

decay constant A • 

Based on the analysis of the last two models, one might 

suspect that the experimental decay constants can be identified 

with the e igenvalues of the Boltzmann equation. Hence, it is 

worthwhile to re-examine equation I-1, considering the eigenvalue 

spectrum rather than trying to solve for the neutron distribution 

function. 
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Kuscer( 10) has reviewed the techniques for obtaining the 

eigenvalue spectrum. If we define the linear Boltzmann operator A, 

(I-29) 

we may write the Boltzmann equation in the suggestive form 

a " [ at + A J n(.:_, .!• t) = S(E_, _!) o(t) (I-30) 

One technique is to make the ansatz 

n (.:_, .!• t) 
-At = n(E_, _!)e , t > 0 (I-31) 

then look for the eigenvalues of the homogeneous equation 

1\. 
A n(E_, .!) = A n (.:_, ,!) (I-32) 

where A is a linear operator defined on a Hilbert space, 

using the spectral theory of operators and functional analysis. 

An alternate and perhaps more straightforward approach is to 

Laplace transform I- 30 and then examine the analyticity of the 

transformed distribution function. 

This type of analysis has been successful for various 

system geometries and for various scattering kernels. Very 

general results have been found by Albertoni and Montagnini( 1 l) 

for the case of a finite, homogeneous, convex body of arbitrary 

shape sur rounded by a vacuum and the isotropic, free gas scattering 

kernel. There results for the eigenvalue spectrum are that the 
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half-plane Re A > [ v ~ (v) J 
8 

is filled with a continuous 
m1.n 

spectrum and that there e xists at most a finite number of real, 

0 • discrete eigenvalues on the line 0 < R A < ( v ~ (v) J e 8 m1.n 

Furthermore, for sufficiently small bodies, the number of 

discrete eigenvalues reduces to zero . Borysiewicz and Mika(lZ) 

have extended these results to the case of a non-square integrable 

scattering kernel (the elastic scattering contribution for poly-

crystals) and shown that the essential features of the eigenvalue 

spectrum do not change. 

The disappearance of the discrete eigenvalues for sufficiently 

small systems has some important implications for pulsed neutron 

experiments which are designed to measure a discrete decay con-

stant. The situation is particularly serious for the polycrystalline 

materials which have a very sharp drop in the scattering cross 

section below the Bragg energy. Although the work of Borysiewicz 

and Mika(lZ) pretty well describes the state of the art of eigenvalue 

analysis for the Boltzmann op e rator it is worthwhile to consider 

some approximate theories which can give more quantitative results 

for what one can expect exP.erimentally. 

One particularly useful approximation is to represent 

the spatial distribution by the asymptotic reactor theory(l 3 ) 

ansatz, 
iB·r 

e - ...J where the square of the magnitude of the wave 

vector B can be identified with the buckling of the system . This 

infinite medium representation of the problem is equivalent to con-

side ring a single spatial mode in the finite case. Shapiro and 
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Corng old(l 4 ), considering the infinite medium (B2 = 0) case, using 

the heavy crystal approximation and the Einstein and the Debye 

representations for the phonon frequency distribution, found that 

for reasonable values of the Einstein frequency or the Debye 

tern perature, no more than one discrete eigenvalue exists. Hence, 

the approach to equilibriwn time constant T, which is identified as 

the reciprocal of the second discrete eigenvalue, is not well 

defined for graphite. Conn and Corngold( 15 ) combined asymptotic 

reactor theory with the isotropic part of the full scattering kernel 

to obtain a complicated eigenvalue spectrwn for polycrystals. 

Figure 2, in which [ v ~ (v) J is represented as A*' 
s min 

shows the eigenvalue spectra found by Albertoni and Montagnini ( 
11

) 

and by Conn and Corngold. (15 ). 

Despite the complicated nature of the theoretical eigenvalue 

spectra, experimentalists have reported decay constants for 

polycrystalline systems with B 2 well in excess of B;, where B; is 

2 
the value of the buckling such that A (B*) = A.*. (The value of ).,* 

is not well known for graphite, as we shall see in the n e xt chapter.) 

In light of this disparity, Corngold and Durgun attacked the problem 

using diffusion theory and a simple modeled kernel which approxi-

mated a polycrystal kernel. They found that the detector response 

for the fundamental spatial mode could be represented as 

(I- 33) 
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lm(A) 

Figure I-2a. The Eigenvalue Spectrum of Albertoni and MontagninP,l) 

for a "Large" and a "Small" System. 

lmtA) 

- iBv 
B 

SUB-BRAGG 
CONTINUUM ~ 

Area % 
/ // 

Continuum 
/ 

iBv~ 

- iBv 
& 

(/.) 

SUB BRAGG 
CONTINUUM 

Figure I-2b. The Eigenvalue Spectrum of Conn and Corngold{lS) 

for a "Large" and "Small" System. 
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For systems with B 2 > B; , the discrete term vanishes, but the 

weighting function A( A. ) i s sharply peaked for a portion of the 

2 2 range B > B* • Although the representation I- 33 is certainly 

not adequate for the complicated area continuum of the more general 

theories, it seems adequate to interpret most of the experimental 

results. The peaking in the weighting function gives rise to what 

has been termed pseudo-exponential decay. Conn(l?) has extended 

this analysis using asymptotic r eactor theory and simple modeled 

kernels for graphite and beryllium, finding that experimentally it 

is probably very difficult to distinguish pseudo-exponential from 

true exponential decay for a limited range of buckling s. 

Computation of effective decay constants which vary with 

time after the end of the burst is useful for comparison with 

experimental results. Wood ( 18• 19 ) has performed numerical 

computations for Aeff(B
2

• t) of beryllium using a multi-phonon 

scattering kernel. Ardente and Rossi( 2 0) used a simple model in 

a numerical scheme with a multi-phonon scattering kernel to 

obtain results for A.eff(B2 , t) for graphite and beryllium. Ritchie 

et al. (
21

) have performed multi-group diffusion theory calculations 

for beryllium oxide using a scattering kernel based on Sinclair's 

phonon frequency distribution to obtain 

Only a partial review of the theory has been attempted here. 

More complete reviews can be found in Williams(4 ) and Parks et al.(S) 
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C. Review of the Experimental Work 

The results of several theories indicate that the dispersion 

curve A. (B2 ) can be accurately described by the first few terms 

of an expansion 

(I-34) 

The coefficient C is the diffusion cooling term which represents 

the preferential l eakage of higher energy neutrons, an' effect 

observed by von Dardel( 2 ) in his early work. Most pulsed neutron 

experiments have been designed to obtain the coefficients in I-34 

experimentally. The advantage of the pulsed technique is that the 

time of neutron capture relative to the source burst can be measured 

extremely accurately, a llowing quite precise determination of the 

asymptotic decay constant. 

Antonov et al . (22 ) was the first to report results for graphite 

in 1955. Beckurts(23 ) later reported values of D and C in dis-
o 

agreement with Antonov. Since then there has been almost a 

continuous production of experiments to supply the coefficients 

of equation I-34 • . The r esults have been characterized by disagree-

ment which is not attributable to the assigned experim ental error. 

A limited collection of the results may b e seen in Table I-1. The 

spread in results for D and C reflects the non-uniqueness of 
0 

the A. (B
2

) curves from the various experiments. Evidence of 

this spread of results may be seen in Figure I-3 • The experiment-
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ally generated dispersion curve A.(B
2

) is apparently sensitive 

to the type of analysis u sed, especially the delay time be tween the 

source burst and the beginning time for the exponential fit to the 

data, to the type of s hie lding from roon-return neutrons u se d, to 

how coarsely the time interval s after the n e utron pulse are 

discretized, to the energy sensitivity of the detector, and to the 

detector place ment. The nature of the graphite, that is, the 

density and average crys tal size, also effects the result. 

2 
Part of the problem in obtaining the A. (B ) curve 

experimentally is in dete rmining whether an asymptotic exponential 

decay is ever established, since the theoretical value of A.* is 

not we ll established. (l 7 } Recent results indicate that the onset 

of the region of non-exponential decay may be hard to discover 

experimentally. Hanna and Harri~( 2B) using 17 channel analysis 

found discrete exponentials with decay con s tants up to almost 3000 

sec - 1 for graphite. On the other hand, Bull e t al. <29 ) using a 256 

channel analyzer found that they w ere probably not measuring a 

discrete term above 1600 sec - 1• Since both groups use d reasonable 

shielding and a minimum of two milliseconds waiting time, the 

discrepancy probably indicates that the deviation from exponential 

decay is quite small and only shows up with the finer time mesh. 

A g reement between their quoted values forD and C leads one 
0 

to s uspect that the other critical facets of the experiment were 

similar. 

The dispersion curves for the other two polycrystalline 
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moderators, beryllium and beryllium oxide, also pre sent an 

anomalous spread of results. Ritchie( 3 0) has recently published 

an extensive study of BeO in which he has found evidence of non­

exponential decay in the range of A greater than about 3600 sec -
1

• 

Fullwood(3 l) graphically displayed non-exponential die-away 

in beryllium by comparing the beryllium decay with an "equivalent" 

polyethylene system in the same environment. Zhezherun, ( 32 ) 

however, used a chopped beam of thermal neutrons and claimed to 

obtain exponential decays for all sizes of Be assemblies. 

Another important class of pulsed neutron experiments 

has been directed toward measurement of the rate at which the 

average neutron energy approaches an asymptotic value. Usually 

this phenomenon is described by( 33) 

E(t) - E' ( t=oo) ,.,e -t/'r (I-35) 

The quantity T is called the thermalization time and the quantity 

of interest in the experiments is the value of T for an infinitely 

large moderator. Theoretically, T i s identified with the 

reciprocal of the first higher energy harmonic of the fundamental 

t . 1 d ·f· . · <14) spa 1a mo e, 1 1t ex1sts . 

