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Abstract

In order to better understand the process of laminar-turbulent transition
in parallel shear flows, the study of the stability of viscous flow between par-
allel plates, known as plane Poiseuille flow, is found to be a good prototype.
For Reynolds number near the critical value at which a linear instability
first appears, Stewartson and Stuart (1971) developed a weakly nonlinear
theory for which an amplitude equation is derived describing the evolution
of a disturbance in plane Poiseuille flow in two space dimensions. This non-
linear partial differential equation is now commonly known in the literature

as the Ginzburg-Landau equation, and is of the form

0A . 0*A : 2
5 = (ar + mi)ga—:—i + (Re — Re )A + (d, + id;) A|A|".

This dissertation concentrates on analyzing quasi-steady solutions of the

Ginzburg-Landau equation, where
A=eP(z — ct).

These solutions describe modulations to the wave of primary instability,
with amplitude which is steady in an appropriate moving coordinate system.
The ordinary differential equation describing the spatial structure of quasi-
steady solutions is viewed as a low-dimensional dynamical system. Using
numerical continuation and perturbation techniques, new spatially periodic
and quasi-periodic solutions are found which bifurcate from the laminar state

and undergo a complex series of bifurcations. Moreover, solitary waves and
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other solutions suggestive of laminar transition are found numerically for
Reynolds number on either side of Re., connecting the laminar state to finite
amplitude states, some of the latter corresponding to known solutions of the
full fluid equations. The existence of these new spatially quasi-periodic and
transition solutions suggests the existence of a similar class of solutions in
the Navier Stokes equations, describing pulses and fronts of instability, as

observed experimentally in parallel shear flows.
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CHAPTER 1

Introduction

Since the Navier-Stokes equations were first formulated early last century, sci-
entists have been investigating their ability to describe real fluid flow phenomena.
In particular, the theoretical understanding of the nonlinear processes of laminar-
turbulent transition through these equations is of fundamental importance. This
thesis is motivated by the hope that the study of solutions of a simplified equation
approximating the Navier-Stokes equations can lead to new insight into the still
poorly understood nonlinear structure of the full fluid equations.

The equation on which this study concentrates is of the form

A  0%A )
57 = a% + (Re — Re) A+ dAJAP, (1.1)

The coefficients a and d are complex, and the equation has become widely known
in the literature as the (generalized) Ginzburg-Landau (GL) equation and has been
studied in a variety of contexts. For a list of references see Keefe (1985). Of most
interest here is that this amplitude equation was derived by Stewartson and Stuart
(1971) to describe the weakly nonlinear evolution of 2-dimensional disturbances to
plane Poiseuille flow at Reynolds numbers close to the critical Reynolds number Re.
of linear instability.

Plane Poiseuille flow can be regarded as a prototype for many parallel shear
flows, and describes the driven flow of a fluid of viscosity v bounded by parallel plates
separated a distance 2h, as illustrated in Figure 1.1. At all Reynolds numbers Re =
Ush/v, a basic laminar parabolic flow exists, where Uy is chosen to be the maximum

velocity determined by the strength of the forcing (an applied pressure gradient or
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flux condition). At a finite value Re. this base flow becomes linearly unstable to
infinitesimal disturbances in the channel. By developing a weakly nonlinear theory
in a vicinity of this instability, the GL equation is derived. A describes the amplitude
of the envelope modulating the marginally stable waves given by linear theory, as
viewed in the reference frame moving with the group velocity. This relationship
between the GL equation and the Navier-Stokes equations is explained further in

the following section.

y Lisll LLLLl e llLLsy =
Lx u= Ug(1-y?/h°)

I Y T -h

FIGURE 1.1. Geometry of plane Poiseuille flow.

In the study of the GL equation, most investigators have concentrated on the
case when the real part of the coefficient of the nonlinear term, d,, is negative.
A negative value of d, arises when the GL equation is derived as the amplitude
equation describing a supercritical bifurcation as in convection problems (Newell
and Whitehead, 1969). In this case the GL equation has been shown to exhibit
a large variety of behaviors, including chaotic behavior both temporally (Moon et
al. (1983), Keefe (1985)) and spatially (Deissler (1985), C. Holmes and Wood (1985),
P. Holmes (1986)).

For 2-dimensional plane Poiseuille flow and other systems with a subcritical bi-
furcation, d, is positive however, in which case the GL equation has quite different
behavior. The analysis in the literature for this case is chiefly concerned with seeking

time dependent singularities of solutions of (1.1) (Hocking and Stewartson 1972);
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however their analysis and numerical studies failed to find singular bursts in finite
time for the Poiseuille parameters. Nevertheless the large quantity of recent litera-
ture studying the initial value problem of the GL equation concentrates on having
d, < 0 due to the common belief that having the nonlinearity of the opposite sign
leads to singularities in the numerical integration. Our experience with integrating
the GL equation for Poiseuille flow does confirm this when periodic boundary con-
ditions are applied, though given an infinite domain with localized initial conditions
(as simulated by Hocking and Stewartson), the amplitude may remain bounded
and the time dependent behavior appears to be very complicated. In preference
to solving the initial value problem with a variety of initial and boundary condi-
tions, however, the main aim of this dissertation is to discover the more fundamental
underlying structure of the Ginzburg-Landau equation.

This thesis is concerned with the structure of solutions of the Ginzburg-Landau

equation (1.1) with the simple time dependence
A=e"P(z - ct). (1.2)

We shall call solutions of this form quasi-steady, where the function ¢ satisfies
a second order complex ordinary differential equation of the form of a damped
Duffing equation. We concentrate on studying this equation for the coefficient values
applicable to 2-dimensional plane Poiseuille flow.

Solutions of the form (1.2) with ¢ = 0 have been studied by several authors
for the GL equation with d, negative (Sirovich and Newton (1986), C. Holmes
and Wood (1985)). These studies have primarily concentrated on a single branch
of spatially periodic solutions (®(z) = ®(x + L)) which bifurcates supercritically
from the nontrivial stable uniform solution of the GL equation as an appropriate

parameter is varied. P. Holmes (1986) has also studied quasi-steady solutions with
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¢ = 0 for the perturbed nonlinear Schrédinger equation which is of the form of the
GL equation.

We have found a large class of solutions of the form (1.2) for the GL equation
with d, positive which are applicable to plane Poiseuille flow. A previously known

subset of solutions is those of the plane waves
A = Beilke=90), (1.3)

These correspond to the well known finite amplitude travelling wave solutions of the
full fluid equations for flow between parallel plates. Bifurcations from the plane wave
solutions (1.3) and the trivial solution have recently been discussed by C. Holmes
(1985) using center manifold theory.

We have been able to find other spatially periodic and quasi-periodic solutions
of the GL equation. When Re > Re,. a third branch of periodic envelope solutions
bifurcates from the Orr-Sommerfeld neutral curve in addition to the pair of plane
wave solutions. This new family of solutions has amplitude greater than the ampli-
tude B of the solutions (1.3). When Re < Re, other periodic solutions are found to
exist for d, positive which are analogous to those studied by other investigators for
d, negative. We continued these branches numerically in the parameters 2 and ¢,
and find a complex structure of other spatially periodic and quasi-periodic solutions
bifurcating from them. These solutions all describe slow spatial modulations to the
neutrally stable waves.

One of the main contributions of this thesis is that by using a dynamical systems
approach, a wide variety of solitary wave solutions have been discovered, which
connect the physically attainable states of the plane waves and the zero amplitude
undisturbed laminar state. These solutions can be of breather type decaying at plus
and minus infinity, front-like describing a transition from disturbed to laminar flow

or hole-like describing localized modulations of the plane wave states. They may
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exist for either a discrete or a continuous spectrum of ¢ and 2, and augment some of
the previously known exact solutions of the GL equation (Nozaki and Bekki, 1984).
Other more general transitions from the laminar or plane wave states to spatially
quasi-periodic or apparently chaotic states in space and time have also been found
numerically.

The remainder of this introduction briefly describes how the GL equation is
derived 1n the stability theory of plane Poiseuille flow. We then consider in Chapter
2 a complex second order ordinary differential equation of the form of a complex
damped Duffing equation, which arises in the study of quasi-steady solutions of
the form (1.2). This 4-dimensional dynamical system may in some instances be
reduced to a 3-dimensional first order system, which is similar to systems recently
discussed by other authors but in different parameter regimes. We analyze the
stability and bifurcation structure of the 4- and 3-dimensional systems in Chapters 3
and 4 which is preliminary to the perturbation theory and numerical investigations
which follow. Chapters 5 and 6 explore the structure of spatially periodic and
quasi-periodic solutions of the GL equation using these dynamical systems. We
have found that families of such solutions bifurcate from known exact solutions of
the GL equation, and in Chapter 5 we show how these solutions may be described
perturbatively. In Chapter 6 numerical continuation is used to show that these
solutions are part of a very complex structure of finite amplitude solutions of the GL
equation. Chapter 7 investigates the possible quasi-steady solitary wave solutions of
the GL equation, with a description of the previously known exact solutions in the
setting of the 3-dimensional equations. A numerical search reveals a far larger class
of solitary waves and their generalization to other transitions from the trivial and
plane wave solutions. Chapter 7 is thus of most interest to the shear flow problem

and the description of the transition of undisturbed flow.
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Real shear flow instability is of course fully 3-dimensional in space and is often
found to occur well below the critical Reynolds number of linear theory. In accor-
dance with this, numerical evidence suggests that the quasi-steady solutions of the
GL equation for Poiseuille flow are unstable, as described in Chapter 8. Neverthe-
less, corresponding branches of solutions may exist for the Navier-Stokes equations
for Poiseuille flow which stabilize at finite amplitude and lower Re than the critical
Re. of 5772. This scenario is in fact true for the continuation of the plane wave
solutions in the space of 2-dimensional Navier-Stokes solutions. It is thus our belief
that the Stewartson-Stuart weakly nonlinear theory may give rise to solutions which
are present in the full Navier-Stokes equations which may be relevant to the process

of transition. This conjecture will be further discussed in the last chapter of this

work.
1.1 Stability of plane Poiseuille flow and derivation of the GL equation

In parallel shear flow the GL equation arises by considering the weakly nonlinear
evolution of a 2-D disturbance to steady laminar incompressible viscous flow between
two horizontal plates. We take x in the streamwise direction and y in the vertical
direction, where all variables are nondimensionalized with respect to the channel
half-width A and maximum velocity Uy of the parabolic base flow. The boundary
conditions imposed are those of constant flux and no slip at the walls. See Figure
1.1.

Before outlining the derivation of the GL equation, it is useful to first describe
the well understood linear stability analysis for this flow (Drazin and Reid, 1981).

We consider infinitesimal perturbations to the laminar flow stream function
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where the velocity components are (u,v) = (¢, —%.). The perturbation stream

function may be decomposed into normal modes of the form

and on substituting ¥ = o+’ into the 2-dimensional incompressible Navier-Stokes

equations one finds on linearization

(4~ 207" + 0*9) + (¥ — )¢ ~ a*) — vl = 0

¢(=1) = (1) = ¢'(-1) = ¢'(1) = 0.

(1.4)

This equation is known as the Orr-Sommerfeld equation and is an eigenvalue equa-
tion for the complex growth rate ¢(«, Re). This equation has undergone extensive
study for the stability of many basic shear flows.

The Orr-Sommerfeld equation must in general be solved numerically, and for
plane Poiseuille flow a curve of marginal stability ¢;(«, Re) = 0 is found as shown in
Iigure 1.2. A similar curve is also found for the Blasius boundary layer, for example,
though for circular pipe and plane Couette flow it is believed that the flow is linearly

stable at all Reynolds numbers.

L
Re, Re

FIGURE 1.2. The Orr-Sommerfeld neutral curve.
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Irom the Orr-Sommerfeld marginal curve one finds that there is a minimum
critical Reynolds number Re, for which there is a linearly unstable disturbance,
given by

wl — d)l(y)eiac(a:——ccrt)

with c., real. We call this marginally stable wave the Tollmien-Schlichting (T-S)
wave in analogy to that found in boundary layers. For Re < Re, linear theory pre-
dicts that the base flow is stable, but when Re > Re, a disturbance exists which has
exponential growth in time, up to the point when the assumption that the distur-
bance is small breaks down. In the case of a boundary layer, the classic experiments
of Schubauer and Skramstad (1947) indicate remarkably good agreement with the
corresponding Orr-Sommerfeld curve for the Blasius profile, across which instabil-
ity sets in. Experiments in plane Poiseuille flow are much harder to perform, but
by carefully controlling disturbances in the flow Nishioka et al. (1975) has results
consistent with the curve of Figure 1.2. With less controlled conditions, however,
experimentalists find that laminar transition occurs at Reynolds numbers far less
than the critical, suggesting the existence of subcritical finite amplitude states for
these flows.

In order to extend linear theory to account for small but finite disturbances in
the flow, Stewartson and Stuart (1971) used a weakly nonlinear formulation based
on the method of multiple time scales. The motivation for such a method is that
near He., a continuum of modes of wavenumber « is destabilized. These interact
with each other causing variations on slow time and spatial scales. We now briefly
outline this method which leads to the Ginzburg-Landau equation.

Following Stewartson and Stuart (1971), the stream function ) is expanded
about the parabolic base flow in both a power series in the small parameter € (pro-

portional to amplitude of the modulation) and in a harmonic series of the most
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unstable wave (the Tollmien-Schlichting wave given by linear theory). The lowest

order term which describes modulations to the neutrally stable wave is given by
b —bo = €A(£,7) b1(y) e 4 ce 4+ O(e?) (1.5)
where ¢ and 7 are the scaled slow streamwise coordinate and slow time given by
£ =¢(z —c4t) T =€t .

¢y is the group velocity at which the energy of the modulation propagates according
to linear theory, and ¢;(y) is the first Orr-Sommerfeld eigenfunction at the nose of
the Orr-Sommerfeld neutral stability curve where Re = Re.. In this way € may
also be thought of as being related to the inverse length and time scales of the

disturbance.

The Reynolds number is found to scale with €* and we write
s.(Re — Re,) = o, (1.6)

where s, is a fixed positive constant given below and is included for consistency with
Stewartson and Stuart. In their original derivation they chose to scale |o,| = 1,
whereas for the present we consider o, as an order one parameter determining the
Reynolds number. We find that this approach has the advantage that the structure
of solutions on either side of the critical Reynolds number can be studied without
the necessity for € and thus the amplitude to go through zero.

All of the constants above may be calculated from the linear dispersion relation
(i.e., the Orr-Sommerfeld neutral stability curve), and from Davey, Hocking and
Stewartson (1974) these are given by

Re. =5772.2 cer = 0.264 a. = 1.02

s, =0.168x 107> ¢, =0.383.

The GL equation for A is derived by substituting the expansion (1.5), including

higher order corrections to the base flow and harmonics of the T-S wave, into the
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Navier-Stokes equations. At order O(€?) a solvability condition must be satisfied for

the inhomogeneous equation and the GL equation

0A _, 0*A
or 08

+ 2o, A+ rAJAP (1.7)
Sy
results.

The coefficients relevant to Poiseuille flow have been calculated numerically and

we quote these values from Davey et al. (1974) as
b= 0.187 +0.02752 k=2308—173:  s=(0.168+0.811z) x 107°.  (1.8)

On rescaling A to A and ¢ to = (distinct from the fast scale z) in (1.7) such that

A = \/|r,|exp(—io,siT/s.) A, T = §/\/3;,

we are able to scale the magnitudes of the real parts of b and & to unity and make the

coefficient of the linear term real. We then get the normal form of the GL equation

0A . (0PA : o
57 = (e Hia) g+ oAt (dr + id;) A|AJ? (1.9)

where we have also replaced the slow variable = with ¢ for convenience of notation.
Note that a, > 0 is necessary for well-posedness, and we will assume this condition
throughout. From the relevant values (1.8) the coefficients in equation (1.9) become

a, =1 d, =1

(1.10)
a; = 0.147 d; = —5.62 .

