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Abstract

In the measurement of the Higgs Boson decaying into two photons the parametrization of

an appropriate background model is essential for fitting the Higgs signal mass peak over

a continuous background. This diphoton background modeling is crucial in the statistical

process of calculating exclusion limits and the significance of observations in comparison

to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical

shape for the background mass distribution as the use of an improper function can lead

to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid

inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a

fitting model from the data. We then implement a multi-model inference ranking method to

build a fit-model that closest represents the Standard Model background in 2013 diphoton

data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron

Collider (LHC). Potential applications and extensions of this model-selection technique

are discussed with reference to CMS detector performance measurements as well as in

potential physics analyses at future detectors.
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Chapter 1

Introduction

Scientific modeling involves the generation of conceptual or mathematical models to ex-

plain relations revealed through experimental data. Traditional methods for model testing

consist of defining a single alternative hypothesis to a null hypothesis. Test statistics are

then used to assign probabilistic values for the null hypothesis that define statistical signifi-

cance. However, these methods are inferentially limited and do not include the uncertainty

associated with model selection [17]. In terms of the test statistics, if the probability of

the null hypothesis is considered to be low then one concludes that the alternative is a

better choice by default. However, the alternative hypothesis may never be tested and the

probabilities of the null and alternative hypotheses are uncertain. In effect, the traditional

pair-wise hypothesis testing only provides a measure of how good one hypothesis is in re-

lation the second, yet neither is confirmed to fit the data well [9].

A measure of agreement in a global model is needed in order to determine a more rig-

orous method of model testing. The desired system would involve evaluating the relative

worth of alternative hypotheses other than just a one-sided measure of the probability. The

conventional methods for model testing can be replaced with Information-Theoretic meth-

ods, which provide a strict measure of evidential strength for both the null and alternative

hypotheses [17]. These IT methods determine an approach for producing an a priori set

of hypotheses and means for quantifying the data based on evidence as well as a ranking

of each hypothesis. Such methods use tools such as Kullback-Leibler information, which

represents the information lost as a model g is used to represent full reality. In effect, one
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wishes to minimize the K-L information and select the model that is closest to representing

reality [11].

The primary goal is be to determine a method of avoiding the bias of pair-wise hypoth-

esis testing in order to produce more robust inference results. Given a data set and multiple

models corresponding to a phenomenon one wishes to be able to determine a measure of

separation or entropy from which to assign a distance for each model from the data [11].

A ranking for the models can be produced according to this index and then an appropri-

ate weight may be assigned to each model. One would potentially be able to isolate data

signal forms using the model weights to determine a fundamental expression for that phe-

nomenon [9].

In this study, we develop a multi-model inferencing (MMI) scheme using directional sep-

aration as a method for calculating and assigning weights for models in relation to the

data. A substantial portion of the Caltech High Energy Physics group with Compact Muon

Solenoid (CMS) Collaboration has been highly involved in the analysis of the Higgs bo-

son decaying into two photons. Due to degraded conditions at the Large Hadron Collider

(LHC) from increased pile up, extensive work must be done to select a correct modeling of

the Standard Model background [1, 22]. We apply the MMI scheme towards better mod-

eling the background of the H → γγ decay channel in order to characterize the H → γγ

decay. This tool may then be used to better train the photon regression in order to improve

the photon tagging efficiency within the CMS electromagnetic calorimeter and aid in fur-

ther studying properties of the Higgs boson.

We also examine potential future Higgs studies at the LHC as well as applications of the

MMI scheme for improved measurements. The recent discovery of a Higgs-like boson

with a mass around 125 GeV by the ATLAS and CMS collaborations at the LHC provides

unequivocal evidence of some mechanism of spontaneous electroweak symmetry breaking

and of the generation of the masses of fundamental particles [1]. One of the most important

subsequent measurements for reconstructing the scalar potential of the Higgs doublet field
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is the measurement of the Higgs self-couplings. The Higgs self-couplings can be mea-

sured by studying the production rates and kinematics of double and triple Higgs boson

production at the LHC. These processes are highly suppressed, therefore a large amount

of integrated luminosity is required in order for them to be observed and measured. With

these measurements in mind, CERN is considering the proposed Phase II upgrades for the

LHC in 2022 to the High-Luminosity LHC (HL-LHC), which is expected to be able to

deliver a total integrated luminosity of 3 ab−1 [22].

The HL-LHC is expected to run with increased pile up at an average of 140 simultane-

ous pile up events [1]. The most optimistic channel for the di-Higgs analysis is that of one

Higgs boson decaying to a pair of photons, and the other Higgs boson decaying to a pair

of b-quarks, HH → bb̄γγ. As the photon identification and b-jet tagging efficiencies in

the CMS detector degrade with increasing pile up there is the need to re-optimize the algo-

rithms for particle identification to differentiate the signal and backgrounds. Seeing as the

predominant background for this channel involves the mistagging of two light jets as b-jets,

the potential improvements to the measurements of the H → γγ channel as well as to the

b-tagging efficiencies of the detector may prove highly beneficial to the Higgs self-coupling

measurements. The overall increase in data and its complexity in future physics analyses,

such as at the HL-LHC, suggests a need for more sophisticated computing methods [22].

The use of multi-model inference may prove to be a valuable contribution to these efforts.

This thesis intends to provide a thorough explanation of model selection and the moti-

vation for multimodel inference while using the CMS H → γγ analysis at the LHC as a

guide for potential current and future applications of the model selection scheme.

Chapter 2 introduces the notion of model selection and expands upon using an Information

Theoretic approach with Kullback Leibler Information. It formally explains our selection

and use of the Akaike Information Criterion (AIC) as an inference tool. Finally, it covers

the multi-model inference and model averaging procedure that has been designed using

AIC as a method to select an appropriate model for the H → γγ Standard Model back-
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ground.

Chapter 3 provides an explanation of the Large Hadron Collider, Compact Muon Solenoid

experiment, H → γγ analysis, and the composition of the related Standard Model back-

ground. It covers our analysis applying the multi-model inference technique to 2013

H → γγ data from the LHC. We discuss the results of the selection as well as the po-

tential bias to the Higgs signal region based on the resultant fit model.

Chapter 4 presents the dependence of the H → γγ analysis on the detector performance

of the CMS electromagnetic calorimeter. It covers the measurement of the photon energy

resolution and scale as well as an explanation of the analysis methodology using Z → µµγ

events. Finally, we discuss potential improvements to the detector performance analysis,

including applications of the MMI method.

Chapter 5 then provides an overview of potential measurements of the Higgs Self-Couplings

at a future CMS detector under conditions at the proposed High-Luminosity Large Hadron

Collider as a motivation for future detector design. We discuss the expected detector per-

formance results with current detector technology and propose areas of improvement for

future analyses.
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Chapter 2

Model Selection

2.1 Model Selection

Traditional model testing often involves the comparison of two differing hypothesis, in

which one is selected over the other without confirmation that either fit the data well. The

concept of null hypothesis testing only provides arbitrary dichotomies and can often end in

unsubstantial results where the null hypothesis is false on a priori grounds [17] It is typical,

when selecting a model function for an analysis, to choose one function for measurement

and try to prove that it is acceptable. A process which is inheritantly biased in its design.

Under classical model selection , one shifts more towards model-based inference [9].

In the context of model selection, it is assumed that data and a set of models exist and

that statistical inference is model based. There is no certainty as to which model should

be used but there is the assumption that there is a single correct model, or at least, a best

model. Finally, it is presumed that the selected ”best” model suffices as the sole model that

fits the data and from which all inferences about data may be made [10]. The pitfall of

this is that the uncertainty related to the model selection itself is ignored, something that

seems justified as the single ”best” model has been found [9]. It is difficult to construct

an adequate model based the information of a finite set of observations [2]. In practice

the models are only approximations and are different from reality, therefore the hypothesis

testing procedure is not properly formulated as a procedure of approximation [2].



6

The progression to data-driven model selection which seeks to determine appropriate mod-

els and parameters from the data itself still contain these limitations in which the uncer-

tainty linked to the final model selection is ignored [17]. We are in need of of a new crite-

rion that provides quantitative information to judge the strength of evidence. This criterion

must be estimable for each fitted model from the data and must be incorporated in a general

statistical inference framework. In short, the model selection must be justified and operate

within either or both a likelihood or Bayesian framework [10]. The difficulties in designing

rigorous model selection procedures reside in the method for selection an appropriate set

of possible models, for which there remains no systematic way of generating [14]. The

realistic aim should not be on seeking a final truth but rather using common sense to make

useful predictions [17] If these prediction prove useful then that is confirmation that the

hypothesis space is acceptable a this time, with the possibility of expanding or revising it

later.

2.2 Kullback-Leibler Information

Traditional hypothesis testing is limited in the range of potential models examined and the

robustness of the inference technique used to determine how well the model describes the

data. We wish to move away from the dichotomy of rejecting or not rejecting individ-

ual hypotheses and provide a quantitative probability of agreement. We consider the use

of information-theoretic approaches to provide a formal measurement of the evidence for

a model given the data, and introduce the concept of Kullback-Leiber (K-L) Information

which represents the information lost when a model is used to represent ”reality,” or the

data [11]. Denote f as full reality or truth, having no parameters and being invariant with

sample size. Now denote g as the approximating model which represents a probability

distribution of how likely one will observe reality and is dependent on sample size. The

information that is lost when one uses g to model f can then be expressed as a ratio of the

two in Equation (2.1).
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I(f, g) =
k∑

i=1

f(x)log

(
f(x)

g(x)

)
dx (2.1)

Through logarithmic relations this can be separated to show the K-L Information as the

difference between reality and the expectation of the approximating model.

I(f, g) = C − Ef [log(g(x|θ))] (2.2)

Where, C =
∫

f(x)log(f(x))dx. The information lost, I(f, g), cannot be calculated itself

seeing as it requires knowledge of full reality. However, one is able to estimate the relative

K-L information, Ef [log(g(x|θ))], of competing approximating models [11].

2.3 Akaike Information Criterion

Our selected approach is to use Akaike Information Criterion (AIC), which is a test statis-

tic that minimizes the K-L information and provides a measure of relative support for each

model to the data [11]. The standard test statistic used for deterring how well a model fits

the data is the Log-Likelihood of the fit. The use of the maximum likelihood for statistical

model provides a method for estimating the free parameters of a model given a specified

dimension and structure [2]. For a parametric candidate model, the likelihood function the

estimates the conformity of the model to the data. When the complexity of this models

increased, it is able to conform to various additional characteristics of the data. Therefore,

the selection of the fitted model that maximizes the likelihood of the fit with undoubtedly

determine the most complex model in the model set. To correct for this, Hirotugo Akaike

extended this method to consider the approach where the model dimension is also unknown,

and therefore the model estimation and selection are simultaneously derived from data [2].

Akaike determined a relationship between likelihood theory and K-L information, in partic-

ular that the Log-Likelihood statistic is a biased estimate of the relative K-L information,

ExEy[log(g(x|θ(y)))]. Moreover, it was determined that the biasing factor is asymptoti-

cally related to the number of estimable parameters in the model.
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AIC = −2log (L(m|Data)) + 2k +
2k(k + 1)

(n− k − 1)
(2.3)

This form of the criterion is more accurate, particularly for settings where the data set, n,

is small and the number of free parameters, k, is relatively large. Note that for large values

of n in comparison to k, the AIC penalization factor asymptotically converges to 2k, twice

the number of estimable parameters..

AIC = −2log (L(m|Data)) + 2k (2.4)

The relative likelihood for each model is based on the separation of each model’s AIC value

from that of the minimum AIC value in the set, ∆i. These likelihoods can then determine

each model’s respective Akaike weight which can be used to compare the models as well

as produce a combined model from the constituent set. [11],

wi =
e−

1
2
∆i

n∑
r=1

e−
1
2
∆r

(2.5)

The resulting benefit of using AIC over the standard Log-Likelihood involves the balancing

of under and over-fitting the data. A model with too few parameters results in a poor fit of

the data, biases the expected measurements and will therefore have a poor Log-Likelihood.

However, by increasing the number of parameters in the approximating model and the de-

grees of freedom for the fit, one has the potential to fit any shape well without deriving any

relative mathematical relation. Therefore, a model with too many parameters may have

a superior Log-Likelihood but also suffers from poor precision and may identify spurious

effects in the data [30]. To balance these issues AIC introduces this penalization factor

to the Log-Likelihood based on the number of estimable parameters the model uses. The

optimal fitted model is then identified as that which has the minimum AIC value, however

all values are considered for assessing the criterion preferences [2]. The use of AIC then

provides a more rigorous method to calculate the separation for each model from the data

and select the model that is closest to representing reality.
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A benefit of AIC is that it is asymptotically efficient. In the event that the generating model

is of finite dimension and this model is within the candidate set, a consistent criterion will

asymptotically select the correct structure with probability one. However, in the practical

sense where the generating model is of infinite dimension and therefore lies outside of the

candidate collection, an asymptotically efficient criterion selects fitted candidates that min-

imize the mean squared error of prediction [2]. The application of the Akaike Information

Criterion therefore, does not rely on the assumption that one of the candidate models is the

”true” model. Another substantial advantage of information-theoretic criteria, such as the

AIC, is that they are valid for non-nest models whereas traditional ratio tests are defined

only for nested models, thus limiting their use in hypothesis testing for model selection [9].

2.3.1 AIC as a Bayesian result

In consideration of determining the proper inference tool for model selection, it is appro-

priate to compare our choice of the Akaike Information Criterion with other IT criteria.

The most popular alternative to AIC in data-based model selection is called Bayesian In-

formation Criterion (BIC), which at first glance seems to have a similar construct.