There are several methods for obtaining T Starr. 

Honeck. and De Villiers (34) used detectors of different energy 

sensitivity to determine the time dependence of the average neutron 

velocity in several sizes of graphite stacks. Hanna and Harris (35 ) 

recently used a silver transmission technique (examining the ratio 
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of detector r espon se with and without a s ilver filter) to obtain 

T (B
2

). The values for T(B
2

) are extrapolated linearly to B
2= 0 

to estimate the infinite medium result T th• Table I-2 s hows that 

the results of the various authors for T th are in considerabl e 

disagreement. Recent work by Polley and Walker< 36} using the 

Cd/Hg reaction ratio me asurf!d with a Ge(Li} detector in a larg e 

graphite stack indicates that the model given by equation I-35 

is inadequate for graphite and that a unique T th probably does 

. ( 14} 
not ex1st. 

Very little work has actually been reported on m easurements 

of time dependent spectra in finite moderating assemblies. 

Bernard et al. <41 ) and Poole et a l. <
42 ) have made these measure-

m ents for graphite, but their re sult s do not include n e utrons in 

the low energy range where the graphite total eros s section changes 

very rapidly with energy. Gaerttner et al. <43 } performed time 

dependent measurements of the energy distribution for beryllium 

stacks . Neutron populations in assemblies in the range exceeding 

B
2 

showed no indication of attaining an asymptotic energy distribu-

tion and the effects of the Bragg peaks in the total cross section 

were quite evident in the energy distributions. 

Experiments designed to measure time dependent spatial 

distributions have been important for two principle reasons. The 

first is that the value of the extrapolation length Z can be deter-
o 

mined and the proper buckling assigned to the system . These 

measurements also allow isolation and observation of the decay of 
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TABLE I-2 

The Thermalization Time For Graphite 

Author Year 
2 

B Range Method (microseconds) 

Beckurts (23) 1956 <.0055 Ag Filter 200 + 50 - Transmission -
Starr and 

1962 (. 001765 - Mean Velocity 525 + 125 
de Villier s (3 7) • 01320) Measurement -

Serdula and 
1965 

(. 005 - Ag Filter 
750 200 

Young {38) • 0145) Transmission + -
Kaneko and 

1965 Filter 
296 + 50 Surnita {39) . . . Transmission -

Purica, et al. 
1967 

(. 0014 - Frequency 
694 + 57 (40)) • 012) Characteri sties -

Hanna and 
1969 

(. 003 - Ag Filter 660 115 Harris (35) • 0253) Transmission + -



-27-

individual spatial modes, information which is especially important 

in large systems often rich in higher spatial harmonics. Light 

water systems have extensively studied using this technique. In 

a classic experiment, Lopez and Beyster(44) measured Z (B
2

) 
0 

and determined values for the diffusion parameters of water from 

the decay of the fundamental spatial mode .. 

Time dependent spatial harmonic analysis for large graphite 

systems has been reported by Hanna and Harris (28 ) and by 

Chwaszczewski and Mikulski~45 ) Davis et al. (26 ) have measured 

Z for large graphite systems by measuring the flux distribution 
0 

at long times after the pulse when only the fundamental spatial 

mode persists. Klose et al. (
24

) have determined Z by tr eating it 
0 

as a free parameter in fitting a curve to ( A. , B 2 ) data. Ritchie( 30) . 

has provided both harmonic analysis of a neutron pulse and Z (B
2

) 
0 

for beryllium oxide, while Andrews(
46

) has supplied the necessary 

data for beryllium. 

D. Motivation for Thi s Thesis 

Except for detailed time-energy distributions, it is readily 

evident that a great many experimental results for transient neutron 

populations in graphite have a lready b een com piled. With the 

possibl e exception of a couple of thermalization experimentsP 6• 47 ) 

the existing results for graphite do not prove a very adequate che ck 

on some of the exciting theoretical developments of the 1960's. 

The reason for this inadequacy is not that the experiments are in 
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any way faulty, but rather that they have been specifically designed 

to measure thermalization and diffusion paramete rs. 

The principal void to be filled in the experimental results 

is the empirical determination of the buckling ranges characterized 

by exponential, pseudo-exponential, and non-exponential decay 

of transient neutron populations. In addition, the extension of Z 
0 

measurement into the range of probable non-exponential decay is 

needed. Finally, a check on the ability of a simple theory to 

provide an effective decay constant when a discrete 

exist will be useful. 

A does not 
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Il. MEASUREMENT OF EFFECTIVE DECAY CONSTANTS 

Since the diffusion parameters of graphite, determine d by 

the pulsed source m e thod, have been published by many compe t ent 

authors, (62 ) it seems rather obvious that the world does not need 

another set of these paramete rs. However, since the dispersion 

in the parameters may be due to the non-existence of an a symptotic 

decay mode when the apparent decay constant exceeds some critical 

value, knowledge of the regions of exponential, pseudo-exponential, 

and non-exponential d ecay seems essential to the interpretation of 

these r esults. We have p erfo rm e d experiments in which the decay 

of the neutron populations exhibits these types of behavior for 

reasonably well defined ranges of the graphite stack size and appar-

cnt decay constant. Othe r expe riments, in which the s patial distri-

bution of the neutrons fails to achieve an asymptotic mode are 

reported in the third chapter. 

In order to tie the critical decay constant to the the ory 

discus sed in Chapter I, we shall identify \ =( v Lj (v)+vij (v)J . "* s a m1n 

as the critical decay constant. The theoretical value of 'A * has 

not been well established. ( 
17

) The most quoted value, based on 

old cross section measurements in the sub-Bragg energy range, 

is A.* = 2600 sec - 1• (4 ) The kernel of Ghatak and Honeck, (4 9) 

based on Parks 1 model for graphite, yielded 'A* approximately 

equal to 1100 sec -
1• Values based on other kernels have been 

consistently lower than 2600 sec - 1• Conn (SO) has recently included 
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the inelastic coherent contribution to the total eros s section in a 

kernel to compute 
-1 A* as 1811 sec • However, the theoretical 

models of the scattering kernel are not very accurate in the sub-

Bragg energy region, so that the theoretical values for X.* are 

just first order estimates. The work of Shapiro, (7 0) in which he 

describes the decay of the detector response by a sum of two 

exponentials, gives an experimental estimate of A* in the neigh­

borhood of 1800 sec - 1• As mentioned in Chapter I, Bull et al! 29 ) 

have estimated to be 1600 sec-l based on their experiments. 

Corngold and Michael (Sl) used a perturbation theory solution due 

to Takahashi(S2 ) to obtain an upper bound on C based on the 2600 

-1 f sec value or Their expression 

C< (II-1) 

can be inverted and an experimental value supplied for C to yield 

a bound for If we use C due to Hanna and Harris <28 } 
I 

-1 is bounded above by 1735 sec 

A* 

Information about the value of A* is not readily available 

from the experiments designed to determine the diffusion para-

meters, for the data one collects in those experiments is specifi-

cally geared to the determination of an as.Ymptotic decay constant. 

The value of the decay constants can be determined extremely 

accurately frol? data which is much less detailed than one needs 

to detect subtle changes in the fitted value of the decay constant 
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at increasing times after the source burst. HUls(S 3 } has obtained 

some very recent data of fine time mesh and for very long times 

after the experiment which indicate non-exponential decay in his 

graphite f o r a buckling of • 006723 em - 2 (decay constant about 

1350 sec-
1) for times greater than 6.5 milliseconds after the source 

bur st. The data we have obtained at Caltech is in minor disagree-

rn e nt with that of Hlils. Our data indicate )..* in the neighbor-

hood of 1600 sec - 1, which corresponds approximately to a buckling 

of • 0 0 8 5 em - 2 • 

Unfortunately, values of B; corresponding to 

vary from experiment to experiment due to variations of up to 

10 percent in the density of the graphite. To facilitate future dis-

cus sion, we shall define a critical buckling, B
2 
c 

and give other values of B
2 

in units of B
2

• 
c 

A. Apparatus 

-2 2 
= • 0085 ern - B* , 

Neutrons were produced for this experiment with a Texas 

Nuclear Corporation model 9505 neutron generator, which is a 

150 KEY linear accelerator. High energy ( 14. 7 MEV) neutrons 

result from the T(d, n) reaction as deuterium ions are accelerated 

. . (54) 
1nto a tntum target. 

2 3 5 1 4 
1 H + 1 H ..--. (2 H e } --+ 0n + 

2
He + 17. 6 MEV . (II-2) 

The tritium targets consist of five curies/in2 of tritium coated 

on a copper disc. Some neutrons are also produced by the D(d, n) 
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reaction, 

(II-3) 

because of the residual deuterium gas in the accelerator system. 

The system is capable of producing more than 10
11 

neutrons/second 

at a maximum beam current of one milliampere. 

The system is capable of producing source pulse widths 

which are continuously variable from one microsecond to 10
4 

microseconds and repe tion rates continuously variable from 

5 10 to 10 pulses per second. The standard system is equipped 

with pre-acceleration and post-acceleration deflection plates to 

prevent the ion beam from reaching the target between pulses. The 

deuterium ions are transferred from the deuterium plasma bottle 

to the focusing and accelerating section by means of an "extraction 

potential" of three to five kilovolts. The unique featur e of our 

accelerator was the addition of a Pulsing unit to the extraction 

voltage. The "dark current" at the target between pulses was 

virtually eliminated, within detectable limits, with this triply 

pulsed system. 