These coefficients are thus determined solely by the physics and in what follows
we will use their values to guide the parameter ranges in which we are interested.
Although the above scaling can always be performed provided b,5, # 0, in general
we will retain @, and d, in our analysis, but use the values (1.10) in our numerical

calculations. We will also find it useful to define the quantities

aozai/(l,-, dOEdi/dT.
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CHAPTER 2

Quasi-steady Solutions of the
Ginzburg-Landau Equation

In the following chapter we introduce the ordinary differential equations which
govern the spatial character of quasi-steady solutions of the GL equation, of the
form A = 7' ®(z — ct). We first discuss plane wave solutions as a special case. We
then introduce the complex damped Duffing equation that ® satisfies, which defines
a 4-dimensional dynamical system which can in general be reduced to 3-dimensions.

We end with a discussion of some general properties of these systems, which will be

of importance to later analysis.

2.1 Plane wave solutions
The simplest and best known exact solutions of the GL equation

9A 924 .
7 = (ar Hia) 5= + o A+ (dr +id) A AP (2.1)

are those of constant amplitude plane waves

A= Bei(ka:——Qt) (

2
Bl= [0 = (4 doa K 4 doo,

and the phase of B is arbitrary. For the Poiseuille coefficients, if o, < 0 (Re < Re,)

!\3
O]
~—

where

these wavetrain solutions exist for all wave numbers k£ and have amplitude bounded

above zero. When o, > 0 (Re > Re.) we require k* > o./a,. For a given o, and
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I

O e e e ———

-
-

Q¢ Ré > Re
C
a (a)
|al* a2 |al>0

|a[=0
| /Rec = Re

AN AN

(b) 0, <0 (c)o,>0 (d)

FIGURE 2.1. Solution surface of 2-dimensional travelling waves for plane Poiseuille flow.

(a) Energy surface as a function of Reynolds number and wave number «.
(b)~(d) Small amplitude approximation given by the GL plane wave solutions.

wavenumber a pair of plane waves exists; the solution with wave number & > 0 we
call Ty, the other with wavenumber k£ < 0 we call T_.

These wave solutions describe for small amplitude the two-dimensional finite
amplitude periodic travelling wave solutions of Poiseuille flow that bifurcate from

the undisturbed flow (as predicted by the Orr-Sommerfeld eigenvalue curve). The
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stream function of these finite amplitude waves is of the form
¢ = F(J? - Cpt7y3R87Q)7

where I is of period 27/« in the first variable and satisfies no slip boundary condi-
tions in y. See Figure 2.1. ¢, is then determined by a nonlinear dispersion relation
for a range of Re and a. These equilibrium states have been studied by several
investigators (Zahn et al. (1974), Herbert (1981)) and are found to lie on a sur-
face in (Re, o, Amplitude) space which exists down to Reynolds numbers of about
2500. The surface is double valued in amplitude and the upper branch is stable to
2-dimensional superharmonic disturbances (Pugh, 1987).

Note that by allowing o, to be an order one parameter we can see that a family
of plane waves of equal amplitude exists in a neighborhood of the “nose” of the Orr-
Sommerfeld curve on the locus o, = a,k? + constant which gives a relation between

the Reynolds number versus the wavenumber for these waves.

2.2 The complex damped Duffing equation and related dynamical systems

More generally we can seek solutions to the GL equation (2.1) of the form
A= e HO(z — ct), (2.3)

where the wave speed c provides an order € correction to the group velocity of linear
theory if we go back to the derivation of A from the stream function. The modulus of
the complex amplitude is therefore steady in a frame of velocity ¢, +ec. Substitution

of (2.3) into the GL equation gives the ordinary differential equation for ®(X) as a

function of X = ¢ — ¢t

(ar +ia:)®" + c®' + (0, +iQ)® + (d, + id,)®|®| = 0.
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It 1s convenient to rewrite this equation as
(I)” -+ (01 -+ iCQ)(I)/ + (51 -+ Zﬁ)@ - (62 + w)@]@]z (24)

where from the Poiseuille coefficients (1.10)

CITQ — 4;0, N Clidr - a,di N
g = ————MZ v = FE = 5.65

a,0, + aiQ Td'r + aidi B
(51 = T (52 = —g——l(;]-;—_— = —0.170 (ZJ>
Cp = car Co == Q&

lal? |al?

Equation (2.4) is a complex version of the damped Duffing equation. This equation
has been studied in the undamped case (¢ = 0) by Sirovich and Newton (1986),
C. Holmes and Wood (1985) and P. Holmes (1986) although in different parameter
regimes than the one in which we are interested.

The 6 parameters above are of course not all independent and they may be
reduced in number by rescaling at most two of them. We have sometimes found it
convenient to scale the magnitudes of §; and &, to unity, by scaling amplitude and
space. In so doing four cases of the complex Duffing equation arise depending on
the signs of 6; and 6. In general we will remain with the parameters (2.5) however,
noting that varying {1 is equivalent in scaled parameters to varying 8 and fixing é;.

The equation (2.4) describes the spatial behavior of quasi-steady solutions (2.3)
of the GL equation and is the equation on which this study will concentrate. Notice
there are two undetermined parameters §) and ¢, the temporal frequency of oscilla-
tion and the group velocity correction respectively. The coefficients v and &, in the
complex damped Duffing equation are regarded as being determined by the physics

of the problem. ¢; = —c¢;/ag is linear in ¢, and B and §; depend linearly on Q and

also the Reynolds number parameter o,.
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If we consider the Reynolds number as fixed, then as in Stewartson and Stuart

we can set |o,| = 1 through the invariance
(0,,9,¢,8,2) = (L?0,, L*Q, Le, L®, 2/ L). (2.6)

Thus given any single solution, a family of self-similar solutions exists as o, is varied,
which become singular as o, — 0. This does not exclude the existence of families
of solutions in a neighborhood of o, = 0 however, as is true in the instance of the
plane wave solutions.

A plane wave solution of wavenumber k, when cast in the framework of quasi-

steady solutions, will exist on the line

Q+ ke = (a; — doa, )k* + dyo, (

_[\:)
—~1
—

in -c parameter space. In this way these solutions are redundantly represented,
although distinct solutions bifurcate from a given plane wave only for specific values
of  and ¢. In Figure 2.2, lines of constant wavenumber (each corresponding to a
single plane wave) are shown as a function of the two parameters for the Poiseuille
coefficients and o, = 1, which is representative of the supercritical case o, > 0. In
this case we see there is a band of excluded k, and specifying  and ¢ may result
in describing zero (regions I and VI), one (regions V) or both of the plane waves
(elsewhere). For o, < 0 the regions 1V and VI disappear and all wavenumbers are

present, T and T_ existing everywhere in parameter space except for the parabolic

region I.
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FIGURE 2.2. Lines of constant wavenumber for the plane waves Ty, o, = 1.
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The second order complex O.D.E.’S (2.4) can be written as the first order real

system for ® = u + 1v which is of the form
u' =p
v =q

Pl == 81u+ Bv+ (b3u — yv)(u® + v¥) — c1(p + aoq)

q, = — fu— v+ (’YU + 521))(u2 + U2) + cl(aop - Q)'

Due to the phase invariance of the GL equation
A — Ae®

this system possesses a rotational symmetry, given by

(s o)

Qe g
new e g

(2.8)

(2.9)
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cos —sinf
sin 0 cos 8

with 0 arbitrary. This symmetry can be eliminated by writing ® as an amplitude

where () is the rotation matrix

and phase, thus removing this apparent degree of freedom. Following Sirovich and

Newton (1986) it is convenient to use the variables r, s and w where

X /
® = rH2exp {2/ st} , W= — (2.11)

in order to get a system of 3 first order O.D.E.’s. After some algebra we arrive at

the reduced equations

r’ = 2wr (2.12a)
§'= =+ r — 2sw — ¢1(s — apw) (2.120)
w' = —&; + 6r + 87 — w? — c1(ags + w) (2.12¢)

which are a generalization of those of Sirovich and Newton who sought simpler
quasi-steady solutions with ¢ = 0 (and thus ¢; = 0). |

Although this reduction to 3 dimensions makes much of the analysis of the
complex Duffing equation considerably easier, a coordinate singularity is introduced
at amplitude zero, and in general we must return to the 4-dimensional system (2.8)

for solutions where the amplitude vanishes at a point.

It is interesting to note that if we write

d
z = "d—)zlog®

then

z=1w+18
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and equations (2.12) may be written

r' = 2r Re{z}

2= —(61418) + (62 +iy)r — er(1 —dag)z — 27

which we will find to be a useful representation.
2.3 Some general properties of the complex Duffing sytems

We are primarily interested in classifying the spatial behavior of quasi-steady
solutions of the GL equation. In this section we consider some simple properties
of the complex damped Duffing equation derived in the previous section and the
related 4- and 3-dimensional real systems.

An important property of the quasi-steady O.D.E. systems concerns the diver-
gence of the corresponding flows. For the 4-dimensional system we find

Q}_{ + .8_11 + op" , 0¢
ou  Ov  Op Oq

and similarly for a modified reduced system with coordinates (r?, s, w)

ort  9s  ouw'
I LN o

or?  Ods  Ow

Hence as observed by other authors, when ¢ = 0, in which case we seek solutions to

the GL equation of the form
A= ®(z)e™,

the phase spaces are volume preserving and thus no stable attractors can exist. We
find that the introduction of the speed correction ¢ acts as a damping on phase
volumes and that in the case of positive ¢ solutions may exist which approach an
attractor of zero volume in phase space as X — oo, where X = z — c¢t. Similarly
by the reflection symmetry the phase spaces are volume expanding for ¢ < 0, and

attracting sets may exist as X — —oo. This phase space contraction does not imply
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that phase volumes remain bounded in a region of phase space, however, which
occurs in the Lorenz equations for example due to the existence of a Liapunov
functional.

The discussion of stability of solutions in the phase space representations for ® is
relevant in determining the class of spatial variations possible for quasi-steady solu-
tions of the GL equation. In particular, by monitoring the stability properties along
a branch of solutions as a parameter is varied, one may determine bifurcations to
new branches of solutions. Note however that these considerations are independent
of the question of time dependent stability of quasi-steady solutions.

In addition to the rotational symmetry (2.9), the GL equation possesses a re-
flection symmetry which is important in determining the structure of quasi-steady
solutions. This 2 — —z symmetry of the GL equation manifests itself in the 4-

dimensional system (2.8) by the invariance
X - =X c— —c (u,v,p,q) = (u,v,—p, —q) (2.14)

and in the 3-dimensional system (2.12) by
X = -X c— —c (r,s,w) — (r,—s, —w). (2.15)

Introduction of a nonzero wave speed ¢ destroys the reflection symmetry of the
steady equations which otherwise exists when ¢ = 0. It is easily shown that when

¢ # 0 the equations cannot support symmetric solutions. However when ¢ = 0 both

symmetric and nonsymmetric solutions may exist.

When ¢ = 0, apart from solutions with the even reflection symmetry

B(z) = B(—z), (2.16)

B(z) = —B(—z) (2.17),
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where we have written the axis of symmetry at z = 0 although this is of course
arbitrary. An important observation to make is that if a solution possesses the
odd symmetry, it will be singular in the reduced 3-dimensional phase space (2.12)
because ®(0) = 0. It will therefore be necessary to study some quasi-steady solutions
(namely odd periodic and solitary waves) with the 4-dimensional representation
(2.8).

Solutions may possess both the odd and even symmetries about different origins,
and we have found a fundamental branch of periodic solutions that bifurcates from
the zero amplitude state with this double symmetry. This branch and its subse-
quent symmetry breaking bifurcations are studied in Chapters 5 and 6. This double
symmetry is the same as that of the cosine function, being even about 0 and L/2
and odd about L/4 and 3L/4.

If we seek periodic solutions in the 3-dimensional reduced representation, solu-
tions of the complex Duffing equation may result which are periodic in 2 frequencies
(quasi-periodic), and thus lie on a 2-torus in the 4-dimensional phase space. For

periodic solutions obeying the even symmetry (2.15) when ¢ = 0 it follows that

5= T /OL s(z)dz =0 (2.18)

and therefore the resulting solutions for ®, the spatial part of the amplitude A, are
also L periodic when reconstructed by the transformation (2.11). Solutions of period
L in the 3-dimensional phase space do not have to obey this reflection symmetry
however, and we will find such solutions numerically in Chapter 6. Also recall that
this symmetry will always be violated for periodic solutions with ¢ # 0. In these
cases the spatial variation of the corresponding GL solutions will be quasi-periodic

with 2 spatial frequencies, since § # 0 in general, and thus the resulting spatial
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variation of A is
®(X) = r'/*(X) exp(ip(X)) exp(i5X)

where 7(X) and p(X) are of period L. A will have the two spatial frequencies 1/L
and 3/27, as well as three temporal frequencies 1/cL, ¢3/27, and Q/2r, which in
general will be incommensurate. Such solutions are constructed using perturbation
methods in Chapter 5. Note however that the modulus of the amplitude remains

periodic of period L in both space and time.
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CHAPTER 3

Phase Space Structure of the
4-dimensional Duffing System

We consider the equations describing the spatial dependence of quasi-steady
solutions

/
U =p

v =¢q

(3.1)
p' == 8w+ Bv+ (bu — ) (u* +v*) — cip + aoq)

¢ = — Bu — 610 + (yu + 6)(u? + v?) + ¢1(aop — q).
which were derived in Chapter 2 from the complex damped Duffing equation. The
only fixed points of the system for (u,v,p,¢) are the origin for all values of the

coefficients (corresponding to the undisturbed state) and the ring of fixed points

58  d.Q—do,

u2 - 1)2 = :’I- when A= 61 ~ aidr —_ Clr,‘di =0

for all ¢. Recall that the existence of the rotational symmetry (2.10) implies that
solutions in this phase space are only unique up to an arbitrary rotation. This ring
of solutions occurs when the periodic plane wave orbits (2.2) of the GL equation
coalesce to the spatially uniform state in a saddle-node bifurcation. For the Poi-
seuille flow coefficients this will occur for a particular value of the frequency

provided o, < 0. In the 4-dimensional space the travelling waves are given by
u = rpt/? cos(srz + 9) v = rpt/? sin(srz + 0) (3.2)

where rp and sy are functions of the parameters as given in equation (4.6) below

and 0 is arbitrary.
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The linearization about zero in the (u, v, p, ¢) phase space gives two eigenvalues

satisfying
/\2+cl(l —2ag)A + 6+ =0 (3.3)

with the other pair their complex conjugate. If we consider o, # 0 as fixed, then &,
and B cannot vanish as we vary , and the origin will be a double spiral point in
general. Therefore the only bifurcations that can occur from the origin will be of
Hopf type, at which a pair of eigenvalues become pure imaginary (A = +iw) and a
branch of periodic solutions is possibly shed.

By setting A* = —w? with w real we find that

w? = (ﬁ/cl)2 =61 —aof =o0./a,

so a Hopf bifurcation occurs on the lines

p==x ﬁcl
V a,

or equivalently

Q= ago, + [ e provided o, > 0 and ¢ # 0. (3.4)
V a

These two lines in parameter space correspond to the place where each of the plane
waves (3.2) bifurcates from zero amplitude for supercritical Reynolds numbers, thus
confirming the predictions of the Hopf bifurcation theorem.

With somewhat more algebra, one may consider the real parts of the eigenvalues
in equation (3.3) as a function of the two parameters. It is found that the origin is
a stable fixed point of the 4-dimensional system in the region bounded by the lines

(3.4) and ¢ > 0. As o, approaches zero these lines coalesce and for o, < 0 the origin

1s always a spiral saddle.
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Normally the determination of the (spatial) stability of the periodic orbits bifur-
cating in a Hopf bifurcation would require a lengthy calculation. However we know
the branches of bifurcating plane wave solutions analytically and thus can infer their
stability. Furthermore, by making use of the 3-dimensional reduced representation
for ® in which these solutions are simply represented by fixed points, we are also
able to determine secondary bifurcations from these plane waves. These results will
be discussed in the next chapter.

In the special case ¢ = 0 and o, > 0, a double Hopf resonance occurs at = a0,
when 2 is varied due to the presence of symmetry. From equation (3.3), when ¢ = 0
one complex conjugate pair of eigenvalues lies in the the right half-plane and the
other in the left half-plane. These eigenvalues coalesce on the imaginary axis when
B =0 (2 = ago,), noting that é; > 0 at the bifurcation. This type of bifurcation
1s a topic of current interest in the literature (e.g. Golubitsky and Stewart 1985).
Although the general analysis of this situation is still incomplete, we may expect
periodic orbits (besides the plane waves) if not more complex dynamics, to exist
nearby in parameter space.