BIC = −2ln(L) + klog(n) (2.6)

However, the use of ”Bayesian” for BIC may be considered a misnomer as it is not related

to information theory and can be derived as a non-Bayesian results [10]. For very large

samples, the model selected by BIC is the best for to use for inference. However, as the

sample sizes become more moderate, the BIC-selected model becomes more sparing than

model g, particularly if this model is the most general in the set. Concern arises for realistic

sample sizes as the BIC-selected model tends to under fit at the given n as it approaches the

target model from below as n increases. Due to the assumption in the derivation of BIC that

there was a true model, independent of n, that generated the data, the target model is also

not dependent on the sample size [9]. The derivation implies that the true model will be in

the model set and that this will be the target model for BIC selection. Unfortunately this

limits the selection of the true model only in the limit that the sample size is very large [10].
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Despite BIC being a misnomer as a Bayesian result, it has been shown by Burnham and

Anderson [9] that AIC can be justified as Bayesian with the use of a ”savvy” prior on

models that is a function of both sample size and the number of free parameters. The for-

mulation of Akaike Information Criterion is built on the minimization of K-L Information.

For K-L Information, there is no concept of a true model implied and no assumption is

made that the models must be nested [10]. Akaike found that an approximately unbiased

estimator of the EyEx[log(g(x|θ̂(y)))], the expected K-L Information for a model given the

data. This finding allows for the combination of estimation and model selection under a

unified optimization framework [2]. The asymptotic bias correction term is in no way ar-

bitrary and allows for the values of the AIC to be dependent on sample size themselves [10].

The determination of AIC as a Bayesian result is actually derived from BIC [9]. The BIC

model selection comes about in the context of large-sample approximations to the Bayes

factor, along with assuming equal priors on models [10]. The Bayesian posterior model

probability is approximated as,

Pr(gi|data) =
exp(−1

2
∆BICi)qi∑R

r=1 exp(−1
2
∆BICr)qr

(2.7)

This posterior depends not just on the data, but also on the model set and the prior distribu-

tion on those models. Akaike weights can easily be obtained by using the model prior,

qi ∝ e( 1
2
∆BICi)ė(− 1

2
∆AICI) (2.8)

It is clearly shown then that,

e(− 1
2
∆BICi)ė( 1

2
∆BICi)ė(− 1

2
∆AICi) = e(− 1

2
∆AICi) (2.9)

Hence, with the implied prior probability distributions on models, we get,

pi =
e(− 1

2
∆BICi)qi∑R

r=1 exp(−1
2
∆BICr)qr

=
e(− 1

2
∆AICi)∑R

r=1 e(− 1
2
∆AICr)

= wi (2.10)
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This corresponds with the Akaike weight for model gi. This prior probability on models

can be expressed in a simple form as,

qi = Cė( 1
2
kilog(n)−ki) (2.11)

where C = 1PR
r=1 e( 1

2 krlog(n)−kr)
Therefore, one may determine that, for large samples, the

Akaike weights from AIC are Bayesian posterior model probabilities for this model prior

[9].

Given a model, the prior distribution on the data should not depend on the model set size,

R. The BIC approach assumes a prior that would not depend on sample size nor the number

of parameters which is neither necessary nor reasonable [10]. There is limited information

in a sample, so the more parameters that are used for estimates, the poorer the average pre-

cision will be. The prior qr = 1/R is neither reasonable nor innocent as it implies that the

target model is reality rather than the ”best” approximating model, given that the parame-

ters are to be estimated. Seeing that the errors on individual parameters depend on sample

size, it is reasonable that the appropriate model would as well [9].

Given that AIC can be derived from the BIC approximation to the Bayes factor, this distinc-

tion between the two cannot be based on a Bayes versus frequentist view. The distinction

is more focused on the prior model, q = 1/R for BIC and K-L for AIC [10]. Seeing that

too few parameters wastes information and too many leads to imprecise results, the latter

prior’s dependency on the number of estimable parameters and sample size makes it a rea-

sonable choice. In summary, BIC corresponds to the measurement of the odds of a model

being the true model given the data whereas AIC is an estimator of the information lost

when approximating the truth [17]. In consideration of the departure from the selection of

one ”best” model, the choice of AIC is deemed as an appropriate measure of the relative

support for each model in a set given the data.
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2.4 Multi-Model Inference

The concept we wish to introduce with regards to multi-model inference is that of an ap-

proach to model selection through multi-model averaging. The approach supports the no-

tion that more than one ”best” model may be supported by the data and it permits the

evaluation of certain model selection uncertainty [17]. The approach begins where a set of

plausible models are defined a priori, taking in account the sample size and previous knowl-

edge of influential parameters. AIC is used to evaluate the empirical support for each model

from the data, expressed as a weight corresponding to the probability of the model being the

best approximating model given the model set. The estimated probabilities sum to 1 across

the model set such that they may be used to rank models, quantify the extent of evidence in

favor of each model and evaluate multi-model averaged effects of the results [10, 17]. The

averaging process allows us to define a ”composite” model which we define as a model

built of the sum of each independent model in the model set, weighted by the probability

assigned for the model being the best approximating model. The use of composite models

weighted by the empirical support for each model has been shown to be superior to con-

structing inferences for the relative importance of variable based on only one ”best” model,

particularly when the second and third best models are similarly supported by the data [10].

Consider the case where two models have probabilities 0.5 and 0.45 with the other models

in the set have much lower probabilities. In accounting for the uncertainty linked to model

selection, the two models may be deemed to represent the majority of the evidence together

and there is no true reason to select one over the other, particularly as the ”best” model only

has a probability of 1.1 times that of the next best model. In addition to losing information,

there remains the possibility that another sample would yield another best model [17].

The approach is therefore not oriented to testing a specific hypothesis but rather deter-

mining a model that is closest to representing the data. We use the example of multi-model

averaging in industrial hygiene literature by Lavoue et al. in which models are compared

to determine a statistical link between measured exposure levels and environmental vari-
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ables [17]. The results of the analysis lead to a subset of the variables being identified as

determinants that are viewed as non-influential based on their presence, or lack thereof, in

the final chosen model. The method leading to the selection of the final model has a sub-

stantial impact on the conclusions drawn from the analysis as there is no specific aim to test

a particular hypothesis but rather identify influent variables in a set of plausible candidates.

2.4.1 MMI Method

In order to expand the range of potential models used in determining the appropriate char-

acterization of the Standard Model background we implement a multi-model inference

method. One begins by defining a set of all plausible models, R. This set is still limited in

that the only models tested are those added to this set. For each model in R, we fit the data

and determine the likelihood for that model with respect to the data, L(m|Data). Then we

calculate the AIC for the model,

AIC = −2 log (L(m|Data)) + 2k +
2k(k + 1)

(n− k − 1)
(2.12)

where k represents the number of floating model parameters and n denotes the sample size.

The model with the lowest AIC values is then selected and one uses the AIC distances, ∆i,

to determine the relative probability that the ith model minimizes the information lost when

representing the data.

∆i = AICi − AICmin (2.13)

This already provides a ranking metric based on the empirical support for each model, as

can be seen in Table 2.1.The model corresponding with the lowest AIC value is deemed

as the ”best” model in the set for representing the data. Models with very weak relative

likelihoods (∆i ∼ 10) may be omitted from further investigation [11]. For the remaining

models one has the following considerations:

1. More data may be acquired to help distinguish between the models.

2. One may conclude that the data is insufficient to select one model over another.
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3. One may alternatively combined the models with their weighted averages.

The first consideration is impractical as one is often limited in their given data set from

which they wish to draw inferences. The second leads to no conclusion, however the third

provides a solution derived from the previous consideration. One may not be able to pre-

fer one model objectively over another, however, one may effectively expand the origi-

nal model set to include every possible combination of the original models by using their

weighted averages.

∆i Level of Empirical Support for Model i

0-2 Substantial

4-7 Considerably Less

10 + Essentially no support

Table 2.1: Interpretation of empirical support for AIC distances [11]

From the relative likelihoods for each model one may determine their respective Akaike

weight [11],

wi =
e−

1
2
∆i

n∑
r=1

e−
1
2
∆r

(2.14)

With the remaining models in the investigation one then produce a composite ”realistic”

model:

Mrealistic =
r∑

i=1

wiMi (2.15)

This approach allows one to further expand the pool of tested models by including not just

the set of individual models but every possible weighted combination.
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2.4.2 Preliminary Closure Tests

As a closure test of the MMI method that we have in place we test two theoretical cases

with generated data from known truth functions. In the first study we set the truth model,

or ”reality,” to be a simple exponential and generate toy data sets of 10,000 events based

off of this known model. We then implement the MMI method with our set of plausible

models in Table 2.2. The second study follows the same process but with a power law truth

model.

Plausible Model Set

0. Single Exponential c1e
αx

1. Double Exponential c1e
αx + c2e

βx

2. Triple Exponential c1e
αx + c2e

βx + c3e
γx

3. Modified Exponential c1e
αx+η

4. 5th-Order Polynomial c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + c0

5. Single Power Law c1x
α

6. Double Power c1x
α + c2x

β

Table 2.2: Model set used for closure tests.

In Figure 2.1, we see that it is difficult to make an ad-hoc decision between the models

within the set when considering how they characterize either toy data set. By comparing

the results in Table 2.3 we see that all four of the exponential models had the same Log-

Likelihood value but ,with the penalization factor included in the AIC measure, the truth

model of the single exponential was selected with the most significant weight of 0.62. The

only other model with substantial support is the modified exponential which is inherently a

single exponential with an added constant. The polynomial and power law models are all

”rejected”as their ∆i values exceed the cut-off.

The difference in the AIC method is also seen Table 2.4, where both power models shared

the same Log-Likelihood with the polynomial and triple exponential models. In this case
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the penalization factor for the added parameters also selected for the truth model, giving it

a weight of 0.81 and leaving the only other semi-substantially supported model, the dou-

ble power law, with a weight of 0.14. These closure tests illustrate the fall-backs of the

Log-Likelihood method alone and the potential of the AIC method to compensate for the

overfitting bias.
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Figure 2.1: Comparisons of fits for exponential and power truth models.

AIC Results for Single Exponential Truth Model

Models Single

Exponential

Double

Exponential

Triple

Exponential

Modified

Exponential

5th-Order

Polynomial

Single

Power

Double

Power

Log(L) 741977 741977 741977 741977 741974 741789 741789

AIC -1483950 -1483946 -1483942 -1483948 -1483936 -1483574 -1384570

AIC ∆i 0 4.00 8.00 1.53 14.6 377 381

AIC wi 0.62 0.08 0.01 0.29 4.e-4 1.e -82 1.e -83

Table 2.3: MMI closure results for Single Exponential Truth Model
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AIC Results for Single Power Law Truth Model

Models Single

Exponential

Double

Exponential

Triple

Exponential

Modified

Exponential

5th-Order

Polynomial

Single

Power

Double

Power

Log(L) 725200 725291 725296 725292 725296 725296 725296

AIC -1450396 -1450574 -1450580 -1450578 -1450580 -1450588 -1450584

AIC ∆i 191 12.7 7.5 9.4 7.3 0 3.5

AIC wi 3.e -42 0.001 0.02 0.008 0.02 0.81 0.14

Table 2.4: MMI closure results for Single Power Law Truth Model
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Chapter 3

Standard Model Background

To fit the Higgs signal mass peak over a continuous background we wish to determine the

most appropriate model for the Standard Model Background. This background is crucial

in the statistical procedure for calculating exclusion limits and the significance of observa-

tions in comparison to a background-only hypothesis [7]. The current method involves the

use of a 5th-Order polynomial which fits many shapes with many parameters, but does not

necessarily reflect reality. It is ideal to obtain knowledge of the physical shape for the back-

ground mass distribution as the use of an incorrect function can lead to biased observation

limits. By implementing this MMI method on H → γγ data we wish to build a composite

model which best represents the data, from many physics motivated models.

3.1 Standard Model

The Standard Model of particle physics is a unified theory meant to describe the interac-

tions among elementary particle physics. The non-abelian gauge field theory is based on

the symmetry group SU(3) ⊗ SU(2) ⊗ U(1) and has 12 generators with non-trivial com-

mutators. The SU(2)⊗U(1) component describes the electroweak interactions , Quantum

Electrodynamics (QED), which unify electric and magnetic forces as the electromagnetic

force, along with the weak force [3]. The electroweak force describes interactions among

all particles with the exception of quarks, which are best described by the strong force [31].

The SU(3) group corresponds with the color group of the theory of strong interactions,

Quantum Chromodynamics (QCD) [3]. Though the theory is not complete, the Standard



20

Model has been tested experimentally to unprecedented precision, with the Higgs boson

being the last particle, predicted by the Standard Model, to be confirmed [31].

The study of the Higgs boson and its properties is a key topic in particle physics as it

is not only responsible for spontaneous electroweak symmetry break which attributes mass

to particles, but also holds prospects in isolating other studies on physics beyond the Stan-

dard Model. The primary production mechanism for the Higgs at the LHC is through

gluon fusion with addition minor contributions from vector boson fusion (VBF) as well as

production with a W or Z boson, or a tt̄ pair [28]. The most promising channel for the

measurement of the SM Higgs boson is that of its decay into two photons, H → γγ. The

channel has a very small branching ratio, varying between 0.14% and 0.23% between 100

and 150 GeV, as well as a large diphoton continuum background [31]. However, due to

the optimized reconstruction and high energy resolution for photons at the CMS detector,

the channel provides a clean signature with a well-defined peak on a smooth, continuous

background.

In order to extract the Higgs mass signal it is necessary to be able to isolate the signal peak

from the continuous Standard Model background. The H → γγ backgrounds are domi-

nated by QCD processes and arise from irreducible prompt diphoton production, as well

as reducible pp → γ + jet and pp → jet + jet where one or more photons are mistagged

jets [23, 28]. The kinematic distributions of these backgrounds are not precisely modeled

due to their generation at leading order and the complex nature of jets being misidentified

as photons [31].

