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ABSTRACT 

Close to equilibrium, a normal Bose or Fermi fluid can be 

described by an exact kinetic equation whose kernel is nonlocal in 

space and time. The general expression derived for the kernel is 

evaluated to second order in the interparticle potential. The result 

is a wavevector- and frequency-dependent generalization of the linear 

Uehling- Uhlenbeck kernel with the Born approximation cross section. 

The t'-leory is formulated in terms of second-quantized phase 

space operators whose equilibrium averages are the n-particle 

Wigner distribution functions. Convenient exp ressions for the com­

mutators and anticommutators of the phase space operators are ob­

tained. The two-particle equilibrium distribution function is analyzed 

in terms of momentum-dependent quantum generalizations of the 

classical pair distribution function h(k) and direct correlation func­

tion c(k). The kinetic equation is presented as the equation of 

motion of a two -particle correlation function, the phase space density­

density anticommutato r, and is derived by a formal closure of the 

quantum BBGKY hierarchy. An alternative derivation using a pro­

jection operator is a lso given. It is shown that the method used for 

approximating the kernel by a second order expansion preserves all 

the sum rules to the same order, and that the second-order kernel 

satisfies the appropriate positivity and symmetry conditions. 
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I. INTRODUCTION 

The classical Boltzmann equation occupies a uniquely success-

ful position in nonequilibriurn statistical mechanics. Intermediary 

between the microscopic and macroscopic worlds, it serves as a model 

whose intuitive appeal and wide applicability have not been equaled by 

any other method of description. [ 
1

] Although it is limited to dilute 

gases, similar equations have been developed for denser fluids. A 

Boltzmann-like kinetic theory for quantum mechanical fluids has long 

been an attractive possibility, but the problems involved in its formula-

tion are much more severe than in the classical case. A quantum ki-

netic equation known as the Uehling-Uhlenbeck equation can be obtained 

from the Boltzmann equation by the substitution of the quantum mechani-

cal cross section for the classical one and the insertion of statistical 

factors to reproduce the Bose or Fermi ideal g as distributions at 

equilibrium. [ Z, 3 ] Several derivations have been given for the 

Uehling - Uhlenbeck equation, [ 4 - 6 ] and corrections to it have been sug-

gested, [ 7 - 9 ] but systematic attempts to improve upon it have 

not gone be yond the formal stage. [ 10 ' 11 ] An e xception is the 

generally 

trans-

port equation derived by Kadanoff and Baym for systems slowly varying 

in space and time, [ lZ] but , as discussed be low, the re r emains a need 

for a quantum kinetic theory valid on all scales of length and time . 

The present approach to this problem was stimulated by certain 

recent developments in classical kinetic theory. It has been known for 

some t ime that a liquid or dense gas can truly be described by a 

Boltzmann-like kinetic equation only if the kinetic kernel is made 
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nonlocal in time and space to account for the duration and s patial extent 

of the collision process. [ 13 • 14] Indeed, the first attempt to treat such 

effects was made by Enskog more than 50 years ago. [ l S ] Althoug h 

nonlocal kernels have subsequently appeared in many derivations, it 

is only in the last few years that systematic and explicit approxima-

tions have been obtained. For small deviations from equilib rium, a 

classical fluid can be described by an exact linear kinetic equation, 

whose kernel has now been evaluated to second order in the interparti­

cle potential, [lb, 17 ] and to first[lS, 19 ] and second[ 20] order in a 

density expansion. Other techniques have been used for the special 

[21 22] 
case of a hard sphere gas. ' There have also been several 

methods proposed for obtaining a kernel valid at liquid densities~ 23 - 28 ] 
An important aspect of these new kinetic theories is that t hey 

are derived without reference to any leng th or time scale, and there-

fore may be useful for the full range of fluid phenomena from the mo-

lecular to the hydrodynamic regime. Support for this notion comes 

from an analysis of the weak coupling equation by Forster and 

Martinf 
17

] who showed that it gives consistent predictions of the sum 

rules and the transport coefficients, reflecting a balanced treatment of 

the short-time and the long-time behavior. A similar result holds for 

the low-density equations.[
20

• 29 ] From the work of Forster and 

Martin and of Resibois , [ 30 ' 3 1 ] it follows that to determine the trans-

port coefficients exactly, the kinetic kernel must be correct through 

second order in space and time derivatives . The quantum transport 

equation derived by Kadanoff and Baym was explicitly limited to the 



- 3 -

long-time, large-distance regime by the omission of terms higher 

than first order in the g radients, and it is therefore insufficient even 

for a complete description of linear hydrodynamics. 

The object of this thesis is to demonstrate that a linear kinetic 

theory for normal quantum fluids with Bose or Fermi statistics can be 

formulated with the same conceptual simplicity and consistency as has 

now been attained in the classical case, and, specifically, to calculate 

the nonlocal kernel to second order in a potential expansion. In the 

classical limit this second-order kernel properly reduces to the clas­

sical one, and in the limit of large times and distances it reduces to the 

linear Uehling- Uhlenbeck kernel with the Born approximation cross 

section. 

The organization of the thesis is as follows. Sections II, III, 

and IV introduce the operators, distribution functions, and correlation 

functions needed for the calculation. Section V contains the derivation 

of the kinetic equation and a discussion of the method of approximation. 

An alternative derivation is given in Appendix C. The evaluation of 

the kernel to second order is carried out in Section VI. Section VII 

contains a brief discussion of the results and of possibilities for future 

work. 
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II. PHASE SPACE OPERATORS 

Classical kinetic theory is based on the study of the one-parti-

cle phase space distribution function p (rp, t), which can be expressed 

as the ensemble average of the classical phase space density 

f (rp,t) = \o(r-r.(t))o(p-p.(t)), 
c ~ 1 1 

( 2 . 1) 

1 

where the summation extends over all the particles in the system. In 

quantum kinetic theory, it is useful to express the Wigner distribution 

function as the ensemble average of a second-quantized phase space 

operator f(rp, t). The operator f(rp, t) and its multiparticle analogs 

are studied in this section. Properties of the distribution functions 

and time-displaced correlation functions obtained from them are dis-

cussed in Sections II and III. 

The one -particle phase space density operator f(rp, t) is de-

fined by 

-3J 1 -ip•r
1
/h + J.. .l. 1 f(rp, t) = (2rrh) dr e ~ (r- "2 r 1

, t)~(r+"2 r, t) , (2. 2) 

where ~ (r, t) and ~ + (r 1
, t') are the Heisenberg field operators satisfy-

ing the commutation or anticommutation relations 

(2. 3a) 

and 

$(r)W(r1
} - TlW (r 1)~(r) = 0 (2. 3b) 

at equal times. The factor Tl equals +1 for bosons and -1 for 

fermions. Throughout this paper, the letters k, r, and p represent 

vector quantities. When they are needed, the components of a vector 

are indicated by a Greek superscript. 
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In terms of f(rp, t), the ordinary number and momentum den-

sity operators are given by 

n(r,t) = ljl+(r,t)ljl(r,t) = Jdpf(rp,t) , ( 2. 4a) 

(2. 4b) 

These equations provide a first indication of the considerable formal 

similarity between f(rp, t) and the classical phase space density 

f (rp, t). 
c 

The multiparticle phase space operators are defined by 

f(l2 . . n, t) 
-ip •r' /h 

= (2Tihf 3 rdr' e n n 
tJ n 

X ljl+(r - ~ r',t)f(l2 . . n-l,t)ljl(r +~r',t) , 
n n n n (2. 5) 

where 1 stands for the pair of variables r 1p 1 , and so forth. The 

ordering of the operators in Eq. (2 . 5) corresponds classically to the 

requirement that all the particles be distinct. The two-particle opera-

tor f(l2, t), for example, is analogous to the classical density 

fc(l2,t) = L 6(r 1-ri(t))6(p 1- pi(t))6(r 2- r/t))6(p2- p/t)) 

i I= j 
( 2. 6) 

It should be noted that the phase space operators are Hermitian, and 

that f(l.. i.. j .. n, t) is symmetric under permutations (i, j) for both 

Bose and Fermi statistics. 

We consider a system of unit mass point particles interacting 

through a central potential v< 12) = v< I r 1- r 2 !). rn terms of the phase 

space operators f(l) and f(l2), the Hamiltonian is 



- 6 -

(2. 7) 

where dl stands for dr 1 dp 1 . For the purpose of carrying out a for-

mal perturbation expansion, later, it is assumed that v(r) has a 

Fourier transform. 

As shown in Appendix A, the equal-time commutation relations 

of the first few phase space operators can be expressed as 

(f(l),£(2)) = 6(1-2)S(l)f(l), 

[f(l),f(23)] = o(l-2)S(l)f(l3) + o(l-3)S(l)f(l2), 

[f(l2),f(34)] = 6(1-3)S(l)£(124) + o(l-4)S(l)f(l23) 

+ 6(2-3)S(2)f(l24) + 6(2-4)S(2)f(l23) 

+ [ o(l-3)6(2-4) + 6(1-4)o(2-3)]S(l2)f(l2), 

S ( 1 ) = 2 i s in [ ~ h D ( 1 ) ] , 

S(l2) = 2isin[~hD(l)+~hD(2)], 

(2. 8a) 

(2 . 8b) 

(2. 8c) 

The gradients in the Poisson bracket operator D act to the left or 

right as indicated by the arrows. If x and y are two functions of the 

phase space variables rp, for example, then x(rp)exp[ iD(rp)] y(rp) is 

defined as the formal power series 

iD 
xe y 
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The first few equal-time anticommutation relations are 

where 

i££(l),f(2)} = f(l2) + o(l-2)C(l)f(l), 

iff(l),f(23)} = f(l23) + o(l-2)C(l)f(l3) 

+ o(l-3)C(l)f(l2), 

C ( 1) = cos [ ~h D( 1)] 

(2. 9a) 

(2. 9b) 

Except for the presence of higher-order operators on the right-hand 

side, the anti commutation formulas follow the same pattern as Eqs. 

(2 . 8). The relations (2. 8) and (2. 9), which are new, are a convenient 

restatement of the commutation and anticommutation relations of pairs 

w+(r')w(r) of the field operators. It should be emphasized that both 

Eqs. (2. 8) and (2. 9) are true for both Bose and Fermi statistics. 