Accordingly, we have found a third spatially periodic branch P0 of quasi-steady
solutions bifurcating from the origin for fixed ¢ = 0 and small 8 > 0 which displays
the odd and even symmetries of Section 2.3 . Also a family of quasi-periodic solutions
(2-tori) bifurcates from the trivial state if we vary ¢ away from zero for small 5.
These 2-tori lie on a surface in the space of quasi-steady solutions which connects
the plane wave solutions and the symmetric branch P0. This situation is analyzed
using perturbation theory in Chapter 5 and is found in the numerical continuation

of quasi-periodic orbits in Chapter 6.
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CHAPTER 4
Phase Space Structure of the

J-dimensional Reduced O.D.E. System

In this chapter we study the properties of the reduced system

r’ = 2wr (4.1a)
' = =B+ 9r — 25w — ¢;(s — apw) (4.10)
w' = —6; + 67 + 8% — w? — ¢y(ags + w) (4.1¢)

which describes the spatial structure of quasi-steady solutions of the GL equation
whose amplitude is bounded away from zero for finite X = z—ct. This 3-dimensional
phase space is geometrically far easier to work with than the 4-dimensional space
derived directly from the complex Duffing equation, and reveals several aspects of
the dynamics of the Duffing equation more readily than the 4-dimensional represen-
tation.

Recall that we consider v > 0 and é; < 0 as fixed, # and é; are proportional to
the undetermined temporal frequency €1, and ¢, is proportional to the undetermined
speed correction c.

When ¢; = 0 the above system is the same as that studied by Sirovich and
Newton (1986) and in a slightly different forms by C. Holmes and Wood (1985)
and P. Holmes (1986). The first two authors concentrated on studying a single
branch of periodic solutions. P. Holmes (1986) studies small perturbations from the
Hamiltonian case when 3 = v = 0 (the nonlinear Schrédinger equation limit), and
proves the existence of spatially periodic and quasi-periodic solutions. An analysis

of the case §; > 0 has been carried out by Kopell and Howard (1981) and arises in

the analysis of reaction diffusion equations.
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We are interested in bifurcations from the laminar and plane wave states in
Poiseuille flow. As each of these states is represented by a pair of fixed points
in the reduced system, we consider the phase space structure of the 3-dimensional
equations in order to find their stability in phase space, thereby giving us information
about bifurcations to more complex spatial states. Also of interest are solutions
describing spatial transition from the laminar and plane wave states, and thus we
seek solutions to the equations (4.1) which tend to these fixed points at spatial
infinity (X =z — ¢t — F00).

The purpose of this chapter is therefore to discuss the existence and stability
properties of the fixed points. This information will be important in the following

chapters where we find periodic, quasi-periodic and solitary waves solutions of the

GL equation for Poiseuille flow.

4.1 The invariant plane r = 0 and the fixed points of laminar flow

An interesting aspect of the system (4.1) is that the plane r = 0 is an invari-
ant subspace. In this way the single fixed point of the 4-dimensional system is

transformed into a singular plane in the polar representation.

If we consider the reduced system in this subspace

s’ == — 25w — c1(s — apw) (4.2a)

]

w' = =& +5° —w? - ¢;(ags + w), (4.20)

then it is possible to find an analytic solution by creating the complex variable
z=w+1$

as introduced in Section 2.2 . The equations (4.2) reduce to

2= —Ky — Koz — 22 (4.3)
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with solution
z=—1K,— \/C—tan(\/EX +p) (4.4)

where

.[(1 ot 61 + Z,B [(2 = Cl(l — i(l()), C = ](1 — %I(; = f -+ ?,77,

and
£(Q,e) =6 — fcf(1—af)  n(Qe) =B+ Saoct.

p is a real constant of integration and the arbitrary shift in the origin of X is implicit.

There are two fixed points of the form (0, sg,wo) which we call D, and D_,
corresponding to solutions of the quadratic (4.3) set equal to zero. It is interesting
to note that this quadratic is identical to the eigenvalue equation (3.3) for the zero
amplitude solution in 4 dimensions. Hence both values of w must be negative if and

only if the 4-dimensional fixed point is stable. These fixed points have coordinates

apC +
S0 = 021 :Fsgn(?]) |<|2 é
Dy
=G (] = ¢
Wo = 5 + 5

Both fixed points exist for all values of the parameters, except when they coalesce
at £ = n = 0. A branch cut in parameter space has to be chosen in order to
continuously and unambiguously represent these fixed points. We have chosen this

cut to be n = 0 when ¢ < 0, which corresponds to the parabolic segment
aic2

Q:(IQUT—W,

Q 2 —ag0y.

On crossing this cut by varying Q and ¢, D, and D_ swap identities.
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FIGURE 4.1. Phase portraits of the invariant plane for o, > 0.

As o, — 0 the regions 1v disappear and only phase portrait 1 persists for o, < 0.

The stability of these fixed points for the full 3-dimensional system is determined

from the eigenvalues
/\1 = 2’(1)0 /\213 = —(2w0 + Cl) + 7:(280 - CLQCl).

By considering the real part of the complex conjugate eigenvalues we find that D,

is a stable point of the invariant plane and D_ is unstable, except on the branch cut
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where both points are marginally stable, the complex conjugate eigenvalues having
their eigenspaces lying entirely in the invariant plane.

In Figure 4.1 we illustrate the stability results for D4 in the 3-dimensional phase
space. As we can expect the stability of the ® = 0 solution depends only on the
real eigenvalue Ay at Dy and D_ because A is proportional to the real part wq of
z. Our results for the eigenvalue equation (3.3) therefore carry directly over and
we find that D, is stable in the region bounded by the lines (3.4) and ¢ > 0 and
D_ is unstable in the region bounded by these lines and ¢ < 0, provided o, > 0.
Elsewhere in parameter space these fixed points are saddles, as is always the case

when o, < 0.

In general then, from (4.4), all orbits within the plane are bounded with the
exception of at most two unbounded separatrices on which w is singular for finite
X, which occurs when p = 0. The bounded orbits are heteroclinic between the spiral
points D_ and D,. For parameter values on the branch cut, however, a change of
stability occurs at these fixed points, and a “vertical” Hopf bifurcation takes place.
All orbits in the plane are periodic except for a single separatrix on which w — 4o0.

One may ask what is the significance of a continuum of zero amplitude solutions
represented by the orbits in the r = 0 plane. Firstly the fixed points D, represent the
exponential decay of solutions that tend to zero at plus and minus infinity, which
1s given by linearization of the GL equation for small amplitude. Thus solutions
decaying to the laminar state at infinity must correspond to the orbits of the 1-
dimensional stable or unstable manifold of D_ or D, associated with the eigenvalue
A1

The singularities for finite X represent solutions whose amplitude approaches

zero, due to the algebraic singularity of equation (4.4) which to leading order is of
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the form
+ Ci 1
w4 =~ —
2 Xﬂ_ Xo as X — Xog . (4.5a)
apCq .
Ty X

This singularity in the invariant plane is accompanied in the third dimension by a

decay of the amplitude to zero such that
r~ (X — Xo)? as X — X, (4.5b)

where Xy and r; are undetermined. We note that this may still correspond to
bounded motion for a solution of the GL equation, and that our choice of polar
coordinates with w = r’/2r fails to satisfactorily describe such solutions whose
amplitude is zero at a point. In general this restricts our study in the reduced
(r,s,w) space to solutions whose amplitude remains bounded away from zero for
finite X.

The remainder of heteroclinic orbits in the invariant plane joining the fixed
points D_ and D, are associated with the ® = 0 solution and seem to be an

artifact of the mathematical construction.

4.2 The fixed points of the plane wave solutions

The second pair of fixed points of the system (4.1) are of the form (rr, s, 0) and
correspond to the plane waves which were periodic solutions in the 4-dimensional

representation. These are given by

oo B cd ig\/c%dz ”1”%@

Y 2ay% 0 v\ day?
Leiode [ ca 25 46)
S = + + 51  —
2a,7y 4a?y? 5y

’U)T:O.



_31_
Hence the corresponding GL solutions become

L 1/2 ispx —i{(Q4sre)t
A=r"e"T% ( T),

recalling that a wave of given wavenumber £ = s7 lies on a line in parameter space
given by equation (2.7).

In order for Ty or T_ to exist we require that these fixed points be real and
that 77 > 0. When ¢ = 0 these points are images of each other under the reflection
symmetry and exist provided both

Azél—-@—ﬁ— and é
Y i

are nonnegative.

The characteristic equation of the linearization about these plane wave fixed

points is given by

A2 4 20102+ [cf + (287 — a0c1)2 —_ 2527"T] A

(4.7)
— 2rp[e16y + (287 — ager)] = 0.

In studying the stability of the plane wave fixed points we shall refer to regions
of parameter space shown for the Poiseuille coefficients in Figures 4.2 and 4.3 and
the Table 4.1. Figure 4.2 illustrates the regions relevant in studying the existence
and stability of both pairs of fixed points as a function of the two parameters for
o, = —1, and similarly for Figure 4.3 when o, = 1. Recall that we can always scale
nonzero |o,| to 1 by the invariance (2.6), so these diagrams are representative of sub-
and super-critical Reynolds numbers respectively. Table 4.1 indicates the number
of positive and negative eigenvalues associated with each of the four critical points
Ty and Dy in the different regions of parameter space. This table and figures were
constructed by solving (4.7) numerically for the Poiseuille parameters as well as by

considering bifurcations from the fixed points as described below. In general we
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FIGURE 4.3. Stability diagram, o, = 1.
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Critical Point Stability

Eigenvalues: (—ve,+ve)
Region Ty T N D_
I - - (27 1) (1a2>
IIa 2,1) | (3,00 | (2,1)](1,2)
IIb (0,3) | (1,2) | (2,1) | (1,2)
111 (2,1) | (1,2) |(2,1) | (1,2
[Va (2,1) | rr<0|(3,0)|(1,2)
IVb rr <0 (1,2) |(2,1)](0,3)
Va (2,1) | (3,0) |(2,1) (1,2
Vb (0,3) | (1,2) | (2,1) | (L,2)
VI re<0|rp<0 (2,1) (1,2)

TABLE 4.1. Critical point stability of the reduced system.

The table displays the number of stable and unstable eigenvalues in each

region of {)-c parameter space. The regions in the bottom half of the table
exist for o, > 0 only.

find one pair of the eigenvalues of Ty is complex conjugate, although in segments
of region 1Iv when o, > 0 and region I when o, < 0 all the eigenvalues can be real,
but this has no bearing on the stability properties which we discuss here.

In order to determine bifurcations from the plane wave fixed points we examine
when an eigenvalue is zero or when there is a pure imaginary pair of eigenvalues.
There are two cases for a zero eigenvalue. The first occurs when a plane wave
bifurcates from zero amplitude so that rr = 0. At this point one of the T fixed
points coalesces with a D fixed point which occurs on the lines (3.4). In this way
the Hopf bifurcation describing this phenomenon in the 4-dimensional system has
been reduced to a regular bifurcation of steady solutions in the reduced system. The
second case of a zero eigenvalue occurs when the square root in (4.6) vanishes and

T} and T- coalesce in a so-called saddle-node bifurcation, although this is really a
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limit point and no new branches are created there. The locus of this limit point
gives the region for the existence of Ty which is given by

d,.c?

> e
B2 b e

Thus no plane waves exist in region I of parameter space. Ensuring that r¢ > 0 also
excludes region VI and we find only one plane wave solution exists in the regions IV
when o, > 0.

If we seek Hopf bifurcations by setting A\* = —w? with w real in (4.7), a cubic

equation in ¢} results after eliminating w, s and rg, which is given by

et [c1(1 + ad) + 66, — Blag + 765/7)]?

7

2
+cg

[cI(1 + ad) + 661 — B(ao + T82/7)][28 + ci(ao — 7682/7)] (4.8)

yar
—[61 = 8:8/7][ct(a0 — T82/7) + 28]* = 0.

We have solved this equation numerically and find a locus of Hopf bifurcations
from T} and 7_ occurs in Q-c space for o, either side of critical. From the Hopf
bifurcation theorem, given that we are not in a degenerate situation, branches of
periodic orbits must exist in a neighborhood of these fixed points. These have been
found perturbatively as described in Chapter 5. It is interesting that returning to the
original representation for @ this locus of secondary bifurcations is to spatially quasi-
periodic solutions, which are 2-tori in the 4-dimensional phase space. This follows
from the discussion in Section 3.4 as ¢ # 0 for these solutions. This bifurcation to
a 2-torus was also found by C. Holmes (1985), in a study of the temporal stability
of the plane waves of the GL equation (see Section 8.1). By comparing Figures 2.2
and 4.3 we observe that each plane wave of a given wavenumber undergoes such
a secondary bifurcation. The situation is also true when o, < 0, where a given

plane wave may undergo either one or three bifurcations. This situation is discussed
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further in Chapter 8, where we relate these bifurcations to the sideband instabilities
of plane waves for the GL equation.

We now summarize the most important features of our stability results when
¢ > 0. We find that T is an attracting fixed point in regions IIa and Va of parameter
space, as is the zero amplitude fixed point D, in region Iva. Region IV exists only for
o, > 0, and diminishes in size as o, — 0, when regions II and V coalesce. Otherwise
all the critical points are saddles. Regions 1v, v and VI are the only sectors of
parameter space which are unique to o, > 0. When ¢ < 0, from the invariance
(2.15), the results are analogous by reversing stabilities and swapping the subscripts

+ and — of the critical points.
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CHAPTER 5

Construction of Spatially Quasi-periodic

Solutions by Perturbation Methods

From the stability considerations of the previous chapters, various bifurcations
from the known exact solutions can occur, and thus we should be able to find new
bifurcating quasi-steady solutions. By searching for periodic solutions of the complex
Duffing systems numerically, a complex structure of such bifurcations to quasi-steady
spatially periodic and quasi-periodic solutions of the GL equation for plane Poi-
seuille flow has been found, as is described in Chapter 6. In order to gain a better
understanding of the structure of these solutions, we have found that perturbation
methods can be employed to describe many of them analytically. In particular,
when o, > 0 we can describe a family of quasi-periodic solutions which connect the
plane wave solutions to symmetric periodic solutions, all of which bifurcate from
the undisturbed state. Furthermore, when o, < 0 there is a family of solutions

bifurcating from the non-trivial subcritical spatially uniform state.

In seeking temporally and spatially quasi-periodic solutions of the form A =
e P (z — ct), we first consider necessary conditions on the undetermined parame-
ters {2 and ¢ for their existence. We consider integrals over the motion, and the case

c = 0 first. Defining
(of) = [ fopas,

1

we multiply the complex Duffing equation (2.4) with ¢ = 0 through by ®* and

integrate the real and imaginary parts to get

=) + 6 2[") = (|87 + Re(@'0")|” (5.10)
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and
=8(12P) +7{i21") = Im{@'e7) | (5.10)

A first observation is that the boundary term in (5.1a) equals %|<D]2I which must
vanish for some z, > z; on any bounded orbit. Thus the boundary term vanishes
and the right hand side is negative. It follows then that both —§; and &, cannot be
positive if a spatially bounded orbit exists.

Secondly, on a periodic orbit both the boundary terms vanish where the period
is 2 — ;. Similarly these terms can be made arbitrarily small on a quasi-periodic

orbit in phase space. It follows then that for any quasi-periodic orbit

By >0 and AE&-—%EO. (
Y

(W14
o
~—

To achieve this result for periodic solutions we have essentially repeated Holmes and
Wood’s (1985) argument, although they claim (erroneously) that the result holds
for all bounded solutions.

Two simple conclusions can be made for the original Poiseuille low GI coeffi-

cients when the boundary terms vanish in equations (5.1). We find that
Q>ap0, if o,>0
Q>doo, if o,<0
in order to find quasi-steady spatially quasi-periodic solutions (with ¢ = 0). This

is in agreement with the analytic and numerical findings presented below and in

Chapter 6 respectively.

When ¢ # 0, performing the integrals analogous to equations (5.1) does not lead
to conditions for existence as above, and we are unable to find conditions to restrict

the parameter space in which to find quasi-periodic orbits for general c.



