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ABSTRACT

Detailed pulsed neutron measurements have been perform ed
in graphite assemblies ranging in size from 30.48 cm x 38.10 cm
x 38.10 cm to 91.44 cm x 66.67 cm x 66.67 cm. Results of the
measurement have been compared to a modeled theoretical compu~-
tation.

In the first set of experiments, we measured the effective
decay constant of the neutron population in ten graphite stacks as
a function of time after the source burst. We found the decay to
be non-exponential in the six smallest assemblies, while in three
larger assemblies the decay was exponential over a significant
portion of the total measuring interval. The decay in the largest
stack was exponential over the entire ten millisecond measuring
interval. The non-exponential decay mode occurredwhen the effec-
tive decay constant exceeded 1600 sec™l,

In a second set of experiments, we measured the spatial
dependence of the neutron population in four graphite stacks as a
function of time after the source pulse. By doing an harmonic
analysis of the spatial shape of the neutron distribution, we were
able to compute the effective decay constants of the first two spatial
modes. In addition, we were able to compute the time dependent
effective wave number of neutron distribution in the stacks.

Finally, we used a Laplace transform technique and a

simple modeled scattering kernel to solve a diffusion equation for
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the time and energy dependence of the neutron distribution in the
graphite stacks., Comparison of these theoretical results with the
results of the first set of experiments indicated that more exact
theoretical analysis would be required to adequately describe the
experiments.

The implications of our experimental results for the theory

of pulsed neutron experiments in polycrystalline media are discussed

in the last chapter.



Chapter

L

1II.

IV.

iv
TABLE OF CONTENTS

Title

Acknowledgments

Abstract

Table of Contents

INTRODUCTION

A. Pulsed Neutron Experiments

B. Theory of Pulsed Neutron Experiments

C. Review of the Experimental Work

D. Motivation fot This Thesis
MEASUREMENT OF EFFECTIVE DECAY
CONSTANTS

A. Apparatus

B. Data Collection Procedure

C. Data Analysis

D. Results

MEASUREMENT OF TIME DEPENDENT SPATIAL

DISTRIBUTION

A. Experimental Apparatus and Procedure

B. Analysis of the Data

C.

Results

COMPUTATION OF EFFECTIVE DECAY
CONSTANTS

CONCLUSIONS AND DISCUSSION

A.

B.

Interpretation of non-exponential decay

Implications of the Time Dependent
Spatial Measurements

Page

ii

iv

20

27

29
33
37
39

45

57
57

65
70

86
110

110

112



v

Table of Contents (Cont'd)
Chapter Title

C. The Origin of the Oscillations in the
Effective Decay Constants

D. Suggestions for Further Research

REFERENCES

Page
116

119

121



e L

I. INTRODUCTION

A. Pulsed Neutron Experiments

Pulsed neutron experiments are a broad class of experiments
in applied neutron physics which consist of three basic elements:
(1) a strong neutron source of finite duration and regular repetition
rate, (2) a medium with which the neutrons can interact, and (3)
collection of data related to the neutron field and its interaction
with the medium. One must describe the energy, spatial, and time
distribution of the source, the nature of the medium, and the type
of information (data) the experiment is designed to acquire in
order to classify a pulsed neutron experiment. Pulsed neutron
sources are usually of the high energy type (> 1 MEV) produced
by reactions in an accelerator or of the thermal (<1 EV) type
produced by a chopped beam of neutrons from a reactor. Materials
are classified according to their fission, scattering, and absorption
properties. Data acquisition may be classified as to whether
spatial and/or energy distributions are measured in addition to
the time response of the neutron population.

We shall be concerned with pulsed neutron experiments
performed on such neutron moderators as water, beryllium,
beryllium oxide, and in particular, graphite. When a burst of high
energy neutrons collides with a neutron moderating material, the
energy is degraded from several MEV to a few EV in a time which

is short relative to the measuring times of most experiments on
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the se materials. Upon reaching this energy range, the population
experiences a process known as thermalization, in which the
neutrons exchange energy with the moderator atoms as the
average energy of the neutron population approaches that of the
moderator atoms. Measurement of the time constant T with which
the average neutron energy approaches an asymptotic value after
the pulse injection is a common type of pulsed neutron experiment
designed to study the thermalization process.

The thermalized neutron population attenuates by parasitic
absorption and, in a finite system, by escape through the system
boundaries. The decrease in neutron population can be described

A

as an exponential decay ~e’ K during at least a portion of the mea-
suring times for many moderator systems. The most common
type of pulsed neutron experiment is to measure the asymptotic
decay constant A associated with neutron populations in various
sizes of a single moderator. Rather than to classify a particular
system by its geometry and dimensions, it is convenient to specify
a single parameter, the geometric buckling Bz, whose prescription
(see equation I-13) is defined for such regular geometries as
slabs, spheres, and right-circular cylinders. The decay constant
)\ increases monotonically with BZ. Because the dispersion curve
X(BZ) can be related to important quantities in reactor physics
calculations, as we shall demonstrate in section B, considerable

research effort has been put into pulsed neutron experiments since

1,2,3 . . .-
von Dardel( »4,3) published his original papers more than seventeen
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years ago.

Two other types of pulsed neutron experiments are consider-
ably less common. One is the measurement of the decay of the
neutron field as a function of position in the moderator. The other
is measurement of the neutron energy distribution as a function
of time after the pulse. These two types of experiments are more
rich in information, and correspondingly more difficult to perform,
than the other two types. As one might expect, the existing data

are roughly inversely proportional to the difficulty of the experiment.

B. Theory of Pulsed Neutron Experiments

The theoretical framework for the analysis of the pulsed

(4)

neutron experiments is the Boltzmann equation for neutrons,

[gf tv V+yv Z.r(v)]n(z_, v, t) = [v! Es(y_' =v)n(r, v', t) d3v'+S(£, v, t)

(I-1)
which describes the neutron population in the moderator at times
after the source burst. The neutron distribution function n(r, v, t)
is the probable neutron density in d3r around r, with velocity d3v
about v, at time t. The total macroscopic neutron cross section
of the moderator is represented by ZT(V). S(r, v, t) is the neutron
source distribution function, usually set equal to zero for t > 0.
The quantity Es(z'-°z) is the differential scattering cross section

for neutrons scattering from d3v’ about v' to d3v about v. The
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appropriate boundary condition for the pulsed source problem is
that neutrons escaping the physical boundaries of the moderator

do not return. If eR is a unit normal vector pointing out of the

moderator at B an the surface, then
n(R,v,t) = 0 if v "eR < 0 . (I-2)

Obtaining the differential scattering cross section from the
general theory of scattering of particles is almost as difficult as
solving equation I-1 for n(r,v,t). Although presentation of the
complete formalism for construction of the scattering kernel
(differential scattering cross section) would principally serve to
distract us from the real problem, a few words on the general
properties of scattering kernels and on the form of E'.S (v'=v) for
polycrystalline materials are in order. To facilitate the discussion,
we introduce the neutron energy E and a unit vector {1 such that
v = vi.

The principle of detailed balance, borrowed from the theory
of statistical mechanics, holds for the scattering kernel. A neutron
gas, in thermal equilibrium with a surrounding, non-absorbing,
ihfinite, homogeneous medium at uniform temperature T, assumes
an energy distribution proportional to a Maxwellian energy distribu-

tion M(E) given by

: g -E/T
M(E) = ;2 e . (I-3)
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(4)

The principle of detailed balance may then be stated as

M(E")E_(E'-E, Q'~Q) = M(E)L (E~E', Q~Q'). (I-4)

To construct a scattering kernel, one considers a system
of atoms, whose nuclei have very short range (point) nuclear
potentials, scattering neutron waves of various energies. In the
thermal energy range the chemical binding between scattering
centers, which is the same order of magnitude as the neutron
energy, is responsible for space-time correlation between the
scattering particles. This correlation results in coherent
scattering in which the scattered neutron waves interfere. There
is also an incoherent contribution to the scattering cross section.
The nature of the chemical binding determines the allowable energy
exchange processes while the nuclear potential determines the
amplitude of the scattering cross section. The scattering kernel
is usually decomposed into an elastic §(E'-E) term and an

(5).

inelastic term Each term is composed of a coherent and an
incoherent part. In practice, one assumes that the scattering
depends only on the angle between (' and Q, although the assumption
ig not valid for graphite which is composed of highly anisotropic
crystallites. If one defines o = Q'-Q, the total macroscopic
differential scattering cross section may be written as
ES(E'-*E, u,o).

Because of the regular ordering of the nuclei in crystals,

the coherent, elastic scattering term has a relatively significant
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am plitude for neutrons with wave lengths not exceeding twice the
maximum spacing between adjacent planes (corresponding to
energies above the Bragg energy). One must appeal to the
language and the results of solid state physics in order to compute
the necessary cross sections for polycrystalline moderators such

as graphite. William 8(4)

gives the results for the coherent,
elastic differential cross section averaged over all crystal

orientations as

k</8E -
8 2W (k) 2

e - ™ z(k) k
Eez, coh(E' E, ‘u'o)'zcoh ZE'V; k?o = 6(l-zp-u NE-E")

(I-5)
where k is the amplitude of a reciprocal lattice vector, WD(k)
is the DeZLBye - Waller factor, Z(k) is a reciprocal lattice weighting
factor, V;) is the volume of a unit cell in the lattice, and the units

are such that i and the neutron mass are set equal to one. The

elastic, incoherent cross section remains finite below the Bragg

energy EB and has the simpler form
-2W
Zinc D
Y o ARG -E! -
P (E'=E, ,uo) - S(E-E') (I-6)

ek, inc

where the scattering has been assumed to be isotropic.
The inelastic scattering term is generated by treating
the scatterers as a system of quantized, harmonic, lattice

vibrations (phonons). Since multiple phonon exchanges are possible,
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the inelastic scattering term is quite complicated and is usually
handled in some approximate fashion. One technique is to expand
the term in a power series in which the nt—}—l— term represents the
contribution from n-phonon exchange processes. The other common
technique, used for heavy crystals, is to expand the inelastic
kernel in powers of 1/A, where A is the nucleus to neutron mass
ratio. If the inelastic term is assumed to be totally incoherent,

the mass expansion yields to order 1/A, (4)

B, E 2 k% f(W)6(E-E'-w)
- . W el 5
L BE-E, u )= () 55 _f T : dw (I-7)

where Zb is the bound atom scattering cross section, K is
the magnitude of the neutron momentum transfer, and f(w) is the
phonon frequency distribution.