The thermal neutron detectors w e re standard one inch di­

ameter, BF3 ( 96o/o B
10 

enriched ) filled proportional counters, 

with an active length of about 4 inches. Both Reuter - Stokes 

detectors with 70 em Hg filling pressure and Nuclear Chicago 

detectors with 40 em filling pressure were used. DC power was 

supplied by a model 405 Fluke power supply. Detector pulses were 
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amplified by a preamplifier and a Nuclear Chicago model 27001 

linear amplifier and fed into a model 27501 Nuclear C hicago inte-

gral discriminator. 

The heart of the data collection system was the Technical 

Measurement Corporation model CN-110 256 channel pulse analyzer 

system with the model 212 pulsed neutron logic unit. The reference 

time for the TMC multi-channel analyzer was the end of the pulse 

from the TNC pulsing system. After an adjustable waiting time, 

counts from the discriminator were accepted and allocated to the 

time channels of widths adjustable in non-equal discrete steps from 

10 to 2560 microseconds . A storage time of 10 microseconds was 

required after each analysis channel. The time interval covered 

in each experiment was sufficient to allow about 100 channels for an 

accurate determination of the background. Data were printed out 

after each 50,000 pulses in order to minimize wasting data due to 

transient, external electronic problems. 

Nuclear grade graphite from the Hanford project was 

borrowed from the AEC for use in this experiment . Most of the 

graphite stacks were formed from blocks of dimensions 3. 7 5" 

x 3. 75" x 12". The stacks ranged in size from 12" x 15" x 15" to 

36" x 26 . 25" x 26. 25" corresponding to bucklings in the range. 018 

-2 - 2 2 
em to . 0051 em or (2. 12 to 0. 6) B • Temperature in the 

c 

graphite was maintained at 21 + 2°C. The average density of the 

stacks was 1. 709 :t. 003 grams/cm3 • 

The graphite was shielded from room -return neutrons by 
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a cover of 0. 03 inch cadmium sheet and 0. 25 inch thick boral plate. 

The entire assembly, except for a slot allowed for the accelerator 

drift tube, was surrounded by 8. 0 inch thick boxes of paraffin. 

It was found e xperimentally that this combination of shielding 

together with the triply pulsed accelerator allowed backgrounds 

of about one count per channe l even for e~periments of several 

million pulses lasting several days. The re was a high energy 

component of the background for short times after the experiment 

with a fast decay constant ( ,.... 5000 sec - 1), but the addition of the 

paraffin shielding reduced the amplitude significantly so that this 

contribution to the background had vanished by one-half millisecond 

after the pulse. Since the measuring times of interest in these 

experiments w ere greater than one millisecond, the transient 

background presented no problem. In the range 100 - 500 micro-

seconds, the transient background contributed less than 0. 01 percent 

of the total count rate. 

B. Data Colle ction Procedure 

The BF 3 d e t ectors were placed inside the cadmium shielding 

on a side of the stack adjacent to the source target. For the smaller 

stacks, a single detector was centered on the adjacent face. For 

2 2 
the three largest stacks (B ,S • 747Bc ), the four detector arrange-

ments shown in Figure lll-6 was used to help minimize the effect 

of the higher spatial harmonics. These detector arrangements 

are shown schematically in Figure II-4. Simple diffusion theory 
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predicts that one can e liminate the most important higher spatial 

harmonics by clever placement of the source and the detectors. (9 ) 

However, the spatial dependence of the source is considerably 

complicated by the high energy albedo from the shielding material, 

which makes elaborate efforts to e liminate the spatial harmonics 

unjustified. 

After a typical waiting time of 500 microseconds, the 

number of counts in each of 255 discrete time intervals of 40 or 80 

microseconds was collected by the TMC multi-channel analyzer 

for each source burst. Except for the smallest two graphite 

stacks, good "statistics" were obtained for more than five milli­

seconds after the source burst. For stacks corresponding to B
2 

2 
<1.035B , the data were meaningful for more than nine milliseconds. c 

C. Data Analysis 

The raw data was analyzed on the IBM 360/75 by two 

computer codes. The first was a modified version of the FRANTIC 

{55) . 
code developed at the Massachusetts Inst1tute of Technology 

Laboratory for Nuclear Science for analysis of exponential growth 

and decay curves. The second was a simpl e least squares program 

to fit the data to an exponential plus a constant background term. 

The FRANTIC code corrects the raw data (C.) from the ith 
1 

channel for detector dead time ( T ) losses by the formula:( 56) 

C' ·= c 
(II-4) 
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T, the total counting time, is the product of the channel width 

and the number of pulses. The corrected data are forced to fit 

the form 

C' (t) = 
K 

L: 
j= 1 

A.e 
J 

- A .t 
J (II- 5) 

where the number of components K i s variable from one to ten. 

Any of the parameters A ., 
J 

A . may be held fixed during the 
J 

fitting procedure. The free parameters are· determined by mini-

mizing the variance 

VARIANCE = 1 
n 

n 

i: Wi [ C! 
i=m J 

K 
- A.t. J 

"" J 1 u A .e 
j= 1 J 

2 

(II- 6) 

over channels n through m . D is the number of de~rees of 

freedom which is equal to total nwnber of channels u se d in the fit 

less the number of parameters being fit. The time associated 

with each channel is t . . The weighting function w. i s set equal 
1 1 

to the estimated variance in the data C .• 
1 

The minimizing procedure 

is iterative b e caus e of the way that A. appears in the expression. 
J 

The background is fit by fixing Am equal to zero. The output 

includes the parameters A., A ., the variance of fit, and a chi -
. J J 

squared analysis . Giraudbit(S?) gives a more complete description 

of the modified FRANTIC code. 

FRANTIC was used to fit two exponenti al components plus 

a background t e rm to the data. 2 2 
For the large stacks (B < B ), 

c 

the amplitude of the component with the larger A became small 
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enough to make the fitting procedure difficult. For the largest 

stacks, the amplitude was negative, which made the interpretation 

difficult because of possible contamination of the data by higher 

spatial modes. The data were then fit to one exponential plus back-

ground over the entire 255 channels and the process repeated, each 

time dropping the initial five channel of the preceeding fit. This 

yielded a "deletion profile" which is a common method of analysis 

for this type of experiment. One examines the ), ' s obtained in 

this process to see if they become constant after some waiting time 

following the source bur st. 

The second code, FITIT, performed analysis which could 

have been done with FRANTIC, but was more specialized and 

required less running time on the computer with much simpler 

input and output. The data was corrected for dead time losses and 

the background, obtained from the FRANTIC runs, was subtracted. 

The corrected data was then described by a single exponential 

term 
, 

c. 
1 

,... Ae 
- At. 

1 
(II-7) 

By taking the logarithm of the data, a linear least squares fit 

could be performed. 

, 
Fi = log(C i) ; D = log(A) • (II-8) 

The function L(D, A. ). 

m 2 
:E W. ( F. - D + A. t. J 
i=n 1 1 1 

L(D, A ) = (II-9) 
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was minimized by setting the derivatives with r es p ect to D and 

),. equal to ze ro. This results in two linear, couple d e quations 

for D and A 

m 
( ~ W . ) D . 1 

1=n 

m 
- ( ~ W.t. ) D + 

i=n 
1 1 

m 
( ~ w .t. )A 

i=n 1 1 
= 

m 2 
( I) W . t.)),. = 1 1 

l.=n 

m 
I) 
i=n 

m 
I) 

i=n 

W.F . 
1 1 

W .t. F . 
1 1 l. 

(II-1 0) 

Thus, A appears as the quotient of sums of known quantities. 

m m f ~ I) w. ) . ( - I) W.t.F. ) + ( W . t . ) ( W .F. 
i=n 

l. 
i=n 

l. l. l. l. l. 
i = 1 l. 1 

1=n 

A = 
2 

m m 2 
m 

I) w. ) . ( I) W .t. ) - ( I) W.t. 
i=n 

1 
i =n 

1 1 
i=n 

l. l. 

(II-11) 

The fit was taken over four to twelve channel s , depending 

on the " statistics" of the data in the particular t im e region of 

the fit . In thi s manner, the effective decay constant, 

was determine d as a function of time after the source burst. Fit-

ting the data with thi s procedure exhibited the tendency of the decay 

constant to decrease b e tter than the "deletion profile technique . " 

This procedure requires that the effective decay constant change 

very little over the range of the fit, hence the data must be 

reasonably detailed and the counting statistic s g ood ove r a long 
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time interval after the burst in order to insure an accurate fit. 

The background should be insignificant so that the corrected data 

do not suffer from uncertainties in the background. 

D. Results 

The results of these experiments on ten graphite stacks 

indicate that a range of buckling exists where the decay is described 

by a well defined exponential over most of the measuring interval 

and another range in which the decay of the neutron population is 

definitely non-exponential. The two ranges are joined by a region 

of buckling in which the decay constant appears to establish a 

plateau for a portion of the measuring time, but for later times 

the fitted value of A eff(t) appears to drift toward a lower value . 

These trends are shown on the graphs of A eff(t) on the following 

pages. 

The results may be summari zed as follows: For B
2 

2 < 1. 035Bc' no monotonic downward drift of the measured decay 

constant was noted over any significant range of the measurement 

period from two to nine millis e conds. The apparent increase in 

A eff after 6 milliseconds in 0..747 B~ and 0. 905 B~ was independent 

2 2 2 of the detector placement. For the range 1. 165B <B <1. 471B , 
c c 

a r e asonabl e decay constant can be assigned to the systems, but 

there exists a perceptible decre ase in the fitted d ecay constant. 