—-38—

5.1 Small amplitude branches of periodic solutions, o, > 0.

In Chapter 2 we discussed that the GL equation possesses a family of spatially

periodic plane wave solutions

ak?— o,

A= 7

expilk(z — ct) — Q] (5.3)
of wavenumber k, where  and c satisfy the relation
Q+ke=(a;— doar)k2 + dgoy. (5.4)

When o, > 0, plane waves of opposite wavenumber bifurcate from the trivial solu-
tion. This can be viewed as a Hopf bifurcation in (v, v, p, q) space, where these waves
appear as periodic orbits. Alternatively the plane waves correspond to a pair of fixed
points in (r,s,w) phase space at which w = 0. In this formulation the bifurcation
from the trivial solution occurs when these fixed points bifurcate from the pair of
fixed points lying in the plane r = 0. In any case the bifurcation is of degenerate
type in the case ¢ = 0, when an extra symmetry is present in the complex Duffing
equation. As was described in Chapter 4, in the 4-dimensional formulation a double
complex conjugate pair of eigenvalues sits on the imaginary axis, a situation that is
not in general well understood.

In addition to the plane wave solutions, the GL equation is known to possess
a branch of periodic solutions for ¢ = 0 with both odd and even symmetry in z,
provided o, > 0. This was found by C. Holmes (1985) and independently through
our numerical computations described in the next chapter, and with a perturbation
approach described here. Holmes considered the case ¢ = 0 only, and deduced the
normal form for the bifurcation at Q = ag when o, = 1, which shows that a third

branch of solutions exists at small amplitude in addition to the pair of plane waves.
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Because ®(X) has zeroes on this branch, the solution cannot be described an-
alytically in the reduced (r,s,w) formulation and we must use the full complex
Duffing equation. We consider small amplitude solutions of the GL equation that
exist for o, > 0 and bifurcate from the laminar state. Using perturbation techniques
for small 8 (a small perturbation of Q from its critical value aoo,) we will construct
this symmetric branch of periodic solutions for ¢ = 0 and 7 positive and finite (as
applies in Poiseuille flow), in addition to the plane waves above.

In the following sections we will assume also that the GL coefficients a,, d, and
o, have been scaled to unity as given in (1.10). From (5.2) we know that periodic

orbits can only exist for 8 > 0, and consider the equation (2.4)
" = —(6,+:8)D + (6, +17)®|®|>° B < 1. (5.5)

In order to construct small amplitude periodic solutions, we find that it is appro-

priate to use the scaling

®=p4"¢  i=a(l+fuw + )

which is standard for Hopf bifurcation problems using the Lindstedt’s method of

strained coordinates (Kevorkian and Cole, 1981). The problem becomes

(L4 Bwr+ - )p+ ¢ =B [=i(1 —iao)d + (6 + 7)b|¢|*]

where the double dots denote derivatives with respect to the stretched variable .

Expanding ¢ as
¢ = o+ B+

we get at lowest order the harmonic oscillator

$o+ b0 = 0.
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At present we do not impose any boundary conditions except those of periodicity.

The general solution at lowest order is thus
do = Be'® + Ce®
with B and C complex constants. At next order we must solve the equation
G1+ 61 = (w1 —i(1 — iao))do + (2 + 7)ol $[5. (5-6)

The cubic nonlinearity introduces inhomogeneous secular terms, whose coefficients
must be set to zero giving the equations
(w —i(1 —iao))B — (1 —iy) [B|B]*+2B|C]*] =0

(5.7)
0.

(w1 —i(1 —ia0))C — (1 — iv) [C|C]* + 2C|B*]

Note that these equations are solved subject to w; being real. In the case B = 0

only the second equation remains and we find

Wy = IC[2

2 |

Similarly if C' = 0 we get

1
Wi = [B‘z - -

In these cases no harmonics are generated on the right hand side of (5.6) and the
solutions are therefore exact. We find we have constructed the travelling wave
solutions (2.2) which are asymmetric (i.e., not invariant to the + — —z symmetry).
We now consider the solution of the equations (5.7) when BC # 0. In this case
it follows that
w1 _}_

BP=|CI?= = =
Bl =101 = 3 = 5

Due to the phase and translation invariance of the complex Duffing equation, we

may choose B and C real and positive without loss of generality. We thus find that



—-41-
only one distinct periodic solution results which may be written to lowest order as

¢o = 2B, cos T, B, =

G-
-2

Solving for ¢; one finds
b1 = —%Bf(ég +1y) cos 3% + B, (D, + %iva) cos &

and we must consider the equation at order 3? to determine w, and D.. Due to
the rotational invariance each periodic orbit is really a surface of solutions in 4-
dimensional phase space. To remove this degeneracy and the arbitrary shift in
space we have applied periodic boundary conditions with the extra conditions v(0) =
v'(0) = 0 where ® = u 4.

On removing the secular terms at order 5%? we find

1 2

The resulting bifurcating solution (which we call P0) is given then to second order

by
b2

6yv/37°

sin 7 sin 2% + O(,B%)

u =32 cos & + 32— ——=—[1cosZ — Lcos3%] + 0(p°?)

2
\/g;
6\/—

with period in z given by

— 53/

=i L+ B o) o)
recalling that A = (u + w)e™ ™ and # = (Q — ao)/|e|’. Note that this branch
PO possesses odd and even symmetry in X, which would make it singular in the
3-dimensional representation. We were able to numerically compute and continue
this branch for finite 3, as will be described in Chapter 6. The analysis has therefore

revealed 3 branches of solutions emanating form the degenerate Hopf bifurcation,
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each describing small amplitude solutions of the GL equation which are spatially

and temporally periodic.
5.2 Small amplitude expansion for bifurcating 2-tori

In addition to the above three periodic branches found in the 4-dimensional
phase space, our numerical results lead us to seek a perturbation procedure where-
by we can describe the periodic solutions in the reduced (r,s,w) phase space which
also exist for small amplitude for non-zero speed correction ¢ near the bifurcation
point at 8 = ¢ = 0 when o, > 0. In general these solutions lie on 2-tori in the
4-dimensional space and thus correspond to spatially and temporally quasi-periodic
solutions of the GL equation. Although the underlying linearization in amplitude r
leaves us with a nonlinear equation for s and w, we are able to solve the perturbation
procedure analytically because we can solve the lowest order equation exactly using
complex formulation (2.13).

We find that these 2-tori solutions exist in region IIT of parameter space (see
Figure 4.3) and lie on a surface in parameter space bounded by the Hopf bifurcation
lociof T and T_. As |¢| — 0 this family of solutions is singular in the 3-dimensional
representation due to the presence of the odd symmetry, but we have constructed
the limiting branch PO of spatially periodic solutions for ¢ = 0 in the previous

section using the full 4-dimensional representation.

Recall that at the bifurcation point ¢ = 8 = 0 (Q = 0,a,) the plane wave fixed
points coalesce with the fixed points in the r = 0 plane. The continuum of solutions
in the plane are all of period 7 except for the singular s = 0. What we find by both
numerical continuation and the following perturbation expansion is that, by varying
f and c away from zero along a ray in parameter space, just one of these periodic

orbits persists outside of the invariant plane. Thus for fixed 0 < 8 < 1 the family
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of periodic solutions that was in the plane at the bifurcation point persists at finite
amplitude and may be parametrized by c.

We start by considering the orbits in the r = 0 invariant plane at the bifurcation
point. From Figure 4.1, the bifurcation point is on the branch cut in Q-¢ parameter
space, and the degenerate fixed points in the plane are marginally stable in all three

directions. From Section 4.1 the orbits in the plane may be described as
w+is =z = —tan(z +1p). (5.9)

On expanding the right hand side into real and imaginary parts, we find we can
eliminate z to get an parametrized representation of the orbits in the invariant

plane as

s+ w?+1 = —2scoth2p.

p is thus found to be a natural way of parametrizing the periodic orbits, where
as |p| — oo the fixed points D_ = T4 and D, = T_ are approached and as
|p| — 0 the norm of the periodic orbits tends to infinity and the singular separatrix
is approached.

We now seek small amplitude periodic orbits in the 3-dimensional phase space
by perturbing the solutions in the invariant plane. We retain the complex z repre-
sentation for s and w and study the equations (2.13)

r' = 2rw

(5.10)
2= —(1 +4(1 —iag)B) + (6 + 17)r — 11 — iag)z — 2°.

where the independent variable is X = z — ¢t, and we have assumed the scaling
o, = a, = d, = 1. We find that the appropriate expansion for (r,s,w) is regular

in 0 < f <« 1. We also expand the parameter ¢; in § and stretch the independent
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variable X, the latter due to the fact that a shift in the period 7 is expected for
finite 8. 1.e.,

r=pro+Brit-) z=z0+fx+-
. (5.11)
cr=Pbo+Bbi+-)  X=(1+wfB+wpf )X

For small 3, by is an order one parameter that determines small ¢;, and thus given

by, £ and ¢ vary along a fixed ray in parameter space.
Substituting (5.11) into (5.10) we find at lowest order that we recover the solu-
tion (5.9) for zo. Taking the real part wq of zy, we are able to find rq as

X
ro = Rexp{Q/ wodm} = R(cos2X + cosh2p)

where R is an amplitude yet to be determined, and we have dropped the tildes on

X, so
X =zl +wi B+ O(8Y)] - t[bof + O(8%)].
At order § in the z equation we find
21+ 22021 = fi
where
fr=wi(l +z5) = (1 = dao)(i + bozo) + (&2 + i7)ro
and
z2o(X) = —tan(X +1p).
The solution for z is
z1 = sec’ (X + ip) /X ficos*(z +ip)dz. (5.12)

In order that z; be of period 7 (in the stretched variable X), we must impose the

solvability condition that the mean of the integrand is zero over one period, or

/ ficos*(z +ip)dz = 0. (5.13)
0
Of the three terms in f; to be integrated, the first two are easily evaluated by

moving the contour parallel to the real axis in the complex X-plane, noting that
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the trigonometric functions are periodic on any such contour. The integral over the
term in 7o is conveniently evaluated in the complex plane by converting the line

integral of trigonometric functions to one of an algebraic function around the unit

circle, i.e.,

/ (cos 2z+ cosh 2p) cos*(z + ip) da
0

2m
:?}; / (cosz + cosh 2p) [1 4 cos(z + 2ip)] dz
0
. _ dé
=Te 0(52 + 14 2€ cosh 2p)(2¢ + %6727 4 €27) 5_3
z% cosh 2p.

This method of evaluation is used later on integrals where methods of direct real

integration seem inapplicable.

The solvability condition (5.13) yields two real equations with solution

1 P 1

wy==(ag——) = -
1 7T 2y

and

R= 2 sech 2p.
3y

The first order shift in period is therefore independent of the parameter p, and at

this stage by is undetermined.

At second order for r we find

X
= .‘27’0/ (w1 — wywo)dz.

Once again we must ensure that the mean of the integrand vanishes over a period

so that ry is periodic. wq is symmetric so that the resulting condition becomes

Re/ Zldfl: = .
0
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This condition requires the explicit calculation of z; from equation (5.12), namely

71 = Tsec’(z +ip) {-—(1 — 1ag)[bo cos 2(x + ip) + isin 2(z + ip)]
+ R(62 + 1y)[cosh 2psin2(z + ip) + sin 2z + 5 & 5 sin 2(2z + Zl’)]} .

The subsequent integration of z; is performed with several contour integrations of
trigonometric integrands similarly as above, and on carrying out these details the
real part of the integral is set to zero. After considerable algebra we find the simple

result that

1
bo = 3 tanh 2p.

In this way p and thus by parametrizes a family of periodic orbits in phase space.
|bo] — 0 recovers the symmetric periodic branch of the previous section (which is

now a singular orbit in the 3-dimensional space), and |bo] — % recovers the plane

waves.

Putting these results together, to leading order the amplitude of the full solution

1s

X
61/2 1/2( )exp i:z/(; Im{z()(;c)} dz — 0t

X =2(1 4+ 8/27) — Bbot + 0(8?)

with 8 = (2 — ap)/|al]®>. This describes a quasi-periodic family in space and time
due to the fact that the mean of Im{zy} over one period in X is in general non-zero.

The modulus of such solutions is periodic, however, and is given by

[Alz 26 {1 +4/1 - 9b(2) cos 25(] + O(ﬁz).

Iigure 5.1 is a diagram of the solution surface as a function of the free parameters
Q) and ¢ (both linear in 3) for asymptotically small amplitude.
We have therefore determined the lowest order terms in amplitude, speed correc-

tion ¢ and period shift with a perturbation procedure in the reduced 3-dimensional



FIGURE 5.1. Solution surface representing quasi-periodic solutions of small amplitude for o, > 0.
The surface connects the plane waves via the symmetric periodic branch PO,

formulation, and one may proceed to gain higher order terms if so desired. Alter-
natively one may also use a two variable expansion procedure with fast and slow
space variables for the amplitude ® in the full 4-dimensional system to construct
the corresponding 2-tori solutions. With the above reduced procedure, however,
the solutions are periodic in (r,s,w) space and we can confirm the correctness of
the perturbation approach by numerical continuation of the periodic orbits. In fact
we have checked these asymptotics with such numerics using the program AUTO
(see the following chapter) and the agreement is excellent. This confirmation of

the existence of 2-tori is not readily available if we had used the full 4-dimensional

system.



48—

5.3 Subcritical quasi-periodic solutions

When o, < 0 (corresponding to Re < Re.) and the parameters ¢ = 0 and
0 = doo, there is a spatially uniform solution of the GL equation which comes
about when travelling waves of oppositely signed wavenumber coalesce. At this
value of the parameters there is a zero eigenvalue and a pair of pure imaginary
eigenvalues at the fixed point (1,0,0) in the 3-dimensional phase space. The normal
form analysis of the analogous situation when o, > 0 and d, < 0 is discussed by
C. Holmes and Wood (1985) based on the work of Broer (1983), and they suggest
the existence of invariant tori and chaotic motions in a neighborhood of this fixed
point although this behaviour may not be structurally stable. There is however a
structurally stable periodic orbit bifurcating from this point as {2 is varied, and they
point out that it may be constructed by perturbation methods. A perturbation
expansion constructing this spatially periodic solution was carried out by Newton
and Sirovich (1986a). The small parameter was taken as the perturbation to the
critical wavenumber at which temporal instability sets in (their study also considered
the case d, = —1 and o, = 1 only).

In this section we develop an expansion for the periodic solution, as well as
a family of tori (quasi-periodic solutions in time and space) which exists near the
bifurcation point in §2-¢ parameter space for the Poiseuille case when d, > 0. Our
analysis perturbs both the frequency  and also the speed ¢ and works with the
3-dimensional reduced equations. With these two parameters we are able to con-
struct a surface of 2-tori solutions locally about the bifurcation point. These 2-tori
bifurcate from the plane wave solutions and connect them via a symmetric periodic

branch 51, which is a situation similar to that for o, > 0 of the previous section.
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All of these solutions are small modulations of the subecritical spatially uniform so-
lution. Continuation of these solutions is done numerically in Section 6.1, where the
primary periodic branch is labeled S1.

We know that periodic orbits can only exist if ¢ = 0 for 8 > v (0 > —d,) from
(5.2) given the scaling a, = d, = 1 and o, = —1. We let ¢ be our small parameter
perturbing the system away from the uniform solution |A|? = 1, and expand the

frequency such that
B—v=(Q+do)/]a]* = Qe+ Qe + - --.