The occurrence of operators like S( 1) is typical of formulas 

· 1 · h w· d. t ·b · [ 32 - 37 ] E d d · f 1nvo v1ng t e 1gner 1s r1 utlon. xpan e 1n powers o h, 

such formulas give quantum corrections to classical results. The 

classical expression corresponding to the first term in the expansion of 

Eq. (2. 8a), for example, is the Poisson bracket formula 

[ f ( l), f ( 2)] PB = 5 ( 1- 2) (lJ • V - lJ • V ) f ( 1) c c r 1 p
1 

p 1 r 1 c 

In this thesis, however, I do not make use of an expansion in h ex-

cept to compare a quantum mechanical result with its classical limit. 

The manipulation of expressions involving S( 1) and S( 12) is 

aided by the fact that D( 1) commutes with itself and with D(2). It 

should also be noted that after a Fourier transformation with respect 
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to r
1

, anoperatorlike exp (-~ ih t7 • ~ ) acts on the functions to its 
r 1 P1 

right to produce a displacement in momentum: 

exp (~hk. a~)x(p) = x(p+~hk} 

It is primarily in this form that operators like S(l) and S(l2) are used 

in later sections. 

The commutators in the equations of motion 

for the phase space operators can be rewritten through an application 

of Eqs. (2. 8); the method is illustrated in the derivation of Eq. (2. 14) 

below. The result is the coupled system of equations 

[a~+iL(l~f(l,t) = -Jd2iL 1(12)f(12,t), 

[;t+iL(12~f(l2,t) = -fd3[iL 1(1 3 )+iL 1(23)]f(I23,t), 

and so forth, where 

(2. lOa) 

(2. lOb) 

L(l} = L
0

(1) = -ip1 • 0 ;
1

, (2. 11a) 

L(l2) = L (1)+L (2)+iv(l2)-h
2

sin(h2 t7 • <1 +h2 t7 • <1 ). (2. 11b) 
o o \ r1 p1 r2 p2 

L 1(12) = iv(l2)~sin(~ t7r 1• 9'p) . (2.11c) 

Except for the definition of the interaction operators in Eqs . (2. 11 b) 

and (2. 11c), this system has the same form as the classical BBGKY 

hierarchy. These operator equations are analogous to the equations 

of motion of the reduced Wigner distribution functions in the form first 

given by Irving and Zwanzig. [ 33 ] Equations (2. 10) - (2. 11) provide 
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the starting point for the derivation of the correlation-function kinetic 

equation in Section V. 

This section concludes with an application of the commutation 

relations {2. 8) to the operator counterparts of the hydrodynamic vari-

ables, namely the number and current density operators n{r, t) and 

J(r, t) given by Eqs. {2. 4) and the energy density E(r, t) given by 

E(r, t) = J dp e(rp, t) , (2. 12a) 

where 

1 2 1 J e(rp, t) = zP f(rp, t) + 2 d2 v(l2)f(l2) (2. 12b) 

We obtain illustrative formulas for some of the commutators of these 

operators, as well as expressions for the stress tensor and energy 

current operators that appear in the differential form of the operator 

conservation laws. These results are not used elsewhere in this thesis, 

but they will be required in future work on the conservation laws and 

transport coefficients predicted by the kinetic equation. 

It should be noted, first, that the density operator commutes 

with itself, 

This property is shared by the multiparticle densities such as 

n(r 1 r2) = .r dpl dp2 f( 12), 

and by the combinations like 

(2. l3a) 

(2. 13b) 

(2. 13c) 
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One verifies these identities by expanding the S operator in Eqs. (2 . 8) 

and integrating by parts with respect to the moment. The procedure 

is illustrated in the following calculation of the density-current commu-

tator. We write 

[n(r 1), Ja.(r 2 )] = Jdp1 dp2p~{o<r 1-r 2 ) o (p 1-p2 ) 

X2isin[~h(9 · ~ -9 .fj )]f(r 1p 1)l 
rl P1 P1 rl J 

= - Jdpldp2 o(rl-r2)o(pl-p2) 

X 2 i sin [ ~ h 9 p 
1
• ( 9 r t ~ r J J p ~f ( r 1 p 1 ) 

Only the first term in the expansion of the sine survives the integration, 

and it gives 

(2. 14) 

Similar calculations give, for example, the number density-kinetic 

energy density commutator 

[n(r 1 ), E
0

(r
2

)] = - ih o.a a. [o(r
1
- r

2
)Ja.(r

1
)] , 

ur
1 

and the current-current commutator 

( 2. 15) 

We obtain the differential conservation laws by working out the 

commutators in the equations of motion a I at = (ih) -l [ , H] for the 

number, current, and energy densities. Because of Eq. (2. 13c), the 

potential energy does not contribute to the equation for n(r), which 

is simply the number conservation law 
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a~ n(r, t) + _a_ J a.(r, t) = 0 . 
ara. 

The momentwn and energy conservation laws are written as 

a
at E(r, t) + _a_ J a.(r, t) = 0 , 

ara. e 

in terms of the stress density and energ y current operators 

(2. 17a) 

(2. 17b) 

( 2. 17c ) 

(2. 18) 

(2 . 19) 

The first terms of Eq s . (2 . 18) and (2 . 19) are straightforward to obtain. 

The second terms, containing the operator Tgtt(rp, t), are more diffi ­

cult; they arise from the commutators involving the potential energy 

part of the Hamiltonian. In terms of the Fourier transform 

a.l3 _ J - i k • r a.l3 
Tpot(kp, t) - dr e Tpot(rp, t) , 

the result for the operator Ta.13 can be expressed as 
pot 

where f(kp, k'p' , t) is the Fourier transform 

Jd d 1 -i(k•r+k'•r')f( I I t) r r e rp, r p, 

The function ~ a.l3(k, k) satisfies 

(2. 20) 

(2. 22) 
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where v(k) is the Fourier transform of the potential. An explicit 

t t o f o t o [ 17] represen a 10n or 1 1s 

<P a.f3(k, k) = J1 
dsl(k-sk)a.(k-sk)f3 v'(k-sk) + o v(k-sk~ , (2 . 2 3 ) 

0 L Jk-skl a.13 J 
where 

'( ) dvl(kt v k = d k . 

Equations (2 . 18)- (2. 23) are equivalent to the somewhat bulkier expres-

sions for the quantum mechanical stress tensor and ene rgy current 

given by Puff and Gillis in terms of the oper ators $ (r) and tlr +(r) . [ 3 8 ] 



- 13 -

III. DISTRIBUTION FUNCTIONS 

The one- and two-particle Wigner distributions are 

n(l) = (f(l)), 

n(l2) = (£( 12)), 

(3. la) 

(3. lb) 

where the angular brackets indicate an a verage in the grand canonical 

ensemble with inverse temperature 13 and chemical potential ~- For 

h-0, these f unctions reduce to the classical one- and two-particle 

phase space distribution functions. Because of translational invariance 

in the equilibrium ensemble, the one-particle function is simply the 

momentum distribution n(p), which is normalized to the density by 

J dp n(p) = n. For free particles, it is the Bose or Fermi distribution 

(3 . 2) 

This normalization ensures that the h-0 limit of n(p) is n¢(p), 

where 

(3 . 3) 

is the Maxwellian. Similarly, the classical limit of n( 12) is 

where gc(r) is the classical pair distribution function. As will be 

seen below, the momentum and position variables in the quantum 

n(l2) do not separate in this way, but the pair distribution g(r ) is 

nevertheless given by 
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(3. 5) 

as in the classical case. Though n(l2) is real, it is not necessarily 

nonnegative for all values of its variables. This is characteristic of 

the Wigner representation. The function n( 12) is best regarded as a 

particular off-diagonal Fourier transform of the two-particle density 

matrix. Since an integration over all momenta as in (3. 5) gives the 

diagonal part, the pair distribution g(r) is nonnegative, as it must be. 

To investigate n( 12) in more detail, we can employ perturba­

tion theory. [ 39 J The notation and diagrammatic rules are summarized 

in Appendix B. Here it is sufficient to note that the Fourier transform 

of f(l2), Eq. (2. 5), is given in terms of the operators 

by 

(3. 6) 

the sum of imaginary-time ordered momentum space diagrams indi-

cated in Fig. 1. Diagrams la and lb contain the fully interacting one-

particle propagator, and diagram lc stands for the sum of all two-

particle connected diagrams, so that Fig. 1 provides a structural 

decomposition of n( 12) that does not yet involve a perturbation expan-

sion. Diagram 1a, in which particles 1 and 2 are uncorre1ated, stands 

for 

(3. 7a) 
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Diagram lb, in which particles 1 and 2 are correlated only by ex-

change, gives 

3 
(2rr) 6(k

1
+k

2
Hi(p

1
-p

2
)yn(l+)n(l-), (3. 7b) 

where y = (2rrh)
3 

T). As we would expect, this term is of purely quan-

tum mechanical origin, and vanishes for h-0. Diagram lc contains 

the effects of correlations due to the interparticle potential, and can 

be represented by 

(3 . 7c) 

where H(k
1

p
1

p
2

) is a special form of the function .U(p 1p 2p
3

p
4

) dis­

cussed below. In summary, n(l2) is given by 

J dk ik•(rl-r2) 
n( 12) = n(p 1 )n(p2 ) + --3e 

(2rr) 

X [ 6 (p 1-p2 )yn(p 1-~hk)n(p 1+~hk) + H(kp 1p 2 )] (3. 8) 

Comparing this with Eq. (3. 4), we see that the classical limit of 

H(kpp') is given by 

lim H(kpp') = h (k)n¢(p)nc,6(p') , 
h-0 c 

(3. 9) 

where h (k) is the Fourier transform of g (r)-1. c c 

It will be useful to define a quantum gene ralization h(kpp') of 

h (k) by 
c 

H(kpp') = h(kpp' )N(kp)N(kp') , (3. 10} 

where 

N(kp) = ~n(p+~hk);:;'(p-~hk) + ~n(p-~hk)~(p+~hk), (3. 11) 

with 
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~(p) = 1 + yn(p) 