. 2 2 
For the systems with B > 1. 741Bc , the decay was definitely 

non-exponential over the whole range of fit. Table II-1 lists the 
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TABLE Il-l 

BUCKLING >..ef£(2. 0 milliseconds) 'i> DRIFT IN >..eff(>2. 0 ms ec.) 

PER MILLISECOND (±_50~) 

1. 165 B
2 
c 

1830 sec 
-1 2.6 

1. 318 B
2 

1956 
-1 • sec 1.7 c 

1. 471 B2 
c 

2231 sec -1 4. 0 

1. 741 B2 2466 
c 

sec -1 8.0 

1. 941 B2 2873 
-1 

13.4 sec 
c 

2. 118 B
2 
c 

2909 sec -1 17. 7 

* value obtained from the "deletion profile" curve • . 

The apparent drift in the decay constants for times 
greater than two milliseconds for those stacks where 
any monotonic drift was perceptible. 
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percent change per millisecond of the pseudo-exponential and the 

non- exponential decays. 

The effective decay constants all exhibit oscillations for 

long times after the source burst. These oscillations, which have 

been observed by other experimenters, are as difficult to explain 

as they are interesting. One proposed explanation has been that 

the oscillations w ere r elated to channel drift for the time - of -

flight units which were used in the multi-channel analyzers. (SS) 

However, use of pulsed neutron logic units, which are not subj ect 

to significant channel drift, in modern exper iments has apparently 

negated this argument. One still entirely plausible explanation 

is that the oscillations are inherently connected to the fitting 

procedure when the counting statistics fall below some critical 

value. 

Since the nature of the oscillations has not been positively 

identified, l et us consider a more intere sting conjecture. If 

we re-examine the analysis of Conn and Corngold, ( 15 ) we see that 

the transform plane has branch points with imaginary parts e qual to 

+ iBvB, where vB is the Bragg velocity. For B
2 

= 0. 747B
2 = 
c 

0. 00635 em -
2

, the freque ncy BvB is about 4640 s e c- 1 while the 

frequency of the oscillations in the fit, though poorly defined, is 

-1 2 2 -2 
about 3600 sec • For B = l. 165B = 0. 0099 em , the 

c 

approximate frequency of oscillation is 8970 sec - 1, while BvB is 

about 5900 sec-
1

• The correlation at the other bucklings is also 

"ballpark" considering the crudeness of the data. The data of 



-56-

II (53) . . 
Huls exh1b1t these oscillations in the same range of buckling 

with about the same frequencies. The onset of the oscillations 

occurs at about the same time after the source burst although the 

counting statistics and the width of the channels are quite different 

for the two sets of data. 

The frequency of the oscillations cannot be resolved well 

enough to draw any definite conclusions, but the above speculation 

is interesting. While the oscillatory b ehavior appears rather 

naturally in the theoretical solutions, the physical interpretation 

has not been s u ggested . If the oscillations are not some quirk 

of the data collection and analysis, this question will lave to be 

given some more consideration. 
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III. MEASUREMENT OF TIME DEPENDENT SPATIAL DISTRIBUTION 

The time dependent detector response was measured as a 

function of one spatial dimension for four graphite s tacks varying in 

size from 66.68 em X 66.68 em X 91.44 em to 47.63 em X 28.58 em 

X 60.96 em, repres e nting the buckling range 0. 6 B
2 

to l. 847 B
2

• c c 

The largest dimension of the stack was arranged so that it was 

colinear with the direction of the ion beam in the accelerator drift 

tube. The measurements were made along the central axis in order 

to accentuate only those higher spatial harmonics in the measured 

direction. We measured the highe r order decay constants 

associated with the spatial harmonics and we isolate d the fundamental 

spatial mode and examined it in detail. Measurement of the extra-

polation length Z for these assemblies as a function of time after the 
0 

source burst was also made. 

A. Experimental Apparatus and Procedure 

The experimental equipment was basically the same as that 

described in Chapter II for the measurement of e ffective d ecay 

constants. The principal difference was that the source strength, 

which varied considerably over them easuring times of 75 to 125 

hours, had to be monitored in order to normalize the data taken at 

different detector positions. The source monitor detector was a 

thermal neutron (BF 
3

) detector identical to the one used to measure 

the distribution in the graphite stack. The monitor detector was 
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placed in a lead gaznma ray shield above the graphite-paraffin system . 

It required an extra preaznplifier, aznplifier, discriminator, and 

scaler system, but the high voltage was taken from the same supply 

that fed the in-stack detector in order to minimize systematic error 

due t o voltage variation between the two detectors. The amplifier-

discriminator systems for the two detectors were housed in the same 

modular power supply to help reduce the systematic error due to 

relative drift in the power supplies . The probl em of normalizing the 

source strength without introducing significant systematic error 

makes these experiments ab o ut an "order of magnitude" more diffi -

cult than the effective decay constant measurements. 

We examined the time response of the monitor detector with 

the multi-channel analyzer. Less than ten perc e nt of the total 

monito':" count was accumulated during the source pulse and the 

following 200 microseconds. The effective decay constant of the 

monitor count rate was about 820 reciprocal seconds and the ampli­

tude was sufficiently low enough that there were no saturation problems 

or significant dead time losses. The normalization by this monitoring 

system was found to be consistently repeatable to within about l. Sa, 

where 0' is one standard deviation based on the Poisson stati sti cal 

uncertainty in the counting rates only. 

The source strength was also monitored by the high energy 

(14 MEV) neutron induced o16
(n, p)N

16 
reaction in the cooling water 

of the tritium target source. The N 16 decays with a 7 . 4 second 

half life and gives off a high energy gaznma ray. The cooling water 
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returning from the target was pass e d around a Geige r tube, well 

shielded by lead and concrete, and the N 16 gamma was detected. 

This system, which was sensitive only to neutrons at the source 

energy and therefore rather insensitive to any chang es in the external 

environment, was superior to the other monitoring system in princi-

ple. However, due to the short half life of the reaction product, 

it was necessary to regulate the flow rate of the water very accurately. 

This problem, as well as a high gamma background due to other 

reactions and an intrinsically low counting rate, made this procedure 

quite difficult in practice. The first system proved more accurate 

and was used to normalize the data from these experiments. 

The detectors used in the experiments had an active length 

of about four inches. The movable detector was positioned in the 

stack by a thin-walled aluminum tube. The 1. 1 inch diameter probe 

hole for the movable detector was co-linear with the accelerator 

drift tube and target. As shown in Figure III- 3, a small collimated 

beam of thermal neutrons was used to determine the sensitivity of 

the movable detector as a function of the position in the active 

volume. The most sensitive posit ion was in the center of the 

active volume and the sensitivity could be approximately described 

by 

S( Z) = 0 . 0842 + 0 . 0222 sin 
TrZ 

(III-1 ) 
10 . 16 

where Z is the distance in centimeters from one end of the active 

volume . The location of the detector in the stack was defined to be 
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the position of the center of lhc active volume, except for calcula-

tions in which we specifically accounted for the finite detector 

volume. 

The analysis of the experiment explicitly assumes a dif-

fusion theory solution for the spatial distribution of the neutron 

density: 

n(r, t) = ~ A~t~ sin (j~z ) sin (b~zi ) sin (c~;~ ) 
- j, k, m J, ' m a o o o 

(Ill- 2) 

(The quantities a, b, and c are the dimensions of the graphite stack.) 

Since the detector response is only measured in the z direction, one 

has to be certain that the distribution in the transverse directions 

is adequately described by the fundamental mode, that is, j = k = 1. 

To check this, we irradiated thin, coin- shaped, cadmium-covered 

indium discs spaced 3. 75 inches apart along the three axes of the 

graphite volume(B
2 = 0.00635 cm- 2 = 0 . 747 B

2
) with the steady state c 

14 MEV neutron source. The cadmium shielded the indium absorbers 

from the thermal neutron population, therefore the indium foils were 

activated by the epithermal neutrons, principally neutrons captured 

in the l. 46 ev resonance of the indium cross section. The foils 

were spaced far enough apart so that there was no s ignificant 

neutron density depression at the site of one foil due to the strong 

absorption in another foil . After about two hours of activation, the 

beta decay rate of the indium foils was counted in a gas flow propor-

tional counter. These data yielded rather directly the relative 
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amplitude of the epithermal n e utron d ensity at each of the points of 

activation. 

Thoug h it is the spatial di stribution of the thermal neutrons 

which is of interest in the pulsed experiments, the distribution of 

the epithermal neutrons represents a worse case as far as the rela-

ti v e amplitude of the higher spatial harmonics is concerned. The 

slowing down time to 1. 46 ev for 14 MEV neutrons in graphite is less 

than 30 microseconds, <39 ) while the {non-existent) thermalization 

time is of the order of 500 microseconds. (38 ) The s ignificance is 

that the epithermal distribution has less chance to relax to an 

asymptotic distribution, hence the higher spatial harmonics are 

enhanced. 

A function of the form of III-2, with no time dependence, 

was least- squares fit to the activation data in order to obtain the 

relative amplitudes of the coefficients A .
1 

. The results for the 
JUTl 

l. 46ev n e utron distribution, with the source adjacent to one face 

of the stack in the center of the x-y plan e , are: 

TERM I Ajkrr/ A111l 

Az11 0. 0096 + 0 . 0011 

A311 0. 0521 + 0. 0011 

A121 o. 0056 + 0.001 

Al31 0. 0508 + 0. 001 

A112 0.579 + 0 . 001 

Al13 0 . 139 + o. 001 
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Hence, the only harmonics with significant amplitude are in the z 

direction as was desired. The non-zero amplitudes of the coef-

ficients A 211 and A 121 are due to the skew- symmetric, high energy 

albedo from the surrounding shielding. 