We find that in order to construct bounded solutions the appropriate scaling for the

variables (r,s,w) given in (2.11) is
r=1+¢/2R(X,¢) s =e/28(X,€) w = €e?W(X,e)

with a stretched spatial coordinate

X=X+ w +eo+--),

recalling that X = 2 — ct. As we also want to vary ¢, we find that for consistency

it must be expanded in a series of the form
c1 =c/la)? = bie/? 4 boe + - -
I'rom the 3-dimensional equations (4.1) we then obtain
(14 %0y + - )R =2W + 2¢'/2RW
(1 + % +--)S =yR — 2/2SW + (B —7)—c(S = agW) (5.14)
(1 -+ 61/2CU1 “+ . )W :62R -+ 61/2(52 - Wz) —+ ag(ﬁ - ’)/) — Cl(aos + W)

which we solve by expanding R as

R:T0+61/2T’1+67‘2+"’
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and similarly for S and W. At lowest order we find

~B . ab |
ro = BcosalX, sg = — sinaX + Fy, wo = ———sin X,
o

where a = +/—26,, we have removed the tildes on X for convenience, and B and

Fg are undetermined constants. At each successive order we must solve a system of

the form
T 0 0 2 T f1
d
rid sn =1~y 00 sn | + 1 f2
Wy 6 0 0 Wy fa

In order to have spatially bounded solutions, we must suppress secularity by re-
moving any periodic resonant terms forcing r, and w, and the forcing terms with

nonzero mean in the s, equation. These solvability conditions imply that

o fox sin az 27 /o
/0 (f{+2f3){ }dX:/o (yrn + f2)dX = 0.

cos ax

At order ¢/% in (5.14) the first integral condition gives that

In the case B = 0 we carry the calculation out to next order and find we have
recovered the plane wave solutions for Ty given by (4.6). In this case so=Fo and we

find

"}’Sg“‘ bng- Ql = O

from the second integral condition. Continuing with the plane solutions to next

order gives r; = s2 as would be expected, so that the amplitude of the plane waves

is [AF=r =1+ 0(e).
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The alternative solution to the equations (5.15) gives rise to the 2-tori solutions
and a symmetric periodic branch, all of amplitude |A]*> = r = 1 + O(c'/?). At first

order we find

b
Eo=—(1+25) and  w =0,

and on calculating ry, the second integral condition determines the amplitude B

such that

B* = ;5(7%:@—) [b(462 — 1) — 47Q] .
This describes a family of periodic solutions for (r,s,w) which correspond to quasi-
periodic (2-tori) solutions in space for the full amplitude A. This is because the
phase function s(X) has non-zero mean when b; # 0. When ¢ = 0 s has mean zero
and a truly periodic solution is recovered, corresponding to the primary symmetric
branch which we label S1, which is analogous to that studied by other authors (as

discussed above).

Note that this family exists provided B? > 0, and that when B = 0,
b (4c2
0 = o (463 — 1) (5.16)
at which point the solution reduces from being O(¢'/?) in amplitude to a plane wave
of O(¢). The curve (5.16) is the local approximation to the bifurcation locus (4.8)
at which point the plane waves undergo a Hopf bifurcation, producing the above
surface of periodic solutions.
We can now write down the amplitude of the bifurcating solutions to first order

on removing the small parameter e. We get that

b2

1
AP =7 ~ 1+ TV TS [2(462 — 1) — 47(Q + do)] V* cos /= 63(z — ct)
2

where ¢ = O(Q + do) < 1. Figure 5.2 illustrates the surface of subcritical 2-tori

solutions found, which connect the plane waves to the symmetric periodic branch.
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FIGURE 5.2. Solution surface representing quasi-periodic solutions of finite amplitude for o, < 0.

The surface connects the plane waves via the symmetric periodic branch S1.

The calculation can now be carried out systematically to higher orders. We have
determined the terms ry, s; and w; in order to find the highest order period shift
w2. We omit the details which are straightforward but lengthy. We find that the
numerical value of this constant is w, &~ 100 for the Poiseuille coefficients, indicating
that the expansion has a very limited region of validity. This is revealed in our
numerical calculation of the branch S1 in Section 6.1.

In the Poiseuille problem the 2-tori solutions corresponds to a slow modulation
to the amplitude of the most unstable Tollmien-Schlichting wave for Re less than
critical. We have thus been able to construct finite amplitude subcritical solutions
which are spatially and temporally quasi-periodic, which are modulations of the

previously known plane wave solutions.
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CHAPTER 6

Numerical Continuation of Spatially

Periodic and Quasi-periodic Solutions

In this chapter we describe our numerical results concerning periodic solutions
of the 4-dimensional and 3-dimensional Duffing systems. A complex bifurcation
structure has been found, many new branches bifurcating from the solution branches
described analytically in the previous chapter. We concentrate primarily on those

aspects which are relevant to our later discussion of solitary wave-type solutions of

the GL equation.
6.1 Periodic orbits of the reduced system: o, <0

In the study of the 3-dimensional system (4.1) with ¢ = 0, both Newton and Sir-
ovich (1986) and C. Holmes and Wood (1985) discuss a branch of periodic orbits that
exists for a range of the parameters in the phase space (r,s,w) and bifurcates from
the spatially uniform solution, which occurs when the pair of plane wave solutions
(2.2) coalesce in the limit of vanishing wavenumber. If the |6;| are scaled to unity
they consider having §; = §; = —1, in which case the uniform solution (r,s,w) =
(8/7,0,0) exists only when B/y = 1. As they consider that o, > 0 in the GL
equation, this implies that d, < 0 for this bifurcation to occur. Holmes and Wood
continued the branch and deduced that it is most likely created in a heteroclinic
bifurcation from the analytically known solitary wave solution which we describe in
Section 7.2. This solution is of the form of a breather, in that it decays to zero at
plus and minus infinity, connecting D, and D_ in the reduced phase space.

The bifurcation from the uniform solution also occurs for the Poiseuille case
d, > 0 if we consider o, < 0. The exact solitary wave solution does not exist for

subcritical o, and thus we continued the branch numerically in © away from the
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bifurcation point (2 = —dy for o, = —1) to see where it leads. Starting from an
initial guess found by analytically perturbing r = 8/ for small 3 as described in
Section 5.3, we continued the branch using the program AUTO developed by Doedel
and Kernevez (1985). This software is able to perform accurate continuation and
bifurcation analysis for solution branches of systems of O.D.E’s by a collocation
method on an adaptive mesh. In particular the program is able to follow periodic
orbits and generate the Floquet multipliers. For the reduced system one multiplier
oo 1s always at 1 due to the translation invariance on a periodic orbit. The other
multipliers oy 5 satisfy

o102 = exp(—2¢1L) (6.1)
where L is the period.

The Floquet multipliers indicate a normal pitchfork bifurcation (including sym-
metry breaking) when an exponent passes through 1; a period doubling bifurcation
when it crosses —1; and if the exponents cross the unit circle as a parameter is
varied the possibility of bifurcations to orbits of higher multiples of the period L
and invariant 2-tori (two frequency motion) and perhaps spatial chaos. When both
multipliers lie inside the unit circle the orbit is stable. In the case ¢ = 0, the two
nontrivial multipliers can be either real and reciprocals of each other or complex
conjugate and on the unit circle.

Figure 6.1 is a diagram of two of the branches S1 and 52 of periodic solutions
that we have found when o, = —1. Branch S1 is the primary branch which bifurcates
from the uniform solution at 3 = v (@ = —dy), described analytically in Section
5.3. The modulus of the amplitude of the solutions on these branches remains
essentially near unity and slowly varying, and they have the even symmetry. The
resulting solutions suggest the existence of symmetric periodic envelope solutions in

plane Poiseuille flow at Reynolds numbers less than Re, that only slightly modify
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FIGURE 6.1. 2 branches of symmetric periodic orbits, o, = —1.
Point (i) is the uniform solution where T_ = T7..

the form of the Tollmien-Schlichting wave. We have found others of higher period
and all of these lie in a small neighborhood of the critical value of  as do the ones
of lower period shown.

By monitoring the Floquet multipliers and plotting out the solutions along the
branches we find that S2 is born in period doubling bifurcations from S1. We have
marked points where such bifurcations occur in Figure 6.1 . Point (z) is the primary
bifurcation from the uniform solution. Period doublings occur from (2z) to (22) and
(iv) to (v). In fact we suspect there is at least one period doubling cascade occurring
which may lead to the existeﬁce of chaotic orbits close to the uniform state at 3 = ~.

This behavior is in accordance with the more detailed local analysis performed by
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FIGURE 6.2. Branch CO0 of periodic orbits in region 111, 2 = 8.0 and o, = —1.

The branch bifurcates from the fixed point 7_, and approaches a homoclinic orbit as ¢ is decreased.

Holmes and Wood (1985), whose normal form analysis and numerical work suggests
the local existence of quasi-periodic and perhaps chaotic orbits.

In any case we find that for the Poiseuille coefficients the bounded solutions
found for ¢ = 0 exist only in a small neighborhood of the bifurcation point. Also
unlike the cases discussed by other authors, for the Poiseuille parameters the uniform
state is subcritical and temporally unstable, as is the bifurcating periodic branch
(as discussed in Section 8.2).

We can continue solutions in the parameter ¢, and thus search for (spatially)
stable periQdic orbits which correspond to 2-tori of the GL equation in space and

time. Such quasi-periodic solutions were constructed by perturbation methods near
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the bifurcation point in Section 5.3. We show an example of a computation when
we decreased ¢ for Q@ = 8.0 from the Hopf bifurcation point of the fixed point T_,
and the resulting branch C0 is shown in Figure 6.2. We find that the bifurcation is
supercritical, and the stable periodic orbit that is shed has a continuation to orbits
of period tending to infinity. This differs from the situation described perturbatively
near {3 = 5.62, whén the analogous branch to C'0 approaches the symmetric periodic
branch S1, because S1 no longer exists at 2 = 8.0. C0 is stable up to at least period
8 when we can no longer accurately compute the Floquet multipliers. We have been
able to compute orbits of period greater than 10°, providing good evidence that the
branch converges to a homoclinic orbit of the plane wave fixed point. In this way it
appears that there is a curve in §)-c parameter space at which this homoclinic orbit

exists (see Chapter 7 for a discussion of homoclinic and heteroclinic orbits).
6.2 Periodic orbits of the reduced system: o, > 0

We start once again with a discussion of the periodic solutions in the 3-dimen-
sional phase space for ¢ = 0, and can set o, = 1 for the general supercritical case. We
found symmetric periodic orbits initially using a shooting method. Once a solution
was converged to at a particular value of 2 we could then continue it using the code
AUTO. We have been able to find 5 symmetric branches with this procedure, the
number limited by our relatively primitive starting procedure.

Figures 6.3 and 6.4 display a set of solution branches for the system (4.1) with
vertical axes period and L% norm for (r, s, w) respectively, and horizontal axis {2. All
possess the reflection symmetry (2.15). These solutions represent families of spatially
symmetric periodic envelopes of Tollmien-Schlichting waves and travel downstream
at the group velocity for Re > Re..

The left hand end of each branch shown corresponds to the formation of a

singularity in the periodic orbit. In each case the amplitude of w tends to infinity
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FIGURE 6.3. Period versus {2 for symmetric @ branches, ¢ = 0 and o, = 1.

and r and s tend to zero simultaneously. We find that the solution is tending to
have the asymptotic form (4.5) which indicates the amplitude of the solution is
passing through zero as § is varied. This reflects the shortcoming of the polar
representation of the amplitude that we use. In order to continue these branches it
is necessary to use the full 4-D system (2.8) for the amplitude, and in fact we will
find that they all bifurcate from the periodic branch P0 with odd symmetry where
®(0) = ®(L/2) = 0, which we constructed in Section 5.1.

At the right hand end of each branch in Figure 6.3 the period is becoming large,
and in each case the numerical evidence suggests that the branch is being created in
a heteroclinic bifurcation. Our conclusions are drawn from the examination of the

periodic orbits of large period, and the further numerical work of Section 7.3 .
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FIGURE 6.4. L? norm versus € for the @ branches, ¢ = 0 and o, = 1.

Firstly, the evidence is strong that the branch Q1 is created in the bifurcation
of the breather solitary wave known analytically (see Section 7.2). In particular
the value at which this exact solution exists is 2 = 6.058 in agreement with our
continuation to very high period using the program AUTO. Similarly, the branches
@2, Q4 and Q5 consist of solutions for which the amplitude approaches zero for
an increasingly large proportion of their period. In this way it appears that these
periodic orbits are also approaching a pair of heteroclinic connections between D
and D_, one lying in the r = 0 plane and the other lying above it. Such solutions
become solitary envelopes of the Tollmien-Schlichting waves for plane Poiseuille flow

and travel at the group velocity. We recompute these and more solutions connecting

D, to D_ in Section 7.3 .
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FIGURE 6.5. Continuation of point (i) on branch @1 in ¢ for fixed Q = 5.0.

The fate of branch @3 is quite distinct from the others, however. It comes very
close to the plane wave fixed points 7 and 7_ and has amplitude modulus always
staying bounded above zero, which strongly suggests at this value of @ ~ 1.85 a
heteroclinic loop exists between the plane wave fixed points.

We now briefly discuss continuation of periodic orbits by varying c. Starting
at the orbit on the symmetric branch Q1 at © = 5.0 (point () in Figure 6.3), we
fixed  and continued in ¢ for the equations (4.1). Figure 6.5 shows the branch C1
that results. We find that for this value of Q there are 4 more periodic orbits with
¢ = 0, at points labelled (42) and (:77). These solutions are non-symmetric and the
mean of s over one period is nonzero, indicating the corresponding GL solution is
quasi-periodic as discussed in Section 2.3. Thus the branch C1 lies on a surface of

2-tori solutions in the product space of quasi-steady solutions and the 2-dimensional
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FIGURE 6.6. Branch N1 of nonsymmetric periodic solutions, ¢ = 0.

parameter space. By monitoring Floquet multipliers, even though ¢ > 0 on part of
this branch, all solutions on C1 are not stable, as must be true for the Q) branches
when ¢ = 0.

At each of the points (i2) and (i7%) there is a pair of solutions which are reflections
of each other. We have continued these solutions in Q with fixed ¢ = 0 and show one
of the resulting non-symmetric branches N1 in Figure 6.6. Note that a twin branch
to the one shown must also exist under the reflection symmetry. We find that along
this branch § is nonzero as defined in equation (2.18) so that the solutions on this
branch, although periodic in the reduced phase space, are quasi-periodic when the
spatial form of the corresponding Ginzburg-Landau solution is obtained.

We find that the solutions at the right hand end of N1 are becoming singular

which suggests that this branch, like the symmetric @ branches, is bifurcating from
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FIGURE 6.7. Continuation in ¢ of Hopf-bifurcating branch into region 111.

Solid lines are stable periodic orbits. Supercritical period doubling bifurcations occur at (i) and (ii).

a branch with odd symmetry at a2 10.4. It is also interesting that the left hand
end of V1 increases to very large period and on inspecting such solutions as in the
insets of Figure 6.6 we find that this branch seems to bifurcate in a homoclinic
bifurcation from the plane wave T_, as does its reflection from 7',. In this way we
have strong evidence that homoclinic orbits to the plane wave fixed points exist for
c =0 at a value of Q2 = 5.49.

Now we consider the continuation of periodic orbits bifurcating from the plane
wave fixed point T_ at the boundary of the regions I1 and III in parameter space
for 0, = 1 and fixed Q. In Figure 6.7 we show the maximum modulus squared

(maximum of r) versus c¢ for the C2 branch at Q = 5.0. The branch undergoes at
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least two supercritical period doubling bifurcations, the first one to branch C3. The
behavior differs from the case o, = —1 in Figure 6.2 in that the primary branch
extends to ¢ = 0 where it becomes singular though the period and amplitude remains
bounded, due to bifurcation from a periodic solution PO with odd symmetry as for
the @) branches. In this way such a branch and its twin for ¢ < 0 connect the plane
wave solutions with a family of 2-tori through the periodic orbit P0 at ¢ = 0. Hence

the situation described analytically in Section 5.2 for {2 near 0.147 holds qualitatively

at much larger Q.
6.3 Periodic orbits in the 4-dimensional phase space for o, > 0.

From the results of the last section we are led to search for a branch of quasi-
steady spatially periodic solutions of the GL equation with odd symmetry for ¢ = 0
and o, = 1. Such a branch is singular in the reduced system due to the amplitude
vanishing at a point, thus forcing us to consider the 4-dimensional complex Duffing
system.

Using perturbation theory we have been able to find a small amplitude expansion
for a periodic orbit bifurcating from § = 0 (2 = aq0,), which has both odd and
even symmetries (see Section 5.1). With this as a starting point, we continued to
finite amplitude numerically. Because of the rotation symmetry in the 4-dimensional
system, a standard continuation procedure for periodic solutions fails due to this
causing a singular Jacobian. By adding the artificial perturbation parameter ¢ in

the periodic boundary condition on u, where
u(0) = u(L)(1 =€),

we could continue the branch satisfactorily as a boundary value problem using the
code AUTO. In addition to the above boundary condition and periodicity for v, p and

q, we imposed two integral constraints to fix the translation and phase invariances,
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FIGURE 6.8. Bifurcation diagram for the period of solutions

in the 4-dimensional complex Duffing phase space, ¢ = 0.

and continued in the three free parameters {2, the period L and ¢. During the
continuation we insisted that ¢ < 1078 so that accurate solution to the actual
periodic problem was ensured. We were also able to monitor the Jacobian of the
extended system to find bifurcations.