In order to fit the Higgs signal mass peak over a continuous background, one must first

designate an appropriate model parameterization for the background. This model then

serves as a fully-differential prediction of the mean expected diphoton mass distribution

for the background-only hypothesis and is therefore essential for the statistical procedure

that defines exclusion limits or the significance of an observation [7]. It is desirable to have

an exact understanding of the functional form of the background mass distributions, or at
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least be able to express the limited knowledge of its shape in a finite set of parameters. The

use of an inappropriate function for the background model can lead to undesirable effects

in the extraction of the signal yield, such as biases in the observed limits [15].
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(b) Cat 0: Barrel High R9
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(c) Cat 1: Barrel Low R9
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(d) Cat 2: Endcaps High R9
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Figure 3.1: Fits of various background model families to 2013 H → γγ data categories.

One sees that there is no ad-hoc method for determining which family of functions is ap-

propriate for modeling the background.
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In the previous H → γγ analysis, the data was divided into four categories based on the

location of the photons in the detector and the energetic spread of the reconstructed pho-

tons. A single analytical fit function was then chosen for each of these four classes after a

study of the potential bias for the estimated background was performed. The potential bias

using the chosen function on various truth functions was required to be negligible and then

the number of degrees-of-freedom for the fit was increased until the bias became negligi-

ble in comparison to the uncertainty of the fits. This criterion for the bias to be negligible

was determined such that it should be five times smaller than the statistical uncertainty in

the number of fitted events within the mass window corresponding to the full width at half

maximum for the corresponding signal model [15].

The results for the background selections were developed in an attempt to account for

the systematic uncertainty associated with the choice of the function for the model. The

families of models considered for the background analysis were exponentials, power-law

functions, polynomials in Bernstein basis and Laurent series [15]. When comparing the

models by minimizing twice the negative logarithm of the likelihood, all functions had an

added penalty term to account for the number of free parameters in the fitted function such

that the likelihood function look as:

q = −2lnL+ cNp (3.1)

where Np is the number of free parameters in the fitting function. Two values of c were

used, c = 1 and c = 2, which are justified by the χ2 p-value and Akaike Information Cri-

terion respectively. For each class, the functions from each family were then fit to the data

and the degrees of freedom were increased until there was no significant improvement to

the likelihood. The function with N degrees of freedom was then retained from each family

to compare int he study of the expected bias to the signal region [15].

Seeing that the true functional form of the background is unknown, the realistic goal is

to find one that minimizes the bias to the fitted signal strength. The model determined
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to have the smallest bias was a 5th order polynomial, with a 4th order polynomial being

comparable within the fit range of 100 to 160 GeV [31]. A comparison of the sensitivity

loss on the exclusion limits was performed where a positive loss meant that the chosen fit

model would lend less sensitive results than the truth, giving more conservative results.

Negative loss on the other hand would result in overly optimistic signal strength expecta-

tions. The models in general provided positive sensitivity loss with the exception of the 4th

order polynomial which the truth model was a 5th order polynomial. The chosen model for

the previous H → γγ analysis was concluded to be a 5th order polynomial as it reduced

sensitivity loss [31].

The use of a 5th order polynomial for the Standard Model background is convenient as

polynomials may fit many shapes with many parameters. However, the limitation on the

selection of this model tends around the assumption that this was the only model within the

set that could fit the data. As previously mentioned, the restriction to one ”best” model in

model selection often results in discarding valuable information, which is not necessarily

valid when the theory alone does not provide enough motivation for the structure of the

model parameterization. The use of model averaging allows for more information to be

conserved and therefore provides less sensitivity to statistical variations between data sam-

ples. It is therefore desired o produce quantitative estimates of the empirical support for

each model, given the data, and then build a composite model from many physics motivated

models to achieve a model that better reflects reality.

3.2 Compact Muon Solenoid Experiment

The data used in this analysis is collected from the Compact Muon Solenoid experiment

(CMS) from proton-proton collisions at the Large Hadron Collider (LHC). The LHC is a

circular particle accelerator with a circumference of 27 km that is located 50 to 175 meters

underground at CERN, on the border between Switzerland and France.The design center of

mass energy (
√

s) of the LHC for pp collisions is 14 TeV, however, in 2012 this measured

as 8 TeV [31].
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Figure 3.2: A schematic diagram of the LHC accelerator complex. Protons are initially

accelerated in the LINAC linear accelerator and then injected into the PS Booster to reach

a kinetic energy of 1.4 GeV. They then enter the Proton Synchrotron ring, are accelerated

to 25 GeV, and then further accelerated to 450 GeV in the Super Proton Synchrotron (SPS).

They are finally accelerated to the maximum energy after being injected into the LHC [31].

The Compact Muon Solenoid experiment is a general purpose detector designed to

measure a variety of potential physics studies beyond the Standard Model. It is a nearly

hermetic detector, allowing energy balance measurements in the plane transverse to the

direction of the beam [27]. The central feature of the detector is a superconducting solenoid

of 13 meters in length and 6 meters in diameter, capable of producing an axial field of 3.8

Tesla. The center of the solenoid contains layered detection systems and the steel return

yoke outside of the solenoid holds gas chambers for muon identification [8]. Collisions
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occur along the central beam line and charged particle trajectories are measured by a silicon

pixel and strip tracker with a full azimuthal coverage of φ from 0 to 2π within |η| < 2.5.

Here the pseudorapidity η is defined as,

η = −ln(
θ

2
) (3.2)

where θ is the polar angle of the trajectory with respect to the positive end of the z-

axis [31]. A lead tungstate crystal electromagnetic calorimeter (ECAL) surrounds the

tracking volume and covers a barrel region of |η| < 1.48 and two endcaps that extend

up to |η| = 3. A lead/silicon-strip pre-shower detector is located in from of the ECAL end

cap and a steel/quartz-fibre Cherenkov forward calorimeter extends to cover |η| < 5.0. A

brass/scintillator hadronic calorimeter (HCAL) encompasses the ECAL behind the crys-

tal layer [6]. Global event reconstruction under particle flow reconstruction consists in

identifying each single particle with an optimized combination of all sub detector informa-

tion [15]

Figure 3.3: A slice diagram depicting the various layers of the CMS detector [31].
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The ECAL is optimized for high resolution measurements of electrons and photons.

Within the (η, φ) plane, the ECAL is composed of 5x5 crystal arrays with fewer crystals

in the end caps [29]. An important kinematic variable for reconstructed particles is the

extent shower spread R9 defined as the energy sum of the 3x3 crystals centered on the most

energetic crystal in a supercluster, divided by the total energy of that supercluster [15].

R9 =
√

∆η2 + ∆φ2 (3.3)

The crystal transparency deteriorates due to radiation during the LHC runs and is monitored

continuously and corrected for using a light injected from a laser and LED monitoring sys-

tem. ECAL calibrations are also performed with photons from π0 → γγ and η → γγ

decays and electrons from W → eν and Z → e+e− decays [15]. Comparisons of data and

simulation results for Z → e+e− and Z → µ+µ−γ events are used to apply corrections for

signal invariant mass shape in H → γγ and other analyses. The jet energy measurement is

also calibrated to correct for detector effects using dijet, γ+jet and the Z + jets events [28].

3.3 Diphoton selection for 2013 H → γγ Analysis

The data used for this analysis consisted of diphoton events front he 2013 CMS H → γγ

analysis (DoublePhoton PD – 22Jan2013 CiC Selection). A detailed description of the pro-

cessing and photon selection may be found in Reference [15]. In general, the data consists

of events determined with diphoton triggers and corresponding to an integrated luminosity

of 5.1 fb−1 at 7 TeV and 19.6 fb−1 at 8 TeV. The diphoton triggers have asymmetric trans-

verse energy, ET thresholds and complementary photon selections. The selection requires

loose calorimetric identification based on the electromagnetic shower shape and loose iso-

lation requirements of the photon candidate. Other selections require that the photon can-

didate has a high value of the R9 shower shape variable [15].

Photons with high R9 values correspond to primarily unconverted photons with better
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energy resolution and higher signal-to-background ratios. Photons that are reconstructed

within the barrel also have both a better energy resolution and higher signal-to-background

ratio than those found in the end caps [15]. The four event classes from the previous

H → γγ analysis are used with an additional class to represent the inclusive results: 0:

both photons are in the barrel and have R9 > 0.94

1: both photons are in the barrel and at least one fails the requirement of R9 > 0.94

2: at least one photon is in the end cap and both photons have R9 > 0.94

3: at least one photon is in the end cap and at least one of them fails the requirement

R9 > 0.94

4: inclusive category for all selected diphotons

3.4 AIC Results

In order to select an appropriate model for the Standard Model background we apply the

MMI method to diphoton events (DoublePhoton PD – 22Jan2013 CiC Selection) from the

LHC and calculate the AIC weights for each fit model in the model set. The results of this

study are displayed in Table 3.2 with the ”best” model for each category in bold. One finds

that the model that is best support most frequently is the modified exponential, as seen in

the inclusive, Low R9 Barrel and High R9 End Cap categories. The modified exponential

is also well supported in the other two categories though is preceded by the single power

law within the Barrel at High R9 and single exponential in the End Caps at Low R9.

A significant observation to note is that the polynomial fit model was not substantially

supported by the data in any of the five categories. This is contrary to the results of the

previous H → γγ background bias study which chose the 5th-Order polynomial as the

preferred background model [15, 20]. In Figure 3.4 we display the combined composite

model fit to the data for each category along with their likelihoods and the χ2 value for

each fit. We see that each composite model seems to provide an acceptable level of agree-

ment within each category. In Table 3.3 we display the rankings of each model based on

twice the negative log likelihoods alone. As expected, the higher-order functions of the
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5th order polynomial, double and triple exponential all ranked generally high among the

models. However, the discrepancies among the models from the lowest minimized nega-

tive log likelihood reveals that the variations among the few models following the ”best”

model by likelihood standard is relatively small. The composite model is included in this

table and ranks consistently around the third or fourth preferred model, with a difference

in −2Log(L) < 2.5 for each category. At the very least the composite model for each

category provides relatively similar results with the other preferred models.

Plausible Model Set
0. Single Exponential c1e

αx

1. Double Exponential c1e
αx + c2e

βx

2. Triple Exponential c1e
αx + c2e

βx + c3e
γx

3. Modified Exponential c1e
αx+η

4. 5th-Order Polynomial c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + c0

5. Single Power Law c1x
α

6. Double Power c1x
α + c2x

β

Table 3.1: Model set of plausible functions for MMI process.
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(b) Cat 0: Barrel High R9
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(c) Cat 1: Barrel Low R9
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(d) Cat 2: Endcaps High R9
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(e) Cat 3: Endcaps Low R9

Figure 3.4: Fits of ”composite” background model to 2013 H → γγ data categories.
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AIC Results for H → γγ Background

Models Single

Exponential

Double

Exponential

Triple

Exponential

Modified

Exponential

5th-Order

Polynomial

Single

Power

Double

Power

Inclusive

AIC ∆i 5.9 1.2 5.2 0 13.5 24.5 28.5

AIC wi 0.03 0.33 0.04 0.60 0.001 3. e-6 4. e-7

Cat 0: High R9, Barrel

AIC ∆i 6.4 3.9 7.8 2.1 5.9 0 4.0

AIC wi 0.02 0.08 0.01 0.20 0.03 0.57 0.08

Cat 1: Low R9, Barrel

AIC ∆i 0.5 1.2 5.2 0 3.1 12.5 16.5

AIC wi 0.30 0.21 0.02 0.38 0.08 0.001 0.0001

Cat 2: Low R9, End Caps

AIC ∆i 0 4.0 8.0 1.9 7.4 6.4 10.4

AIC wi 0.62 0.08 0.01 0.24 0.02 0.03 0.003

Cat 3: High R9, End Caps

AIC ∆i 0.4 2.0 6.0 0 12.9 8.4 12.4

AIC wi 0.36 0.16 0.02 0.44 0.001 0.007 0.001

Table 3.2: AIC results and weights for Standard Model background in 2013 H → γγ data.

The resulting selected ”best” models for each category are in bold.
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Category

Ranking Cat 0 Cat 1 Cat 2 Cat 3 Inclusive

1 Poly. (0) Poly. (0) Poly. (0) Trip. Exp.

(0)

Trip. Exp.

(0)

2 Trip. Exp.

(1.91)

Doub. Exp.

(2.08)

Mod. Exp.

(0.50)

Doub.

Exp.(0.02)

Doub. Exp.

(0.04)

3 Composite

(1.93)

Trip. Exp.

(2.08)

Composite

(0.57)

Mod. Exp.

(0.02)

Composite

(0.47)

4 Doub. Exp

(1.94)

Composite

(2.24)

Sing. Exp.

(0.61)

Composite

( 0.30)

Mod. Exp.

(0.80)

5 Sing. Pow.

(2.10)

Mod. Exp.

(2.90)

Doub. Exp.

(0.61)

Sing. Exp.

(2.41)

Poly.(8.27)

6 Doub. Pow.

(2.10)

Sing. Pow.

(5.40)

Trip. Exp.

(0.61)

Poly.

(6.91)

Sing. Exp.

(8.70)

7 Mod. Exp.

(2.22)

Sing. Pow.

(17.38)

Sing. Pow.

(7.00)

Sing. Pow.

(10.46)

Sing. Pow.

(27.34)

8 Sing. Exp.

(6.48)

Doub. Pow.

(17.38)

Doub. Pow.

(7.00)

Doub. Pow.

(10.46)

Doub. Pow.

(27.34)

Table 3.3: Ranking of models for each cut category based on value of −2Log(L) where

rank 1 is assigned to the model with the minimized negative log likelihood. The difference

between −2Log(L) for each model and the minimized value is shown in parentheses next

to the corresponding model.