Obviously, there are many functions besides N(kp) which reduce to 

n¢(p) in the classical limit; the reason for the particular definitions 

(3. 10) and (3. 11) will be apparent in Section IV. Like H(kpp'), h(kpp') 

is real, even under k- -k, and symmetric in p and p'. It vanishes 

for an ideal gas. The notation should not be interpreted to suggest too 

close an analogy with the classical distribution functions , however. It 

should be noted, for example, that the quantum g(r)-1 is not equal to 

the Fourier transform of J dpdp'h(kpp'), as the exchange term is not 

included in the definition of h(kpp'). Rather, g(r) -1 is obtained from 

Eqs. (3. 5 and (3. 8). For an ideal gas, all the correlations come from 

the exchange term, so that g (r) is given by the standard resu1t40 •41 ] 
0 

where 

2 
g ( r ) = 1 + T)W ( r ) , 

0 

1 J ip•r/h w(r) = - dp e n (p) n o 
0 

(3. 12) 

The calculation of H(kpp') is in general an exceedingly compli-

cated problem. In addition to all the difficulties involved in a calcula-

tion of the quantum mechanical pair distribution function, one must 

deal with the coupling of the space and momentum variables. The first 

term in the perturbation expansion of H(kpp') is not difficult to obtain, 

however, and serves to illustrate something of the general structure of 

h(kpp') and of its relationship to the classical h (k). The result for 
c 

the sum of the general two-particle connected diagram with the momen-

tum labeling of Fig. 2 is written as 
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(3. 13) 

A short calculation of the two diagrazns on the right hand side of Fig. 2 

gives the first-order result 

~1<P1·Pz·P3'P4> = 13[v(p1-p3) + nv<PcP4>J 

tanh ~(3(pi +p~ -p; -p;] 
XAo(pl,p2,p3,p4) (.2 2 2 2) ' 

tl3 ~P 1 +p2 -p3 -p4 
(3. 14) 

where 

(3. 15) 

and 

,., J -ik•r v(hk) = v(k) = dr e v(r) 

Comparing Fig. 1c and Fig. 2, we see that Eq. (3. 7c) defines 

H(kpp') = ~(p-~hk, p'+ihk, p+~·hk , p~ihk) (3. 16) 

To put the result for H 
1 
(kpp') in the forn1 

we can use the identity 

,...,_, )., ,...,_, (3hk•p 
n (p-~hk)n (p+ihk) = n (p+2'hk)n (p-thk)e 

0 0 0 0 
(3. 17) 

to extract a factor N (kp)N (kp') from A . The final expression 
0 0 0 

for h 
1 

(kpp') can then be written as 

h (k ') __ A[ (k)+ "( _ ')] tanh(-~(3hk·p)-tanh(il3hk•p') 
1 pp - t-' V T)V p p if3hk•(p-p1 ) (3. 18) 
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In the limit h-0, the momentum dependence vanishes and we recover 

the first-order classical result, h (k) = -j3v(k). 
c 

The second-order 

term of H(kpp') is much more complicated. Although it can also be 

calculated by a straightforward application of perturbation theory, it 

is obtained more easily from a relationship giv en in Section V. 
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IV. CORRELATION FUNCTIONS 

The kinetic equation derived in Section V is an equation of 

motion for the equilibrium correlation function F(l, l'lt), defined 

below. Traditional kinetic theories d e scribe the time evolution of the 

nonequilibrium average of f(rp, t). The connection between these two 

functions is provided by linear response theory. For small deviations 

from equilibrium produced by an external potential u(rp), introduced 

adiabatically in the distant past and turned off at t = 0, the subsequent 

evolution of the nonequilibrium average of f(rp, t) is given by 

( f(rp, t) ) u- (f(rp)) = 13 Jdr'dp'L(rp, r'p' lt)u(r'p') + O(u
2

) . (4. 1) 

For sufficiently small disturbances, therefore, (f(rp, t)) - (f(rp) ) 
u 

obeys the same kinetic equation as the linear response function 

L(rp, r'p'lt), which is an equilibrium two-particle correlation function. 

As is well known, the linear response regime is sufficient to account 

for many of the important properties of a fluid system, including its 

full neutron scattering and light scattering spectra as well as its trans-

t ff . . t [42-44] por coe 1c1en s . 

Closely related to L is the anticommutator correlation func-

tion defined by 

F(l, l ' lt-t') = ( ~[f(l,t),f(l',t')})- ( f(l))(f(l') ) , (4. 2) 

which also obeys a kinetic equation and which contains equivalent 

information. Although the formal development of a kinetic equation 

for L would be identical to that given in Section IV for F, the evalua-

tion of the theory to obtain an app roximate but explicit kinetic equation 
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is easier to carry out for F. In particular, a calculation of the ini-

tial v alue of L would require an analysis of time - or frequency-

dep endent diag rams rather than equal - time diagrams as in the case of 

F . 

The explicit connection between L and F is given in terms of 

the Fourier tr a nsform 

by 

0) 

S(kwpp') =I d(r-r')e -ik•(r-r') I dt eiwt F(rp, r'p'l t) 
-0) 

L(kwpp') = S(kwpp') T(~h.o) , 

(4. 3) 

where T(x) = ('x)- 1 tanh(~x). [ 44] It can be seen that the distinction 

between them vanishes in the classical limit. The letter S serves as 

a reminder that integration over the momenta reduces S(kwpp') to the 

symmetrized scattering function S(kw). 

S(kw) = I dpdp' S(kwpp') (4. 5) 

The symmetrized function S(kw) is related to the Van Hove scattering 

function SVH(kw) by 

S(kw) ( 4 . 6) 

From the definitions (4. 2) and (4. 3), it can be shown that S(kwpp') is 

real, and that its symmetric integrals over an arbitrary function of 

the momentum are nonnegative: 

s dpdp' g * (p) S(kwpp')g(p') :2: 0 ( 4 . 7) 

In particular, this guarantees the nonnegativity of S(kw). It can also 
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be shown that S(l<wpp') is even under k, w ... - k, -w and symmetric in 

p and p'. 

For discussing the kinetic equation, it is convenient to use the 

function of complex argument z defined by 

00 

F(kzpp') = J dw S(l<wpp') 
2rr w -z 

-00 

Conversely, S is obtained from F(z) by 

S(l<wpp') = - 2 lim Im F(k, w+ i e: ,pp') 
E:-0+ 

(4. 8) 

For Im z>O, F(kzpp') is the Laplace transform of F(kpp'lt), with 

the convention 
00 

F(z) = iJ dt eizt F(t) 

0 

(4. 9) 

We will also use the r-space form F(l, l'lz). In terms of F(kzpp'), 

the basic properties of the anticommutator correlation function may be 

summarized as 

F(k, z ':<;pp') = [ F(k, z ;pp')] ':' , 

lim Im J dpdp' g*(p)F (k, w+ie:;pp')g(p') ~ 0 , 
e:-0+ 

F (- k, - z; pp ') = - F ( k, z; pp ') , 

F(k, z;pp') = F(k, z;p'p) . 

(4. lOa) 

(4. lOb) 

(4. lOc) 

{4. lOd) 

The importance of pre serving these relations in an approximate theory 

for F(kzpp') has been indicated in the classical case~ l?] 

We turn now to an examination of the initial value 

F(l, l') =F(l, l'lt=O), which is an equal-time or static correlation 

function. Its spatial Fourier transform is indicated by F(kpp'). 
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The structure of F( 1, 1') can be seen from a diagrammatic analysis 

like the one given in Section III for n( 11'). We can obtain the same 

result more simply, however, by exploiting the properties of the 

anticommutator: the equilibrium average of Eq. (2. 9a) expresses 

F(l, 1') in terms of the one- and two-particle distribution functions as 

I I I ') (h- - ) F(l,l) = n(ll)-n(l)n(l)+o(l-1 cosz'V • V' n(l). 
r 1 P1 

After a Fourier transformation with respect to r 1 - rl, the last term 

becomes 

o (p-p')cosh(thk · a~)n(p) = o(p-p
1

) [ ?ln(p+~·hk) + ~(p-thk)] 

Combining this with expressions (3 . 8) and (3. 10)- (3. 11), we obtain 

the important result 

F(kpp1
) = o(p-p')N(kp) + h(kpp1)N(kp)N(kp') (4. 11) 

This can be compared to the classical formula for F(kpp1
), which is 

lim F(kpp1
) = o(p-p1)n¢(p) + h (k)n

2
¢(p)¢(p1

) • (4. 12) 
h-0 c 

The reason for the definition (3. 11) can now be seen: N(kp) is the co-

efficient of o(p-p1
) in Eq. (4. 11 ). In this context, N(kp) can be 

thought of as the quantum generalization of n¢(p). Since h(kpp1
) 

starts at first order in the potential, the ideal gas result for F(kpp1
) 

is 

F (kpp') = o(p-p')N (kp) 
0 0 

( 4. 13) 

A crucial property of F(kpp') is the fact that it has an inverse 

F-l(kpp') in the sense that 
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(4. 14) 

for all k. In the classical case, the inverse is given by 

I ~-I lim F{kpp) = ( ) - c (k) , 
h-0 n p c 

( 4. 15) 

where c {k) is the clas sica! direct correlation function defined in 
c 

terms of h (k) by the Ornstein- Zernike relation 
c 

h (k) = [ l+nh (k)] c (k) . 
c c c 

Analogously, we define a quantum generalization of c c(k) by 

( 4. 16) 

h{kpp1
) = c{kpp1

) + J dp h(kpp)N(kp)c(kpp1
) • (4. 17) 

It is easy to verify that the quantum static inverse F- 1 (kpp~ is given 

by 

F- 1(kpp1
) - o(p-p

1

) - c(kpp 1
) • (4. 18) 

- N(kp) 

Like h(kpp1
). the function c(kpp1

) vanishes for free particles. The 

first-order term c 1(kpp1
) is identical to h 1(kpp1

), Eq. (3. 18) . 