Apart from the primary branch which we call PO, we have found a new branch
P1 bifurcating from it in a spontaneous symmetry breaking. P1 has odd symmetry
so is still singular in a 3-dimensional representation, but no longer preserves the
reflection symmetry. We were also able to recompute the symmetric @ branches
using the 4-dimensional code. In Figures 6.8 and 6.9 we show the bifurcation dia-
grams for all these solutions as a function of period L and maximium modulus of

the amplitude ||®||_ respectively. The latter is a convenient choice as one can also
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solutions in the 4-dimensional complex Duffing phase space, ¢ = 0.

plot quasi-periodic solutions on such a bifurcation diagram, whose period is strictly
infinite.

We can now directly observe that the @) branches all bifurcate from P0 with loss
of odd symmetry. Although we have been unable to compute Floquet multipliers in
the 4-dimensional continuation, the two nontrivial multipliers satisfy equation (6.1)
and thus oy0, = 1 when ¢ = 0. We expect that the multipliers are at +1 when Q1
bifurcates, —1 when Q)2 bifurcates in a period doubling, and that they move around
the unit circle back to +1 for decreasing Q@ > ago, = 0.147. We thus conjecture
that an infinite number of branches bifurcate from PO of period nL/m when the
multipliers lie at exp(£27xmz/n).

We have already commented on the large period limits of the @) branches. We see

that for large period branches @)1 and P0 appear to coalesce. This is a particularly
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interesting bifurcation as PO possesses odd and even symmetries whereas (1 is even
only. We conclude that there is a “period doubling at infinity”, where Q1 is a
single hump tending to a breather solitary wave (in fact an exact solution shown
in Figure 7.3a) and PO is a two hump solution approximating two 1 humps of
opposite phase. See Figure 6.10. The large period limit of the branch P1 also yields

a breather solution but with odd symmetry only, as shown in Figure 6.11.
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FIGURE 6.10. 1% periods of an orbit of high period on
branch PO, approaching a pair of Q1 breather solitary waves.

Although we cannot continue periodic solutions to non-zero ¢ in the 4-dimen-
sional space as they become quasi-periodic, as with the case of the () branches we
can interpolate between the results of the 3- and 4-dimensional complex Duffing
representations which complement each other. We are able to conclude that the

continuation of PO in ¢ is the surface of 2-tori solutions mentioned earlier which
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branch P1, approaching a breather solitary wave of odd symmerty.

bifurcates from Ty and 7T_ in a Hopf bifurcation, as is confirmed by the perturbation
theory of Chapter 5.

In conclusion to this section, we have been able to find a complicated structure
of periodic solutions for the systems (2.8) and (4.1) using the parameter values (2.5)
appropriate to Poiseuille flow. This structure is much richer than that which we
can describe with perturbation theory. The solutions of the GL equation that result
are periodic or quasi-periodic in space and simply periodic in time, provided one is
moving in a frame of reference of speed c. For ¢ = 0 we appear to have found a large
class of solitary wave solutions for o, > 0. For ¢ > 0 we have also found (spatially)
stable quasi-periodic solutions for o, either side of critical.

The complexity of the structure of periodic solutions is somewhat typical in that
complicated dynamics (in this case spatial) may occur in continuous systems with

simple nonlinearities in only three dimensions. The symmetries in the GL equation
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also play an important role in determining the structure of the periodic solutions.
We stress that due to the complexity of this structure our classification of periodic
orbits is far from complete. One reason we have not pursued this further is that
due to the discovered nonuniqueness and lack of any selection criterion for the free
parameters (! and ¢, it is unclear which of the branches of periodic orbits, if any,

are physically relevant.
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CHAPTER 7

Solitary Wave Solutions and Transition

from the Laminar and Plane Wave States

In this chapter we consider quasi-steady solutions of the GL equation which are
asymptotic at either plus or minus infinity to the trivial laminar state or plane wave
states. Hence we study orbits in the 3-dimensional reduced phase space which are
the stable or unstable manifolds of the critical points Dy and Ty. In particular
we are interested in homoclinic and heteroclinic orbits connecting these critical
points which result in solitary wave solutions. Recall that T4 and D4 have physical
significance in the Poiseuille problem and that connections between these points
in phase space may indicate similar connections between travelling waves and the
undisturbed state in the fluid equations from which the GL equation is derived. In
addition we numerically find solutions that are asymptotic from the laminar state
and plane waves to some of the attracting quasi-periodic solutions described in the
previous chapter and also to apparently spatially chaotic states. In so doing we
are able to find a large class of quasi-steady solutions describing a transition from

the laminar state to a finite amplitude disturbance, which exist for the Reynolds

number parameter o, either side of critical.
7.1 Classification of solitary wave connections in phase space

We now discuss the possible heteroclinic and homoclinic connections that could
exist for the system of three O.D.E.’s under consideration as the parameters Q) and
c are varied. Some of these solutions have been found previously in analytic form

by other authors, and our numerical work of Section 6.3 gives strong evidence for

the existence of many others.
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In the light of the stability calculations for the critical points D4 and Ty, we
can expect solitary wave solutions to exist for either a continuum or discrete values
of @ and ¢ by considering the dimensionality of the fixed points’ stable and unstable

manifolds.

Homoclinic orbits can exist only at the fixed points T, which we label
HO : T, - T, and T_-—>T_.

However there are four main types of heteroclinic orbits joining distinct fixed points,
illustrated in Figures 7.1 and 7.2 . First we know a continuum of connections exists

of the type
H1: D_— D,

in the r = 0 plane for almost all values of the 2 parameters Q and ¢, although these

represent the trivial A = 0 solution. A connection of the type
H2: D, —D_

for which the modulus of the amplitude is positive was shown to exist by Hocking and
Stewartson (1972) for a discrete value of 2 and ¢ = 0, who simply wrote down this
breather type solitary wave solution in closed form, which we will discuss in Section
7.2. Note that a heteroclinic orbit of type H2 corresponds to a homoclinic orbit of
(0,0,0,0) for the 4-D system (2.8). Any connection to or from the laminar state
in the reduced representation must consist of the 1-dimensional stable or unstable
manifolds of D_ and D, respectively. When ¢ = 0 the connection of type H2 must
be symmetric and such a solution would in general not be expected for a continuum
of 0. We have numerical findings that strongly suggest that many more if not an
infinite number of symmetric breather solutions exist for a discrete spectrum of 2,
which we discuss in Section 7.3. When ¢ # 0 one would expect breather solutions to

exist for discrete values of the two parameters only (i.e., a codimension-2 situation).
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FIGURE 7.1. Orbits in the reduced phase space as examples
of homoclinic (H0) and heteroclinic connections (H1-H4).
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FIGURE 7.2. Modulus versus X for solitary wave solutions

resulting from homoclinic and heteroclinic orbits of Figure 7.1.

HO and H3 are hole type solutions, H2 a breather and H4 a front or shock.
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The hole type connections
H3: T — T, and T, — 1T_

may take various forms due to the different stability properties of these fixed points
in different parameter regimes according to Table 4.1 . In region I1I of Figures 4.2 and
4.3 for instance we might expect the T_ — T, connection to exist continuously as
the parameters are varied due to the likely transverse intersection of two 2-manifolds
in 3-space. Our numerical work for ¢ = 0 supports this conjecture.

The possible connections
H4: D, — Ty and Ty — D_

are of particular interest in describing transitional fronts from the undisturbed state.
Once again these may also take various forms depending on the stability properties
of the fixed points.

Referring to the results of Chapter 4, in regions 1Ta and 11b of parameter space the
plane wave solutions 7_ and 7'y are asymptotically stable and unstable respectively.
We are thus motivated to seek solutions of type H3 and H4 in these regions which, if
existing at all, would exist for a continuum of parameter values. Similarly in regions
Va and Vb where the stability properties are identical.

In regions 1va and 1vb the points D, and D_ are stable and unstable respectively

so that we can also seek solutions of type H4 for those values of 0 and e¢. Such

investigations are carried out in Section 7.3.
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7.2 Some solitary wave exact solutions

[t is somewhat surprising that three analytic solutions are known which describe
heteroclinic orbits for the reduced O.D.E. system (4.1). It is also interesting to
observe that these three solitary wave solutions are of the form of the breather,
front (shock or kink) and hole solutions which arise in the study of the sine-Gordon
equation. Their forms become particularly simple when cast in the framework of
the reduced form of the complex Duffing equation.

The first referenced above as the solitary wave of type H2 was first written down

by Hocking and Stewartson as a solution of the GL equation
A = ALe *(sech Az)' " |

where the parameters in the equation are uniquely determined by the G1 coefhicients.

For the reduced system (4.1) this solution is of the form
r = A L%sech® Az, w = —Atanh Az, s = vw. (7.1)

We find that

51 v ﬁ 2v
L' = —— d —= :
v2—1’ v o 6 1—v?

A2 =

In this and the other solutions which follow v is given by a root of the appropriate

sign of the equation

5
P4 3v2—2=0. (7.2)
g

This breather solution always exists if 2 < 0 (the Poiseuille case), but when 6, > 0
this breather exists only for §; > 0. For the Poiseuille flow parameters (2.5) we must

have o, > 0 and we find that when o, = 1, { = 6.058.
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This solution and another two heteroclinic orbits were found by Nozaki and
Bekki (1984). These authors extended the direct method of Hirota (1976) for finding
solitary wave solutions of the cubic Schrodinger equation to the GL equation, which
is based on the fact that these partial differential equations may be written in terms
of bilinear differential operators. They assumed that o,d, < 0 in the GL equation,
though we find that this is an unnecessary restriction.

A solution that we find most interesting has the form of a front, where the

solution tends to a travelling wave at minus infinity and to zero at plus infinity. In

this case which 1s H4 above, the GL solution is
A= Le™E=e)=9011 _ tanh Az — et)] [sech A(z — ct)]™
or the solution to the ordinary differential equations (4.1) is of the form
r = L*(1 — tanh AX)? s =k —vitanh \X, w = —A(1 + tanh A X).

On solving the 6 simultaneous equations which result in our 3-dimensional rep-

resentation we get

/\2 — 51 L2

_ 3v\? g 18ag
8 — 9a? oy 61 9a% -8

c; = 6\ k= A(3ao+v)

This shock solution exists for a large range of GL coefficients and for unique values
of 2 and c¢. For the Poiseuille case, on returning to the original parameters we find
that o, must be supercritical and the solution exists for o, = 1, = —0.183 and
¢ = 2.14, and thus is a heteroclinic orbit between T, and D_ existing in region Iva
of parameter space. This solution is codimension-2 due to the coincidence of two

1-dimensional manifolds. In this way it is a special case of the connection H4. Note
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that due to the reflection symmetry (2.15) a reverse shock also exists but for a value

of ¢ of the opposite sign from that given above.

The hole solution found by Nozaki and Bekki is of the form
A = ALe ™ tanh Az(sech Az)™.

Cast in the 3-dimensional dynamical system form we find

2

1272 2 = — = T o
r = A L*tanh® Az, s = —vAtanh Az, Y Sh oz

where for existence one must satisfy

)\2:6—21, Lzzgz, and gﬂ; 3?”
For Poiseuille parameters we find that the hole solution exists only for supercritical
o, and when o, = 1, Q = 3.45. This solution requires the symmetry of ¢ = 0 and
exists for a discrete value of §) only as it occurs due to the coincidence of two 1-
dimensional manifolds. Notice that the solution tends to the travelling waves 7_ and
T, at plus and minus infinity and there is a singularity in w where the solution passes
through amplitude zero. This solution exposes the weakness of the 3-dimensional
phase invariant formulation of the problem, in which it has a singularity of the form
(4.5). The solution is analytic in the original variables, however, where in the 4-
dimensional formulation it corresponds to an orbit of odd symmetry tending to the

plane wave periodic orbits at plus and minus infinity.
7.3 Numerical results

We first describe the family of symmetric breather solitary wave solutions of
type H1 that we have found for ¢ = 0. The shooting method used solves the
initial value problem in z for the reduced system from close to D on the lineariza-

tion of its 1-dimensional unstable manifold and shoots to a point (r,0,w;) on the
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Poincaré plane s = 0. All our numerical integrations were performed using the
Sandia ODE package. Newton’s method with a numerical Jacobian was then used
to solve w(?) = 0. On Newton convergence the resulting orbit approximates half
of a symmetric breather solution at a value of {2 determined by the iteration pro-
cedure. Our method recovered the known exact solution (7.1) to greater than 6
digit accuracy. It also converges to a large number of other previously unknown
breather-type solutions, provided o, > 0. These solutions possess a discrete spec-

trum of frequencies for 0 > ago,. This lower bound for  when ¢ = 0 follows from

the relation

/oor(vr——ﬂ)dxzrsoo .

o NS
which is derived from the dynamical equations (4.1) by integration by parts. The
boundary term vanishes on a breather solution and thus 8 must be positive for
such a solution to exist. Although we cannot prove the existence of these other
heteroclinic orbits in the (r, s, w) phase space, we believe the numerical evidence for
their existence is very strong.

In our shooting method we may choose the number of times n, the orbit is to
pass through the s = 0 Poincaré plane before hitting the r axis. When n, = 0 we
converged to 10 breather type solutions, the number limited by the set of initial
Q) values in the Newton procedure. Two breather solutions found with n, = 0 are
shown in Figure 7.3a¢ and b. Similarly we find more breather-type solutions with
ng > 1, two of which are plotted in Figure 7.3c and d. No solutions were found for
o, < 0.

We expect that an infinite number of breathers exist, each one the infinite period
limit of a branch of periodic orbits. This is based on our conjecture that an infinite
number of periodic branches bifurcate from the branch P0 which behave similarly

to @1, @2, Q4 and @5 of Figure 6.3. All of these solitary wave envelopes are steady
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FIGURE 7.3. Real part and modulus of some breather solutions, ¢ = 0 and o, = 1.
(a) is the exact solution (7.1) on branch Q1.

in the group velocity frame for Poiseuille flow but have distinct temporal frequencies
of oscillation.

Our attempts to find nonsymmetric solitary waves decaying at plus and minus
infinity were unsuccessful. We used a Newton procedure in which shooting was
performed from the 1-dimensional unstable and stable manifolds of Dy and D_
respectively to the plane w = 0. Both ¢ and 2 were shooting parameters, and there
was no convergence except to the symmetric breathers when ¢ = 0.

We also know from continuing the branch P1 in the 4-dimensional phase space

that at least one breather solution exists which has the odd symmetry, which is



—~78—

singular in the reduced representation. Again we might expect a discrete spectrum
of these solutions in  for ¢ = 0. Similarly the continuation of branch Q3 suggests
that at least one pair of hole-type solutions H3 exists for a discrete spectrum of
and ¢ = 0.

The heteroclinic connection H3 joining the plane waves T4 is known to exist for
¢ = 0 when the two fixed points are “close” to where they coalesce and disappear
in a saddle-node bifurcation. Kopell and Howard (1981) have some general results
on the existence of this connection when the distance between T, and T_ is small
and P. Holmes (1986) has a similar result for small § and v. We have numerical
results that suggest that this symmetric connection persists for varying Q0 whenever
the plane wave fixed points exist (and ¢ = 0), and occurs due to the intersection of
two 2-dimensional invariant manifolds in 3-space. Again we used a Newton-Poincaré
plane method to shoot from the point 7_ to get to a point on the r-axis in phase
space. The initial condition was chosen on an arbitrarily small circle about T_ lying
in its planar unstable eigenspace, the shooting parameter being the position of the
initial condition on this circle. In this way a family of symmetric hole-type solitary
waves was found to exist connecting the distinct plane wave solutions either side of
the critical value of o, = 0. We also expect these solutions to exist as ¢ is perturbed
from 0 provided the plane wave fixed points remain as saddle points in phase space
(i.e., in region III of phase space). Such nonsymmetric heteroclinic orbits would thus
connect plane waves of different amplitudes, as illustrated in Figure 7.2 .