The complicated structure of the scattering integral has
been partially responsible for the failure of equation I-1 to yield
an exact solution. The gradient term v- Yn(r, v, t) together with
the exact boundary condition I-2 also makes the solution difficult.
Consequently, approximate equations have been used to obtain the
neutron distribuﬁon function. The approximations fall into two
logical categories: (1) the energy dependence is neglected and the
monoenergetic Boltzmann equation is studied for the exact spatial
dependence, or (2) the spatial dependence is approximated and the

the rmalizationrproc ess is studied.
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Since pulsed neutron experiments are designed principally
to study the thermalization process, one would not expect the

monoenergetic Boltzmann (transporf) equation,
E—aa—t +v Q- V+v Zola(r, Q1) = v [Z(Q'=Q)nf; Q/od0+S(x,Q, t) (I-8)

to yield much information about the time dependence of transient
neutron populations. Information frorr‘l the solution to I-8 can be
helpful in modeling the spatial dependence for the energy dependent
problem. For this purpose, the steady state (constant source)
solution is often adequate. Solutions for the spatial distributions
are usually decomposed into two parts, an asymptotic solution
which holds for mo st of the interior region of the moderator, and a
transient solution which is most evident near the surface. The
asymptotic solution can be extrapolated to zero at some point
outside the moderator. The distance between the surface of the
moderator and the point where the asymptotic solution extrapolates
to zero is called the extrapolation length ZO. The concept of the
extrapolated endpoint comes from the famous Milne problem, (6)
the steady state, half-space version of equation I-8. Computations
of Zo for finite geometries, such as that of Erdmann and Shapiro(—”
siabs of water, indicate that Zo is a weak function of system size.
One-speed transport theory indicates that Z_ increases as the system
dimensions shrink. However, there is a competing effect due to

distortion of the neutron energy distribution, (8) so that the exact
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behavior of ZO(BZ) is not monotonic.

For the analysis of pulsed neutron experiments, it is
usually more instructive to relax the conditions for detailed
knowledge of the spatial distribution and to emphasize the energy -
time behavior of the neutron field. The energy dependent diffusion

(4)

equation,

(o - vD(E) V2 +vZ (E)+vD (E) In(r, E, t) =
f:::lE'v'EB(E'-'E)n(E,E',t)+ S(r, E, t) (I-9)

is a reasonable representation in many physical situations and is
the usual basis for analysis of the raw data from the experiments.
D(E) is the diffusion COefficient(g) for neutrons of energy E.

z a.(I-ZZ) and b S(E) are the total absorpfion and scattering cross
sections, respectively. The usual boundary condition requires
that the neutron density vanish at some extrapolated boundary of

the system. For a slab of width 2a, this condition is

n(+(a+2), E, t) = 0 . (1-10)

The spatial distribution is easily obtained using this boundary
condition. If we use spatial eigenfunctions which are solutions to

t he Helmholtz equation,

v X (x) + BZ X, (r) = 0 . (1-11)

the solution for n(r,E,t) is then



) B
n(l' » EJ t) _: E n(Bia EJ t) Xk(z) (1-12)
- k

The lowest eigenvalue Bi of the Helmholtz equation defines the

buckling for the system. For the slab case

2 _ ki
By = [mTz;r d (1-13)

If we define the scattering operator O such that

a0
BHE) = [dE'v! Z(E' = E) £(E') - v T_(E){(E)
o]

(I-14)

then we may write the equation for the energy-time distribution

of the fundamental spatial mode as

[ 5= +vDE)BZ+VE_(E) ] n(B% E, t)= 8n(B% E,t)+s(B%, E, T).
(I-15)

The form of the equation suggests that after sufficient waiting time,
energy-time separability is a reasonable assumption. Hence, we
try the ansatz
- At
2 2
n(B,E,t) = n(B ,E)e (I-16)

in the homogeneous equation, leaving us with

[ -\ +vD(E)B®+vZ _(E)] n(B% E)= On(B%, E) . ' (3-37)
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It seems natural to identify the eigenvalue A with the experimen-
y 2
tally determined decay constant for a moderator of buckling B".
We can obtain a perturbation solution to equation I-17

by expanding n(Bz, E) and )\ in powers of Bzz

n(BZ, E)

2 4
g, (E) + §(E)B” + #,(E)B™ + . ..

and (I-18)

A = la+DoBz-CB4+FB6+ s ow oW

The functions ﬂj (E) are eigenfunctions of the scattering operator
for the infinite medium (BZ = 0) case. If the absorption cross
section varies as 1/v, as is often the case, the first term ﬂ'o(E)
will be the Maxwellian distribution. (4) The names of the coefficients
in the expansion of A are chosen for historical reasons.

Substituting the expansions into I-17 and equating equal

powers of Bz yields the following set of equations:

[- A+ vD,_1 B (E)=04 (E) (1-19)
[ -D, +VvD(E) ] f(E) = Og,(E) (1-20)
[-Do +vD(E) ] g(E) -Cfg_(E) = 89’2(}1‘.) . (I-21)

We can integrate these equations over energy and obtain the values

for X\ 4. D,, and C. The ansatz I-16 explicitly assumes an

o.l

asymptotic energy distribution so that



i

o0
/] OgE)dE=0 . (1-22)
o

With the assumption of 1/v absorption, we have

A & = Vo an, (1"23)
[+ o]
/ dE vD(E)M(E)
D = 2 (1-24)
o o0
/[ dE M(E)
[e]
o0
/ [vD(E)-D_]1 # (E)dE
and cC = g . (1-25)
[+ o]
/ dEM(E)
(e}

It is the relation of the experimental dispersion curve X (Bz)
to the diffusion parameters A a’ Do’ and C that has spurred
much of the pulsed neutron research.

Although the above model is quite useful, it is difficult
to make much headway with a general, complicated scattering
kernel. However, a similar model, the multi-group diffusion

equations,

o 2
Cgr -v;D; v+ viZ; Ing(z,t) = ?vjﬂjﬁnj(bt) , t>0,

(I-26)
Vw3, 2, » w o N

can be solved even for very complicated scattering kernels,
provided each energy group satisfies the same boundary condition.

The time dependent spatial distribution for the it—h- group is
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is the averaged differential cross section for the

n,(z, t), Z)j i

scattering from the j&- group to the i& group, Ei is the
average total cross section for the iEE group, and Di is the
average diffusion coefficient for the 111 group. If Ei-l and Ei
are the energy boundaries for the it—h— group, then the average

quantity fi is defined as
E,
i
/] W(E)(E)dE

E.
f, = lé . (I-27)

f ' W(E)dE

B

where W(E) is some weighting function, often taken to be the
Maxwellian energy distribution.

There are always N eigenvalues for each spatial harmonic,
hence the solution can be written as

"‘X t

o0 N j
o, (x, t) "k§’1j=1Aikje Xplx), 1=1,2,. . . N. (I-28)

The lowest eigenvalue )Lll can be identified with the experimental
decay constant \.

Based on the analysis of the last two models, one might
suspect that the experimental decay constants can be identified
with the eigenvalues of the Boltzmann equation. Hence, it is
worthwhile to r.e-examine equation I-1, considering the eigénvalué
spectrum rather than trying to solve for the neutron distribution

function.
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Ku‘s’c‘fer(lo) has reviewed the techniques for obtaining the

A
eigenvalue spectrum. If we define the linear Boltzmann operator A,

Rf(;_, vi=vey f(r,v)+ v ET (V)i(z, v)- [ d3V'EE(1’-'z)f(£, v').
(I-29)

we may write the Boltzmann equation in the suggestive form

[yc* A 1n@myt= Sy bt . (1-30)

One technique is to make the ansatz
- %
n(r,v,t) = n(r,v)e i t>0 (I-31)
then look for the eigenvalues of the homogeneous equation

Aniry) = A nlny (1-32)
where A is a linear operator defined on a Hilbert space,
using the spectral theory of operators and functional analysis.
An alternate and perhaps more straightforward approach is to
Laplace transform I-30 and then examine the analyticity of the
transformed distribution function.

This type of analysis has been successful for various
system geometries and for various scattering kernels. Very
general results have been found by Albertoni and Montagnini(“)
for the case of a finite, homogeneous, convex body of arbitrary
shape surrounded by a vacuum and the isotropic, free gas scattering

kernel. There results for the eigenvalue spectrum are that the
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half-plane Re ) > [ v Es(v)] min is filled with a continuous
spectrum and that there exists at most a finite number of real,
discrete eigenvalues on the line 0< Re A <[v Ea(v)] min®
Furthermore, for sufficiently small bodies, the number of
discrete eigenvalues reduces to zero. Borysiewicz and Mika(lz)
have extended these results to the case of a non-square integrable
scattering kernel (the elastic scattering contribution for poly-
crystals) and shown that the essential features of the eigenvalue
spectrum do not change.

The disappearance of the discrete eigenvalues for sufficiently
small systems has some important implications for pulsed neutron
experiments which are designed to measure a discrete decay con=-
stant. The situation is particularly serious for the polycrystalline
materials which have a very sharp drop in the scattering cross
section below the Bragg energy. Although the work of Borysiewicz
and Mika“a) pretty well describes the state of the art of eigenvalue
analysis for the Boltzmann operator it is worthwhile to consider
some approximate theories which can give more quantitative results
~for what one can expect experimentally.

One particularly useful approximation is to represent
the spatial distribution by the asymptotic reactor theory“3)
ansatz, eiéoz' where the square of the magnitude of the wave
vector B can be identified with the buckling of the system. This

infinite medium representation of the problem is equivalent to con-

sidering a single spatial mode in the finite case. Shapiro and
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Corngold(l4), considering the infinite medium (Bzz 0) case, using
the heavy crystal approximation and the Einstein and the Debye
representations for the phonon frequency distribution, found that
for reasonable values of the Einstein frequency or the Debye
temperature, no more than one discrete eigenvalue exists. Hence,
the approach to equilibrium time constant 7, which is identified as
the reciprocal of the second discrete eigenvalue, is not well

defined for graphite. Conn and Corngold“B)

combined asymptotic
reactor theory with the isotropic part of the full scattering kernel
to obtain a complicated eigenvalue spectrum for polycrystals.
Figure 2, in which [ v Es(v)] min 1° represented as X*,

(11)

shows the eigenvalue spectra found by Albertoni and Montagnini
and by Conn and Corngold. (15).

Despite the complicated nature of the theoretical eigenvalue
spectra, experimentalists have reported decay constants for
polycrystalline systems with B? well in excess of Bi , where Bi is
the value of the buckling such that X\ (Bi) = A4+ (The value of X,
is not well known for graphite, as we shall see in the next chapter.)
In light of this disparity, Corngold and Durgun attacked the problem
using diffusion thé ory and a simple modeled kernel which approxi-
m.ated a polycrystal kernel. They found that the detector response
for the fundamental spatial mode could be represented as

- o0

) t
D(t) = Age ® + f AQe N ax (1-33)
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For systems with B> By s

the discrete term vanishes, but the
weighting function A( A ) is sharply peaked for a portion of the
range Bz > Bi . Although the representation I-33 is certainly
not adequate for the complicated area continuum of the more general
theories, it seems adequate to interpret most of the experimental
results. The peaking in the weighting function gives rise to what
has been termed pseudo-exponential decay. Conn(ln has extended
this analysis using asymptotic reactor theory and simple modeled
kernels for graphite and beryllium, finding that experimentally it
is probably very difficult to distinguish pseudo-exponential from
true exponential decay for a limited range of bucklings.
Computation of effective decay constants which vary with
timme after the end of the burst is useful for comparison with
experimental results. Wood(ls’ AE) has performed numerical
computations for xeff(BZ, t) of beryllium using a multi-phonon

(20)

scattering kernel. Ardente and Rossi used a simple maodel in
a numerical scheme with a multi-phonon scattering kernel to
obtain results for }_eff(Bz,t) for graphite and beryllium. Ritchie
et al. gt have performed multi-group diffusion theory calculations
for beryllium oxide using a scattering kernel based on Sinclair's
pi’xonon frequency distribution to obtain Xeff(BZ' tle

Only a partial review of the theory has been attempted here.