It should be pointed out that the analysis of these experi-

ments assumes that the detector response is an integral over the 

neutron distribution function of the form 

00 

D r(Z, t) = 1a vL:d (E) n (Z, E) dE , (III-3) 

while the actual measured detector response samples the neutron 

current in preferred directions due t o the finite size of the detector 

and to the void channel in which the detector is located. We improved 

the experiment for the smallest stack (which should be the worst 

case) by filling the void with graphite plugs, but the neutron current 

was still not sampled isotropically because the detector appeared 

"thicker" to neutrons traveling in certain preferred directions. The 

results (see Table III-1) were insignificantly altered. 

B. Analysis of the Data 

Since the neutron distribution was only measured in one 

dimension, we effectively only considered terms in the expansion III - 2 

with j = k = l. There fore it is more convenient to consider the one 

dimensional expansion, 

n(Z, t) = ~ A (t) sin 
m m 

m'Tl"Z 
(c+2Z

0 

(III- 4 ) 
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The analysis of the experiments was designed to determine the 

coefficients A (t) and the extrapolation length Z , which was m o 

actually a function of time and buckling. Furthermore, the 

coefficients were assumed to have the form A (t) =A e -A.mt, 
m m 

and the decay comstamts ).. were determined. The buckling 
m 

associated with the spatial modes of the rectangular parellelepiped 

assemblies was prescribed by 

2 2 
B2 - ( rr ) ( rr ) m - a+2Z + mz-

o 0 

2 
mrr 

+ (c+2Z ) 
0 

(Ill-5) 

(See Chapter I.) The lowest value, ~, is the buckling, B
2

, used 

to identify the assemblies when the effective decay constants are 

measured as described in Chapte r II. 

The data were subjected to a three-fold analysis . First, 

the multi-channel data from eac h of the 12 - 15 spatial locations 

was corrected for dead time losses and background and fit to a 

function of the 
-\ (Zk) t -A. 2 (Zk)t 

form A
1 

e + A 2 e by a simple 

computer code (PULSE). Then a harmonic analysis was done on the 

data from the spatial measurements for each of the time channels 

by another computer code (MYCODE), thus obtaining up to five of 

the coefficients A (t .) for fixed Z . MY CODE also fit the 
m 1 o 

associated decay constants A. to the reduced data ( A (t.), i= 1, N). m m 1 

Finally, in a third code (LENGTH), Z and the coefficients A o m 

were treated as free parameters in fitting the data to the functional 

form III-4, so that Z was obtained as a function of time (or channel) 
0 

for each graphite stack. The "best'' value of Z was fed back 
0 
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into MYCODE as a fixed parameter. 

The first line of analysis, the PULSE program, was really 

uninte resting as far as the information obtained was concerned. The 

quantities >-.
1 

(Zk} and >-. 2 (Zk} could not actually be identified as 

the decay constants associated with the coefficients A
1 

and A
2 

in 

the expansion Ill-4, but they did se rve as a check on the reasonable-

ness of the MYCODE results. The fitting procedure was in fact 

a little better than a graphical one . The long time (t> -3. 0 m sec), 

background subtracted, dead-time loss-co.rrected data were l east­
-A.1(Zk)t 

squares fit to the function A
1 

e . Once A
1 

and A. 
1 

(Zk) were 

-A.1( ZlJ 
determined, an amount A

1 
e was subtracted from the short 

-A.z~ Zk)t 
time data and this difference was fit to A 2 e by the least 

squares procedure. The data were weighted by the r e ciprocal of the 

statistical varianc e in the l east squares procedure. The values 

>-. 1 (Zk). >-. 2 (Zk) obtained by this procedure were reasonably con­

stant as a function of position in the stack, but of course the 

amplitudes A 1, A 2 , and the ratio A 2/A1 varied considerably. 

The results of this procedure were checked for several cases by 

analyzing the data with the much more accurate (and correspondingly 

more complicated and expensive) FRANTIC code. (See Chapter II.) 

The agreement was fairly good except for one or two isolated spatial 

positions. 

MYCODE performed several sets of operations on the 

detector response data ( D(zk, ti). i = 1, N, k = 1, M ), where N is 

the number of time channels (30-50) and M is the number of spatial 
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positions ( 12-15). The raw data was corrected for dead time 

losses as described in Chapter II and the average background per 

channel, determined from the last 5 - 10 of the 64- 128 analysis 

channels, was subtracted. The data were normalized to the sarne 

source strength for each spatial position by multiplying by the ratio 

M
0
/M 

1 
(k), where M

1 
(k} is the nwnber of counts accwnulated 

by the monitor detector when the movable detector was at the k~ 

position and M is an arbitrary number chosen so that the ratios 
0 

are approximately equal to one. Since we desired the data in the 

form III-4, the coefficients A (t.) were determined by minimizing 
m 1 

the f unction 

M 1 
L. = ~ - [ D(Zk, t

1
.} 

1 k=1 wki 

p 
- ~ A sin ( m1TZk 

m=1 m c+2Z 
0 

2 
) ] . 

This involves solving the set of linear, algebraic equations 

aL. 
l 
~= 

m 
0 I m = 1, P 

(III- 6) 

(III-7} 

where Pis the number of terms retained in the expansion III-4. 

In practice, it was found that no more than three terms were needed 

to describe the spatial distribution. The weighting factor wki was 

chosen to be the reciprocal of the variance in the data. Tre variance 

consisted of the Poisson statistical uncertainty in the counting rate 

and three times the statistical uncertainty due to the normalizing 
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ratio. The large variance in the normalizing factor was chosen to 

allow for small systematic errors due to the long counting times . 

The uncertainties in the coefficients were also obtainedfrom the 

least- squares fit. 

A least-squares fit was performed on the reduced data 

A (t. ), 
m 1 

weighted by the reciprocal of the variance 
2 

CJ (A (t.) ), to 
m 1 

obtain the associated decay constants A. and the unc e rtainties 
m 

CJ (A. ). 
m 

The finite volume of the detector was also taken into 

account by the MYCODE program. When the above procedure was 

completed, the normalized, corrected data was fit to functions 

of the form 

Z.+.t 
\ 1 0 

.) S(Z) 
z. 

1 

/ m1r(Z- Zi)) 
sin \ c+ZZ dZ 

0 

where Z. is the 
1 

posit ion of the beginning of the active volume, J, is the length 
0 

of the active volume, and S(Z) is defined by III-1. These functions 

just correspond to a weighted integration of the neutron density 

(III-4) over the active l ength of the detector. The decay constants 

for the resulting coefficients w e re fit in the manner described 

above . The decay constants determined from the two sets of expan-

sion coefficients differed at most by one percent. 

The sensitivity of the fitt e d decay constants was checked 

for variations in the dead time corrections and for uncertainties 

in the detector position, but no significant changes were noted for 

reasonable introduction of error by these means . 
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The LENGTH progran1 was similar to the MYCODE program, 

except that the extrapolation length Z was treated as a free para­
o 

meter to be determined in the least-squares fit. This added an extra 

equation, 

aL. 
1 az = 
0 

0 (III-8) 

to the set of equatio ns III-7, and made the equations non-linear 

so that they had to be solved by an iterative technique. The feature 

of allowing for the finite volume of the detector was dropped after 

it was determined that the results were not influenced for times 

greater than one millisecond after the source pulse. Artificial 

data was put into the LENGTH program to determine that the result 

for Z was accurate to about 1. 5 percent, exclusive of any er ror 
0 

introduced by the data. 

C. Results 

The results of these experiments, the variation s of the 

coefficients A with time, the fitted values of the decay constants 
n 

An' and the variations of Z
0 

with buckling and time after the pulse, 

are best seen in the tables and graphs on the following pages . 

However, several significant and surprising features should be 

mentioned. Some of the explanations and/or comments are reserved 

for Chapte r V. 
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Tabl e III-1 lists some of the results from the MY CODE 

analysis of the data . It should be pointed out that the decay constants 

A 
2 

exceeded the critical v alue of 1600 sec- 1 so that they were not 

really well d efined. The tabulated uncertainties are very con serva-

tive and are based on the MYCODE output and on the dispersion 

of the PULSE code results about the values computed for the A 
n 

by MYCODE. (See Figure lil-12.) As indicated in the table, 

filling the probe channel with graphite plugs made no significant 

change in the decay constant results for the smallest graphite stack. 