In addition to the static inverse F-
1
(kpp1

), the derivation of the 

kinetic equation given in Section V makes essential use of the z-depen­

dent inverse F-
1
(kzpp1

) satisfying 

( 4. 19) 

for all k and z. Although there has been no explicit proof, the exist-

ence of this z-dependent inverse seems well established in the classical 

[17 19 20 24] . . 
case. ' ' ' For a normal quantum flu1d, the properhes of 

F-
1
(kzpp1

) are similar to the classical ones. In the ideal gas limit, 
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- 1 I F (kzpp) 
0 

is obtained by inspe ction from 
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= [z-k•p] 6 (p-p
1

) 

N
0 

(kp) 

6 (p-p1)N (kp) 
F (kzpp

1
) = ( 

0
] o z- k•p 

(4. 20a} 

( 4. 20b) 

For an interacting system the inverse can be generated formally 

through the 1arg e-z expansion 

F- 1 (1 , 11
1 z) = z F- 1 ( 1 , 11

) - i J d 2 d 2 I F- 1 ( 1 , 2) F ( 2 , 2 1) F- 1 ( 2 ~ 11
) + 0 ( z- 1 ) , 

( 4 . 21) 

where F(l,l') isthetimederiv ativeof F(l,l'lt) at t = O. Clearly, 

the existence of F-
1
(1, 11 lz) is dependent on the static inve rse 

F-
1

(1, 11
). It may be noted here that Eq. (4. 20a) is the only explicit 

- 1 1 result for F (kzpp) that is required for the e valuation of the second-

order kernel in Section V. 

The existence of the static and z -dependent inverses is a 

special property of the anticommutator function, and is not shared by 

every correlation function of interest. A counterexample is provided 

by the commutate r function 

x o, 11 lt- t') = (2h)-
1

( [f(l,t),f(l 1,t1
)] ) (4. 22) 

From Eq. (2. 8a) it can be s e en that the Fourier transform of the 

initial value x (I, 11
) is g i ven by 

x (kpp1
) = ~13M(kp) 6 (p-p') , ( 4. 23) 

where 

M(kp) = (13h)- 1 [n(p-~hk)- n(p+~·hk)] (4. 24) 
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The classical limit of M(kp) is 

lim M(kp) = k•p n¢(p) . 
h-0 

(4.25) 

Since X (kpp') vanishes for k = 0, X does not have a well behaved 

static inverse, and, consequently, also does not have a z-dependent 

inverse. The method used in the next section for deriving a kinetic 

equation for F can therefore not be applied to X· In fact, it can be 

shown that X does not satisfy a kinetic equation of the same form as 

the one for F. This point is discussed at the end of Appendix C. 
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V. QUANTUM KINETIC EQUATION 

In part A of this Section, the kinetic equation for F(l, l'jz) is 

derived by a formal closure of the BBGKY hierarchy. An alternative 

derivation is given in Appendix C. In both cases, the nonlocal kernel 

is expressed in terms of correlation functions involving two, three, 

and four particles. A scheme for approximating the kernel in a way 

that preserves the symmetries of F(l, l'jz) is discussed in part B. 

It is shown that this scheme also preserves all the sum rules of 

S(kwpp') to the same order of approximation. 

A. The Nonlocal Kernel. 

From the operator equations of motion (2. 10), we obtain a 

hierarchy of correlation-function equations beginning with 

[z-L(l)]F(l, l'jz) = F(l, 1') + Jd2 L 1(12)F(l2, l'lz), ( 5. la) 

[ z - L ( 12) ] F ( 1 2, 1'1 z) = F ( 12 , 1 ') + J d 3 [ L 1 ( 13 ) + L 
1 

( 2 3 ) ] F ( 1 2 3 , l' jz) , 
( 5. 1 b) 

together with the complementary sequence 

(z+L(l')]F(l, l'jz) = F(l, 1')- Jd2'L
1
(1'2')F(l, 1'2'jz), (5. 2a) 

(z+L(l')]F(l2, l'lz) = F(l2, 1') - Jd2'L 1(1'2')F(l2, 1'2'jz), (5. 2b) 

where the higher- order correlation functions analogous to F(1, 1'lt) 

are defined by 

F(l. .n, 1' .. n'lt-t') = ( ~[f(l. .n,t),f(l' .. n',t')} ) 

- ( f ( 1. . n) ) ( f ( 1'. . n ') ) . ( 5. 3) 

The first equation of the hierarchy, Eq. (5. 1a) or Eq. (5. 2a), pro-

vides an equation of motion for F(l, 1'jz), but this equation contains 

the three-particle correlation function F(l2, l'jz), which is dependent 
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on a four-particle correlation function through Eq. (5. la) or (5. 2b~ and 

so on. Our goal is to obtain a closed kinetic equation for F(l, l'lz) 

in the form 

[z-L(l)]F(l, l'lz) = F(l, 1')+ Jdz L:(l, Zlz)F(2, l'lz> (5. 4) 

A comparison of Eqs. (5. la) and (5. 4) shows that the kinetic 

kernel or memory function L:(l, l'lz) must satisfy 

Jdz L:(l, Zlz)F(2, l'lz> = Jdz L 1(12)F(l2, l'lz> (5. 5) 

Together with the z-dependent inverse discussed in Section IV, 

Eq. (5. 5) defines L:(l, l'lz) uniquely. Thus, an application of 

Eq. (4. 19) to Eq. (5. 5 ) gives 

L: (l, l'lz) = Jd2d3 L
1
(12)F(l2, 3 lz)F-l(3, l'lz) (5. 6) 

An equivalent expression that is better suited for the evaluations in 

part V is obtained below. 

It should be noted here that a kinetic equation of the form 

(5. 4) can be derived with the use of a projection operator, as is done 

in Appendix C. In this method, the z-dependent inverse is not required; 

instead, the kernel is expressed in terms of correlation functions con­

taining the modified propagator exp[ it(l-P)L]. It is not obvious, 

however, what conditions are required to guarantee that expressions 

containing the modified propagator are well behaved. This point is 

discussed in the appendix. Since both methods lead to a kinetic equation 

of the form ( 5. 4), it appears that the use of the modified-propagator 

expressions is tantamount to assuming the existence of the z-dependent 

inverse. In the absence of a general proof in either case, the 
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assertion that F(l, l'lz) is governed by a kinetic equation of the form 

( 5. 4) is mainly justified by the well- behaved explicit results that are 

obtained for the kernel. 

We now proceed to express the kinetic kernel in a more con-

venient form than Eq. (5. 6). This derivation is similar to one given 

in the classical case by Mazenko. [ 
24

] It will be useful to define a 

new kernel K(kzpp') by multiplying l:(kzpp') on the right by the initial 

value F(kpp'), 

K(kzpp') = I dp l:(kzpp)F(kpp') (5. 7) 

Since F(kpp') and the static inverse F-
1

(kpp') are known quantities, 

the kernels l: and K are completely equivalent. Applying [ z+L( 1')] 

to Eq. (5. 5) and using Eqs. (5. 2), we have 

K(l, l'lz)- Jd2'd3' l:(1, 3'lz)L
1 
(1'2')F(3', 1'2'lz ) 

= J d 2 L 1 ( 1 2 ) ( F ( 1 2 ' 1') - I d 2 I L 1 (1'2 ') F ( 1 2 ' 1'2 'I z ) ) 

(5. 8) 

Now rewriting l:( 1, 3'lz) on the left hand side of Eq. (5. 8) in the form 

of Eq. (5. 6), we obtain the desired expression for K(l,l'lz) as the 

sum of a static part K(s)(l, 1') and a dynamic part K(d)(l, l'lz), 

K(l, 1'lz) = K(s)(l, 1') + K(d)(1, l'lz) . (5. 9a) 

The static part 

( 5. 9b) 

is independent of z and represents a mean-field or modified Vlasov 

contribution to the equation of motion, while the dynamic part 
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( 5 . 9c) 

G ( 1 2. 1'2 'I z ) = 

F(12, 1'2'lz)- Jd3d3'F(12, 3 lz)F-
1

(3 , 3'lz)F(3~ 1'2'lz), (5. 10) 

starts at order z -
1 

and d e scribes the Boltzmann-like effect of calli-

sions. Equations (5. 9) and (5 . 10) are the expressions that are used in 

obtaining the explicit results for the second order kernel in Section V. 

The method of approximation is discus sed in the next part of this 

section. 

Through the equation of motion (5. 4), the positiv ity and symmetry 

properties (4. 10) of F(kzpp') determine corresponding properties of 

the kernel. [ 45 ] Conversely, if F(kzpp') is obtained as the solution of 

the kinetic equation (5 . 4) with an approximate kernel having these 

properties, then it will automatically satisfy the requirements of 

Eqs. (4. 10) . In terms of K(kz pp'), the properties of the kernel are 

summarized as 

K(k, z * ;pp') = [ K(k, z;pp')] * , 

lim ImJ dpdp' g*(p)K{k,w+i e: ;pp')g(p') ~ 0 , 
e: -0+ 

K(-k, -z;pp') = - K(k, z;pp') . 

K(d)(k, z;pp') = K(d)(k, z;p'p) . 

(5.11a) 

( 5.11b) 

( 5 . llc) 

(5.11d) 

The static part is real, and odd under k- -k, but by itself it is not 

symmetric under p-p'; rathe r, it is the sum of the static part and 

the streaming term 

K(s)(kpp') + k•p F(kpp') = K(s)(kp'p) + k·p'F(kp'p) (5. 11e) 
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which has this property. This combination is simply iF(kpp'), where 

.F(kpp') is the initial time derivative of F(kpp'lt). 

There is an additional general property of the kernel that can be 

mentioned here, namely, that the static kernel K(s)(kpp') is closely 

related to the connected part H(kpp') of the two-particle distribution 

function. Subtracting the terms of order 1 /z in the large-z expan-

sions of Eqs. (5. la) and (5. 2a), we find 

(L(l)+L(l')]F(l, 1') = -Jd2(L
1

(12)F(12, l')+L
1
(1'2)F(l'2 , 1)], 

or 

k•(p-p')H(kpp') = - K(s)(kpp') + K(s)(kp'p) . (5. 12) 

This equation can be used to determine H(kpp') through second order 

from the result g iven in Section VI for the second-order static kernel. 

In the classical case, Eq. ( 5. 12) can be inve rted to give an expression 

for K(s)_ In the classical limit, H(kpp') becomes even in each mo­

mentum variable, while K(s)(kpp') becomes odd in p and even in p'. 