More complete reviews can be found in Williaxns(4) and Parks et al.(s)
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C. Review of the Experimental Work

The results of several theories indicate that the dispersion
curve X\ (BZ) can be accurately described by the first few terms

of an expansion
x (B%) = <vI,>+D B - cBt+FB®+ ... . (1-39)

The coefficient C is the diffusion cooling term which represents

the preferential leakage of higher energy neutrons, an' effect
observed by von Dardel(z) in his early work. Most pulsed neutron
experiments have been designed to obtain the coefficients in I-34
experimentally. The advantage of the pulsed technique is that the
time of neutron capture relative to the source burst can be measured
extremely accurately, allowing quite precise determination of the
asymptotic decay constant.

Antonov et al, (22} was the first to report results for graphite
in 1955. Beckurts(ZB) later reported values of Do and C in dis-
agreement with Antonov. Since then there has been almost a
continuous production of ekperiments to supply the coefficients
of equation I-34. The results have been characterized by disagree-
ment which is not attributable to the assigned experimental error.

A limited collection of the results may be seen in Table I-1. The
spread in results for Do and C reflects the non-uniqueness of
the A (BZ) curves from the various experiments. Evidence of

this spread of results may be seen in Figure I-3 . The experiment=
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ally generated dispersion curve X(Bz) is apparently sensitive

to the type of analysis used, especially the delay time between the
source burst and the beginning time for the exponential fit tc; the
data, to the type of shielding from roon-return neutrons used, to
how coarsely the time intervals after the neutron pulse are
discretized, to the energy sensitivity of the detector, and to the
detector placement. The nature of the graphite, that is, the
density and average crystal size, also effects the result.

Part of the problem in obtaining the A (BZ) curve
experimentally is in determining whether an asymptotic exponential
decay is ever established, since the theoretical value of )\, is
not well established. (17) Recent results indicate that the onset
of the region of non-exponential decay may be hard to discover

(28)

experimentally. Hanna and Harrisg using 17 channel analysis
found discrete exponentials with decay constants up to almost 3000
sec-l for graphite. On the other hand, Bull et al. (29) using a 256
channel analyzer found that they were probably not measuring a
discrete term above 1600 sec_l. Since both groups used reasonable
shielding and a minimum of two milliseconds waiting time, the
discrepancy probably indicates that the deviation from exponential
decay is quite small and only shows up with the finer time mesh.
Agreement between their quoted values for D, and C leads one

to suspect that the other critical facets of the experiment were

similar.

The dispersion curves for the other two polycrystalline
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moderators, beryllium and beryllium oxide, also present an
anomalous spread of results. Ritchie(?’o) has recently published
an extensive study of BeOin which he has found evidence of non-
exponential decay in the range of A greater than about 3600 sec-l.
Fullwood(Bl) graphically displayed non-exponential die-away
in beryllium by comparing the beryllium decay with an '""equivalent'
polyethylene system in the same environment., Zhezherun, (32)
however, used a chopped beam of thermal neutrons and claimed to
obtain exponential decays for all sizes of Be assemblies.
Another important class of pulsed neutron experiments
has been directed toward measurement of the rate at which the
average neutron energy approaches an asymptotic value, Usually

this phenomenon is described by(33)

E(t) - E(t=e) ~e t/T ' (I-35)

The quantity T is called the thermalization time and the quantity
of interest in the experiments is the value of T for an infinitely
large moderator. Theoretically, T is identified with the
reciprocal of the first higher energy harmonic of the fundamental
spatial mode, if it exists. (1)

There are several methods for obtaining T . Starr,
Honeck, and De Villiers(34) used detectors of different energy
sensitivity to determine the time dependence of the average neutron

velocity in several sizes of graphite stacks. Hanna and Harris(35)

recently used a silver transmission technique (examining the ratio
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of detector response with and without a silver filter) to obtain
T (BZ). The values for T(Bz) are extrapolated linearly to BZ= 0

t o estimate the infinite medium result T Table I-2 shows that

th*
the results of the various authors for T are in considerable

th
(36) using the

disagreement. Recent work by Polley and Walker

Cd/Hg reaction ratio measured with a Ge(Li) detector in a large

graphite stack indicates that the model given by equation I-35

is inadequate for graphite and that a unique T th probably does

not exist. (14)
Very little work has actually been reported on measurements

of time dependent spectra in finite moderating assemblies.

Bernard et al. (41)

and Poole et al. (42) have made these measure=-
ments for graphite, but their results do not include neutrons in
the low energy range where the graphite total cross section changes

)

very rapidly with energy. Gaerttner et al. (43 performed time
dependent measurements of the energy distribution for beryllium
stacks. Neutron populations in assemblies in the range exceeding
Bz' showed no indication of attaining an asymptotic energy distribu-
tion and the effects of the Bragg peaks in the total cross section
were quite evideﬁt in the energy distributions.

| Experiments designed to measure time dependent spatial
distributions have been important for two principle reasons. The
first is that the value of the extrapolation length Z_ can be deter-

mined and the proper buckling assigned to the system. These

measurements also allow isolation and observation of the decay of
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TABLE I-2

The Thermalization Time For Graphite

Author Year | B? Range Method (microseconds)
Beckurts (23) 1956 <. 0055 | Ag Filter 200 + 50
- Transmission
Starr and (. 001765 - | Mean Velocity
deVilliers (37) 1962 .01320) Measurement DS k53
Serdula and 1965 (. 005 - Ag Filter 750 + 200
Young (38) . 0145) Transmission -
Kaneko and Filter G
Sumita (39) 1965 ©e Transmission 296 '+ 50
Purica, et al. (.0014 - Frequency
(40)) 1967 .012) Characteristics 694 X 57
Hanna and (003 =~ Ag Filter
Harris (35) 136% . 0253) Transmission 660 + 115
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individual spatial modes, information which is especially important
in large systems often rich in higher spatial harmonics. Light
water systems have extensively studied using this technique. In

(44)

a classic experiment, Lopez and Beyster measured ZO(BZ)
and determined values for the diffusion parameters of water from
the decay of the fundamental spatial mode.

Time dependent spatial harmonic analysis for large graphite
systems has been reported by Hanna and Harris(zg) and by
Chwaszczewski and Mikulski545) Davis et al. (26) have measured
Zo for large graphite systems by measuring the flux distribution
at long times after the pulse when only the fundamental spatial
mode persists. Klose et al. (24) have determined Zo by treating it
as a free parameter in fitting a curve to ( A , BZ) data. Ritchie(30).
has provided both harmonic analysis of a neutron pulse and ZO(BZ)

for beryllium oxide, while .A.ndrews(46) has supplied the necessary

data for beryllium.

s Motivation for This Thesis

Except for detailed time-energy distributions, it is readily
evident that a great many experimental results for transient neutron
populations in graphite have already been compiled. With the

(36, 47)

possible exception of a couple of thermalization experiments,

the existing results for graphite do not prove a very adequate check
on some of the éxciting theoretical developments of the 1960's.

The reason for this inadequacy is not that the experiments are in
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any way faulty, but rather that they have been specifically designed
to measure thermalization and diffusion parameters.

The principal void to be filled in the experimental results
is the empirical determination of the buckling ranges characterized
by exponential, pseudo-exponential, and non-exponential decay
of transient neutron populations. In addition, the extension of Zo
measurement into the range of probable non-exponential decay is
needed. Finally, a check on the ability of a simple theory to
provide an effective decay constant when a discrete ) does not

exist will be useful.
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II. MEASUREMENT OF EFFECTIVE DECAY CONSTANTS

Since the diffusion parameters of graphite, determined by
the pulsed source method, have been published by many competent

(62)

authors, it seems rather obvious that the world does not need
another set of these parameters. However, since the dispersion
in the parameters may be due to the non-existence of an asymptotic
decay mode when the apparent decay constant exceeds some critical
value, knowledge of the regions of exponential, pseudo-exponential,
and non-exponential decay seems essential to the interpretation of
these results. We have performed experiments in which the decay
of the neutron populations exhibits these types of behavior for
reasonably well defined ranges of the graphite stack size and appar-
ent decay constant. Other experiments, in which the spatial distri=
bution of the neutrons fails to achieve an asymptotic mode are
reported in the third chapter.

In order to tie the critical decay constant to the theory
discussed in Chapter I, we shall identify 1}, ={v Es(v)-i-vza(v)] iR
as the critical decay constant. The theoretical value of X\ % has

(17)

not been well established. The mo st quoted value, based on

old cross section measurements in the sub-Bragg energy range,

is A, = 2600 sec™!, (%) The kernel of Ghatak and Honeck, (49)

based on Parks' model for graphite, yielded 1\, approximately

equal to 1100 s,ec-l. Values based on other kernels have been

consistently lower than 2600 sec'l. Conn(so) has recently included
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the inelastic coherent contribution to the total cross section in a
kernel to compute L, as 1811 sec-l. However, the theoretical
models of the scattering kernel are not very accurate in the sub-

Bragg energy region, so that the theoretical values for A, are

(70)

just first order estimates. The work of Shapiro, in which he

describes the decay of the detector response by a sum of two
exponentials, gives an experimental estimate of )\ , in the neigh-

borhood of 1800 sec™'. As mentioned in Chapter I, Bull et al{2?

have estimated to be 1600 -.v,ec:-1 based on their experiments.

(51)

Corngold and Michael used a perturbation theory solution due

to Takahashi(sz) to obtain an upper bound on C based on the 2600
1

sec * value for X e Their expression
1 2 2

c< s [<o | (vD(v) )2 | 0> - <0 |vD(v)] 0>} ] (I1-1)
A

can be inverted and an experimental value supplied for C to yield
a bound for Ay+ If we use C due to Hanna and Harris, (28) b "
is bounded above by 1735 g "R,

Information about the value of )\, is not readily available
from the experiments designed to determine the diffusion para-
meters, for the data one collects in those experiments is specifi-
cally geared to the determination of an asymptotic decay constant.
The value of the decay constants can be determined extremely
accurately from data which is much less detailed than one needs

to detect subtle changes in the fitted value of the decay constant
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at increasing times after the source burst. Hl.ils(53) has obtained
some very recent data of fine time mesh and for very long times
after the experiment which indicate non-exponential decay in his
graphite for a buckling of . 006723 cm™2 (decay constant about
1350 sec-l) for times greater than 6.5 milliseconds after the source
burst. The data we have obtained at Caltech is in minor disagree-
ment with that of Huls. Our data indicate X, in the neighbor-
hood of 1600 5ec'1, which corresponds approximately to a buckling
of . 0085 cm-z.