The most significant result concerning the decay constants 

associated with the spatial modes is that the decay constants of 

the second spatial modes is that the decay constants of the second 

spatial mode do not fall on the dispersion curve 
2 A (B ) of the 

fundamental mode. These decay constants exceed the critical 

value of 1600 sec - 1• This phenomenon was also noticed by 

Ritchie( 30) in his study of BeO. The results of Hanna and Harris(2S) 

for very large graphite stacks, in which the decay constants A 
2 

were well below the critical value of 16001 sec- 1, indicate that the 

decay constants for the higher modes fall pretty well on the 

fundamental dispersion curve. These results are more clearly 

se~n on the master A (B
2

) plot in Figure III-13. 
n 

Figures III-6 through III-9, which show the time dependence 

of the coefficients An (t
1

) for the four cases, all exhibit the peculiar 

long time behavior of the A 2 coefficient. The curve of log (A2 (ti) ) 

versus t1 is reasonably linear until A 2 drops to about two or three 
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TABLE III-1 

Decay Constants of the Spatial Modes of Four Graphite Assemblies 

Dimensions Fundamental Spatial C entral Time 
A.n (em) Buckling Mode of Fitting -1 

(n) Interval {p. sec) sec ) 

(66. 68 X o. 6 B 2 1 4860 1059 + 60 
66.68 X c 

2 2310 1794 + 180 
91. 44) 3 2230 2814±1000 

(47. 63 X 1. o B 2 
1 5200 1630 ± 150 

47.63 X c 2 2310 2479 ± 243 
91. 44) 

{47. 63 X 1. 165 B
2 1 3260 1865 ± 400 

47.63 X c 2 1100 3867 ± 1000 
60. 96 ) 

(47. 63 X I. 847 B 2 1 2085 2656 ± 200 
28.58 c 2 645 4759 ± 600 

. 60. 96) 

s ame* 1.847 B
2 1 2085 2672 + 100 c 

1 2625 2504 ± 100 
2 645 4678 ± 500 
2 1185 4571 ± 700 

* graphite plugs filled the probe channel on each side of the 
movable detector 
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percent of the total signal; at that point the slope of the curve 

becomes more negative. Apparently the statistics are not good 

enough for the program to resolve the second component in that 

time region. Ritchie(
3

0) also observed this behavior~ but was 

able to attribute part of it to inaccuracies in determining the 

center of his BeO stack. However 1 translation of his coordinate 

system by four times the estimated uncertainty in determining the 

central position failed to· completely eliminate this tendency. We 

also observe that shifti ng the coordinate system by amounts up to 

twice the estimated uncertainty in the detector position (about 

0. 05 em) does not significantly effect· this tendenc y for our graphite 

stacks. 

Figures Ill- 10 and III-11 show the computed values of Z 
0 

as a function of time after the source pulse for the largest and the 

smallest stack. The data for the later time channels~ when the 

spatial distribution could be adequately described by the fundamental 

mode, were summed and the summed data were fit to a single term 

by the LENGTH code in order to compare the results for Z with 
0 

the results of Davis ~ •• (26 ) who did not have the multi-channel 

information. Their data were from large stacks, 

so that the asymptotic mode was probably well defined. Sue-

cessive runs of our summed data were made, dropping the first 

channel in the sum each time until Z was relatively constant. 
0 

. 2 2 . 
Our large stack results~ Z (0. 6 B ) = 1. 84 em and Z (B } :: 1. 85 

0 c 0 c 

em compare favorably with their a:verage value of 1. 85 em. The 
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results for the smaller stacks differ considerably. The discrete 

data for the smallest stack indicates that the di stribution tends 

to "flatten o ut ", r esulting in an increasing value i>r Z • 
0 

Ritchie( 3 0) also observed this behavior in his BeO data. Our 

measurements were made at least 15 em from the edge of the stack 

in order to reduce the influence of spatial boundary transients. 

In light of this precaution, the observed behavior is quite strange. 
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TABLE III-2 

Comparison of the Measured Extrapolation· Length With the Results 

of Davis, et al. (26) 

Davis, et al. This work 

z z 
0 0 

(em) (em) 

• 002356 1. 845 + • 025 • 0051 1. 84 + • 2 

• 003714 1.801 + .018 • 0085 1.85 + .2 

• 007095 1. 903 + • 043 • 0099 1. 72 + • 3 

• 0157 3. 25 + • 2* 

* Fitting two terms to the earlier data yielded a lower value of 
Z. 5 em. (See Figure III-11.) 
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IV. COMPUTATION OF EFFECTIVE DECAY CONSTANTS 

We have used a simple theory to compute the time dependent 

e ff e ctive decay constants Ae ff (B
2

, t) for the graphite assemblies 

which exhibited non-exponential decay as well as to compute the 

asymptotic decay constants for the other graphite assemblies. The 

essential features of the model are identical to that used by Corngold 

and Durgun(
16 ) to analyze non-exponential decays in beryllium and 

hydrogenous moderators. We consider only the fundamental mode 

of the spatial distribution so that the neutron leakage through the · 

boundaries is represented by vD(v)B
2 

(zero-dimensional diffusion 

theory). A modified one-term degenerate kernel is used in the 

scattering integral. The effective decay constants are compared to 

the experimental results of Chapter II. Since the model is easily 

extended to beryllium, we have also compared the time dependent 

energy distribution with the experimental results of Gaerttner.$..!.~h(43) 

for two beryllium assemblies. 

From Chapter I we have the diffusion equation for the funda-

mental spatial mode 

t > 0 , n (v, 0) = N(v) 
0 

(IV -1) 

In order to better model the experiments, we have chosen to write 

the equation with an initial condition rather than to include the delta 

function source term used by Corngold and Durgun.(l 6 ) The scattering 
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kernel consists of two terms: the part due to inelastic scattering and 

the part due to elastic scattering . 

L: (v
1 
-v) = L: .(v

1
)6(v

1
-v) + 13vl:. (v)M(v)l:.(v ') 

s e~ 1 1 
(IV -2) 

M(v) is a Maxwellian energy distribution at the temperature of the 

moderator and the coefficient !3 is the reciprocal of the Maxwellian 

averaged total inelastic scattering cross section. 

00 

= f dv vl:. (v)M(v) 
l 

0 

(IV -3) 

This app r oximation to the real scattering kernel preserves the total 

cross sections, l:el-(v) and l:i (~), and satisfies the pr-inciple of de-

tailed balance. (See Chapter I. ) The total cross sections, shown 

in Figure IV -1, were modeled to approximate the mor e exact eros s 

sections shown in Figure I-1. 

We have chosen the simplest model based on reasonable 

approximations that will allow us to examine some of the properties 

of non-exponential decay. Although we have used the model in de-

tailed computations to compare with the experiments, one should 

recognize that, · because of the severe approximations of the spatial 

distribution and the scattering kernel, no more than qualitative 

agreement can be expected. 

, If we assume that the absorption cross section is proportional 

to l /v, the absorption rate v L: (v) is constant (A. ) and can be elimi -a a 

nated from equation IV -1 by the ansatz 

n (v, t) 
0 

= 
-A. t 

n(v, t)e a (IV - 4) 
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After integration of the delta function term, the equation for n(v, t) is 

on(v, t) 
at [ 2] OO 1 1 1 I 

+ v E. (v)+D (v)B n(v, t) = (3vl:. (v}M(v) ldv v E. (v )n(v , t) 
1 1 1 

0 

n{v, 0) = N(v) 
{IV -5) 

The initial distribution N(v) is obtained by assuming that prior 

tot = 0, a steady-state distribution exists in the assembly. In the 

experiments, the pulse width is typically of the order of 500 - 750 

microseconds which allows sufficient time to establish the thermal_ 

neutron population. Hence, the initial distribution N{v) is obtained 

by assuming that prior tot = 0, a steady -state distribution exists in 

the assembly. We solve the steady - state integral equation 

~ 2] IOO 1 I I I v E (v)+E. (v)+D (v}B N (v) = (3vE. (v)M(v) dv v E. (v )N (v )+S (v) a l 1 1 
0 

(IV -6) 

for N(v). The source term S(v) is taken as the distribution of neu-

trons scattering f rom a Maxwellian distribution M (v) with a mean 
. 0 

energy in the range 0. l - 0. 7 electron volts 

00 [: II I I I I I 
S (v) = I dv v E 1- (v )cS (v -v) + (3vE. (v)M(v)v E. (v )JM (v ) 

0 
e 1 1 o 

(IV -7) 

This form of the source is chosen only for convenience, as we do not 

expect the computed effective ·decay constants to be very sensitive to 

the particular form of S (v). The sensitivity of the final results to S (v) 

is checked by changing the mean energy of the source. 

If we define the unknown constant C , 
0 

c 
0 

= 
00 

I dv
1 

v' 
0 

E.(v
1

) N(v) 
1 

(IV -8) 
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the formal solution to equation IV-6 may be written 

~C v}: . (v) M(v) + S (v) 
N(v) z: o l 

v [}:a (v) + }:i (v) + D(v) B 2 ] 

We solve for the constant C in terms of known quantities by 
0 

multiplying equation IV-9 by v}:i(v) and integrating over v. If 

we define the integrals 

c1 E 1: dv v}:. (v) M (v) 
0 l 0 

then, we have 

c a:: 
0 

2 
vl:. (v} M(v} 

l 

2 [}: . (v) + l: (,v} + D(v}B ] 
1 a 

, 

(IV-9) 

(IV-10} 

(IV -11) 

(IV-13) 

To facilitate the discussion of the time dependent equation, 

we .define the removal eros s section l:R (v), 

{IV -14) 

We also note that the diffusion coefficient D(v) is related to the 

reciprocal of the total scattering cross section (the me an free path) 

in a simple manner:<63 ) 

y 
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D(v) = 1 (IV -15) 

Hence, the elastic scattering is retained in the equation {IV -5) in 

a rather subtle way and effects only the rate at which neutrons 

leak from the assembly. 

