MILLIMETER-WAVE MONOLITHIC
SCHOTTKY DIODE-GRID PHASE SHIFTER

Thesis by
Wayne W. Lam

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1987

(Submitted January 31, 1987)

TO MY PARENTS

iii

Acknowledgements

I would like to express my deepest thank to Professor David Rutledge, my the-
sis advisor, for having given me the opportunity to be a member of his Millimeter-
Wave Integrated Circuits Group. His ideas, encouragement and guidance made
this work possible, and his kindness and understanding helped me grow. It has
been my good fortune to have met him.

I am grateful to Professor Dean Neikirk for showing me the art of fabricat-
ing microbolometers. I am indebted to Dr. Chung-en Zah for teaching me the
techniques of diode fabrication.

Also, I would like to thank Professors William Bridges, Marc-Aurele Nicolet,
and Amnon Yariv at Caltech, and to Professor Neville Luhmann, Jr., at UCLA,
for the use of their equipment and facilities. Especially, I would like to extend my
thanks to Howard Chen for supplying me the epitaxial wafers for my research,
Frank So for doing proton bombardments, Christina Jou for helping me in diode-
grid measurements. In addition, I appreciate Dr. Thomas Kuech at IBM for
sending me MOCVD wafers, Kjell Stolt at TRW and Lars Eng at JPL for growing
the epitaxial wafers, and Bob Rush at Hughes for proton implantation.

Furthermore, I would like to thank Joyce Liddell for her secretarial assistance,
Wyman Williams and Rick Compton for sharing their computer expertise, and
other members of the group for their friendship and support.

I am grateful for the financial support of the Army Research Office Fellowship
and the AMOCO Foundation Fellowship.

And finally, I am most thankful to my parents, Hing Shing and Kor Han
for giving me a better chance in life and my brother, Lawrence, for getting me

interested in going to college rather than to the beach.

iv

Millimeter-Wave Monolithic Schottky
Diode-Grid Phase Shifter

Abstract

Many applications at millimeter wavelengths require fast electronic phase
shifters. In this study, the design of diode-grid phase shifters is presented, the
fabrication of diode-grids on monolithic gallium-arsenide substrates is demon-
strated, and the measurement of these grids is discussed. A new computer-aided
design tool is developed to provide an interactive environment for design and to
form a basis for comparing theory and experimental results. Diode-grids have
been fabricated on 2cm by 3cm gallium-arsenide wafers with 2000 aluminum
Schottky diodes. A novel small aperture reflectometer is computerized to use a
wave-front division interference technique to measure the reflection coefficient of
the grids. A 70° phase shift with a 6.5-dB loss was measured at 93 GHz when

the bias on the diode-grid was changed from —3V to +1V.

v

TABLE OF CONTENTS

Acknowledgements
Abstract
1. Introduction
1.1 Applications of Diode-Grids
1.2 Overview of Thesis
2. Design and Analysis of Diode-Grid Phase Shifter
2.1 Diode-Grid Model
2.2 Diode-Grid Phase Shifter
2.3 Computer-Aided Design and Analysis~=TRAP
2.4 Simulated Performance of Diode-Grid Phase Shifter
3. Fabrication of Diode-Grids
3.1 Design of a Hyperabrupt Schottky Varactor Diode
3.2 Fabrication Processes
3.2.1 Self-Aligning Schottky Contact
3.2.2 Ohmic Contact
3.2.3 Proton Isolation
3.2.4 Low Frequency Varactor Parameters
3.2.5 Liquid Crystal Detection
3.3 Test Fixture
4. Diode-Grid Phase Shifter Measurements
4.1 Survey of Possible Experimental Methods

4.2 Small Aperture Reflectometer

4.3 Reflection Measurements of Bismuth on Fused Quartz

4.4 Reflection Measurements of Fused Quartz

4.5 Reflection Measurements of Diode-Grid

page
iii

iv

12
18
18
22
25
29
36
36
46
46
49
54
54
58
60
66
66
69
78
82
86

vi
5. Discussion and Future Work
Appendices
(A) Varactor Diode-Grid Fabrication Procedure
(B) Computer Program Listing of TRAP
(C) Computer Program Listing for Reflection Measurement
(D) Computer Program Listing for Diode Parameter Measurement
(E)

E) Computer Program Listing for Doping Profile Measurement

101
105
105
113
147
160

172

1

Chapter 1
Introduction

Unique features of millimeter waves have attracted a growing interest in the
wavelength region from 1 mm to 10 mm. Millimeter waves offer broader band-
widths, higher resolution and smaller component size than microwaves, and pro-
vide better penetration of fog and dust than infrared [1]. In radio astronomy,
the measurement of molecular resonance lines, which occur significantly in the
millimeter range, have provided important physical insights into the state of in-
terstellar clouds [2]. In plasma diagnostics, the measurement of electron density
and temperature profile, and fluctuation have increased the understanding of
particle confinement mechanisms in a fusion plasma [3]. Thermography at mil-
limeter wavelengths has been used in tumor detection [4]. Other applications
including active radiometry [4], satellite communication [5], and remote-sensing
of the earth’s surface [1] are beginning to receive more attention.

As the number of applications increases, demands for new and improved sys-
tems follow. Currently standard components available for millimeter applications
are based on metal cavities, waveguides, and horns. Although they are adequate
for small systems, they become quite expensive to use in large systems because
intensive labor is required in machining these parts. In situations where only a
limited amount of space is available, they can be very difficult to manage, since
their physical dimensions tend to be much bigger than a wavelength. These are
the driving forces that have led to the recently increased efforts in research and
development of monolithic integrated circuits for millimeter waves. Special is-
sues on this subject have appeared in the IEEE Transactions [6,7]. Recently,
Stiglitz [9] presented a special report on the topic of gallium-arsenide technology

and microwave and millimeter-wave monolithic integrated circuits for 1987.

1.1 Applications of Diode-Grids

Much of the current research activities in monolithic integrated circuits for
millimeter waves tend to revolve around a variety of planar transmission-line
structures and dielectric waveguides. Recently a different structure based on
integrating solid-state devices into a periodic grid has emerged. Rutledge and
Schwarz demonstrated a multi-mode detector array by integrating microbolome-
ters into a periodic grid [10]. Tong et al. built a two-dimensional tracking array,
also with microbolometers and a periodic grid [11]. Figure 1.1 shows a periodic
grid loaded with Schottky varactor-diodes, hence the name diode-grid. Designs
based on the diode-grid for electronic beam-steering and frequency multiplication
had been proposed [12], and the fabrication of a diode-grid was demonstrated on
a 2cm by 2cm gallium-arsenide wafer with 2000 diodes [13].

Periodic grids offer many advantages. They present a planar geometry that
is both simple and compact; therefore, it has a tremendous capacity for inter-
connecting thousands of solid-state devices on a single substrate. The periodic
grid lends itself to a variety of high-power applications, since power is distributed
among a large number of electronic devices throughout a planar surface. They
are exciting because they open up a new area of monolithic integrated circuits for
plane waves. This provides an extra degree of freedom to the circuit designer. Ba-
sically, the longitudinal dimension can be used for guiding high-frequency signals
and feeding electromagnetic energy to the devices, while low-frequency control
signals and bias can be routed in the transverse dimension. The system design
is analogous to an optics design. Furthermore, the diode-grid approach is com-
patible with the semiconductor fabrication technology. This leads to lower cost,
smaller size, and more reliable components. No transmission lines or waveguides

are used. This makes fabrication simpler and losses lower.

Figure 1.1. Part of a periodic diode-grid fabricated on a gallium-arsenide

wafer.

4

One of the applications of the diode-grid is in electronic beam-steering. Cur-
rently, beam-steering plays a vital role in advanced radars that track and image
multiple objects simultaneously. The key element that enables a beam of radi-
ation to be steered at electronic speeds is the phase shifter. Typically, many
thousands of phase-shifting elements are required. Conventional phase-shifters
based on microwave hybrids of striplines and waveguides lead to high cost and
system interconnecting complexity as the wavelength approaches 1 mm. Recently
Horn et al. [14] demonstrated an electronically modulated line scanning antenna.
However, many applications require more gain than a line source can provide.
The use of variable-permittivity media for phase-shifting is an intriguing alter-
native possibility [15,16]. Figure 1.2 shows a varactor-diode grid design for elec-
tronic beam-steering. In the beam-steering array, the incident beam reflects off
the programmable diode-grid phasé-shifting surface, where changing the dc bias
on the diodes changes the reactance, and this controls the phase of the reflected
waves. A linear variation of the phase across the aperture sets the direction of
the reflected beam. In addition, a quadratic variation of the phase across the
aperture focuses the reflected beam. No transmission lines or waveguides are
required. This architecture makes the system design simpler and the fabrica-
tion cost lower. Since the power is distributed among all the diodes, the power
handling capability can be designed specifically for a particular application by
choosing the array size properly.

Another application of the diode-grid is in harmonic power generation. As the
wavelength approaches 1 mm, the varactor multiplier plays an important role in
providing local power to heterodyne receivers because other sources present many
undesirable features. Tubes require cumbersome and dangerous high-voltage sup-
plies, Impatt oscillators are generally too noisy, and Gunn oscillators are not able

to provide sufficient power at frequencies above 100 GHz. Recently, Archer [17]

Reflected
beams

Incident beam

Quartz cover

Diode grids

Metal mounting block

L L L 7 7 7 77 27

Figure 1.2. Electronically programmable beam-steering array.

6
summarized state-of-the-art performances for millimeter wavelength frequency
multiplier. They are primarily based on using a single whisker-contacted varac-
tor diode chip in a cross-waveguide configuration. Although very high conversion
efficiency has been obtained, they are basically limited to milliwatts of output
power. The fundamental limitation is that only a few varactors can be used simul-
taneously in a practical manner. However, power can be increased significantly
when thousands of varactors are combined together in a suitable manner for syn-
chronous operation. Figure 1.3 shows a second harmonic power-combiner that
uses an array of nonlinear capacitors to generate and spatially combine power
at the harmonic frequencies. In this frequency doubler design, power at the fun-
damental frequency enters through the input filter, arrives at the varactor-diode
grid, and pumps the nonlinear capacitance of the diodes to generate power at
harmonics. The second harmonic is spatially combined and transmitted through

the output filter.

Loading a grid with negative resistance diodes offers the possibility of dc-
to-rf power conversion that is analogous to a laser. Currently, oscillators with
single electronic device such as Gunn or IMPATT diode are highly developed.
However, they are capable of providing continuous-wave power only from about
500mW at 40GHz to 10mW at 230GHz [18]. Many applications in radars,
imaging arrays, and heterodyne receivers require much more power than this.
Although a number of power-combining circuits have been demonstrated includ-
ing chip-level, circuit-level, and spatial power-combining [19], they do not take
full advantage of what the solid-state semiconductor technology can offer. Re-
cently Wandinger and Nalbandian demonstrated a dual oscillator quasi-optical
power-combining resonator at 60 GHz with dielectric antennas [20]. However, ex-
tending this approach to higher-level combining would be expensive and difficult.

Mink investigated theoretically a very interesting distributed source planar array

Output
Harmonic

Output
Filter

/

Input
Fundamental Input

Figure 1.3. Second harmonic power-combiner.

—_—
Output power

Gunn diode
array

mirror Partially transparent
reflector

Figure 1.4. Gunn-diode resonator.

9
resonator [21]. Figure 1.4 shows a Gunn diode-grid resonator. Power generated
by the Gunn diodes are combined in a semi-confocal cavity. A metal mirror is
used as a tuning short for matching the impedance of the Gunn diode. Power
can be coupled out through a partially transparent mirror. In addition, a union
of the Gunn diode-grid resonator and the harmonic power-combiner would be an
exciting all solid-state alternative for high-power local oscillator source.

Another interesting application of the diode-grid is in signal detection. Re-
cently, Zah et al. [22] demonstrated a one-dimensional Schottky-diode imaging
array at 90 GHz. Figure 1.5 shows a typical lens-coupled optical system that
has been used in imaging experiments today [23,24]. The idea is to focus en-
ergy onto an imaging array at the focal plane, so that an image of the object
can be constructed at electronic speed. Figure 1.6 is a close-up view of a two-
dimensional imaging array based on the diode-grid approach. The idea is to use
the horizontally connected diodes in the back layer as tuning elements for the
vertically connected diodes in the front layer. The intersection of a column and a
row defines a pixel element. The amplitude at each pixel can be measured from
the column with the proper dc bias applied to the corresponding row. Further-
more, being able to ascertain informations from each unit cell of a finite periodic
structure raises the possibility of studying edge effects due to finite periodic-
ity. This should provide important insight into future works concerning circuit
interactions between diode-grids on different planes.

Finally, applications of the diode-grid, analogous to holography and nonlinear
optics, also appear possible. In optical phase conjugation, a nonlinear medium
is used to generate the complex conjugate of a wave. This is useful in real-time
imaging through a phase distorting medium [25]. The technique of using a non-
linear surface for generating a phase-conjugated wave has been demonstrated at

optical wavelengths [26]. Figure 1.7 shows how this can be done with a varactor-

10

Image plane \ 2-D Imaging
/ array

Objective lens

\ y
Intensity f
~
A, q
9y 7 %

Object plane

Figure 1.5. Two-dimensional imaging system.

11

y———

=

oo —— e a——r —

I3

> Bias rows

N e e
7

Detector columns

Figure 1.6. Two-dimensional imaging array.

12
diode grid at millimeter wavelengths. The idea is to mix the signal-beam with
a normally incident pump-beam on the surface of the varactor diode-grid, so
that a hologram in the form of reflectivity modulation is developed. During this
mixing process, the phase-conjugated beam is generated and the replica of the
signal beam is reproduced as the conjugated beam evolves through the phase-

distorting medium. Also signal amplification can be obtained.

1.2 Overveiw of Thesis

The numerous potential applications of the diode-grid is the motivation be-
hind this research. The purpose of this thesis is to lay down the groundwork and
to demonstrate feasibility. Chapter 2 presents design considerations, a model of
the diode-grid, and computer simulations of the reflection phase-shifter for elec-
tronic beam-steering. The approach is based on a transmission-line equivalent
circuit. In designing the grid structures, together with the substrate, dieléctric
slabs, filters and mirrors, a computer-aided design program was developed to
provide an interactive environment for the user and to form a basis for compar-
ing theoretical and experimental results. The software documentation is given
in the appendix.

Chapter 3 describes the design of a truncated hyperabrupt doping distribution
for making a Schottky-barrier varactor diode. Essential parts of the diode fabri-
cation are discussed. Zah’s self-aligning process as described by Zah et al. [22] is
used to fabricate the aluminum Schottky diodes. Monolithic diode-grids have
been fabricated on 2c¢m by 3cm gallium-arsenide wafers with 2000 varactor
diodes. Although the diode fabrication yield as high as 98 % has been achieved,
the remaining bad diodes, which tend to be short circuits, usually render the grid
useless. Therefore, a liquid-crystal detection technique was developed to iden-

tify the shorted diodes, which are subsequently removed by an ultrasonic probe.

13

—t»
Pump beam
\\
_~
—_ A
&£
<
\
\
\
\
-
AP \
PA
L’—-
P \\ -
‘ \
-
S VIpE |
Signal Phase Conjugate
beam distorting beam

medium

Figure 1.7. Phase-conjugating diode-grid.

Nonlinear
diode-grid
surface

14

The diode series resistance is calculated from the current-voltage measurement
at DC, and the doping distribution is extracted from the capacitance-voltage
measurement at 1 MHz. Detailed procedures are given in the appendix.

Chapter 4 begins with a survey of possible existing experimental methods
for testing the diode-grid and concludes that none was practical for testing our
diode-grid samples because the sample sizes are typically small and irregular
in a laboratory environment. Therefore, a novel small aperture quasi-optical
reflectometer was developed to meet this need. It uses a wave-front division
interference technique to measure the reflection coefficient of a surface. The
technique was first applied to measure the reflection coefficient of bismuth on
quartz. The purpose was to get an indication of its validity and limitations.
Then it was used for testing the diode-grids. Results measured at 90 GHz are
curve-fitted with a theory based on a transmission-line equivalent circuit model.

The best-fit grid parameters are compared with parameters measured at low

frequency.

1]

2]

10]

1]

15

References

P. Bhartia and I. J. Bahl, Millimeter Wave Engineering and Applications,
Chap. 1, pp. 1-8, John Wiley & Sons, Inc., New York, 1984.

C. H. Townes, “The Challenge of Astronomy to Millimeter-Wave Technology,”
IEEE Trans. on Microwave Theory and Tech., MTT-24, pp. 709-711, 1976.
N. C. Luhmann, Jr. “Instrumentation and Techniques for Plasma Diagnos-
tics: An Overview,” Infrared and Millimeter Waves, Chap. 1, pp. 1-66,
K. J. Button, ed., Academic Press, Inc., New York, 1983.

J. Edrich, “Centimeter and Millimeter-Wave Thermography—A Survey on
Tumor Detection,” J. Microwave Power, Vol. 14, pp. 95-104, 1979.

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts,
“Millimeter-Wave Imaging Sensor,” IEEE Trans. on Microwave Theory and
Tech. MTT-34, pp. 1026-1035, 1986.

K. Miyanchi, “Millimeter-Wave Communication,” Infrared and Millimeter
Waves, Chap. 1, pp. 1-94, K. J. Button, ed., Academic Press, Inc., New
York, 1983.

Special Issue on Microwave and Millimeter-Wave Integrated circuits. IEEE
Trans. on Microwave Theory and Tech. MTT-26, pp. 705-843, 1978.
Special Issue on Millimeter-Waves. IEEE Trans. on Microwave Theory and
Tech. MTT-31, pp. 89-238, 1983.

M. R. Stiglitz, “GaAs Technology and MIMIC, 1987,” Microwave Journal,
September, pp. 42-66, 1986.

D. B. Rutledge and S. E. Schwarz, “Planar Multimode Detector Arrays for
Infrared and Millimeter-wave Applications,” IEEE J. Quantum Electronics,
QE-17, pp. 407-414, 1981.

P. P. Tong, D. P. Neikirk, D. Psaltis, K. Wagner, and P. E. Young, “Tracking

[12]

13]

[14]

[21]

16
Antenna Arrays for Near-Millimeter Waves,” IEEE Trans. on Antennas and
Propagat., AP-31, pp. 512-515, 1983.
W. W. Lam, C. F. Jou, N. C. Luhmann, Jr., and D. B. Rutledge, “Diode
Grids For Electronic Beam Steering And F requency Multiplication,” Int. J.
of Infrared and Millimeter Waves, Vol. 7, Pp. 27-41, 1986.
W. W. Lam, H. Chen, D. B. Rutledge, C. F. Jou, N. C. Luhmann, Jr.,
“Progress in Diode Grids for Electronic Beam Steering and Frequency Mul-
tiplication,” 11th Int. Conf. on Infrared and Millimeter Waves, pp. 177-179,
Pisa, Italy, Oct. 1986.
R. E. Horn, H. Jacobs, K. L. Klohn, and E. Freibergs, “Single Frequency
Electronic-Modulated Analog Line Scanning Using a Dielectric Antenna,”
IEEE Trans. on Microwave Theory and Tech., MTT-30, pp. 816-820, 1982.
H. Buscher, “Electrically Controllable Liquid Artificial Dielectric Media,”
IEEE Trans. on Microwave Theory and Tech., MTT-27, pp. 540-545, 1979.
R. H. Park, “Radant Lens: Alternative to Expensive Phased Arrays,” Mi-
crowave Journal, September, pp. 101-105, 1980.
J. W. Archer, “Low-Noise Heterodyne Receivers for Near-Millimeter-Wave
Radio Astronomy,” Proceedings of the IEEE, vol. 73, pp. 109-130, 1985.
J. C. Wiltse, “Introduction and Overview of Millimeter Waves,” Infrared and
Millimeter Waves, Chap. 1, pp. 1-17, K. J. Button, ed., Academic Press,
Inc., New York, 1981.
K. Chang and C. Sun, “Millimeter-Wave Power-Combining Techniques,”
IEEE Trans. on Microwave Theory and Tech., MTT-31, pp. 91-107, 1983.
L. Wandinger and V. Nalbandian, “Millimeter-Wave Power Combiner Using
Quasi-Optical Techniques,” IEEE Trans. on Microwave Theory and Tech.,
MTT-31, pp. 189-193, 1983.

J. W. Mink, “Quasi-Optical Power Combining of Solid-State Millimeter-Wave

[22]

23]

[24]

[25]

[26]

17
Sources,” IEEE Trans. on Microwave Theory and Tech., MTT-34, pp. 189
193, 1986.
C. Zah, D. Kasilingam, J. S. Smith, D. B. Rutledge, T. Wang, and S. E.
Schwarz, “Millimeter-Wave Monolithic Schottky Diode Imaging arrays,” Int.
J. of Infrared and Millimeter Waves, Vol. 6, pp. 981-997, 1985.
D. P. Neikirk, D. B. Rutledge, M. S. Muha, H. Park, and C. X. Yu, “Far-
Infrared Imaging Antenna Arrays,” Appl. Phys. Lett., Vol. 40, pp. 203-205,
1982.
D. B. Rutledge, D. P. Neikirk and D. P. Kasilingam, “Integrated-Circuit
Antennas,” Infrared and Millimeter Waves, Vol. 10, chap. 1, pp. 1-90,
K. J. Button, ed., Academic Press, Inc. New York, 1983.
A. Yariv, “Phase Conjugate Optics and Real-Time Holography,” IEEE J. of
Quantum Electronics, QE-14, pp. 650-660, 1978.
B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunow, “Introduction to Op-
tical Phase Conjugation,” Principles of Phase Conjugation, Springer-Verlag,

New York, 1984.

18

Chapter 2
Design and Analysis of Diode-Grid Phase Shifter

Many types of periodic grids have been used in infrared and millimeter-wave
applications, including the Jerusalem-cross for band-reject filters 1], discs for
artificial dielectrics [2], inductive wires for polarizers [3], inductive and capacitive
strips for polarization independent beam splitters [4] and multiplexers [5], and
metal meshes for output couplers for lasers [6]. The periodic grid that we use
in designing our diode-grid phase shifter is a square mesh of metal strips on
a gallium-arsenide substrate as shown in figure 2.1a. The vertical strips add
inductance to cancel the diode capacitance. The horizontal strips provide the
bias but should not otherwise affect the circuit. Design considerations include
the grid period, angle of incidence, and dielectric constant. The design approach
is based on an equivalent circuit model and the transmission-line theory. In
designing the diode-grid phase shifter for electronic beam-steering, we developed
a computer-aided design program to provide an interactive environment for the

designer and to form a basis for comparing theoretical and experimental results.

2.1 Diode-Grid Model

We model the diode-grid with an equivalent circuit based on the transmission-
line theory because it is relatively easy to incorporate both the diode model and
supporting substrate into the analysis. Figure 2.1b shows a simple model of the
diode-grid on a dielectric slab. The grid is represented by an inductor in series
with a diode, and the substrate is represented by a section of transmission line
with a characteristic impedance equal to the wave impedance in the dielectric.

The inductance-per-unit length of the metal strip for normal incidence is given

19

<+—0a=500um—

LASSSY LI TIIIRIAR RIS ML MRRTARRRRRARS

W= 20/,Lm
|
§ L&\\\\\\\\\\\\\\\\\
N Inductive
Bias J N Leads —
Lines $‘_"SChO'H'ky — E
§ Diodes

ﬁgg AAAATIATETIITIT T TR AL RR AR

\ ML AR Y - e R R T ey

Figure 2.1. (a) Grid dimensions for a 90 GHz programmable phase shifter. The
incident electric field is assumed to be vertically polarized. (b) Transmission-line

model of an inductive grid, loaded with diodes, and supported by a substrate.

20

by a quasi-static approximation,

L= g—;ln [csc (g—w)], (2.1)

where w is the strip width, a is the grid period, and u, is the magnetic per-
meability. MacFarlane [7] derived this formula based on conformal mapping of
an inductive grating in a paralle]l plane metal waveguide. It does not take into
account the angle of incidence, the polarization, the effect of the dielectric in-
terface, the parasitic capacitance across the diode, or the effect of the horizontal
cross strip. These effects have been considered in the literature [8,9]. Since they
amount to a correction of less than 10 %, they have been neglected in our initial
designs of the diode-grid. This enables us to see the effects of design changes
faster and therefore to get a quicker turn-around time in doing the design of the

diode-grid phase shifter.

The grid period, a, should be somewhat smaller than a substrate wavelength
to avoid exciting substrate modes. We can decide how much smaller by con-
sidering figure 2.2, which shows the spatial frequencies of the grid. The spatial
frequencies for the incident radiation lie within a circle of radius 1 /Ao centered at
the origin. This radiation excites currents, which, because of the periodic nature
of the grid, have spatial frequencies that lie within similar circles centered on the
reciprocal lattice points of the grid. The reciprocal lattice is a square lattice, with
a period of 1/a. The spatial frequencies for the substrate modes lie within the
doughnut-shaped regions that are also centered on the reciprocal lattice points.
The inner radius of the doughnuts is 1/A, and the outer radius is n/Ao, where
n is the refractive index of the substrate. To avoid exciting substrate modes,

the small circles should not intersect the doughnuts. This means the grid period

%
/ N

)

)

f% w

h\Y

i

oJo!

|\

22

should satisfy

o

< /. 2.2
(n+1) (22)
For gallium-arsenide, which has a refractive index of 3.6, the grid period should

be less than 0.22),.

2.2 Diode-Grid Phase Shifter

Figure 2.3 shows the diode-grid phase shifter design. It consists of a fused-
quartz cover, two diode-grids, and a metal mirror. The circuit is analogous to
Garver’s microwave phase shifter [10]. The quartz layer acts as a protective cover
as well as an impedance transformer. The metal mirror prevents radiation from
escaping and serves as a heat sink and mechanical support. Another inherent
feature of this design is that the mirror also shorts out the second harmonic at the
diode-grids. This reduces conversion losses to the second harmonic; therefqre, it
is more attractive for high power-operation.

Figure 2.4a shows the transmission-line model. The mirror is electrically an
open-circuit, because it is a quarter-wavelength behind the back diode-grid. At
the front diode-grid, the back grid appears electrically as a parallel load, but
with the impedance inverted (figure 2.4b). The total normalized reactance X is

the parallel combination of X and 1/7X, or

X

Xt:m.

(2.3)
X: ranges from —oo as X approaches —1, to +o0o as X approaches +1. This
allows a full 360° phase shift as the normalized grid reactance goes from —1 to
+1. The grid reactance, X, is normalized relative to the characteristic impedance
of the substrate. In gallium-arsenide this corresponds to a grid reactance sweep

between —107) to +107 Q). For the grid dimensions in figure 2.1, the inductive

23

Fused-quartz

cover GaAs wafer

Diode grid Metal
mounting
block

Figure 2.3. Side view of the programmable diode-grid phase shifter for elec-

tronic beam steering.

24

|¢->\d/4—>|<— Xd/4->|<——)\d/4—>|

(b)

Figure 2.4. (a) Transmission-line model of the diode-grid phase shifter. (b)

An idealized equivalent circuit for the diode-grid phaser shifter.

25
reactance due to the strip is 160 2. This means that the diode capacitance should
vary from 7fF to 35fF. This type of capacitance ratio has been demonstrated
with the hyperabrupt junction Schottky varactor diode [11].

The design allows a spatial phase variation in one dimension only. Two-
dimensional phase variation can be achieved by biasing the diodes individually
rather than row by row, or by cascading two such phase shifters. The design
also does not control sidelobes because there is no adjustment for amplitudes.
However, it should be possible to reduce sidelobes by tapering the radiation

feeding the array with an externally designed collimating lens.

2.3 Computer-Aided Design and Analysis - TRAP

Since calculations of reflection modulus and phase of multi-layerd media are
tedious and time consuming, we have developed a computer-aided design pro-
gram that provides an interactive environment for the user to design his circﬁits
and to compare the theoretical and experimental results. TRAP (transmission,
reflection, absorption, and phase) was developed to analyze the square grid, to-
gether with the substrate, dielectric slabs, filters, and mirror. It is an interactive
graphics program written in Turbo Pascal for the IBM personal computer. The
user types a descriptive command line via the line editor in TRAP. Commands
may include lossy dielectrics, lumped elements, and a mirror. The angle of inci-
dence, polarization, wavelength, and layer thicknesses can be varied linearly. The
calculated results are displayed as the computations are made. Three real-time
keyboard commands are available to stop, speed up, or slow down the simula-
tion. On the average it takes about 30 seconds per layer to complete a plot on an
IBM-XT. The programmed optimization routine is based on a multi-dimensional
simplex algorithm [12]. It allows the user to fit a model based on transmission-line

theory to the measured reflectance and phase of reflection from a multi-layered

26

medium. TRAP calculates the transmittance, absorptance, reflection coefficient
of a layered medium by generalizing Berning’s algorithm [13] to include the ef-
fects due to periodic grids at the interfaces. This algorithm is numerically more
efficient than the conventional cascade matrix approach. Equivalent circuit mod-
els are derived from physical dimensions of thin screens such as the square grid.
One model is based on MacFarlane’s quasi-static formula of a strip 7], and the
other model is based on a modification of Eisenhart and Khan’s theory of a post
in a waveguide [9]. In addition the circuit model of a Jerusalem-cross based on
Arnaud and Pelow [1] is also available.