Unfortunately, values of Bi corresponding to A, will
vary from experiment to experiment due to variations of up to
10 percent in the density of the graphite. To facilitate future dis=-
cussion, we shall define a critical buckling, Bi = ,0085 cm'z~Bi ,

and give other values of B2 in units of Bi.
A. Apparatus

Neutrons were produced for this experiment with- a Texas
Nuclear Corporation model 9505 neutron generator, which is a
150 KEV linear accelerator. High energy ( 14.7 MEV) neutrons
result from the T(d, n) reaction as deuterium ions are accelerated

into a tritum target. (54)

2 3
HY + B — ((He”) — ol + JHe* +17.6 MEV . (11-2)

The tritium targets consist of five curies/i.nz of tritium coated

on a copper disc. Some neutrons are also produced by the D(d, n)
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reaction,

1H2+ 1H2—+ (ZHe4) 40n1 + ZHe3 + 3.25 MEV (II-3)

because of the residual deuterium gas in the accelerator system.
The system is capable of producing more than 1011 neutrons/second
at a maximum beam current of one milliampere.

The system is capable of producing source pulse widths
which are continuously variable from one microsecond to 104
microseconds and repetioﬁ rates continuously variable from
10 to 105 pulses per second. The standard system is equipped
with pre-acceleration and post-acceleration deflection plates to
prevent the ion beam from reaching the target between pulses. The
deuterium ions are transferred from the deuterium plasma bottle
to the focusing and accelerating section by means of an '"extraction
potential'’ of three to five kilovolts. The unique feature of our
accelerator was the addition of a Pulsing unit to the extraction
voltage. The '""dark current' at the target between pulses was
virtually eliminated, within detectable limits, with this triply
pulsed system.

The thermal neutron detectors were standard one inch di-
ameter, BF3( 96% Blo enriched) filled proportional counters,
with an active length of about 4 inches. Both Reuter-Stokes
detectors with 70 cm Hg filling pressure and Nuclear Chicago

detectors with 40 cm filling pressure were used. DC power was

supplied by a model 405 Fluke power supply. Detector pulses were
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amplified by a preamplifier and a Nuclear Chicago model 27001
linear amplifier and fed into a model 27501 Nuclear Chicago inte-
gral discriminator.

The heart of the data collection system was the Technical
Measurement Corporation model CN-110 256 channel pulse analyzer
system with the model 212 pulsed neutron logic unit. The reference
time for the TMC multi-channel analyzer was the end of the pulse
from the TNC pulsing system. After an adjustable waiting time,
counts from the discriminator were accepted and allocated to the
time channels of widths adjustable in non-equal discrete steps from
10 to 2560 microseconds. A storage time of 10 microseconds was
required after each analysis channel. The time interval covered
in each experiment was sufficient to allow about 100 channels for an
accurate determination of the background. Data were printed out
after each 50, 000 pulses in order to minimize wasting data due to
transient, external electronic problems,

Nuclear grade graphite from the Hanford project was
borrowed from the AEC for use in this experiment. Most of the
graphite stacks were formed from blocks of dimensions 3. 75"

x 3.75" x 12". The stacks ranged in size from 12" x 15" x 15" to
36" x 26.25' x 26. 25" corresponding to bucklings in the range . 018
em™® to.0051 cm™ or (2.12 to 0.6) BZ. Temperature in the
graphite was maintained at 21 v 2°C. The average density of the
stacks was 1.709 +.003 grams/cm3.

The graphite was shielded from room-return neutrons by
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a cover of 0,03 inch cadmium sheet and 0.25 inch thick boral plate.
The entire assembly, except for a slot allowed for the accelerator
drift tube, was surrounded by 8. 0 inch thick boxes of paraffin.

It was found experimentally that this combination of shielding
together with the triply pulsed accelerator allowed backgrounds

of about one count per channel even for experiments of several
million pulses lasting several days. There was a high energy
component of the background for short times after the experiment
with a fast decay constant ( ~ 5000 sec-l), but the addition of the
paraffin shielding reduced the amplitude significantly so that this
contribution to the background had vanished by one-half millisecond
after the pulse. Since the measuring times of interest in these
experiments were greater than one millisecond, the transient
background presented no problem. In the range 100 - 500 micro-
seconds, the transient background contributed less than 0.0l percent

of the total count rate.

B. Data Collection Procedure

The BF ; detectors were placed inside the cadmium shielding
on a side of the stack adjacent to the source target. For the smaller
A stacks, a single detector was centered on the adjacent face. For
the three largest stacks (B2 < . 747B2 ), the four detector arrange-
ments shown in Figure III-6 was used to help minimize the effect
of the higher spatial harmonics. These detector arrangements

are shown schematically in Figure II-4. Simple diffusion theory
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predicts that one can eliminate the most important higher spatial
harmonics by clever placement of the source and the detectors. (9)
However, the spatial dependence of the source is considerably
complicated by the high energy albedo from the shielding material,
which makes elaborate efforts to eliminate the spatial harmonics
unjustified.

After a typical waiting time of 500 microseconds, the
number of counts in each of 255 discrete time intervals of 40 or 80
microseconds was collected by the TMC multi-channel analyzer
for each source burst. Except for the smallest two graphite
stacks, good ''statistics'' were obtained for more than five milli-

seconds after the source burst. For stacks corresponding to }32

<1.035B§, the data were meaningful for more than nine milliseconds.

C. Data Analysis

The raw data was analyzed on the IBM 360/75 by two

computer codes. The first was a modified version of the FRANTIC

(

code 53} developed at the Massachusetts Institute of Technology

Laboratory for Nuclear Science for analysis of exponential growth
and decay curves. The second was a simple least squares program

to fit the data to an exponential plus a constant background term.

The FRANTIC code corrects the raw data (Ci) from the if-h—

channel for detector dead time ( T ) losses by the formula.:(56)

G s B

- L ax II-4
1 C'T ( )
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T, the total counting time, is the product of the channel width
and the number of pulses. The corrected data are forced to fit

the form

- Sk &
c'(t) = Aje J (I1-5)

=1
where the number of components K is variable from one to ten.
Any of the parameters Aj’ lj may be held fixed during the

fitting procedure. The free parameters are determined by mini-

mizing the variance

n K - xt Z
VARIANCE = —+ X Wi[C! - 2 Ae Y ‘] (11-6)
D jem J =1 J ‘

over channels n through m. D is the number of degrees of
freedom which is equal to total number of channels used in the fit
less the number of parameters being fit. The time associated

with each channel is tie The weighting function w; is set equal

to the estimated variance in the data Ci' The minimizing procedure
is iterative because of the way that ?\j appears in the expression.
The background-is fit by fixing )Lm equal to zero. The output
i.ncludes the parameters A., X =5 the variance of fit, and a chi-

bT)

squared analysis. Giraudbit( gives a more complete description
of the modified FRANTIC code.
FRANTIC was used to fit two exponential components plus

a background term to the data. For the large stacks (BZ < Bi),

the amplitude of the component with the larger )\ became small
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enough to make the fitting procedure difficult. For the largest
stacks, the amplitude was negative, which made the interpretation
difficult because of possible contamination of the data by higher
spatial modes., The data were then fit to one exponential plus back-
ground over the entire 255 channels and the process repeated, each
time dropping the initial five channel of the preceeding fit. This
yielded a ''deletion profile' which is a common method of analysis
for this type of experiment. One examines the \'s obtained in
this process to see if they become constant after some waiting time
following the source burst.

The second code, FITIT, performed analysis which could
have been done with FRANTIC, but was more specialized and
required less running time on the computer with much simpler
input and output. The data was corrected for dead time losses and
the background, obtained from the FRANTIC runs, was subtracted.
The corrected data was then described by a single exponential
term

C, ~Ae v (I1-7)
By taking the logarithm of the data, a linear least squares fit
could be performed.

F. = log(C'i),' D= log(A) . (I1-8)

The function L(D, A ),

; m 2
L(D,\ ) = .2 W.[F,-D+2 til (11-9)

i=n
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was minimized by setting the derivatives with respect to D and

3 equal to zero. This results in two linear, coupled equations

for D and ) .

Thus,

(

m m m
ZW)D - (T Wit,)\ = L WF,
.1=n i=n i1=n
(II-10)
m m 2 m
iEl Wit ) D+ ( i;z; Wt )\ = iﬁx W.t.F, .

A appears as the quotient of sums of known quantities.
m m

(.2 LAP RN _E witiFiH(g witi)(_r_g?wis‘i)
i=n i=n i=n i=1

2

m m > m

(5 W05 ( B way =4 23 W) g
: i : i3 . i1
i=n i=n i=n

(II-11)

The fit was taken over four to twelve channels, depending

on the "statistics' of the data in the particular time region of

the fit.

In this manner, the effective decay constant, X\ eff(t)’

was determined as a function of time after the source burst. Fit-

ting the data with this procedure exhibited the tendency of the decay

constant to decrease better than the '"deletion profile technique. "

This procedure requires that the effective decay constant change

very little over the range of the fit, hence the data must be

reasonably detailed and the counting statistics good over a long
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time interval after the burst in order to insure an accurate fit.
The background should be insignificant so that the corrected data

do not suffer from uncertainties in the background.
D. Results

The results of these experiments on ten graphite stacks
indicate that a range of buckling exists where the decay is described
by a well defined exponential over most of the measuring interval
and another range in which the decay of the neutron population is
definitely non-exponential. The two ranges are joined by a region
of buckling in which the decay constant appears to establish a
plateau for a portion of the measuring time, but for later times
the fitted value of X\ eff(t) appears to drift toward a lower value.
These trends are shown on the graphs of Xeff(t) on the following
pages.

The results may be summarized as follows: For B
< 1. 035Bi, no monotonic downward drift of the measured decay
constant was noted over any significant range of the measurement
period from two to nine milliseconds. The apparent increase in

xeff after 6 milliseconds in 0747 Bi and 0.905 Bi was independent

2

of the detector placement. For the range 1. 165Bi <Bz<1. 471B_,

a reasonable decay constant can be assigned to the systems, but
there exists a perceptible decrease in the fitted decay constant.
For the systems with BZ > 1, 741Bi , the decay was definitely

non-exponential over the whole range of fit. Table II-1 lists the
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TABLE II-1

BUCKLING xeff(z. 0 milliseconds) 4 DRIFT IN Keff(>2. 0 msec.)

PER MILLISECOND (+50%)

1. 165 Bi 1830 sec™* 2.6
1.318 B 1956 sec™! .77
1.471 B 2331 sec™ 4.0
1. 741 B 2466 sec™t 8.0
1.941 B 2673 sec™ 13. 4
2118 B 2909 sec™! 17.7

* value obtained from the ''deletion profile'' curve..-

The apparent drift in the decay constants for times
greater than two milliseconds for those stacks where
any monotonic drift was perceptible.
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percent change per millisecond of the pseudo-exponential and the
non-exponential decays.