Having defined the initial condition and the removal cross 

section, we Laplace transform equation IV-5 to obtain 

00 

[ J,.... I I I I ,.... I ( stvi:R(v) n(v, s)=f3vi:i(v)M(v) 
0 

dvvi:i (v )n(v, s)+N v), {IV-16) 

where 5 is the transform variable. Defining the transformed in-

elastic scattering integral, 

()() e ( S) ii /
0 

d VI VI !;i (VI )'n (VI 
1 

5) 

we have for the transformed neutron distribution function 

';i' (v, s) = 
f39(s) vi:i(v)M(v) 

[s+vi:R(v)J 
+ N(v) 

(IV-17) 

(IV-18) 

We can solve for · e(s) by multiplying equation IV-18 by vi:i(v) and 

integrating over v. After the algebra, this yields 

9(s) = 
p(s) 

(IV-19) 
l - f3y( s) 

where the quantities p(s) and y(s) are defined by the integrals 

y 



p(s) 

y( s) :: 

00 

- 1 dv 
0 
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vt
1 

( v)N(v) 

vl:R (v) + s 

oo (vl:.(v}]
2

M(v) 
I d v --

1
----­o 

vl:R (v) + s 

(IV-2 0) 

(IV-21) 

Be sides the time dependent energy distribution, we are also 

interested in the detector response, D (t). 
r 

00 

Dr(t) = /
0 

dv v!:d(v) n(v, t) (IV -22) 

If we assume the detector cross section L:d(v) is proportional 

to 1/v, the transformed detector response D (s) is 
r 

oo [ vl:. (v) M(v) J oo n <s>= IG <s> 1 dv 
1 

+ 1 dv 
r o s+ v!:R(v) o 

N{v) (IV-23) 

Defining 

oo [ vl:i(v)M(v)J 
'±'(s) a: f dv 

0 
s + vl:R (v) 

and (IV-24) 

oo N(v) 
11(s) = f dv 

o · s+v!:R (v) .. (IV-25) 

we have 

f\(s) = f39 (s) • '±'(s) + 11(s) (IV-26) 

Although we can find t he inverse transform of the product by u s i ng 
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the convolution theorm, we define 

x{s) = 9 {s) . 'i'{s) (IV -27) 

in order to get the final expression forD {t) in the desired form. . r 

The transformed functions 9(s) and x{s) are analytic in the 

cut plane (s <A.*) except for a discrete pole defined by 

1 - f3 y( s ) = 0 (IV -28) 

For sufficiently large B
2 

the pole term is not present. Proof that 

only one pole exists and that it is real was given by Corngold and 

Durgun ( 
16

) in their analysis. The transform plane is shown in 

Figure IV -2. The inversion of transforms of this type have been 

studied in detail. (64) The contribution from the pole is strai~ht­

forward and is given by 

e 
-A. t 

0 (IV. 29) 

-vl:R (v)t 
The contribution from n(s), N(v)e • represents the removal 

of the initial distribution neutrons which have not suffered inelastic 

collisions. 

W e pick up the contribution from the branch cut by deforming 

the inversion contour around it. Formally, we have 
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lm (s) 

Transform Plane 

Dis c rete 

Figure IV- 1 1 '\ Th e Transform P l ane 
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-oo -A* 

{Ids est x<sHE:) + Ids est x<s-it:)} 
-A* -oo 

(IV -30) 

Inverting the limits of integration and combining the integrands, 

we obtain 

; j ds {est Lim Im [x,(s+iE:) J} 
-A* e--o 

(IV-31) 

The integrals p (s), 'f{s), and -y(s) have singularities when 

vi:R (v) = -s (IV-32) 

We can handle the integrals by making use of the Plemel j relations~65 ) 

that is, the proper combination of the principal value and the residue. 
I 

If we have the integral 

F(s ) 1 I dx f (x ) 
ZiTi x-s (IV -33) 

the Plem el j relations are defined as 

F +(s) sF p(s) + t ldx f{x) o(x-s) 

F (s) e F (s) - i- ldx f(x) o(x-s) I 
- p 

(IV-34) 

whe re F p (s) is the principal value of the integral. For our case, 

the singular point approaches the path of integration as positive ' e 

decreases to zero. We therefore use the form F _(s)(65) and define 



- 96 -

N 
I 

E 
u 

,.._ 
l() 

0 

II 

N 
(J) 

0 

-=------~-<· I 

0 

·8 
I./) 
I 

.. 



-97-

the quantities 

p (s) E p -1Tip , 
- p 0 

{IV-35) 

'±' (s) == '±' -1Ti'¥ , - p 0 
(IV -36) 

and "'I (s) = y -1Tiy • ,_ p 0 (IV -3 7) 

pp, 'Yp' and yp are the principle values of the integrals. 

The quantities p , '¥ , and y are defined by 
0 0 0 

00 

p E I dv vL:.(v) N(v) o(vi:R(v)+s) ' 
0 0 l 

(IV-38) 

00 

'¥ a I dv vi:.(v) M(v) o(vi:R(v)+s)' and 
0 0 1 

(IV-39) 

00 2 
y =I dv [vL:.(v)] M(v) o(vL:R(v)+s) 

0 0 l 
(IV -40) 

Hence, 

(see figure IV -3) . 

and the solution for the detector response is 

D (t) :: 
r 

-A.t -oo t -vL:R(v)t 
e 

0 +f _{:s e
8 

Im[x(s)]+ N(v)e 
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- A. t 
0 

If we define A as the coefficient of e • change t he 
0 

variable of integration from s to - A.. and define A(A.) as 

~ Im [x(A.)] , equation IV- 41 reduces to t he fo rm of the detector 

response mentioned in the first chapter: 

-A. t 
0 D (t) :z: A e + r o 

00 - A.t 
/A. A{A.)e dA. • 

* 
(IV-42) 

We have neglected the contribution from the initial distribution 

which damps out quickly relative to the other term a. 

When no discrete pole exists, the e ffe ctive decay constant 

is defined as the d e rivative of logaritlun of the detector response. 

(IV-43) 

- L:R (v)t 
The contribution from N{v)e was retained for this part of 

the computation. A comparison of the experimental results with 

the effective decay constant computed via this simple model is 

shown in figures IV-4 through IV-8. The sensitivity of the 

effective decay constant to the initial source energy, which effects 

the terms p and N{v), was found to be negligible after three milli ­
e 

seconds . Increasing the mean energy by a factor of seven increased 

the effective dec ay constant by eight perceqt at two milliseconds. 

The formalism for obtaining t he inverse transformation for 

n(v, s ) is identical to that for the detector response. The asymptotic 

energy distribution for a cas e with B 2 less than .B2 is shown in 
c 
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Figure IV-9. The time dependent energy distribution n(v, t) for 

a case with B 2 exceeding B 
2 

may be seen in Figure IV-10. Since 
c 

the mechanics of the computations are unchanged for beryllium, 

and beryllium cross sections were modeled and n(v, t) computed 

for two beryllium assemblies to compare with the experimental 

data of Gaerttner et al~43 ) The results are shown in figures IV-11 

and IV-12. Effective decay constants were also computed for the 

beryllium assemblies, but since we have no experimental data for 

time dependent decay constants, these results are not presented. 

Asymptotic decay constants computed for the graphite and 

the beryllium assemblies with B
2 

less than B 2 agreed with the 
c 

experimental results to within five percent . The uncertainty in 

the experimental decay constants is less than one percent in this 

range. Agreement with the effective decay constants for the gratphite 

assemblies was less than spectacular with both the amplitude and 

the slope of the theoretical A.eff(t) curve deviating significantly 

from the experimental results. The success of the theory to 

predict the energy distribution in beryllium (Figures IV- 11 and 

IV -12) indicates that in these leakage dominated as sem blie s the 

spectrum at the center is principally sensitive to how well the total 

neutron cross section is modeled. In summary, the qualitative 

agreement was satisfactory, but the theoretical model is inadequate 

for quantitative computations. 
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TABLE IV-1 

Material B2 Exp. A tTheor etical A (inclining A ) 
0 o a 

Cm -2 -1 (sec ) -1 (sec ) 

B 0.026 3238 +40( 62 ) 3312 
e -

Graphite 0.0051 103 0 + 1 1083 -

Graphite 0.0 ~ 75 75 

Graphite 0.0077 1470 +2 1539 -
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V . C OKCLUSIOKS AND DISCUSSION 

We have presented direct evidence of non- exponential decay 

in six graphite assemblies for significant measuring times after 

the source pulse . Additionally, for three larger assemblies, we 

found that the decay of the neutron population was well described 

by a single exponential during a significant interval (3 - 5 milli ­

seconds), but that the decay near the b eginning and the end of the 

total measurement interval could not be described as purely ex­

ponential. For the largest g raphite stack, the decay appeared to 

be exponential over the entire ten millisecond mea s uring inte rval . 

Further experim ents have shown that when the decay is clear ly 

non- exponential the spatial distribution is also not adequately 

desc r ibed by a simple diffusion theory r epresentation. Attempts to 

describe these com plic ated experimental results by a s imple modeled 

computation have been qualitatively interesting, but quantitavely 

unsuccessful. Hence, the expe rimental re sults present a real 

challenge to the theorist. 

A. Interpretation of non- exponential decay 

In Chapter II we defined the value of>..,.,. to be 1600 sec - 1 

based on the criterion that the effective decay constants exceeding 

this value failed to establish a "plateau" for any two millisecond 

interval during the measuring time aft er the s ource burst. Ht.ils (53 ) 

categorized the decay as non- exponential if the effective decay 

c onstant exhibited any ' 'drift " after 2 . 5 milliseconds following the 
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source burst. Based on this criterion, he found non- exponential 

-1 
decay for A.eff greater than 1250 sec . Using his criterion, our 

- 1 
value of A.* would also be around 1250 sec • However 1 below 

1600 sec- 1 our effective decay constants exhibit a tendency to 

increase for long times after the source burst, while above that 

value they monotonically decrease. This behavior is in qualitative 

agreement with Conn's ( 1 7 ) analysis for effective decay constants 

just above and below A.*. but the amplitude of the effect is greater 

than one would expect from his work. Hlils also has results for an 

assembly, comparable to our 1. 165 B~ graphite stack, in whic h he 

shows that the decay is very non-exponential in the time interval 

5. 0 to 7. 5 milliseconds after the source burst. Although the 

results are somewhat obscured by the high background of 14990 

counts/channel (more than ten percent of the total counts/channel). 

the effective decay constant apparently decreases by approximately 

ll percent/millisecond in this interval. 