The solution for plane wave propagation in a multi-layered medium is a well
known boundary value problem in wave analysis. However, in electromagnetic
engineering, it is more desirable to make an analogy between the plane wave so-
lutions and the waves along a transmission-line. The electric and magnetic fields
are analogous to the voltage and current in a transmission line, and the ratio is
called the impedance. The analogy is useful because it allows the designer to take
advantage of existing impedance matching techniques in the field of transmission
line design and analysis. To exploit this analogy fully, the concept of admittance,
the ratio of magnetic field to electric field, is used because the multi-layered me-
dia is plane-parallel, which means its equivalent circuit is parallel. Therefore,
it is more desirable to use admittance because parallel admittances add. The
method of calculation for wave reflection from multi-layered media is discussed
next to establish the notation.

Figure 2.5 shows a schematic of a multi-layered medium with thin structures
such as a lossy film or a periodic grid at the interface between two layers. The
waves are incident from the left. The boundaries are labeled from 0 to N , with
0 being the interface of the incident medium and N being the interface of the

final medium. The angle of incidence is 8,, and the complex refractive index

27

A A A A
Mo n, n, n;
__________ [X N] [X}
8, *
Ao A A, A A AL,
o) { 2 5! J N-1

Figure 2.5. Schematic diagram of a multi-layered medium.

28

of the j** layer is fj = n; + ik;, where n; is the refractive index and k; is
the absorption index of the jt* layer. The physical thickness of the 7P layer
is I;, and its electrical length is ¢; = 2mfijl;. All admittances are normalized
to the characteristic admittance in the vacuum. The normalized admittance
for a thin structure at the j** interface is y;. The calculation of the reflection
coefficient, transmittance, and absorptance begins from the final medium on the
right and works its way back toward the incident medium on the left. The
normalized admittance of the final medium is initialized to YN = Aint1 + yn.
The normalized admittance looking from the J** interface toward the right is
given by the recursive relation,

) . Yicosd;+ti,;, sind,;
Y;-_l = GJ'._l + 1bj_1 = njp AJ ¢J ;p . ¢J
fijpcos ¢; + 1Y sin @,

+ Yj—1, (2.4&)

where
fijcosb; for TE polaraization
fijp = , (2.4b)
fi;/ cos 8; for TM polarization
and 0, satisfies Snell’s Law of Refraction,
fio sin 6, = 7, sin §;. (2.4¢)

The reflection coefficient at the input surface of the multi-layered medium is

calculated from

(2.5)

The transmittance at the output surface is given by

T = (1-|p[?) f[(2.60)

29
where 1; is the ratio of time average of the magnitude of Poynting’s vector at

the 7** and (7 — 1)t* interfaces and is given by the formula,

a;
a;—1|cos ¢; +1Y;sinf;/f;[2"

Y = (2.6b)

Using the Law of the Conservation of Energy, the total absorptance in the layered

medium is given as,

A=1-T—|p (2.7)

2.4 Simulated Performance of Diode-Grid Phase Shifter

Figure 2.6 shows a simulation of the diode-grid phase shifter. The assumed
metal parameters are baéed on the skin-effect formulas for gold. Dielectric prop-
erties are taken from Afsar and Button’s data [14]. The result indicates that
the phase of reflection varies linearly from —180° to +180° as the grid reactance
sweeps from a normalized reactance of —1 to +1 (—1079 to +1070Q for the
gallium-arsenide substrate). The reflection efficiency varies from a low of 0.49 to
a high of 0.57, with an average loss of 2.7dB. Of this loss, all but a tenth of a
dB is due to the series resistance of the diode (assumed to be 10 Q).

Figure 2.7 shows a family of diode-grid phase shifter performances for normal
incidence in air. Gallium-arsenide is assumed for the diode-grid substrate. The
grid reactance is assumed to vary from —107) to +107 {1, and resistance is as-
sumed to vary from 10} to 502). The refractive index of the quarter-wavelength
dielectric cover is assumed to vary from 2.26 to 2.34. These indices satisfy the

condition,

2(55)4(R2+Zz)—z? (2.8)
Za 8 - 1) *

where the Z, is the effective characteristic wave impedance of the diode-grid

substrate, Z, is the effective characteristic wave impedance of the quarter-wave

30

Relative bias voltage (V)

-5 -4 -3 -2 - @)
1.0 l T | T | 180
>
o 0.8
k5 1°° &
© c
+— 0.6 E a
(¢)] ~ O cC
c e
S 0.4l 5
O O
: NG 5
& 0.2} 90
0.0 | | ' -
-100 -50 O 50 100 80

Total grid reactance, §)

Figure 2.6. Simulated results of the programmable diode-grid phase shifter.
The initial quarter-wave transformer layer is fused quartz, the angle of incidence

in the air is 45°, and the polarization is TE.

31
dielectric cover, Z; is the effective characteristic wave impedance of the incident
medium, and R is the series resistance of the diode-grid. It is interesting to note
that the use of these refractive indices equalizes the reflection losses by having the
impedance looking into the diode-grid phase shifter to revolve around the center
of the Smith chart. Also, the required refractive indices are slightly larger than
the refractive index usually required for an anti-reflection coating. Although the
required refractive indices are not too practical from the material point of view,
the same effect of equalizing the reflection loss can be obtained by adjusting the
angle of incidence in air. When this is done for TE polarized waves, the angle of
incidence is about 36° for crystal-quartz, and about 52° for fused quartz. From
Figure 2.7 we can see that the maximum and minimum reflection losses occurs
around 0° and +110°, respectively. Figure 2.8 shows these reflection losses as a
function of R/AX, the ratio of the real part to the total change in the imaginary
part of the diode-grid impedance. They vary almost linearly in R/AX from 0.05
to 0.5. The slope for the maximum loss curve is 29.5, and for the minimum loss

curve, 24.2.

32

Figure 2.7. Reflection loss of the diode-grid phase shifter

33

3]

e o o Calculated maximum loss .
o o o Calculated minimum loss

14 -

Refiection loss, dB

0 i 1 1 1 1
0 Od 0.2 0.3 04 05

R/AX

Figure 2.8. Reflectance loss of the diode-grid phase shifter as a function of the

ratio of diode-grid series resistance to reactance.

[1]

2]

[10]

11

34

References

J. A. Arnaud and A. Pelow, “Resonant-Grid Quasi-Optical Diplexers,” Bell
Sys. Tech. J., Vol. 54, pp. 263-283, 1975.

R. E. Collin, Field Theory of Guided Waves, Chap. 12, McGraw-Hill, New
York, 1960.

G. Latmiral and A. Sposito, * Radar Corner Reflector for Linear or Circular
Polarization,” J. of Res. of NBS, Vol. 66D, pp. 23-29, 1962.

R. Watanabe, “A Novel Polarization Independent Beam Splitter,” IEEE
Trans. Mircrowave Theory and Tech., MTT-28, pp. 685-689, 1980.

N. Nakajima and R. Watanabe, “A Quasi-Optical Circuit Circuit Technology
for Shortmillimeter-Wavelength Multiplexers,” IEEE Trans. Microwave and
Tech., MTT-28, pp. 897-905, 1981.

R. Ulrich, T. J. Bridges, and M. A. Pollack, “Variable Metal Mesh Coupler
for Far Infrared Lasers,” Appl. Opt., Vol. 11, pp. 2511-2516, 1970.

G. G. MacFarlane, “Quasi-Stationary Field Theory and Its Application to
Diaphragms and Junctions in Transmission Lines and Wave Guides,” Proc.
Inst. Elect. Eng., 93, Part 3A, pp. 1523-1527, 1946.

J. R. Wait, “Impedance of a Wire Grid Parallel to a Dielectric Interface,”
IRE Trans. on Microwave Theory and Tech., MTT-5, pp.99-102, 1957.

D. B. Rutledge and S. E. Schwarz, “Planar Multimode Detector Arrays for
Infrared and Millimeter-Wave Applications,” IEEE J. of Quantum Electronics
QE-17, pp. 407-414, 1981.

R. V. Garver, “360° Varactor Linear Phase Modulator,” IEEE Trans. on
Microwave and Tech., MTT-17, pp. 137-147, 1969.

A. Y. Cho and F. K. Reinhart, “Interface and Doping Profile Characteris-

tics with Molecular-Beam Epitaxy of GaAs: GaAs Voltage Varactor,” J. of

35
Applied Physics, Vol. 45, pp. 1812-1817, 1974.

[12] J. A. Berning and P. H. Berning, “Thin Film Calculations using the IBM
650 Electronic Calculator,” J. of the Opt. Soc. of America, Vol. 50, pp.
813-815, 1960.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes, Chap. 10, pp. 274-334, Cambridge University Press, New York,
1986.

[14] M. N. Afsar and K. J. Button, “Precise Millimeter-Wave Measurements for
Complex Refractive Index, Complex Dielectric Permittivity and Loss Tan-
gent of Gads, Si, Si0,, Al303, BeO, Macor, and Glass,” IEEE Trans. on
Microwave Theory Tech., MTT-31, pp. 217-223, 1983.

36
Chapter 3

Fabrication of Diode-Grids

Monolithic diode-grids have been fabricated on 2cm by 3 cm gallium-arsenide
(GaAs) wafers with 2000 aluminum Schottky-barrier varactor diodes. The self-
aligning technique, which Zah had developed in our group [1], is used to fabricate
the diodes. The best fabrication yield for individual diodes in an array was
98 %. A liquid crystal detection technique was developed to identify the diodes
that are shorted in the grid, and subsequently an ultrasonic probe is used to
remove the bad diodes. The design of the varactor diode with a truncated-
hyperabrupt doping profile is discussed. The doping profile is measured with
a mercury probe. The diode series resistance is calculated from the current-
voltage (IV) characteristics measured at DC, and the capacitance parameters
are calculated from the capacitance-voltage (CV) characteristics measured at

1MHz. The detailed procedures are given in the appendix.

3.1 Design of a Hyperabrupt Schottky Varactor Diode

Figure 3.1 shows SEM photographs of the Schottky-barrier varactor diode
on GaAs. The diode consists of a Schottky contact with a shape of a strip,
which is surrounded by an ohmic contact. The width of the strip is defined by a
self-aligning technique, and its length is defined by proton bombardment. This
is the key of Zah’s process, which enables us to make a small planar diode for
millimeter-wave applications. The area of the strip is about 18 um?; its small
rectangular geometry gives a low spreading resistance since the periphery-to-
area ratio is high. The metal for the Schottky contact is aluminum (Al), and the
metal for the ohmic contact is gold-germanium/nickel/gold (AuGe/Ni/Au). The

metalization extends from the diode and becomes part of inductive lead of the

Figure 3.1. SEM photographs of a planar Schottky-barrier varactor diode. (a)

Diode is located at the tip of the strip. (b) Close-up view of diode.

38
diode-grid. The other part of the inductive lead is gold. For a large capacitance
variation, the varactor is designed with a hyperabrupt doping profile; that is,
the net doping concentration of the epitaxy decreases with the distance from the
metal semiconductor interface.

The three most important circuit parameters of a varactor are the breakdown
voltage V;, the zero bias capacitance Co, and the series resistance R,. They affect
the amount of power the varactor will handle, the level of impedance the varac-
tor will present, and the amount of power the varactor will dissipate in a circuit.
These parameters can be calculated and optimized when the doping concentra-
tion as a function of the distance from the junction is specified. Norwood and
Shatz [2]| analyzed an ideal hyperabrupt doping profile that is described math-
ematically by an m** power law. In practice, a truncated-hyperabrupt doping
profile must be used. Figure 3.2 shows the truncated-hyperabrupt doping profile.

The doping concentration is given by

No oszsxo
Ny = , 3.1
P)

where z, is the zero bias depletion width, N, is the doping concentration at the
surface, T,,; is the epitaxial thickness, and m is the doping profile exponent.
The method of design is based on Lundien et al.’s [3] design algorithm of an

exponentially retrograded doping profile. In the depletion approximation, the

one-dimensional Poisson equation,

d2 q
— 3.2
dz? €, Na, (32)

is integrated, where ¢ is the electric potential, ¢ is the electronic charge, and ¢,

is the dielectric permittivity of the semiconductor. The boundary conditions are

39

&Ny = N, (x/x0)™

N4, dopant concentration

X, distance from surface

Figure 3.2. A truncated-hyperabrupt impurity doping distribution designed

for a varactor diode.

40
¢(z =0) =0and ¢(z = Wiep) = ¢; —V, where ¢; is the junction potential, Wiep
is the depletion width of the space-charge region, and V is the applied voltage.
This leads to a complicated algebraic relation, V' = F(Wy,,), which is used to

compute the corresponding CV relation

A

C=c¢,
Wdcp ’

(3.3)

where A is area of the varactor. The calculated CV characteristic is checked for

self-consistency by the following expression (4],

—C3
N, = (qe"Az)
¢=T74eN
av

The profile computed from the above is compared with the original profile. The

(3.4)

resistance due to the undepleted epitaxial layer is calculated from,

Tepi dzr
R, :/ " 3.5
P Wiep ‘INnNdA ()

where uy, is the electron mobility, and Tepi is the epitaxial thickness. An emperical

expression for the electron mobility is used
104
pn = ———,
n Nd
1+ 1017

where N; is in units of cm™2 and p, is in units of cm? (Vs)~1 [5]. The break-

(3.6)

down voltage is computed as the applied voltage at which the ionization integral

_(ﬁ) 2} dz = 1, (3.7)

becomes unity,

Weps'
I= /0 Aexp

41
where E(z) is the electric field in units of V(em)™!, A = 3.5 x 10° cm™!, and
b = 6.85 x 10° V(cm)~! [6]. The integrals are integrated numerically with an
algorithm based on Simpson’s rule [7]. The electric field is obtained from the
one-dimensional Poisson equation. The boundary conditions are imposed by
matching the fields at z = z, and by setting the field to zero at z = Wepi. The
expressions obtained are checked with those obtained from Gauss’s law.

A simple graphical procedure is used as a guide to design the truncated-
hyperabrupt profile for a varactor. The design parameters are the surface con-
centration (IV,), the doping profile exponent (m), the zero bias depletion width
(z,), and the epitaxial thickness. A figure of merit for a varactor is the dynamic

cutoff frequency, which is defined by Penfield and Rafus (8] to be,

f, = Smaz — Smin
= — TR

27R ’ (3:8)

where Sy, is the reciprocal of minimum capacitance, Sy,;, is the reciprocal of
the maximum capacitance, and R, is the series resistance of the varactor. Other
quantities including series resistance, capacitance tuning ratio, and avalanche
integral are also calculated to indicate design margins and tradeoffs.

Figure 3.3 shows a contour plot of dynamic cutoff frequency as a function of
surface concentration and doping profile exponent. An approximated junction
potential for Al on GaAs is 0.94 V from Eglash et al. [9]. The maximum ca-
pacitance is taken to be the zero bias capacitance, which is assumed to be 30 fF
because this gives the desired reactance at 90 GHz for our experiments. The epi-
taxial thickness is 0.65 um. This thickness is chosen because it is thick enough to
give a capacitance ratio of 5 and thin enough for proton isolation. The calcula-
tion also assumes a parasitic resistance of 7 and a parasitic capacitance of 3 fF.

The solid line indicates that the ionization integral is unity (I = 1) and divides

42

7’?5 T T

e |

=2

(e

-~ 4L .

X

o

=

s 3 F -

<

€

D

2

5 2 :

&

a

(@]

A

1 F .
@)
-2 -1 @)

Doping profile exponent, m

Figure 3.3. A contour plot of dynamic cutoff frequency in units of THz as a
function of surface concentration and doping profile exponent in the region where
the ionization integral is less than unity (I < 1). The solid line corresponds to

the (I = 1) and the shaded region corresponds to the (I>1).

43
the space into safe and unsafe regions of operation. Safe means that the entire
epitaxial layer can be depleted without avalanche breakdown or with (I < 1).
Qualitatively speaking, the closer N, and m approach the solid line, the greater
the chance of reaching avalanche breakdown. The bigger N, is, the bigger the
capacitance ratio, which is good for phase-shifting, while (—0.5 < m < —-0.3) is
more favorable for second harmonic conversion efficiency [10]. The final design
of the truncated-hyperabrupt doping profile varactor is N, = 1.5 x 1017 cm™3,
m = 1.0, 2, = 0.1 um, and T,,; = 0.65 um. An extra 0.05 pm is added as safety
margin for back depletion from the nt layer. The thickness of the nt layer is
1.8 um. This gives a total epitaxial thickness of 2.5 pm, which is close to the
limit of the proton isolation capability available to us. The doping concentration

for the n layer is designed to be 3 x 1018 ¢cm=3.

A mercury probe is used to measure the CV characteristic and the doping
profile [10]. Figure 3.4 shows the measured CV characteristic. The ratio of the
capacitance at zero bias to the capacitance at breakdown is about 4.5 and this is
close to what the simulation predicts. The breakdown voltage is about 9V, and
this corresponds to what the simulation predicts when the ionization integral
is about 0.4. This comparison is based on averaging the calculated results at
m = —1.1 and m = —0.9. Figure 3.5 shows the corresponding measured doping
profile and compares it to the profiles that were designed and measured with
a Polaron profiler. Basically, a back-to-back Schottky diode is formed on the
surface of the wafer with a small and a large mercury dot, which are held there by
a vacuum. Then the small signal capacitance of this diode structure is measured
as a function of the DC bias. The advantage of this technique is that it is non-
destructive. Occasionally, the doping profile is available from a Polaron profiler
for comparison. This provides a more complete measure because it includes the

n™ layer; however, this is a destructive technique since it requires etching away

44

250 T T T T
200 | 4
/L: L]
&
@) 150 = R -
@ .
]
c
3 .
S 100 f K _
Q- [
S o
50F . " -
0 1 L ! 1
-10 -8 -6 -4 -2 0
Bias voltage, V(volt.)
Figure 3.4. Measured capacitance-voltage characteristic at 1 MHz from a

GaAs wafer with a truncated-hyperabrupt doping profile.

45

19

107 I T T .
N Designed 3
B —-—~ Measured by mercury probe i
» ——- Measured by polaron profiler .
10105-_ DT

1

Dopant concentration, N, (cm™®)
L1l 1

1 016 1 | 1 1
0o 0.2 04 06 0.8 1[0]

Depth, x (m)

Figure 3.5. A comparison of designed doping profile with the measured doping

profiles from a mercury probe and a Polaron profiler.

46
the substrate in determining the depth. The doping profile is calculated from
the measured CV characteristic according to Equation (4). This is run by an
IBM-PC that controls an HP4280A C-meter for CV measurements. The CV

program is given in the appendix.

3.2 Fabrication Processes

Having determined the CV characteristic and doping profile of the wafer, we
evporated a 2000 A thick layer of aluminum. Although in-situ molecular beam
epitaxy (MBE) aluminum is superior [1,12], it is not as readily available. Fig-
ure 3.6 summarizes all the different layers of the starting material for fabricating
the diode-grid. The aluminum is on an 0.7 pm layer of n-type GaAs with a hy-
perabrupt doping profile. The n-type GaAs is on an 1.8 pm layer of nT GaAs
with a doping concentration of 1 x 108 ¢cm—3. Howard Chen, of Professor Yariv’s
group at Caltech, and Kjell Stolt of TRW grew the epitaxial layers on chrome-
doped semi-insulating GaAs with MBE for us. Wafers as large as 2cm by 3cm
have been used to fabricate the diode-grids. The diodes are fabricated with a

self-aligning process that Zah developed [1].

3.2.1 Self-Aligning Schottky Contact

Figure 3.7 shows how the self-aligning process works. A photoresist is pat-
terned to protect the aluminum Schottky contact during wet etching and to serve
as a lift-off mask when the metalization for the ohmic contact is evaporated. The
structure is formed by first etching the aluminum until it cuts under the photore-
sist and then etching the n-layer until it reaches the n+ layer and cuts under the
photoresist. When AuGe/Ni/Au is evaporated over this structure, a small gap
is created between the Schottky metal and the ohmic metal; hence, the Schottky

contact is self-aligned to the ohmic contact.

47

Aluminum _L
7777777777 7 777 TITTTT I T 02 m
T JSH
n layer 4. O7pm
i
+*
n” layer 1.8um
L

Semi-Insulating GaAs

/\—/

Figure 3.6 A side view of the starting material with 2000 A of evaporated

aluminum on the n-type GaAs epitaxy.

48

AuGe/Ni/Au evaporation

Photo -

Semi-insulating GaAs

m Aluminum

AuGe/Ni /Au ohmic contact

Figure 3.7. Zah’s self-aligning process for defining the width of the Schottky

contact.

49

In the past, the lead for the Schottky contact was patterned first and then
the width of Schottky contact and the ohmic contact were defined by the self-
aligning process as described above. Also in-situ MBE aluminum was used. In
my experience of using evaporated aluminum, I find it better to etch the width
of the Schottky contact and the ohmic contact first and then pattern the lead for
the Schottky contact. This has the following advantages. Since a small amount of
aluminum is removed in defining the contacts, there is still a significant amount of
aluminum left over. If over-etching occurs, one can repeat this step several times
until the desired result is obtained. More importantly, etching becomes easier to
control because etching tended to be less uniform, when the lead for the Schottky
contact was etched before the width of the Schottky contact and the ohmic
contact were etched. This is probably due to bubbles formed and trapped at the
corner of the photoresist pattern. Figure 3.8 illustrates this problem. Having
patterned the lead for the Schottky contact, we then developed the photoresist
mask for self-aligning the diode contacts via etching. This exposes a small piece
of aluminum to be etched away. Figure 3.8a shows the top view of this. When
the wafer is dipped into aluminum etchant, it was found that about 20 % of the
diodes tended to be incompletely etched. Typically a small patch of aluminum
is left behind as shown in figure 3.8b. If the wafer is etched again, then those
diodes that were etched completely will be over-etched. If the wafer is not etched
again, then those diodes with a small patch of aluminum cause an electrical short
when the ohmic metalization is evaporated. This problem is corrected by simply

reversing these two steps.

3.2.2 Ohmic Contact

The technique of using AuGe/Ni/Au to form an ohmic contact on n-type

GaAs in a furnace is followed [13]. The thicknesses for the metalizations are 700 A

e diode. (b) Af

51

of AuGe (88% Au and 12 % Ge by weight), 300 A of Ni and 2000 A of Au. They
are evaporated consecutively without breaking the vacuum. The metalizations
for the bonding pads are also evaporated at the same time. This is because
the alloy process makes the bonding pads adhere to the substrate better and
roughens the surface of bonding pads so that they are easier for ultrasonic wire
bonding. The alloying process is done in a furnace at 460°C for 10 minutes
with flowing forming-gas. As the AuGe alloy begins to melt, gallium diffuses
into the metal [14]. Germanium diffuses into the crystal lattice and dopes the
GaAs. Nickel enhances this diffusion and keeps the metal ‘wet’ onto the surface
from segregating in lumps, and gold serves as‘ a capping layer to increase the
conductivity.

Making a good ohmic contact is important in achieving a low series resistance
for the varactor diode. Factors that influence the quality of an ohmic contact
are well documented [14,15]. One of the most important factor that inﬂuénces
the quality of an ohmic contact is the alloying temperature. Other parameters
including the type of metalization and its composition and thickness, ambient
gas, alloying time etc. can easily be reproduced based on published literature.
There is a wide variation in the temperature used by various laboratories, be-
cause the equipment and the way in which alloy temperature is measured are not
the same; therefore, it is necessary to calibrate the temperature of our furnace
controller. The basic technique of using a linear resistor array to measure the
contact resistance is used [14]. Figure 3.9 is a photograph of the actual array
fabricated on a GaAs wafer. The ohmic contacts are AuGe/Ni/Au alloyed on
a mesa of nT GaAs epitaxy. An HP3478A multimeter with a 4-wire measure-
ment capability is used to measure the resistance between the ohmic contacts.
The measured resistance as a function of distance gives the contact resistivity.

The furnace controller is calibrated by measuring the contact resistivity of the

52

Figure 3.9. Photograph of the resistor array used in measuring contact re-
sistance. Square ohmic contacts are separated by increasing distances. Each

resistor array is isolated by mesa etch.

53

10

T T T T I I

x x x Measured 10/16/86
e oo Measured 10/85

Contact resistivity (u§-cm?)

0 L 1 1 I 1 L
420 440 460 480 500 520

Controller temperature, (C°)

Figure 3.10. Temperature calibration curve of the furnace controller used in

alloying ohmic contacts.

54
ohmic contacts alloyed at various temperatures. Figure 3.10 shows the tempera-
ture calibration curve for our furnace controller. A minimum contact resistivity
of 4 u(cm)? was measured at an alloying temperature of 460°C. The actual

temperature was estimated to be 430°C.

3.2.3 Proton Isolation

Figure 3.11 shows the proton isolation process used in defining the length of
the diode. Figure 3.12 shows a 7 um thick photoresist patterned to protect the
diode from the protons. The implanted protons convert the n-type semiconductor
into a high resistivity dielectric by creating deep levels that trap free carriers [15].
Two consecutive proton bombardments are used in order to completely isolate
the epitaxial layers. The implantation parameters are 1.) dose=4 x 104 ¢m—2
and energy=330 keV, and 2.) dose=4 x 104 ¢m~2 and energy=200 keV. This
was done for us by Frank So and Ali Ghaffari in Dr. Nicolet’s group at Caltech
and Bob Rush at Hudges. The temperature reached during implantation is high

enough to harden the photoresist, so an oxygen plasma is used to remove the

photoresist.

3.2.4 Low Frequency Varactor Parameters

After proton isolation, low frequency parameters of the varactor are mea-
sured. A number of varactors are sampled through out the wafer in order to
assess the amount of nonuniformity, and to find an average and a standard devi-
ation for the nonuniformity. Figure 3.13 shows a contour plot of measured series
resistance as a function of position on the wafer. The measured series resistance
is based on an algorithm that curve-fits the measured IV characteristic with the

following equation [1]

I = Lexp[(V — IR,)/nVr| — 1, (3.9)

55

l l l 1 Proton implantation

Thick photoresist

AN NIRR R NN Y

Semi-insulating GaAs

\/\

NI Aluminum

AuGe /Ni/Au ohmic contact

Proton bombard region

Figure 3.11. Schematic diagram of proton bombardment for defining the

length of the Schottky contact.

56

Figure 3.12. SEM photograph of a 7 um thick photoresist mask for protecting

the Schottky contact in defining its length.

57

[T T T T 11

AN~

Figure 3.13. A contour map of the diode series resistance in units of ohms.

Tick marks correspond to diode positions on the wafer.

58
where I, is the reverse saturation current, R, is the series resistance, n is the
ideality factor, g is the electronic charge, k is the Boltzman constant, and T is the
temperature. Figure 3.14 shows a contour plot of zero bias capacitance measured
at 1MHz as a function of position for the same wafer. The diode parameters
vary considerably. This is mainly due to mask variation and misalignment dur-
ing fabrication. The measured diode series resistance is 78 {1 with a standard
deviation of 19(), zero bias capacitance is 30fF with a standard deviation of
101fF, and breakdown voltage is 5.1 V with a standard deviation of 1.9V. This
is based on sampling 95 out of 2000 possible diodes. The diodes have a soft
breakdown characteristic. This is probably due to contamination because alu-
minum is evaporated in a oil diffusion-pumped system at 3 x 10~® Torr. Similar
observations were report.ed in the literature [9,17,18]. Attempts to use refrac-
tory metals such as titanium and molybdenum were made, but no significant
improvements have been obtained. The series resistance is quite high because
the nt concentration is only about 1 x 1018 ¢cm~3. The low breakdown voltage
limits the capacitance variation from 14.5fF at —5.1V to 52.1{F at +0.4 V. This
corresponds to a capacitance ratio of 3.7. These measurements are computer-
ized. An IBM personal computer is used to control an HP4145B semiconductor
parameter analyzer to make the IV measurement and an HP4280A C-meter to

make the CV measurement. Software documentations are given in the appendix.

3.2.5 Liquid Crystal Detection

A layer of 2000 A thick gold and a layer of 100 A thick chrome are evaporated
to define the periodic grid that connects the varactors row by row. The chrome
acts as an adhesion layer between gold and GaAs. Despite the fact that the
yield of the number of devices with a diode characteristic is quite high, the

remaining bad diodes, which tend to be electrical shorts, render the entire diode-

59

o
)

3.

4

ll[,l
woo»

llll'lll[

Figure 3.14.

10~ farads. Tick marks correspond to diode positions on the wafer.