The effective decay constants all exhibit oscillations _for
long times after the source burst. These oscillations, which have
been observed by other experimenters, are as difficult to explain
as they are interesting. One proposed explanation has been that
the oscillations were related to channel drift for the time - of -
flight units which were used in the multi-channel analyzers. {58
However, use of pulsed neutron logic units, which are not subject
to significant channel drift, in modern experiments has apparently
negated this argument. One still entirely plausible explanation
is that the oscillations are inherently connected to the fitting
procedure when the counting statistics fall below some critical
value.

Since the nature of the oscillations has not been positively
identified, let us consider a more interesting conjecture. If
we re-examine the analysis of Conn and Corngold, (15) we see that
the transform plane has branch points with imaginary parts equal to
itiB, where VR is the Bragg velocity. For B'2 = 0. 747B2 =

2

0.00635 cm”“, the frequency BVB is about 4640 sec'l, while the

frequency of the oscillations in the fit, though poorly defined, is

about 3600 sec—l. For BZ Z.

= 1.165B% = 0.0099 cm™2, the
approximate frequency of oscillation is 8970 sec-l, while BVB is
about 5900 sec™ 1., The correlation at the other bucklings is also

""ballpark' considering the crudeness of the data. The data of



i

Hi1s (33

exhibit these oscillations in the same range of buckling
with about the same frequencies. The onset of the oscillations
occurs at about the same time after the source burst although the
counting statistics and the width of the channels are quite different
for the two sets of data.

The frequency of the oscillations cannot be resolved well
enough to draw any definite conclusions, but the above speculation
is interesting. While the oscillatory behavior appears rather
naturally in the theoretical solutions, the physical interpretation
has not been suggested. If the oscillations are not some quirk

of the data collection and analysis, this question will la ve to be

given some more consideration.
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III. MEASUREMENT OF TIME DEPENDENT SPATIAL DISTRIBUTION

The time dependent detector response was measured as a
function of one spatial dimension for four graphite stacks varying in
size from 66.68 cm X 66.68 cm X 91.44 cm to 47.63 cm X 28.58 cm
X 60.96 cm, representing the buckling range 0.6 B> to 1.847 BZ.
The largest dimension of the stack was arranged so that it was
colinear with the direction of the ion beam in the accelerator drift
tube. The measurements were made along the central axis in order
to accentuate only those higher spatial harmonics in the measured
direction. We measured the higher order decay constants
associated with the spatial harmonics and we isolated the fundamental
spatial mode and examined it in detail. Measurement of the extra-
polation length Zo for these assemblies as a function of time after the

source burst was also made.

A. Experimental Apparatus and Procedure

The experimental equipment was basically the same as that
described in Chapter II for the measurement of effective decay
constants. The principal difference was that the source strength,
which varied considerably over the measuring times of 75 to 125
hours, had to be monitored in order to normalize the data taken at
different detector positions. The source monitor detector was a
thermal neutron. (BF3) detector identical to the one used to measure

the distribution in the graphite stack. The monitor detector was
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placed in a lead gamma ray shield above the graphite-paraffin system. -
It required an extra preamplifier, amplifier, discriminator, and
scaler system, but the high voltage was taken from the same supply
that fed the in-stack detector in order to minimize systematic error
due to voltage variation between the two detectors. The amplifier-
discriminator systems for the two detectors were housed in the same
modular power supply to help reduce the systematic error due to
relative drift in the power supplies. The problem of normalizing the .
source strength without introducing significant systematic error
makes these experiments about an "order of magnitude' more diffi-
cult than the effective decay constant measurements.

We examined the time response of the monitor detector with
the multi-channel analyzer. Less than ten percent of the total
monitor count was accumulated during the source pulse and the
following 200 microseconds. The effective decay constant of the
monitor count rate was about 820 reciproca.d seconds and the ampli=-
tude was sufficiently low enough that there were no saturation préblems
or significant dead time losses. The normalization by this monitoring
system was found to be consistently repeatable to within about 1. 50,
where ¢ is one standard deviation based on the Poisson statistical
unéertainty in the counting rates only.

The source strength was also monitored by the high energy

(14 MEV) neutron induced Olé(n, p)N'16 reaction in the cooling water

16

of the tritium target source. The N'° decays with a 7.4 second

half life and gives off a high energy gamma ray. The cooling water
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returning from the target was passed around a Geiger tube, well
shielded by lead and concrete, and the N16 gamma was detected.

This system, which was sensitive only to neutrons at the source
energy and therefore rather insensitive to any changes in the external
environment, was superior to the other monitoring system in princi-
pPle. Howe\;rer, due to the short half life of the reaction product,

it was necessary to regulate the flow rate of the water very accurately.
This problem, as well as a high gamma background due to other
reactions and an intrinsically low counting rate, made this procedure
quite difficult in practice. The first system proved more accurate
and was used to normalize the data from these experiments.

The detectors used in the experiments had an active length
of about four inches. The movable detector was positioned in the
stack by a thin-walled aluminum tube. The 1.1 inch diameter probe
hole for the movable detector was co-linear with the accelerator
drift tube and target. As shown in Figure III-3, a small collimated
beam of thermal neutrons was used to determine the sensitivity of |
the movable detector as a function of the position in the active
volume. The most sensitive position was in the center of the
active volume and the sensitivity could be approximately described

by.
S(Z) = 0.0842 + 0.0222 sin (—gle-g_) (III-1)

where Z is the distance in centimeters from one end of the active

volume. The location of the detector in th_é stack was defined to be
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the position of the center of the active volume, except for calcula-
tions in which we specifically accounted for the finite detector
volume.

The analysis of the experiment explicitly assumes a dif-
fusion theory solution for the spatial distribution of the neutron

density:

a(x, t) ﬂ-ﬁ, _Afy gin (i’l’ézo i 2l (B.‘;I’.b,’!z;)ain (c_"f{-zz—o) . (m-2)
(The quantities a, b, and c are the dimensions of the graphite stack.)
Since the detector response is only measured in the z direction, one
has to be certain that the distribution in the transverse directions

is adequately described by the fundamental mode, that is, j= k= 1.
To check this, we irradiated thin, coin-shaped, cadmium-covered
indium discs spaced 3. 75 inches apart along the three axes of the

. 2 -
graphite volume (B°= 0.00635 cm™ 2

= 0.747 BY ) with the steady state
14 MEYV neutron source. The cadmium shielded the indium absorbers
from the thermal neutron population, therefore the indium foils were
activated by the epithermal neutrons, principally neutrons captured
in the 1.46 ev resonance of the indium cross section. The foils

welre spaced far enough apart so that there was no significant

neutron density depression at the site of one foil due to the strong
absorption in another foil. After about two hours of activation, the

beta decay rate of the indium foils was counted in a gas flow propor-

tional counter. These data yielded rather directly the relative
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amplitude of the epithermal neutron density at each of the points of
activation.

Though it is the spatial distribution of the thermal neutrons
which is of interest in the pulsed experiments, the distribution of
the epithermal neutrons represents a worse case as far as the rela-
tive amplitude of the higher spatial harmonics is concerned. The
slowing down time to 1.46 ev for 14 MEV neutrons in graphite is less

(39)

than 30 microseconds, while the (non-existent) thermalization -
time is of the order of 500 microseconds. (38) The significance is
that the epithermal distribution has less chance to relax to an
asymptotic distribution, hence the higher spatial harmonics are
enhanced.

A function of the form of III-2, with no time dependence,
was least-squares fit to the activation data in order to obtain the
relative amplitudes of the coefficients Ajkrn'

1. 46ev neutron distribution, with the source adjacent to one face

The results for the

of the stack in the center of the x-y plane, are:

TERM IAqu-'n/Allll
Asiq 0.0096 + 0.0011
Hga 1 0.0521 + 0.0011
Ajay 0. 0056 + 0.001
Ajsy 0.0508 + 0.001
Allz 0.579 + 0.001

A3 0.139 + 0.001
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Hence, the only harmonics with significant amplitude are in the z
direction as was desired. The non-zero amplitudes of the coef-
ficients Ale and AlZ.l are due to the skew-symmetric, high energy
albedo from the surrounding shielding.

It should be pointed out that the analysis of these experi-
ments assu.;:nes that the detector response is an integral over the
neutron distribution function of the form

©0

D (z,t) = [ VE (E)n(Z,E)dE , © (I1I-3)
while the actual measured detector response samples the neutron
current in preferred directions due to the finite size of the detector
and to the void channel in which the detect'or is located. We improved
the experiment for the smallest stack (which should be the worst
case) by filling the void with graphite plugs, but the neutron current
was still not sampled isotropically because the detector appeared
"thicker' to neutrons traveling in certain preferred directions. The

results (see Table III-1) were insignificantly altered.

B. Analysis of the Data

Since the neutron distribution was only measured in one
dirhension, we effectively only considered terms in the expansion III-2
with j= k= 1. Therefore it is more convenient to consider the one
dimensional expansion,

mZ

EZTO— ) . (IH-4)

n(Z,t) = % A_(t) sin (
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The analysis of the experiments was designed to determine the
coefficients Am(t) and the extrapolation length Zo’ which was
actually a function of time and buckling. Furthermore, the
coefficients were assumed to have the form Am(t) = .A.me-kmt,

and the decay comstamts )‘m were determined. The buckling
associated .with the spatial modes of the rectangular parellelepiped
assemblies was prescribed by

2 2 2 m

m m
B = ez ez t ez (LH=5)

(See Chapter I.) The lowest value, le , is the buckling, BZ, used
to identify the assemblies when the effective decay constants are
measured as described in Chapter II.

The data were subjected to a three-fold analysis. First,
the multi-channel data from each of the 12 - 15 spatial locations
was corrected for dead time losses and background and fit to a

. N2t “Aa(Zy )t .
function of the form Ale t Ase by a simple
computer code (PULSE)., Then a harmonic analysis was done on the
data from the spatial rﬁeasurements for each of the time channels
by another computer code (MYCODE), thus obtaining up to five of
the coefficients Am(ti) for fixed Z . MYCODE also fit the
as.sociated decay constants lm to the reduced data ( Arn(ti)’ i=1, N).
Finally, in a third code (LENGTH), Zo and the coefficients Am
were treated as free parameters in fitting the data to the functional

form III-4, so that Zo was obtained as a function of time (or channel)

for each graphite stack. The '"best! value of Zo was fed back
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into MYCODE as a fixed parameter.