3.4.1 Stability of Model Selection

Want to examine the stability of the MMI process and the consistency of the compos-

ite model shape that is produced. In order to assess the stability of the composite model

produced by the AIC analysis to statistical variations between experimental data sets, we

perform a ”boot-strapping” procedure. In this process the H → γγ data is randomly re-

sampled to create new toy data sets from the original data set with the same total number of
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events. The random selection of events and filling of the new data simulates the statistical

variations from one experimental run to another. The MMI method is then run over each

sample and a composite model is produced for each sample.

We evaluate the systematic uncertainty for this composite production by calculating the

number of background events within the signal range from 123 GeV to 127 GeV, nor-

malized by the total number of events for each trial, over 800 toy samples. We then fit this

distribution with a gaussian to determine the systematic uncertainty of the composite model

production. The measured uncertainty amounts to 0.09 ± 0.0002 which is well below the

statistical uncertainty of 0.31, quoted from the mass measurement of the Higgs boson in the

previous H → γγ analysis [15]. Therefore we determine the consistency of the composite

model generation from the H → γγ data to be within acceptable uncertainty.

Constant  4.8± 101.1 

Mean      0.00001± 0.08928 

Sigma     0.0000064± 0.0002205 
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Figure 3.5: Distribution of background events within signal region for composite models

derived from 800 toy trials of randomized H → γγ samples

3.4.2 Bias Analysis

The significance of the model selection for characterizing the Standard Model Background

is that an inappropriate function may lead to biased observed signal yields when comparing

the H → γγ data to a background-only hypothesis. Our purpose is to determine the model
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for the H → γγ Standard Model background that minimizes the bias to the signal region.

In the previous H → γγ analysis, the method used for selecting a background model

was to compare the maximal potential bias that was introduced by each fit model while

characterizing possible truth-models. The bias was determined to be, ”the deviation from

zero of the median deviation of the fitted number of mean background events between the

truth and the fit-model in a mass window corresponding to the full-width-half-maximum

of the signal model” [7].

Bias(mH) := median
(
NFWHM

true −NFWHM
fit

)
(3.4)

One then compares this statistical uncertainty, the value to the uncertainty of the fitted

number of events within this region, and define the bias to be negligible when,∣∣∣∣∣median

(
NFWHM

true −NFWHM
fit

∆NFWHM
fit

)∣∣∣∣∣ < 0.2 (3.5)

In this manner one determines the extent to which each potential fit model alters the ex-

pected background event yield within the Higgs signal mass window.

To compare the results from the AIC analysis with this previous study and consider the

potential bias of the composite model, we are replicating this bias study by generating toy

events for each possible truth model in the model set and fitting them again with all of the

potential models, including the composite model. By integrating the truth and fit proba-

bility density functions within the mass range of 123 to 127 GeV/c2, weighted by number

of total events in the toy set, we determine the expected number of background events for

the truth and fit models within the bias region. The difference between these is then di-

vided by the uncertainty of the fitted number events within the region. The resulting bias

comparisons are displayed in Tables 3.4 to 3.11
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Truth Type Single Exponential

Fit Type Sing.

Exp.

Doub.

Exp.

Trip. Exp Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.0033 0.0040 0.0044 0.0041 0.0006 0.0219 0.0219 0.0042

cat1 0.0036 0.0036 0.0036 0.0013 0.0107 0.0214 0.0213 0.0007

cat2 0.012 0.0123 0.0123 0.0233 0.0163 0.0066 0.0066 0.0180

cat3 0.0023 0.0068 0.0054 0.0066 0.0123 0.0176 0.0176 0.0090

cat4 0.0031 0.0031 0.0032 0.0038 0.0004 0.0139 0.0139 0.0033

Table 3.4: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the single exponential truth model.

Truth Type Double Exponential

Fit Type Sing.

Exp.

Doub.

Exp.

Trip. Exp Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.0221 0.0043 0.0043 0.0076 0.0094 0.0042 0.0005 0.0045

cat1 0.0079 0.0018 0.0039 0.0022 0.0041 0.0093 0.0093 0.0035

cat2 0.0084 0.0084 0.0084 0.0022 0.0178 0.0260 0.0261 0.0074

cat3 0.0033 0.0065 0.0065 0.0071 0.0019 0.0183 0.0183 0.0053

cat4 0.0082 0.0029 0.0028 0.0008 0.0036 0.0082 0.0082 0.0016

Table 3.5: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the double exponential truth model.
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Truth Type Triple Exponential

Fit Type Sing.

Exp.

Doub.

Exp.

Trip. Exp Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.0140 0.0048 0.0049 0.0009 0.0118 0.0043 0.0053 0.0036

cat1 0.0100 0.0028 0.0029 0.0073 0.0042 0.0077 0.0078 0.0075

cat2 0.0125 0.0126 0.0126 0.0122 0.0035 0.0319 0.0319 0.0125

cat3 0.0053 0.0025 0.0031 0.0024 0.0053 0.0103 0.0103 0.0041

cat4 0.0001 0.0078 0.0027 0.0041 0.0601 0.0163 0.0163 0.0053

Table 3.6: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the triple exponential truth model.

Truth Type Modified Exponential

Fit Type Sing.

Exp.

Doub.

Exp.

Trip.

Exp.

Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.0268 0.0079 0.0079 0.0122 0.0111 0.0088 0.0022 0.0088

cat1 0.0050 0.0021 0.0018 0.0000 0.0020 0.0119 0.0119 0.0013

cat2 0.0084 0.0086 0.0084 0.0004 0.0044 0.0276 0.0276 0.0048

cat3 0.0126 0.0058 0.0084 0.0064 0.0050 0.0031 0.0030 0.0072

cat4 0.0114 0.0074 0.0073 0.0057 0.0544 0.0052 0.0052 0.0064

Table 3.7: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the modified exponential truth model.
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Truth Type 5th Order Polynomial

Fit Type Sing.

Exp.

Doub.

Exp.

Trip.

Exp.

Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.0196 0.0069 0.0069 0.0051 0.0254 0.0018 0.0018 0.0142

cat1 0.0024 0.0002 0.0004 0.0010 0.0120 0.0153 0.0153 0.0118

cat2 0.0008 0.0016 0.0017 0.0017 0.0105 0.0194 0.0194 0.0024

cat3 0.0003 0.0093 0.0027 0.0041 0.0102 0.0149 0.0149 0.0057

cat4 0.0071 0.0022 0.0022 0.0002 0.0001 0.0097 0.0097 0.0007

Table 3.8: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the 5th order polynomial truth model.

Truth Type Single Power Law

Fit Type Sing.

Exp.

Doub.

Exp.

Trip.

Exp.

Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.0137 0.0044 0.0075 0.0009 0.0121 0.0043 0.0044 0.0047

cat1 0.025 5 0.0114 0.0119 0.0113 0.0056 0.0083 0.0083 0.0091

cat2 0.0105 0.0114 0.0117 0.0038 0.0168 0.0071 0.0074 0.0062

cat3 0.0265 0.0152 0.0159 0.0145 0.0140 0.0120 0.0120 0.0129

cat4 0.0149 0.0059 0.0059 0.0027 0.0048 0.0014 0.0014 0.0035

Table 3.9: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the single power law truth model.
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Truth Type Double Power Law

Fit Type Sing.

Exp.

Doub.

Exp.

Trip.

Exp.

Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.0126 0.0035 0.0039 0.0026 0.0111 0.0058 0.0059 0.0040

cat1 0.0174 0.0040 0.0043 0.0037 0.0070 0.0009 0.0009 0.0040

cat2 0.0129 0.0097 0.0092 0.0088 0.0091 0.0045 0.0046 0.0088

cat3 0.0193 0.0041 0.0015 0.0072 0.0055 0.0047 0.0033 0.0026

cat4 0.0181 0.0052 0.0039 0.0049 0.0099 0.0021 0.0022 0.0014

Table 3.10: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the double power law truth model.

Truth Type Composite Model

Fit Type Sing.

Exp.

Doub.

Exp.

Trip.

Exp.

Mod.

Exp.

Poly. Sing.

Pow.

Doub.

Pow.

Composite

cat0 0.1338 0.1265 0.1239 0.1241 0.1166 0.1177 0.1175 0.1229

cat1 0.0726 0.0697 0.0705 0.0660 0.0759 0.0561 0.0560 0.0713

cat2 0.0090 0.0299 0.0298 0.0145 0.0552 0.0278 0.0277 0.0304

cat3 0.0222 0.0205 0.0208 0.0205 0.0167 0.0070 0.0070 0.0215

cat4 0.1914 0.1878 0.1879 0.1696 0.1854 0.1776 0.1776 0.1868

Table 3.11: Estimated bias of from the various fit models to the signal region of 123 to 127

GeV for the H → γγ truth model.

3.4.3 Bias in Background Shape and Signal Yield

An additional concern in the model selection is how the shape of the background distribu-

tion effects the final location of the signal peak. Variations in the slope of the background

distribution may lead to biases in the position of the measured signal peak where the mean

mass for the Higgs may be shifted to higher or lower values. We examine the variations

among the slopes of the background model fit distributions around the Higgs mass to de-
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termine if there is any substantial variation introduced by the models. Similar to the bias

study, the slope for the fit background distribution is determined for each potential fit model

in the set, as well as the composite model, for each potential truth background type. The

results for the slopes are displayed in Tabels 3.12 to 3.19.

The composite model, double power law, double and triple exponential models maintain

relatively consistent fit slopes among truth types as well as in relation with each other. The

single exponential and polynomial fit models, however, show the greatest variation in cal-

culated slope around the Higgs mass, not only from the other fit models but also among

their fits to the various truth models. The deviation in the slope for the polynomial is more

substantial than would be expected and we cannot explain these outcomes. Similarly the

values for the single power law fit functions did not converge, despite the fits converging,

which is why they are omitted from the results. Certain categories for the modified expo-

nential fits also failed to converge and are designated by a (*). We therefore proceed with

caution in deriving strong conclusions from these results but acknowledge the consistency

of the slope resulting from the composite model with the other fit models.

Truth Type Single Exponential

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007871 -0.0006567 -0.0006584 -0.0006306 -0.0176181 -0.0006935 -0.0006566

cat1 -0.0008828 -0.0006200 -0.0006200 -0.0021350 0.0105560 -0.0006572 -0.0006119

cat2 -0.0007696 -0.0006615 -0.0006615 -0.0036701 -0.0164910 -0.0006984 -0.0006373

cat3 -0.0011159 -0.0005591 -0.0005609 -0.0002608 -0.0154558 -0.0005848 -0.0005314

cat4 -0.0009333 -0.0006031 -0.0006032 -0.0010931 -0.0165993 -0.0006406 -0.0006026

Table 3.12: Estimated slope of various fit models at mH = 125 GeV for a single exponen-

tial truth model.
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Truth Type Double Exponential

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007432 -0.0007344 -0.0007343 * -0.0184917 -0.0007241 -0.0007176

cat1 -0.0008796 -0.0006107 -0.0006357 -0.0001200 -0.0167992 -0.0006599 -0.0006253

cat2 -0.0009059 -0.0006122 -0.0006122 -0.0026094 -0.0159813 -0.0006491 -0.0006024

cat3 -0.0011501 -0.0005521 -0.0005521 -0.0003344 -0.0158394 -0.0005750 -0.0005452

cat4 -0.0009583 -0.0006157 -0.0006157 -0.0000411 -0.0170691 -0.0006335 -0.0006147

Table 3.13: Estimated slope of various fit models at mH = 125 GeV for a double exponen-

tial truth model.

Truth Type Triple Exponential

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007281 -0.0007234 -0.0007234 * -0.0179595 -0.0007212 -0.0007183

cat1 -0.0008349 -0.0006336 -0.0006334 -0.0003936 0.0066703 -0.0006757 -0.0006380

cat2 -0.0007349 -0.0006754 -0.0006753 -0.0008127 -0.0184208 -0.0007141 -0.0006751

cat3 -0.0010634 -0.0005706 -0.0005713 -0.0004647 -0.0163894 -0.0006000 -0.0005660

cat4 -0.0009810 -0.0005907 -0.0005983 -0.0002325 0.0131302 -0.0006257 -0.0005945

Table 3.14: Estimated slope of various fit models at mH = 125 GeV for a triple exponential

truth model.

Truth Type Modified Exponential

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007269 -0.0007446 -0.0007447 * -0.0181357 -0.0007377 -0.0007198

cat1 -0.0009121 -0.0006221 -0.0006220 -0.0001656 -0.0172350 -0.0006486 -0.0006155

cat2 -0.0007736 -0.0006599 -0.0006599 -0.0029800 -0.0163527 -0.0006971 -0.0006474

cat3 -0.0010368 -0.0005863 -0.0005879 -0.0000857 -0.0164109 -0.0006085 -0.0005837

cat4 -0.0009441 -0.0006156 -0.0006156 -0.0001215 0.0118232 -0.0006379 -0.0006144

Table 3.15: Estimated slope of various fit models at mH = 125 GeV for a modified expo-

nential truth model.
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Truth Type 5th Order Polynomial

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007736 -0.0007063 -0.0007063 * -0.0191395 -0.0007014 -0.0006957

cat1 -0.0008453 -0.0006412 -0.0006443 -0.0003173 -0.0176346 -0.0006719 -0.0006110

cat2 -0.0007726 -0.0006624 -0.0006626 -0.0006327 -0.0172462 -0.0006992 -0.0006634

cat3 -0.0011208 -0.0005376 -0.0005582 -0.0002546 -0.0156649 -0.0005834 -0.0005423

cat4 -0.0009250 -0.0006246 -0.0006244 -0.0000558 -0.0169317 -0.0006445 -0.0006194

Table 3.16: Estimated slope of various fit models at mH = 125 GeV for a 5th order poly-

nomial truth model.