A contour map of the diode zero bias capacitance in units of

60
grid almost functionless, because they are connected in parallel. To overcome
this, a liquid crystal detection technique is developed to identify the shorted
diodes [19]. Figure 3.15 is a photograph of a shorted diode that was found using
this method. A layer of liquid crystal for 28-30°C range is spun onto the wafer.
Then current is injected into the rows that are shorted. Because the shorted
diodes draw most of the current and therefore dissipate most of the heat, the
color of the liquid crystal changes from red to blue as the temperature rises
within the vicinity of the shorted diode. Once the short is found, an ultrasonic

probe is used to remove the defective diode.

3.3 Test Fixture

Figure 3.16 shows a section of the diode-grid fabricated on a GaAs wafer.
Figure 3.17 shows the diode-grid, glued on a glass slide with photoresist at the
edge of a pc-board. This is convenient because the photoresist can be dissolved
in acetone quite easily. There are a total of 50 DC bias lines available. Two
edge connectors are used to feed the bias lines from the variable bias controller,
which consists of an array of variable resistors driven by programmmable constant
current sources. Electronic relays are used to provide low-frequency modulation

of the DC bias for situations that require a reference signal.

61

1mm

Figure 3.15. Photograph of a shorted diode found by a liquid crystal detection

technique.

62

Figure 3.16. Photograph of a diode-grid with AuGe/Ni/Au bonding pads.

63

Figure 3.17. Photograph of a diode-grid mounted on a pc-board with 50 DC

bias lines available.

64

References

[1] C. E. Zah, “Millimeter-Wave Monolithic Schottky Diode Imaging Arrays,”
Ph. D. Thesis, Chap. 3, pp.38-51, California Institute of Technology, Cali-
fornia, 1986.

(2] M. H. Norwood and E. Shatz, “Voltage Variable Capacitor Tuning: A Re-
view,” Proceedings of the IEEE, Vol. 56, pp. 788-798, 1968.

(3] K. Lundien, R. J. Mattauch, J. Archer, and R. Malik, “Hyperabrupt Junction
Varactor Diodes for Millimeter-Wavelength Harmonic Generators,” IEEE
Trans. on Microwave Theory and Tech., MTT-31, pp. 235-238, 1983.

4] R. S.Muller and T. L. Kamins, Device Electronics for Integrated Circuits,
Chap. 2, pp. 65-104, John Wiley & Sons, Inc., New York, 1977.

[5] C. R. Hilsum, “Simple empirical relationship between mobility and carrier
concentration,” Electronics Letters, Vol. 10, pp. 259-260, 1974.

[6] S. M. Sze and G. Gibbons, “Avalanche Breakdown Voltages of Abrupt and
Linearly Graded p-n Juntions in Ge, Si, GaAs, and GaP,” Appl. Phys. Lett.,
Vol. 8, pp. 111-113, 1966.

(7] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes, Chap. 4, pp. 102-130, Cambridge University Press, New York,
1086.

8] P. Penfield, Jr., and R. P. Rafuse, Varactor Applications, Chap. 4, pp.
57-91, Massachusetts Institute of Technology Press, Massachusetts, 1962.

9] S. J. Eglash, M. D. Williams, P. H. Mahowald, N. Newman, I. Lindau, and
W. E. Spicer, “Aluminum Schottky Barrier Formation on Arsenic Capped
and Heat Cleaned MBE GaAs(100),” J. of Vac. Sci. Technol., Vol. B2(3),
pp. 481-486, 1984.

[10] T. C. Leonard, “Prediction of Power and Efficiency of Frequency Doublefs

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

65
Using Varactors Exhibiting a General N onlinearity,” Proceedings of the IEEE,
Vol. 51, pp. 1135-1139, 1963.
M. Binet, “Fast and Non-destructive Method of C(V) Profiling of Thin Sermi-
conductor Layers on an Insulating Substrate,” Electronics Letters, Vol. 11,
pp. 580-581, 1975.
A. Y. Cho and P. D. Dernier, “Single-crystal-aluminum Schottky-barrier
diodes prepared by molecular-beam-epitaxy (MBE) on GaAs,” J. of Appl.
Phys., Vol. 49, pp. 3328-3332, 1978.
M. Heiblum, M. I. Nathan, and C. A. Chang, “Characteristics of AuGeNi
Ohmic Contacts to GaAs,” Solid State Elect., Vol. 25, pp. 185-195, 1982.
R. E. Williams, Gallium Arsenide Processing Techniques, Chap. 11, pp.
225-257, Artech House, Inc., Massachusetts, 1984.
N. Yokoyama, S. Ohkawa, and H Ishikawa, “Effects of the Heating Rate in
Alloying of Au-Ge to n-Type GaAs on the Ohmic Properties,” Japan J. of
Appl. Phys., Vol. 14, pp. 1071-1072, 1975.
J. P. Donnelly and F. J. Leonberger, “Multiple-Energy Proton Bombardment
in nT-GaAs,” Solid-State Electronics, Vol. 20, pp. 183-189, 1976.
Y. Sato, M. Uchida, K. Shimada, M. Ida, and T. Imai, “GaAs Schottky
Barrier Diode, ECL-1314,” Rev. of the Electrical Communication Lab., Vol.
18, pp. 638-644, 1970.
M. Ida, M. Uchida, K. Shimada, K. Asai, and S. Ishida, “Fabrication Tech-
nology of Stable Schottky Barrier Gates for Gallium Arsenide MESFETS,”
Solid-State Electronics Vol. 24, pp. 1099-1105, 1981.
J. L. Fergason, “Liquid Crystal in Nondestructive Testing,” Applied Optics,
Vol. 7, pp. 17291737, 1968.

66

Chapter 4
Diode-Grid Phase Shifter Measurements

In proposing a new design, the experimental procedure for testing the as-
sumed model is also necessary. In the process of developing the experimental
procedure, what is available in the laboratory often plays a role in deciding the
experimental method. This chapter begins with a survey of possible existing
methods of measurement for testing the diode-grids, and concludes that they are
not suitable in our work. This is mainly due to the fact that wafers available to do
our experiments were usually small and irregular in shape. Consequently, a small
aperture reflectometer that uses a wave-front division interference technique was
developed to measure the reflection coefficient of the diode-grid. The validity
of this method is illustrated by reflection measurements of thin-film bismuth on
fused quartz and its limitations are indicated by reflection measurements of fused
quartz. The experiinental procedure consists of curve-fitting the measured RF
reflection coefficient with an equivalent circuit model based on transmission-line
theory and comparing the best-fitted parameters with the corresponding param-

eters measured at low frequency.

4.1 Survey of Possible Experimental Methods

One of the possible methods of testing the diode-grid is based on simulation
of a planar periodic array in waveguide [1]. Such simulation permits the use of
a few elements in a waveguide to represent a large number of elements in an
infinite periodic array. In the waveguide simulator, the array impedance can be
measured. However, precision waveguide machining and sample mounting are
required to duplicate the details of the array. Furthermore, a scaled model is

probably required as the frequency approaches 100 GHz, and it is more desirable

67
if the measurement can be made directly on the diode-grid itself. Therefore,
methods based on quasi-optical techniques become more attractive.

In principle, various quasi-optical methods for measuring the complex di-
electric constant of a material can be extended to test the diode-grid. They
have demonstrated remarkable accuracy in dielectric measurements at millime-
ter wavelengths. The semi-confocal open-resonator [2] and quasi-optical network
analyzer [3,4] produce results with uncertainty of about 1% in the real part of
dielectric permittivity and 10 % in the loss tangent. The Mach-Zehnder interfer-
ometer [5], and Michelson interferometer [6] provide five or six significant figures
for refractive index and 1% accuracy in loss tangent.

In the semi-confocal resonator method, a sample free of any attachments is
mounted on the planar i’nirror side of the resonator, and a change in the Q of the
resonator and the resonant frequency are used to determine the complex dielectric
permittivity. Jones [2] successfully demonstrated precise dielectric measurements
at 35 GHz. The sample should be plane-parallel with a diameter > 5cm. His
sample ranged from 7cm to 7.5cm. The minimum spot size of the beam deter-
mines how small a sample can be used, and at 100 GHz samples with a diameter
larger than 3 cm are required. This was too large for us.

In the other three approaches, various optical configurations for wavefront
interference are used to assess the dielectric permittivity. Their general principle
of operation is interesting and will simply be illustrated with the Michelson inter-
ferometer as shown in figure 4.1. An incident wave is divided into two parts by
the beam splitter. One part of this wave goes to a scanning mirror and becomes
the reference wave. The other part goes to the sample, reflects off the sample,
and becomes the signal wave. Then the two waves recombine at the beam splitter
and go to the detector. The measured intensity of the interfering signals allows

one to find the reflection coefficient of the sample. To calibrate the system, the

68

\\\\\\\\\\\\\\\\\ Scanning mirror

Beam splitter

% /
Source /

Reference wave — — Signal wave

Sample

\Y
Detector

Figure 4.1. Schematic representation of a Michelson interferometer.

69

microwave technique of using an open, a short, and a matched-load can be used.
Placing a planar mirror at certain position along the horizontal arm of the in-
terferometer allows one to define a reflection coefficient of —1. Translating the
mirror by a quarter-wavelength allows one to define a reflection coefficient of +1.
And removing the mirror allows one to define a zero reflection coefficient.

Figure 4.2 shows an actual setup of the Michelson interferometer. Teflon
lenses were included to collimate and focus the beam onto the diode-grid since
the grids were typically small (2cm by 2cm). Using results published by Har-
vey (7], we designed an artificial quarter-wave matching layer in the form of
groves to match the surfaces of the dielectric lens. Also, absorbing materials were
strategically placed to minimize any stray reflections. Despite these efforts, the
measured results were inconsistent with transmission-line theory because the cal-
ibration procedure was not sufficient to calibrate out those extraneous reflections
coming from the dielectric lens and absorbers in the neighborhood of the diode-
grid. Although more complete calibration procedures are available [6], they are
very sophisticated for practical use. In addition, these methods require samples
with large lateral dimensions. For example, in the multiport reflectometer [3],
Stumper used samples 7 cm to 8 cm in diameter to make reflection measurements
at 392 GHz. These are the factors that make the small aperture reflectometer

attractive for samples that are small and irregular in shape.

4.2 Small Aperture Reflectometer

Figure 4.3 shows a small aperture reflectometer developed to measure the
reflection coefficient of the diode-grid. The idea is to use an absorbing screen
with a hole in the center to divide an incident wave-front into two parts. The
wave that reflects off the absorber is the reference, while the other part reflecting

off the sample is the signal. The interference of these two reflected waves is

70

Figure 4.2. Photograph of a Michelson Interferometer for millimeter waves.

71

*1939UI0)d9fal Q.HS.QHQQ.N J[euis e Jo ﬁomu‘muﬁwmwhﬁmwh dIjewayds

(UMop gpOZ UoI98|4a4)
19QI0S QY

J0}0848p 8pOI(] -

9ADM
uoljshy Jojpnuajly

_ joubig
@IMT%IIIAJ
JajoW 10y 9ADM

J0JD|0s| 1Mo puog M CRIVETETEN U

"€'¥ oan3rg

_In_a apoiq

Joaauw
3|qDAO

72
measured as the sample is translated relative to the absorber. An absorbing
screen is chosen to approximately balance the energy in the two reflected waves
so that the measured intensity has sufficient contrast. The phase and amplitude
of the reflection coefficient of the sample can be found by least-square fitting each
interference pattern or by a simple four-point method [8]. The scanning mirror
serves as a tuning parameter as well as a standard load for calibration. The
system alignment and calibration can be done quite quickly, and the measurement

can be computerized.

Figure 4.4 shows an actual setup for the small aperture reflectometer. Initially
a Varian klystron source with 100 mW of output power was used, but later
it was found that a Hughes Gunn-diode source with 10 mW of output power
was sufficient to do the measurement. The input power is sampled by a 10-dB
directional coupler and monitored by an HP432A power meter thru a Hughes
thermistor head. The frequency is measured by a Hughes wave-meter before
and is checked after the experiment to determine the appropriate step size and
to ensure that no significant frequency shift occurs. The measured input powers
are used to normalize the measured intensities. The area of the transmitting horn
is 4cm?. The intensity of the interference pattern is measured by a receiving horn
that feeds into a zero bias detector. The output isa DC signal, which is monitored
by a HP 3478A multimeter. An IBM-PC is used to control the equipment. It uses
a Capital Equipment interface board to communicate with HP equipment and a
Data Translation A/D and D/A converter to control the stepper motors, which
have a resolution of 1 um. Figure 4.5a shows the translation stage. Figure 4.5b
shows the absorbing screen that is placed next to the diode-grid, which is located
at a distance of 82cm away from the horns. This corresponds to six times the
far field condition. To accommodate different sizes and shapes of diode-grid,

a small replaceable template of absorber is used in conjunction with a bigger

73

Figure 4.4. Photographs of the small aperture reflectometer setup. (a) Overall

view. (b) Close-up view of the test fixture and minature microscope.

74

Figure 4.5. (a) Sideview of the computer-controlled translation stage. (b)

The absorbing screen that is used to divide an incident wavefront in the small

aperture reflectometer.

75
absorbing screen. Both the diode-grid and the scanning mirror are aligned with
a Helium-Neon laser. The mirror is made by evaporating 2 um of gold on glass.
The initial distance between the sample and the scanning mirror is measured by
a miniature microscope with a resolution of 25 um.

The effect of interference can be demonstrated by plotting the power detected
by the diode detector as a function of the mirror position. Figure 4.6 shows that
the received power varies sinusoidally with the mirror position. The maxima cor-
respond to constructive interference, while the minima correspond to destructive
interference. Physically, more energy is deflected at the peaks and less energy
is deflected at the valleys into the field of view of the detector. Since the re-
flection coefficient of the sample is proportional to the complex amplitude of the
interference pattern, one way to find the amplitude and phase is simply to fit a
sinusoidal curve through the measured data. This is shown in figure 4.6 with a
solid line. However, the curve-fitting process is time-consuming.

Figure 4.7 shows pictorially another method in which both the amplitude and
the phase of a sinusoid can be calculated. This is called the four point method,
and it is based on simple phasor trigonometry. It was developed by Wyant [8] in
optical interferometry for three-dimensional sensing. When the intensity of the
sinusoid is sampled four times consecutively at 90° intervals, both the amplitude
and phase of the sinusoid can be calculated by the law of tangents and the
Pythagorean theorem. The 90° phase shifts can be introduced in the form of
optical path delay by translating the sample relative to the screen at intervals
of one-eighth of a wavelength. Both the curve-fitting method and the four-point
method have been used, and they agree to within 2% for amplitude and 3° for
phase. The four-point method is preferred since it is faster. Also, it is interesting
to note that the use of the four-point method in the small aperture reflectometer

makes the system analogous to a six-port network analyzer. However, in the small

76

100 | : ,

x x x Measured intensity
Curve-fitted intensity

Measured signal, mV

00 o7 14 21

Mirror position, mm

Figure 4.6. An interference pattern measured at 93 GHz.

2.7

34

77

Measured sinusoid

VA

8 Phasor representation

2A
Io+1,

Ii+1I4

—
-

B N AN
N

Figure 4.7. A pictorial illustration of the four-point method.

78
aperture reflectometer only one detector is used, while in the six-port network

analyzer four detectors are required.

Reflection Measurements of Bismuth on Fused Quartz

The validity of the small aperture reflectometer can be illustrated with the
reflection coefficient measurement of thin-film bismuth since we can control pre-
cisely the way in which the sample is prepared. Figure 4.8a shows a one-square
inch thin film bismuth deposited on a 3 cm square fused-quartz plate by electron-
beam evaporation in a diffusion pumped vacuum system. The bismuth thickness
is 608 A. Using the four-point probe procedure, we measured the sheet resistance
the bismuth film via four gold deposited strips at the edge of fused quartz to be
92.2Q2. The fused quartz material is Dynasil # 4000. It is plane-parallel to within
5 pm. Figure 4.8b shows the configuration in which the reflectance and phase of
reflection were measured at 93 GHz. Figure 4.9 shows the result of the reﬁéction
measurement or the tuning curve. The reflectance reaches a maximum of 100 %
at a mirror position of 720 um. This is primarily to due the effect of the mirror,
which basically presents an electrical short at the plane of the bismuth film. At a
mirror position of 1590 um, the effect of the mirror is equivalent to an open circuit
at the plane of the bismuth film; therefore, the reflectance reaches a minimum.
The value of this minimum is determined by the sheet resistance. Theoretical
curves are plotted using the measured bismuth sheet resistance (92.20), fused
quartz thickness (434 um), index of refraction (1.96 from Afsar and Button [6],
initial mirror position (203 um), and a best-fitted length parameter due to phase
calibration (2067 pm). The phase-calibration length is the distance between the
input surface of the sample (bismuth film) and a reference plane at which the
measured phase of reflection is 180° for the mirror. The phase-calibration length

was measured to be 2019 um, which disagrees with the best-fitted value by 48 um

79

7

§4_____. Incident wave
Movable % ‘
mirror /

? —

% Reflected wave

.
Fused quartz Bismuth

(b)

Figure 4.8. (a) Photograph of thin-film bismuth on fused quartz. (b) Reflection

measurement configuration of bismuth at 93 GHz.

80

10

08 —
S 06 -
2
o]
= 04 | -
7] .)
- xxx Experiment

O —_ | 1 | | —

02 06 10 14 18 22

Mirror position, mm

Figure 4.9a. Measured reflectance of thin-film bismuth on fused quartz at

93 GHz.

81

100 F | l T | =
X
xxx Experiment

g" Q0 — Theory
2
D wn
®8 g I
=5 80
53
o]
& 70 -

o0 k& 1 1] l —

0.2 0.6 10 14 .8 22

Mirror position, mm

Figure 4.9b. Measured phase of reflection of thin-film bismuth on fused quartz
at 93 GHz.

82
in physical length or 10° in electrical length. This is about as accurate as we can
measure the phase-calibration length since, a miniature microscope with a reso-
lution of 25 um is used to measure distances from the side of the sample. When
the sheet resistance of thin-film bismuth is also treated as a fitting parameter,
the best-fitted value is 91.6). This agrees quite well with the measured sheet
resistance (92.21) at DC.

4.4 Reflection Measurements of Fused Quartz

The limitation of the small aperture reflectometer is observed when it is
used to measure low loss materials such as fused quartz. Figure 4.10 shows the
configuration in which the reflection measurement was made at 89 GHz. The
reflection coefficient is measured as the mirror is tuned. Figure 4.11a shows the
measured reflectance. The calculated reflectance is plotted using the measured
fused quartz thickness (434 um), initial mirror position (203 um), and refréctive
index for fused quartz (1.96 from Afsar and Button [6]). The calculation does
not agree well with the measured reflectance when the absorption index for fused
quartz (0.0005 from Afsar and Button [6]) is used. This is shown with a solid line.
In order to get a better agreement, an absorption index of 0.02 must be used. This
is shown in figure 4.11a with a dashed line. The dips in the measured reflectance
are probably due to power leaking laterally. Figure 4.11b shows the measured
phase, calibrated according to the measured phase calibration length (1105 um).
It is interesting to note that the calculated phase of reflection agrees quite well
with the measured phase. An explanation for this is the following. If power
escapes as described above and the amount of power loss is relatively constant
during a reflection measurement scan, then the measured phase is relatively
unaffected because the four-point method, which takes the ratio of a difference

of four intensity measurements to calculate the phase, effectively calibrates the

83

Z Incident wave
7 . I
Movable % -

%A Reflected wave

Figure 4.10. Reflection measurement configuration of fused quartz.

84

e F e — A= = o =
S 08 |- o o° ~
| = [
O ®
*('3 [J
£ o7 ---- Theory (k=0.0005) *
(] . - =
vd —— Theory (k=0.02)
eee Experiment
06 - —
05 1 | i 1 1
0.2 10 1.8 26 34

Figure 4.11a.

Mirror position, mm

Measured reflectance of fused quartz at 89 GHz.

42

85

180 F X

o)
o
I

xxx Experiment
— Theory

Phase of reflection,
degrees
o
I

8

-180 92}\\ |

02 1.2 12 26 3.4

Mirror position, mm

Figure 4.11b. Measured phase of reflection of fused quartz at 89 GHz.

86
loss of power out of the calculation. This also indicates that power is most
likely leaking out from the etalon formed between the quartz and the mirror.
Interestingly, no dips occurred in the previous reflectance measurement of thin
film bismuth on fused quartz. An explanation for this is that the thin-film
bismuth, being lossy, damps out most of the power during situations that favor

lateral power leakage from the etalon.

4.5 Reflection Measurements of Diode-Grids

Comparisons between theory and experiment up to this point have been
reasonably good. This is because the quartz plate is plane-parallel to within
5pum and has a uniform layer of bismuth. On the other hand, a diode-grid has
both thickness variation and nonuniform device parameters. Typically, the wafer
thickness varies between 10 um and 30 um. This is due to the manual lapping
procedure. A total of 10 % of the diodes are expected to be open-circuited. This
is due to over-etching during diode fabrication and removal of bad diodes that
are shorted electrically or have a low breakdown voltage during diode testing.
They tend to scatter randomly throughout the wafer. Nonuniformity of diode
characteristics are also expected. They scatter less randomly throughout the
wafer. This is mainly due to material properties and alignment during fabrica-
tion. These factors are not readily amenable to analysis and make a comparison
between theory and experiment difficult. This is why sample preparation plays
such a vital role in quasi-optical dielectric measurements [2-6]. Although our
calculation does not take these variations into account, they should represent
some sort of average and provide useful information for the designer.

A family of tuning curves were measured in order to see the effect of DC
bias and millimeter frequency on the diode-grid circuit parameters. Figure 4.12a

shows a diode-grid mounted on a pc-board that provides external DC bias to

87

DC bias

/——Diode grid

% Incident wave
.:. '

Movable

mirror
—_—

Reflected wave

AAMMIMTNTIISY

(b)

Figure 4.12. (a) Photograph of a diode-grid mounted on a pc-board. (b)

Reflection measurement configuration of a diode-grid.

88
the diodes. A network of variable resistors driven by constant current sources is
used to provide adjustable floating voltages to each row of the diode grid. The
physical dimensions of this wafer are 2cm in width, 3cm in length and 376 um
in thickness. Approximately 91 % of the varactors are functional and the rest are
open-circuited. Figure 4.12b shows the configuration in which the tuning curves
were made. Using a multi-dimensional simplex optimization algorithm [9], we
curve-fitted the measured results with an equivalent circuit model based on a
transmission-line theory. The error function was defined to be the absolute value

of the difference between the measured and the calculated complex reflection

coefficient.

Figure 4.13 shows one of these measured tuning curves at 94 GHz. This
particular curve was measured with zero bias on the diode-grid. Four fitting
parameters were used. The first parameter, phase calibration length, represents
the thickness of a layer of air inserted in front of the diode-grid to account for the
inaccuracy in phase-calibration. It allows the calculated phase of reflection to
be adjusted by a constant offset. The second parameter, initial mirror position,
represents the thickness of another layer of air inserted between the diode-grid
and the mirror to account for the inaccuracy in measuring their initial sepa-
ration. This has the effect of translating both the calculated reflectance and
phase of reflection horizontally. The last two fitting parameters are the real and
imaginary part of the diode-grid impedance. On this basis, theoretical curves
were plotted using the best-fitted phase-calibration length (792 um), initial mir-
ror position (1663 um), diode-grid impedance (58 + 794 Q), the measured wafer
thickness (376 um), and the index of refraction of GaAs (3.6 from Afsar and
Button [6]). The measured phase-calibration length was 727 um and the initial
mirror position was 1702 um. The measured diode series resistance was 78 Q)

with a standard deviation of 19 and the zero bias capacitance was 30fF with

89

Reflectance

eeee Fxperiment _

o2 -
—— Theory
00 1 1 i I
0.0 04 08 12 1.6 20

Mirror position, mm

Figure 4.13a. Measured reflectance tuning curve of a diode-grid at 94 GHz.

90

40

eeoe Experiment
Theory

N
O
[

Phase of refiection,
degrees
@)

[
N
O

00 04 08 12 16 20

Mirror position, mm

Figure 4.13b. Measured phase of reflection tuning curve of a diode-grid at

94 GHz.

91
a standard deviation of 10fF. This is based on sampling 95 out of 2000 possi-
ble diodes. From the measured grid period (504 pm), strip width (18 um), and
strip length (450 um), the strip inductance calculated from the quasi-static for-
mula is 0.26 nH, which corresponds to an inductive reactance of 153 1 at 94 GHz.
Substracting the best-fitted diode-grid reactance from the calculated inductive
reactance, we get 59 {1 for the capacitive reactance due to the varactor. This cor-
responds to 29fF, which agrees with the measured zero-bias capacitance (30 +
10fF) at 1MHz. Following this procedure of measuring diode capacitance at Rf
frequency, figure 4.14a compares the capacitance-voltage (CV) measured charac-
teristic at 94 GHz with the CV characteristic measured at 1 MHz. Figure 4.14b
shows the corresponding series resistance measured at 94 GHz. The decreasing
trend of the series resiste.mce as a function of reverse bias is expected, since the
resistance associated with the undepleted region of the diode decreases as the

reverse bias increases; however, the amount of the decrement seems a little high.

To investigate the phase shift capability of this diode-grid, the measured
phase and amplitude of these tuning curves for a particular mirror position is
plotted as a function of bias voltage. The largest phase shift occurs at a mirror
position of 3.23mm. Figure 4.15 shows a comparison between experiment and
theory based on transmission-line. In calculating the reflectance and phase of
reflection, the assumed diode-grid parameters are based on average values of the
corresponding parameters measured from the tuning curves. The average series
resistance is 49 {1, the minimum and maximum diode-grid reactance are 60 2 and
105 (1, respectively, and the average diode-grid to mirror separation is 3.16 mm.
However, a phase calibration length of 795 um is used. The calibration length
averaged from the measured tuning curves is 761 ym, which corresponds to an
8° vertical shift. Phase shift performance is about 40° and average reflection loss

is 6-dB.

92

80 T T I T 1
T
x‘fx Measured at 1 MHz
= 60 ,..Measured at 94 GHz .
0.; b 4
2
jol
S B * 4
g 40 I
(=) ®
o]
20 = ° [* N
I |
1
O] 1 1 { 1
-4 -3 -2 -1 0 1 2

Bias voltage, V

Figure 4.14a. A comparison between the measured capacitance-voltage (CV)

characteristic of a diode-grid at 94 GHz and the measured CV characteristic at

1 MHz. Bars represent one standard deviation.

93

110 T 1 T 1 1
T

90 F 1 Measured at DC _
S «ee Measured at 94 GHz !
2]
5 70 F -
.0 °
wn
9_) 4
n [J
Q@
&5 50 r o .
U) ® ° L]

30 1 1 i 1 |

-4 -3 -2 -1 0 1 2

Bias voltage, V

Figure 4.14b. A comparison between the measured resistance-voltage char-
acteristic of the diode-grid at 94 GHz and the measured series resistance at DC.

Bar represents one standard deviation.

94

04 I T Y ' r
3] 03 o .
e <]
E o o
3 02 F > _
~$ °)
@

o1 -
S“ ° © o Experiment
'§ 60 ——— Theory |] .
-
v O °
SE a0t]
Q
%S |
g 20 - o -
a

0 1 1 1 1
-4 -2 0 2
Bias voltage, V

Figure 4.15. A comparison of the measured and the calculated phase shift

performance as a function of bias voltage at 94 GHz.

95

In exploring the frequency dependence of the diode-grid, tuning curves of the
same diode-grid were measured at several frequencies with zero bias on the grid.
This was done in Professor Luhmann’s laboratory at UCLA, where backward
wave oscillators were available. Figure 4.16 shows the result of these measure-
ments. The circles are the measured diode-grid impedance at frequencies as
shown. The solid line shows the corresponding calculated diode-grid impedance,
assuming a strip inductance of 0.26 nH, a diode series resistance of 78 (1, and a
zero bias diode capacitance of 30 fF. The agreement is reasonably good at 90 GHz,
although it deteriorates quickly as the frequency approaches 130 GHz. This is
expected since the effective dielectric wavelength is approaching the grid period

(0.5 mm).

Figure 4.17 shows another configuration used in measuring phase shift per-
formance of a diode-grid. A different diode-grid was used in this measurement.
The largest phase shift occurred when the tuning mirror was placed 1.49mm
away from the diode-grid. A 70° phase shift and an average of 6.5-dB reflec-
tion loss was obtained. Figure 4.18 shows a comparison between the measured
phase shift performance and calculation based on transmission-line theory. This
comparison is complicated by the fact that the wafer thickness varies between
210 pm to 230 um, 4 out of 35 rows of the diode-grid were shorted during the
measurement, and the parasitic capacitance and series resistance of the diodes
cannot be measured at low-frequency. The diode series resistance could not be
measured accurately at DC because the surface of this wafer has many ripples
with a feature size of about 1 um. This created the problem of maintaining a
good contact between the probes and the metal contacts; consequently, the con-
tact resistance became too large (roughly 300 (1) and dominated the actual diode
series resistance. However, the diode series resistance was measured from a tun-

ing curve at 93 GHz. The measured values were 26) for the series resistance

96

o

© o o Measurement
® o o Theory

O
v

Figure 4.16. A comparison of the méasured and the calculated diode-grid

impedance as a function of the RF frequencies.

a7

Incident wave
-
Movable

mirror >

Reflected wave

B AMIMTIN.S

—=-Fysed quartz

Figure 4.17. (a) Photograph of diode-grid on fused quartz. (b) Reflection

measurement configuration of diode-grid on fused quartz.