The sum of Eq. (4. 12) and its form with p'-+ - p' therefore gives 

{ 5. 13) 

which is equivalent to the well-known potential-independent expression 

for the classical z::{s) in terms of the direct correlation function.[ 46•4 7 ] 

No analogous expression for K{s) is apparent in the quantum mechani­

cal case. [ 48 ] 

B. Method of Approximation. 

Equation ( 5. 12) is an example of a relationship between statics 

and dynamics that should be maintained in any consistent theory, as 
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should the symmetry properties (5 . 11). In this thesis we are con-

cerned with approxiroating the kinetic kernel by means of a perturba-

tion expansion. To accomplish this in a consistent way, we first 

write the solution to the kinetic equation ( 5. 4) as 

F ( z) = ( z- L - E( z) r l F , ( 5. 14) 
0 

using an abbreviated notation in which F(z) stands for the "matrix" 

F(kzpp') with indices p and p'. Similarly, {z -L ) is the matrix with 
0 

- 1 components (z-k·p)o(p-p'). Now we "multiply" Eq. (5. 14) by FF 

from the left, and obtain 

F(z) = F((z-L )F-K(z)r
1

F . 
0 

(5. 15) 

The advantage of writing F(z) in this form is that the term in brackets 

is symmetric in its momentum indices. [
26

] Equation (5. 15) is still 

exact. The method of approximation is to truncate F and K(z) in 

Eq. (5. 15) at second order. Thus, writing F(z) for the solution, we 

have 

(5 . 16) 

which can be rearranged in the form of an approximate kinetic equation 

(5.17) 

where 

"' [ ]-1 E( z) = K ( 2 ) ( z) F ( 2 ) . (5. 18) 

It should be noted that the initial condition used in this approximation 

is the truncation of the exact initial condition. 



- 32 -

Equation (5. 16) can also be written 

"' ([ -1 ] }-1 F(z) = F (2 ) FF (z)F {2 ) F ( 2 ) (5. 19) 

This can be compared to another symmetric approximation, namely 

{ 5. 20) 

the inversion of the truncation of the inverse. This is the approxima­

tion used by Forster and Martin in the classical case. [ l?] In this 

scheme the approximate kinetic equation has the kernel 

1: { z ) = ( { F- 1 ) ( 2) ] - 1 [ F- 1 L:{ z) ] { 2) (5. 21) 

and initial condition 

(5. 22) 

In the classical case, the approximation (5. 21) is equivalent to a direct 

truncation of L:(z), because of the special form of the classical F. 

This is not true for the quantum 1: (z). It should be noted, moreover, 

that a direct truncation of the quantum mechanical I:{z) does not lead 

to a symmetric approximation. 

The two approximation schemes defined by ( 5. 16) and { 5. 20) 

have essentially the same physical content; they differ only in technical 

detail. In the classical limit, the difference can be simply described 

as follows. In the first scheme, the initial condition and the static 

part of the kernel are given in terms of the truncated h {k); in the 
c 

second, they are given in terms of the truncated c (k). The dynamic 
c 

part of the kernel is the same in both. In terms of an expansion with 

constant n, rather than constant 1-1 as employed for the quantum 
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mechanical calculations, the classical limits are given explicitly by 

and 

lim F(kpp'} = n~(p}O(p-p') +n2~(p}~(p'}h( 2}(k} h-0 

""(s} 
lim L: (kpp'} = 
h-0 

""(d) 
lim E (kzpp'} 
h -0 

h (d) ~ = lim r (kzpp') 
h-0 (2} 

2 c(2) (k} 
lim F(kpp') = n~(p)o(p-p') + n ~(p)Q!(p') ~~~,....., 
h-0 l-nc( 2 )(k) 

(s) 
lim L: (kpp'} = - n~(p)k·p c(2 )(k) 
h-0 

lim E(d} (kzpp') = lim [t:(d) (kzpp'U 
h-0 h-0 (2) 

( 5. 23a} 

(5. 23b} 

( 5. 23c) 

( 5. 24a) 

(5. 24b) 

(5.24c} 

It can be seen that in the classical case, the two schemes are equally 

tractable . Quantum mechanically, however, the first scheme is by 

far the simpler procedure because the static quantites it requires can 

be obtained more directly. 

To conclude the discussion of the approximation scheme given 

by Eq. ( 5. 16}. we can examine its effect on the sum rules of S(kwpp'). 

A similar analysis can be applied to Eq. (5. 20). For comparison, the 

large-z expansion of the exact F(kzpp} is given in terms of the fre-

quency moments of S(kwpp') by 

oo +oo \ . lJ du . F(kzpp') = L z -J-
2

'1T WJ S(kwpp') (5. 25} 

j =0 -00 
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or, equivalently, by 

-1 . -2· -3·· 
F(z) = z F + 1z F - z F + ... ( 5 . 26) 

Now expanding the right-hand side of Eq. (4. 19), we obtain 

If each factor in (5. 27) could be evaluated exactly, instead of being 

truncated at second order as indicated, we would recover the expansion 

of the exact F(z), but, as give n, the third and higher coefficients in 

the expansion of F(z) contain terms that are not present in the expan-

sion of F( z ). It is not difficult to see, however, that the net contribu-

tion of these terms always starts at third order, so that all the fre-

"' I quency moments of S(kwpp) will in fact be correct to second order. 

It should be apparent that the considerations of this section are 

not limited to the second-order potential expansion, but apply to any 

well-defined expansion to arbitrary order. 
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VI. THE SECOND-ORDER KERNEL 

A. Static Part. 

This subsection contains the evaluation of the static kernel 

K(s} to second order in the potential. We begin by rewriting 

Eq. (5. 9b), Fourier transformed with respect to both r and I r , as 

(6. 1) 

V(kp) = v(k)~ sinh(~k· a~) (6. 2) 

Since the right-hand side contains an explicit factor v(k), our task is 

to calculate the zero- and first-order terms of F(l2, 3). Rather than 

attack the perturbative calculation directly, it is convenient to analyze 

the diagrams in terms of fully interacting components, as in the dis-

cussion of n(l2} in Section III. The diagrams for F(l2 , 3) are classi-

fied as unconnected, two-connected, and three-connected. The un-

connected diagrams are shown in Fig. 3a, the two-connected diagrams 

in Figs. 3 a and 3 b. The three -connected diagrams are not needed, 

since they start at second order in the potential. 

It should be noted that the diagrams drawn in Fig. 3 show the 

momentum labels of the particles but not their relative times. For 

each diagram in Fig. 3 there are two terms to be evaluated, with infini-

tesimal times corresponding to the order of the field operators in the 

two terms of the anticommutator in 

F{l2, 3} = ('(f{l2), f(3)}) - n(l2)n(3) . 
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It should also be noted that the diagrams for a·(£(12), f(3)] > that can-

eel with those for n(l2)n(3) have been omitted from Fig. 3. 

The result for the contribution of the unconnected diagrams, 

Fig. 3a, is 

+ ( 2 "IT ) 
3 

6 ( k 1 + k 
2 
+ k 

3 
) [ o ( 2 + 1 - ) o ( 3 + 2 - ) yn ( 1 - ) 

+ o(l+2-)o(2+3-)yn(l+)]N(k
3

p
3
), (6. 3) 

where o(2+1-)=o[(2+)-(l-)] with 2+=p2+thk2 , etc. Substituting 

(6. 3) in Eq. (6. 1) and writing out the effect of the V operator as a 

difference of displacements of p, we obtain 

K~s) (kpp') = ~[ v(k)+T)v(p-p')] M(kp)N(kp') 

- T)O(p-p') r dp l3 v(p-p)M(kp)N(kp') , ., (6. 4a) 

where M and N are the one-particle functions defined in Eqs. (4. 24) 

and (3. 11). It is equally straightforward to obtain the results for the 

two-connected diagrams of F (12, 3) and substitute in Eq. (6. 1) to 

obtain their contribution to K( s). The diagrams of Fig. 3 b give 

K~s) (kpp') = J dp 13 [ v(k)+T)v(p-p)] M(kp)H(kpp') 

- T)O(p-p')J dp 13 v(p-p)M(kp)H(kpp') , (6. 4b) 

and the diagrams of Fig. 3c give 
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K~8 )(kpp') = (2rrh )-
3 
Jdp

1
dp

2
dp

3 
b (p

1
+p

2
-p

3
- p')(X(k)-X(-k)] 

X { v ( p 1- p 3 ) [ b ( p - p 1 ) - b ( p - p 3 ) ] + flV ( p 1- pI ) [ b ( p - p 1 ) - b ( p- p ') ] } , 

(6 . 4c) 

where 

(6. 5) 

'){ and H are the forms of the general two-particle connected diagram 

defined by Eqs. (3 . 13) and (3. 7c). 

The combination K~s)+K~s), taken by itself, is equivalent to a 

Hartree-Fock approximation for L:(s): 

r:~~(kpp') = 13[ v(k)+flv(p-p')] M(kp)- flb (p-p') I dp 13 v(p-p)M(kp) , (6. 6) 

which has been used to discuss zero sound in a Fermi liquid. [ 12 ] One 

can also obtain Eq. (4. 9) by fac toring the nonequilibrium average 

(f(l2)) in the BBGKY equation connecting (£(1)) and (£(12)) 
ne ne ne 

and then linearizing the resulting collisionles s kinetic equation for 

(f( 1) > . [ 49] 
ne 

The expressions (6. 4) - (6 . 5) are written in terms of exact one-

and two-particle distribution functions; truncated at second order, they 

g i ve the full second-order expansion of the static kernel 

K(s) - K(s) + K(s) 
(2) - 1 2 

in terms of the zero- and first-order static functions we have already 

calculated plus the first-order term in the expansion of n(p), which is 

n
1

(p) = n (p) + n (p)o
1

(p);;' (p) , (6 . 7) 
0 0 0 

where 
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a 1 (p) = -I dp j3 [ v(O )+flv(p-p)] no (p) (6. 8) 

The first order kernel is obta ined entirely from the unconnected part 

K(s) and has the Hartree-Fock form: 
a 

Kis) (kpp') = ~[ v(k)+flv(p-p')] Mo (kp)-flO(p-p') I dp j3 v(p-p)Mo (kp)}No (kp') 

(6. 9a) 

The second order term contains contributions from both K( s) and the 
a 

two-connected parts K~s) and K~s), and is given by 

K~s) (kpp') = J dp 13[ v(k)+11v(p-p)] [ M
0 

{kp)F
1 

(kpp')+M
1
(kp)F

0 
{kpp')] 

- 11I dpj3 v(p-p)(M
0

(kp)F l (kpp')+M
1 
(kp)F 

0
(kpp')] 

+ (21Th)- 3 I dp 1 dpzdP3 o(p l+pz- p3-p') [x 1 (k) -X 1 <- k)] 

x {v<pcp
3

)[ o(p-p 1 )-o(p-p
3

)]+nv(p 1-p')[ o(p-p
1 
)- o(p-p')l} , 

(6 . 9b) 

where 

We note that K{z) is odd in k, in accord with Eqs. (5. 11), and that 

its h-0 limit g ives the correct second-order expansion of the classi-

cal result, Eq. ( 5. 13 ). 