The first line of analysis, the PULSE program, was really
uninteresting as far as the information obtained was concerned. The
quantities kl(Zk) and RZ(Zk) could not actually be identified as
the decay constants associated with the coefficients A; and A, in
the expansi..on III-4, but they did serve as a check on the reasonable-
ness of the MYCODE results. The fitting procedure was in fact
a little better than a graphical one. The long time (t>~3.0msec),
background subtracted, dead-time loss-corrected data were least-

-kl(Zk)t
squares fit to the function Ale » Once Al and )Ll(Z.k) were

-A1(24)

determined, an amount Ale was subtracted from the short
time data and this difference was fit to Aze-)\z‘ Zk)t by the least
squares procedure. The data were weighted by the reciprocal of the
statistical variance in the least squares procedure. The values
Xl(Zk), lz(Zk) obtained by this procedure were reasonably con=-
stant as a function of position in the stack, but of course the
amplitudes A, A,, and the ratio AZ/AI varied considerably.
The results of this procedure were checked for several cases by
analyzing the data with the much more accurate (and correspondingly
more complicatedr and expensive) FRANTIC code. (See Chapter II.)
The agreement was fairly good except for one or two isolated spatial
positions.

MYCODE performed several sets of operations on the
detector response data ( D(zk, ti)‘ i=1,N, k=1,M ), where N is

the number of timme channels (30-50) and M is the number of spatial



-68-

positions (12-15). The raw data was corrected for dead time
losses as described in Chapter II and the average background per
channel, determined from the last 5 - 10 of the 64 - 128 analysis
channels, was subtracted. The data were normalized to the same
source strength for each spatial position by multiplying by the ratio
Mo/Ml(k), rwhere Ml(k) is the number of counts accumulated

by the monitor detector when the movable detector was at the kﬂl-
position and Mo is an arbitrary number chosen so that the ratios
are approximately equal to one. Since we desired the data in the
form III-4, the coefficients Am(ti) were determined by minimizing
the function

Z

5 z
t) - & A sin{ %k 117 . (I11-6)
Y om=1 c+2Z_

This involves solving the set of linear, algebraic equations

—_—— = 0, m=1,P (III-7)

where P is the number of terms retained in the expansion III-4.
In practice, it was found that no more than three terms were needed

to describe the spatial distribution. The weighting factor Wi was

chosen to be the reciprocal of the variance in the data. The variance
consisted of the Poisson statistical uncertainty in the counting rate

and three times the statistical uncertainty due to the normalizing



B

ratio. The large variance in the normalizing factor was chosen to
allow for small systematic errors due to the long counting times.
The uncertainties in the coefficients were also obtainedfrom the
least-squares fit.

A least-squares fit was performed on the reduced data

" : ; 2
Am(ti)’ weight ed by the reciprocal of the variance ¢ (Am(ti) ),
obtain the associated decay constants )\m and the uncertainties
o(km).

The finite volume of the detector was also taken into
account by the MYCODE program. When the above procedure was
completed, the normalized, corrected data was fit to functions

Z.+4h

i O
of the form A S S(Z) sin (
2wy

i

mmn({Z-2Z. )

+2.Z ) dZ , where Zi is the

position of the beginning of the active volume, Eo is the length
of the active volume, and S(Z) is defined by III-1l. These functions
just correspond to a weighted integration of the neutron density
(IlI-4) over the active length of the detector. The decay constants
for the resulting coefficients were fit in the manner described
above. The decay constants determined from the two sets of expan-
sion coefficients differed at most by one percent.

The sensitivity of the fitted decay constants was checked
for variations in the dead time corrections and for uncertainties
in the detector position, but no significant changes were noted for

reasonable introduction of error by these means.
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The LENGTH program was similar to the MYCODE program,
except that the extrapolation length ZO was treated as a free para-
meter to be determined in the least-squares fit. This added an extra

equation,

Wl_ = 0 y (I1I-8)

to the set of equations III-7, and made the equations non-linear

so that they had to be solved by an iterative technique. The feature
of allowing for the finite volume of the detector was dropped after
it was determined that the results were not influenced for times
greater than one millisecond after the source pulse. Artificial
data was put into the LENGTH program té determine that the result
for Zo was accurate to about 1.5 percent, exclusive of any error

introduced by the data.
C. Results

The results of these experiments, the variations of the
coefficients An with time, the fitted valuels of the decay constants
}‘n‘ and the variations of Zo with buckling and time after the pulse,
afe best seen in the tables and graphs on the following pages.
However, several significant and surprising features should be
mentioned. Some of the explanations and/or comments are reserved

for Chapter V. -
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Table III-1 lists some of the results from the MYCODE
analysis of the data. It should be pointed out that the decay constants
A , exceeded the critical value of 1600 sec”lso that they were not
really well defined. The tabulated uncertainties are very conserva-
tive and are based on the MYCODE output and on the dispersion
of the PULS'E code results about the values computed for the A\ -
by MYCODE. (See Figure III-12.) As indicated in the table,
filling the probe channel with graphite plugs made no significant
change in the decay constant results for the smallest graphite stack.

The most significant result concerning the decay constants
associated with the spatial modes is that the decay constants of
the second spatial modes is that the decay constants of the second
spatial mode do not fall on the dispersion curve X\ (BZ) of the
fundamental mode. These decay constants exceed the critical
value of 1600 secql. This phenomenon was also noticed by
Ritchie(?’o) in his study of BeO. The results of Hanna and Harris(zs)
for very large graphite stacks, in which the decay constants 12
were well below the critical value of 1600 sec_l, indicate that the
decay constants for the higher modes fall pretty well on the
fundamental dispe.rsion curve. These results are more clearly
seén on the master %\ (Bi) plot in Figure III-13.

Figures III-6 through III-9, which show the time dependence
of the coefficients An(ti) for the four cases, all exhibit the peculiar

long time behavior of the AZ coefficient. The curve of log (Az(ti) )

versus t, is reasonably linear until AZ drops to about two or three
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TABLE III-1

Decay Constants of the Spatial Modes of Four Graphite Assemblies

Dimensions Fundamental Spatial Central Time

(cm) Buckling Mode  of Fitting Erll
(n) Interval (p sec) ( sec 7)
(66.68 X 0.6 Bi 1 4860 1059 + 60
66.68 X 2 2310 1794 £ 180
91, 44) 3 2230 2814 £ 1000
(47.63 X 1.0 B 1 5200 1630 £+ 150
47.63 X 2 2310 2479 + 243
91.44)
(47.63 X 1.165 B’ 1 3260 1865 £ 400
47.63 X 2 1100 3867 £ 1000
60. 96) |
(47.63 X 1.847 BZ 1 2085 2656 + 200
28. 58 | 2 645 4759 £ 600
. 60.96)
same™ 1.847 BZ 1 2085 2672 £ 100
1 2625 2504 £ 100
2 645 4678 £ 500
2 1185 4571 + 700

* graphite plugs filled the probe channel on each side of the
movable detector
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percent of the total signal; at that point the slope of the curve
becomes more negative. .Apparently the statistics are not good
enough for the program to resolve the second component in that

0)

time region. Ritc:h:i.e(3 also observed this behavior, but was
able to attribute part of it to inaccuracies in determining the

center of his BeO stack. However, translation of his coordinate
system by four times the estimated uncertainty in determining the
central position failed to completely eliminate this tendency. We
also observe that shifting the coordinate system by amounts up to
twice the estimated uncertainty in the detector position (about

0.05 cm) doe s not significantly effect this tendency for our graphite
stacks.

Figures III-10 and III-11 show the computed values of Zo
as a function of tim e after the source pulse for the largest and the
smallest stack. The data for the later time channel s, when the
spatial distribution could be adequately described by the fundamental
mode, were summed and the summed data were fit to a single term
by the LENGTH code in order to compare the results for Zo with
the results of Davis _e_t_:a__l_.,(zm who did not have the multi-channel
information. Therir data were from large stacks, B2 = BCZ,
so‘ that the asymptotic mode was probably well defined. Suc=-
cessive runs of our summed data were made, dropping the first
channel in the sum each time until Zo was relatively constant,

Qur large stack results, Z (0.6 Bi ) =1.84 cm and ZO(BE)‘z 1. 85

cm compare favorably with their average value of 1.85 cm. The
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results for the smaller stacks differ considerably. The discrete
data for the smallest stack indicates that the distribution tends
to 'flatten out'", resulting in an increasing value for Zo.

Ritchie(BO)

also observed this behavior in his BeO data. Our
measurements were made at least 15 cm from the edge of the stack
in order to reduce the influence of spatial boundary transients.

In light of this precaution, the observed behavior is quite strange,
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TABLE III-2

Comparison of the Measured Extrapolation Length With the Results
of Davis, et al. (26)

Davis, et al. This work
Be z B z
T o - o
(em ) (em) (em ™) (cm)
. 002356 1.845 + .025 . 0051 1.84 + .2
.003714 1.801 + .018 . 0085 1.85 + .2
. 007095 1.903 + .043 . 0099 1. 72 F .3
. 0157 3.25 + 2%

* Fitting two terms to the earlier data yielded a lower value of
2.5 cm. (See Figure III-11,)
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IV. COMPUTATION OF EFFECTIVE DECAY CONSTANTS

We have used a simple theory to compute the time dependent
effective decay constants leff (Bz,t) for the graphite assemblies
which exhibited non-exponential decay as well as to compute the
asymptotic decay constants for the other graphite assemblies. The
essential features of the model are identical to that used by Corngold
and Durgun(16) to analyze non-exponential decays in beryllium and
hydrogenous moderators. We consider only the fundamental mode
of the spatial distribution so that the neutron leakage through the
boundaries is represented by VD(V)BZ (zero-dimensional diffusion
theory). A modified one-term degenerate kernel.is used in the
scattering integral. The effective decay constants are compared to
the experimental results of Chapter II. Since the model is easily
extended to beryllium, we have also compared the time dependent
energy distribution with the experimental results of Gaerttner_ei_a;LMS)
for two beryllium assemblies.

From Chapter I we have the diffusion equation for the funda-
mental spatial mode

ano(v, t)

ot v[Z (v)+Z (v)+D(v)B2]n (v, t) —ﬁlv’v’z (v =v)n (v, t)
at a s o —0 £} o 2

(IV=-1)

£>0, no(v, 0) = N(v) .

In order to better model the experiments, we have chosen to write

the equation with an initial condition rather than to include the delta

(16)

function source term used by Corngold and Durgun. The scattering
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kernel consists of two terms: the part due to inelastic scattering and

the part due to elastic scattering.
Es(v"‘"v) = Eez(vl)é(v’-v) + ;3_vzi(v)M(v)zi(v’) (1Iv-2)

M(v) is a Maxwellian energy distribution at the temperature of the
moderator and the coefficient B is the reciprocal of the Maxwellian

averaged total inelastic scattering cross section.

<1 0
p = [dvvI (vIM(v) (IV-3)

o
This approximation to the real scattering kernel preserves the total
cross sections, Eez(v) and Ei (V_), and satisfies the principle of de-
tailed balance. (See Chapter I.) The total cross sections, shown
in Figure IV-1, were modeled to approximate the more exact cross
sections shown in Figure I-1.