98

04 T T T

o 03 d

Q

c

o

E 02 -

2 %

o o1 ¥ .
0 -
80 xxx Experiment -

§ — Theory

@ 8 60 n =

@2

- o

53 40 - —

2

£ 20 - -
0 1 1 |

Bias voltage, V

Figure 4.18. A comparison between the measured phase shift performance of

a diode-grid in parallel with a fused quartz at 93 GHz.

99
and 62 (1 for the reactance. Theoretical curves were plotted using the measured
series resistance (26 (1), the average wafer thickness (218 um), and the calculated
grid inductive reactance (153{1). In addition, we assumed that the initial mir-
ror position was 1.45 mm, the phase calibration length was 1 mm, the published
refractive index for fused quartz and GaAs was 1.96 and 3.6, respectively [6],
and the diode capacitance varied from 35fF at 0.9V to 18fF at —2.75V. The
measured initial mirror position was 1.49 mm, the phase calibration length was
0.91mm, and the average diode capacitance was 27fF at zero bias and 20fF at
—3V and had a standard deviation of 15fF and 13 fF, respectively. Sensitivity
analysis indicates that phase response is quite sensitive to wafer thickness and

initial mirror position, shifting vertically 1° per micron for each.

1]

2]

7]

8]

100

References

P. W. Hannan, “Simulation of a Phased-Array Antenna in Waveguide,” IEEE
Trans. on Antennas and Propagation, AP-13, pp. 342-353, 1965.

R. G. Jones, “Precise Dielectric Measurements at 35 GHz Using an Open
Microwave Resonator,” Proceedings IEE, Vol. 123, no. 4, pp. 285-290,
1976.

U. Stumper,“Dielectric Measurements by Multiport Reflectometers at Sub-
millimeter Wavelengths,” 11th Inter. Conf. on Infrared and Millimeter
Waves, Pisa, Italy, pp. 164-166, 1986.

R. A. Bohlander, A. McSweeney, J. M. Newton, V. T. Brady, and R. G. Shack-
elford, “A Quasi-Optical Scanning Multiport (QUOSM) Network Analyzer,”
6th Inter. Conf. on Infrared and Millimeter Waves, F-2-5, 1981.

N. W. B. Stone, J. E. Harris, D. W. E. Fuller, J. G. Edwards, A. E. Costley,
J. Chamberlain, T. G. Blaney, J. R. Birch, and A. E. Bailey, “Electrical
Standards of Measurement,” Proc. IEE, Vol. 122, no. 10R, pp. 1054-1070,
1975.

M. N. Afsar and K. J. Button, “Millimeter-Wave Dielectric Measurement of
Materials” Proc. of The IEEE, Vol.73, no. 1, pp. 131-153, 1985.

A. F. Harvey, “Optical Techniques at Microwave Frequencies,” Proceedings
IEE, 106B, pp. 144-157, 1959.

J. C. Wyant, “Interferometry for Three-Dimensional Sensing,” Test and Mea-
surement World, April, pp. 66-71, 1986.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes, Chap. 10, pp. 274-334, Cambridge University Press, New York,
1986.

101

Chapter 5
Discussion and Future Work

In this thesis, several possible applications of diode-grids were proposed. In
laying down the groundwork for these applications, a model of the diode-grid
was presented and subsequently used in designing a diode-grid phaser shifter. A
computer-aided design tool has been developed to provide an interactive graphics
environment for doing designs and to form a basis for comparing theoretical
and experimental results. A small aperture reflectometer that uses a wave-front
interference technique has been developed to measure the reflection coefficient
of diode-grids. The measured results have shown the diode-grid model to be
reasonably accurate for doing the designs. A fabrication procedure for diode-grids
has been demonstrated. The combiﬁation of Zah’s self-aligning process and the
liquid-crystal detection technique made it feasible. Monolithic diode-grids with
2000 Schottky varactors have been fabricated on 6 cm? GaAs substrate. A phase
shift of 70° with a 6.5-dB loss was measured for a single diode-grid. Further
improvements remain to be done.

Although the fabrication process had a reasonable yield, the quality of the
diode was not as good. The diode series resistance was too high. The breakdown
voltage was too low; therefore, the ratio of the capacitance at zero bias to the
capacitance at breakdown was too low. The average series resistance was 26
for one grid and 78 {) the other grid. The breakdown voltage for both diode-grids
was about 3V. This led to a capacitance ratio of about 2. Presently these limit
the performance of the diode-grid.

One of the dominant factors of diode series resistance is the product of doping
concentration and thickness of the n™-layer. For the diode-grid that has a series

resistance of 781, the doping concentration and thickness of the nt-layer were

102
about 1x 108 ¢cm~2 and 1.8 um, respectively. However, the diode series resistance
can be lowered by increasing the doping concentration and thickness of n*-layer.
Ballamy and Cho [1] demonstrated beam-leaded diodes with series resistances of
4 to 8. They used 1 x 10'8 cm~3 for the doping concentration and 6 um for the
thickness of the n*-layer. Clifton et al. 2] fabricated a Schottky diode that had
a series resistance of 7). They used 3 x 10'® cm~2 for the doping concentration
and 3 um for the thickness of the n*-layer. Jarry et al. [3] developed a mixer
diode with an incredibly low series resistance that was less than 3. They used
a doping concentration that was greater than 2 x 10® cm™3 and 2 to 3 um for
thickness of the nt-layer. These results indicate that there is an excellent chance

for improving the series resistance of our diodes.

Among the factors that influence the diode breakdown voltage, contamination
due to oil vapor back-streaming from the diffusion pump into the evaporating
chamber was the most probable cause of our low diode breakdown voltage. The
reverse breakdown characteristic was soft, and this led to a breakdown voltage
of about 3V at 0.5 uAum=2. This is about 25% of Sze’s prediction, which is
12V for avalanche breakdown in a one-sided abrupt junction diode with a dop-
ing concentration of 1.5 x 107 cm~2 [4]. The doping concentration for our diodes
was 1.5 x 1017 cm~2 at the GaAs surface and decreased inversely as a function
of the depth in the GaAs. The low breakdown voltage can be increased by using
in-situ MBE aluminum, or by evaporating the metal for the Schottky contact
in an oil-free ultra high vacuum system. For example, Cho and Dernier [5] de-
posited in-situ MBE aluminum on the GaAs epitaxy in the MBE growth chamber
after the epitaxy was grown and before it was exposed to air. They fabricated
Schottky diodes with 15V breakdown voltage, which was about 60 % of Sze’s
prediction for diodes with a doping concentration of 5 x 10'® cm~3. Sato el al. 6]

demonstrated that Schottky diodes fabricated in an oil vapor free vacuum had

103

a higher breakdown voltage than diodes fabricated in an oil diffusion pumped
vacuum. They indicated an 3.5V to 5.3V improvement for their diodes, which
had a doping concentration of 3.5 x 1017 ¢cm™3. The 5.3V breakdown voltage
corresponds to 75 % of Sze’s prediction. In addition, Schottky diodes with near
theoretical breakdown voltage have been fabricated by other researchers. Clifton
el al. [2] fabricated diodes with 10V breakdown voltage. This was about 80 %
of Sze’s prediction. Immorlica and Wood [7] developed diodes with 13V break-
down voltage, and this was about 85 % of Sze’s prediction. These were abrupt
Junction Schottky diodes. Their doping concentrations were 1.5 x 1017 ecm =23 and
1x 107 ¢cm3, respectively. Their diode geometries were strips, which were sim-
ilar to our diodes. Furthermore, their diode areas were about 10 pm, and proton
bombardments were used for isolating their diodes. Although their methods of
deposition were not given, these results do indicate that there is a good chance
for improving the breakdown voltage and therefore the capacitance variation of
our diodes.

Based on the reasonable agreement between theory and experiment, we be-
lieve our diode-grid model to be sufficiently accurate for doing the designs. Fur-
thermore, works on second harmonic generation using diode-grids are being in-
vestigated by Christina Jou in Professor Luhmann’s group at UCLA. They also
showed a reasonable agreement between theory and experiment. For the diode-
grid that had a series resistance of 78 2, the measured transmittance as a function
of the position of the tuning slabs agreed well with the transmission-line model.
Also, a second harmonic conversion efficiency of 16 % and an output power of
0.5 W were measured at 66 GHz when a pulsed magnetron at 33 GHz was used
to pump the diode-grid that had a series resistance of 26 Q.

These results indicate an exciting future for the diode-grid. In electronic

beam-steering, the array design that is based on using two diode-grids appears

104

to be feasible. Diode-grids for harmonic power generation look promising. Also,

the integration of other electronic devices into a periodic grid is beginning to

emerge. In our group, Zorana Popovi¢ is building a Gunn diode-grid on a Duroid

substrate at 10 GHz. In any case, the future of integrating electronic devices into

a periodic grid will be very exciting as well as promising.

References

[1] W. C. Ballamy and A. Y. Cho, “Planar Isolated GaAs Devices Produced

2]

[6]

by Molecular Beam Epitaxy,” IEEE Trans. on Electron Devices, ED-23,
pp. 481-484, 1976.

B. J. Clifton, G. D. Alley, R. A. Murphy, and 1. H. Mroczkowski, “High Per-
formance Quasi-Optical GaAs Monolithic Mixer at 110 GHz,” IEEE Trans.
on Electron Devices, ED-28, pp. 155-157, 1981.

B. Jarry, J. 8. K. Mills, and F. Azan, “94 GHz Microstrip Monolithic GaAs
Mixer,” IEE Electronics Letters, Vol. 22, pp. 1328-1329, 1986.

S. M. Sze, “P-N Junction Diode,” Physics of Semiconductors, Chap. 2, pp.
63-132, John Wiley & Sons, Inc., 1982.

A. Y. Cho and P. D. Dernier, “Single-crystal-aluminum Schottky-barrier
diodes prepared by molecular-beam-epitaxy (MBE) on GaAs,” J. of Appl.
Phys., Vol. 49, pp. 3328-3332, 1978.

Y. Sato, M. Uchida, K. Shimada, M. Ida, and T. Imai, “GaAs Schottky Bar-
rier Diode, ECL-1314,” Rev. of the Electrical Communication Lab., Vol. 18,
pp. 638-644, 1970.

A. A. Immorlica and E. J. Wood, “A Novel Technology for Fabrication of
Beam-Leaded GaAs Schottky-Barrier Mixer Diodes,” IEEE Trans. on Elec-
tron Devices, ED-25, pp.710-713, 1978.

105

Appendix A
Varactor Diode-Grid Fabrication Procedure

The following contains notes on the fabrication of a Schottky-barrier varac-
tor diode-grid on a semi-insulating GaAs wafer. A total of five masks is used.
Because a GaAs wafer is quite large and fragile, a holder made of teflon is used
to hold the wafer during rinsing and developing. Figure A.1 shows the teflon
holder. A teflon tweezer is used for etching. This process evolved from Zah’s
process [1]. The book by Ralph Williams is an excellent reference on GaAs pro-
cessing techniques [2]. Howard Chen in Professor Yariv’s group and Dr. Kjell

Stolt in TRW have been the principal suppliers of the MBE wafers.
Fabrication Procedure

1. Obtain a GaAs wafer with the following layers.
0.2 um of in situ MBE aluminum.
0.7 um of n layer with a hyperabrupt doping profile.
1.8 um of nt layer with 3 x 1018 ¢m™3 doping concentration.

* Some MBE wafers have indium on the back side and some do not. If
indium is present, mount the wafer on a lapping block with wax and lap
away the indium on the backside of the wafer. A mixture of water and
a 5 um diameter Aly;O3 lapping powder made by Buehler is often used.
Afterwards, acetone can be used to dissolve the wax.

2. Determine the crystal orientation of the wafer by making a strip pattern on a
small chip scribed from the wafer. Note: If aluminum is present on the chip,
remove the aluminum by etching it in aluminum etchant for GaAs.

a. Standard lift-off photoresist process

photoresist : AZ 1350]

106
spin speed : 4000 rpm
prebake : 85 °C for 25 min.
exposure : 25 sec.
development : 30 sec. (agitate in 1:1 diluted developer.)

b. Hardbake the photoresist at 125° C for 10 min.

c. Using a 93% concentrated HySO4, and a 30% concetrated H209, mix
the solution (H2S04:H302:H20) with a ratio of 1:8:160. Stir it with a
magnetic stirer in a petri-dish for an hour. The etch rate is about a
quarter of a micron per min.

d. Etch the wafer and rinse it in 20 beakers of DI water.

e. Cleave a slice from the chip and mount it sideways on double-sided tape.
Note the etched profile in a microscope. The diode orientation should be
in the direction of a ‘V-groo§e’ etch or perpendicular to the direction of
a ‘dovetail’ etch. Figure A.2 shows the etched profile.

3. If in-situ aluminum is not available, then clean the wafer throughly and evap-
orate aluminum.

a. Cleaning procedure.
acetone ultrasonic bath : 10 min.
ethanol ultrasonic bath : 5 min.
hot Transene 100 bath : 5 min.
cold Transene 100 bath : 30 sec.
let it dry by itself

b. Etch away the native oxide on the wafer for a minute in a solution of
(H20:HC]) with a 1:1 ratio and rinse it with 20 beakers of DI water.

¢. Load the wafer into the vacuum immediately. Thermo-paste is used to
mount the wafer on a glass slide, which is then mounted onto the sample

holder. Evaporate 2000 A thick of aluminum in a vacuum with pressure

107
below 3 x 1076 Torr. If possible, this should be done in an oil-free vacuum
system at lower pressure [4,5]. The aluminum source must be cleaned by
etching it in organic solvent and aluminum etchant.

4. Generate the self-aligning mask for defining the ohmic contact and the width
of the Schottky contact.

a. Use the standard lift-off photoresist process. (see 2a.)

b. Hardbake photoresist at 125° C for 10 min.

c. Etch the aluminum in Transene aluminum etchant - Type D. Typically,
it takes about 60 sec. at 58° C.

d. Rinse the wafer in DI water and inspect it under the microscope. Look
for signs of under-etched diode tips. They tend to form short ciruits
when AuGe/Ni/Au is evaporated. Typically, several rounds of etching
aluminum for 10s and rinsing the wafer are required to get good results.
Because the wafer is quite large, some etching nonuniformity is expected.
If the situation appears desperate, dissolve the photoresist and start over
again since there are “tons” of aluminum still un-etched on the wafer.
This is worth the trouble because an MBE wafer is precious.

5. Etch away the n-layer until the nt-layer is exposed.

a. Mix the solution (H2S04:H202:H20) with a ratio of 1:8:160. Stir it with
a magnetic stirrer in a Petridish for an hour. Note: Use the 93 % concen-
trated HoSOy, and the 30 % concetrated HyO4.

b. Etch the wafer and rinse it in 20 beakers of DI water. The etch rate is a
quarter of a micron per min. Generally, an extra 15 second is added to over-
etch the crystal. This is just a precautionary measure for exposing thoroughly
the nT layer throughout the wafer.

6. Evaporate AuGe/Ni/Au with the following thicknesses (700A /3004 /20004)

at a pressure below 3 x 1078 torr. The edges of the wafer are taped with

10.

11.

108
paper so that lift-off process in acetone becomes easier.
Remove the thermo-paste on the backside of the wafer with a Q-tip, that
is slightly dampened with acetone. Lift off the photoresist in acetone and
ethanol baths.
Generate the etching mask for defining the lead of the Schottky contact.
a. Use the standard lift-off photoresist process. (see 2a.)
b. Hardbake the photoresist at 125°C for 10 min.
c. Etch the aluminum (see 4 b.)
d. Lift off the photoresist in acetone and ethanol baths.
Generate the bonding pad mask with standard lift off photoresist process.
Evaporate AuGe/Ni/Au with the following thicknesses (700A /3004 /20004)
at pressure below 3 X 1076 torr. The purpose for this is to make a good
bonding pad. The alloying process make the metals partly dissolve into the
GaAs and acquire a rough surface texture. This is worthwhile since wire
bonding can be very difficult if the bond wires do not like to stick on the
bonding pads.
Alloy the ohmic contacts and bonding pads at 460°C for 10 min. in forming
gas (15 % of N3 and 85 % of Hy).
Generate proton implantation mask with photoresist.
a. Pattern implantation mask.
photoresist : AZ 4620
spin speed : 4000 rpm
prebake : 85°C for 1 hour
exposure : 70 sec. at 20 mJ-cm™2
development : 4 min. (agitate in 1:1 diluted developer)
b. Optional: Some people feel that if the photoresist is flood-exposed here,

then it will make the removal of the photoresist easier after ion implanta-

12,

13.

14.

15.

15.

16.

109
tion. This was not noticeable to me.

c. If implantation is to be done at Caltech, obtain sample holder from
Frank So or Sung Kim in Professor Nicolet’s group. Use the phospho-
rus compound to define the implantation boundary. Mount the wafer
onto the sample holder with thermo-paste. If implantation is to be done
at Hughes, no sample holder is required.

d. Implantation parameters:

330 keV at 4 x 10 cm™2 dose
200 keV at 4 x 1012 cm™2 dose

Measure the resistance between the adjacent ohmic contacts to make sure that

the desired area of the wafer is completely isolated. If isolation is completed,

remove the photoresist in an Oy plasma. Measure the diode parameters.

If the breakdown voltage varies widely across the wafer, then probing every

varactor to weed out the weak diodes becomes necessary. This can be done

at UCLA, since an analytical probing station is available for fast probing.

Measure the diode parameters with the HP4145B parameter analyzer and the

CV characteristics with the HP4280A C-meter. See software documentation

in the appendix. Here probing is quite tricky because contact resistance

between the probe tip and the metal depends highly on the amount of pressure
applied. Some practice is necessary to get a reasonably low contact resistance.

Generate the periodic grid mask and the bonding pad mask simultaneously

with the standard lift-off photoresist process. Evaporate 100 A of chrome

and 3000 A of gold. The lift-off here is critical. Lift-off flags must be avoided
because they tend to cause electrical shorts. The cause is due to poor edge
definition when the photoresist is patterned.

Lap the wafer to the desired thickness.

If a row of diode-grid is shorted, use liquid crystals to find shorted diodes

[1]

110
and remove them from the wafer with an ultrasonic probe. It is important
to prepare the sample properly. A layer of liquid crystal is spun onto the
wafer at 1000 rpm. It is important to shake the bottle throughly before using
it. This usually gives a nice and uniform layer. Use a Q-tip to wipe off the
excess liquids on the bonding pad. Mount the wafer on a resistive heated
chuck. Illuminate the wafer with a dual fiber optic lamp at approximately
30° incidence relative to the horizon. Use a curve tracer to inject current into
the shorted row. Typically more than 5mA is required to see any noticeable

color change. Use the Signatone 850 ultrasonic cutter to remove the bad

diode.
References

C. E. Zah, “Fabrication Process for Monolithic Schottky Diode Imaging Ar-
rays,” Ph. D. Thesis on Millimeter- Wave Monolithic Schottky Diode Imaging
Arrays, Chap. 3, pp. 103-109, California Institute of Technology, Pasadena,
California, 1986.

R. E. Williams, Gallium Arsenide Processing Techniques, Artech House, Inc.,
Massachusett, 1984.

A. Y. Cho and P. D. Dernier, “Single-crystal-aluminum Schottky-barrier
diodes prepared by molecular-beam-epitaxy (MBE) on GaAs,” J. of Appl.
Phys., Vol. 49, pp. 3328-3332, 1978.

Y. Sato, M. Uchida, K. Shimada, M. Ida, and T. Imai, “GaAs Schottky
Barrier Diode, ECL-1314,” Rev. of the Electrical Communication Lab., Vol.
18, pp. 638-644, 1970.

M. Ida, M. Uchida, K. Shimada, K. Asai, and S. Ishida, “Fabrication Tech-
nology of Stable Schottky Barrier Gates for Gallium Arsenide MESFETS,”

Solid-State Electronics, Vol. 24, pp. 1099-1105, 1981.

111

Figure A.1. A teflon holder for holding the GaAs wafer during developing and

rinsing.

112

(b)

Figure A.2. Crystal orientation. (a) Cross-section profile of a * V-groove”. (b)

Cross-section profile of a ”dove-tail”.

113
Appendix B
Computer Program Listing of TRAP

program trap(input,output) ;

1

2

3

4 { TRAP is an acronym that indicates the calculation of

5 transmittance, reflectance, absorptance, and phase of

6 reflection. Because the calculation of transmittance,

7 absorptance and reflection coefficient for multi-layered

8 media is tedious and time consuming, TRAP was developed to

9 provide an interactive environment for the user to design the

10 circuit and to compare the theoretical and experimental

11 results. It is an interactive graphics program written in

12 Turbo Pascal for an IBM-PC. For the computational algorithm,
13 please see "Thin Films Calculations Using the IBM 650

14 Electronic Calculator," by Jean A. Berning and

15 Peter H. Berning in Journal of The Optical Society of America,
16 Vol. 50, Num. 8, pg. 813, Aug. of 1960. TRAP features a

17 line editor, from which the user can enter a command line

18 that describes the structures of the layered media. Commands
19 include lossy dielectric, grids, lumped elements,

20 and a mirror. The angle of incidence, polarization,

21 wavelength, and layer thicknesses can be varied linearly.

22 Keyboard commands are available to stop, speed up,

23 or slow down the simulation. TRAP also features optimization
24 capability for the user to fit a transmission-line model

25 to the measured reflectance and phase of reflection.

26 The fitting procedure is based on minimizing the absolute

27 value of the complex difference between the calculated and

28 the measured reflection coefficient. For the optimization

29 algorithm, please see Numerical Recipes by W. H. Press et al.,
30 Chap. 10, pp. 274, Cambridge University Press, New York, 1986.
31

32 Vhen the program is run, a main menu is displayed. There

33 are four options including database, simulation, optimization,
34 graphics, and quit. To make a selection, simply press the key
35 of the first letter for an option. For example pressing Q

36 exits the program. Note also that pressing Q in an option exits
37 that option, and pressing the return key repeats that option,
38 although this is not explicitly displayed in each option.

39 The database and the graphics option are menu driven and

40 allow the user to read in a set of reflection coefficient

41 data from an ASCII file and to define the vertical plotting

42 range, respectively. The data file can be viewed or edited in
43 the Turbo editor. The format of this file should be

44 (distance reflectance phase of reflection). It should

45 appear as three columns of numbers. Tyically these data are

46 measured from an experiment, but they could be generated

47 for the purpose of design and optimization. The simulation

48 option allows the user to edit a command line describing

49 the layered medium. The following are command definitionms.

114

50

51 Convention : 1.) parameters, rl, r2, r3, ... etc., are real numbers.
52 2.) i, b, f, ... etc. are definitions.

53 3.) , and : are delimiters.

54 4.) a command is usually followed by a set of parameters.
55

56 irl - incident medium : rl = refractive index

57 (default value is 1)

58 bri,r2 - dielectric boundary: r1 = Re(refractive index)
59 r2 = Im(refractive index)
60 arl,r2 ~ shunt admittance : ri = Re(shunt admittance)
61 r2 = Im(shunt admittance)
62 fri,r2 - final medium : r1 = Re(refractive index)

63 r2 = Im(refractive index)

64 srl - TE polarization : rl = angle of incidence in
65 degrees with respect to
66 the surface normal.

67 pri - TM polarization : rl = angle of incidence in
68 degrees with respect to
69 the surface normal.

70 wrl - wavelength of incidence : r1 = wavelength in
71 arbitrary units.
72 grl,r2,r3,14 - quasi-static model of a square grid :

73 rl = length of the period.

74 r2 = length of the gap.

75 r3 = length of the post.

76 r4 = series resistance.

77 Grl,r2,r3,14 - Eisenhart model of a square grid :

78 ri = length of the period.

79 r2 = length of the gap.

80 r3 = length of the post.

81 r4d = series resistance.

82 trl - layer thickness : rl = wavelength in arb. units.
83 d - plot y-axis in unit of dB. (default is linear)
84 xrl:r2 - plot the variable (x: i,b,a, ... etc.) on x-axis.
85 rl = start value of x

86 r2 = stop value of x

87

88 Examples: 1.) il z0,.11 b3.6 t.233 z0,.11 f1 80 wi.7:2.7

89 2.) il b3.6 £.233 z.054,.27 bl t0:2.0 m 80 w3.36
90 3.) i1 b3.6 £.233 2.054,.1:.3 b1 t1.5 m sl w3.36
01

92 The first example is a bandpass filter formed by a pair of
93 lossless inductive screens. The second example is a zero-bias
94 diode-grid backed by a mirror that translates from O to 2.0 mm.
95 The third example is a diode-grid with varying reactance and

96 a stationary mirror tuned to 1.5 mm. These examples had been

97 programed. To run them, enter the simulation mode and press E.
98 The description of the multi-layered medium can be edited

99 using a condensed version of Wordstar commands:

100

101 control s - left

102 control 4 - right

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

type

115

control g - delete
control v - change from insert mode to overwrite mode and back.
backspace - deletes left

When the layer description is correct, press carriage
return to enter it. You can get a screen dump by typing shift
PrtSc. The optimization mode allows the user to fit a set
of reflection coefficient data to a transmission-line model
of the layered medium. The data can be read in from an ASCII file
thru the database option. Once the data are entered, enter Q to
return to main menu and press 0 to enter optimization option.
The commands for optimization are similar to simulation, except
that the command should be in capital letters to signify that
the variable is to be optimized. Following the command symbol
is the optimization range (r1;r2), where a semicolon is used
to separate the minimum (r1) and the maximum (r2).

Example: 4.) il bl T.68;.69 Z.042;.043,.085;.09
b3.6 t.218 bl T2.49;2.5 t0:2.0 m 80 w3.36

The fourth example illustrates an optimization command line for
curve-fitting a-transmission-line model of a diode-grid with
a tuning mirror to the experiment. To run this example, enter
the database option, get the measured reflection coefficient
from the file "diogrid.pas," return to main menu, enter the
optimization mode, press the key E, enter 4, and hit return.
The data file is available in the disc on the back cover of
this thesis. It was obtained from an actual reflection
measurement and is shown in part below. As the optimization
advances, the values of each parameter of the multi-layered
medium are displayed line by line on the screen. Each line
represents a completed computation. The ordering of the
parameters in the line starts from the right of the medium

to left of the medium, and the associated error is displayed
last in the line.