To complete the list of static quantities appearing in the initial 

condition F(Z)(kpp'), we give the second-order term of n(p), which 

is 

(6. 10) 

where 
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1 Jdkdp 2[ - ')] 2~/"V - rv - - -+-2 3 
~ v(k)+nv(p n (p-hk)n (p)n (p+hk)E2 (~hk·p~ (21T) 0 0 0 

+ yn (p-hk)';; (p)n (p+hk)E2 (-~hk•p')l 0 0 0 J 

p' = p-p-hk , 
-2 X 

E 2 (x) = x (e - 1- x) 

(6. 11) 

The second order term of H(kpp') is given in terms of K~s) by 

Eq. (5. 12) . This is not a circular definition , because K~s) contains 

the first order term H
1 

but does not contain H 2 . 

B. Dynamic Part. 

Up to this point we have dealt with the diagrammatic analysis of 

equal-time correlation functions, for which the calculations are rela-

tively straightforward. To obtain the dynamic part of the kinetic ker-

nel from Eq. (5. 9c), we must analyze the z-dependent function 

G(l2, 1'2'jz), and the calculations will in general be more complicated. 

To obtain the dynamic part to second order, however, we need only the 

free-particle function G ( 12, l'Z'jz). This simplifies our work consi-
o 

derably. It should be noted that there is no first-order contribution to 

the dynamic part. 

Using Eqs. (4. 20) and (5. 1), we find 

G ( l 2 , 1'2 'I z ) = [ z - L ( l) - L ( 2 ) ] -
1 

G ( 1 2 , 1'2 ') , 
0 0 0 0 

(6. 12) 

where 

G (12,1'2') = F(l2,1'2') - Jd3d3'F (l2,3)F-l(3,3')F (3',1'2'), (6.13) 
0 0 0 0 0 

so that our task is reduced to the evaluation of the zero-order static 
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functions on the right-hand side of Eq. (5. 10). The last term, which 

can be obtained from Eqs. (4. 20) and (6. 3), cancels the contribution of 

twenty of the twenty-four diagrams for F 
0 

( 12, 1'2'). The remaining 

four diagrams, Fig. 4, give 

Go(~pl, k2p2;k3p3,k4p4) = {< 21T)
6

o(kl+k3)o(k2+k4)o(pl-p3)&(p2-p4) 

6 
+(21T > o(k l+k4) & (k2+k3 > o (p 1- P 4) o(p2- P3 > 

+y(21T)3 &(k1+k2+k
3
+k

4
)[o(3+ 1-) &(4+2- )o( 1+4-) 

+ o ( 1+ 3 - ) o ( 2 + 4- ) o ( 4+ 1 - ) ] } a ( k 1 p 1 , k 2 p 2 ), 

where (6. 14} 

a(k.p
1
,k

2
p

2
) = -

2
1 ln (l+)n (2+);;' (1-);;' (2-)+n (1 - )n (2-);;' (1+)~ (2+0 . 

-~ L o o o o o o o o ~ 
(6. 1 5) 

Using Eq. (3. 17), we can also write a(k 1p 1 , k 2p 2 ) as 

We note in passing that in the classical limit, G (12, 1'2') reduces to 
0 

limG (12, 1'2') = n 2
¢(p

1
)¢(p2 )(o(l-1')&(2-2')+ o(l-i) o(2- l')] , 

h-0 ° 
in agreement with a direct classical calculation. 

Now substituting (6. 12) and (6. 14) in Eq. (5. 9c} and performing 

several integrations, we obtain the second order dynamic kernel in the 

form 



- 41 -

K<f>(kzpp') = J dkd~ V(k, p) {v(k, p')o(p-p')- V(k- k, p')o(p-p') 
(2rr) 

_11v(p-p _ ~, p') 6 (p+p -p'+ hk _ hk\1 a(k-k, p;kp) 
h 2 2 4 T}J z-(k-k) •p-k•p 

(6. 17) 

The operator V(k, p), defined in Eq. (6. 2), acts on everything to its 

right in Eq. (6. 17). 

It is instructive to examine the classical limit of Eq. (6 . 17) . 

We obtain the classical expression for [ z::(d)(kzpp')nc,6(p)]( 2 ) by using 

lim a(k-k, p;kp) = n 2
¢(p)c,6(p) 

h-0 

lim V(kp) = v(k)k • ,} , 
h-0 p 

(6. 18) 

(6. 19) 

and noting that the third term in the braces in Eq. (6. 17) cancels the 

fourth. In terms of an expansion with constant n, the result is 

simply[ l7] 

. (d) , J dkdp - - a { -- a '> lrm K (kzpp) = 3 v{k)k• a v(k)k• 8n'o(p-p 
h-0 (2rr) P P 

~ 
2 -

-v(k-k){k-k)• 
0
°1 0(p-p1

) n c,6(p)c,6(p) . (6. 20) 
p z-(k-k)•p-k•p 

It should be noted that the statistical factor a(kp, k'p') reduces to its 

classical value (6. 18) in the high temperature or low density limit, 

f3!-l- -oo, but the kinematic exchange and wave diffraction terms of 

Eq. (6. 17) are unchanged. 
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While the classical weak coupling kernel is naturally expressed 

as a generalized Fokker- Planck operator, the quantum weak coupling 

kernel actually has a Boltzmann-like collisional structure, although 

this is not at all apparent from (6. 17). We now proceed to transform 

the second-order kernel to such a form, beginning by writing explicitly 

the displacements in p and p' indicated by the V operators. The re­

sult has two types of terms, characterized by the sign in 

a(k-k, p±~k;kp). Corresponding to this sign, we change the variables 

of integration by 

and insert Jdp2 o(p+p2-p
3
-p

4
±k). As we have no further need to refer 

to the classical limit, we have set h = 1. Finally, we add the above to 

its version with p
3 

and p
4 

interchanged, and obtain the principal 

result of this section, 

K~d)(kzpp') = (2n)- 3 Jdp
2

dp
3

dp
4

[ v(p-p
3

)+ T)v(p-p
4

)]W(pp2p
3

p
4

, p') 

X [A(pp
2

p
3

p
4

jk,z)- A(pp2p
3

p
4

j-k,-z)] 

where 

W(pl P2P3P 4' p') = (v(p l-p3 )+T)v(p 1-p 4)) o (p 1- p') 

+[v(p2-p4)+T)v(p2-p3)] o(p2-p') 

- [v(p3-p l )+T)v(p3-p2)] o(p3-p') 

-[v(p4-p2)+T)v(p4-pl)] o(p4-p1' 

(6.21) 

(6. 22) 
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(6.23) 

To clarify the structure of the dynamic kernel as given by Eq. 

(6. 21), it is useful to examine the following limits. For k = 0, the 

" o -function in A may be used to reduce the W factor to 

for k = 0, z .... w+iO+ the denominators of the A factors produce 

and the numerators then differ only by a factor of 13w 
e For k and w 

equal to zero, therefore, the second-order dynamic kernel reduces to 

the linear Uehling- Uhlenbeck collision kernel with the Born approxima-

tion cross section , in the form 

The Uehling- Uhlenbeck kernel can be interpreted in terms of energy 

and momentum conserving collisions between free particles with in-

coming momenta p and p 2 and outgoing momenta p
3 

a nd p 4 . 
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Correspondingly, the k , z-dependent kernel involves collisions in the 

presence of a mediwn of other particles, whose collective effect is 

represented by a momentwn k and an energy w = Re z. Except at 

k = 0, however, the collisions are not simply described by a cross 

section. 

The dynamic kernel may be rewritten in yet another form, one 

which clearly displays its full symmetry. After inserting J dp
1 

&(p-p 1 ) 

in Eq. (6. 21), we obtain three additional formulas for K(d) by per-

forming the changes of variable (1-2, 3-4), (l-3, 2-4), and 

{l-4, 2- 3 ), where l stands for p
1

, etc. Using the symmetries 

W ( l 2 3 4 , p ') = - W ( 3 4 I 2 , p ') = Tl W ( 2 13 4, p ') , (6. 26) 

A(l234j k, z ) = - A(3412j-k, -z) = A(2134j k, z) , (6. 27) 

we then write the swn of these four formulas as 

= .!. Jdld2 d 3 d 4 W(l234 )W(l234 ') 4 3 , p ,p 
(2lT) 

X [A(l234j k, z)- A(1234j-k, -z)] (6. 28) 

From this expression, it follows immediately that the second order 

kernel satisfies the positiv ity and symmetry conditions (5. 11). 

Finally , it may be noted that if we had worked with the linear 

response function L(l, 1'jz), we would have obtained an approximate 

kinetic equation similar in form to the one for F( l, 1'jz) but differing 

by detailed- balancing factors corresponding to the factor T{x) in 

Eq . (4. 4). The second-order dynamic kernel, for example, would 

have the same form as (6 . 21) but the function A
0

{p
1

p
2

p
3

p
4

jz) in 
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Similarly, the 

first-order term (6. 9a) of the static kernel would be multiplied by 

-r(f3hk•p'). In the long-time, large-distance limit the effect of these 

factors would disappear and we would again recover the Uehling-

Uhlenbeck kernel (6. 2 5 ). 
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VII. CONCLUSION 

This thesis presents what is believed to be the first explicit 

equation for a quantum mechanical fluid that is meaningful on all 

scales of length and time. Although the second-order kernel is not 

directly applicable to a real fluid with a strong repulsive interaction, 

it provides a model kinetic equation containing features which should 

also appear in any improved theory. The symmetries of the kernel, 

which are related to the conservation laws, and the positivity or sta-

bility condition, which ensures that S(kw) and the transport coeffi-

cients are positive, are maintained exactly. The short-time limit 

reflected in the sum rules, and the long-time, large-distance limit 

reflected in the Uehling- Uhlenbeck kernel are correctly reproduced 

to the order of the approximation. 