We now discuss a class of solitary wave-type solutions describing a transition
from the laminar state or plane wave states. These solutions have the common
feature that they exist for nonzero ¢ and are structurally stable in that they persist
under perturbations in both Q and ¢. This is because the orbit in the reduced phase
space corresponding to each solution approaches a stable attractor as X — oo, or

by symmetry a repellor as X — —oo. In what follows our remarks will refer only
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to solutions with ¢ > 0, recalling that for each such solution there corresponds a
reflected quasi-steady solution of the GL equation with speed correction —e.

We are interested in determining orbits which lie in the basins of attraction
of any bounded attractors. As we are concerned with solutions on the infinite
interval, the initial conditions were chosen on the unstable manifolds of the fixed
points Dy and T4, provided they exist. We shoot from a given initial condition
in (r,s,w) phase space close to a fixed point in the direction of the appropriate
eigenvector, and observe whether the trajectory approaches a bounded attractor. In
all cases when this did not occur, the trajectory diverged to infinity. We have already
discussed that singular behavior may correspond to a manifestation of the coordinate
singularity of zero amplitude with asymptotic behavior (4.5). Numerically another
form of singularity almost always appears, however, and analytically we can find
its asymptotic form. The algebraic terms describing the behavior as X approaches

some finite value X, are determined uniquely to all orders, with leading terms

2 2 1
r 5: ) (X — Xo)?

§ N as X — X (7.3)

with v given by equation (7.2). The resulting singularity for the full spatial part of

the amplitude is

2 — 2

O ~
62

| X — XOI‘(H""’“) as X — Xo,

which gives a spatial singularity at some finite value of X = = — ¢t for given ()
and ¢ (note that only the leading terms are independent of ¢). Such solutions are
not of interest here as we require solutions to remain bounded, but these may be

relevant in determining singularities that may arise in space and time in the initial
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value problem of GL equation. Numerically, almost all initial conditions in phase
space lead to the behavior (7.3) when ¢ = 0, there being no bounded attractors in
phase space. Also such singular orbits are found if ¢ # 0 when integrating both
forward and backward in X, when bounded attractors can exist. In this way 0
and ¢ must often be varied over an appropriate region of parameter space until a
bounded trajectory, if any, is found.

From our discussions so far, there are two main sectors of parameter space to
search for bounded attractors. When o, > 0 we seek solutions in region 1va tending
to Dy as X — oo, the only possible initial condition of the above type being on the
1-dimensional unstable manifold of 7. The second case occurs for o, of either sign
when there can exist stable attractors in regions Ila, Va and I11. In ITa (and similarly
Va for o, > 0) the fixed point T is stable, and in region III there is at least one
family of periodic orbits which are stable. We find that there is also the possibility
of a strange attractor in this region of parameter space, as we describe below. In
regions Ila, IIT and Va we can shoot from the 1-dimensional unstable manifolds of
either Ty or D,. In addition in region III we can also shoot from the 2-dimensional
unstable manifold of 7.

Our numerical computations of front-like solutions of type H4 (T, — D) when
o, > 0 suggest that these solutions exist for all values of the parameters Q and ¢
in region Iva. Two such solutions are shown in Figure 7.4 , where we display both
the modulus and the real part of the solution ®(X) reconstructed from (r, s, w) via
the transformation (2.11). Such front-like solutions can exist with a positive speed
correction ¢ only for supercritical Reynolds numbers (o, > 0).

In regions Ifa (and similarly va) the plane wave solution T is spatially stable.
Figures 7.5 and 7.6 illustrate that hole H3 (T — T_) and front H4 (Dy — T_)
solutions exist for o, either sign. Figure 7.7 also shows a series of front solutions

with @ and c fixed and o, varying between sub- and super-critical Reynolds numbers.
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FIGURE 7.4. Front solutions (T} — D) in region iva of parameter space.

These fronts with ¢ > 0 exist for o, > 0 only.

As far as we can tell from a limited search of parameter space these two types of
heteroclinic orbits exist for a large proportion of the regions II and v, although
the unstable manifold of D, is sometimes found to be spatially unbounded with
behaviour (7.3). The hole and front solutions in region Va which we have found are
similar to those shown in Figure 7.6 although their spatial scale is much larger and
the phase oscillates rapidly due to the larger values of coordinate s involved.

In region 111 there are no stable fixed points, however from our numerical con-
tinuation of Chapter 6 we know that there exist attracting periodic orbits in the
reduced phase space corresponding to 2-tori for the complex amplitude. The dy-
namics in phase space for this sector of parameter space is extremely complex, and
our studies are limited. Here we will describe some of the behavior for o, =1, ) = 2
fixed and varying 0 < ¢ < 0.515, the latter being the value at which T_ loses stabil-
ity in a supercritical Hopf bifurcation. Recall that the periodic orbit on branch C2

shed in this bifurcation (see Figure 6.7) is stable until it undergoes a series of period
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FIGURE 7.7. Front solutions (Dy — T.) for o, either side of critical for fixed Q and c.

doublings as c is decreased. Figure 7.8 shows the modified front and hole solutions
at ¢ = 0.3 where this periodic orbit is stable, which result from shooting from D,
and T respectively. Similar behavior results from shooting from T, although there
is a one parameter family of solutions attracted to C2 from this plane wave as this
fixed point is 2-dimensionally unstable. When ¢ = 0.2 the unstable manifold of T,
is attracted to the period doubled orbit on C'3 as shown in Figure 7.9 . However a
nonuniqueness is seen to arise as the front solution emanating from D is attracted
to a different periodic orbit.

Decreasing c further we find attractors of higher period and perhaps chaotic
attractors. In Figure 7.10 we show the pair of solutions from D, and T, for ¢ = 0.14.
By inspection of these and other orbits for ¢ in a neighborhood of this value, it
appears that these solutions are nonperiodic. It is possible that they are very long

transients to a periodic or quasi-periodic state, but are most likely chaotic, indicating
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FIGURE 7.8. Transition from plane wave (a) and laminar solution
(b) in region 11 to the stable periodic orbit on branch C2.
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FIGURE 7.9. Transition from plane wave (a) and laminar

solution (b) in region I to distinct periodic orbits.

(a) approaches the period doubled branch C3 and

(b) approaches a previously undiscovered stable orbit.
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FIGURE 7.10. Transition from plane wave (a) and laminar
solution (b} in region 111 to apparently chaotic states, o, > 0.

the existence of a strange attractor in phase space persisting for a continuum of
values of @ and ¢. In any case they illustrate a transition from the laminar and
plane wave solutions to a finite amplitude spatially complicated state. Lastly for
! = 2 and ¢ less than about 0.1 the orbits from D, and Ti become spatially

unbounded.
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When shooting from these three fixed points in region 111 for ¢, = —1 and
fixed 2, only periodic branches of type C0 of Figure 6.2, corresponding to spatially
quasi-periodic solutions of the GL equation, are found to be attracting. Recall that
such solutions which bifurcate from T_ do not appear to undergo period doubling
bifurcations as is possible when o, > 0. Figure 7.11 illustrates the modulus of the
amplitude of the unstable manifolds of D, and T, for one set of parameters in
this region where such a periodic orbit is attracting. From our limited numerical
search we find that for fixed @ the unstable manifolds become unbounded before
the periodic branch becomes homoclinic as ¢ is decreased. We have been unable
to find any other more complex bounded behavior for subcritical o, other than the
connection between laminar and plane wave states. These solutions are of great
interest, however, illustrating that a transition from undisturbed to finite amplitude

states does exist for o, < 0, corresponding to Reynolds numbers less than critical.
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FIGURE 7.11. Transition from plane wave (a) and laminar

solution (b) to a quasi-periodic solution in region 11 for o, < 0.
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CHAPTER &

Time Dependent Stability of Quasi-steady Solutions

It is of interest to determine the stability of many of the solutions of the GL
equation described above, particularly due to the existence of one or more periodic
orbits over a large range of values of the undetermined parameters ¢ and . The
evidence we present here strongly suggests that all quasi-steady solutions are unsta-
ble if the GL nonlinearity d, is positive, although stable spatially periodic solutions
are known to exist for d, negative. There is a possibility that some of the transition
solutions may appear as transients in time, however, as suggested by the simulations

of Nozaki and Bekki (1983), which we discuss in the last part of this chapter.
8.1 Stability of plane waves

[t is well known that the whole family of plane wave solutions (2.2) is unstable
in the case when the nonlinearity of the GL equation has the sign such that d, > 0,
which is the relevant case for Poiseuille flow (C. Holmes, 1985). The instability is
a manifestation of the side-band instability, where the waves are unstable to long
wave modulations. We will briefly demonstrate how this instability operates, as it
can be compared with our bifurcation analysis of quasi-steady solutions described
in Chapter 4. In so doing, we will be able to show that the quasi-steady quasi-
periodic solutions of the GL equation which exist for o, either sign are formed as a
consequence of the side-band instability.

In order to establish the side-band instability, the solution A of the GL equation

is perturbed from a plane wave such that

A= [1+eBe™tot 4 eBje T o] Beilke=) (3.1)
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On substitution into the GL equation (1.9) and linearizing for infinitesimal e, the

eigenvalue relation

o? + 200+, =0 (8.

oD
o]
—

results, where
ay =a,(q* — k*) + o, + 2a;kq
az =lal’q*(q* — 4k*) + 2[al?| B]*[629" — 2ivkq].

C. Holmes considers the stability boundaries in the k-¢ plane, and for d, = 1
(Poiseuille flow) finds that for any k, there is a set of destabilizing sidebands of
wavenumber ¢ such that Re{c} > 0.

Her analysis is for o, = 1 only (supercritical Reynolds number), and on repeating
the analysis for o, = —1 we find that the same is true. Her paper goes on to deal
mostly with d, < 0 and the bifurcations that arise as a plane wave loses stability as
one eigenvalues moves into the right half plane. It is important to note, however,
that even though a plane wave may already possess one eigenvalue with Re{s} > 0,
the second eigenvalue may pass through the imaginary axis, and a bifurcation would
in general take place with the bifurcating branch also being unstable. This is the
scenario for plane Poiseuille flow, and leads to the bifurcations to the periodic and
2-tori solutions, as follows.

In general if one fixes the plane wave by fixing k, and varies ¢, then an eigenvalue
with nonzero imaginary part will cross the imaginary axis and a bifurcation will take
place. We seek the locus of bifurcations by putting o = 7w in the eigenvalue relation

(8.2), with w real. This leads to the cubic equation for Q = ¢* where

d, d,
(— —46,)

ar Qp

d,  d* |a|*y? d?
-1—4[314]62 QCLO‘Y;— - a—z' — J—L—g—jl + 2[3‘662;-2' et 0

r

Q° + QY[—4K2|B(S,  d,fa)] + QIBJ? [~—852k2 1B
(8.3)

r
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and
2kq|B|*ylal?
ar(q? — k%) + o,

W= - =

At a positive real root of (8.3), in general an eigenvalue with nonzero imaginary part
will cross the imaginary axis and a Hopf bifurcation will take place, introducing
a second timescale and thus lead to a quasi-periodic solution. A real eigenvalue
can cross the axis only if perturbing the spatially uniform solution £ = 0 when
o, = —1; in this case a regular bifurcation occurs at ¢ = —2§, giving rise to the
periodic branch S1, as described in Sections 5.3 and 6.1 by perturbation methods
and numerical continuation respectively. Figure 8.1 illustrates the locus of values at
which the real part of an eigenvalue passes through zero for sub- and supercritical
values of o,. Note that each plane wave undergoes a single bifurcation when o, > 0,
and when ¢, < 0 a wave may undergo one or three bifurcations, which is consistent

with the analysis of plane wave phase space stability in Section 4.2.
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FIGURE 8.1. Bifurcation curves for sideband instability.

a) o, = —1. The signs of the two eigenvalues o are indicated in parentheses. At k = 0,
¢ = 1 both eigenvalues pass through zero, leading to the bifurcation of small amplitude
2-tori and the periodic branch S1.

b) o, = 1. At k = 1, ¢ = 0 a degenerate situation occurs, leading to the periodic branch
PQ and the family of bifurcating 2-tori.
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It is now interesting to see how this analysis relates to the quasi-steady analysis
of this thesis. In Chapter 4 we linearized about the plane wave fixed points (rr,s7,0)
in the 3-dimensional phase space, thus seeking bifurcations to non-trivial quasi-

steady solutions. The form of the perturbation was

Tt
A =" re 4 r(z —ct)]?exp [z / (s + s(&))d¢
(8.4)
NBei[k:v—(Q-{—kc)t] I:l + eeA(x-ct)]
on seeking solutions of the form r,s ~ eM=¢) On comparing equations (8.4) and

(8.1) we can make the identifications
A =1q c=10/q

when ¢,q,:2A and to are real. In this way the eigenvalue equation (8.2) governing
side-band bifurcations reduces to the cubic for A (4.7) which is the characteristic
equation for the spatial stability of the plane waves in phase space, and similarly the
locus of bifurcations in k-¢ space given by (8.3) is equivalent to that in ¢~ space
(4.8).

Now, the perturbation or normal form analysis done by C. Holmes about the
bifurcations in k—¢ space reveals only the asymptotic nature of the solutions which
bifurcate from the plane waves. In our quasi-steady formulation, however, the ezact
form of the bifurcating branches of solutions has been found to be of the form

A = e P (z — ct), where ® satisfies the complex damped Duffing equation.
8.2 Numerical calculation of stability of spatially periodic solutions

We have computed the stability of quasi-steady spatially periodic branches of

solutions for ¢ = 0. Consider a small perturbation ¢ to a quasi-steady solution
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B(x)e™*¥ of the form

A= [6(x) + lx, 1)) e,

Substituting this into the GL equation (1.9) and linearizing about the quasi-steady

state gives

(8.5)

32

Ly = (a, + iai)% + (o, + i) + (d- +1idy) (2[4 + %) .

In the case of our numerically computed spatially periodic solutions we can
consider their stability to sub- and super-harmonic disturbances using Floquet the-
ory and by solving an appropriate linear eigenvalue problem. Sirovich and New-
ton (1986) considered the superharmonic stability of the branch of periodic solu-
tions which bifurcates from the uniform solution undergoing primary instability for
d, = —1. Time dependent calculations of the GL equation (Keefe, 1985) suggest
that the periodic solution is stable for a range of the parameters but that a sec-
ondary instability occurs as the size of the periodic box is increased. Based on an

assumption that the periodic solution loses stability when the equation

has a real eigenvalue s passing through zero, they numerically calculated a curve of
secondary instability for spatial period L as a function of one of the GL coeflicients
(they also plot a numerical calculation of the nonlinear dispersion relation for L as
a function of ) for fixed coefficient values). They compare their predicted point of

instability with that found by Keefe and there is significant disagreement.
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It 1s not clear to us however that the associated eigenvalue problem for the

equation (8.5) is of the form (8.6). We therefore consider perturbations of the form
Y = be®t + ce®’t
with b and ¢ complex, or equivalently we split
Y =1+ v

into real and imaginary parts such that the perturbation equation (8.5) becomes an-

alytic. The coupled equations for @ and v are assumed to have the time dependence

a = e’y v = ey

which follows on taking Laplace transforms assuming a discrete spectrum for the
eigenvalue s. As equations for @ and v are real and linear we may always take the
real part of any complex solutions that arise due to a complex eigenvalue s to ensure

that @ and © are real. We thus get a system of the form

(:) = A(z, s) <z> (8.7)

where the 2 by 2 matrix A is L-periodic in z and linear in s. From Floquet theory,
all bounded solutions of this system are of the form
U .
— P(iC, S)€2m)\a:/L (88)
v

with p an L-periodic 2-vector and A real, or linear combinations thereof. Substitution

of (8.8) into the system (8.7) gives a system of the form
Pes + 2iAp, — A2p 4+ A(z,5)p = 0. (8.9)

A(z, s) is linear in s and thus we have a linear eigenvalue problem to solve for s given
A subject to L-periodic boundary conditions. A = 0 for superharmonic disturbances

to ¢ and 0 < A < 1 for subharmonic disturbances.
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We discretized (8.9) by taking the derivatives using discrete Fourier transforms,
usually with between 27 and 45 modes depending on the smoothness of ¢ and the
resulting eigenfunctions. The eigenvalues s of the resulting matrix system were
then found using a standard generalized eigenvalue solver. We also checked that
the eigenvalues of largest real part which are of most interest were stable to the
addition of more discretization modes. Another method of checking the accuracy
of this procedure is to check the accuracy of the two eigenvalues that must sit at
s = 0. This occurs due to the fact that the translation and phase invariance of the

GL equation leads to the existence of two eigenfunctions such that
L(¢:) =0 and L(i¢)=0.