Truth Type Single Power Law

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007600 -0.0006322 -0.0006541 * -0.0175902 -0.0007067 -0.0006462

cat1 -0.0008132 -0.0006880 -0.0006881 * -0.0174916 -0.0006858 -0.0006845

cat2 -0.0007969 -0.0006830 -0.0006822 * -0.0172260 -0.0006927 -0.0006874

cat3 -0.0011147 -0.0005855 -0.0005853 * -0.0164403 -0.0005865 -0.0005848

cat4 -0.0009329 -0.0006380 -0.0006380 * -0.0170663 -0.0006427 -0.0006363

Table 3.17: Estimated slope of various fit models at mH = 125 GeV for a single power law

truth model.

Truth Type Double Power Law

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007298 -0.0007145 -0.0007138 * -0.0178325 -0.0007185 -0.0007147

cat1 -0.0009039 -0.0006272 -0.0006495 * -0.0166073 -0.0006528 -0.0006183

cat2 -0.0008567 -0.0006417 -0.0006382 -0.0002461 -0.0171010 -0.0006679 -0.0006389

cat3 -0.0010964 -0.0005824 -0.0005740 * -0.0163575 -0.0005958 -0.0005888

cat4 -0.0009438 -0.0006387 -0.0006266 * -0.0168969 -0.0006455 -0.0006391

Table 3.18: Estimated slope of various fit models at mH = 125 GeV for a double power

law truth model.
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Truth Type H → γγ Composite Model

Fit Type Sing Exp Doub Exp Trip Exp Mod Exp Poly Doub Pow Composite

cat0 -0.0007443 -0.0007012 -0.0006988 -0.0000010 -0.0174774 -0.0007121 -0.0007002

cat1 -0.0008409 -0.0006421 -0.0006432 -0.0003506 0.0079754 -0.0006735 -0.0006384

cat2 -0.0007597 -0.0006484 -0.0006483 -0.0001201 -0.0163126 -0.0007051 -0.0006552

cat3 -0.0010887 -0.0005604 -0.0005606 -0.0006709 -0.0158355 -0.0005923 -0.0005575

cat4 -0.0009096 -0.0006275 -0.0006274 -0.0000923 -0.0169268 -0.0006496 -0.0006243

Table 3.19: Estimated slope of various fit models at mH = 125 GeV for the AIC composite

model from Inclusive 2013 data.

3.5 Summary

We have applied the multi-model inference ranking to 2013 H → γγ data to examine

the relative strength of the various potential background models within our model set. We

see that the model selected by the previous analysis, a 5th Order Polynomial, is not well

supported using Akaike Information Criterion for this data set. In fact, the Modified Expo-

nential function is well supported in all five categories and is selected as the ”best” model

in three of the five categories.

We also investigated the multi-model averaging approach by build a composite model us-

ing the Akaike weights to weight each model within the model set by their relative support

from the data. We see an acceptable agreement in the fit for the composite model to the

data and that the potential bias to the size and shape of the background distribution in the

signal region is at least not substantially larger than any of the other models in the set. The

composite model is also found to be calculated in a robust manner such that the systematic

uncertainty for its determination is relatively small at 0.09 in comparison to the statistical

uncertainty of the Higgs mass measurement at 0.31.

The discrepancy in the selected model and the lack of support for the currently-used 5th
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Order Polynomial model suggest further need to examine the techniques used for modeling

the Standard Model background. The use of a composite model produced by multi-model

averaging may prove beneficial for future analyses as the resulting function contains more

information obtained from the data itself than a single ”best” model and therefore is a more

robust approximation of the data.
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Chapter 4

Detector Performance

Documentation on the 2012-2013 Photon energy resolution and scale analysis with Z →

µµγ events and instructions for modifying the PHOSPHOR fit code has been compiled on:

https://twiki.cern.ch/twiki/bin/view/CMS/PhosphorZmmg

4.1 ECAL Energy Resolution

The Compact Muon Solenoid is a general purpose detector, designed to examine a wide va-

riety of new physics . It includes the world’s largest high resolution crystal electromagnetic

calorimeter (ECAL) which is comprised of 76,000 lead tungstate (PbWO4) crystals that

cover a solid angle of almost 4π [8]. For the experimental environment set at the LHC, the

ECAL must not only have a high resolution but also be reliable, fast, have high granularity

and be radiation resistant. This motivates the use of lead tungstate, which has a short radia-

tion length (0.89 cm) and a small Molliere radius (2.19 cm), that permits a design with both

high granularity and compactness [8]. The ECAL is a hermetic, homogeneous calorimeter

with a two-fold purpose of measuring the time, location and amount of energy deposits

related to electromagnetically interacting particles, and fully containing the electrons and

photons within its volume. This allows for their identification, as well as precise estimates

of their momenta and the ability to trigger on highly energetic electrons and photons and

large missing transverse energy [29].

The optimization for the ECAL design was based on the potential to discover a Higgs bo-



44

son in the mass region below 130 GeV through the decay scheme of H → γγ [8]. Due to

the small expected intrinsic decay width of the decay channel, the measured width, which

is crucial for the significance of signal over the expected background, is entirely dependent

on the ECAL energy resolution. The goal for the energy resolution of the detector is better

than 0.5% for photons above 100GeV [8].

The measurement of the ECAL resolution is produced by fitting the line shape of the Z

boson in its decay to two electrons, Z → ee. Due to its large mass, the lifetime of the

Z boson is very short and the particle decays again via the same coupling that leads to its

production [8]. The nature of the final state is random among fermion flavors and genera-

tions but the probabilities of the different fermion flavors are fixed by theory and have been

experimentally confirmed to high precision [6]. Due to the design of the ECAL, the decays

to electrons and muons are particularly easy to identify in the detector and separate from

other processes with similar signatures [6].

To fit the Z peak and determine the energy resolution of the ECAL detector we use a

convolution of Crystal Ball (CB) and Breit Wigner (BW) functions. The width of the Z

mass peak is a combination of the contributions from the ECAL resolution as well as the

Z boson’s physical mass width. The Breit Wigner is fixed to a mass of 91.2 GeV/c2 and

width of 2.5 GeV/c2 to represent the physical process of the Z → ee decay. The Crystal

Ball parameters are left to float to represent the detector effects. The ∆mCB represents the

difference in the mass peak for the fit, σCB estimates the absolute mass resolution and αCB

is the exponential parameter for the Crystal Ball function.
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Figure 4.1: Fit of invariant mass peak for Z → ee decay for extraction of mass resolution,

σCB, and scale, ∆mCB [16].

The energy resolution of the detector is related to the mass resolution measured from

the Z → ee peak by assuming a Gaussian resolution for the core of the distribution and

equal sharing of the energy. Then the energy resolution can be determined as:

[6]

σE

E
=
√

2

(
σCB

MZ

)
(4.1)

The mass distributions produced by Data have less pronounced peaks with greater spread

in comparison to peaks produced by Monte Carlo simulation. We examine the strength of

our simulation by determining the extent to which the Monte Carlo needs to be smeared

to match the Data . Using the measured resolution, σCB, from Data and Monte Carlo the

smearing numbers for the Monte Carlo are calculated as:

smear =

√√√√2

((
σCBdata

peakCB

)2

−
(

σCBMC

peakCB

)2
)

(4.2)

The energy resolution and smearing numbers are used to correct the reconstructed energy
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for the H → γγ simulation to match performance measured in data [6].

The ECAL is comprised of a barrel and two end caps, as well as two pre shower detectors.

Due to the presence of the tracker material, as well as the strong magnetic field, electrons

and positrons from pp collisions radiate bremsstrahlung photons before being detected by

the ECAL. On the other hand, photons tend to convert into electron-positron pairs. The

ECAL is compartmentalized into superclusters consisting of multiple contiguous clusters

of crystal which correspond to individual particles entering the ECAL [8]. Due to the

strong magnetic field and presence of the tracker material, electrons and positrons from pp

collisions tend to radiate bremsstrahlung photons before they reach the ECAL. Photons, on

the other hand, tend to convert into electron-positron pairs. Therefore, superclusters consist

of one or more spatially contiguous clusters of ECAL crystals. These clusters correspond

to individual particles entering the ECAL [8]. Photons with high R9 value correspond to

predominantly unconverted particles and have both a better energy resolution and a higher

signal-to-background ratio. Similarly, photons that are detected within the barrel tend to

have both a better energy resolution and higher signal-to-background ratio than end cap

photons due to several factors, including the amount of material in front of the calorimeter

and the less precise single channel calibration [15]. For these reasons, resolution and scale

measurements are separated into categories dependent on the detector location as well as

the corresponding R9 values of the detected particles.
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Figure 4.2: Diagram of CMS electromagnetic calorimeter (ECAL) exhibiting compartmen-

talization of the Barrel and Endcaps [13].

ECAL Detector Regions

EB: Barrel (|η| < 1.44) EE: End Caps (1.5 < |η| < 2.5)

R9 Classification

High: R9 > 0.94 Low: R9 < 0.94

4.2 PHOSPHOR Fit

The Photon energy Scale and Photon energy Resolution (PHOSPHOR) Fit method is a

measurement scheme developed by Jan Veverka, a recent graduate of the Caltech High

Energy Physics group, that extracts the photon energy scale and resolution in-situ mea-

surement using radiative muonic Z boson decays [29]. The measurement is based on an

unbinned maximum likelihood fit of a model for the invariant mass of Z → µµγ. Simi-

lar to the Z → ee process, the width and peak position of the Z boson can be utilized to

measure the photon energy resolution and determine the photon energy scale from data.

The Z → µµγ process is a desirable measurement channel for CMS as muons are very

well reconstructed in the detector and the decay process is a relatively clean source of high

energy photons in op-collisions [29].



48

Figure 4.3: Feynman Diagram for Z boson radiating into two leptons and a photon.

Due to their relatively low mass, electrons tend to radiate bremsstrahlung photons in the

tracker material at a significantly higher rate than other charged particles [18]. The in-situ

measurement of electrons considers this electron showering and photon conversions within

the tracker material which lead to a spread of electromagnetic showers due to the bending

of electrons and positrons by the magnetic field [16]. Due to the spreading energy over a

larger angular range, the likelihood that part of the shower goes into the inter-crystal, inter-

module and inter-supermodule cracks is increased, resulting in more energy being lost on

average. Fluctuations in these losses contribute to the detector resolution and the electronic

noise is increased for showering electrons relative to non-showering electrons due to the

energy spread across a larger array of crystals [16].

The reconstruction of muons is optimized to a very high efficiency for the CMS detector.

Muons are reconstructed as tracks in the inner silicon tracker and are matched to signals in

the outer muon chambers. The signals resulting in the outer systems can either be isolated

hits or reconstructed tracks [16]. Signals that do not originate from primary isolated muons,

such as hadronic punch-through, decay in flight, accidental track-to-segment matches, or

cosmic muons, may be minimized through isolations and kinematic cuts [16].

The ultimate goal of the PHOSPHOR fit is the characterize the in-situ ECAL response

for photons by the photon energy scale, s, and the energy resolution, r. These parameters

are components extracted from the signal modeled are allowed to float in the fit, together

with the signal purity, fS, and two other background components. The ECAL response is
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better realized as a probability density function with an infinite number of degrees of free-

dom considering full generality [29]. To deal with this, we avoid maintaining generality

and restrict the results to a subset of considered responses. The simulation is the starting

point for the response-density phase space, with the location and scale of its kernel density

estimator allowed to vary. The mode and effective sigma of the location and scale param-

eters are then selected and interpreted as the photon energy scale and resolution [29]. In

these terms we consider the photon energy resolution as the effective sigma, ”the half of

the minimum interval of the Eγ response distribution that contains 68.3% of the area under

the curve, the same as the area under the Gaussian distribution around its mean” [29].

In consideration of the determination of signal and background events, the signal is de-

fined by matching generator level topology for any event with a photon radiated off of one

of the legs of the Z by the electromagnetic component of the parton shower with enough

pT to pass the predefined selection criteria. Any other event the passes the preselection cri-

teria is considered background [29]. The various background contributions for the decay

channel come from QCD fakes, W+jet production, tt̄ production and other non-resonant

processes. Another resonant background from Z+jets is considered separately as the addi-

tional peak biases the measurement of the photon energy scale and resolution [29].

The input Monte Carlo is divided to be used to both be fitted and create the fitting model

as it is more robust and precise to use the sample of the simulation in the model creation.

The model is smoothed with a kernel density estimator in order to obtain a non-parametric

estimate of the photon energy response density [29]. From this the MC truth represents

the benchmark estimate of the photon energy scale and resolution in the simulation and the

comparison of the MC truth and MC fit corresponds to a closure test for the fit method.

The final data fit is then used as an estimate of the photon energy scale and resolution in

data [29].These measurements are used to apply corrections to the photon momenta in both

data and Monte Carlo and allow the simulation performance to match that of the data.
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Figure 4.4: An example of the reconstructed µµγ peak and fit with extracted resolution and
scale values from PHOSPHOR Fit.

Figure 4.5: An example of modeling of Eγ response peak by Gaussian (Top Left). The
data and the fit function are displayed on a logarithmic y-axis scale (Top Middle). The data
corresponds to photons in the ECAL barrel with ET > 25 and R9 > 0.94.
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4.3 2013 Resolution Measurements

This section contains the PHOSPHOR fit for photon scale and resolution measurements

using Z → µµγ events from 2013 rereco data at the LHC. The Data and Monte Carlo

samples used in this analysis are displayed in Table 4.1. The data and MC samples are pro-

cessed under the Caltech Vecbos regression and then run through an interface to translate

the ntuples to a format compatible with the PHOSPHOR machinery as well as to imple-

ment 2012 Rochester muon momentum corrections and reweigh the Z mass distributions

for the Monte Carlo with respect to the data pile up distribution.