0.000 0.912 24.704
0.050 0.903 24.485
0.100 0.886 24.534

1.900 0.937 24.039
1.950 0.944 23.760
2.000 0.953 23.134 }

line = string[250];
complex = “complex_record;

156
187
158
159
160
161
162
163

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

201
202
203
204
2056
206
207

116

complex_record = record
r,i : real;
end;
complex_matrix = “complex_matrix_record;
complex_matrix_record = record
t11,612,421,t22 : complex;
end;
char_set = set of char;
glmpnp = array[1..9,1..8] of real;
glmp = array[1..9] of real;
glonp = array[1..8] of real;
rng = array[1..2,1..8] of real;
const
structure : line = '’;
structuresave : line = '’;
xmin = 190; xmax = 550; {coordinates of graph cornmers}
ymin = 43; ymax = 163;
xd = 3; {plotting interval om x_axis}
backspace = #8; enter = #13;
edit_set : set of char = [‘d,‘s,‘g.‘v, backspace] ;
structure_set : set of char = ['-','.’.'O','i'.'2'.'3',’4'.'5',
'6°,'7,°8%,°9°, 0,0 0
'w','i’,’d’,’t",’g’,'d",'s",'r’,'n’, 0",
'z’ 'a’,'p’ ', 'm0, gL 06,
'B*,'T',’Z",'A",'I’,'F’,"W'];
number_set:set of char=['-','.','0’,'1’.’2','3’,'4’,'5','6’,'7',’8',’9'];
delimiter_set : set of char = [',',':','w','i','b','t’,'g','d','s','p',
o', 'z, 'at, ', 'm’, ", 'q", G,/ ',
'm’, BT, 2L AT R W)
command_set : set of char = [’w’,'i’,'b','t','g','d',‘a‘.'z','r’,'n',
o', '8, 'p’, " E, 'm”, "0, 'q LG, 0,
‘B, T2, A IR WY
label pau, main;

var

position, pointer, positionstop : 1..150; {position in structure.}
a_heap_pointer, b_heap_pointer : “integer; {pointer for garbage disposal}

x, 1 : inte

ger; {position along the x-axis, O to xmax-xmin. }

t : complex_matrix; {complex transmittance matrix}

reflectance

error_code :

min, max :

» transmittance, absorptance, phase : real;
integer; {for val statement}
real; { minimum and maximum values of the x coordinates}

¢, b : char; {character read at keyboard}

dB_plot : boolean; {dB plot if true}

yj. e, pjao, pj, yjml, cnj, cnje, gj,

zj, aj, cno, cnoe, yjmln, yjmid, caj, cnjp : complex;

no, sj, ao,
G_flag, p_f
p., d. v, h,

nj, 1, 1j, sjt : real;
lag : string[2];
Q. ss, ccc, f1, £2, XX, BB : real;

a, g, v, rs, rd, cv, sjsave : real;
scan : string[5];

209
210

117

be, bl, par : complex;

m, n, en, positionsave, positionG, positionf : integer;
zd, bcv, yjsave, cnosave, ymnp, ymnm, becsum, blsum, densum : complex;

XYz, Xyz2 : complex;
test_string : line;
temp, la, mla, nla, 1d, sinc : real;

yjsaver, yjsavei, cnosaver, cnosavei : real;

intensity, normalization : real;
on_off : integer;

select : char;

filename : string[15];

trp : array [1..100 , 1..3] of real;
trpl, trp2, trp3 : real;
data_transfer : text;

data_index, ndata, data_inc : integer;
find_error_flag : boolean;

ref_err : real;

xmi, ylmi, yrmi, xmx, ylmx, yrmx : real;

ylrange, ylscale, yrrange, yrscale, Xrange, xscale : real;

zzzX, zzzy : integer;
compon : array[1..20] of real;
rtol, ftol : real;

nparam, idata, optimization_flag, mvertices, ndim, iter : integer;

poly : glmpnp;

vert : glnp;
face : real;
y : glop;

range : rng;
range_variable : complex;
range_pointer, curve_select : integer;

{GRAPHICS routines}

procedure draw_box (x1,y1,x2,y2,color : integer);

begin
draw (x1,y1,x1,y2,1);
draw (x1,y2,x2,y2,1);
draw (x2,y2,x2,y1,1);
draw (x2,y1,x1,y1,1);
end;

procedure draw_x_ticks(x1,yl,x_increment,x2 :

begin
while (x1<=x2) do begin
draw (x1,(y1+1),x1,(y1-2),1);
x1 := x1 + x_increment;
end; {while}
end; {draw_x_ticks}

procedure draw_y_ticks(x1,yl,y_increment,y2 :

begin

integer) ;

integer);

118

while (y1<=y2) do begin
draw ((x1+2),y1, (x1-4),y1,1);
¥yl := y1 + y_increment;
end; {while}
end; {draw_y_ticks}

procedure draw_graph(x1,yl,x2,y2,

x_increment, y_increment_left, y_increment_right :integer);
begin

draw_box(x1,y1-2,x2,y2+2,1);

draw_x_ticks (x1,yl,x_increment,x2);

draw_x_ticks (x1,y2,x_increment,x2);

draw_y_ticks (x1,yl,y_increment_left,y2);

draw_y_ticks (x2,yl,y_increment_right,y2);
end; {procedure draw_graph}

procedure write_x_coordinates(x1,yl,x_increment :integer;
xlc,xc_increment,x2c : real; field,fix :integer);
begin
repeat
gotoxy((x1 div 8), (y1 div 8));
write (xic:field:fix):
xlc := x1c + xc_increment;
x1 := x1 + x_increment;
until x1c > x2c¢;
end; {write_x_coordinates}

procedure write.y_coordinates(x1,yl,y_increment :integer;
ylc,yc_increment,y2c : real; field, fix : integer);
begin
repeat
gotoxy ((x1 div 8), (y1 div 8));
write (ylc:field:fix);
ylc := yic + yc_increment;
yl := y1 + y_increment;
until yle < y2¢;
end; {write_y_coordinates}

function dB(x : real) : real; {give the dB difference}
begin

dB := 10+1n(x)/1n(10);

end; {dB}

procedure clean_box;
begin
gotoxy(2,2);
write(’)
gotoxy(2,3);
write(’)
end;

procedure set_up;
begin

315
316
317
318
319
320
321

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
348
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

119

if select = 'm’ then begin

hires; hirescolor(15);

draw_box(0,4,639,33,1);

gotoxy(2,2);

write (*MAIN MENU: *);

write('s(simulation) d(database) ');

write(’o(optimization) g(graphics)'’);

if ¢ = 'q’ then read(kbd,select);

if (select = ’'s’) or (select = ’'d’) then
begin
draw_graph (xmin, ymin, xmax, ymax, (xmax-xmin)div 5,
(ymax-ymin)div 5, (ymax-ymin)div 4);

if select = 's' then begin
gotoxy(1,7); write("Tran.*);
gotoxy(1,8); write(’Refl.?);
gotoxy(1,9); write("Abs.');
gotoxy(1,10): write(’'Pha. ');
end;
end;

end;
graphwindow(0,0,639,199);
case select of
‘s’ : begin
clean_box;
gotoxy(2,2); write(’Key: i(nt) b(ndry) t(kms) g(xd) ");

writeln("£(nl) w(vlth) m(ir) G(*) s(TE) p(TM) d(B) q(it) ");

gotoxy(2,3); writeln('Structure:’);
end;
'd’ : begin
clean_box;
gotoxy(2,2); write(’DATABASE: enter data_filename ');
end;
: begin
optimization_flag := 1;
clean_box;
gotoxy(2,2); write(’Key: i(nt) b(ndry) t(kns) g(zrd) ');

writeln(’f(nl) w(vlth) m(ir) G(*) s(TE) p(TM) d(B) q(it)’);

gotoxy(2,3); writeln(’'Structure:’);
end;
end; {of case}

end; {set_up}

procedure write_y_axis;
begin
write_y_coordinates(xmax+20,ymin+7, (ymax-ymin) div 4,
yrmx, (yrmi-yrmx)/4,yrmi,4,0);
if dB_plot then
write_y_coordinates(xmin-20, ymin+7, (ymax-ymin) div 5,
0,-10,-50,3,0)
else
write_y_coordinates(xmin-20,ymin+7, (ymax-ymin) div 5,
ylmx, (ylmi-ylmx)/5,y1lmi,3,1);

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

413
414
415
416
417
418
419
420

120

end; {write_y_axis}

procedure write_x_axis;

begin

write_x_coordinates (xmin,ymax+14,(xmax-xmin) div 5,

min, (max-min)/5,max,4,1);

end; {write_x_axis}

procedure plot_result(on_or_off : integer);

begin

graphwindow (xmin,ymin,xmax,ymax);
trp3 := yrmx - phase*180.0/pi;

if
if

(on_off and $8) <> O then plot(x*xd,round(trp3*yrscale),on_or_off):
dB_plot then begin
if odd(x) then
if (on_off and $4) <> O then
plot (x*xd,round(-dB(transmittance)/50* (ymax-ymin)) , on_or_off) ;
if odd(x div 2) then
if (on_off and $2) <> O then
plot (x*xd,round(-dB(reflectance) /50* (ymax-ymin)),on_or_off);
if odd(x div 3) then
if (on_off and $1) <> 0 then
plot (x*xd, round(-dB(absorptance) /50% (ymax-ymin)) ,on_or_off);

end {if}
else begin

trpl := ylmx - transmittance;
trp2 := ylmx - reflectance;
trp3 := ylmx - absorptance;
if odd(x) then
if (on_off and $4) <> O then
plot (x*xd,round(trpi*ylscale),on_or_off);
if odd(x div 2) then
if (on_off and $2) <> 0 then
plot (x*xd,round(trp2*ylscale),on_or_off);
if odd(x div 3) then
if (on_off and $1) <> O then
plot (x*xd,round(trp3*ylscale) ,on_or_off);

end; {else}
end; {plot_result}

{COMPLEX NUMBERS routines}

function co (s,t : real) : complex; {makes a complex number}

var
u : complex;
begin
new (u) ;
u.r := s;
u”.i = t;
co := u;
end;

121

function sc(s : real; t : complex) : complex;
{multiply a real number s by t}

var
u : complex;
begin
new(u) ;
u".r =8 * t°.r;
u".i =8 * t°.i;
sc := u;
end;

function cc(s : complex) : complex; {complex conj}
var
u : complex;
begin
new(u) ;
u“.r := 8".r;
u.i = -8".i;
cc := u;
end;

function ma(s : complex) : real; {magnitude}
begin

ma := aqrt(sqr(s~.r)+sqr(s~.i));
end;

function ph(s : complex) : real; {phase in radians, (-pi,+pil}
begin

if 8".r > O then ph := arctan(s~.i/s".r):
if 8”.r < O then if s~.i >= O then ph := arctan(s~.i/s".r) + pi
else ph := arctan(s”.i/s".r) - pi;

if 8”.r = 0 then begin
if 8%.1i > O then ph := pi/2;
if 8.1 < O then ph := -pi/2;
if 87.i = 0 then ph := 0;
end; {real part 0}

end;

function su(s,t : complex) : complex; {sum}

var
u : complex;

begin
new(u) ;
u*.r := 8".r + t°.r;
u”.i = 8.1 + t~.1;
su := u;

end;

function pr(s,t : complex) : complex; {product}
var

u : complex;
begin

122

474 new(u) ;

475 u®.r := g".r*t".r - 8°.i*xt".i;
476 ut.i = g.r*t".i + 8" .i*t".1;
477 Pr = u;

478 end;

479

480 function di(s,t : complex) : complex; {difference s minus t}
481 var

482 u : complex;

483 begin

484 new (u) ;

485 u“.r := 8~.r - t°.r;
486 u®.i = 8*.4i - t°.1;
487 di := u;

488 end;

489

400 function qu(s,t : complex) : complex; {quotient s over t}
401 var

492 u : complex;

493 begin

494 new(u) ;

496 ut.r = (s".x*t".r + 8”.i*t".1i)/(sqr(t*.r) + sqr(t~.i));
408 u”.i = (-8".r*t".i + 87.i*t".1)/(sqr(t".x) + sqr(t-.i));
497 qu := u;

498 end;

499

500 function sq(s : complex) : complex; {square}

501 var

502 u : complex;

503 begin

504 new (u) ;

505 u.r := 87.r*8”.r - 8~.i*s".1i;

506 u®.i := 2%g” . r*s”.i;

507 8q := u;

508 end;

509

510 function rr(s : complex) : complex;
511 {square root in the right half plane.}

512 var
513 u : complex;
514 begin

515 new(u) ;

516 u”.r := sqrt(ma(s))*cos(ph(s)/2);
517 u”.i := sqrt(ma(s))*sin(ph(s)/2);
518 IT := u;

519 end;

520

521 function ur(s : complex) : complex;
522 {square root in the upper half plane.}

523 var
524 u : complex;
525 theta : real;

526 begin

123

527 new(u) ;

528 if ph(s) >= O then theta := ph(s)/2 else theta := ph(s)/2 + pi;
520 u®.r := gqrt(ma(s))*cos(theta);

530 u”.i := sqrt(ma(s))*sin(theta);

531 ur := u;

532 end;

533

53¢ function 1r(s : complex) : complex;

535 {the square root in the lower half plane.}

536 var

537 u : complex;

538 theta : real;

539 begin

540 new(u);

541 if ph(s) <= O then theta := ph(s)/2 else theta := ph(s)/2 - pi;
542 u”.r := sqrt(ma(s))*cos(theta);

543 u”.i := sqrt(ma(s))*sin(theta);

544 lr := u;

545 end;

546

547 function ex(s : complex) : complex; {exponential function}
548 var

549 u : complex;

550 begin

551 new (u) ;

552 u”.r := exp(s”.r)*cos(s".i);

553 u”.i := exp(s~.r)*sin(s".1);

554 ex := u;

555 end;

556

557 function sinh(s : complex) : complex; {hyperbolic sine}
558 var

559 u : complex;

560 begin

561 new(u) ;

562 u”.r := cos(s”.i)*(exp(s”.r)-exp(-8~.r))/2;

563 u”.i := sin(s".i)*(exp(s~.r)+exp(-8~.1))/2;

564 sinh := u;

565 end;

566

567 function cosh(s : complex) : complex; {hyperbolic sine}
568 Var

569 u : complex;

570 begin

571 new(u) ;

572 u".r := cos(s~.i)*(exp(s~.i)+exp(-8~.r))/2;

573 u”.i := sin(s".i)*(exp(s~.r)-exp(-8~.r))/2;

574 cosh := u;

575 end;

576

577

678 function sine(s : complex) : complex; {sine function}
579 var

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

124

u : complex;
begin
new(u) ;
u”.r := sin(s".r)*(exp(s~.i)+exp(-8~.1i))/2;
u”.i := cos(s~.r)*(exp(s~.i)-exp(-8~.i))/2;
sine := u;
end;
function cosine(s : complex) : complex; {cosine function}

var
u : complex;

begin
new(u) ;
u”.r := cos(s”.r)*(exp(s~.i)+exp(-8~.1))/2;
u”.i := sin(s”~.r)*(~exp(s~.i)+exp(-8~.1))/2;
cosine := u;
end;
function cm(a11,a12,a21.a22:comp1ex):complex_matrix;

{makes a complex matrix}

var
u : complex_matrix;

function eq (s : complex) : complex; {makes an equal complex number.}

var
u : complex;
begin
new(u) ;
u'.r :=s8".r; ut.i = 8".i;
eq := u;
end; {eq}

begin
new(u);
with u” do begin
t11 := eq(all); t12 := eq(al2);
t21 := eq(a21); t22 := eq(a22);
end; {with}
cm = u;
end; {cm}

function mp (a,b : complex_matrix) : complex_matrix;
{complex matrix product}

var
u . complex_matrix;
begin
new(u) ;
with u” do begin
t11 := su(pr(a~.t11,b".t11),pr(a~.%12,b~.t21));
t12 := su(pr(a”.t11,b".t12),pr(a"~.t12,b~.122));
t21 := su(pr(a~.t21,b".t11),pr(a~.+22,b~.t21));
t22 := su(pr(a”.t21,b".t12),pr(a~.t22,b~.t22));

125

end; {with}
mp := u;
end; {function mp}

{LINE_EDITOR routines}

function edit(x,y : integer; test_string : line)

var
ins: boolean; {true for insert mode on}
position : 1.,150;
row, col,px,py : integer;

label quit;
procedure write_cursor_position;

begin
gotoxy(row,col);
write(® *);
gotoxy(row,col);
write(position);

end; {write_cursor_position}

begin
ins:="true; {insert mode on}
position:= 1;
row = 72; col := 4;
write_cursor_position;
gotoxy(x,y); write(test_string);
repeat

{draw cursor}

draw(8*(x+position-1)-8,8*y-1,8*(x+position-1)-1,8*y-1,1);
draw(8*(x+position-1)-8,8*y-2,8*(x+position-1)-1,8*y-2,1);

gotoxy (x+position-1,y);
read(kbd,c) ;
{erase cursor}

draw(8+ (x+position-1)-8,8*y-1,8+(x+position-1)-1,8+y-1,0);
draw(8*(x+position—1)-8,8*y-2,8*(x+position-1)-1,8*y-2,0);

if ¢ in structure_set then begin
insert(c,test_string,position);
position:= position+i;
write_cursor_position;

: line;

if not(ins) then delete(test_string,position,1);

end;
if ¢ in edit_set then begin
case c of

“d : if position <= ord(test_string[0]) then begin

position:= position+i;
write_cursor_position;
end;

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

126

g : begin
delete(test_string,position,1);
gotoxy(x+ord(test_string[0]),y);
write(’ ');
end;

v : ins:= not(ins);

8 : if position > 1 then begin
position:= position-1;
write_cursor_position;
end;

backspace : if position > 1 then begin

position:= position-1;
write_cursor_position;
delete(test_string,position,1);
gotoxy(x+ord(test_string[0]),y);
write(® *);
end;

end; {case}

end;

if ¢ = 'e' then begin

gotoxy(x,y);

write(’'There are 3 examples. Enter 0 -> quit & 1,2 or 3 > exmpl: ');

read(kbd,c);
case c¢ of
"1’ : test_string :

il 20,.11 b3.6 +.233 z0,.11 f1 s0 * +

'wl.7:2.7°;

2" : test_string := 'il b3.6 t.233 2.054,.27 bl t0:2.0 ' +
'm 80 w3.36°;

'3 test_string := 'il b3.6 t.233 z.054,.1:.3 bl t1.5 ’ +
'm 81 w3.36°;

4" : test_string := ’il b1l T.68;.69 Z2.042;.043,.085;.09 * +
'b3.6 £.218 b1 T2.49;2.5 bl t0:2 m * +
's0 w3.36";

‘5% : test_string := 'i1 bl T.001;.2 b1.96 +.434 b3.6 t.231

'2.045;.065,.25;.31 bl T.6;0.8 bl +0:2.

'm 80 w3.36 010°;

i1 b1.96 £.59 bl t0:2.3 b1.96 .59 bt

t0:2.3 b3.23 t6.72 b1l 2.3 b3.6 t.238

'z.16,-.13 bl +t1.15 m 80 w4.6*;

'T' : test_string := 'il b1.96 t.3 bl t0:1.2 b1.96 +.3 bl *
't0:1.2 b3.23 t6.72 bl t2.3 z.27,.29 °
'b3.6 £.238 b1 t.86 m 80 w2.3’;

"6’ : test_string :

end; {case}
gotoxy(x,y);
writeln(”’
if (¢ = ’1’) or (¢ = '2') or {(c = '3') or
(c '4’) or (¢ = '5") or (c = '6’) or
(c '7°) then c := enter;
end; {if)}
gotoxy(x,y);
write(test_string);
until ¢ in [enter, ’q’];
edit:= test_string;

+

127

739 quit:

740 end; {edit}

741

742

743 {CALCULATION rountines}
744

745

746 function rp : real; {finds a real parameter in structure description}
747

748 begin

749 rp := 0;

750 test_string := *'’;

751 pointer := pointer + 1;

752 while not((pointer > ord(structure[0])) or

753 (structure[pointer] in delimiter_set)) do begin
754 if structure[pointer] in number_set then

755 test_string := test_string + structure[pointer];
756 pointer:= pointer + 1;

757 end; {while}

758 if test_string <> ’’ then begin

759 val(test_string,temp,error_code);

760 rp := temp;

761 end; {if}

762 if (pointer < ord(structure[0])) and (structure [pointer] = ’:*)
763 then begin

764 min := temp;

765 max := rp;

766 if optimization_flag=1 then

767 rp := trp[idata,i]

768 else

769 rp := min + (max-min)*x*xd/(xmax-xmin) ;

770 end; {if}

771 end; {rp}

772

773 function cp : complex;
774 {finds a complex parameter in structure description}
775 var

776 u : complex;

777 begin

778 new(u) ;

779 u”.r := rp;

780 if (structure[pointer] = ’,’) or (structure[pointer] = ’;') then
781 begin

782 u”~.i := rp;

783 end {if}

784 else u~.i := 0;

785 cp = u;

786 end; {cp}

787

788 function orp : real; {returns a real value for optimization}
789 begin

790 nparam := nparam + 1;

791 orp := vert[nparam];

792
793
794
795
796
797
798
799
800
801
802
803
804
805

807
808
809

811
812
813
814
815

817
818
819
820
821
822
823
824
825
826
827
828

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

128

end;

function ocp : complex; {returns a complex value for optimization}
begin
nparam := pparam + 1;

ocp”.r := vert[nparam];

nparam := nparam + 1;

ocp”.i := vert[nparam];
end;

function ymnj : complex;

begin
la := (1*1)/(nj*nj*a*a);
mla := m*m#*la;
nla := n*n*la;

ymnj := qu(co((i-mla)*nj,O),lr(di(co(l.O),su(co(mla,o),co(nla,O)))))'

end; {equivalent characteristic admittance}

procedure incident_medium;
begin
if structure[position] = 'i’ then cno := cc(cp)
else cno := ocp;
if p_flag = 'TE’ then cnoe := sc(cos(ao),cno);
if p_flag = 'TM’ then cnoe := s8c(1/cos(ao) ,cno) ;
{if G_flag='of’ then
write('i’,round(cno".r),’,"’,round(-cno=~.i),*)}

end; {incident_medium}

procedure neff;
begin
caj := lr(di(co(l,O),sc(sin(ao)*sin(ao).sq(qu(cno,cnj)))));
if p_flag = 'TE’ then begin

cnje := pr(cnj,caj); write(’*);
end;

if p_flag = 'TM’ then begin
cnje := qu(cnj,caj); write(’®);
end;

end; {effective refractive index}

procedure transmit_admittance;

begin
if G_flag = 'on’
then
begin
1d := 1/nj;
mla := m*m+1ld+*1d/(a*a);
nla := n*n*ld*1d/(a*a);
Pj := sc(2*pi*1j/1d,1r(co(1-mla-nla,0)));
if pj~.1i <= -200 then pj~.i := -200;
end
else
begin

Pj := sc(((2*pi)/1)#1j,cnj);

129

845 end;

846 pjao := pr(pj,caj);

847 yjmin := su(pr(yj.cosine(pjao)).pr(pr(co(o.i),cnje),sine(pjao)));
848 yjmid := su(cosine(pjao),qu(pr(pr(co(o,i),yj).sine(pjao)),cnje));
849 yiml := qu(yjmin,yjmid);

850 end; {transmit_admittance}

851

862 procedure loss;

853 begin

854 if yjm1~.r <>0 then

855 begin

856 8jt := yj~.r/(yjmil".r*ma(yjmid)*ma(yjmid)) ;
857 8j := s8j*sjt;

858 end

859 else

860 begin

861 8j :=0;

862 end;

863 end; {loss}

864

865 procedure boundary;

866 begin

867 if structure[position] = 'b’ then cnj := cc(cp)
868 else cnj := ocp;

869 nj := cnj”.r;

870 {if G_flag='of’ then

871 write(’b’,cnj".r:5:4,’,’,-cnj~.1i:5:4,’ '):}
872 if G_flag = 'on’ then cnj := ymnj;

873 if scan = 'leftt’ then

874 begin

875 neff;

876 transmit_admittance;

877 loss;

878 ¥ji = yjmil;

879 end;

880 end; {boundary}

881

882 procedure thickness;

883 begin

884 if structure[position] = 't’ then 1j := rp
885 else 1j := orp;

886 {if G_flag='of’ then write(’t’,1j:5:4," ’);}
887 if scan = ’right’ then

888 begin

889 neff;

890 transmit_admittance;

891 loss;

892 yj = yjmi;

893 end;

804 end; {thickness}

895

896 procedure admittance;
897 begin

8908
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

940
941
942
943
944
945
946
947
948

950

if structure[position] = ’a’ then aj

else aj := ocp;
{if G_flag='of’ then write('a’,aj~.r:5:3,”,%,2j".1i:5:3," *):}

yjml := su(yj,aj);
s8j := s8j*(yj~.r/yjmi~.1);

yi

:= yjml;
end; {admittance}

procedure impedance;

begin

if structure[position] = 'z’ then zj
else zj
{if G_flag="of’' then write('z’,zj".r:5:4,",",zj"

yjml

8j

{= 0Cp;

130

:= su(yj,qulco(1,0),2j));

sj*(yj~.x/yjm1".1);

¥i = yiml;
end; {admittance}

function FF(t : real) : real:

begin
QQ := 1/sqrt(1-sqr(p/1))-1;
ccc := sqr(cos({pi/2)*(t/p)));
ss := 1-ccc;
f1 := QQ*ccc*cce/(1+QQ*ss*s88);
f2 := sqr(p*ccc*(1-3+*ss)/(4*1));
FF := f1+f2;

end;

function LL(tt

begin
LL
end;

: real)

: real;

:= 1n(1/sin((pi*tt)/(2+p)));

procedure jerusalum_grid;

begin

P :=

d :

v o=

h :=
XX := (p/1)*(LL(v)+FF(v));

BB := 4*d*(LL(h)+FF(h))/1;

yjml := su(yj,co(0,1/(XX-1/BB))):
sj*(yj~.x/yjmi".1);

8]
¥i

end; {jerusalum_grid}

Ip;
Ip;
Tp;
Tp;

= yjml;

procedure quasi_static_grid;

begin

a =

g :
w

rs :
rd :

Ip;

Ip;

IDp;
Ip;
Ip;

= Ccp

= Ccp

.1:5:4,”

)5}

9561
952
953
954
955
956
957

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

131

cv := rp;
bev = co(0,(2.0+%pi*3E11/1) *cv) ;
zd := sc(1/377,su(co(rs.0),qu(co(i,o),su(bcv,co(l/rd,o)))));
{if G_flag="of’ then write(’g’,round(a),’ *,round(g),’ ’,round(w),
> *,round(rs),’ *,round(rd),’ ’,round(cv),’' ');:}
bc := co(O,(4*a/1)*((1+nj*nj)/2)*1n(1/sin((pi*g)/(2*a))));
bl := co(0,-(1/((g/1)*1n(1/ (sin((pi*w)/(2%a)))))));
gj := su(bc,qu(co(1,0),su(zd,qulco(1,0),b1)))):
xyz := qu(co(1,0),gj);
yijml := su(yj,gj);
8] = sj*(yj~.r/yjmi~.1);
¥i = yiml;
end; {quasi_static_grid}

procedure final_medium;

begin
if structurelposition] = 'f' then
begin
cnj := cclcp);
nj := ecnj”.r;
end
else
begin

cnj := ec(ocp);
nj := cnj".r;
end;
{if G_flag='of’' then
write('f',round(cnj‘.r),',’,round(-cnj'.i),’)}
if G_flag = ’on’ then ¢nj := ymnj;
neff;
Yj := cnje;
end; {final_medium}

procedure wavelength;

begin
if structure[position] = 'w’ then 1 := rp
else 1 := orp;

{if G_flag="of’ then write(’w’,round(l),’ ');}
end; {wavelength}

procedure te;
begin
ao := rp*pi/180;
p_flag := 'TE’;
pointer := 1;
cno := cc(cp);
{if G_flag="of’ then write(’s’,round(ao*180/pi),’ ');}
end; {te}

procedure tm;
begin
ao := rp*pi/180;
p_flag := 'TM*;

132

1004 pointer := 1;

1005 cno := cc(cp);

1006 {if G_flag="of’ then write(’p’,round(ac*180/pi),’ *);}
1007 end; {tm}

1008

1009 procedure mirror;

1010 begin

1011 yj := co(1E3,-1E3);

1012 {if G_flag='of' then

1013 write("m’,round(yj~.x),’,’,round(yj~.i),"’ *);}
1014 end; {mirror}

1015

1016 procedure parasitic_radiation;

1017 begin

1018 par := cp;

1019 {if G_flag='of’ then

1020 write('r’,round(par-.r),’,’,round(par-.i),"' ’);}
1021 end; {parasitic_radiation}

1022

1023 procedure normalization_constant;

1024 begin

1025 normalization := rp;

1026 {if G_flag="of’ then write(’n’,round(normalization),’ ');}
1027 end;

1028

1020 procedure on_off_plot;

1030 begin

1031 on_off := trunc(rp);

1032 end;

1033

103¢ procedure eisenhart_kahn_grid;

1035

1036 label skip;

1037 '

1038 function sine2(x, y, z : real) : real;

1039 begin

1040 if x = 0 then sinc2 := 1

1041 else

1042 begin

1043 sinc := gin(x*pi*y/z)/(x*pi*y/z);
1044 sinc2 := sinc*sinc;

1045 end;

1046 end; {sinc square}

1047

1048 procedure com_library;

1049 begin

1050 if structure[position] in command_set then begin
1051 pointer := position;

1052 case structure[position] of

1053 'i' : incident_medium;

1054 ‘b’ : boundary;

1055 't' : thickness;

1056 'a’ : admittance;

1057
1058
1059
1060
1061

1062
1063
1064

1065
1066
1067
1068
1069

1070
1071

1072
1073

1074
1076

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

133

'z’ : impedance;
'j" : jerusalum_grid;
g’ quasgi_static_grid;
'f' : final_medium;
'm’ : mirror;
‘s’ : te;
'p’ @ tm;
'w® : wavelength;
'r’ : parasitic_radiation;
'n’ : normalization_constant;
'o’ : on_off_plot;
end; {case}
end; {if}
end; {com_library}
procedure cal_driver;
begin
if scan = 'leftt’
then
begin
repeat {decode structure from right to left}
com_library;
position := position - 1;
until position <= positionstop - 1;
end
else
begin
repeat {decode structure from left to right}
com_library;
position := position + 1;
until position >= positionstop + 1;
end;
end; {calculation_driver}
begin {special_grid}
a := rp;
g = IDp;
W = TIp;
rs := rp;
rd := rp;
cv := rp;

bev = co(0, (2.0%pi*3E11/1) *cv);

zd := sc(1/377,su(co(rs,0),qu(co(i,O),su(bcv,co(l/rd,O)))));

{if G_flag="of' then write('G’,’ ',round(a),’ ',round(g),’ ',
round(w),’ ’,round(rs),’ °’,
round(zrd),’ ’,round(cv),’ ');}

{no choice, must store in real #, freemem cause mess}

sjsave := 8j;

Yjsaver := yj~.r;

yjsavei := yj~.i;

cnosaver := cno”.r;

cnosavei := cno”.i;

134

1110 positionsave := position;