While the approach to quantum kinetic theory developed here 

is limited to the linear response domain, it is independent of any 

appeal to coarse-graining in space or time and of assumptions such as 

the Bogoliubov functional ansatz. ( 4 • 50 ) It is clear ~ priori that 

assumptions of the former kind preclude an accurate description of the 

short-time behavior. Likewise, the Bogoliubov theory does not attempt 

to describe the short-time behavior, and in fact it has been shown in 

the classical case that the ansatz is correct only for vanishing wave 

vector and frequency. 
[51] 

This work may be applied or extended in several ways. A de-

tailed examination of the conservation laws and transport coefficients 

determined by the second order equation is in progress. It should be 
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possible to derive a weak-coupling equation for the condensed Bose gas, 

as a model for the study of superfluidity. The expressions for the ker­

nel and the method of approximation given in Section V are suitable for 

a density or fugacity expansion, the first term of which defines an 

approximate kernel containing all effects of binary collisions. This 

would provide a kinetic equation applicable to a real quantum gas at 

densities for which a two-term virial expansion is the appropriate 

description of the equation of state. Applied to a molecular system, 

the density expansion would produce a wavelength- and frequency­

dependent generalization of the Waldmann-Snider equation that could be 

useful for the study of intermolecular forces and collisional effects in 

moderately dense molecular gases. 
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APPENDIX A 

The commutation and anticommutation relations (2. 8} and ( 2 . 9} 

can all be obtained from the identity 

- 6 J I J I - i ( p 1 • r 11 + p 2 • r z } I h 
( 2nh} dr 

1 
dr

2 
e 

X {o(r 1+tr11-r2+trz ) W+(rc~r'1 )$(r2+~rz)} = o (l -2 )e~ihD(l)f(l) , (A. 1) 

which is derived below. Following that is the derivation of Eqs. (2. 8a) 

and (2. 9a), which is sufficient to indicate the general procedure. 

We begin by rewriting the definition of f(r
1

p
1

) in terms of the 

Fourier transformed field operators 

as 

For convenience, h is set e qual to unity. The left-hand side of 

Eq. (A. 1), called I in what follows, is similarly represented as 

(A. 3) 

Adding and subtracting terms in the exponents of Eq. (A. 3), we bring 

to the right the factors for f(r 1p
1

) appearing in Eq. (A. 2) and change 
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the variable k to k- k 2 , obtaining 

The next step is to rewrite the term in square brackets in Eq. (A. 4) 

as 

This requires attention to the order of the factors in subsequent expres-

sions, but allows us to perform the integrations over k, k
1

, and k 2 to 

obtain 

(A. 5) 

..... 
In Eq. (A. 5), the gradient 'll acts on both the functions to its right; 

pl 

the term in square brackets can be written more explicitly as 

where the momentum gradient acts only on the function within the 

braces. The spatial gradient is not restricted. With this convention, 

Eq. (A. 5) becomes 
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I = 
~ 
P2 

e 

(A. 6) 

Replacing ~ by _<j within the braces in Eq. (A. 6), we obtain 
P2 P1 

I = 

or 

This proves the identity, Eq. (A. 1). 

To calculate the commutator and anticommutator 

f(l)f(2) =Ff(2)f(1)' 

it is sufficient to focus on the term f( 1 )£(2), which is expressed in 

terms of the field operators as 

(A. 7) 

where 

The first step is to convert J to a sum of terms in normal form, with 

all the creation operators on the left. Using the commutation relations 

of the field operators, Eqs. (2. 3), we obtain 
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J = $+(r 1-~r'1 )$+(r2-irz)$(r2+irz)ljr(r 1+tr'1 ) 

+ o( r l+tr'l- r 2+ir2) 1jr + (r 1-tr! )$ ( r 2+tr2) (A. 8) 

The first term of Eq. (A. 8) is just the combination of operators that 

appears in the definition of f( 12), while the second term is the combi-

nation that appears in the identity (A. 1), so substitution of Eq. (A. 8) 

in Eq. (A. 7) gives 

f(l)f(Z) = f(12) + o(l-2)eiihD(l)f(l) (A. 9) 

Since the phase space operators are Hermitian, f(2)f(l) is given by 

f(2)f(l) = [f(l)f(2)]+ = f(l2)+ o(l-2)e-~ihD( l)f(l) (A. 10) 

Combining (A. 9) and (A. 10), we obtain 

[f(l),£(2)] = o(l-2)2isin ( ~ihD(l)]f(l) (2. Sa) 

and 

i[f(l),f( 2)} = f(l2)+o(l-2)cos[tihD(l)]f(l), (2. 9a) 

which are the desired formulas. The method for obtaining the commu-

tation and anticommutation relations involving the multiparticle opera-

tors is identical. The additional terms in (2. 8c), for example, arise 

in the permutations needed to put the operators in f( 12)f(34) in 

normal form . Once that is done, Eq. (A. 1) is applicable with no 

further difficulty. 
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APPENDIX B 

The evaluation of the diagrcuns displayed in the figures follows 

standard rules of many- body perturbation theory, with minor excep­

tions. [ 39 ] This appendix is not intended as a complete account of the 

method, but rather as a summary of the notation and the special con-

ventions that are employed here. 

The basic object of the theory is taken to be the imaginary-

time-ordered n-particle momentum-space Green's function defined by 

(B. 1) 

where 1 and 1' stand for the combination of wavevector and time 

variables 

and so forth . T is the time -ordering operator that rearranges the 

field operators from right to left in ascending order of their 1" argu­

ments and inserts a factor of 1l1T, where 1T is the signature of the 

required permutation. The field operators cp: =cp+(i) are defined by 
1 

The variables ,-. are restricted to the range 
1 

0 ~ ,-. ~ i3h. In general, it is important to exploit the periodicity of 
1 

Q in its ,- variables to define a discrete-frequency Fourier repre­
n 

sentation for it. For the low-order perturbation theory calculations 

required here, howeve r, it is more convenient to remain in the 

imaginary-time representation. 
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Terms in the perturbation expansion of G are represented 
n 

by diagrams consisting of points, particle lines ~, and inter-

action lines Each n-particle diagram has 2n exterior points: 

n creation points at the bottom, labeled T 1, ... T n', and n 

annihilation points at the top, labeled T 1 ... T n· Entering each annihi­

lation point and leaving each creation point is a particle line carrying 

the appropriate wavevector, which is ~PC~k1 for 1', ~p 1+tk 1 for 1, 

etc . The direction of positive momentum on these lines is indicated 

1 
by an arrow pointing upwards. A line of wavevector fiP' running from 

point a to point b, represents the free propagator Q~(p, Tb- T a)' 

0 
={n

0
(p)e-O(p)T for T< O, 

{jl(p,T) 
""' - O(p) T n (p)e for T>O, 

0 

(B. 2) 

where 
3 ~ 2 

y = (21Th) T), n
0

(p) = l+yn
0

(p), and hO(p) = ~p -1-!· If both a and 

b are exterior points, Q ~ is multiplied by a momentum-conserving 

factor 

An interaction line of wavevector k., assigned an arbitrary 
1 

direction, represents th e potential v(k. ). It connects two interior 
1 

points, or vertices , which are given a single imaginary - time label 

Ti. In addition to the interaction line, one particle line enters the 

vertex and one leaves it. A particle line connecting two interior 

points is as signed a momentum label p.. Conservation of momentum 
J 

at a vertex 
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is maintained by a factor (2'TT)
3 

o(k - kb- k. ). It should be noted that a 1 

the arrows on the particle lines serve to guarantee conservation of 

particle number at a vertex as well as to keep track of the signs of the 

momenta. There is an integral 

- _!JI3hdT. J dki 
h 0 1 (2'TTr 

for each interaction and an integral (2'TTh)- 3 J dpj for each internal 

particle line. A factor i) is inserted for each crossing of two exter-

nal particle lines and for each closed particle loop. The propagator 

for a closed loop is interpreted as limQ ~(p., e). 
£-+0- J 

A linked diagram is one in which every interior point is con-

nected to an exterior point by a continuous sequence of particle or 

interaction lines. The complete perturbation expansion of Qn is 

represented by the set of topologically distinct linked n-particle dia-

grams. To evaluate the terms in the expansion of the functions 

n( 12 .. n) and F( 1.. i, 2 .. j). i + j = n, in which the creation operator 

+ cp
1

, always occurs to the left of the annihilation operator q:> l' etc. , 

we simply label the exterior points of the diagram with the appropriate 

infinitesimal time values and multiply the result for 

-n 
y 

Q by the factor 
n 
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APPENDIX C 

This appendix contains an alternative derivation of the kinetic 

equation for F( 1, l'jz ), based on the use of a projection operator. A 

projection operator derivation of a kinetic equation in the classical 

case was given by Akcasu and Duderstadt, [ lb] who used the general-

. d L . . h f M . [ 52 ] s· . d 1ze angev1n equation approac o or1. 1nce we are 1ntereste 

here in obtaining an equation for a correlation function rather than for 

a dynamical v ariable, Mori' s argument is not necessary, and we can 

obtain the kinetic equation in a more straightforward way. 

We define a statistical projection operator P acting on a phase-

space operator x(t) by 

Px(t) = (t[x(t), 0£(2)} )F- \2, 3)0£(3) , (C . 1) 

where 

of(l)=f(l,t=O)-n(l). 

An integration over each barred variable is implicit. P may be 

pictured geometrically as a projection onto the one -particle operator 

subspace spanned by Of(rp, t) at t = 0. It can be verified directly 

that 
Pof(rp) = Of(rp) 

Qof(rp) = o 

where Q = 1 - P, and that P
2 

= P and 0
2 

= Q. 