As the detector resolution varies based on the detector region, R9 classification, degree

2013 Caltech Vecbos Data
Hgg 53X/Caltech/Reduced/DoubleMuParked Run2012B 22Jan2013
Hgg 53X/Caltech/Reduced/DoubleMuParked Run2012C 22Jan2013
Hgg 53X/Caltech/Reduced/DoubleMuParked Run2012D 22Jan2013
Hgg 53X/Caltech/Reduced/DoubleMu Run2012A 22Jan2013
Monte Carlo
Hgg2012/MC/DYToMuMu M 20 FSRFilter 8 TuneZ2star 8TeV pythia6 GEN SIM v2/veverka-
Summer12-PU S7 START52 V9 sttep3 RAW2DIGI L1Reco RECO PU v2-
90a3c643a4855c1621ba3bfcbef2e742 VecBosV20-5 2 X/

Table 4.1: Data and Monte Carlo used in the study of Z → µµγ events

of pile up, and the transverse momentum, pT , of the detected particles, we measure the

detector performance in distinct categories, displayed in Table 4.3.

ECAL Detector Regions

EB: Barrel (|η| < 1.44) EE: End Caps (1.5 < |η| < 2.5)

R9 Classification

High: R9 > 0.94 Low: R9 < 0.94

Pile Up

High: NV > 18 Low NV < 18
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Monte Carlo Resolution (GeV
c2

)

Pt Bin (GeV
c

) High R9 Low R9

Barrel

10 to 12 1.93 6.16

12 to 15 1.79 5.9

15 to 20 1.51 4.7

20 to 25 1.25 3.34

25 to 999 1.03 2.29

End Caps

10 to 12 3.22 7.88

12 to 15 2.8 6.8

15 to 20 2.33 5.73

20 to 25 1.99 4.57

25 to 999 1.83 3.91

Data Resolution (GeV
c2

)

Pt Bin (GeV
c

) High R9 Low R9

Barrel

10 to 12 3.37 9.48

12 to 15 3.22 8.32

15 to 20 1.5 6.4

20 to 25 1.28 4.47

25 to 999 1.42 3.14

End Caps

10 to 12 6.5 12.01

12 to 15 6.83 11.08

15 to 20 4.93 9.38

20 to 25 4.51 8.23

25 to 999 4.35 7.61

Monte Carlo Scale (GeV
c2

)

Pt Bin (GeV
c

) High R9 Low R9

Barrel

10 to 12 0.46 1.31

12 to 15 0.29 0.81

15 to 20 0.28 0.64

20 to 25 0.12 0.62

25 to 999 0.11 0.45

End Caps

10 to 12 1.14 3.32

12 to 15 1.14 1.63

15 to 20 0.97 2.15

20 to 25 0.47 1.8

25 to 999 0.46 0.94

Data Scale (GeV
c2

)

Pt Bin (GeV
c

) High R9 Low R9

Barrel

10 to 12 -0.18 1.4

12 to 15 -1.37 0.28

15 to 20 -0.38 -0.12

20 to 25 -0.55 0.29

25 to 999 0.19 0.4

End Caps

10 to 12 -0.97 5.49

12 to 15 0.52 1.62

15 to 20 2.49 3.33

20 to 25 0.92 2.74

25 to 999 1.71 3.01
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In previous studies, the impact of pile up on the ECAL energy resolution has been

found to be mild and overshadowed by the dependency on the gaussian fraction for any

given fit [6]. In order to consider the effects of pile up, we examine the difference in energy

resolution and scale measurements with relation to the number of vertices in the measured

event. For both data and MC one sees that the resolution deteriorates for higher pile up

conditions, the number of measured vertices begin greater than 18. Similarly, the scale

measurements reveal a greater deviation in the fit mass for increased pile up. Pile up re-

mains a key topic in consideration as future detector conditions move to higher luminosity

environments where increased pile up may cause severe degradation of the detector perfor-

mance.
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Monte Carlo Resolution (GeV
c2

) : Inclusive

Pt Bin (GeV
c

) High Pile Up Low Pile Up

Barrel

10 to 12 4.82 4.06

12 to 15 4.6 3.78

15 to 20 3.49 3.04

20 to 25 2.45 2.19

25 to 999 1.66 1.54

Endcaps

10 to 12 7.56 6.0

12 to 15 5.83 5.17

15 to 20 4.67 4.26

20 to 25 3.65 3.2

25 to 999 3.0 2.64

Data Resolution (GeV
c2

): Inclusive

Pt Bin (GeV
c

) High Pile Up Low Pile Up

Barrel

10 to 12 8.12 5.97

12 to 15 6.2 5.57

15 to 20 5.41 3.83

20 to 25 3.5 2.56

25 to 999 1.78 2.04

End Caps

10 to 12 11.19 9.66

12 to 15 8.28 8.69

15 to 20 6.86 7.4

20 to 25 6.61 5.66

25 to 999 5.51 5.58

Monte Carlo Scale (GeV
c2

) : Inclusive

Pt Bin (GeV
c

) High Pile Up Low Pile Up

Barrel

10 to 12 1.0 0.8

12 to 15 0.8 0.46

15 to 20 0.63 0.46

20 to 25 0.45 0.29

25 to 999 0.28 0.28

End Caps

10 to 12 3.5 1.82

12 to 15 1.47 1.3

15 to 20 0.66 1.14

20 to 25 0.64 0.97

25 to 999 1.11 0.62

Data Scale(GeV
c2

) : Inclusive

Pt Bin (GeV
c

) High Pile Up Low Pile Up

Barrel

10 to 12 0.13 0.35

12 to 15 -1.12 -0.7

15 to 20 -1.58 -0.19

20 to 25 0.29 -0.39

25 to 999 0.67 0.22

End Caps

10 to 12 2.42 1.78

12 to 15 1.95 0.53

15 to 20 1.66 1.8

20 to 25 2.54 1.14

25 to 999 2.61 2.09
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4.4 Resolution Contributions

The ECAL resolution is sensitive to various factors along the chain of the detection and

readout system. Electromagnetic showers of photons and electrons develop within the

crystal, stopping all energetic particles in crystal volume. The resulting scintillation light is

collected by photodetectors attached to back of the crystals where the signal is amplified by

avalanche photodiodes [8]. The crystal light output is dependent on varying temperature

and crystal color change. A laser monitoring system is used to continuously track and

correct these changes in order to maintain the detector energy resolution [8]. The energy

dependence of the energy resolution itself may be parameterized as the quadratic sum of

three terms [8],
σE

E0

=
A√
E0

⊕ B

E0

⊕ C (4.3)

The first term refers the the stochastic contribution due to fluctuations based on the physical

development of the signal shower. For homogeneous calorimeters, intrinsic fluctuations are

small as the energy is deposited in the active volume of the detector by a monochromatic

incident beam of particles which is constant from event to event [13].

The second ”noise” term contains contributions not only from the noise of the readout

electronics but also from pile up [8, 29]. The significance of the noise term depends on the

detector technique for the readout circuit. For scintillator-based sampling or homogeneous

calorimeters, the level of noise can be limited if the electronic chain begins with a photo-

sensitive device which provides a high-gain multiplication of the original signal with no

noise [13]. The noise term is larger in detectors in which the signal is collected as charge

because the first element in in the readout chain is a preamplifier [29]. The noise contribu-

tion to the energy resolution of the detector increases with decreasing energy of the incident

particles and at energies of just a few GeV or lower, may become the dominant term [13].

The third ”constant term” arises from several effects that do not depend on the energy of

the particle such as, but not limited to, calibration fluctuations, non-uniformity of the lon-

gitudinal light collection, shower leakage from the back of the crystal, geometric effects,
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Term Contribution Barrel
(η = 0)

Endcaps
(|η| = 2)

Unit

Noise at low
luminosity

Electronics noise (at start up),
Leakage current noise, Pileup
noise

16 77 % GeV

Noise at high
luminosity

Electronics noise (at start up),
Leakage current noise, Pileup
noise

21 92 % GeV

Stochastic Containment, Photo-statistics,
Preshower sampling

2.7 5.7 %
√

GeV

Constant Inter-calibration, Longitudinal
non-uniformity, Others

0.55 0.55 %

Table 4.2: Expected contributions to the CMS ECAL energy resolution [29].

and imperfections or damage in calorimeter structure and readout systems [8, 13, 29]. The

primary goal for the design of a calorimeter is to determine an optimal compromise among

the contributions from these terms. For a high resolution electromagnetic calorimeter, the

energy resolution at high energies is often dominated by the constant term [8].

By fitting the photon resolution from the Z → µµγ events as a function of the detected

photon energy, ET , we can extract the stochastic, noise and constant terms to the detector

energy resolution. In Figure 4.8, one can see how the resolution varies under the effects of

pile up. Note that the stochastic and constant terms remain consistent for both barrel and

end cap categories but the noise contribution is clearly more pronounced in the high pile

up category, rising from 64% to 77% GeV in the barrel and 95% to 99.2% GeV in the End

Caps.

4.5 Future Improvements

Current limitations to the PHOSPHOR Fit method using Z → µµγ events is primarily

due to certain fit categories failing due to limited statistics in either data or Monte Carlo.

Seeing that the Monte Carlo sample is divided in order to both create the fit models and be

fitted itself, large samples refined for Z → µµγ events are ideal to ensure enough statistics
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(a) Data High R9: Barrel (b) Data Low R9: Barrel

(c) MC High R9: Barrel (d) MC Low R9: Barrel

(e) MC Truth High R9: Barrel (f) MC Truth Low R9: Barrel

Figure 4.6: Barrel resolution contributions with Data fits on top, Monte Carlo fits in the
mid row and Monte Carlo Truth on bottom.
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(a) Data High R9: End Caps (b) Data Low R9: End Caps

(c) MC High R9: End Caps (d) MC Low R9: End Caps

(e) MC Truth High R9: End Caps (f) MC Truth Low R9: End Caps

Figure 4.7: End Caps resolution contributions with Data fits on top, Monte Carlo fits in the
mid row and Monte Carlo Truth on bottom.
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(a) Data High Pile Up: Barrel (b) Data Low Pile Up: Barrel

(c) Data High Pile Up: End Caps (d) Data Low Pile Up: End Caps

Figure 4.8: Resolution Contributions in bins of pile up and detector location
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for the fits to converge. In addition to this, a limitation in the fit method itself has been

identified related to the creation of the background models.

The PHOSPHOR Fit method creates three separate models for the signal, non-resonant

background and resonant background based around the peak from Z+jets. The resonant

background model is meant to specifically fit the Z+jets contribution, which is normally

dominant over all other resonant backgrounds, and does not factor in any other contribu-

tions. This however may not be properly motivated as additional background from the

combination of muons and a photon produced from bremsstrahlung of a muon smears the

shape of the resonant background peak and shifts the mean to a lower mass. Usually this

muon bremsstrahlung background is overwhelmed by Z+jets but in certain categories is has

been noted to be substantial enough to cause the fit to fail, particularly in categories that

are already sensitive.

Another issue arises in the background modeling as the Monte Carlo does not consistently

model the non-resonant background properly. During the minimization process for the fit

it appears that the model discounts the exponential feature, though the data distribution

clearly supports the existence of this feature. In the model construction, it is assumed that

this background can be appropriately modeled by an exponential function which may prove

to be invalid. The optimal approach for improving the fit method and increasing the effi-

ciency for the fit convergence is to determine an appropriate modeling of the background

contributions and produce a combined background model based on the independent fits

weighted by the relative strength of the backgrounds. In consideration of this, an appro-

priate method for future modeling may be the implementation of a multi-model averaging

scheme, considering the scenarios of either combining independently modeled resonant

and non-resonant backgrounds or attempting to build a composite model of both features.

Using data-driven model selection for these backgrounds may assist not only in improving

the fit convergence efficiency but also the overall performance measurement by increasing

the signal to background discrimination.
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Proposed alternatives to improving the fit convergence are derived from cut-based motives

including enhancing the Z+jets background by releasing cuts on the di-muon and recon-

structed µµγ masses or implementing even stricter cuts to reduce the muon bremsstrahlung

background and non-resonant contribution. The outcome of the first alternative has been at-

tempted and resulted in unfavorable results with further degradation in efficiency for the fit

convergence. Unfortunately for the latter alternative, applying additional kinematic restric-

tions poses additional challenges in skewing the shapes of the fits and also further limiting

the statistics for the fit.
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Chapter 5

Higgs Self-Coupling Measurement

This chapter summarizes a recent analysis of the potential for future measurements of the

Higgs self-couplings at an upgraded CMS detector along with proposed upgrades to the

High-Luminosity Large Hadron Collider in the near future. It concludes with a discussion

of the expected errors in future measurements as well as focused areas of improvement for

detector designs and particle identification algorithms. More information on the analysis

can be found in references [22] and [1].

5.1 Introduction

The recent discovery of a Higgs-like boson with a mass around 125 GeV by the ATLAS

and CMS collaborations at the LHC provides unequivocal evidence of some mechanism of

spontaneous electroweak symmetry breaking and of the generation of the masses of funda-

mental particles [1]. This discovery concludes an era of Higgs discovery and begins a new

focused on precision measurements of the properties of this particle. Before the identifica-

tion of the Standard Model Higgs boson can be completely establish we need more precise

measurements of its coupling and evidence that its spin is zero [3]. One of the most im-

portant subsequent measurements is to reconstruct the scalar potential of the Higgs doublet

field that is responsible for electroweak symmetry breaking through measurements of the

Higgs self-couplings [4].

V (ηH) =
1

2
m2

Hη2
H + λνη3

H +
1

4
λ̃η4

H (5.1)
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Where λ refers to the trilinear self-coupling, λ̃ the quartic self-couplings, ν = (
√

2GF )−1/2

the vacuum expectation value, ηH the physical Higgs field, and GF the Fermi constant [5].