1111 structuresave := copy(structure,1,150);

1112 G_flag := ‘on’;

1113 positionG := pos(’G’,structure);

1114 if pos(’f’,structure) = 0 then positionf := pos(’m’,structure)
1115 else positionf := pos('f’,structure);

1116 bcsum := c0(0,0);

1117 blsum := co(0,0);

1118 {writeln(lst,sjsave,yjsaver,yjsavei);

1119 writeln(lst,positionsave,zd”.r,zd".i);

1120 writeln(lst,positionG,cnosaver,cnosavei) ;

1121 writeln(lst,a,g,w);

1122 writeln(lst,rs,rd,cv);}

1123 for m := 0 to 85 do

1124 begin

1125 densum := co(0,0);

1126 for n := 0 to 5§ do

1127 begin

1128 pointer := 1;

1129 cnj := cc(cp);

1130 nj := cnj~.r;

1131 ¢nj = ymnj;

1132 neff;

1133 cno := cnje;

1134 scan := 'leftt’;

1135 position := positionf;

1136 positionstop := positionG;

1137 cal_driver; write(’’);

1138 ymnp := yj;

1139 position := 1i;

1140 structure[1] := 'f’;

1141 scan := 'right’;

1142 cal_driver; write('');

1143 ymom := yj;

1144 if (m=0) and (n>=1) then begin

1145 besum := su(bcsum,sc(sinc2(n,g,a) ,su(ymnp, ymnm))) ;
1146 end;

1147 if m>=1 then begin

1148 en := 2;

1149 if n = O then en :=1;

1150 densum := su(densum,sc(en*sinc2(n,g,a) ,su(ymnp,ymnm)));
1151 end;

1152 end; {begin of n}

1153 if m>=1 then begin

1154 {writeln(lst,’m=",m, 'blsum=",blsum".r,blsum".i) i}
1155 if m=1 then blsum := co(0,0);:

1156 {writeln(lst, 'm=",m, 'blsum=",blsum".r,blsum". i);}
1167 blsum := su(blsum,qu(co(sinc2(m,w,a),0),densum));
1158 {vwriteln(lst,’'m=",m, 'blsum=",blsum".r,blsum".i);}
1159 end;

1160 freemem(b_heap_pointer,-0);

1161 end; {begin of m}

1162 yj®.r := yjsaver;

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

135

¥i®.i := yjsavei;

8j := sjsave;

cno”.r := cnosaver;

cno”.i := cnosavei;

position := positionsave;

positionstop := 1;

G_flag := 'of’;

structure := structuresave;

scan := ’leftt’;
{writeln(lst,sjsave,yj".r,yj~.i);
writeln(lst,positionsave,zd".r,zd"~.i);
writeln(lst,positionG,cno”.r,cno".1i);
writeln(lst,a,g,w);

writeln(lst,rs,rd,cv);}

bev := c0(0,6.65E-4*cv); {modify the constant if freq change}
zd := sc(1/377,su(co(rs,0).qu(co(i,O),su(bcv,co(i/rd,o)))));
{calculating here to avoid freemem over write}
bc := 8c(2*(1-g/a),besun);

bl := qu(co(1,0),sc(2,blaum));

gj := su(bc,qu(co(1,0),su(zd,qu(co(1,0),b1))));
xyz := qu(co(1,0),gj);

yjml := su(yj,gj);

8j = sj*(yj~.xr/yjmi1~.1);

¥i = yjmi;

end; {special_grid}

procedure command_library;
begin -

if structure[position] in command_set then begin

pointer := position;

case structure[position] of
’i’ : incident_medium;
'I' : incident_medium;
'b’ : boundary;
'B’ : boundary;
't’ : thickness;
'T' : thickness;
'a’ : admittance:
'A’' : admittance:

'z’ : impedance;

'Z’ : impedance;

'j' : jerusalum_grid;
g’ : quasi_static_grid;
"G’ : eisenhart_kahn grid;
'f' : final_medium;

'F’ : final_medium;

'm’ : mirror;

's' : te;

'p’ : tm;

'w’ : wavelength;

'W*' : wavelength;
'd’ : dB_plot := true;
: parasitic_radiation;

136

1216 'n’ : normalization_constant;

1217 o’ : on_off_plot;

1218 end; {case}

1219 end; {if}

1220 end; {command_library}

1221

1222 procedure calculation_driver:

1223

1224 begin

1225 if scan = ’leftt’

1226 then

1227 begin

1228 repeat {decode structure from right to left}
1229 command_library;

1230 position := position - 1;

1231 until position <= positionstop - 1;
1232 end

1233 else

1234 begin

1235 repeat {decode structure from left to right}
1236 command_library;

1237 position := position + 1;

1238 until position >= positionstop + 1;
1239 end;

1240 end; {calculation_driver}

1241

1242

1243 {SIMULATION rountines}

1244

1245

1246 procedure simulation;

1247

1248 label quit;

1249 var

1250 next_data : integer;

1251

1252 procedure find_trap;
1253 begin

1254 b_heap_pointer := heapptr;

1265 gotoxy(9,23);

1256 8) :=1;

1257 yj := c0(0,0);

1258 position := ord(structure[0]);

1259 positionstop := 1;

1260 scan := 'leftt’;

1261 G_flag := 'of’;

1262 calculation_driver;

1263 rc := qu(di(cnoe,yj),su(cnoe,yj));

1264 reflectance:=ma(pr(su(rc,par),su(cc(rc),cc(par))))/normalization:;
1265 phase := ph(xc);

1266 transmittance := (1-reflectance)*sj;

1267 absorptance := 1-transmittance-reflectance;

1268 end;

1269
1270
1271
1272
1273
1274
1276
12786
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1201
1292
1283
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321

137

procedure accumulate_error;

var
datavalue : real;
begin
datavalue := trp[data_index,2];
ref_err := ref_err + abs(reflectance - datavalue)
end;

{main procedure simulation}

begin

dB_plot := false;
write_y_axis;

structure := edit(14,3,structure);
x :=1;

b := ’a’;

par := co0(0,0);
normalization := 1.0;
optimization_flag := O;
on_off := 15;

ref_err := Q;
data_index := {;

data_inc := round (int((xmax-xmin)/(xd*ndata)))

next_data := {;
repeat {sweep variable x}
if (x = next_data) then

begin
if data_index <= ndata then begin
find_error _flag := true;
find_trap;
accumulate_error;
find_error_flag := false;
data_index := data_index + 1;
next_data := next_data + data_inc;
end;
end;
find_trap;
if x>=1 then
begin
{gotoxy(4,13); write(’ ');
gotoxy(4,13); write(ref_err:6:2);
gotoxy(4,14); write(’ ’);
gotoxy(4,14); write(bc~.i:6:4);
gotoxy(4,15); write(’ ')
gotoxy(4,15); write(bl~.i:6:4);
gotoxy(5,16); write(’ ")
gotoxy(5,16); write(zd"~.r:8:2);
gotoxy(5,17); write(’ D H
gotoxy(5,17); write(zd~.i:8:2):
gotoxy(5,18); write(’ ');
gotoxy(5,18); write(XX:6:4);
gotoxy(3,19); write(’ ')

gotoxy(3,19); write(sj:3:2);

138

1322 gotoxy(3,20); write(’ ')}

1323 gotoxy(3,20); write(transmittance:3:2);
1324 gotoxy(3,21); write(® ')

1325 gotoxy(3,21); write(reflectance:3:2) :
1326 gotoxy(3,22); write(’ ')

1327 gotoxy(3,22); write(absorptance:3:2);
1328 gotoxy(3,23); write(’ ");

1329 gotoxy(3,23); write(round(phase*180/pi));
1330 end;

1331 if x=1 then

1332 begin

1333 {gotoxy(1,13); write(’er=");

1334 gotoxy(1,14); write(’be=');

1335 gotoxy(1,15); write(’bl="’);

1336 gotoxy(1,16); write('zdr=');

1337 gotoxy(1,17); write('zdi=*);

1338 gotoxy(1,18); write(’'X="):

1339 gotoxy(1,19); write('s=');}

1340 gotoxy(1,20); write('t=');

1341 gotoxy(1,21); write('r=');

1342 gotoxy(1,22); write(’a=’);

1343 gotoxy(1,23); write('p=’);

1344 end;

1345 i := ((seg(heapptr") - seg(b_heap_pointer~)) shl 4) +
1346 (ofs(heapptr~) - ofs(b_heap_pointer"));
1347 freemem(b_heap_pointer,i);

1348 heapptr := ptr(seg(b_heap_pointer"),ofs(b_heap_pointer")):
1349 freemem(b_heap_pointer,-0);

1350 {gotoxy(3,4); what for?}

1351 delay(10);

1352 if KeyPressed then read(kbd,b);

1353 case b of

1354 'a’ : begin

1355 plot_result (1);

1356 X =x+1;

1357 end;

1358 'l’ : begin

1359 plot_result(0);

1360 read(kbd,b) ;

1361 X :=x-1;

1362 end;

1363 'r’ : begin

1364 plot_result(1);

1365 read(kbd,b) ;

1366 X :=x+1;

1367 end;

1368 'q’ : goto quit;

1369 end; {case b}

1370 until x >= ((xmax-xmin) div xd) + 1; {end of x}
1371 write_x_axis;

1372 read(kbd,c);

1373 quit:

1374 end;

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427

139

{OPTIMIZATION rountines}

function efunc(vertice : glnp) : real;
{find error between predicted and measured}

var
i : integer;
error, r, p : real;
rm : complex;

q : char;
begin
for i := 1 to ndim do begin
vert[i] := vertice[i];
end;
error := 0;
optimization_flag := 1;

mark(b_heap_pointer) ;

for idata := 1 to ndata do begin
nparam := Q;

gotoxy(9,23);

sj := 1.0;

yj := co0(0,0);

position := ord(structurel[0]);
positionstop := 1;

scan := ’leftt’;

G_flag := ’of’;
calculation_driver;

rc := qu(di(cnoe,yj),su(cnoe,yj));
T := sqrt(trpl[idata,2]);

face := trp[idata,3]*(pi/180.0);
rm := co(r*cos(face) , rxsin(face)):
error := error + ma(di(rc,zm));:
end; {do}

efunc := error;
release(b_heap_pointer);

end;

procedure scalar_range;

begin
range_variable := cp;
range[1,range_pointer] := range_variable".r;
range[2, range_pointer] := range_variable~.i;
range_pointer := range_pointer + 1;

end;

procedure complex_range;

begin
scalar_range;
if structure[pointer] = ’',' then
begin

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

scalar_range;

end
else
begin

140

range[1,range_pointer] := O;
range[2,range_pointer] := 0;
range_pointer := range_pointer + 1;
end;
end; {of complex_range}
procedure initialize_optimization;
var
i, j integer;
temp : real;
begin

{rightmost parameter goes into col 1, etc. & row 1 takes minimum}
range_pointer := 1;

position := ord(structure[0]});
positionstop := 1;

gcan := 'leftt’;

repeat

if structure[position] in command_set then begin
pointer := position;

case structure[position] of

II!
!Bl
l'rl
IAI
IZI
IFI
IWI

complex_range;
complex_range;
scalar_range;

complex_range;
complex_range;
complex_range;
scalar_range;

end; {of case}

end; {of if}
position
until position <= positionstop - 1;

ftol
iter :

]

:= position - 1;

0.0001;
50;

ndim := range_pointer - 1;

mvertices

ndim + 1;

for i := 1 to mvertices do begin
:= 1 to ndim do begin

if 1 =
else poly[i,j] := range[1,j];

for j

end;
end;

j them polyl[i,j]

gotoxy(1,6); write(’
writeln(’intializating ...

');

range[2, j]

') gotoxy(1,6);

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533

141

for i := 1 to mvertices do
begin

for j := 1 to ndim do

begin

vert[j] := polyl[i,jl;

end;

y[i] := efunc(vert);
end;

gotoxy(1,7); writeln;

for i := 1 to mvertices do
begin
for j := 1 to ndim do
begin

temp := polyl[i,jl;
write(temp:6:4,' *);
end;
temp := y[il;
write(temp:6:4,' *);
writeln;
end;
writeln(’'iteration cycle #0 ');
writeln;
writeln;
end; {of optimization}

procedure amoeba;

label
pau, loop;

const

alpha = 1.0; beta = 0.5; gamma = 2.0; itmax

var
mpts, i, j, inhi, ilo, ihi : integer;
yprr, ypr, rtol : real;

Pr. prr, pbar : glnp;
q : char;
temp : real;
begin
mpts := ndim + 1;
iter := 0;
loop:
ilo := 1;
if (y[1] > y[2]) then
begin
ihi := 1;
inhi := 2;
end
else begin
ihi := 2;
iphi := 1;
end;

142

1534 for i := 1 to mpts do

1535 begin

1536 if (y[i] < y[ilo]) then ilo := i:
1537 if (y[i] > y[ihi]) then begin
1538 inhi := ihi;

1539 ihi := i;

1540 end

1541 else begin

1542 if (y[i] > y[inhi]) and (i <> ihi) then inhi := i;
1543 end;

1544 end;

1545 rtol := 2.0 * abs(y[ihil-y[ilo]) / (abs(y[ihil) + abs(y[ilo]));
1546 if (rtol < ftol) then goto pau;

1547 if (iter = itmax) then

1548 begin

1549 writeln(’pause in AMOEBA - too many iterations’');
1550 readln(q);

1551 end;

1552 iter := iter + 1;

1553 for j := 1 to ndim do

1554 begin

1555 pbar[j]l := 0.0;

1558 end;

1557 for j := 1 to ndim do

1558 begin

1559 begin

1560 for i := 1 to mpts do

1561 begin

1562 if (1 <> ihi) then pbar[j] := pbar[j] + polyli,jl;
1563 end;

1564 end;

1565 end;

1566 for j := 1 to ndim do

1567 begin

1568 pbar[j] := pbar[j]l/ndim;

1569 prlj]l := pbar[j]l + alpha * (pbar[j] - poly[ihi,j]);
1570 end;

1571 ypr := efunc(pr);

1572 if (ypr <= y[ilo]) then

1573 begin

1574 {write('reflection’);}

15675 for j := 1 to ndim do

1576 begin

1577 prr[j] := pbar[j] + gamma * (pr[j] - pbar[j]);
1578 end;

1579 yprr := efunc(prr);

1580 if (yprr < y[ilo]) then

1581 begin

1582 {writeln(’ & expansion’);}

1583 for j := 1 to ndim do

1584 begin

1585 polyl[ihi,j] := prrljl;

1586 end;

1587
1588
1589
1590
1591
1692
1593
1594
15956
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

143

y[ihi] := yprr;

end
else
begin

{writeln(’ only’);}
for j := 1 to ndim do

poly[ihi,j]l := pr[jl;

begin
end;
y[ihi] := ypr;
end;
end
else
begin

if (ypr >= y[inhi]) then

begin

if (ypr < y[ihi]) then

begin

{writeln(’'line contraction');}
for j := 1 to ndim do

begin

poly[ihi,j]l := pr[jl;
end;
y[ihi] := ypr;

for j := 1 to ndim do

begin

end;

prrlj] := pbar[j] + beta * (poly[ihi,j] - pbar[j]);

yprr := efunc(prr);
if (yprr < y[ihi]) then

begin
for j
begin

1 to ndim do

polyl[ihi,j] := prr[jl;

end;

end;
end
else
begin

{writeln(’surface contraction’);}

y[iki] := yprr;

for i := 1 to mpts do

begin

if (i <> ilo) then

begin

for j
begin
prlj]l := (poly[i,j] + polyl[ilo,jl) / 2;

ylil
end;
end;

:= 1 to ndim do

polyli,jl := prl[jl;
end;

efunc (pr) ;

1640
1641
1642
1643
1644
16456
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1879
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

144

end;
end
else
begin
{writeln('reflection with mild success only’);}
for j := 1 to ndim do
begin
polyl[ihi,j] := prl[jl;
end;
y[ihi] := ypr;
end;
end;
writeln;
for i := 1 to mpts do
begin
for j := 1 to ndim do
begin
temp := polyli,jl;
write(temp:6:4,’ ');
end;
temp := y[i];
write(temp:6:4,' *);
writeln;
end;
writeln(’iteration cycle #',iter,’ °*);
writeln;
goto loop;
pau:
end;

procedure optimization;
begin
dB_plot := false;
structure := edit (14,3, structure);
initialize_optimization;
amoeba;
writeln; writeln;
writeln('Optimization finish.');
writeln('Please record optimized values.');

writeln(’Press Q to Qquit and R to continue.’):

end;

{DATA_BASE routines}

procedure graph_units;

begin
gotoxy(1,2); write(’)
write(’)
gotoxy(1,2); write(’enter ylmi, ylmx, yrmi, yrmx : ');
readln(ylmi, ylmx, yrmi, yrmx);

145

1693 write('select curve : (0 = refl), (1 = phase) and (2 = both) '):
1694 readln(curve_select) ;

1695 ylrange := ylmx - ylmi; ylscale := (ymax-ymin)/ylrange;
1696 yrrange := yrmx - yrmi; yrscale := (ymax-ymin)/yrrange;
1697 end;

1698

1699 procedure database;

1700

1701 var

1702 i : integer;

1703

1704 begin

1705 gotoxy(31,2); write(’ '); read(filename) ;

1706 gotoxy(12,3); writeln('inputting data from *,filename);

1707 assign(data_transfer,filename);

1708 ndata := Q;

1709 reset(data_transfer);

1710 while not eof(data_transfer) do begin

1711 ndata := ndata + 1;

1712 readln(data_transfer,trp[ndata,1],trp[ndata.2],trp[ndata,S]);
1713 end;

1714 close(data_transfer);

1715 xmi := trpl[1,1]; xmx := trp[ndata,i];

1716 for i := 2 to ndata do begin

1717 if trp[i,1] > xmx then xmx := trp[i,1];
1718 if trp[i,1] < xmi then xmi := trp[i,1];

1719 end;

1720 graphwindow (xmin,ymin,xmax,ymax);

1721 xscale := (xmax - xmin)/(xmx - xmi);

1722 write_x_coordinates (xmin,ymax+14, (xmax-xmin) div 5,

1723 xmi, (xmx-xmi)/5,xmx,4,1) ;

1724 write_y_coordinates (xmin-20,ymin+7, (ymax-ymin) div 5,

1725 ylmx, (ylmi-ylmx)/5,y1imi,3,1);

1726 write_y_coordinates (xmax+20,ymin+7,(ymax-ymin) div 4,

1727 yrmx, (yrmi-yrmx)/4,yrmi,4,0);

1728 for i := 1 to ndata do begin

1729 gotoxy (47,3); writeln(i,’ ",trpli,1]:4:2," * trp[i,2]:4:2,' ’,
1730 trpli,3]:4:2);

1731 trpl := trp[i,1] - xmi;

1732 {plot reflectance}

1733 if (curve_select = 0) or (curve_select = 2) then begin
1734 trp2 := ylmx - trpl[i,2];

1735 Plot(round(trpi*xscale) - 1 , round (trp2*ylscale) , 1);
1736 plot(round(trpi*xscale) , round(trp2*ylscale) , 1);

1737 plot(round(trpi*xscale) + 1 , round(trp2*ylscale) , 1);
1738 plot(round(trpi*xscale) , round(trp2*ylscale) + 1 , 1);
1739 plot(round(trpi*xscale) , round(trp2+ylscale) - 1 , 1);
1740 end;

1741 {plot phase}

1742 if (curve_select = 1) or (curve_select = 2) then begin
1743 trp3 := yrmx - trpl[i,3];

1744 plot(round(trpi*xscale) - 1 , round(trp3*yrscale) + 1 , 1);

1745 plot(round(trpl*xscale) , round(trp3*yrscale) , 1);

1746
1747
1748
1749
1750
1751
1752
1753
1754
1765
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

146

Plot(round(trpl*xscale) + 1 , round (trp3*yrscale) - 1
Plot(round(trpi*xscale) + 1 , round(trp3*yrscale) + 1
plot(round(trpi*xscale) - 1 , round(trp3*yrscale) - 1
end;
read(kbd,c):

end;

r
end;

{MAI

ead (kbd,c);

N PROGRAM}

begin

ylmi :=
ylmx :

0.0; yrmi := -180.0;
1.0; yrmx := 180.0;

ylrange := ylmx - ylmi; ylscale := (ymax-ymin)/ylrange;
yITrange := yrmx - yrmi; yrscale := (ymax-ymin)/yrrange;

sele
ndat
curv

ct = 'm’;
a :=1;
e_select := 2;

bc := ¢0(0.0,0.0);

bl :=

zd :
XX

c =

c0(0.0,0.0);
c0(0.0,0.0):

= 0.0;

'ql;

main :

pau:

end.

repeat
set_up;
if select = 'q’ then goto pau;
case select of
'd” : database;
's’ : simulation;
"o’ : optimization;
: graph_units;
: goto pau;

)
q
end;

if (¢ = 'q’) or (c = 'g’) or (c = '0’) then select := 'm

if (¢ = ’d') or (c
until ¢ = ’q’;
goto main;

's’) then select := c;

textmode (bw80) ;

147

Appendix C

Computer Program Listing for Reflection Measurement

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

program measure_reflection_coefficient;

{ The name of this program is reflmeas. It was developed to
measure the reflection coefficient of the diode-grid in conjunction
with the small aperture reflectometer. An IBM-PC is used
to control the Data Translation A/D and D/A converter and
the Hp3478A multimeter, whose address should be 23, for
voltage measurements. When the pProgram is rum, it prompts the
user for vertical plotting units, scanning distance in [mm],
operating frequency in [GHz], etc. The measured reflection
coefficients are plotted in real time. At the end of the
measurement, the data can be saved in a file for later editing
or processing. }

type

complex = “complex_record;
complex_record = record
r,i : real;
end;
complex_matrix = “complex_matrix_record:
complex_matrix_record = record /
t11,t12,421,t22 complex;
end;
sdesc = record
len : byte;
addr : integer;
end;
datatype = array[1..100] of real;
const
xmin = 190; xmax = 550;
ymin = 43; ymax = 163;
label
pau, restart, next_data;
var
vout, vin, gain : real;
channel, dac : integer;
peak, valley, i1, i2, i3, i4, pin : real;
amp, face, facex, facey : real;
ylstart, yrstart, ylstop, yrstop, xstart, xstop : real;
q, c, select : char;
dB_plot : boolean;
on_off : byte;
X, Xcor, ycor : integer;
norm, min, max : real;

148

50 reflectance, transmittance, phase, absorptance : real;

51 ndata, j : integer;

52 lap : array [1..100 , 1..3] of real;

53 {1 = len. , 2 = amp. ,and 3 = phase}

54 data_transfer : text;

65 filename : string[15];

56 port_num, bit_num, bit_val, port_O_byte, port_1_byte : byte;
57 n.step, over_drive_n_step : integer;

58 n_step_per_um, freq, inc_90, lamda : real;

59 lmirror, lprevious, lphase, lstart, lstep, lstop : real;

60 i, mode, p_step, m_step, total_step : integer;

61 cmd, recv, set_up_store : string[200];

62 cmddesc, recvdesc : sdesc;

63 my_address, system_controller, len, status, code : integer;
64 quote : char;

65 offset, pnorm, initial_sep : real;

66

67

68 function co (s,t : real) : complex; {makes a complex number}
69 var

70 u : complex;
71 begin

72 new(u) ;

73 u“.r := s;
74 ut.i = t;
75 co := u;

76 end;

77

78 function ph(s : complex) : real; {phase in radians, (-pi,+pil}
79 begin

80 if 8”.r > O then ph := arctan(s*.i/s".r);

81 if 8".r < O then if 8".i >= O then ph := arctan(s~.i/s".r) + pi
82 else ph := arctan(s~.i/s".r) - pi;

83 if 8%.r = 0 then begin

84 if 8".i > O then ph := pi/2;

85 if 87.i < O then ph := -pi/2;

86 if 8*.i = 0 then ph := 0;

87 end; {real part O}

88 end; {of phase}

89

90 procedure draw_box (x1,y1,x2,y2,color : integer) ;
91 begin

92 draw (x1,y1,x1,y2,1);

03 draw (x1,y2,x2,y2,1);

94 draw (x2,y2,x2,y1,1);

95 draw (x2,y1,x1,y1,1);

96 end;

o7

98 procedure draw_x_ticks(x1,yl,x_increment,x2 : integer);
99 begin

100 while (x1<=x2) do begin

101 draw (x1,(y1+1),x1,(y1-2),1);
102 x1 := x1 + x_increment;

149

end; {while}
end; {draw_x_ticks}

procedure draw_y_ticks(x1,yl,y_increment,y2 : integer);
begin

while (yi<=y2) do begin

draw ((x1+2),y1, (x1-4),y1,1);

yl := y1 + y_increment;

end; {while}
end; {draw_y_ticks}

procedure draw_graph(x1,yl,x2,y2,

X_increment, y_increment_left, y-increment_right :integer);

begin
draw_box(x1,y1-2,x2,y2+2,1);
draw_x_ticks (x1,yl,x_increment,x2);
draw_x_ticks (x1,y2,x_increment,x2):
draw_y_ticks (x1,yl,y_increment_left,y2);
draw_y_ticks (x2,y1,y_increment_right,yZ);
end; {procedure draw_graph}

procedure write_x_coordinates(xi,y1,x_increment :integer;
xlc,xc_increment,x2c : real; field,fix :integer);
begin
repeat
gotoxy((x1 div 8), (y1 div 8));
write (xlc:field:fix);
xlc := xlc + xc_increment:
x1 := x1 + x_increment;
until xilc > x2c;
end; {write_x_coordinates)

procedure write_y_coordinates(xl,yl,y_increment :integer;
ylc,yc_increment,y2c : real; field, fix : integer) ;
begin
repeat
gotoxy((x1 div 8), (y1 div 8));
write (ylc:field:fix);
ylc := ylc + yc_increment;
¥yl := y1 + y_increment;
until ylc < y2c;
end; {write_y_coordinates}

function dB{(x : real) : real; {give the dB difference}

begin
dB := 10*1n(x)/1n(10);
end; {dB}

procedure set_up;
begin
hires; hirescolor(15);
draw_graph(xmin, ymin, xmax, ymax, (xmax-xmin)div 5,
(ymax-ymin)div 5, (ymax-ymin)div 4);

150

gotoxy(1,7); write ("Pha. xxxxx');
gotoxy(1,8); write('Refl. +++++ ');

end; {set_up}
procedure write_y_axis;
begin

write_y_coordinates(

if dB_plot then
write_y_coordinat

else
write_y_coordinat

end; {write_y_axis}

procedure write_x_axis;

begin
write_x_coordinates

end; {write_x_axis}

procedure initialize(va
external 't488init’;

procedure transmit(var
external ’t488xmit’;

procedure receive(var r :

external 't488recv’;

procedure hp_vm_initial
{Initalization procedur
begin
quote := chr(39);
cmddesc.addr := ofs(
recvdesc.addr := ofs

my_address := 21;
system_controller :=

initialize(my_addres

cmd := 'LISTEN 23°®' ;

xmax+20,ymin+7, (ymax-ymin) div 4,
yrstop, (yrstart-yrstop)/4,yrstart,4,0);

es (xmin-20,ymin+7, (ymax-ymin) div 5,
0,-10,-50,3,0)

es (xmin-40, ymin+7, (ymax-ymin) div 5,
ylstop, (ylstart-ylstop)/5,ylstart,3,1);

(xmin, ymax+14, (xmax-xmin) div 5,

xstart, (xstop-xstart) /5,xstop,4,1);

T addr, level : integer);

8 : sdesc; var status : integer);

sdesc; var len, status : integer);

ize;
e for Hp voltmeter}

emd) + 1;
(recv) + 1;

0;
8, system_controller);

cmddesc.len := length(cmd);

transmit (cmddesc, st

cmd := 'DATA ' + quo
cmddesc.len := lengt

transmit (cmddesc, st
cmd := 'TALK 23’ ;
cmddesc.len := lengt

transmit (cmddesc, st

atus);

te + 'H1 T1’ + quote + '13 10’ ;
h(cmd) ;
atus) ;

h(cmd) ;
atus);

151

209 end;

210

211 procedure hp_vm(var voltage : real);
212

213 begin

214 recv :=°

215 recvdesc.len := length(recv);

216 receive(recvdesc,1en,status);

217

218 recv := '

219 recvdesc.len := length(recv);

220 receive(recvdesc,len,status);

221 if reev[1] = '+’ then delete(recv,1,1);
222 val(recv,voltage,code) ;

223 voltage := (voltage - offset)* le3 ;
224

225 end; {of hp_vm}

226

227 procedure wait_for_DIF;

228 {check data register of Data Translation board before writing to it}

229
230 var

231 ready,int : byte;

232 timeout : integer;

233

234 begin

235 ready := 0;

236 timeout := $8000;

237 while ready = 0 do

238 begin

239 int := Port[$2ED] and 2;

240 if int = O then ready := 1;

241 delay(1);

242 timeout := timeout+1;