We have chosen the simplest model based on reasonable
approximations that will allow us to examine some of the properties
of non-exponential decay. Although we have used the model in de-
tailed computations to compare with the experiments, one should
recognize that, 'because of the severe approximations of the spatial
distribution and the scattering kernel, né more than quaiitative
agreement can be éxpected.

If we assume that the absorption cross section is proportional
to 1/v, the absorption rate v Ea(v) is constant (Ka) and can be elimi-

nated from equation IV-1 by the ansatz

no(v, t) = n(v, t)e-kat s ) (IV-4)



vl G

After integration of the delta function term, the equation for n(v,t) is

(+0]
____‘,___Bni)\; £, V[Ei (v)+D(v)B2]n(v, t) = BvI; (v)M(v) ofdv'v'Ei(v')n(v', t)

(IV-5)
n(v, 0) = N(v)

The initial distribution N(v) is obtained by assuming that prior
tot =0, a steady-state distribution exists in the assembly. In the
experiments, the pulse width is typically of the order of 500 - 750
microseconds which allows sufficient time to establish the thermal
neutron population. Hence, the initial distribution N(v) is obtained
by assuming that prior tot = 0, a steady-state distribution exists in
the assembly. We solve the steady-state integral equation
V[Ea(v)+2.l (v)+D (v)BZ]N(v) = BVE, (vIM(v) fmdv’v’z:i(v')N(v’Hs (v)

’ (IV-6)
for N(v). The source term S(v) is taken as the distribution of neu-
trons scattering from a Maxwellian distribution Mo(v) with a mean
energy in the range 0.1 - 0.7 electron volts
S(v) = foodv'[vfzez(v')ﬁ(v'-v) + ﬁvzi(v)M(v)v’zi(v’)]Mo(v') (Iv-7)

o
This form of the source is chosen only foi' convenience, as we do not
expect the computed effective decay constants to be very sensitive to
the particular form of S(v). The sensitivity of the final results to S(v)
is checked by changing the mean energy of the source.

If we define the unknown constant Co’

o0
c,6 = [dv’ v’ zi(v') N (v) (IV-8)
(o]
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the formal solution to equation IV-6 may be written

ﬁCOVZi(v)M(v) + S(v)
N(v) = (IV-9)
v[Z_ (v) + Z{(v) + D(v) B%]

We solve for the constant Co in terms of known quantities by
multiplying equation IV-9 by in(v) and integrating over v. If

we define the integrals

Cy= [ avvE (M (v (IV-10)
0 VE.Z (v) M(v)

C,= [ dv — - (IV-11)
. [Z,(v) + Z_(v) + D(v)B“]

oo fwdv in(v) Eez(v)Mo(v)

>0 [E(M+I_(v)+D(v) B%]
then, we have

C.C., %G

C, = 11_ %C.Ii . | (IV-13)

To facilitate the discussion of the time dependent equation,

we define the removal cross section ER(V),

g (v) =E,(v) + D(v) - (IV-14)

We also note that the diffusion coefficient D(v) is related to the

reciprocal of the total scattering cross section (the me an free pafh)

(63)

in a simnple manner:



<G =

e O . (IV-15)

3)35 (v)

Hence, the elastic scattering is retained in the equation (IV-5) in
a rather subtle way and effects only the rate at which neutrons
leak from the assembly.
Having defined the initial condition and the removal cross

section, we Laplace transform equation IV-5 to obtain

[s +vEg (V) 1R(v, 8)=p VI, (VIM(v) fﬁv’v’zi(v')’ﬁ‘(v', s)+N(v), (IV-16)
(o]

where s is the transform variable. Defining the transformed in-

elastic scattering integral,
e ’ [ X\
B(s) = j; dv'v/ o (v fR(v', 8) , (IV-17)

we have for the transformed neutron distribution function

B&ENs) vI (v)M(v)
it a) © PR & e il . (IV-18)
[s+vER(v) ] [s+VER(v)]

We can solve for - @(s) by multiplying equation IV=-18 by v):'.i(v) and

integrating over v. After the algebra, this yields

O (s) = 1—“—?—’—(-}— y (IV-19)
- pys |

where the quantities p(s) and 9(s) are defined by the integrals



<P

0 in(V)N(v)
p(s) = AV —— e o s (IV-20)
VER(V) + s

o [VE (V) 1%M(v)
yis)= [av ; (IV-21)
VER(V)+ s

Besides the time dependent energy distribution, we are also

interested in the detector response, Dr(t)'

Dr(t) = j;:odv vEd(v) n(v, t) . | (IV-22)

If we assume the detector cross section Ed(v) is proportional

to 1/v, the transformed detector response ﬁr(s) is

o

Z, (v) M(v) oo
'i:ﬂr(s)a B> (s) f:dv[:—l-r—-—-——r—]-i- [ dv ) (IV=-23)

s+ VER(V) s+ VER'(V)
Defining
vE (v)M(v)
¥(s) = fmdv [—-—1————-—-—] and (IV-24)
- s + VER(V)
P N(v) .
n(s) = fo , W ,. (IV-25)
we have

B (s)= B (s) * ¥(s) + n(s) g o (IV=-26)

Although we can find the inverse transform of the product by using
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the convolution theorm, we define

x(s) =) (s) * ¥(s) (IV-27)

in order to get the final expression for Dr(t) in the desired form.
The transform ed functions 9(5) and ¥(s) are analytic in the

cut plane (s < )\,) except for a discrete pole defined by
1-By(s)= 0 " (IV-28)

For sufficiently large BZ the pole term is not present. " Proof that

only one pole exists and that it is real was given by Corngold and

Durgun(lé) in their analysis. The transform plane is shown in

Figure IV-2. The inversion of transforms of this type have been

(64)

studied in detail. The contribution from the pole is straight-

forward and is given by

PR ¥ (X)) -t

[—_dly(s)] € . (IV. 29)
ds =%
o
; -VZR(v)t
The contribution from mn(s), N(v)e , represents the removal

of the initial distribution neutrons which have not suffered inelastic
collisions.
We pick up the contribution from the branch cut by deforming

the inversion contour around it. Formally, we have
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-00 A
s Lim { [ ds % y(stic) + fds e y(s-i€) | . (IV-30)
Lk C-'O "1.*

Inverting the limits of integration and combining the integrands,

we obtain

?Ods {eSt Lim Im [x(s+ie) ] } . (IV-31)
‘X* € o )

The integrals p(s), ¥(s), and 4(s) have singularities when

VER(V) = -8 | (IV-32)

We can handle the integrals by making use of the Plemel j relations (65)

that is, the proper combination of the principal value and the residue,
1
If we have the integral
1

F(s) = o i (IV-33)

2mi x-S 2

the Plemel j relations are defined as

[dx f(x) 6(x-s)

o

F+(s) = Fp(s) +

[dx £(x) 6(x-8) , (IV=-34)

=

F_(s) =F_(s) -

where Fp(s) is the principal value of the integral. For our case,
the singular point approaches the path of integration as positive e

decreases to zero. We therefore use the form F_()(65) and define
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the quantities
p_(s) =p-mip  ,
Y (s) = ‘i'p-':ri’i’o %
and v _(s) = 7p-1ri'yo
Pp

The quantities Po? \1’0, and Y, are defined by

p. j::odv in(v) N(v) 6(VER(V)+S) i

Y = f:dv vE;(v) M(v) §(vEg (v)+s), and

0
v, = [, av [vE,(V)1° M(v) 8(vEg (v)+s) .

Hence,

2
1% fis [X(S)]="{ [PP‘?O*‘POYPJ [l-ﬁ‘)'p]'l‘ BYs [pp‘i’p-':r I

’ ‘i’p, and yp are the principle values of the integrals.

(IV-35)

(IV-36)

(IV-37)

(IV-38)

(IV-39)

(IV-40)

(1V-40)

[1-py, ) + w2 ply,”

(see figure IV-3)

and the solution for the detector response is

pl-ky) ¥(-A )
Ed'ﬂs) ]
as . _)\

Dr(t) =

o

-2t e
s C4E {ds eStIm['x(s)]i- N(v)e
W =A%

(v)t

-

. (IV=41)
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If we define A as the coefficient of e © , change the

variable of integration from s to -\, and define A()\) as

%Im [(x(\)], equation IV-41 reduces to the form of the detector

response mentioned in the first chapter:

-At

2 -\t

(=]
D_(t) = A _e + fK*A(k)e g% (IV=-42)

We have neglected the contribution from the initial distribution
which damps out quickly relative to the other terms.
When no discrete pole exists, the effective decay constant

is defined as the derivative of logarithm of the detector response.

Kegelt) =gt [log D ()] . (1V-43)
-Z. (v)t

The contribution from N(v)e was retained for this part of

the computation. A comparison of the experimental results with

the effective decay constant computed via this simple model is

shown in figures IV-4 through IV-8. The sensitivity of the

effective decay constant to the initial source energy, which effects

the terms Po and N(v), was found to be negligible after three milli-

seconds. Increasing the mean energy by a factor of seven increased

the effective decay constant by eight percent at two milliseconds.
The formalism for obtaining the inverse transformation for

n(v, s) is identical to that for the detector response. The asymptotic

energy distribution for a case with BZ less than Bi is shown in



-99.

[} ]
1900 [ -
A ef f ( k ) c-i'“.. faee? ‘......’ ".‘. -',- e, et .
1800 EXPERIMENTAL /™ ", ..I” " 4 . -
RESULTS g .
sec™! . € x
1700 | : -
1800 = g2 . o099 cmZ 1165 BZ ’ g
1 | 1 ! |
i 2 3 4 5
TIME { milliseconds )

Figure IV-4. Comparison of the Theoretical and the Experimental
Effective Decay Constants
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Figure IV-5 Comparison of the Theoretical and the Experimental
Effective Decay Constants.
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Figure IV-6 Comparison of the Theoretical and the Experimental
Effective Decay Constants.
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‘ Figure IV-7 Comparison of the theoretical and the Experimental
Effective Decay Constants.
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Figure IV-8 Comparison of the Theoretical and the Experimental
Effective Decay Constants.
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Figure IV-9. The time dependent energy distribution n(v, t) for
a case with e exceeding BC2 may be seen in Figure IV-10. Since
the mechanics of the computations are unchanged for beryllium,
and beryllium cross sections were modeled and n(v, t) computed
for two beryllium assemblies to compare with the experimental
data of Gaerttner g_t__a._lg‘l?’) The results are shown in figures IV-11
and IV-12. Effective decay constants were also computed for the
beryllium assemblies, but since we have no experimental data for
time dependent decay constants, these results are not presented.
Asymptot ic decay constants computed for the graphite and
the beryllium assemblies with B2 less than Bj agreed with the
experimental results to within five percent. The uncertainty in
the experimental decay constants is less than one percent in this
range. Agreement with the effective decay constants for the graphite
assemblies was less than spectacular with both the amplitude and
the slope of the theoretical keff(t) curve deviating significantly
from the experimental results. The success of the theory to
predict the energy distribution in beryllium (Figures IV-11 and
IV-12) indicates that in these leakage dominated assemblies the
spectrum at the center is principally sensitive to how well the total
neutron cross section is modeled. In summary, the qualitative
agreement was satisfactory, but the theoretical model is inadequate

for quantitative computations.
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TABLE IV-1

Material B Exp. A, Theoretical A, (inclining 1a)
Cm-”2 (sec-l) (sec-l)
B, [0.026 |3238 +40(°%) 3312
Graphite 0.0051 1030 +1 1083
Graphite 0.0 ~ 15 75
Graphite 0.0077 1470 +2 1539
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V. CONCLUSIONS AND DISCUSSION

We have presented direct evidence of non-exponential decay
in six graphite assemblies for significant measuring times after
the source pulse. Additionally, for three larger assemblies, we
found that the decay of the neutron population was well described
by a single exponential during a significant interval (3 - 5 milli-
seconds), but that the decay near the beginning and the end of the
total measurement interval could not be described as purely ex-
ponential. For the largest graphite stack, the decay appeared to
be exponential over the entire ten millisecond measuring interval.
Further experiments have shown that when the decay is clearly
non-exponential the spatial distribution is also not adequately
described by a simple diffusion theory representation. Attempts to
describe these complicated experimental results by a simple modeled
computation have been qualitatively interesting, but quantitavely
unsuccessful. Hence, the experimental results present a real

challenge to the theorist.

