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ABSTRACT 

In order to develop better catalysts for the cleavage of aryl-X bonds fundamental 

studies of the mechanism and individual steps of the mechanism have been 

investigated in detail. As the described studies are difficult at best in catalytic systems, 

model systems are frequently used. To study aryl-oxygen bond activation, a terphenyl 

diphosphine scaffold containing an ether moiety in the central arene was designed. 

The first three chapters of this dissertation focus on the studies of the nickel 

complexes supported by this diphosphine backbone and the research efforts in regards 

to aryl-oxygen bond activation. 

Chapter 2 outlines the synthesis of a variety of diphosphine terphenyl ether 

ligand scaffolds. The metallation of these scaffolds with nickel is described. The 

reactivity of these nickel(0) systems is also outlined. The systems were found to 

typically undergo a reductive cleavage of the aryl oxygen bond. The mechanism was 

found to be a subsequent oxidative addition, β-H elimination, reductive elimination 

and (or) decarbonylation. 

Chapter 3 presents kinetic studies of the aryl oxygen bond in the systems 

outlined in Chapter 2. Using a series of nickel(0) diphosphine terphenyl ether 

complexes the kinetics of aryl oxygen bond activation was studied. The activation 

parameters of oxidative addition for the model systems were determined. Little 

variation was observed in the rate and activation parameters of oxidative addition with 

varying electronics in the model system. The cause of the lack of variation is due to the 

ground state and oxidative addition transition state being affected similarly. Attempts 

were made to extend this study to catalytic systems. 
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Chapter 4 investigates aryl oxygen bond activation in the presence of additives. It 

was found that the addition of certain metal alkyls to the nickel(0) model system lead 

to an increase in the rate of aryl oxygen bond activation. The addition of excess 

Grignard reagent led to an order of magnitude increase in the rate of aryl oxygen bond 

activation. Similarly the addition of AlMe3 led to a three order of magnitude rate 

increase. Addition of AlMe3 at -80 °C led to the formation of an intermediate which 

was identified by NOESY correlations as a system in which the AlMe3 is coordinated 

to the ether moiety of the backbone. The rates and activation parameters of aryl 

oxygen bond activation in the presence of AlMe3 were investigated.  

The last two chapters involve the study of metalla-macrocycles as ligands. 

Chapter 5 details the synthesis of a variety of glyoxime backbones and diphenol 

precursors and their metallation with aluminum. The coordination chemistry of iron 

on the aluminum scaffolds was investigated. Varying the electronics of the aluminum 

macrocycle was found to affect the observed electrochemistry of the iron center. 

Chapter 6 extends the studies of chapter 5 to cobalt complexes. The synthesis of 

cobalt dialuminum glyoxime metal complexes is described. The electrochemistry of 

the cobalt complexes was investigated. The electrochemistry was compared to the 

observed electrochemistry of a zinc analog to identify the redox activity of the ligand. 

In the presence of acid the cobalt complexes were found to electrochemically reduce 

protons to dihydrogen. The electronics of the ancillary aluminum ligands were found 

to affect the potential of proton reduction in the cobalt complexes. These potentials 

were compared to other diglyoximate complexes. 
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General Introduction 
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 This dissertation is focused on two main areas, specifically the study of aryl 

oxygen bond activation in a nickel(0) diphosphine terphenyl ether complex and the 

study of aluminum glyoxime macrocycles and the effects of sterics and electronics on 

the coordination and chemistry of the central metal center. 

The efficient elaboration of aryl oxygen bonds to a variety of functional groups is 

emerging as a versatile tool in organic methodology. One very important use of aryl 

oxygen moieties is for the facile modification of arene rings. These substituents can be 

introduced into the aromatic ring via a number of pathways, notably electrophilic 

aromatic substitution. One widely used example is for the lithiation of arene rings 

where the aryl-lithium salt can be quenched with an electrophilic species leads to 

derivertization of the ring. 

Although the utility of aryl oxygen groups cannot be understated, their removal is 

not straightforward. The aryl oxygen bond is strong and hence resists efforts at its 

activation. Some catalytic systems have been developed albeit the systems typically 

suffer from low turnover and low rates. Another utility of this cleavage is in cross 

coupling. Cross coupling of aryl ethers allows for the utilization of phenolic precursors 

in organic synthesis. While catalytic systems have been developed few in-depth 

mechanistic studies have been done on the reactivity of aryl oxygen bonds with nickel.  

While few experimental studies had been done some computational studies had 

been undertaken where it was found that a nickel arene interaction was of present 

prior to the activation of the aryl oxygen bond. Our group has been focusing on 

several novel terphenyl diphosphine scaffolds. These terphenyl diphosphines were 

found to encourage metal arene interactions with a variety of metals. Given that the 

ligands predisposed the metal to interact with the arene we envisioned observing 

intramolecular reactivity with an ether moiety in close proximity with the central arene 
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ring. Hence we come to the main ligand of this thesis. We developed a diphosphine 

terphenyl containing an ether moiety in the central arene of the terphenyl. Using this 

novel diphosphine studies were undertaken to gain mechanistic insight into the 

mechanism of aryl oxygen bond activation. From this system, in collaboration with my 

colleagues Sibo Lin and Guy A. Edouard, a mechanism for the reductive cleavage of 

aryl oxygen bond was able to be worked out, which we were able to extend to catalytic 

systems. 

From there I directed myself to studies on the effect of electronics in aryl oxygen 

bond activation (Chapter 3). I was able study the rate of oxidative addition in great 

detail in variants of the nickel diphosphine discussed in chapter two. I was able to 

show that the rates and kinetics of oxidative addition are not affected significantly by 

the electronics of the ether. This is proposed to result from similar changes in the 

energy of the fround and transition states. Attempts were made to extend these studies 

to actual catalytic systems however due to the complexity of the systems the 

conclusions were always less than satisfying. 

However, during the kinetic studies I was able to observe the acceleration of aryl 

oxygen bond activation in the presence of Lewis metal alkyls. Through careful low 

temperature studies we were able to ascertain that the Lewis acidic metal is 

coordinated to the ether moiety. The rate was found to show a dependence on Lewis 

acidic metal alkyl hinting a much more complicated mechanism. 

The second part of my thesis deals with the study of iron and cobalt glyoxime 

complexes. What sets these compounds apart is the large aluminum linker between 

the glyoximes. The aluminum linkers and the ancillary ligands on the aluminum were 

found to affect the chemistry and geometry of the metal center. The structural and 
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electrochemical parameters of the iron complex were investigated. Analogous cobalt 

complexes were studied for proton reduction as a function of the aluminum linkers. 
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