243 if timeout = 32767 then

244 begin

245 writeln(’Device time-out on DT-2801 board,'’);
246 writeln(’during wait for DIF.');:
247 writeln;

248 ready := 1;

249 end;{if}

250 end;{while}

251 end; {procedure wait_for_ DIF}

252

253

254 procedure wait_for_DOR;

255 {check if there is new data in Data Translation board}

256

257 var

258 ready,int : byte;
259 timeout : integer;
260

261 begin

152

262 ready := 0;

263 timeout := $8000;

264 while ready = 0 do

265 begin

266 int := Port[$2ED] and {;

267 if int = 1 then ready := 1;

268 delay(1);

269 timeout := timeout+1;

270 if timeout = 32767 then

271 begin

272 writeln(’'Device time-out on DT-2801 board, ’);
273 writeln('during wait for DOR.’);
274 writeln;

275 ready := 1;

276 end; {if}

277 end; {while}

278 end; {procedure wait_for_DOR}

279

280

281 procedure wait_for_ready;
282 {check if ready to execute another command in the
283 Data Tranlation board}

284
285 var

286 ready,int : byte;

287 timeout : integer;

288

289 begin

290 ready := 0;

201 timeout := $8000;

292 while ready = 0 do

203 begin

204 int := Port[$2ED] and 4:

205 if int = 4 then ready := 1;

206 delay(1);

297 timeout := timeout+1;

208 if timeout = 32767 then

299 begin

300 writeln(’Device time-out on DT-2801 board,’):
301 writeln(’during wait for Ready.’);
302 writeln;

303 ready := 1;

304 end; {if}

305 end; {while}

306 end;{procedure wait_for_ready}

307

308

309 procedure write_d_to_a_immediate(vout: real; dac: integer) ;
310

311 var
312 dat_low_byte, dat_high_byte, ps : byte;
313 code : integer;

314

153

315 begin

316 wait_for_ready;

317 Port[$2ED] := $08; {write voltage command}
318 code := round((vout+10)+4095/20.0);
319 if code > 4096 then code := 4095;

320 if code < O then code := 0;

321 dat_high_byte := code and $0F00 shr 8:
322 dat_low_byte := code and $FF;

323 if dac = O then ps := $00;

324 if dac = 1 then ps := $01;

325 wait_for_DIF;

326 wait_for_DIF;

327 Port [$2EC] := ps;

328 wait_for_ DIF;

329 Port [$2EC] := dat_low_byte;

330 wait_for_DIF;

331 Port [$2EC] := dat_high_byte;

332 end;{procedure write_d_to_a_immediate}

333

334

335 procedure read_a_to_d_immediate (var vin, gain : real; channel : integer) ;
336 {Read data form the Data Translation board}

337 var
338 dat_low_byte, dat_high_byte, G, chan : byte;
339 code : integer;

340 templ : real;

341 i : integer;

342

343 begin

344 templ := 0;

345 {for i := 1 to 10 do begin}

346 wait_for_ready;

347 port [$2ED] := $0C; {A/D command}
348 wait_for_DIF;

349 if gain = 1.0 then G := $00;

350 if gain = 10.0 then G := $01;

351 if gain = 100.0 then G := $02;

352 if gain = 500.0 then G := $03;

353 port[$2EC] := G; {Gain select}

354 wait_for_DIF;

355 case channel of

356 0 : chan := $00;

357 1 : chan := $01;

358 2 : chan := $02;

359 3 : chan := $03;

360 4 : chan := $04;

361 5 : chan := $05;

362 6 : chan := $06;

363 7 : chan := $07;

364 end;

365 port[$2EC] := chan; <{Channel select}
366 wait_for_DOR;

367 dat_low_byte := port[$2EC];

154

368 wait_for_DOR;

369 dat_high_byte := port[$2EC]:

370 code := 256 * dat_high_ byte + dat_low_byte;
371 templ := templ + 20.0 * code/65536.0;

372 vin := templ/gain;

373 end; {procedure read_a_to_d_immediate}

374

375

376 procedure clear_DT_2801;
377 {Clear procedure for Data Translation board}

378 var

379 temp : byte;

380

381 begin

382 Port [$2ED] := $FF;

383 temp := Port[$2EC];

384 wait_for_ready;

385 Port[$2ED] := 0;

386 wait_for_DOR;

387 temp := Port[$2EC];

388 end;{procedure clear_DT_2801}
389

390 procedure wait_for_keypress;
391

392 begin

393 if mode = O then read(kbd,q)

304 else delay(2000);

305 end;{procedure wait_for_keypress}

396

397 procedure write_digital_out(port_number, bit_number, on_off : byte) ;
308 {Write a command to motor driver}

399
400 var

401 mask : byte;

402 begin

403 wait_for_ready;

404 port [$2ED] := $05;

405 wait_for_DIF;

406 port [$2EC] := port_number;

407 wait_for_ready;

408 port [$2ED] := $07;

409 wait_for_DIF;

410 port[$2EC] := port_number;

411 wait_for_DIF;

412 mask := 1 shl bit_number;

413 if port_number = 1 then

414 begin

415 if on_off = 1 then port_1_byte := mask or port_1_byte
416 else port_1_byte := (not mask) and port_1_byte;
417 port[$2EC] := port_1_byte;

418 end

419 else

420 begin

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

440
441
442
443
444
445
446

448
449

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

155

if on_off =1 then port_O_byte := mask or port_O_byte
else port_O_byte := (not mask) and port_O_byte;
port [$2EC] := port_O_byte;
end;
end;

procedure enable_motor(port_number, on_off : byte);
{Enable motor: 1 for on }

begin
if on_off = 1 then write_digital_out(port_number, 2, 1)
else write_digital_out (port_number, 2, 0):

end;

procedure direction(port_number, for_bak : byte);
{Motor direction: 1 for forward }

begin
if for_bak = 1 then write_digital_out (port_number, 5, 1)
else write_digital_out (port_number, 5, 0);

end;

procedure scan(port_number : byte ; n_step : integer);
{Move motor: 1 for move}
var

i : integer;

begin
if n_step > O then direction(port_number,1)
else direction(port_number,0);
for i := 1 to abs(n_step) do begin
write_digital_out (port_number, 7, 0);
write_digital_out (port_number, 7, 1);
delay (20);
write_digital_out(port_number, 7, 0);
end;

end; {of scan}

begin {main program}
bp_vm_initialize;
dB_plot := false;
set_up;

gotoxy(1,1); write(’enter ylstart, ylstop, yrstart and yrstop :

readln(ylstart,ylstop,yrstart,yrstop);

write_y_axis;

gotoxy(1,2); write(’enter xstart and xstop : ');
readln(xstart,xstop);

gotoxy(1,3); write(’enter mode (manual = 0 & auto = 1)
readln(mode);

write_x_axis;

"
[}

port_O_byte :
port_1_byte :

K
o

')

')

474
475
476
477
478
479
480
481
482
483
484
485
486
487

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

156

clear_DT_2801;

enable_motor(0,1);

enable_motor(1,1);

n_step_per_um := 1.01; {Motor calibration constant}
{Last calibrated on 10/86}

offset := 0.10e-3;

over_drive_n_step := 25;

ndata := 1;

total_step := 0;

q := Izl;

gotoxy(1,3); writeln(®)
gotoxy(1,3); write(’enter frequency in GHz : ');

readln(freq);

lamda := 300.0/freq; {convert into millimeter}
inc_90 := lamda/8.0;
p-step := round(inc_90 * 1000.0 * n_step_per_um);

gotoxy(60,3); write(’STATE :');
if mode = 1 then begin
gotoxy(1,4); write(’enter lstart, lstep, lstop : ');
readln(lstart, lstep, lstop);
lmirror := lstart;
lprevious := lmirror;
end
else begin
gotoxy(70,3); write('L *);

gotoxy(1,14); write(" L > ")
gotoxy(7,14); readln(imirror);
lprevious := xstart;

end;

hp_vm_initialize;
{To eliminate back-lash in the translation}
scan(0,-over_drive_n_step) ;
scan(0,over_drive_n_step);
scan(0,-over_drive_n_step);
scan(0,over_drive_n_step) ;
scan(1,-over_drive_n_step) ;
scan(1,over_drive_n_step);
scan(1,-over_drive_n_step);
scan(1,over_drive_n_step);
gotoxy(1,4);
writeln("® ¥
gotoxy(1,4); write('enter initial seperation : ’);
readln(initial_sep);
writeln(lst, ’initial seperation = *,initial_sep);
writeln(lst,’ *);

write(lst,’ L Pin it ")
writeln(lst, 'i2 i3 i4 Phase Ampc');
writeln(lst,’ ’);
next_data:
restart:
if (mode = 0) and (ndata <> 1) then begin

if

157

gotoxy(70,3); write(’L ');

gotoxy(1,14); write(’ L >
gotoxy(7,14); readln(lmirror);

end;

m_step := round((lmirror-lprevious) * 1000.0 * n_step_per_um);

scan(0,m_step);
gotoxy(70,3); write(’L *);

')

gotoxy(1,14); write(® L = ');
if mode = 1 then write(lmirror:6:3);

gain := 1.0;

channel := 0;

gotoxy(70,3): write(’Pin’);
gotoxy(1,15); write('Pin =
wait_for_keypress;
{hp_vm(pin);}

');

read_a_to_d_immediate(pin, gain, channel);

gotoxy(7,15); write(pin:7:6)
gotoxy(70,3); write('il ');

gotoxy(1,16); write(’ il =
wait_for_keypress;
hp_vm(i1);
read_a_to_d_immediate(pnorm,
i1 := ii/pnorm;
gotoxy(7,16); write(il:7:6);

gotoxy(70,3); write('i2 ');
scan(1l,p_step);
gotoxy(1,17); write(’ i2 =
wait_for_keypress;
hp_vm(i2);
read_a_to_d_immediate(pnorm,
i2 := i2/pnorm;

gotoxy (7,17); write(i2:7:6);

gotoxy(70,3); write('i3 ’);
scan(l,p_step);
gotoxy(1,18); write(’ i3 =
wait_for_keypress;
hp_vm(i3);
read_a_to_d_immediate(pnorm,
i3 := i3/pnorm;
gotoxy(7,18); write(i3:7:6);

gotoxy(70,3); write(’i4 ');
scan(1,p_step);
gotoxy(1,19); write(’ i4 =
wait_for_keypress;

q="r’ then goto restart;
hp_vm(id);
read_a_to_d_immediate{(pnorm,
i4 := i4/pnorm;

)

gain, channel);

');

gain, channel);

)

gain, channel);

gain, channel);

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

609
610
611
612
613
614
615
616
617
618

620
621
622
623
624
625
626
627
628
629
630
631
632

1568
gotoxy(7,19); write(i4:7:6);

facey := i4-i2;

facex := i1-i3;

face := -ph(co(facex,facey))=*(180/pi);

gotoxy(1,20); write('Pha =);

gotoxy(7,20); write(face:4:1);

xcor := round((lmirror-xstart)*(xmax-xmin)/(xstop-xstart));
yeor := round((yrstop-face)*(ymax-ymin)/(yrstop-yrstart));
graphwindow (xmin,ymin,xmax,ymax);

plot(xcor-1,ycor+1,1);

plot(xcor+1,ycor+1,1);

plot (xcor,ycor,1);

plot (xcor+l,ycor-1,1);

plot(xcor-1,ycor-1,1);

amp := sqrt(sqr(i4-i2)+sqr(i1-i3));
gotoxy(1,21); write("Amp =)
gotoxy(7,21); write(amp:5:3);

xcor := round((lmirror-xstart)+*(xmax-xmin)/(xstop-xstart));
yeor := round((ylstop-amp)*(ymax-ymin)/(ylstop-ylstart));
graphwindow (xmin, ymin, xmax, ymax) ;

Plot (xcor-1,ycor,1);

plot (xcor+1,ycor,1);

plot (xcor,ycor-1,1);

plot (xcor,ycor+1,1);

write(Lst,lmirror:6:4,")
write(Lst,pin:7:6," *);
write(Lst,i1:7:6,° ')
write(Lst,i2:7:6," 'Y,
write (Lst,i3:7:6,"),
write(Lst,i4:7:6,"* ');
write (Lst,face:4:1," ")
write(Lst,amp:6:3);

writeln(Lst,’' ’);

lap[ndata,1] := Imirror;
lap[ndata,2] := amp;
lap[ndata,3] := face;
total_step := total_step + m_step;
if (mode = 1) and ((lmirror>lstop) or (Imirror=lstop))
then q := ’'s’;
if q='s’ then begin
gotoxy(1,24); write(’enter impedance filename : ');
readln(filename);
assign(data_transfer,filename);
rewrite(data_transfer);
for j := 1 to ndata do
begin

writeln(data_transfer,lap[j,1],’ *,lap[j,2],’ ’,1lapl[j,31);

end;
close(data_transfer);

159

633 writeln(lst,’ *);

634 writeln(lst, 'stored in filename : ’,filename);
635 goto pau;

636 end; {of begin}

637

638 if q = 'q’ then goto pau;

639 gotoxy(70,3); write(’Rwd’);
640 scan(1,-3*p_step) ;

641 scan(1,-over_drive_n_step);
642 scan{1,over_drive_n_step);
643 lprevious := lmirror;

644 if mode = 1 then lmirror := lmirror + lstep;
645 ndata := ndata + 1;

646 goto next_data;

647 pau:

648 {Return to original positon}
649 scan(0,-total_step);

650 scan(0,-over_drive_n_step);
651 scan(0,over_drive_n_step);
652 scan(1,-3*p_step) ;

653 scan(1,-over_drive_n_step);
654 scan(1,over_drive_n_step);
655 enable_motor(0,0);

656 enable_motor(1,0);

657 textmode (bw80) ;

658 gotoxy(1,1);

659 end.

160
Appendix D

Computer Program Listing
for Diode Parameter Measurement

1 program iv_measurement_of_Schottky_diode;

2

3

4 { The name of this program is ivdiode. It was developed for
5 measuring the circuit parameters of a Schottky diode.

] The program is writtem in Turbo Pascal. An IBM-PC is used
7 to control the Hp4145A semiconductor parameter analyzer,

8 whose address is 19. The diode leads should be connected

9 to the terminals labeled as SMU1, and GND on the I-V box
10 are used. The diode parameters are calculated from the measured
11 currents and voltages. They are displayed on the monitor.
12 The diode parameters include the series resistance (Rs),
13 barrier height (Vb), n-factor (nf), and saturation current
14 (Io). The correlation coefficient (cc) of the fit is also
15 displayed. The algorithm used in this calculation

16 is given in Chung-en Zah’'s Ph.D. thesis, "Millimeter-Wave
17 Monolithic Schottky Diode Imaging Arrays." The program is
18 menu driven. Default value for the diode area is 18 um#2.
19 The current ranges from 0.1 uA to 0.1 mA, and the voltage
20 ranges from O V to 2 V. Pressing return after the prompt
21 invokes the above default values. The data can be saved on disk,
22 retrived from disk, displayed on the monitor, or listed on the
23 printer. }

24

25 type

26 sdesc = record

27 len : byte;

28 addr : integer;

29 end;

30 datarray = array [1..100] of real;

31

32 const

33 xmin = 190; xmax = 450;

34 ymin = 23; ymax = 163;

35 xd = 3;

36

37 label

38 quit, main_menu, sub_menu, loopl, loop2;

39

40 var

41 cmd, recv : string[200];

42 cmddesc, recvdesc : sdesc;

43 my_address, system_controller, len, status : integer;

44 quote : char;

45 first, nchar, code: integer;

46 voltage, curremnt, va, im, vm : real;

47 filename, buffer : string[10];
48 main_mode, sub_mode, q : char;

161

49 time_delay, j, ndata : integer;

50 v, i : datarray;

51 ia, ylstart, ylstop, xstart, xstop, ydata : real;
52 Xcor, ycor, yb, ye : integer;

53 vb, area, rs, nf, gf, is : real;

54 number_transfer : file of real;

55 row, col : real;

56

57 procedure initialize(var addr, level : integer);

68 external ’'t488init’;

59

60 procedure transmit(var s : sdesc; var status : integer) ;
61 external 't488xmit’;

62

63 procedure receive(var r : sdesc; var len, status : integer);
64 external 't488recv’;

65

66 procedure initialize_hp_4145a;

67

68 begin

69 time_delay := 4000;

70 quote := chr(39);

71 cmddesc.addr := ofs(cmd) + 1;

72 recvdesc.addr := ofs(recv) + 1;

73

74 my_address := 21;

75 system_controller := 0;

76 initialize(my_address, system_controller);

77

78 cmd := 'IFC REN MTA LISTEN 19°';

79 cmddesc.len := length{cmd);

80 transmit (cmddesc, status):

81

82 cmd := 'DATA' + quote + 'US’ + quote + 13 10°;
83 cmddesc.len := length(cmd);

84 transmit (cmddesc, status):

85

86 cmd := 'DATA' + quote + 'IT2 CA1 BC’ + quote + '13 10’;
87 cmddesc.len := length(cmd);

88 transmit(cmddesc, status);

890 end;

90

91 procedure reset_hp_4145a;

92

93 begin

94 cmd := "MTA LISTEN 19°;

95 cmddesc.len := length(cmd);

96 transmit (cmddesc, status):

97

98 cmd := 'DATA’ + quote + 'DCL SDC’ + quote + ’13 10’;
99 cmddesc.len := length(cmd);

100 transmit (cmddesc, status);

101 end; {of reset_hp_4145a}

102
103
104
105
106
107
108
109

126
127
128
129
130
131
132
133
134
135
136
137
138
139

162

procedure set_voltage(volt : real);:

var
v : string[18];

begin
str(volt,v); delete(v,8,6);
cmd := *MTA LISTEN 19°;
cmddesac.len := length(cmd);
transmit (cmddesc, status);

cmd := 'DATA’ + quote + 'DV 1,
quote + '13 10';

cmddesc.len := length(cmd);
transmit (cmddesc, status);

delay(time_delay);
end; {of set_voltage}

0, '+ v+, 10E-3" +

procedure set_current(ampere : real);

var
i : string[18];

begin
str(ampere,i); delete(i,8,6);
cmd := 'MTA LISTEN 19°';
cmddesc.len := length(cmd);
transmit (cmddesc, status);

cmd := 'DATA’ + quote + 'DI 1,
quote + '13 10°*;

cmddesc.len := length{cmd);
transmit (cmddesc, status);

delay(time_delay);
end; {of set_voltage}

procedure measure_current(var i :

begin
cmd := 'MTA LISTEN 19°’;
cmddesc.len := length(cmd);
transmit (cmddesc, status);

cmd := 'DATA' + quote + 'TI 1’
cmddesc.len := length(cmd);
transmit (cmddesc, status);

cmd := '"MLA TALK 19';
cmddesc.len := length(cmd);
transmit {cmddesc, status);

0,'+i+',5'+

real) ;

+ quote + ’13 10°;

163

recy := °’ !
recvdesc.len := length(recv);
Treceive(recvdesc, len,status);
delete(recv,1,3);
val(recv,current, code) ;
if current < O then i := current
else begin

delete(recv,1,1);:

val(recv, current,code);

i := current;
end;

end; {of measure_current}

procedure measure_voltage(var v : real);

begin
cmd := 'MTA LISTEN 19°;
cmddesc.len := length(cmd) ;
transmit (cmddesc, status);

cmd := 'DATA' + quote + 'TV 1’ + quote + '13 10’;
cmddesc.len := length(cmd);
transmit (cmddesc, status);

cmd := "MLA TALK 19’;
cmddesc.len := length(cmd);
transmit (cmddesc, status):
recv := ' '
recvdesc.len := length{recv);
receive(recvdesc,len,status);
delete(recv,1,3);
val(recv,voltage,code);
if voltage < O then v:= voltage
else begin
delete(recv,1,1);
val(recv,voltage, code) ;
v := voltage;
end;
end; {measure_voltage}

procedure clear_line;

begin

gotoxy(1,1); write(’ s
write(’)

end; {clear_line}

procedure display(x, y : datarray; ndata : integer);
var

cont : char;

i : integer;
begin

164

208 clear_line;

209 for i := 1 to ndata do begin

210 gotoxy(1,1); write(ndata,’ - *,i,' *,y[i]:10,’ *,x[i]:10);
211 read(cont);

212 end;

213 end; {of display}

214

215 procedure 1sf(x, y : datarray; n : integer; var a, b, ¢ : real);
216 {a = slope b = intercept ¢ = correlation coeff. }
217 var

218 Xsum, ysum, Xysum, xssum, yssum : real;

219 xden, yden, rden : real:

220 i : integer;

221

222 begin

223 * xsum := 0; ysum := 0;

224 xysum := Q;

225 xssum := 0; yssum := 0;

226 for 1 := 1 to n do begin

227 xsum := xsum + x[i];

228 ysum := ysum + y[i];

229 xysum := xysum + x[i]*y[i];

230 xssum := xssum + x[i]*x[i];

231 yssum := ygsum + y[i]#*y[i];

232 end;

233 xden := n * xssum - xsum * xsum;

234 yden := n * yssum - ysum * ysum;

235 rden := sqrt(xden * yden);

236 a := (n*xysum - xsum*ysum) / xden;

237 b := (ysum*xssum - xysum*xsum)/ xden;

238 ¢ := (n*xysum - xsum*ysum) / rden;

230 end; {of 1lsf}

240

241 procedure curve_fit_ivdata(x, y : datarray; n : integer;
242 var rs, nf, gf, is : real);

243 { x = voltage 7y = current gf = goodness }

244 var

245 1x, 1y, yav, dvdlni : datarray;

246 i : integer;

247 begin

248 {for i := 1 to n-1 do begin

249 dvdlni[i] := (x[i+1]-x[i]) / (In(y[i+1])-1n(y[i]));
250 yav[i] := (y[i+1] + y[i]) / 2.0 ;

251 end;

252 1sf(yav, dvdlni, n-1, rs, nf, gf);

253 nf := nf/0.0259; This method is not accurrate because yav is used.}
254 for i := 1 to n-1 do begin

255 1x[i] := (y[i+1]-y[i]) / (x[i+1]1-x[i]);

256 1y[i] := (In(y[i+1D)-1n(y[i])) / (x[i+1]-x[i]);
257 end;

258 1sf(1x, 1y, n-1, rs, nf, gf);

259 rs := -rs/nf;

260 nf := 1/(0.0259%nf);

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
286
286
287
288
289
290
291
292
293
204
205
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

165

is := 0.0;
for i := 1 to n do begin
is := is + 1n(y[il) - (x[i]-y[il*rs)/(nf*0.0259):

end;

is := exp(is/n);

gotoxy(1,7); write(’Rs = ’,rs:8);
gotoxy(1,8); write('nf = * nf:8);
gotoxy(1,9); write('Io = ',is:8);

gotoxy(1,10); write(’cc = ', gf:8);
end; {curve_fit_ivdata}

procedure draw_box (xi,yl,xZ.yZ,color : integer);
begin

draw (x1,y1,x1,y2,1);

draw (x1,y2,x2,y2,1);

draw (x2,y2,x2,y1,1);

draw (x2,y1,x1,y1,1);
end; {of draw_box}

procedure draw_x_ticks(x1,yl,x_increment,x2 : integer) ;
begin .
while (x1<=x2) do begin
draw (x1, (y1+1),x1,(y1-2),1);
xi := x1 + x_increment;
end; {while}
end; {of draw_x_ticks}

procedure draw_y_ticks(x1l,yl,y_increment,y2 : integer) ;
begin

while (y1<=y2) do begin

draw ((x1+2),y1,(x1-4),y1,1);

¥yl := y1 + y_increment;

end; {while}
end; {of draw_y_ticks}

procedure draw_graph(x1,yl,x2,y2,

x_increment, y_increment_left, y_increment_right :integer);
begin

draw_box(x1,y1-2,x2,y2+2,1);

draw_x_ticks (x1,y1,x_increment,x2);

draw_x_ticks (x1,y2,x_increment,x2):

draw_y_ticks (x1,yl,y_increment_left,y2);

draw_y_ticks (x2,yl,y_increment_right,y2);
end; {of procedure draw_graph}

function ten_to_power(n : integer) : real;
begin

ten_to_power := exp(n*1n(10));
end; {of ten_to_power}

function ten_to(n : real) : real;
begin

166

314 ten_to := exp(n*1n(10));
315 end; {of ten_to}

316

317 procedure write_x_coordinates(x1,yl,x_increment :integer;
318 Xlc,xc_increment,x2c : real; field,fix :integer);

319 begin

320 repeat

321 gotoxy((x1 div 8), (y1 div 8));

322 write (xlc:field:fix);

323 xlc := xic + xc_increment;

324 x1 := x1 + x_increment;

325 until xic > x2c¢;

326 end; {of write_x_coordinates}

327

328 procedure write_y_coordinates(x1,yl,y_increment :integer;
329 ylc,yc_increment,y2c : real; field, fix : integer);
330 begin

331 repeat

332 gotoxy((x1 div 8), (y1 div 8));
333 write (ylec:field:fix);

334 ylc := ylc + yc_increment;

335 ¥yl := y1 + y_increment;

336 until yic < y2c;

337 end; {of write_y_coordinates}

338

339 procedure set_up;

340 begin

341 hires; hirescolor(15):

342 draw_graph(xmin, ymin, xmax, ymax, (xmax-xmin)div 5,
343 (ymax-ymin)div 6, (ymax-ymin)div 6);
344 end; {of set_up}

345

346 procedure write_y_axis;

347 begin

348 write_y_coordinates(xmin-40,ymin+7, (ymax-ymin) div 6,
349 ylstop, (ylstart-ylstop)/6,ylstart,4,0);
350 end; {of write_y_axis}

351

352 procedure write_x_axis;

353 begin

354 write_x_coordinates (xmin,ymax+14,(xmax-xmin) div 5,
355 xstart, (xstop-xstart)/5,xstop,4,1);
356 end; {of write_x_axis}

357

358 procedure plot_ivdata(x, y : datarray; n : integer);
350 var

360 i : integer;

361 begin

362 display(x, y, n);
363 set_up;

364 gotoxy(1,1); write(’enter ylstart ylstop xstart xstop : ');
365 readln(ylstart, ylstop, xstart, xstop);
366 write_y_axis; write_x_axis;

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

167

for i := 1 to n do begin
xcor := round((x[i]-xstart)*(xmax-xmin)/(xstop-xstart));
yecor := round((ylstop-ln(y[i])/1n(10.0))=*

(ymax-ymin) /(ylstop-ylstart));

graphwindow(xmin, ymin, xmax, ymax) ;
plot(xcor-1,ycor,1);
plot (xcor+1,ycor,1);
plot(xcor,ycor-1,1);
plot(xcor,ycor+1,1);

end;

end; {plot_datafile}

procedure plot_ivcurve;
var
i, yd : integer;
amp, 1, xc : real;
cont : char;
begin
xc := 1.0;
yd :=1;
repeat
amp := ylstart + (ylstop-ylstart)+xc*yd/(ymax-ymin);
amp := ten_to(amp);
1 := 0.0259*nf*1n(amp/is + 1) + amp*rs;
{clear_line;
gotoxy(1,1); write(1:8," °’,amp:8);
read(cont) ;}
amp := ln(amp)/1n(10.0);
xcor := round((l-xstart)*(xmax-xmin)/(xstop-xstart));
ycor := round((ylstop-amp)*(ymax-ymin)/(ylstop-ylstart));
graphwindow (xmin, ymin, xmax, ymax) ;
plot(xcor,ycor,1);
xc = xc + 1.0;
until xc¢ >= int(((ymax-ymin) div yd) + 1);
end; {of plot_datafile}

procedure readfile(var x, y : datarray; var ndata : integer) ;
var
i : integer;
data_transfer : text;
begin
clear_line;
gotoxy(1,1); write(’enter filename(read) : ');
readln(filename) ;
assign(data_transfer,filename);
ndata := O;
reset(data_transfer);
while not eof(data_transfer) do begin

ndata := ndata + 1;
readln(data_transfer,x[ndata],y[ndata]);
end;

close(data_transfer):
end; {of readfile}

168

420

421 procedure writefile(x, y : datarray; ndata : integer) ;
422 var

423 i : integer;

424 data_transfer : text;

425 begin

426 clear_line;

427 gotoxy(1,1); write(’enter filename(write) : *):
428 readln(filename) ;

429 agsign(data_transfer,filename);

430 rewrite(data_transfer);

431 for i := 1 to ndata do

432 begin

433 writeln(data_transfer,x[il,’ ',y[il);

434 end;

435 close(data_transfer);

436 end; {of writefile}

437

438 procedure convert_lin_to_log(var z : datarray;
439 ndata : integer; q : char);
440 var

441 i : integer;

442 begin

443 clear_line; '

444 gotoxy(1,1); write(’taking log(’,q,’) ... *);
445 for i := 1 to ndata do begin

446 z[i] := 1n(z[i])/1n(10.0);

447 end;

448 write(’done’);

449 read(q);

450 end; {of convert_lin_to_log}

451

452 procedure calculate(var x, y : datarray; ndata : integer);
453 var

454 i : integer;
455 begin
456 clear_line;