A Interpretation of non-exponential decay

In Chapter II we defined the value of A, to be 1600 sec_’l
based on the criterion that the effective decay constants excee-d‘lng
this value failed to establish a 'plateau' for any two millisecond
interval during the measuring time after the source burst. Hﬂls(53)

categorized the decay as non-exponential if the effective decay

constant exhibited any 'drift'' after 2.5 milliseconds following the
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source burst. Based on this criterion, he found non-exponential
decay for )\eff greater than 1250 sec‘l. Using his criterion, our
value of A, would also be around 1250 sec‘l. However, below
1600 sec-l our effective decay constants exhibit a tendency to
increase for long times after the source burst, while above that
value they monotonically decrease. This behavior is in qualitative
agreement with Conn's(l7) analysis for effective decay constants
just above and below X\,, but the amplitude of the effect is greater
than one would expect from his work. Hlls also has results for an
assembly, comparable to our 1l.165 Bi graphite stack, in which he
shows that the decay is very non-exponential in the time interval
5.0 to 7.5 milliseconds after the source burst. Although the
results are somewhat obscured by the high background of 14990
counts/channel (more than ten percent of the total counts/channel),
the effective decay constant apparently decreases by approximately
11 percent/millisecond in this interval.

The experiments of Huls and those presented in this work
confirm that there exists a minimum size of graphite assembly in
which the neutron population decays in a discrete asymptotic mode.
Since the theories we discussed in Chapter I which predict this
behavior are so complex that thus far they have yielded only qualita=-
tive results, more specific comparison to the theories is not
possible at this time. One useful theoretical result would be more
specific information about what we can expect when we measure the

effective decay constants for assemblies in the immediate range of
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Ax+ Given this information, the experimental value of ), can

be more firmly established. This would be a very important
result since the existing low energy cross section data are not
sufficiently accurate for direct computation of A,. Because

of their long wave length, the low energy neutrons are sensitive
to the ""graininess'' of the graphite sampl&(68) Hence, the effective
slow neutron scattering cross sections reflect the average crystal
size and the presence of voids in the sample. The experimental
and determination of A, provides informatipn about the magnitude
of these effects. In addition, the time dependent effective decay
constants that we have presented should be especially useful in

checking theoretical models for the scattering kernel.

B. Implications of the Time Dependent Spatial Measurements

The time dependent spatial measurements also present some
interesting theoretical challenges. One of the significant features
of these measurements was the failure of the decay constants
associated with the higher spatial modes to fall on the dispersion
curve MBZ) of the fundamental spatial mode. This effect is apparently
not unique to graphite. Ritchie(30) noticed this effect over the
whole range of his measurements on BeO assemblies. Even the
water systems measured by Lopez and Beyster, (44) where the
fundamental decay constants were discrete and well-defined, ex-
hibited a trend for the higher order spatial decay constants to fall

consistently above the fundamental dispersion curve. For our case,
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the decay constants l(B'Z) (associated with the second spatial mode)
fall on a reasonably straight line when plotted against BZ. This
apparent lack of ""diffusioncooling' suggests that the energy dis=-
tribution of the Bg mode is considerably different from that of a
fundamental mode corresponding to B? = Bg.

Although this phenomenon is not peculiar to polycrystalline

media, we should point out that the difference A\ (AX =)\_(Bi)

2

2 2
-)*(BI)J Bn = Bl’

n > 2) in the results of Lopez and Beyster is an
order of magnitude larger than one obtains from the zero diffusion
cooling argument. Furthermore, the BeO results for X(Bg) in
excess of )\, are lower than the fundamental dispersion curve.
The nature of this phenomenon is apparently very complex.
Unfortunately, the decay constants of the higher spatial
harmonics are difficult to measure in the smaller blocks because
the ratio of initial amplitudes AZ/AI decreases as we decrease
the size of the stack. Reducing the pulse width to a few micro-~
seconds increases the ratio, but at the expense of the total amplitude.
Either the small ratio or the small total amplitude will severely
restrict the length of the time interval available for the measurement
of )L(Bg}. Henece, ‘the experiments in the most interesting regime
aré also the most difficult to perform.
The other interesting result of the time dependent spatial
distribution measurements was the tendency of the extrapolation

length (or wave number) of the smallest assembly to increase with

time after the pulse. The value of Zo for the larger three stacks
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also exhibited this trend to a lesser extent, but the increase was
significant for the smallest assembly and was independent of whether
graphite plugs filled the probe hole.

In transport theory the extrapolation length is defined in terms
of the asymptotic part of the spatial distribution. Our measurements
sampled the total distribution, and we were faced with the problem of
extracting just the asymptotic part. Although we were careful to
measure no closer than nine centimeters to the edge of the assembly,
there was no way to guarantee that we were measuring the distribution
in a region totally dominated by the asymptotic shape. Dropping the
end points from the fitting procedure effected the results only trivially
while increasing the uncertainty in Zo .

These results raise the question of the validity of the buckling
concept for small graphite systems. This problem has been attacked
(66)

theoretically by Wood and Williams in a numerical calculation for

the pulsed slab problem. They considered 'graphite, beryllium, and
water slabs. Their results for a 28 centimeter (B2 =1.3 Bi) graphite
slab indicate that the transient spatial solution is significant as deep as
one-quarter of the width from the edge to the center. The mean energy
and the angular distribution vary markedly as a function of position in

the slab., Our results for ZD are not really surprising when considered

within this theoretical framework.
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(43)
The experimental results of Gaerttner et al. for the

time dependent spectrum in beryllium are also consistent with this
analysis. They found that the surface spectrum was radically
different from the spectrum measured at the center of the

BZ = 0. 026 cm_z assembly. The surface spectrum exhibits

a peak just below the Bragg energy, while the center spectrum dips
to a minimum value.

The steady state measurements of DeJuren and Swanson(67)
are also consistent with the concept of the variation of the energy
distribution with position in the moderator. They measured the
spatial distribution in a graphite stack as a function of distance
from a plane source on one face of the assembly. Their interpreta=-
tion of the measurements was that no asymptotic spectrum was
established in the assemblies when the transverse buckling was

less than 0.0035 cm-z. For a cubical assembly, this corresponds

2

to a total buckling of 0.00525 cm™~~. We measured no ).eff(Bz, £},

which were constant over the entire measuring interval, for systems
with B in excess of 0.00545 cm ™2,
Hence, we see that there exists a substantial body of evidence
that the disappearance of the discrete decay constants as one
reduces the size of the graphite system is inseparably coupled to
the space and energy distribution of the neutron population.
The whole question of separability (n(x, v, t) = R(r)g(v) e_lt) has
been examined by Williams. (69) He finds that when the velocity

and time variables are coupled, corresponding to Ay <\, the space
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and time variables are also coupled. For these systems the
buckling concept breaks down, and the measured effective decay

constant is a function of detector position.

C. The Origin of the Oscillations in the Effective Decay Constants

One outstanding feature of the )‘eff(t) curves is the presence
of oscillations which appear to increase in amplitude near the end
of the measured interval. Figure V-1 shows some of the experi-

(53) which also exhibit the oscillations. We

mental results of Huls
mentioned in Chapter II that oscillations of frequency v B B come
directly from the analysis of the Laplace transform of the neutron

distribution function, (58)

but that the physical interpretation is
quite difficult. For the latter reason, one is led to suspect that

the oscillations are related to some parameter in the data collection
and analysis. In table V-1, we have listed the buckling of the
assemblies, the approximate oscillation frequency, the Bragg
frequency (VBB), and 27w/AT, where AT is the length of the fitting
interwval.

While the data appear to be correlated to the length of the
fitting interval AT, the experimentally observed frequencies are
too. approximate to draw any definite conclusions. The question of
whether the oscillations are related to the pollycrystalline structure
of the graphite can be experimentally resolved. Data from a water
system with an e.qu.ivalent )*eff can be analyzed by the same fitting

procedure. If no regular oscillations appear in the results, we
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TABLE V-1
leperiment Bz(cm-z) Experimental w|V,B 2w/AT

(sec 7) (sec (SGC'I)

L) 0.0062 6280 4564 | 11,017

il 0.0070 8602 4854 LE. QL7

" 0.0078 8971 5133 Ll 1T
This work 0.0064 3600 4640 2512
1 0.0099 8970 5800 8373
“ 0.0099 6280 5800 2500
L 0.0125 8263 6148 8373
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can conclude that the oscillations in the graphite data are physical
in origin. However, if regular oscillations appear, further experi-
ments will be required to test the sensitivity of the results to

such parameters as the width of data collection channels and the

length of the fitting interval.

D. Suggestions for Further Research

While we have presented convincing evidence for non-
exponential decay of transient neutron populations in small graphite
assemblies, several experiments are still needed to supply data
necessary for the complete interpretation of neutron die-away
experiments in graphite. The most powerful of these experiments
would be the measurement of time dependent spectra for small
graphite assemblies such as Gaerttner E_!_'.__a_l.(43) have done for
beryllium assemblies. Such detailed data are a more direct check
on the theory than the integral experiments we have reported.

A simpler experiment, which may prove to be even more
important than the energy distribution measurements, is a direct
comparison of die-away experiments performed on two graphite
systems which differ in the average size of the individual crys-
tallites. The size of the crystallites effects the elastic scattering

(

cross sections. s8) The dispersion in the experimental results
for neutron die-away experiments in graphite may be in part due

to variations in the average size and in the volume occupied by

tiny voids between the individual crystallites. Variation in the void
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fraction is reflected in density variation between samples.

Finally, a comparison of non-exponential decay measured
with detectors of different energy sensitivity may be necessary

to serve as a reference for any detailed theoretical computations.

The existing data should provide sufficient impetus for such

calculations.
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