We now apply Zwanzig's procedure[ 
53

] to 

a 
at of(l, t) = iLof( 1, t) , 

(C. 2a) 

(C. 2b) 
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- l [ ,.. ] where iL = (ih) , H , to obtain the equation of motion for the pro-

jected quantity P6f( 1, t) in the form 

a~ P6f( l, t) = Pi LP6f( 1, t) + rt dT PiLe QiLT QiLP6f( 1, t- T) 
"o 

+ PiLeQiLtQiLQ6f(l,i=O) . (C. 3) 

The last term in (C. 3), corresponding to the random force term in the 

generalized Langevin equation, vanishes because of Eq. (C. 2). The 

other terrns may be written out explicitly as follows. The left hand 

side is simply 

a Ia - 1 ~ -1-- -
atP6f(l,t) = ~tF(l,2 t~F (2,3)6f(3) 

The first term on the right-hand s ide is 

PiLPof(l,t) = F(I,21t)F-\2,3)(~(iLo£(3), 6f(4)})F-
1

(4,b)0£(6) 

= 6£(4)F-
1 (4, Z)iL (Z)F( 1, 2lt) 

0 

where the second line is obtained using 

( [x, iLy}) = - ([iLx, y}) 

and Eq. (2. lOa). The remaining term of Eq. (C. 3) is 

t 

JdTPiLeQiLTQiLP6f(l, t-T) = 

0 t 

(C. 4) 

J dT 6f(S)F-l (5, 4) ( H 6£(4), iLeQiLT QiL6£{3)1 )F- l (3, Z)F( 1, 2jt-T). 

0 

Now applying ( M Of( 1'), } ) to the equation, we obtain 
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[:t- iL0 (l'~F(l, l'lt) = i L: (s)(l', Z)F(l, 2lt) 

t -J d,- L:(d)(l', 21--r)F(l, 7lt--r) 
0 

(C. 5) 

(C. 6a) 

Equation (C. 5) is not yet in the form we want. To convert it, we 

interchange the labels 1 and 1', let t _. -t and ,._.- ,- , and use 

F(l, l' lt)=F( l', li-t). This gives 

[~+iL0 (l)JF(l, l'lt) = - i L:(s)(l, Z)F(Z, l'lt) 

t -r d,- L:(d)(l, 21-r)F(Z, l'lt- -r ) , 
· a 

(C. 7) 

which, with the transform convention (4. 9), is equivalent to the kinetic 

equation (5. 4) . The static kernel (C. 6a) is the same as given by Eqs. 

(5 . 7) and (5. 9b). The dynamic kernel is not in a form comparable to 

Eq. (5. 9c), but it can be rearranged as follows. Using Eq. (C. 2), we 

have 

K(d)(l, l'lt) = (~(iLM(l) , e-QiLtQiL0£(1') 1) , 

where K(d)(l, l'lt) = L:(d)(l, 2lt)F(Z, 1') as in Eo. (5 . 7). We now insert 

a redundant factor Q to the left of e -QiLtQ and move it to the other 

side of the anticomrnutator using 
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([x,Py}) = ([Px,y}) (C. Sa) 

( [x, Qy} ) = ( [ Qx, y} ) (C. 8b) 

to obtain 

K(d)(l, l'jt) = (~[QiLC£(1), e -QiLtQiL6f(l')} ) . (C. 9) 

Since 

where 0£(12) = f(l2)-n(l2), andsince Q&£(1) = 0, Eq. (C.9)becomes 

K(d)(1 , l'lt) = - L
1 

(12)L
1 
(1'2') (-~(Q0£(12), e -QiLtQ0£(1'2')} ) . (C. 10) 

The Q in front of Of( 12) can now be removed. Writing out the 

effect of the Q in front of of( 1'Z"') and using 

( ( -QiLt } ( [ QiLt } x, e y ) = e x, y ) , (C. 11) 

we finally obtain 

K(d) ( 1, 1'jt) = - L
1 

(12)L
1 

( 12'{iJ- (12, 1'2'1t) - fo2, 3jt)F- \3, 3 ')F(3', 1'2'~ , 

(C. 12) 

where 

~( 12, 1'2'jt) = <i (eQiLtof(l2), 0£(1'2')}), 

~( 12, 3jt) = ( t (eQiLt0£(12),0£(3)} ) . 

(C.13a) 

(C.1 3b) 

The expression (C. 12) for K(d)(l, 1'lt) is analogous to Eqs. (5. 9c)-
);:: 

(5. 10). The differences are that the time dependence of the F func-

tions is governed by the modified propagator eQiLt, and that the last 

two factors in the second term of Eq. (C. 12) are independent of time. 



- 59 -

In a practical evaluation of Eq. (C. 12), one proceeds by re-

expressing the modified-propagator correlation functions in terms of 

the standard ones. This is illustrated by the following evaluation of 

K(d) to second order in the interaction potential. It is convenient to 

begin with Eq. (C. 10). Using Eq. (C. 11) and the convention (4. 9), we 

write the second order dynamic kernel as 

(d) 'I - ,-2') - ,-,1 K
2 

( 1 , 1 z) = - L 
1 

( 1 2) L 
1 

( 1 G 
0 

( 12, 1 2 z) , (C. 14a) 

where 

G 
0 

( 12, 1'21z) = ( ~ [ z +~ L Q Of ( 12), Q Of ( 1'2')} ) 
0 0 

(C. 14b) 

An application of the operator identity 

to [z+QL ]- 1Q = Q[z+QL ]- 1Q with A =z+L and B = PL gives 
0 0 0 0 

1 
z+QL Q 

0 

= 1 Q + _1_ PL Q 1 Q 
z+L z+L o z+QL 

0 0 0 

(C.15) 

Since PL = L P, the second term of (C. 15) vanishes, and we obtain 
0 0 

G ( 1 2 ' 1 '2 'I z) = <! [ +lL Q 6 f ( 12) ' Q Of ( 1'2 ') } ) 
0 z 0 0 

= ( ~ [ z+ i Of( 12), Q Of{ 1 '2')} ) 
0 0 

= 7.-L (1\-L (Z)[F
0

(12, 1'2')-F0 (12,3)F~ 1 (3,3')F0 (3', 1'2')] 
0 0 

(C. 16) 

This is identical to Eqs. (6. 12) - (6. 13). 
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We turn now to the question of the mathematical behavior of 

the expressions containing the modified propagator. Since no approxi-

mations have been made, Eq. (C. 7) is a formal identity; the projec-

tion operate r method therefore appears to provide an unambiguous 

derivation of an exact kinetic equation for F( l, l'Jz) of the form (5. 4). 

We cannot accept this equation as physically meaningful, however, 

unless we have some assurance that the projection operator expres-

sions for the kinetic kernel do not hide important singularities. As 

emphasized previous! y, we do obtain well- behaved results for the 

kernel of the equation for F( 1, l 'Jz), but we do not know what condi -

tions on the projection operator are required to guarantee this in gen-

eral. As the following example shows, the projection operate r ex-

pressions sometimes can be exceedingly ill- behaved. 

The example we consider is the problem of finding a kinetic 

equation for the commutator correlation function x (l, l'Jt), Eq. (4. 22). 

To this end, we define a projection operation f? by 

fi'x (t) = <ih[x(t), Of(Z)] )X- \2, 3)0£(3) (C. 17) 

- 1--
where X (2, 3 ) is assumed to be the static inverse satisfying 

(C. 18) 

As discussed in Section III, X(kpp') vanishes at k = 0. If we ignore 

this, however, and proceed formally in the same way as above, we 

obtain an equation 
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[;t +iL0 (l~x(l, l'jt) = - if'(s)(l, 2)x(2, l'jt) 

t -I dTI'(d)(l,ZjT)X(Z, l'lt-T), 
0 

(C. 19) 

with the kernels r(s) and r(d) defined by expressions analogous to 

Eqs. (C. 6), containing the projector (} instead of P. Thus, this 

derivation encourages us to believe that the cornrn utator function 

X(l, l'jt) satisfies a kinetic equation of the same form as the one satis­

fied by F(l, l'jt). This is not true, however, as is shown by the 

following. The Fourier transforms of the commutator and anticommu-

tator functions are related by the fluctuation-dissipation formula 

x(l. l'jw) = S(l, I'jw) 2~ tanh(~l3h.u) . (C. 20) 

Given the kinetic equation (C. 7) for F, we can therefore obtain an 

equation for X by applying Eq. (C. 20). It is sufficient for the pre-

sent purpose to do this in the classical limit, where Eq. (C . 20) gives 

(C . 21) 

Applying this to the classical limit of Eq. (C. 7), we obtain 

[
'='
0t+iL (l~X (l,l'jt) = -n:(s)(l,Z)x(Z, l'jt)- [

0
tdT L:(d)(l,ZjT)X(Z,l'lt-T) 

v o~c c ., c 

(C. 22) 

The last term in Eq. (C. 22) is a feature which is entirely absent from 

Eq. (C. 19) . Since the classical kernels L:(s) and L:(d) are well-
c c 

studied and well- behaved objects, there can be no doubt that the 
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kernels f' (s) and r(d) in Eq. (C. 19) are exceedingly ill-behaved, if 

indeed they have any meaning at a ll. In the quantum mechanical case , 

Eqs. (C. 7) and (C . 20) formally determine an equation for X( 1, l 'lt) 

having an infinite number of terms . It is difficult to imagine, there­

fore, that the projection operator expressions for the kernels in 

E q. (C. 19) are a useful starting point for physical approximations. 

This example is admittedly extreme, since it is obvious that 

the projection operator (? is poorly defined. It is nevertheless sur­

prising that the vanishing of X (kpp') at the point k = 0 I eads to such 

a severe derangement in thC' projection operator formulas for the 

equation of motion of x (lor.pp'). This may be a warning that subtler 

features of the projection operator n1ay also produce difficulties . 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 
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FIGURE CAPTIONS 

Diagrams for n(l2). The lines in (a) and (b) represent 
Lbe fully interacting propagator. Part (c) represents the 
sum of all two-particle connected diagrams. 

First-order terms of the two-particle connected 
diagram. 

Unconnected and two-connected diagrams for F(l2,3) . 

Zero-order diagrams for G( 12, 34). 
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