We repeated the calculation of the stability of the branch considered by Sirovich
and Newton for the parameters appropriate to Keefe's simulation which correspond

to

arzl ai=4 dT:*-l d,—':ﬁl; O'T:1.

The branch was found using AUTO by continuing in the parameter 3 as described
in the previous section and then the matrix A was calculated for a range of values of
this parameter near the point where a pair of complex conjugate eigenvalues moved
into the right half-plane indicating a loss of stability for ¢. We interpolated the data
for Re(s) versus period L to find the period at which Re(s) = 0.

We find that for Keefe’s set of coeflicients we agree to 3 significant figures with his
value of the period at which secondary instability occurs, which is Lx = 5.72. The
corresponding value from Sirovich and Newton 1s Lygs = 5.91, the explanation for
which we believe is due to their incorrect assumption on the eigenvalues s in (8.6).
This is especially clear in the light of Keefe’s (1985) time dependent simulations

where the periodic orbit is seen to lose stability to a 2-torus solution, so that a Hopf



~-94—

bifurcation introducing a second time scale is responsible for the loss of stability.
The instability is thus triggered by a pair of complex conjugate eigenvalues crossing
the imaginary axis, as is confirmed by our calculations, and will only be captured
by the type of analysis leading to equation (8.9). This scenario is in fact suggested
in a later paper by Newton and Sirovich (1986b), who unsuccessfully attempt to
predict the point of secondary instability using perturbation methods assuming the
unstable eigenvalue is real.

Our stability code was then used to test the stability of the various spatially
periodic solutions we have found for the GL equation. We first determined the
stability of the primary branch P0 described perturbatively for ¢, = 1 in Section
5.1. By testing residuals the second order approximation was found to be accurate
for 0.147 < Q < 0.2. Within this range three unstable eigenvalues were found,
indicating the temporal instability of this branch to superharmonic disturbances.

We then tested the stability of the secondary branches Q1, Q2 and Q3 of sym-
metric periodic solutions we have found when o, = 1, and which were found using
numerical continuation. Each of these was also found to be unstable to superhar-
monic disturbances. The smoothest branch 1 which approaches the breather solution
had at least 2 eigenvalues in the right half-plane. The other branches which have
more spatial structure were found to be even more unstable.

Similarly we tested the stability of the primary periodic branch S1 bifurcating
from the uniform state when o, = —1 and d, = 1. The numerical solution of this
branch was used, and it was found to have several eigenvalues with positive real
parts. Close to the bifurcation from the uniform state there are 4 eigenvalues in the
right half-plane; at the other end of the branch where the orbit undergoes spatial

period doubling there are up to 9 unstable modes.
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These stability results are not particularly surprising due to the common belief

that all integrations of the time dependent GL equation with periodic boundary

conditions blow up when d, = 1.
8.3 Stability of other solutions

Given that the quasi-periodic solutions are regular perturbations of the plane
waves and the other branches of periodic solutions, it is reasonable to suppose that
these are also temporally unstable.

We can also generally argue that the breather type solitary waves found for
or > 0 and ¢ = 0 will be unstable to long wave perturbations in space, by noting

that for large |z| the amplitude is small and thus the perturbation satisfies

o N .
N ~ (a, + mi)?}? + (o, + Q).
Small perturbations of the form
¢ — est—{—ikx

will satisfy the dispersion relation
s = —(ar +ia)k* + (o, +1Q)

so that for sufficiently small wavenumber the perturbation will grow in time if o, > 0.
This argument is essentially the one that also shows that the laminar state is stable
(unstable) at subcritical (supercritical) Reynolds numbers.

We now consider the other solitary wave and transitional solutions found in
Chapter 7. Determining the stability of travelling solitary wave solutions of nonlin-
ear parabolic equations is a difficult problem in general. In model problems such

as the Fisher equation (Dee and Langer, 1983), a continuum of fronts of speed c¢
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connecting unstable and stable stationary uniform states can be found. In time de-
pendent simulations, a unique front propagating into the unstable state is selected,
which is found theoretically to be stable to the largest class of perturbations which
decay exponentially at plus and minus infinity in the moving frame.

For the Ginzburg-Landau equation any such stability theory is complicated by
the fact that the fronts are of the form A = e™**®(z — ct), with the asymptotic
state at one end being (in the simplest case) spatially and temporally periodic.
At present there is to our knowledge no analytic stability theory for such solutions.
When o, > 0 we can argue that as such transition solutions connect states which are
both unstable to long wave modulations, these structures will not in general persist.
For o, < 0 the undisturbed state is linearly stable, however, and fronts were shown
to exist for a continuum of Q and ¢ which define a transition between this state and
(unstable) plane waves or quasi-periodic solutions as in Figures 7.5 and 7.11. As ¢
was found to be negative/positive when the laminar flow is upstream/downstream,
a localized plane wave disturbance would shrink in time and thus define only a
transient type of structure as the stability of the undisturbed state dominates.

Nevertheless, in time dependent simulations of the GL equation (with nonlin-
ear coeflicient d, < 0), Nozaki and Bekki (1983) have found that modulationally
unstable plane waves can propagate into the unstable undisturbed state. A further
transition to either a stable plane wave of large wavelength or chaotic state then
develops behind the initial front. We cannot expect this behavior to carry over to
the Poiseuille case of d, > 0 due to the lack of finite amplitude stable states; how-
ever we hope that in the future similar numerical experiments will be carried out
to ascertain if transition solutions appear at least as transients for the GL equation
of Poiseuille flow. We will argue in the final chapter that the above lack of posi-
tive stability results for the GL equation does not preclude the existence of similar

solutions in the full fluid equations which are stable.
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CHAPTER 9

Application to Shear Flows

We believe that the existence of the quasi-steady solutions of the Ginzburg-
Landau equation described in this thesis may be relevant to the study of transition in
shear flows. In this final chapter we will give evidence to this effect and hypothesize
the existence of solutions of the Navier-Stokes equations which have the features of

transition from the laminar state.

9.1 The validity of the Ginzburg-Landau equation

The Ginzburg-Landau equation describes the evolution of modulations to the
primary linear wave of instability for Poiseuille flow at Reynolds numbers near crit-
ical. The Stewartson-Stuart derivation of the GL equation will also apply to other
flows for which there is a neutral curve of Orr-Sommerfeld type, and in this sense the
GL equation is the generic amplitude equation for fluid problems where a contin-
uum of wavenumbers becomes unstable as the control parameter is increased above
a finite threshold.

In order to determine whether the features of the GL equation carry over to the
Navier-Stokes equations, one must assess the structural stability of this truncation
of the full equations and also its region of validity. This is a difficult question to
address and arises whenever an approximation to the full physical model occurs.
Presently all we are able to say is that the large class of quasi-steady solutions
which we have found will persist under perturbations to the coefficients of the GL
equation. This property is essential as we have used values of these coefficients

that are approximate, coming from numerical calculation. In addition, the small
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magnitude of s, in the definition of € (1.6) may allow the GL equation to have a
relatively large range of validity in amplitude and Reynolds number.

Another question that we have so far not addressed is that of the choice of
initial and boundary conditions for the GL equation. The derivation by Stewartson
and Stuart (1971) assumes an infinitesimal localized initial condition which initially
develops according to linear theory. This leads to localization in space for all finite

time and thus the correctly posed boundary conditions for the GL equation are
|A] — 0 as ¢ — oo . (9.1)

This approach was taken to ensure that a self-consistent rational theory resulted.
With an infinitesimal initial condition, for any fixed Re < Re. the solution will
decay to the laminar state as the effect of the destabilizing nonlinearity of the GL
equation will remain negligible. This issue is discussed in Hocking et al. (1972),
and we agree with their conclusion that the GL equation contains the structure of
the subcritical instability which is only revealed if finite amplitude GL solutions are
considered. In this way we must relax Stewartson and Stuart’s original assumptions
in order to allow finite amplitude states for Re < Re.. Similarly we have relaxed the
condition (9.1) on almost all of the solutions we have discussed in this paper, with
the exception of the breather solutions decaying at infinity. In our study of quasi-
steady states it is only reasonable to allow the most general boundary condition

possible,

Al < K for all z,

as we have been studying the structure of the GL equation independent of the
evolution of initial conditions. Most often we have found |A| approaches a steady
state at plus or minus infinity or is periodic for all z.

The numerical eigenvalue calculations in Chapter 8 for the stability of spatially

periodic quasi-steady solutions for sub- and super-critical values of o, (and ¢ = 0)
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suggest that all of these solutions are temporally unstable. This is in agreement
with numerical calculations for the time dependent equation. Our experience in
solving the initial value problem for the GL equation relevant to Poiseuille flow with
periodic boundary conditions is that solutions become unbounded in finite time
because the nonlinear term is unable to cause amplitude saturation as it does when
the real part of the nonlinearity is negative. In contrast, Hocking and Stewartson
(1972) solved the initial value problem with zero end conditions on a finite domain,
and their computations revealed solutions that remained bounded but appeared
irregular in space and time. Our finite difference calculations are unable to confirm
this, however, as we found that a localized initial condition quickly evolved into a
spreading structure with increasingly fine spatial scales, so that the limit of spatial
resolution is soon reached and numerical accuracy is lost.

In any case there are several motivations for studying the quasi-steady GL equa-
tion whose solutions are temporally unstable. The first is that the continuation of
an unstable branch of solutions may lead to its stabilization at different parame-
ter values. The canonical example for this is the existence of the plane waves T
in the GL equation. These give the existence for small amplitude of the equilib-
rium branch of travelling waves for Poiseuille flow described in Chapter 2. Although
these travelling waves are unstable for both the Ginzburg-Landau and Navier-Stokes
equations at small amplitude, they become stable to a general class of 2-dimensional
perturbations at large amplitude at Reynolds numbers far less than Re. of linear
theory (Pugh, 1987), and are believed to play an important role in parallel shear flow
instability. In this way we might expect other branches of solutions suggested by
the GL equation for Poiseuille flow (e.g., fronts connecting a travelling wave to the
undisturbed state) to have continuations down to lower Re, where we seek to find

solutions indicative of the experimentally observed subcritical threshold (Nishioka,
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1985). Secondly, the knowledge of the structure of steady solutions of a differen-
tial equation often lends insight into the dynamics of the time dependent problem.
Moreover, with the use of dynamic control a physically desirable steady state may
be attained which otherwise could never be observed without external forcing.
The many quasi-steady solutions that we have found for the GL equation de-
rived for plane Poiseuille flow are often nonunique and exist for either a discrete or
continuous spectrum of the two undetermined parameters Q@ and ¢, the temporal
frequency and wave speed correction to the group velocity of linear theory. This
degeneracy often arises in parabolic problems where the wave speed is left unde-
termined. Hence if these periodic solutions are relevant to the unsteady Poiseuille
problem one may hope to find an underlying selection mechanism so that only a few

of the solutions are realized in the initial value problem.
9.2 Interpretation of the quasi-steady solutions

Given that the above scenario holds and that the solutions for the Ginzburg-
Landau equation that we have found are in direct correspondence with solutions
of the Navier-Stokes equations, the periodic and quasi-periodic GL solutions seem
to describe quasi-periodic packets of instability. A large range of solutions exists
for both sub- and super-critical Reynolds numbers, whose modulating envelopes
possess different temporal frequencies of oscillation and varying speeds about the
group velocity of linear theory. Such weakly nonlinear modulations to Tollmien-
Schlichting waves have been observed in the pioneering experiments of Schubauer
and Skramstad (1947) in their study of laminar boundary layer transition, as shown
in Figure 9.1. These slow modulations appear downstream of the leading edge of the
flat plate and persist until 3-dimensional bursts develop. For plane Poiseuille flow
experimental work is far more difficult and incomplete than for boundary layers, and

it is less clear what the secondary processes of transition from the initial growth of
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T-S waves are, although it appears that the onset of 3-dimensional effects occurs

much sooner than in the boundary layer (Nishioka, 1985).
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FIGURE 9.1. Velocity traces from the boundary layer
experiments of Schubauer and Skramstad (1947).

The modulated Tollmien-Schlichting waves suggest that the wave packet

develops in a weakly nonlinear manner until breakdown far down the plate.

The periodic envelope solutions are also reminiscent of the slugs and puffs of
instability that divide sections of laminar flow in pipe flow. We cannot dwell on
this similarity as it is accepted that there is no point of linear instability for circular
pipe flow, and thus it is not clear that one can derive an equation of Ginzburg-
Landau type for this flow. In circular pipe flow, however, the experimental results
suggest that if the laminar solution is perturbed sufficiently, there appears to exist

a subcritical instability to a finite amplitude state. It is therefore possible that the



-102-

structure of the GL equation, in allowing the description of finite amplitude periodic
and quasi-periodic solutions for o, < 0, in some way models these subcritical states.

The solitary wave solutions of the GL equation and their generalizations which
correspond to stable and unstable manifolds in phase space are of particular interest
because we know that the four fixed points in the reduced phase space we have
studied correspond with known solutions of the full 2-dimensional Navier-Stokes
equations.

The breather-type solutions are a class of solutions where the envelope of the T-
S waves is localized so that the flow is laminar both up and downstream. We expect
that there is an infinite number of these solutions moving at the group velocity with
a given discrete set of temporal frequencies. These solutions arise as the limiting

cases of the periodic solutions when the wavelength tends to infinity.
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FIGURE 9.2. Schematic diagram of front solutions.

The GL equation supports front solutions moving
faster than the group velocity only for supercritical o,.

The front solutions describing a sharp transition between undisturbed flow and
a plane wave and are found to exist at a given Reynolds number for a continuous
spectrum of frequency and speed. A front from wavelike to laminar behavior trav-
elling faster than the group velocity (¢ > 0) exists only for supercritical Reynolds

numbers (o, > 0). Similarly, by symmetry, there will also exist a transition from the
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laminar to wavelike state travelling slower than the group velocity. See Figure 9.2.
If we think of these solutions as approximating the front and rear sections of a fully
time dependent section of instability, these results suggest that in a neighborhood
of the critical Reynolds number, the instability can spread only for Re > Re,, but
can decay for Re on either side of Re..

The solutions connecting plane waves of the same or different wavenumber which
can exist for a continuum of temporal frequencies or speeds are more difficult to
interpret. These, however, may be quite likely to exist in the full fluid equations as
connecting solutions between the well established finite amplitude steady waves.

Lastly we have found transition solutions described by the unstable manifolds
of the plane waves and laminar state in region 11l of parameter space either side of
critical. The transition from undisturbed flow to a more complex finite amplitude
state which is spatially quasi-periodic or chaotic in the moving frame is of particular
interest. The former were found to exist for o, either side of critical; the latter for
a supercritical value only. These finite amplitude complex quasi-steady states are

in need of further investigation both in the context of the GL equation and plane

Poiseuille flow.
9.3 Final remarks

Any reasonably complete theory of laminar-turbulent transition must be able
to describe the 3-dimensional structures that are observed in shear flows. Study-
ing 2-dimensional weakly nonlinear models such as that of the GL equation is not
irrelevant, however, as experimentally there are many stages in transition, the first
of which appears to reveal 2-dimensional modulations of the primary instability of
the base flow, in accordance with Squire’s theorem for parallel shear flows (Drazin

and Reid, 1981). We point out the existence of a 3-dimensional generalization of
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the GL equation derived for plane Poiseuille flow by Davey, Hocking and Stew-
artson (1974), which consists of the 3-dimensional analogue of the GL equation
coupled with an elliptic equation for the spanwise pressure gradient. It may be
possible to find fully 3-dimensional quasi-steady structures for this equation, and
some work on 3-dimensional plane wave stability has recently been carried out by
C. Holmes (1985).

An aim for the future is to be able to find quasi-steady solutions to the equations
of two-dimensional plane Poiseuille flow that are continuations of those found for the
GL equation. The existence of multiple scales in both space and time suggests that
the straight forward Galerkin and collocation methods used to find the equilibrium
travelling wave solutions would render the discretized problem prohibitively large
even on current super-computers. In the future we hope that an application of other
approximate but fully nonlinear methods to the Navier-Stokes equations will reveal

the fronts and periodic structures described in this thesis.
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