The experiments of Hulsand those presented in this work 

confirm that there exists a minim urn size of graphite assembly in 

which the neutron population decays in a discrete asymptotic mode. 

Since the theories we discussed in Chapter I which predict this 

behavior are so complex that thus far they have yielded only qualita-

tive results, more specific comparison to the theories is not 

possible at this time. One useful theoretical result would be more 

specific information about what we can expect when we measure the 

effective decay constants for assemblies in the immediate range of 
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).,*. Given this information, the experimental value of A* can 

be more firmly established. This would be a very important 

result since the existing low energy cross section data are not 

sufficiently accurate for direct computation of A.*. Because 

of their long wave length, the low energy neutrons are sensitive 

to the "graininess 11 of the graphite sample.( 6S) Hence, the effective 

slow neutron scattering cross sections reflect the average crystal 

size and the presence of voids in the sample. The experimental 

and determination of A* provides informati?n about the magnitude 

of these effects . In addition, the time dependent effective decay 

constants that we have presented should be especially useful in 

checking theoretical models for the s c attering kernel. 

B. Implications of the Time Dependent Spatial Measurements 

The time dependent spatial measurements also pre sent some 

interesting theoretical challenges. One of the significant features 

of these measurements was the failure of the decay constants 

associated with the higher spatial modes to fall on the dispersion 

curve A.(B
2

) of the fundamental spatial mode. This effect is apparently 

not unique to graphite. Ritchie(3 0) noticed this effect over the 

whole range of his measurements on BeO assemblies . Even the 

water systems measured by Lopez and Beyster, (44) where the 

fundamental decay constants were discrete and well-defined, ex-

hi bited a trend for the higher order spatial decay constants to fall 

consistently above the fundamental dispersion curve. For our case, 
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the decay constants A.(B~) (associated with the second spatial mode) 

l d . B 2 This fall on a reasonably straight line when p otte aga1nst • 

apparent lack of 11diffusioncooling 11 suggests that the energy dis ­

tribution of the B~ mode is considerably different from that of a 

fundamental mode corresponding to Bf = B~. 

Although this phenomenon is not peculiar to polycrystalline 

media, we should point out that the difference !:.A. (!:.A. =A.(B
2

) n 
2 2 2 

-A.(B
1

), Bn = B
1

, n :::_ 2) in the results of Lopez and Beyster is an 

order of magnitude larger than one obtains from the zero diffusion 

cooling argument. Furthermore, the BeO results for A.(B~) in 

excess of ).*are lower than the fundamental dispersion curve . 

The nature of this phenomenon is apparently very complex. 

Unfortunately, the decay constants of the higher spatial 

harmonics are difficult to measure in the smaller blocks because 

the ratio of initial amplitudes A
2
/A

1 
decreases as we decrease 

the size of the stack. Reducing the pulse width to a few micro-

seconds increases the ratio, but at the expense of the total amplitude. 

Either the small ratio or the small total amplitude will severely 

restrict the length of the time interval available for the measurement 

of A.(B~), Hence, the experiments in the most interesting regime 

are also the most difficult to perform . 

The other interesting result of the time dependent spatial 

distribution measurements was the tendency of the extrapolation 

length (or wave number) of the smallest assembly to increase with 

time after the pulse. The value of Z for the larger three stacks 
0 
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also exhibited this trend to a lesser extent, but the increase was 

sig nificant for the smallest assembly and was independent of whether 

graphite plugs filled the probe hole . 

In transport theory the extrapolation length is defined in terms 

of the asymptotic part of the spatial distribution. Our measurements 

sampled the total distribution, and we were faced with the problem of 

extracting just the asymptotic part. Although we were careful to 

measure no closer than nine centimeters to the edge of the assembly, 

there was no way to guarantee that we were measuring the distribution 

in a region totally dominated by the asymptotic shape. Dropping the 

end points from the fitting procedure effected the results only trivially 

while increasing the uncertainty in Z . 
0 

These results raise the question of the validity of the buckling 

concept for small g raphite systems . This problem has been attacked 

theoretically by Wood and Williams( 66 ) in a numerical calculation for 

the pulsed slab problem. They considered graphite, beryllium, and 

water slabs. Their results for a 28 centimeter ( B
2 = l. 3 B

2
) graphite 

c 

slab indicate that the transient spatial solution is significant as deep as 

one-quarter of the width from the edge to the center. The mean energy 

and the angular distribution vary markedly as a function of position in 

the slab. Our results for Z
0 

are not really surprising when considered 

within this theoretical framework. 
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(43) 
The experimental results of Gaerttner et al. for the 

time dependent spect r wn in berylliwn are also consistent with this 

analysis. They found that the surface spectrum was radically 

different from the spectrwn measured at the center of the 

2 -2 B = 0. 026 em assembly. The surface spectrum exhibits 

a peak just below the Bragg energy, while the center spectrwn dips 

to a minim urn value. 

The steady state measurements of DeJuren and Swanson (
6 ?) 

are also consistent with the concept of the variation of the energy 

distribution with position in the moderator. They measured the 

spatial distribution in a graphite stack as a function of distance 

from a plane source on one face of the assembly. Their interpreta-

tion of the measurements was that no asymptotic spectrum was 

established in the assemblies when the transverse buckling was 

-2 less than 0. 0035 em • For a cubical assembly, this corresponds 

-2 to a total buckling of 0. 00525 em 2 
We measured no )..eff(B 1 t}, 

which were constant over the entire measuring interval, for systems 

. h B2 . - 2 w1t 1n excess c:i. 0. 00545 em . 

Hence, we see that there exists a substantial body of evidence 

that the disappearance of the discrete decay constants as one 

reduces the size of the graphite system is inseparably coupled to 

the space and energy distribution of the neutron population. 
-)..t 

The whole question of separability (n(E_. v, t) = R(r),0'(v} e ) has 

been examined by Williams. (69 } He finds that when the velocity 

and time variables are coupled, corresponding to)..*< A. , the space 
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and time variables are also coupled. For t hese systems the 

buckling concept breaks down 1 and the measured effective decay 

constant is a function of detector position. 

C. The Origin of the Oscillations in the Effective Decay C onstants 

One outstanding feature of the \eff(t) curve s is the pre sence 

of oscillations which appear to increase in amplitude near the end 

of the measured interval. Fig ure V -1 shows some of the experi ­

mental results of H~ls( 53 ) which also exhibit the oscillations. We 

mentioned in C hapter II that oscillations of frequency v B B come 

directly from the analysis of the Laplace transform of the neutron 

distribution function, {SS) but that the physical interpre tation i s 

quite difficult . For the latter reason1 one i s l ed to suspect that 

the oscillations are related to some parameter i n the data collection 

and analysis. In table V-1, we have listed t he buckling of the 

assemblies, the approximate oscillation frequency, the Bragg 

frequency (vBB), and 2rr/6T, where 6T is the . length of the fitting 

i nterval. 

While the data appear to be correlated to t he length of the 

fitting interval 6T, the experimentally observed frequencies are 

too approximate to draw any definite conclusions. The question of 

whether the oscillations are related to the pollycrys talline structure 

of the g raphite c an be experimentally resolved . D ata from a water 

system with an equivalent \eff can be analyzed by the same fitting 

procedure. If no regular oscillations app ear in the results, we 
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TABLE V-1 

~xperirnent B 2 (cm - 2 ) Experirn~ntal w VBB 2Tr/6T 
(s ec - ) (s e c- 1 (s e c-1) 

H:lls (53) 0.0062 6280 4564 11, 017 

II 0.0070 8602 4854 11, 017 

If 0.0078 8971 5133 11, 017 

~his work 0.0064 3600 4640 2512 

II 0.0099 8970 5800 8373 

II 0. 0099 6280 5800 2500 

II 0. 0125 8263 6148 8373 
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can conclude that the oscillations in the graphite data are physical 

in origin. However , if regular oscillations appear, further experi -

ments will be required to test the sensitivity of the results to 

such parameters as the width of data collection channels and the 

length of the fitting interval. 
• 

D. Suggestion s for Further Research 

While we have presented convincing evidence for non-

exponential decay of transient neutron populations in small graphite 

assemblies, several experiments are still needed to supply data 

necessary for the complete interpretation of neutron die - away 

experiments in g raphite. The most powerful of these experiments 

would be the measurement of time dependent spec tra for small 

graphite assemblies such as Gaerttner et al.(
43

) have done for 

beryllium assemblies. Such detailed data are a more direct che c k 

on the theory than the int egral exper iments we have reported. 

A simpler expe rim ent, which may prove to be even more 

important than the energy distribution measurements, is a direct 

comparison of die- away experiments performed on two graphite 

systems w hich differ in the average size of the individual crys ­

tallites. The size of the crystallites effects the elastic scattering 

cross sections. (
3

0) The dispersion in the experimental results 

for neutron die - away experiments in graphite may be in part due 

to variations in the average size and in the volume o ccupied by 

tiny voids between the individual crystallites. Variation in the void 
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fraction is reflected in density variation between samples. 

Finally, a comparison of non-exponential decay measured 

with detectors of different energy sensitivity may be necessary 

to serve as a reference for any detailed theoretical computations. 

The existing data should provide sufficient impetus for such 

calculations. 

' 
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