The Higgs self-couplings can be measured by studying the production rates and kinematics

of double and triple Higgs boson production at the LHC. These processes are highly sup-

pressed, therefore a large amount of integrated luminosity is required in order for them to

be observed and measured. With these measurements in mind, CERN is considering the

proposed Phase II upgrades for the LHC in 2022 to the High-Luminosity LHC (HL-LHC),

which is expected to be able to deliver a total integrated luminosity of 3 ab−1 [22].

A significant challenge at high luminosity is the increase of pile up events, multiple col-

lisions per bunch crossing. The HL-LHC is expected to run with increased pile up at an

average of 140 simultaneous pile up events [1]. Increased pile up poses challenges on the

objectID and trigger to preserve their performance in this environment [25]. In order to

address issues in maintaining detector performance, CMS will install an upgraded pixel

tracker in the Phase1 upgrade period during the shutdown targeted for 2018, as well as sev-

eral possible upgrades to the forward calorimetry systems and the silicon tracker currently

under study for the Phase2 upgrade period [1].

The measurement of the Higgs boson self-coupling provides an important benchmark for

evaluating the utility and performance of the different proposed designs. The dominant

production mechanism for double Higgs boson production at the LHC is the gluon fusion

process, and the production cross section for this process at a center of mass energy of 14

TeV has been calculated to next-to-leading-order to be 33.89 fb [4]. Double Higgs boson

production can occur, not only through diagrams involving the Higgs boson self-coupling,

but also through loop induced diagrams involving two tt̄H couplings. These processes will

interfere destructively, such that the cross section is approximately a factor of two larger

than in the Standard Model when lHHH is set to zero. The most optimistic channel for

the di-Higgs analysis is that of one Higgs boson decaying to a pair of photons, and the

other Higgs boson decaying to a pair of b-quarks, HH → bb̄γγ, due to its relatively large

branching fraction with a comparatively low background and good mass resolution of the
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H → γγ channel [24]. This channel has been studied in the past and shown to have rea-

sonably good sensitivity at the LHC [4, 22].

In this chapter we present a comprehensive study of the Higgs pair production process

in the bb̄γγ decay channel at the HL-LHC using the CMS detector. Through a combination

of generator level, fast simulation and full simulation studies we estimate the sensitivity of

the di-Higgs production cross section measurement and examine the dependencies of the

measurement sensitivity on various detector scenarios such as the high pile up environment

as well as the photon and jet energy resolutions.

5.2 Object Selection

The signal process for this analysis is the production of two Higgs bosons, one decaying to

a pair of b quarks and the other decaying to a pair of photons. The relevant backgrounds

are broadly categorized into resonant backgrounds which contain a Higgs boson decaying

to two photons and non-resonant backgrounds which do not contain a Higgs boson. Due

to the excellent photon energy resolution of the CMS ECAL, the background involving the

Higgs boson decaying to two b-jets is suppressed to negligible levels.

Our signal and background Monte Carlo samples are produced from generator-level events

either from full simulation Monte Carlo samples of the current Run 1 CMS detector or Mad-

graph samples, undergoing parton showering and hadronization using Pythia and weighted

with tagging efficiencies for photon and b-jets. Photons are selected using a relatively ro-

bust cut-based approach, applying requirements on the electromagnetic shower width, the

hadronic to electromagnetic energy ratio and isolation. The efficiencies for photons to pass

these selection criteria is evaluated using the GEANT-based full simulation of the current

Run 1 CMS detector. We determine the tagging efficiency as the number of reconstructed

objects passing ID cuts over the total number of generator-level objects. These efficien-

cies are calculated as a function of η and pT and then are used to weight each event as a

probability of each constituent particle. A similar process is used to determine the tagging
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efficiencies of b-jets by searching for the presence of secondary vertices.

For this study we produced samples for the numerous reducible and irreducible back-

grounds for the HH → bb̄γγ process. The irreducible backgrounds are estimated using

full simulation samples and include resonant backgrounds from a Higgs boson produced in

association with a Z boson, ZH , a top and anti-top quark pair, tt̄H , and a b and anti-b quark

pair, bb̄H . There is also non-resonant irreducible background including QCD production of

bb̄γγ, QCD production of jjγγ with light jets mistagged as b-jets, QCD production of bb̄jγ

and bb̄jj with one and two jets misidentified as photons respectively, and QCD production

of four jets with two jets mis-identified as photons and two jets mistagged as b-jet, jjjj,

dominated by mistagged charm jets, ccjj.

To produce samples for the reducible backgrounds from fake photons and mistagged b-

jets we calculated similar mistagging efficiencies for photons and b-jets. I calculated the

efficiencies for jet-induced fake photons using full simulation of QCD di-jet samples, dis-

played in Figure 5.1. We note that the average fake rate for photons is about 5x10−4 for

gluon jets and about 2x10−3 for quark jets. The mistag rate for light jets and charm jets as

b-jets are also evaluated. The average mistag rate for light jets is about 1% and for charm

jets is about 15%.
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Figure 5.1: Photon mistagging efficiences due to gluons faking photons, on the left, and
quarks faking photons, on the right.
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In the selection process for reducible background samples we produce generator-level

events only containing the constituent particles matching the respective background com-

ponents. For the case of two fake photons and two real b-jets, bb̄jj, I reject all events

that contain real generator-level photons and that do not contain two generator-level b-

jets, selected with PDG (Particle Detection Group) Identification. To increase the sample

size we produce all potential fake photon pairs by promoting all unique pairs of remaining

non-b-jets that have pT > 20 and |η| <2.5 as photons. The tagging efficiencies for each

corresponding fake photon and real b-jet is then used to weight the individual events. Sim-

ilar processes are used to determine the other reducible background jjγγ, ccjj and jjjj.

Using a combination of the full simulation of the CMS Phase1 detector with an average of

140 pileup events and the Delphes fast simulation, we extrapolate the photon and b-tagging

efficiency to pileup conditions expected for the high luminosity LHC. The standard recon-

struction has been used for the high pile up full simulation sample, and no attempt was

made to re-optimize the algorithms. Therefore, significant improvements on these perfor-

mances are likely possible. Based on these estimates, we reduce the b-jet tagging efficiency

by a relative fraction of about 20% per b-jet and we reduce the photon selection efficiency

by a relative fraction of about 20% per photon to extrapolate to the high pileup scenario of

the HL-LHC. These object selection efficiency reductions result in an overall decrease of

the signal efficiency by about 55%.

5.3 Cut Analysis

After the object selections for each signal and background sample we select events con-

taining two photons with pT greater than 25 GeV and |η| < 2.5, and two b-tagged jets with

pT greater than 30 GeV and |η| < 2.4. One of the two photons is required to have pT > 40

GeV. To suppress tt̄H background events, we require that there are no electrons or muons

passing the veto selection and that the number of jets with |η| < 2.5 is less than 4. In order

to determine the expected event yields for each sample the Monte Carlo is normalized to

the respective sample cross section multiplied by the branching ratio of 0.089 fb. By inte-
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grating over the normalized, weighted composite bb̄γγ mass distributions we calculate the

event yields for 3 ab−1 of integrated luminosity.

I investigated a number of different additional kinematic requirements in order to improve

the signal to background ratio. We apply angular requirements on the ∆R between photons

and b-jets. We denote this as ”Selection A,” requiring that ∆Rγγ < 2.0 and min(∆Rγb) >

1.0. I then examined additional requirements for further signal to background optimiza-

tion by tightening these angular restrictions such that min(∆Rγb) > 1.5 and introducing

a requirement on the ∆R of the two b-jets, ∆Rbb̄ < 2.0. These cuts, in addition, to the

previous selections, are denoted as ”Selection B.” Furthermore, I studied the performance

of an alternative kinematic selection, where cuts are applied on the transverse momenta of

the diphoton, di-bjet and di-Higgs system rather than the angular variables. I introduced

”Selection C” requirements with 10 < PTbb̄γγ < 110 GeV and (PTbb̄ + PTγγ) > 260 GeV .

Finally, I attempted to improve the signal to background further by tightening the cuts on

the angular variables such that ∆Rγγ < 1.6, ∆Rbb̄ < 1.6 and min(∆Rγb) > 1.5. We denote

these cuts as ”Selection B Tight.”
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Figure 5.2: Normalized distributions of ∆Rγγ and min(∆Rγb) are shown for the di-Higgs
signal, the tt̄H background and the QCD non-resonant backgrounds

In Table 5.1, we compare the expected signal and background event yields within the

resonant mass windows for the four selection schemes that we studied. We observe that

“Selection B” and “Selection C’” achieve similar signal to background ratios, and both im-
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Figure 5.3: Normalized distributions of ∆Rbb after the ”Selection A”requirements are
shown for the di-Higgs signal, the tt̄H background, and the QCD non-resonant back-
grounds.
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Figure 5.4: Normalized distributions of the pT of the di-Higgs system (a), the diphoton
system (b), and the di-bjet system (c) are shown for the di-Higgs signal, the tt̄H back-
ground, and the QCD non-resonant backgrounds. The distribution of the sum of the pT of
the diphoton system and the pT of the di-bjet system is shown in (d).

prove slightly upon the “Selection A”. “Selection B Tight” achieves significantly improved

signal to background, but at a cost of about 25% in signal efficiency. Attempts at achieving
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better signal to background ratio by tightening cuts in the “Selection C” scenario resulted in

significantly larger reduction in signal yield compared to the “Selection B Tight” scenario.

I also studied the degree to which the different kinematic requirements alter the shape of

Expected Events: Mbb: (105,145) GeV, Mγγ: (120,130) GeV
Sample Type Selection A Selection B Selection C Selection B Tight
HH → bbγγ 11.9 10.6 10.3 7.8
ZH → bbγγ 3.6 2.3 2.4 2.0
ttH, H → γγ 2.9 1.7 1.5 1.1
bbH,H → γγ 1.2 0.9 0.8 0.6

bbγγ 15.3 9.3 8.7 3.7
jjγγ 16.0 7.0 9.7 2.7

jjjj, ccjj, bbjj 0.2 0.02 0.02 0.0
tt 0.8 0.1 0.1 0.0

S/B Ratio 0.30 0.50 0.44 0.77
S/
√

B (Signal
Significance)

1.9 2.3 2.1 2.4

Table 5.1: Expected event yields for 3ab−1 of integrated luminosity for the di-Higgs signal
and background under various event selection schemes

the diphoton and di-bjet mass distributions. In order to extract the signal from the non-

resonant background we perform a maximum likelihood fit on the diphoton and di-bjet

mass distributions. For this analysis method, it is critical that any of the kinematic selection

cuts that are applied preserve the smooth and monotonic behavior of the non-resonant back-

ground. Any peak-like feature that is introduced in the non-resonant background would

bias the determination of the background as well as the cross section measurement.

In Figure 5.5, we show the distributions of the diphoton and di-bjet mass after the ”Se-

lection A”, ”Selection B”, and ”Selection C” requirements for the non-resonant bb̄γγ back-

ground. We note that the Selection A and the Selection B cuts do preserve the general

exponentially decaying trend in the mass distributions, however the Selection C cuts ap-

pear to significantly change the shape of the mass distributions. They still appear smooth

and monotonic, but are significantly more flat, with a more severe inflection in the case of

the diphoton mass.Therefore, we prefer the ”Selection B” cuts and continued the remaining

analysis with the ”Selection B” requirements.
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Figure 5.5: The distribution of the diphoton and di-bjet mass for the QCD bb̄γγ background
process, after the various event selection schemes. The diphoton mass distributions are
shown on the left and the di-bjet mass distributions are shown on the right. The selections
are in descending order of A, B and C.

5.4 Signal Extraction

Two methods are utilized to determine the expected HH → bb̄γγ signal yield. The first

involves a cut and count, where we apply event selection requirements as mentioned in

the previous section and count the event yield, subtracting the expected background. The

second analysis applies ”Selection B” kinematic selections and performs a two dimen-

sional maximum likelihood fit on the diphoton and di-bjet masses. We derive probability
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density functions (PDFs) for the diphoton mass, Mγγ , and the dibjet mass, Mbb, distribu-

tions for the signal, the resonant background and the non-resonant background by fitting

the distributions from the Monte Carlo simulation samples to particular parametrization of

the line-shape for Mγγ and Mbb. The diphoton mass distribution for the signal and reso-

nant background is fitted to a Gaussian distribution. The non-resonant backgrounds, being

dominated by ZH where the Z bosons decay into a pair of b-jets, is fitted to a Crystal Ball

distribution. The non-resonant background for the di-bjet mass is fitted to a decaying ex-

ponential. Figure 5.6 shows the diphoton and dibjet mass distributions and PDFs used to fit

the model for the line-shape for the signal, resonant and non-resonant background with MC

samples under low pile up conditions. To model the degraded jet energy resolution under

the HL-LHC pile up conditions, the jet energy resolution parameter is then appropriately

increased.

The PDFs for the signal and backgrounds are weighted with the number of events within

the fit mass window determined by the cut analysis in order to build the full model for the

signal region sample. Then toy MC experiments are randomly drawn from the full model

and two-dimensional fits are performed where the yields for the signal and backgrounds

are floated. We also evaluate the 95% confidence level upper limit on the di-Higgs pro-

duction cross section, as an alternative measure of the sensitivity and find an upper limit of

78fb corresponding to 2.3 times the Standard Model cross section. Using the dependence

of the cross section on the coupling parameter provided by [4], the projected cross section

uncertainty translates into an uncertainty on λHHH of +386%− 98%.