457 gotoxy(1,1); write('log(x) or log(y) : ');

458 read(q);

459 if q = 'x' then convert_lin_to_log(x, ndata, q);
460 if q = 'y’ then convert_lin_to_log(y, ndata, q);
461 end; {of calculate}

462

463 procedure list(x, y : datarray; ndata : integer) ;
464 var

465 i : integer;

466 begin

467 writeln(lst, 'filename : ',filename);

468 for i := 1 to ndata do begin

469 writeln(lst,i,’ ’,y[i]l:10,* ',x[i]:10);
470 end;

471 end; {of writedata}
472

514

516
517
518
519
520
521
522
523
524
526

169

procedure plot_a_point(x, y : real);
begin
Xcor := round((x-xstart)*(xmax-xmin)/(xstop-xstart));
ycor := round((ylstop-y)+*(ymax-ymin)/(ylstop-ylstart));
graphwindow(xmin, ymin, xmax, ymax) ;
plot(xcor-1,ycor,1);
plot(xcor+i,ycor,1);
plot(xcor,ycor-1,1);
plot (xcor,ycor+1,1);
end; {plot_a_point}

procedure test(var x, y : datarray; ndata : integer) ;
var

i_zero : real;
begin

ndata := 0;

i_zero := 0.0;

set_up;

gotoxy(1,1); write(’enter ylstart ylstop xstart xstop :

readln(ylstart, ylstop, xstart, xstop);

write_y_axis;

write_x_axis;

initialize_hp_4145a;

set_current (i_zero);

for j := trunc(ylstart)+l to trunc(ylstop)-1 do begin
ndata := ndata + 1;
ia := 1.0 * ten_to_power(j);
set_current(ia);
measure_current (y[ndata]);
measure_voltage(x[ndatal);
ydata := ln(y[ndata])/1n(10.0);
plot_a_point (x[ndata],ydata);

ndata := ndata + 1;

ia := 2.0 * ten_to_power(j);
set_current(ia);
measure_current (y[ndata]l);
measure_voltage(x[ndata]);
ydata := In(y[ndatal)/1n(10.0);
plot_a_point (x[ndata],ydata);

ndata := ndata + 1;
ia := 4.0 * ten_to_power(j);
set_current(ia);
measure_current (y[ndata]);
measure_voltage (x[ndatal);
ydata := ln{y[ndata])/1n(10.0);
plot_a_point(x[ndata],ydata);
end;
set_current (i_zero);
curve_fit_ivdata(x, y, ndata, rs, nf, gf, is);
end; {of test}

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

170

procedure find barrier_height;
begin

clear_line;
gotoxy(1,1); write(’Enter diode area : ’); readln(area):
vb := (-0.0259) * 1n(is / (area*8.16%sqr(300)));
gotoxy(1,12); write('Vb = *,vb:8);

end;

procedure create_new_buffer;

var
select : integer;

begin
clear_line;
gotoxy(1,1);
write(’Enter 1 for create & O for append to a file : ');
read(select);
clear_line;
gotoxy(1,1); write(’Enter filename : '); readln(buffer):
if select = 1 then
begin
assign(number_transfer,buffer);
rewrite (number_transfer);
close(number_transfer) :
end;
write(lst,’Row Col Ra N_factor ")
writeln(lst,’Is Vb cc’);
end;)

procedure record _diode_parameter;
begin
assign(number_transfer,buffer);

')

reset (number_transfer) ;
seek (number_transfer,filesize(number_transfer)):
clear_line;
gotoxy(1,1); write(’Enter row & col : ’); readln(row,col);
write(number_transfer,row,col,rs,nf,is,vb,gf);
write(lst,row:2:0,° ',c0l:2:0," ',rs:10,’ ’,nf:10,°’
writeln(lst,is:10,' ’,vb:10,° ',gf:10);
close(number_transafer) ;

end;

procedure write_diode_parameter;

begin
write(lst,’'Row Col Rs N_factor ");
writeln(lst,’Is Vb cCc');
clear_line;
gotoxy(1,1); write(’Enter filename : °’); readln(buffer);
assign(number_transfer,buffer);
reset (number_transfer) ;
while not (eof (number_transfer)) do
begin
read(number_transfer,row,col,rs,nf,is,vb,gf);

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
606
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

171

write(lst,row:2:0,’ *,co0l:2:0," ’,rs:10,' ');
writeln(lst,nf:10,’ ',is:10," *,vb:10,' ',gf:10);
end;
close(number_transfer) ;
end;
begin {main program}

ylstart := -7.0; ylstop := -2.0;
xstart := 0O; xstop := 2.0;
area := 18e-8; {um e-8}
main_menu:

clrscr;

textmode (bw80) ;

clear_line;

gotoxy(1,1); write(’Main Menu>> (t)test-iv (r)read-iv (q)quit :

loopil:
if not(keypressed) then goto loopl
else read(kbd, main_mode);
case main_mode of
't' : test(v, i, ndata);
'r’ begin
readfile(v, i, ndata);
plot_ivdata(v, i, ndata);
curve_fit_ivdata(v, i, ndata, rs, nf, gf, is);
end;
goto quit;

q
end;
find_barrier_height;
plot_ivcurve;
sub_menu:

clear_line;

gotoxy(1,1); write(’Sub Menu>> *);

write('(d)disp (1)1st (s)sav (b)buf r(rec) w(wri) q(qit) : *);
loop2:

if not(keypressed) then goto loop2
else read(kbd, sub_mode);
case sub_mode of
'd’ : display(v, i, ndata);
'1' : list(v, i, ndata);
'8’ : writefile(v, i, ndata):
’q’ : goto main_menu;
'b’ : create_new_buffer;
'tr’ : record.diode_parameter;
'w' : write_diode_parameter;
end;
goto sub_menu;
quit:

end.

)

172
Appendix E

Computer Program Listing
for Doping Profile Measurement

1 program cv_measurement_of_Schottky_diode;

2

3

4 { The name of this program is cvdiode. It was developed

5 for measuring the C-V characteristics and to calculate the

6 doping profile of a diode. The program is written in

7 Turbo Pascal. An IBM-XT is used to control the Hp4280A

8 C-meter, whose address is 17. The measured data can be saved

9 on the disk, retrieved from the disk, displayed on the monitor,
10 or listed on the printer. Once a command is entered, press

11 return to invoke the command. Default value for the diode

12 area is 2.6e-3 ¢m”2, which is the area of the mercury

13 probe. The doping concentration ranges from 10°16 cm~-3 to

14 10718 cm"-3, and the depth ranges from O um to 0.5 um. The

15 capacitance ranges from 80 pF to 400 pF, and the voltage ranges
16 from -5 V to 0.5 V at 0.5 V step increment. The duffusion barrier
17 potential is assumed to be 0.94 V for aluminum on GaAs with

18 about 10717 cm"-3 doping concentration. The zero bias

19 capacitance (Co), capacitance ratio (Cr), and capacitance

20 exponent (Gm) are determined from curve-fitting the measured

21 C-V characteristic. The correlation coefficient (cc) for this fit
22 is also displayed on the monitor. The measured doping profile is
23 least-square-fitted with the hyperabrupt doping function. }
24

25

26

27

28 type

29 sdesc = record

30 len : byte;

31 addr : integer;

32 end;

33 datarray = array[1..100] of real;

34

35 const

36 xmin = 190; xmax = 550;

37 ymin = 33; ymax = 163;

38

39 label

40 quit, loop_1, loop_2;

41

42 var

43 cmd, recv : string[200];

44 vstart, vstop, vstep : string[18];

45 cmddesc, recvdesc : sdesc;

46 my_address, system_controller, len, status : integer;

47 quote : char;

48 i, n, first, nchar, code: integer;

173

cap, cond, volt, buffer :string[20];

capacitance, conductance, voltage : real;

slope_a, gamma, intercept_b, correlation_coeff : real;

¢, v, g, lnv, 1nc, 1lnxd, lnnd, nd, xd : datarray;

eo, er, eq, ci, area, dcdv, ndl, nd2, nd3, cratio : real;
co, nn, no, phi : real;

data_transfer : text;

filename : string[8];

ylstart, ylstop, ylunit, xstart, xstop, xstep, xunit : real;
ndata : integer;

q, cont : char;

number_transfer : file of real;

row, col : real;

procedure initialize(var addr, level : integer);
external ’'t488init’;

procedure transmit(var s : sdesc; var status : integer) ;
external ‘'t488xmit’;

procedure receive(var r : sdesc; var len, status : integer) ;
external ’t488recv’;

function ten_to_power(n : integer) : real;
begin

ten_to_power := exp(n*In(10));
end; {of ten_to_power}

function ten_to(n : real) : real;
begin

ten_to := exp(n*1n(10));
end; {of ten_to}

procedure clear_line;

begin

gotoxy(1,1); write(’)
write(’);

end; {clear_line}

procedure convert_lin_to_log(var z : datarray; ndata : integer; q :

var
i : integer;
begin
clear_line;
gotoxy(1,1); write(’taking log(’,q,’) ... *);
for i := 1 to ndata do begin
z[i] := 1n(z[i])/1n(10.0);
end;
write(’done’);
read(q);
end; {of convert_lin_to_log}

procedure lsf(ndata : integer; x, y : datarray;

char) ;

174

var slope, intercept, cc : real);

var

xsum, ysum, xysum, xssum, yssum, xden, yden, rden :

begin
xsum := O; ysum := O; xysum := O;
xssum := 0; yssum := 0;
for i := 1 to ndata do begin
xsum := xsum + x[i];
ysum := ysum + y[i];
xysum := xysum + x[i]*y[i];
xssum := xssum + x[i]*x[i];
yssum := yssum + y[il*y[i];
end;
xden := ndata*xssum-xsum*xsum;
yden := ndata*yssum-ysum*ysum;
rden := sqrt(xden*yden);
slope := (ndata*xysum-xsum*ysum)/xden;

intercept := (ysum*xssum-xysum#xsum)/xden;

cc := (ndata*xysum-xsum*ysum)/rden;
end; {of lsf}

procedure draw_box (x1,yl1,x2,y2,color : integer);

begin
draw (x1,y1,x1,y2,1);
draw (x1,y2,x2,y2,1);
draw (x2,y2,x2,y1,1);
draw (x2,y1,x1,y1,1);
end; {of draw_box}

procedure draw_x_ticks(x1l,yl,x_increment,x2
begin

while (x1<=x2) do begin

draw (x1,(y1+1),x1,(y1-2),1);

x1 := x1 + x_increment;

end; {while}
end; {of draw_x_ticks}

procedure draw_y_ticks(x1,yl,y_increment,y2 :

begin
while (y1<=y2) do begin
draw ((x1+2),y1, (x1-4),y1,1);
y1 := y1 + y_increment;
end; {while}
end; {of draw_y_ticks}

procedure draw_graph(x1,yl,x2,y2,

x_increment, y_increment_left, y_increment_right

begin
draw_box(x1,y1-2,x2,y2+2,1);
draw_x_ticks (x1,yl,x_increment,x2);
draw_x_ticks (x1,y2,x_increment,x2);
draw_y_ticks (x1,yl,y_increment_left,y2);

draw_y_ticks (x2,yl,y_increment_right,y2);

: integer) ;

integer) ;

Treal;

:integer);

end; {of procedure draw_graph}

procedure write_x_coordinates(x1l,y1,x_increment :integer;
xlc,xc_increment,x2c : real; field,fix :integer);

begin
repeat

gotoxy((x1 div 8), (y1 div 8));

write (xilc:field:fix);
xlc := xlc + xc_increment;
x1 := x1 + x_increment;
until xic > x2c;

end; {of write_x_coordinates}

procedure write_y_coordinates(x1,yl,y_increment :integer;
ylc,yc_increment,y2c : real; field, fix :

begin
Tepeat

gotoxy((x1 div 8), (y1 div 8));

write (ylec:field:fix);
Ylc := yic + yc_increment;
yl := y1l + y_increment;
until yic < y2¢;

end; {of write_y_coordinates}

procedure set_up;
begin
hires; hirescolor(15);

draw_graph(xmin, ymin, xmax, ymax, (xmax-xmin)div 5,
(ymax-ymin)div 5, (ymax-ymin)div 5);

end; {of set_up}

procedure write_y_axis;
begin

write_y_coordinates(xmin-40,ymin+7, (ymax-ymin) div 5,
ylstop, (ylstart-ylstop)/5,ylstart,4,1);

end; {of write_y_axis}
procedure write_x_axis;

begin

vrite_x_coordinates (xmin,ymax+14, (xmax-xmin) div 5,
xstart, (xstop-xstart)/5,xstop,4,2);

end; {of write_x_axis}

procedure write_y_axis_exp;
begin

write_y_coordinates(xmin-40,ymin+7, (ymax-ymin) div 2,
ylstop, (ylstart-ylstop)/2,ylstart,4,1);

end; {of write_y_axis_exp}

procedure plot_a_pixel(x, y :
var
xcor, ycor : integer;

208
209

211
212
213
214
215
216

176

begin
xcor := round((x-xstart)*(xmax-xmin)/(xstop-xstart));
ycor := round((ylstop-y)*(ymax-ymin)/(ylstop-ylstart));
graphwindow (xmin, ymin, xmax, ymax) ;
plot(xcor,ycor,1);

end;

procedure plot_a_point(x, y : real);

var
xcor, ycor : integer;

begin
xcor := round((x-xstart)*(xmax-xmin)/(xstop-xstart));
ycor := round((ylstop-y)*(ymax-ymin)/(ylstop-ylstart));
graphwindow (xmin, ymin, xmax, ymax) ;
plot(xcor-1,ycor,1);
plot(xcor+1,ycor,1);
plot (xcor,ycor-1,1);
plot (xcor,ycor+1,1);

end; {plot_a_point}

procedure plot_datafile(x, y : datarray; ndata : integer);
var

i, xcor, ycor, yd : integer;

amp, 1, xc : real;

q : char;

begin
set_up;
gotoxy(1,1); write(’enter ylstart ylstop xstart xstop :
readln(ylstart, ylstop, xstart, xstop);
write_y_axis; write_x_axis;
for i := 1 to ndata do begin

')

xcor := round((x[i]-xstart)+*(xmax-xmin)/(xstop-xstart));

ycor :
graphwindow(xmin, ymin, xmax, ymax) ;
plot(xcor-1,ycor,1);
plot(xcor+1,ycor,1);
plot (xcor,ycor-1,1);
plot(xcor,ycor+1,1);

end;
end; {of plot_datafile}

round((ylstop-y[il]) * (ymax-ymin)/(ylstop-ylstart));

procedure readfile(var x, y : datarray; var ndata : integer);

var
i : integer;
data_transfer : text;

begin
clear_line;
gotoxy(1,1); write('enter filename(read) : *);
readln(filename);
assign(data_transfer,filename) ;
ndata := 0;
reset(data_transfer);

177

261 while not eof(data_transfer) do begin

262 ndata := ndata + 1;

263 readln(data_transfer,x[ndata],y[ndata]);

264 end;

265 close(data_transfer);

266 end; {of readfile}

267

268 procedure writefile(x, y : datarray; ndata : integer);
269 var

270 i : integer;

271 data_transfer : text;

272 begin

273 clear_line;

274 gotoxy(1,1); write(’enter filename(write) : ');
275 readln(filename) ;

276 assign(data_transfer,filename);

277 rewrite(data_transfer);

278 for i := 1 to ndata do

279 begin

280 writeln(data_transfer,x[i],’ ’,y[il]);

281 end;

282 close(data_transfer);

283 end; {of writefile}

284

285 procedure list(x, y : datarray; ndata : integer) ;
286 var

287 i : integer;

288 begin

289 for i := 1 to ndata do begin

290 writeln(lst,x[il,* ’,y[iD);

291 end;

202 end; {of writedata}

203

204 procedure display(x, y : datarray; ndata : integer);
205 var

296 i : integer;

297 q : char;

208 begin

299 clear_line;

300 for i := 1 to ndata do begin

301 gotoxy(1,1); writeln(ndata,’ - *,i,’ ',x[il,” °’,y[il);
302 read(q) ;

303 end;

304 end; {of display}

305

306 procedure create_new_buffer;

307 var

308 select : integer;

309 begin

310 clear_line;

311 gotoxy(1,1); write(’Enter 1 for create & O for append to a file : ');
312 read(select);
313 clear_line;

178

314 gotoxy(1,1); write(’Enter filemame : ’); readln(buffer):
315 if select = 1 then

316 begin

317 assign(number_transfer,buffer);

318 rewrite (number_transfer):

319 close(number_transfer);

320 end;

321 write(lst,'Row Col C.b Co');

322 writeln(lst, 'Cmil Cm2 Vb Gamma') ;
323 end;

324

325 procedure record_diode_parameter;

326 var

327 vb, cpb, co, cml, cm2 : real;

328 begin

329 assign(number_transfer,buffer);

330 reset (number_transfer) ;

331 seek(number_transfer,filesize(number_transfer));
332 clear_line;

333 gotoxy(1,1); write(’Enter row & col : '); readln(row,col);
334 vb := xstart;
335 cp5 := c[ndata];

336 co := c[ndata-1];

337 cml := c[ndata-2];

338 cm2 := c[1];

339 write(number_transfer,row,col.cp5.co,cm1.cm2,vb,gamma);

340 write(lst,row:2:0,' ’,co0l:2:0,°* ',cp5:9,' ");
341 writeln(lst,co:9," ‘,em1:9," ' ,em2:9,° ’,vb:3:1,° ' ,gamma:9);
342 close(number_transfer);

343 end;

344

345 procedure write_diode_parameters;

346 var

347 vb, cpb, cp0, cmi, cm2, gm : real;

348 begin

349 write(lst,’Row Col ¢€.5 Co OF

350 writeln(lst, 'Cmi Cm2 Vb Gamma’) ;
351 clear_line;

352 gotoxy(1,1); write(’Enter filename : '); readln(buffer):
353 assign(number_transfer,buffer) ;

354 reset (number_transfer);

355 while not(eof (number_transfer)) do

356 begin

357 read(number_transfer,row,col,cp5,cp0,cm1,cm2,vb,gm);
358 write(lst,row:2:0,’ ’,co0l:2:0,’ ',epb:9,’ ’);

359 writeln(lst,cp0:9,’ ’,cm1:9,' *,cm2:9,’ °’,vb:9,’ ',gm:9);
360 end;

361 close(number_transfer);

362 end;

363

364 procedure cvtest(var v, c¢ : datarray; var ndata : integer);
365 label
366 again, loop;

179

367 var

368 cf, vf, vinc : real;

369 begin

370 again:

371 set_up;

372 ylstart := 80.0; ylstop := 400.0; ylunit := le-12;
373 xstart := -5.0; xstop := 0.5; xstep := 0.5;

374 gotoxy(1,1);

375 write(’Cd_vs_Vd>> ylstart ylstop ylunit xstart xstop xstep : ');
376 readln(ylstart, ylstop, ylunit, xstart, xstop, xstep);

377 ndata := trunc(((xstop-xstart) / xstep)) + 1;

378 write_y_axis;

379 write_x_axis;

380 quote := chr(39);

381 cmddesc.addr := ofs(cmd) + 1;

382 recvdesc.addr := ofs(recv) + 1;

383

384 my_address := 21;

385 system_controller := 0;

386 initialize(my_address, system_controller):
387

388 cmd := 'IFC REN MTA LISTEN 17’ ;

389 cmddesc.len := length(cmd);

390 transmit (cmddesc, status);

391

392 cmd := 'DATA ' + quote + 'LE2 Z0’ + quote + '13 10°
393 cmddesc.len := length(cmd);

304 transmit (cmddesc, status);

305

396 str(xstart,vstart);

397 str(xstop,vstop);

398 str(xstep,vstep);

399 cmd := 'DATA ' + quote + 'IB2, CE1, PS’ + vstart + ', PP’ + vstop +
400 'y PE’ + vstep + ', PL1, PD1, TR3, SWi’ + quote + ’13 10’ ;
401 cmddesc.len := length(cmd);

402 transmit (cmddesc, status) ;

403

404 cmd := ’*TALK 17’ ;
405 cmddesc.len := length(cmd);

406 transmit (cmddesc, status);

407

408 recv := '’

409 recvdesc.len := length(recv);

410 receive(recvdesc,len, status);

411 for i := 1 to ndata do begin

412 recv := '

413 recvdesc.len := length(recv);
414 receive{recvdesc, len,status);
415 first := pos(’C’,recv) + 2;

416 nchar := pos(’,’,recv) - first;
417 cap := copy(recv,first+1,nchar);
418 delete(recv,1,pos(’, "’ ,recv));

419 first := pos(’G’,recv) + 2;

471

180

loop:

nchar := pos(’,’,recv) - first;
cond := copy(recv,first+1,nchar):
delete(recv,1,pos(’,’,recv)+1);
volt := recv;
if recv[1] = '+’ then delete(volt,1,1);
val{cap,capacitance,code);
val(cond, conductance, code);
val(volt,voltage,code);
c[i] := capacitance;
v[i] := voltage;
gli]l := conductance:
plot_a_point (v[i], c[i]/ylunit);
end;
{if v[i] is replace with v[i]-phi, fit will be better}
for i := 1 to ndata do begin
Inc[i] := 1n(c[i])/1n(10);
lnv[i] := 1n(1-(v[il/phi))/1n(10);
end;
slope_a := 0;
intercept_b := 0;
correlation_coeff := 0;
1sf(ndata, lnv, Inc, slope_a, intercept_b, correlation_coeff);
gamma := -glope_a;
co := ten_to(intercept_b);
cratio := c[ndata]/c[1];
gotoxy(1,5); writeln(’Cn = ', ,c[ndata]:8);
gotoxy(1,6); writeln(’'Cit = ', c[1]:8);
gotoxy(1,7); writeln(’CR = ’,cratio:2:1);
gotoxy(1,10); writeln('Co = ’,co:8);
gotoxy(1,11); writeln(’Cm = ', gamma:4:3);
gotoxy(1,12); writeln(’cc = ',correlation_coeff:6:5);
vinc := (xstop-xstart)/100.0;
v := xstart;
repeat
cf := co / exp(gamma*(ln(1-vf/phi)));
plot_a_pixel(vf, cf/ylunit);
vi := vf + vinc;
until (vf = xstop) or (vf > xstop);
clear_line;
gotoxy(1,1); write(’'Cd_vs_Vd>> (s)sav (d)disp ');
write(’ (1)1st (r)rep (w) wri (c) crt (k) kip (q) n_x : *); read(q);
case q of
'8’ : writefile(v, c, ndata);
'd" : writefile(v, c, ndata);
1 : list(v, c, ndata);
‘r' : goto again;
'w’ : write_diode_parameters;
'c’ : create_new_buffer;
'k’ : record_diode_parameter;
end;
if q <> 'q’ then goto loop;

472 end; {of cvtest}

181

474 procedure read_cv(var x, y : datarray; var ndata : integer);
475 label

476 again, loop;

477 var

478 i : integer;

479 cf, vf, vinc : real;

480 begin

481 again:

482 readfile(x, y, ndata);

483 display(x, y, ndata);

484 set_up;

485 ylstart := 80.0; ylstop := 400.0; ylunit := 1e-12;
486 xstart := -5.0; xstop := 0.5;

487 gotoxy(1,1); write(’Cd_vs_Xd>> ylstart ylstop ylunit xstart xstop : ’);
488 readln(ylstart, ylstop, ylunit, xstart, xstop) ;

489 write_y_axis;

490 write_x_axis;

491 for i := 1 to ndata do begin

492 plot_a_point(v[i],c[i]/ylunit);

493 end;

494 {if v[i] is replace with v[i]-phi, fit will be better}
495 for i := 1 to ndata do begin

496 Inc[i] := In(c[i])/1n(10);

497 lnv[i] := 1n(1-(v[il/phi))/1n(10);

498 end;

499 slope_a := 0;

500 intercept_b := 0;

501 correlation_coeff := 0;

502 1sf(ndata, lov, Inc, slope_a, intercept_b, correlation_coeff):
503 gamma := -slope_a;

504 co := ten_to(intercept_b);

505 cratio := c¢[ndatal]/c[1];

506 gotoxy(1,5); writeln(’'Cn = *,c[ndata]:8);
507 gotoxy(1,6); writeln('C1 = *,c[1]:8);

508 gotoxy(1,7); writeln(’CR = ', cratio:3:2):
509 gotoxy(1,10); writeln(’Co = *,co0:8);

510 gotoxy(1,11); writeln('Gm = ’,gamma:4:3);

511 gotoxy(1,12); writeln(’cc *,correlation_coeff:6:5);
512 vinc := (xstop-xstart)/100.0;

513 vi := xstart;

514 repeat

515 cf := co / exp(gamma*(ln(1-vf/phi)));

516 plot_a_pixel(vf, cf/ylunit);

517 vl := vf + vinc;

518 until (vf = xstop) or (vf > xstop);

519 loop:

520 clear_line;

521 gotoxy(1,1); write(’'Cd_vs_Vd>> (s)save (d)display ’);
522 write(’ (1)1list (r) repeat (q)quit : '); read(q);
523 if q = '8’ then writefile(v, c, ndata);

524 if q = 'd’ then display(v, ¢, ndata);
525 if q = '1’ then list(v, c, ndata);

526
527
528
529
530
531
532
533
534
535
536
537

539
540
541
542
543
544
545
546
547
548
549
550
551
552
563
554
5585
556
557
558

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

182
if q = ’'r' then goto again;
if q <> 'q' then goto locp

end;

procedure get_plot_a_file;

label
again, loop;
var
X, y : datarray;
ndat : integer;
q : char;
begin
again:
readfile(x, y, ndat);
display(x, y, ndat);
plot_datafile(x, y, ndat);

loop:

clear_line;
gotoxy(1,1); write(’Get & Plot>> (d)display ');
write(’ (1)1ist (r) repeat (q)quit : '); read(q);
if q = ’d’ then display(x, y, ndat);
if 9 = 1’ then list(x, y, ndat);
if q = 'r’ then goto again;
if q <> 'q’ then goto loop;
end;
begin {main}

loop_1:
clrscr;
textmode (bw80) ;
phi :=0.94; {phi varies slightly with doping concentration}
gotoxy(1,1);
write('Menu>> m(measure-cv) r(read-cv) p(get&plot) (@dquit : *);
read(q);
case q of
'm’ : cvtest(v, c, ndata);
: read_cv(v, c, ndata);
: get_plot_a_file;
: goto quit;
end;
clrscr;
if q = 'p’ then goto loop_1;
set_up;
ylstart := 16.0; ylstop := 18.0;
xstart := 0.0; xstop := 0.5; xunit := 1.0;
gotoxy(1,1);

write(’Nd_vs_Xd>> ylstart, ylstop, xstart, xstop, xunit [exp & um]

readln(ylstart, ylstop, xstart, xstop, xunit);
write_y_axis_exp;

write_x_axis;

eo := 8.85e-14;

er := 13.1;

579
580
581
582
583

587
588
589
590
591
592
593
504
595
596
597
598
599
600
601
602
603
604
605
606
607
608 loo
609
610
611
612
613
614
615
616
617 qui

183

eq := 1.6e-19;
area := 2.6e-3; {area of Hg probe given in manual = 2.6e-3 [cm2]}
clear_line;
gotoxy(1,1); write(’Nd_vs_Xd>> diode area [cm2] : *);
readln(area);
for i := 1 to ndata-1 do begin

i = (c[i] + c[i+1])/2;

xd[i] := le4 * eo * er * area / ci; {in units of microns}
dedv := (c[i+1]-c[i]) / (v[i+1}-v[i]);

ndl := ci/eq; {ndl := ci * ci * ci;}

nd2 := ci/(eo*er); {nd2 := eq * eo *er;}

ndl := ndl * nd2; {nd3 := area * area * dcdv:}
ndl :=ndl * ci / area; {nd1 := nd1/nd2;}

nd[i] := nd1/(area * decdv);

{nd[i] := nd1/nd3; units of atoms per cm-3}
1ond[i] := 1n(nd[i])/1n(10.0);

Inxd[i] := 1n(xd[i])/1n(10.0);
plot_a_point(xd[i]/xunit,lnnd[i]):

end;

slope_a := 0;
intercept b := 0;
correlation_coeff := O;

1sf(ndata-1, Inxd, lnnd, slope a, intercept_b, correlation_coeff);
nn := -slope_a;

no := ten_to(intercept_b);

gotoxy(l 6); writeln(’No = ’,no:8);

gotoxy(1,7); writeln(’n ',nn:4:3);

gotoxy(1,8); writeln('cc ’,correlation_coeff:6:5);

p-2:

clear_line;

gotoxy(1,1);

write(*Nd_vs_Xd>> (s)save (d)display (1)list (q)quit: '); read(q) ;
if q = 's' then writefile(xd, nd, ndata-1);

if q = 'd’ then display(xd, nd, ndata-1);

if q = '1’ then list(xd, nd, ndata-1);

if q <> ’q’ then goto loop_2;

goto loop_1;

t:

618 end.