We show also the distribution of the fit uncertainty on the signal yield where we observe

that the average statistical uncertainty of the cross section measurement using the two di-

mensional fit is about 45%, representing an improvement on the cut-based analysis of about

10%. Based on the dependence of the cross section on the coupling parameter, this cross

section uncertainty translates into an uncertainty on λHHH of +77%/− 48%.
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(a) Diphoton Mass

(b) Di-bjet Mass

Signal Resonant Background Non-resonant Background

Figure 5.6: Initial fits to the diphoton and di-bjet mass distributions for the signal (left),
the resonant background (middle) and the non-resonant background (right) to define the
probability density functions. The PDF models for the diphoton mass are shown on top
and the models for the di-bjet mass are on the bottom. [1]

5.5 Systematic Uncertainties

At an integrated luminosity of 3000 fb−1 the systematic uncertainties are dominated by sta-

tistical uncertainties. The photon selection efficiency systematic uncertainty is dominated

by the systematic efficiency of the electron veto requirement. With the jet energy resolution

measured to better than 10% and the photon energy resolution to within 15%, the average

bias induced on the cross section measurement are about 2% and 9% for the jet and photon

energy resolutions, respectively. Systematic uncertainties for the photon selection effi-

ciency and b-tagging efficiency are negligible in comparison to statistical uncertainty. The

systematic uncertainty on the non-resonant background is determined where the assumed

non-resonant background model used is the product of an exponential and a fourth degree

polynomial fitted to the expected non-resonant background distribution with an exponential

fit used to perform the fit. This results in an average bias of about 12%. The dominant sys-

tematic uncertainties on the coupling measurement arises from the theoretical uncertainties

of the double Higgs boson production cross section. The total systematic uncertainty of
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34% which corresponds to the cross section measurement as a coupling measurement in a

total systematic uncertainty of +52%/− 38% on the coupling parameter [1].

5.6 Upgrade Scenarios

The degradation in object selection performance under the HL-LHC, pile up conditions re-

sults in a decrease in the signal efficiency of more than a factor of two. As the measurement

is primarily limited by the number of selected signal events, improving the object selection

efficiency is the most important aspect. To explore the effect of the object selection effi-

ciencies and to provide a general goal for the detector upgrade. We show in figure 5.7 the

sensitivity as a function of the relative improvement on the photon selection efficiency and

the b-tagging efficiency, over the current performance estimate under the HL-LHC pile up

conditions.

With more sophisticated multivariate techniques, improvements to the jet energy resolution

may be possible. We examine the dependence of the di-Higgs cross section measurement

sensitivity on the photon and jet energy resolution. We vary the widths of the input model

PDF for the di-photon mass and the di-bjet mass, generating a corresponding set of toy

experiments, and performing the 2D mass fit analysis for each such set. For the di-photon

mass, we scan widths ranging from 0.9 GeV to 3.9 GeV, corresponding to average photon

energy resolutions ranging from 1% to 4.5%. For the dibjet mass, we scan widths ranging

from 10 GeV to 20 GeV, corresponding to average jet energy resolutions ranging from 11%

to 22% . For a goal precision of 50% on the di-Higgs production measurement, we find

that the jet energy resolution must improve by roughly 25% over the current performance

estimated with HL-LHC pile up conditions [1]. Looking at the sensitivity of the cross

section measurement on the total integrated luminosity in Figure 5.8, with two experiments

both collecting an integrated luminosity of 3 ab−1, we expect a relative uncertainty of about

35%. This translates into an uncertainty on λHHH of +54%/− 39%.

The current fake photon background in the end cap is prohibitively large. To study the
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Figure 22: The average expected relative uncertainty on the di-Higgs cross section measure-Figure 22: The average expected relative uncertainty on the di-Higgs cross section measure-
Figure 5.7: The average expected relative uncertainty on the di-Higgs cross section mea-
surements are shown as a function of the assumed widths of the diphoton (left) and di-bjet
(right) mass distributions for the signal. [1]

effect of an upgraded end cap calorimeter with possibly improved signal to background

discrimination for photons, we examine the assumed photon fake rate in the end cap and

observe that a reduction in the end cap photon fake rate of a factor of 10 , yielding a cor-

responding reduction in the fake photon non-resonant background, yields an improvement

in the cross section measurement uncertainty of about 4%. Finally, we study the analysis

sensitivity on the total integrated luminosity. We find that in order to achieve a relative

uncertainty on the cross section measurement of 50% with the one experiment, we must

achieve a relative improvement in the photon selection efficiency and b-tagging efficiency

of about 25% and an improvement in the jet energy resolution of about 25%. These perfor-

mance parameters correspond roughly to what is achieved under Run1 pile up conditions.

These establish clear performance goals for the detector upgrades and algorithm improve-

ments. A significant part of the required improvement can be achieved from improved

b-tagging and photon identification algorithms, while the rest may be achievable through

an upgraded silicon tracker with possibly an extended coverage to forward regions, and an

upgraded forward calorimeter with improved photon-pion discrimination.

We investigate the sensitivities for the cut and fit-based analyses with potential detec-

tor scenarios. First, we extrapolated to the HL-LHC pileup scenario by combining the

full simulation of the CMS Phase 1 detector with an average of 140 pileup events and the
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Figure 5.8: The average expected relative uncertainty on the di-Higgs cross section mea-
surements are shown as a function of the integrated luminosity [1].

Delphes fast simulation and then extracting the degraded photon and b-tagging efficien-

cies for the higher luminosity conditions. We then reweight the samples and produce the

expected event yields. From these expected event yields, we observe that under this very

pessimistic detector performance scenario, the di-Higgs cross section measurement sensi-

tivity would degrade by about 50%, yielding a statistical uncertainty of about 77% for a

cut-based analysis. The two dimensional mass fit analysis yields statistical uncertainty of

about 68% under this scenario.

We also explore the scenario where the size of the non-resonant background is increased

by a factor of 2. This may occur due to degraded object selection performance resulting

in poorer signal to background discrimination, or simply due to a systematic mis-estimate

of the QCD backgrounds from the current Monte Carlo simulation. We also explore the

scenario where the size of the non-resonant background is decreased by a factor of 2, which

may occur if detector hardware or algorithmic improvements can significantly improve the

b-tagging performance such that the mistag background from the jjγγ is reduced to negli-

gible levels. The results for the cut-based analysis and the two dimensional mass fit analysis

are summarized in Table 5.3.
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Expected Event Yield with Average 140 Pile Up: Selection B

Sample Type

Fit Window
Mbb̄: (70,200)

Mγγ:
(100,150)

Conservative
Window Mbb̄:

(105,145)
Mγγ:

(120,130)

Optimistic
Window Mbb̄:

(110,140)
Mγγ:

(122,128)
HH → bbγγ 7.5 5.5 4.3
ZH → bbγγ 8.9 1.3 0.6
ttH, H → γγ 2.2 0.8 0.5
bbH,H → γγ 1.5 0.4 0.3

bbγγ 69.0 4.4 2.1
jjγγ 73.4 5.1 2.6

jjjj, ccjj, bbjj 11.1 0.0 0.0
tt 5.3 0.2 0.05

S/B Ratio 0.04 0.45 0.70
S/
√

B (Signal
Significance)

0.57 1.6 1.7

Table 5.2: Expected event yields for 3ab−1 of integrated luminosity estimated for high pile
up scenario expected for the HL-LHC. The event yield reflect ”Selection B” requirements
within three different mass windows.

5.7 Conclusion

Through the combination of generator level, fast simulation, and full simulation studies

we have estimated the sensitivity to the di-Higgs production cross section measurement

to be around 56% for 3 ab−1 of integrated luminosity at the HL-LHC. The expected fit

uncertainty is around 104% for the nominal object selection performance scenario, the

experimental systematic uncertainty is about 13%. The expected statistical uncertainty is

around 45% and the systematic uncertainty, dominated by theoretical uncertainties, is about

34%. This translates into statistical and systematic uncertainties on the self-coupling pa-

rameter of +77% − 48% and +52%/ − 38%, respectively. The approximate impact of

the high pileup environment expected for the HL-LHC has been evaluated and, though the

degradation is rather severe using the naive and un-tuned algorithms, substantial recovery

of the current detector performance may be achieved by re-optimizing the reconstruction

algorithms. Finally, we have reported dependencies of the cross section measurement sen-

sitivity on the eventual performance of the detector on photon and jet energy resolutions,
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Scenario Cut-Based Analysis 2D Mass Fit Analysis
Nominal Result 50% 45%

High Pile Up 77% 68%
Non-Resonant Bkgd x 2 61% 52%
Non-Resonant Bkgd / 2 43% 41%

Table 5.3: The average expected relative uncertainties on the di-Higgs cross section mea-
surement are shown for various detector scenarios [22].

as well as the total integrated luminosity [1].

Accounting for the additional theoretical uncertainty on the predicted cross section of 30%,

we obtain statistical and systematic uncertainties on the Higgs trilinear self-coupling pa-

rameter λHHH of +385%− 98% and +50%− 37%, respectively under the nominal object

selection performance scenario. To achieve the goal of measuring the di-Higgs produc-

tion cross section to 50% precision (35% with two identically performing experiments),

we must achieve 25% improvement on the photon selection efficiency, b-tagging efficiency

and jet energy resolution over the current performance estimates for the HL-LHC pile up

condition. If this performance is achieved, the Higgs trilinear self-coupling parameter can

be determined to a precision of +93%− 52% with one experiment and +55%− 39% with

two identically performing detectors [22].

Significant degradation in cross-section measurements is expected if progress is not made

to improve particle tagging efficiencies and discrimination between signal and background.

A key feature to the HH → bb̄γγ channel is the diphoton decay component of the Higgs

boson which hosts a narrow peak over a smooth background. Improvements to the photon

energy resolution would result in a narrower mass peak which improves the overall dif-

ferentiation of signal to background [25]. Photon resolution and identification efficiency

at HL-LHC will be significantly influence by the pile-up conditions. Photon isolation and

shower shapes play a central role in identification. CMS employs a particle flow algo-

rithm to determine the photon isolation, optimally combining the information from all sub-

detectors to determine the energy flow in the isolation cone around the photon. Photon
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reconstruction, energy measurement, and identification all depend on sophisticated algo-

rithms which are tuned on large samples of fully simulated events with proper pile-up

conditions. It is crucial that these algorithms are enhanced to compensate for future condi-

tions [1].

A predominant background for HH → bb̄γγ was from non-resonant QCD bb̄γγ produc-

tion. As previously mentioned, the non-resonant background was evaluated with an as-

sumed background model using a product of an exponential and fourth degree polynomial

fitted with an exponential function. In this case where there is no theory-motivated model

to describe this non-resonant background, the use of multi-model averaging may prove

beneficial in producing a data-driven model that can better describe the background and

provide better results for the signal yield. Improved model selections for both the H → γγ

SM background as well as the non-resonant background of the HH → bb̄γγ could yield

significant improvements in future di-Higgs signal measurements. Overall, the increase in

data and its complexity in future physics analyses, such as at the HL-LHC, suggests a need

for more sophisticated computing methods.
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Chapter 6

Discussion

The aim of this study was to apply a multi-model inference ranking method using Akaike

Information Criterion to determine an appropriate model for the Standard Model back-

ground that best represents the data. The current results reveal that the previous selection

of a 5th-order polynomial as the background model is not well supported by the 2013

diphoton data based on the AIC measurements. Seeing that the improper modeling of the

Standard Model background has a substantial effect on the modeling and measurement of

the H → γγ signal, a review of the model selection is necessary.

In addition to the applications of MMI technique to the H → γγ background analysis, we

have presented updated results on the CMS detector performance using Z → µµγ events

as well as the expected di-Higgs cross section measurement uncertainties for the future

analysis of the Higgs self-couplings at the future High-Luminosity Large Hadron Collider.

We have discussed not only the current state of these measurements under present detector

conditions but also motivate potential improvements in both the detector design and algo-

rithmic development. It is apparent that the increase in pile up is a substantial factor for the

detector energy resolution as well as the success of the trigger and particle identification

systems. The inevitable future outlook of increased luminosity conditions with an increase

in pile up to even an order of magnitude truly poses a challenge to future analyses. In the

case of the HL-LHC, significant degradation in measurements are expected if efforts are

not made to improve detector hardware and particle identification algorithms.
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In terms of advancements in computational methods, we have also highlighted potential ap-

plications of the MMI method to both the PHOSPHOR Fit method as well as the di-Higgs

cross section measurement. The issue of background model selection and its application

to improving signal to background differentiation is apparent in many areas of study. The

use of a multi-model averaging technique to properly model the Z → µµγ backgrounds

may prove beneficial in improving the overall detector resolution measurements which are

directly applicable to the H → γγ and HH → bb̄γγ measurements. Producing data-driven

models for these backgrounds may assist in surpassing the statistical limits of the relevant

fitting processes.

Overall, the significance of model selection with applications to fit-based analyses for sig-

nal extraction is quite clear. The ability to properly extract relevant information from com-

bined signal and background models rather than relying on cut-based approaches to isolate

signal has multiple statistical benefits. The issues of relying on kinematic selections for

signal discrimination is that the overall amount of statistics for the final fit is limited which

may bias the results and get rid of valuable information. As seen previously in the Higgs

self-coupling analysis, it is also difficult to determine appropriate cuts that isolate solely

the background contributions and that do not significantly alter the shape of the signal and

fitted background distributions. This analysis also revealed the overall improvement in the

statistical uncertainty on the signal yield from fit-based analyses over cut-based analyses.

Ultimately it is advantageous to be able to determine a proper model function for the shape

of the background distribution given in order to minimize the bias in the final signal ex-

traction. In the event that our theory does not provide enough motivation for this model, a

realistic goal is to determine a data-driven model which best approximates this distribution

and minimizes the bias to the signal region. Multi-model averaging may prove beneficial

for future analyses as the resulting function contains more information obtained from the

data itself than a single ”best” model and therefore is a more robust approximation of the

data.
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